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Quantum information theory has shown strong connections with classical statistical physics. For
example, quantum error correcting codes like the surface and the color code present a tolerance to
qubit loss that is related to the classical percolation threshold of the lattices where the codes are
defined. Here we explore such connection to study analytically the tolerance of the color code when
the protocol introduced in [Phys. Rev. Lett. 121, 060501 (2018)] to correct qubit losses is applied.
This protocol is based on the removal of the lost qubit from the code, a neighboring qubit, and
the lattice edges where these two qubits reside. We first obtain analytically the average fraction of
edges r(p) that the protocol erases from the lattice to correct a fraction p of qubit losses. Then,
the threshold pc below which the logical information is protected corresponds to the value of p at
which r(p) equals the bond-percolation threshold of the lattice. Moreover, we prove that the logical
information is protected if and only if the set of lost qubits does not include the entire support of
any logical operator. The results presented here open a route to an analytical understanding of the
effects of qubit losses in topological quantum error codes.

I. INTRODUCTION

Quantum information aims to process information by
means of quantum systems in order to address problems
that are hard to tackle for classical processors. It has
shown strong connections with various fields like atomic,
molecular and optical (AMO) physics [1], condensed mat-
ter [2, 3], computer science [4], and also classical statis-
tical mechanics. The connection between quantum in-
formation and classical statistical mechanics has proven
to be fruitful in both directions [5–7]. On the one hand
a connection between measurement-based quantum com-
putation and classical spin models has been used to show
that the partition function of the 2D Ising model can
generate the partition functions of all classical spin mod-
els [8–11]. Furthermore, some quantum algorithms have
proven to efficiently approximate the partition function
of classical spin models [12–16]. On the other hand,
problems in quantum information have found a solution
through their connection with solvable classical statisti-
cal problems, for instance, to determine which quantum
circuits can be efficiently simulated classically [17], or to
provide the critical loss threshold of topological quantum
error correction (QEC) codes.

To date, topological QEC codes represent one of the
most promising routes towards fault-tolerant quantum
computation [18, 19]. The logical information is en-
coded in the joint state of multiple qubits, where in-
formation can be protected by applying QEC protocols
against noise sources that introduce errors. These QEC
protocols consist in the extraction of an error syndrome
and the consequent application of a correction. Each
QEC code has parameter regimes where errors can or

can not be corrected and it was shown that the error
threshold that separates those phases is related to the
critical point of the order/disorder phase-transition of a
statistical physics model [20, 21]. For instance, the 2D
surface code [22] and the color code [23, 24] under com-
putational (single-qubit bit and phase-flip) errors can be
mapped to a 2D random-bond Ising model with two-body
[25] and three-body interactions [26], respectively. Under
computational errors and faulty stabilizer measurements
the surface code maps to a 3D random-plaquette lattice
gauge model [27], while the color code maps to a 3D Ising
lattice gauge theory [28]. In [6] the mapping was was re-
cently extended to account for circuit-level noise in the
surface code.

Another particularly damaging noise source is the loss
of qubits. A qubit is lost when the information encoded
in it can no longer be accessed due to the leakage of
the qubit population out of the computational space, or
due to the actual loss of particles or photons encoding
the qubit. From the theoretical point of view, the loss of
information carried by the lost qubits is related to the no-
cloning theorem [29], and motivated the proposal of holo-
graphic QEC codes [30, 31]. Here, the encoding of logical
qubits into the multipartite state of the physical qubits
is used as an analogy of the conjectured correspondence
between the AdS and the CFT spacetimes. Moreover, in
the existing experimental platforms for quantum compu-
tation, like trapped ions [32], photons [33], cold atoms
[34], or superconducting qubits [35], qubit loss comes in
various incarnations like leakage from the computational
space or the loss of particles hosting qubits from their
traps. A number of protocols to remedy the effect of
qubit loss have been proposed and put in practice for



2

trapped ions [36], superconducting qubits [37–40], pho-
tons [41, 42], or quantum dots [43–45].

At the level of QEC codes, there are protocols [46, 47]
to correct for the erasure channel, an error model where
the position of the lost qubits is known. Some protocols
[48, 49] correct the erasure channel by reinitializing the
lost qubits in their computational space and then mea-
suring the stabilizers, producing computational errors at
known locations. Another approach consists of removing
the lost qubits from the lattice and redefining the code
space without the removed qubits. For the surface code,
this protocol, which also extends to computational errors,
was proposed in [50, 51]. By mapping the loss events to a
percolation problem, it was shown that the surface code
presents a tolerance against qubit loss of up to 50% in
the absence of other sources of error. The correction of
qubit losses in the color code has the additional difficulty,
compared to the surface code, that the lattice must pre-
serve its trivalence and face-colorability after the code
space redefinition. The determination of loss tolerance is
of a practical importance for actual and future quantum
processors as qubit loss is one of the noise sources of the
existing physical platforms.

