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Abstract

Carbon-based nano hetero-structures are currently receiving increasing attention. In this pa-

per, the vibration characteristics of graphene-hexagonal boron nitride (hBN) and graphene-

molybdenum disulfide (MoS2) are presented using atomistic finite element approach. Various

possible scenarios, namely different geometrical configurations (armchair and zigzag), boundary

conditions and aspect ratio are considered in the present study. The dynamic characteristics of

nano hetero-structures studied have shown dependence on aspect ratio and the boundary condi-

tions. Young’s modulus (E) of the individual nanosheets significantly influences the vibrational

behaviour of nano hetero-structures. Therefore, the values of E have also been predicted for

individual sheets using atomistic simulations and correlated against the data in the literature.

The natural frequencies of graphene-hBN nano hetero-structures predicted in the current work

have been correlated against the molecular dynamics based studies available in the literature.

The unique vibrational properties and large stiffness of nano hetero-structures identified in the

present work make them a suitable candidate for manufacturing nanosensors, electromechani-

cal resonators, and also will aid the nanomaterials research community to design various other

nanodevices.
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1. Introduction

Since the discovery of superlative monolayers and thin films of graphite [1, 2], research in-

terest in the engineering and scientific applications of carbon nanostructures is growing. The

superlatives identified in graphene has also lead to an increased interest in other possible two-

dimensional materials that could offer exceptional electronic, optical, thermal, chemical and

mechanical characteristics [3–5]. Since the last decade the curiosity in quasi-two-dimensional

family of nano materials has grown from hexagonal boron nitride (hBN), boron-carbon-nitride

(B-C-N), graphene oxides to chalcogenides such as molybdenum disulfide (MoS2), molybdenum

diselenide (MoSe2), stanene, silicene, sermanene, phosphorene, borophene etc [6, 7]. It is es-

sential to investigate these materials at nanoscale since the superlative properties appear in

atomic scale and in single or few layer forms [8]. 2D nano materials researched in the litera-

ture are of various geometrical patterns and among these, hexagonally shaped nano-structures

are of significance to the nano-technology research community [4]. Nano scale level continuum

mechanics based models have evolved since the last decade, for graphene [9, 10] and hBN [11].

Although such single layer nano materials have been investigated using ab initio calculations

[12–14], molecular dynamics (MD) [15–17] and molecular mechanics [18]. There is a limited

literature available on the multi layer nano hetero-structures. The article by Zhang [19] is only

research work that investigated vibrations behavior of van der Waals hetero-structures. This re-

searcher used MD and continuum mechanics to determine natural frequencies of graphene-hBN

and graphene-silicene hetero-structures. In the current article, the dynamic behavior of nano

hetero-structures in terms of natural frequencies and mode shapes will be investigated using

atomistic finite element method.

Table 1: Bond angles and sheet thickness for nano materials[20]. Refer Fig. 1 for angle representations.

Nanomaterial α (in °) θ (in °) Sheet thickness (nm)

Graphene 0 120 0.34
hBN 0 120 0.098
MoS2 48.15 120 0.603

This paper is organised as follows. In the second section, the derivation of mechanical proper-

ties of atomic bonds is shown. Followed by an overview on the atomistic simulation methodology

utilized to model nano hetero-structures. This overview describes the finite element based atom-

istic modelling of individual sheets of graphene, hBN, MoS2 and also the modeling of weak van

der Waals interactions between them. The molecular representation of these distinct nano sheets
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has been shown as isometric images in Fig. 3. The results and discussions have been presented

in the fourth section. A comparison between the existing results in the literature and atomisti-

cally simulated E (Young’s Modulus) has been given. The existing results in the literature are

based on molecular dynamics/molecular mechanics (MD/MM), ab initio calculations and also

analytical models. A comparison between natural frequencies obtained by MD simulations and

atomistic FE simulations has also been given here. Wherein, the MD based solutions are ob-

tained from the literature [19]. For this comparison study, a multilayered nano hetero-structure

involving a layer of graphene and three layers of hBN is chosen. Then the first four mode shapes

of graphene-hBN and graphene-MoS2 are presented. This is followed by the results of detailed

dynamic analysis of graphene-hBN and graphene-MoS2 nano hetero-structures. These results

investigate the influence of length, aspect ratio, boundary conditions and chirality on modal

frequencies of nano hetero-stuctures. In the final section, concluding remarks have been given.

2. Mechanical equivalence of atomic bonds

In the case of atomic scale behaviour of materials, the total interatomic potential energy can

be given as the sum of various individual energy terms relevant to bonding and non-bonding

interactions [18]. Total strain energy (EE) can be represented as the sum of energy contributions

from bending of bonds (Eb), bond stretching (Es), torsion of bonds (Et) and energies associated

with non-bonded terms (Enb) such as the van der Waals attraction, the core repulsions and the

Coulombic energy.

EE = Es + Eb + Et + Enb (1)

The influence of bending and stretching is significant in case of small deformations as compared

to all other energy components [10, 21]. For the case of multiplanar hexagonal nano-structures

(such as MoS2), the strain energy due to bending is comprised of two components, in-plane

component (EbI) and out-of-plane component (EbO). The deformation mechanisms for the

multiplanar nanostructure (MoS2) are shown in Fig. 1 – 2. The out-of-plane angular component

becomes zero for monoplanar nanostructures such as graphene and hBN. The total inter-atomic

potential energy (EE) can be represented as

EE = Es + EbI + EbO

=
1

2
kr(∆l)

2 +

(
1

2
kθ(∆θ)

2 +
1

2
kθ(∆α)2

) (2)

where ∆l, ∆θ and ∆α denote the change in bond length, change in in-plane angle and change

in out-of-plane angle respectively, as shown in Fig. 1. The quantities kr and kθ are the force
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constants associated with bond stretching and bond bending respectively. The first term in

Eq. 2 represents strain energy relevant to stretching (Es), while the other terms represent the

strain energies due to in-plane (EbI) and out-of-plane (EbO) angle variations, respectively. The

force constants of the atomic bonds (kr and kθ) can be expressed in the form of structural

equivalence [22]. As per the standard theory of classical structural mechanics (refer to Fig. 2),

strain energy of a uniform circular beam with cross-sectional area A, length l, Young’s modulus

E, and second moment of area I, under the application of a pure axial force N (refer to Fig. 2(b))

can be expressed as

Ua =
1

2

∫ L

0

N2

EA
dl =

1

2

N2l

EA
=

1

2

EA

l
(∆l)2 (3)

The strain energies due to pure bending moment M (refer to Fig. 2(c)) can be written as

Ub =
1

2

∫ L

0

M2

EI
dl =

1

2

EI

l
(2∆φ)2 (4)

Comparing Eq. 3 with the expression for strain energy due to stretching (Es) (refer Eq. 2), it

Fig. 1: (a) Different views of MoS2 hexagonal nanostructure (b) Bond stretching induced strain energy (c)
In-plane angle variation induced strain energy (d) Out-of-plane angle variation induced strain energy.

can be concluded that Kr =
EA

l
. For bending, it is reasonable to assume that 2∆φ is equivalent

to ∆θ and ∆α for in-plane and out-of-plane angle variations respectively (refer to Fig. 2(c)).

Thus comparing Eq. 4 with the expressions for the strain energies due to in-plane (EbI) and out-

of-plane (EbO) angle variations (refer Eq. 2), the following relation can be obtained: kθ =
EI

l
.

There exists a mechanical equivalence between molecular mechanics parameters (kr and kθ) and

structural mechanics parameters (EA and EI). Such mechanical equivalence can be used to

derive beam (covalent bond) properties used in the atomistic simulations. In the current work,

the effective elastic moduli and natural frequencies of nano hetero-structures are computed by
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using these beams representing covalent bonds.

Fig. 2: (a) A hexagonal unit cell involving of 6 idealized beam elements (refer to Fig. 1(a)) (b) A beam element
under the influence of pure tension (c) A beam element under the influence pure bending.

3. Atomistic FE models of nano hetero-structures using finite element method

The atomistic models deployed here are based on the finite element methodologies developed

by the authors to study graphene and its associated nano structures [23–28]. In this research

work, the finite element analysis tool OPTISTRUCT has been used to model the dynamic

behaviour of nano hetero-structures. The covalent bonds are represented by 3D Timoshenko

finite element beams and the atoms are represented by finite element nodes. Within the finite

element analysis tool OPTISTRUCT, the element type CBEAM has been used to represent

beams. The cross sectional diameter and the Young’s modulus (E) of the beam elements are

computed by using the equations of force-field constants Kr(stretching) and Kθ(torsional) shown

in Section 2.