In [52] some of us proposed a protocol to correct qubit
losses in the color code that achieved a tolerance of the
46(1)% and we showed that, similarly to the surface code,
the tolerance of the color code to qubit loss is directly re-
lated to a generalized percolation process on the lattice of
the color code. More recently, a protocol that consists of
mapping the color code to the surface code was proposed
in [53].

In this work we argue that, given that some logical
operators span the three so-called shrunk lattices, the
critical qubit loss rate pc below which the logical infor-
mation is still protected is directly related to the bond-
percolation threshold rc of the shrunk lattices of the color
code. Here pc is the critical value of the qubit loss rate p
at which the average fraction of edges erased r(p) from a
shrunk lattice to correct a fraction p of lost qubits equals
the bond-percolation threshold rc of of the corresponding
shrunk lattice. Then, by obtaining r(p) analytically, we
are able to obtain pc analytically by solving r(pc) = rc, as
is shown in Fig. 6. We apply this prescription to the three
regular geometries of the color code and corroborate our
results with numerical analysis. We also detail an alge-
braic technique described in [52] and apply it to the three
lattices in order to obtain their fundamental qubit loss
thresholds pf . As an additional result, we prove that the
logical information is preserved by the loss of qubits if
and only if the set of qubits removed from the lattice
does not contain the support of any logical operator.

The paper is organized as follows. We start in Sec. II
by introducing some key concepts about color codes and
the notation required for the rest of the paper. Then, in
Sec. III we review the protocol to correct color codes from
qubit losses that was proposed in [52], highlight the con-
nection between the tolerance to qubit loss of the color
code with this protocol and the percolation of the color

code lattice, and provide detail on the computation of the
number of edges erased to correct a qubit loss instance
with the protocol. In Sec. IV we analytically derive the
relation between the average fraction of edges erased r(p)
and the qubit loss rate p. The Sec. V summarizes the re-
sults for the three regular geometries of the color code.
In Sec. VI we provide an explicit recipe to compute r(p)
up to any order in p. Then, in Sec. VII we describe in
detail the algebraic technique proposed in [52] to obtain
the fundamental qubit loss rate pf , and provide the nec-
essary and sufficient conditions for the existence of the
logical information under qubit loss. The values of pc
and pf are summarized in Table I. Finally, we end with
the conclusions and outlook in Sec. VIII.

II. THE COLOR CODE

The color code [23] is a topological QEC code that pro-
tects the logical quantum information by encoding it into
a subspace (the code space) of a multi-qubit system. The
N qubits i = 1, . . . , N sit on the nodes of a trivalent and
face-three-colorable lattice. In these lattices, the faces
have an even number of nodes, they share two nodes
with the adjacent faces, and can be colored with three
colors (red, blue, green) such that any two adjacent faces
have different color. Similarly, edges can be colored with
these three colors such that edges sharing a node have
different color, and the color of every edge is different
from the color of the faces that it belongs to. The regu-
lar lattices that satisfy those properties can be described
in vertex notation as a.b.c that indicates that every node
in the bulk is shared by three regular polygons with a,
b and c vertices. The original and the shrunk lattices
of the three regular geometries of the color code, namely
the 4.8.8, the 6.6.6, and the 4.6.12 lattices, are depicted
in Fig. 1.

The code space of this stabilizer code [54] is the com-
mon +1 eigenspace of G independent and commuting
generators gσf . A generator is a Pauli operator of type
σ = X, Z with support on the set of qubits contained by
a face of the lattice f

gσf =
⊗
i∈f

σi. (1)

A code with N qubits and G independent generators
encodes k = N −G logical qubits. The q-th logical qubit
is defined by two logical generators lσq for σ = X,Z.
These operators can be string operators, which are de-
fined as

lσq =
⊗
i∈sσq

σi (2)

on sets of qubits sσq that take the form of homologically
non-trivial strings in the lattice. For example, on the
torus, they can be strings wrapping around the “hole”
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(a.1) (b.1) (c.1)

(a.2) (b.2) (c.2)

(a.3) (b.3) (c.3)

FIG. 1. Regular geometries of the color code. Regular
trivalent and three-colorable lattices. (a) Lattice 4.8.8 where
every node belongs to one square and two octagons. (b) Lat-
tice 6.6.6 (or honeycomb) where every node belongs to three
hexagons. (c) Lattice 4.6.12 where every node belongs to one
square, one hexagon, and one dodecagon. The red shrunk lat-
tice of the 4.8.8 geometry is (a.1) a square lattice, while the
blue (a.2) and green (a.3) shrunk lattices are square lattices
with double-bonds. The three shrunk lattices of the 6.6.6 ge-
ometry (b.1), (b.2), (b.3) are hexagonal lattices. The red,
blue, and green shrunk lattices of the 4.6.12 geometry are (c.1)
a kagome lattice, (c.2) a triangular lattice with double-bonds,
and (c.3) a hexagonal lattice with double-bonds, respectively.

and the “handle”. In a planar code they are strings going
from one border to another.