The numerical values of force constants Kr and Kθ are shown in the Table 2 and are taken

from the literature [20]. By substituting these values in the equations Kr =
EA

l
and kθ =

EI

l
,

essential parameters to model covalent bonds such as beam diameter d and beam Young’s

modulus E can be calculated. The calculated values are shown in Table 2. Furthermore, the

bond lengths, which are essentially beam lengths shown in Table 2 are also obtained from

the literature [20]. From Table 2, it is evident that the nano material MoS2 offers the highest

interatomic bond length, while graphene offers the lowest bond lengths among the three materials

considered in this work. The C-C bond length within graphene sheets is very close to that of

B-N bond length in hBN sheets. Atomic masses of carbon, boron, nitrogen, molybdenum and

sulphur have been considered by modeling mass elements on the nodes. The atomic masses

prescribed are 1.9943X10−26 kg, 1.7952086X10−26 kg, 2.3258671X10−26 kg, 1.593121X10−25

kg and 1.593121X10−23 kg for carbon, boron, nitrogen, molybdenum and sulphur, respectively.
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(a) Graphene (b) Hexagonal Boron Nitride(Nitrogen in blue)

(c) Molybdenum disulphide(Molybdenum in
green)

Fig. 3: Isometric views of graphene, hexagonal boron nitride sheets and molybdenum disulphide molecules.

Within the finite element analysis tool OPTISTRUCT, the element type CONM2 has been used

to represent masses.

Table 2: Bond properties for each individual nano material[20].

Nanomaterial Kr in N nm−1 Kθ in N-nm-rad−2 L in nm d in nm E in GPa

Graphene 6.52e− 7 8.76e− 10 0.142 0.146 1370.91
hBN 4.86e− 7 6.95e− 10 0.145 0.151 1047.1
MoS2 1.64e− 7 1.67e− 9 0.242 0.403 882.1

The equivalent axial force for an L-J potential between pair of atoms (i, j) belonging to

different nano sheets can be defined as [29]

Fij =
∂Vij
∂r

(5)

where, r is the atomic displacement along ij (layer-layer length). As per Girifalco et al. [30],

the force between the atoms (ij) can also be represented by

Fij = −12 ε

[(
rmin
y

)13

−
(
rmin
y

)7
]

(6)

where, y = rmin+δr, δr is the atomic displacement along the length ij. The rmin (in Å) is given
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by 2
1
6 σ, where σ = (A/B)1/6. The B and A are attractive and repulsive constants, respectively.

In the current research work, three different nano sheets have been considered namely graphene,

hBN and MoS2. Hetero-structures of graphene-hBN and graphene-MoS2 have been studied

under dynamic conditions. These hetero-structures lead to C-B, C-N, B-B, N-N, C-M, C-S,

M-M, M-S and S-S atomic interactions. Where C,B,N,M and S are carbon, boron, nitrogen,

molybdenum and sulphide atoms, respectively. The values of σ and ε for each individual van der

Waals atomic interactions are given in Table 3. These values have been obtained from various

references [31–34]. In the atomistic FE models, we have used spring elements to form a nonlinear

connection between two layers of the bilayer structure representing L-J interactions. The force

deflection curve for L-J springs has been calculated by using the relation in Eq. 6. These curves

of L-J potential forces for each interlayer interaction obtained by Eq. 6 are shown in Fig. 4.

Within the finite element analysis tool OPTISTRUCT, the L-J springs of interlayer interactions

are modeled by element type CBUSH and by using the curves of Fig. 4 as input properties.

Table 3: Constants of LJ-potentials.

Nanomaterial ε in meV σ in Å Source

C-M 3.325 2.82 [31]
C-S 7.355 3.22 [31]
M-M 2.43 2.72 [32]
S-S 1.19 3.59 [32]
M-S 2.49 3.16 [32]
C-B 3.6 2.2132 [33]
C-N 9 3.2222 [33]
B-B 4.16 3.453 [34]
N-N 6.281 3.365 [34]

In the atomistic FE approach, coupled nano sheets of heterogenous nature are modeled

as space-frame structures. Overall mass and stiffness matrices of the atomistic FE models are

generated from the equivalent matrices of the beams representing C-C,C-S,M-M,S-S,M-S,C-B,C-

N,B-B and N-N bonds and concentrated masses at each node. The lumped mass matrix for a

single beam element can be represented as:

[M]e = diag
[

ma
3

ma
3

ma
3 0 0 0

]
(7)

Where ma in kg is the mass of number of atoms. The general equation of motion of the

undamped system ([K]x + [M]ẍ = 0) leading to a standard undamped eigenvalue problem

(
(
[K]− ω2 [M]

)
{x} = {0}) has been solved using a block Lanczos algorithm within the finite

element analysis code OPTISTRUCT.
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Fig. 4: Curves of L-J potential forces obtained by Eq. 6.

Fig. 5: Boundary conditions for elastic analysis (the marked edges are fully constrained in all six degrees of
freedom.)
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4. Results and discussions

4.1. Validation of Young’s modulus of graphene, hBN and MoS2

In this section, an analysis of elastic behaviour of graphene, hBN and MoS2 has been pre-

sented. For each nano material, elastic analysis has been performed in zigzag and armchair

directions. With respect to armchair and zigazag directions, one end of the nano sheet has been

constrained and an unit load has been applied to other end. These boundary conditions have

been depicted in Fig. 5. The resulting strain due to the applied unit load has been numerically

calculated using the atomistic FEM. Based on this strain and applied stresses due to the unit

load, the E has then been calculated. The E with respect to armchair direction has been re-

ferred to as E1 and the E with respect to zigzag direction has been referred to as E2. The tensile

moduli E1 and E2 have been converted to tensile rigidities E1T and E2T by multiplying moduli

terms with the sheet thickness shown in the Table 1. For the case of graphene and hBN sheets,

4 separate finite element models have been constructed with sheet sizes 1.775 nm × 3.074 nm,

1.775 nm × 3.813 nm, 1.775 nm × 4.55 nm and 1.775 nm × 5.534 nm. The largest among

these four finite element models has resulted in upto 654 beam elements and 513 nodes. The

aspect ratio of these four finite element models are 1.73, 2.14 , 2.56 and 3.11. Also, for the case

of MoS2 sheets, 4 seperate finite element models have been constructed with sheet sizes 1.483

nm × 2.625 nm, 1.483 nm × 2.94 nm, 1.483 nm × 3.359 nm and 1.483 nm × 4.199 nm. The

largest among these four finite element models has resulted in upto 958 beam elements and 587

nodes. The aspect ratio of these four finite element models are 1.77, 1.98, 2.26 and 2.83. The

variation of E1T and E2T against aspect ratio (AR) for all three nano materials are shown in

Fig. 6. Within these plots, also presented are the E1T and E2T from the literature [20]. The

authors [20] considered an analytical closed formula to determine unique values of E1T and E2T

of graphene, hBN and MoS2 by considering a single hexagonal unit cell of each nano material.

Due to this fact, the curves from the literature [20] remain flat in the plots of Fig. 6. As per

these plots, the numerically predicted values are very close to that of analytical prediction of

literature. However, the numerically predicted values are found be lower as compared to ana-

lytical predictions of literature. The reason for such a behavior is twofold: first reason being the

analytical predictions were based on single unit cell and second reason being the assumption of

continuous behavior when the number of unit cells is increased to more than one. But within

the atomistic simulations, multiple number of unit cells in each sheet are considered. Within the

numerical models, higher the number of unit cells, higher will be the number of beam elements.
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As the number of beam elements increases, more flexibility is added to the model. Such a flexi-

bility (added degrees of freedom) can under-predict the elastic modulus of the nano structures.

However, as per these plots, the increase in aspect ratio from 2.3 to 2.9 has led to a negligible

increase in tensile rigidity. This indicates that, as the space frame lattice of nano strucutures

becomes larger in dimension, it simulates a continuous plate. Similar behavior has also been ob-

served for bilayer and single layer graphene sheets [24]. Furthermore, the numerically obtained

single layer tensile rigidities have also been compared against the results from various other

publications. This comparison is shown in Table 4. The publications present in the table cover

ab initio calculations, molecular dynamic simulations and also experimental investigations. It

can be concluded that the tensile rigidities calculated in the present work are closer to those

calculated by non-numerical methods.
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Fig. 6: Variation of tensile rigidity against aspect ratio (AR). Values from atomistic simulations correlated against
Ref [20].

4.2. Validation of natural frequencies of graphene-hBN nano hetero-structures

This section involves dynamic analysis of graphene-triple layer hBN nano hetero-structure,

wherein three layers of hBN have been overlapped on a single layer of graphene. This configu-

ration has been chosen to validate the present numerical model against the molecular dynamics

(MD) model of similar configurations in the literature[19]. Each pair of atoms in adjacent sheets

within the bundle have been linked through L-J potential springs. In order to validate the atom-

istic FE dynamic models, the modal analysis has been performed by constraining two edges of

the multi layer nano hetero-structure. Four separate finite element models have been constructed

with sheet sizes 5.534 nm × 12.121 nm, 5.534 nm × 13.789 nm, 5.534 nm × 16.121 nm and

5.534nm × 20.112nm. For these 4 finite element models, the width has remained constant at
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Table 4: Results for Young’s moduli compared against the values from literature. ET from the present work is
the maximum tensile rigidity among E1T and E2T calculated at four different lengths of sheet (Ref Fig. 6).

Material
Present Results

(TPa-nm)
Reference results from literature (ET in TPa-nm)

Graphene
ET = 0.296

Experimental: 0.34 [35], 0.306 [36]

Ab initio: 0.350 [37], 0.357 [14], 0.377 [38], 0.364 [39]

Molecular Dynamics: 0.357 [40], 0.343 [41]

Molecular Mechanics: 0.354 [10], 0.3604 [18]

Analytical: 0.354 [20]

hBN
ET = 0.252

Experimental: 0.251 [42]

Ab initio: 0.271 [37], 0.272 [43]

Molecular Dynamics: 0.236 [44], 0.278 [45]

Molecular Mechanics: 0.269 [46], 0.322 [47]

Analytical: 0.265 [20]

MoS2

ET = 0.18

Experimental: 0.211 [48], 0.1629 [49]

Ab initio: 0.141 [50], 0.262 [51]

Molecular Dynamics: 0.150 [52]

Analytical: 0.21 [20]

5.534 nm and the length has been varied from 12.121 nm to 20.112 nm. These dimensions,

boundary conditions and layer combinations have been chosen in order to replicate the MD

simulations[19]. The variation of the natural frequencies with respect to the sheet lengths has

been shown in Fig. 7. This plot presents two curves: a curve from the current atomistic FE

simulations and a curve extracted from the MD results [19]. The trend of variation in the current

work is comparable with those of MD simulations[19]. Both atomistic FE and MD simulations

predict a drop in natural frequency as the length of multilayer nano hetero-structure sheet is

increased. However, the natural frequencies predicted by the atomistic FE simulations are found

to be lower than those predicted by MD simulations. This is due to the fact that the number
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of numerical approximations happening within the finite element analysis including round off

approximations and beam element degrees of freedom (leading to sheet flexibility). At higher

lengths, the results of atomistic FE simulations tend to converge towards those of MD simu-

lations. Also, the curve of natural frequencies between the lengths 12.121 nm and 20.112 nm

appears to be flattening as compared to the rest of the curve. This further proves that, as the

atomistic space frame lattice of nano-strucutures becomes larger in dimension, it simulates a

continuous plate as observed by the authors for bilayer and single layer graphene sheets [24].
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Fig. 7: Comparision of natural frequencies of current work against the values in literature[19].

4.3. Mode shapes of nano hetero-structures

In order to demonstrate the mode shapes associated with fundamental frequencies, the 1st

four mode shapes are presented in this section. Prior to enforcing boundary conditions, an

initial free-free modal simulation has been carried out to verify the dynamic behaviour of the

double layer structures without the influence of external clamps and/or supports. The boundary

condition used to perform modal analysis is cantilevered condition (Ref Fig. 10). Cantilever

condition involves clamping at one edge and setting free other three edges of the coupled nano

sheets. Modal analysis has been performed on graphene-hBN and graphene-MoS2 nano hetero-

structures. Chosen size of both coupled sheets is 10.5 nm × 3.5 nm. Such a dimension will

lead to a nano ribbon type rectangular sheet with an aspect ratio 3. The first four mode shapes

for graphene-hBN and graphene-MoS2 are shown in Fig. 8 and Fig. 9. Here, the first four

natural frequencies for graphene-hBN are 122 GHz, 144 GHz, 187 GHz and 202 GHz and for

12



graphene-MoS2 the frequencies are 102 GHz, 131 GHz, 154 GHz and 190 GHz. For the case of

graphene-hBN, first mode shape is an out of plane bending with a cantilever tip motion, second

mode shape is an out of plane bending with single waviness, third mode shape is a torsional

twisting mode and the fourth mode shape is an out of plane bending with double waviness. These

mode shapes are comparable to that of bilayer graphene [24]. For the case of graphene-MoS2,

first mode shape is an out of plane bending with a cantilever tip motion, second mode shape

is a non-homogenous out of plane bending, third mode shape is a non-homogenous twist and

fourth mode shape is an out of plane opening mode. Importantly, waviness has been observed

in the second mode shapes of graphene–MoS2. The presence of sheet separation modes (mode

II, mode III and mode IV) in graphene-MoS2, indicates that the layer-layer interaction stiffness

(weak van der Waals/L-J potentials) is lower in graphene–MoS2 as compared to graphene-hBN.

It is important to note that the presence of out of plane bond angle (Ref Fig. 1 and Table 1) in

MoS2 reduces the degree of interaction with any adjacent nano sheet. The first mode shapes for

graphene-hBN and graphene-MoS2 are similar. The other three mode shapes for the two types

of nano hetero-structures considered here are completely dissimilar.

(a) Mode I (b) Mode II

(c) Mode III (d) Mode IV

Fig. 8: First four mode shapes of graphene-hBN nano hetero-structure.

4.4. Dependence on the length and aspect ratio

The resonant frequencies of nano hetero-structures will depend on their geometric configura-

tions. The atomic structures in graphene, hBN and MoS2 could also exert significant influence

on their dynamic behaviours. Thus, in this work, we analyze two groups of hexagonal atomic

arrangements, i.e., zigzag and armchair with varying length and width. The results of the fun-

damental frequencies of armchair and zigzag graphene-hBN are presented in Fig. 11, for bridged

13



(a) Mode I (b) Mode II

(c) Mode III (d) Mode IV

Fig. 9: First four mode shapes of graphene-MoS2 nano hetero-structure.

(a) Bridged and Cantilevered in armchair direction

(b) Bridged and Cantilevered in zizag direction

Fig. 10: Depiction of bridged and cantilever boundary conditions (the marked edges are fully constrained in all
six degrees of freedom).
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and cantilevered boundary conditions. It can be witnessed that for armchair graphene-hBN

(width = 4.08 nm) with the increasing length from ∼ 11Å to ∼ 160Å have fundamental fre-

quencies in the range between 7-380 GHz for cantilever condition and 82-880 GHz for bridged

condition. Zigzag graphene-hBN (width = 4.1 nm) have instead their natural frequencies dis-

tributed between 6-233 GHz and 75-680 GHz for cantilevered and bridged boundary conditions

respectively, with increasing lengths between 11Å to 160Å. The trend observed (ref. Fig. 11)

is similar to the one identified for single layer graphene [53] and bi layer graphene [24]. The

results of the fundamental frequencies of armchair and zigzag graphene-MoS2 are presented in

Fig. 12, for bridged and cantilevered boundary conditions. It can be witnessed that for armchair

graphene-MoS2 (width = 4.08 nm) with the increasing length from ∼ 11Å to ∼ 160Å have fun-

damental frequencies in the range between 5-296 GHz for cantilever condition and 63-680 GHz

for bridged condition. Zigzag graphene-hBN (width = 4.1 nm) have instead their natural fre-

quencies distributed between 4-181 GHz and 58-526 GHz for cantilevered and bridged boundary

conditions respectively, with increasing lengths between 11Å to 160Å. The trend observed (ref.

Fig. 11) is similar to the one identified for single layer graphene [53] and double layer graphene

[24].
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Fig. 11: The dependence of the natural frequency on length: (a) Cantilevered boundary condition - fundamental
frequencies of armchair and zigzag graphene-hBN as a function of sheet length. (b) Bridged boundary condition
- fundamental frequencies of armchair and zigzag graphene-hBN as a function of sheet length.

In Fig. 13 and Fig. 14, the variations of natural frequencies for graphene-hBN and graphene-

MoS2 with respect to length at a given aspect ratio are displayed. These plots are similar

to the ones obtained by Sakhaee-Pour et al [53]. The pattern of variation here is similar to
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Fig. 12: The dependence of the natural frequency with length: (a) Cantilevered boundary condition - fundamental
frequencies of armchair and zigzag graphene-MoS2 as a function of length. (b) Bridged boundary condition -
fundamental frequencies of armchair and zigzag graphene-MoS2 as a function of length.

that of single [53] and double layer [24] graphene. In Fig. 13, the first value of the frequency

associated to an aspect ratio of 0.4 coincides with the second value of natural frequency for

aspect ratio 0.52, i.e., at width reduction of about 50 %. Natural frequency is a measure of

stiffness of an engineering structure. Graphene being the stiffest among the three nano structures

considered here, significantly influences the natural frequency of nano hetero-structures. In

general, graphene-hBN nano hetero-structure offers higher natural frequency as compared to

graphene-MoS2 for given length and aspect ratio. This behaviour is in line with stiffness (tensile

rigidities) of nano sheets presented in Fig. 6.

4.5. Dependence on the boundary condition

From the point of view of structure mechanics, a bridged structure offers higher natural

frequency [54] as compared to the cantilever one. As per Fig. 11 and Fig. 12, the change of the

boundary condition from one-edge-fixed to both-edge-fixed enhances the natural frequency upto

3 times. Similar trend has been observed for the second natural frequency for both graphene-

hBN and graphene-MoS2. Clamping the nano hetero-structure sheet at all edges will further

enhance the stiffness, and therfore increase the natural frequency. These results suggest that with

the increasing of the aspect ratio, the natural frequency of a cantilever model will be lowered at

higher rate as compared to a bridged model . From these observations, we can also conclude that

the bridged topologies (Ref Fig. 10) are suitable for nano-electro-mechanical-system applications,

where resonant frequencies are required to be very high, whereas the cantilever topologies (Ref
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Fig. 13: The variation of natural frequencies with length at a given aspect ratio for graphene-hBN nano hetero-
structure.
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Fig. 14: The variation of natural frequencies with length at a given aspect ratio for graphene-MoS2 nano hetero-
structure.

Fig. 10) are suitable for low resonant frequency applications.

4.6. The effect of chirality

As per the results here, chirality is proven to be influencing the natural frequencies of vibra-

tion (ref. Fig. 11 and Fig. 12). For a given width and length, the fundamental frequencies of

armchair nano hetero-structure sheets are higher than those of zigzag ones. However, increasing

the sheet length diminishes the effect provided by the atomic configurations. The maximum

relative difference calculated as (ωzigzag − ωarmchair)/ωarmchair is of the order of 0.35 and 0.31

for cantilevered and bridged boundary conditions, respectively. This behavior is not inline with

17



the difference between the natural frequencies of the two chiral configurations (i.e., zigzag and

armchair) of carbon nanotubes (CNTs), since a maximum relative difference being of the order

0.08 [55]. The frequency of CNTs is chiefly influenced by their geometry , i.e., diameter and the

aspect ratio, and the atomic structure plays a minor role, specifically for long tubes, resulting in

a general good fidelity of classical mechanics models to determine the dynamic behavior of CNTs

with different atomic structures. For the case of double layered nano hetero-structures presented

here, the natural frequencies are found to be dependent on both the geometric properties and

chiralities, at lower dimensions.

5. Conclusions

An atomistic finite element method has been used for the dynamic analysis of graphene-hBN

and graphene-MoS2 nano hetero-structures. Within the atomistic-FE model, the bonds are rep-

resented by equivalent structural beams with stretching, bending and torsional capabilities. The

proposed numerical models have been validated by performing elastic analysis and also dynamic

analysis. The modulii of elasticity predicted by atomistic models of single layers of graphene,

hBN and MoS2 have been validated against analytical, molecular dynamics/mechanics, ab initio

and experimental solutions available in the literature. The natural frequencies obtained by the

atomistic models of graphene-hBN nano hetero-structures have been validated against the solu-

tions of molecular dynamics based simulations available in the literature. The mode shapes of

graphene-hBN and graphene-MoS2 nano hetero-structures have been presented. The weak van

der Waals interactions between the layers are found to be influencing the mode shapes. Based

on the modulus of elasticities of nano hetero-structures considered here, graphene-hBN offers a

higher bending stiffness as compared to graphene-MoS2, leading to higher natural frequencies.

Similar to the behaviour observed in single and bilayer graphene sheets as presented in the

literature, the fundamental natural frequency reduces with increasing length and aspect ratio.

The bridged models of nano hetero-structures are found to be offering higher natural frequen-

cies as compared to cantilever counterparts, making them more appropriate for high resonance

applications. There is no significant difference between the natural frequencies of armchair and

zigzag models for large nanosheet configurations, while the chirality considerably influences the

dynamics behaviour of nano hetero-structures for lengths lower than 3 nm.
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