These strings span the three shrunk lattices of the color
code. The nodes of the, say, red shrunk lattice are cen-
tered on the red plaquettes, and the edges connecting
these nodes are the red edges of the color code lattice.

III. THE PROTOCOL

The protocol proposed in [52] to correct the color code
from qubit losses consists in choosing, for every lost
qubit, a neighboring sacrificed qubit to be removed to-
gether with the loss. The steps of the protocol are de-
picted in Fig. 2. (i) Detect the lost qubits. In this work
we will assume that the positions of the lost qubits are
known. (ii) Choose the order in which the losses are go-
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FIG. 2. Protocol to correct qubit losses on the color
code. (i) Detect the lost qubit i (orange circle). In this work
we assume that the positions of the lost qubits are already
known. We also show two string operators lσq (continuous

line), and l̃σq = lσq g
σ
c (dashed line) that differ by multiplica-

tion with the generator gσc defined on the face c. (ii) Choose
a neighboring qubit is as the sacrificed qubit (yellow circle),
(iii) remove both i and is and modify the lattice: the faces
a, b that contain both qubits are shrunk into a′, b′, and the
two faces c,d that contain only one of the removed qubits
(lost and sacrificed) are merged into one face c′. This cor-
rection erases the five edges adjacent to both qubits (dotted
lines) and adds two new edges (dashed lines) such that all
remaining qubits have an edge of each color. (iv) Check the
existence of the logical information by searching for a well-
defined logical operator (like l̃σq ) that does not have support
on the removed qubits. (v) If the logical information exists,
measure the redefined generators a′, b′, c′. The well defined
operators, like l̃σq , remain valid logical operators in the rede-
fined code.

ing to be corrected, and for each loss i, select randomly
one of the three neighboring qubits to the loss as the
sacrificed qubit is. (iii) For each loss, remove the lost
qubit and the sacrificed qubit and modify the faces so
they do not have support on them: shrink the two faces
a, b that contain both removed qubits into faces a′ and
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b′ respectively, and merge the two faces c, d that have
support on only one of the qubits into a face c′. In this
redefinition step the five edges connecting the removed
qubits have been erased and two new edges have been
added to the lattice. At the same time, a face where two
generators are defined is also removed. The new code
has two physical qubits and two generators less, so the
number of encoded qubits is preserved.

(iv) Check whether the logical information exists or
not after the removal of the lost and sacrificed qubits. to
this end, a key observation is that logical operators are
not uniquely defined. Two logical operators lσq , l̃

σ
q belong

to the same class {q, σ}, i.e., they have the same effect
on the encoded information, if and only if they differ in
a multiplication with a subset G of generators

l̃σq = lσq
∏
gσ

′
f ∈G

gσ
′
f . (3)

The logical information still exists in the code if for every
class {q, σ} there is a well defined logical operator l̃σq ,
meaning that it does not have support on the removed
qubits (lost and sacrificed). For example, in Fig. 2 we
show two logical operators that belong to the same class
{q, σ} because they differ in the multiplication by the

generator gσc : one l̃σq is well defined, while the other lσq
is not. We check the existence of well defined logical
operators in two different ways:

(1) Searching in the shrunk lattices for the existence
of a percolating string without support on the removed
qubits. If such strings exists, it corresponds to a logi-
cal operator that does not have support on the removed
qubits, thus, it is a well defined logical operator. For
example, in Fig. 2(iv) the blue operator lσq , which is not
well defined, can be deformed into the well defined log-
ical operator l̃σq by multiplying it with a generator gσc
of the same type σ but defined on a face of a different
color (red face). In the same way, finding a percolating
string is equivalent to finding a subset of generators G
such that the logical operator l̃σq in Eq. (3) does not have
support on the removed qubits, with the restriction that
these generators have a color different from the color of
lσq . This method defines the critical qubit loss rate pc
below which the logical information is preserved. The
main result of this paper is the analytical computation
of pc (see Table I for the values obtained), as described
in Section IV.

(2) The second method consists of directly checking,
without any color restriction, the existence of G such
that l̃σq in Eq. (3) does not have support on the removed
qubits. As this method includes the most general form
of a logical operator, it provides the fundamental thresh-
old pf of the color code affected by qubit loss (see Table
I for the values of pf obtained). The solution provided
by this method includes in particular the logical opera-
tors l̃σq generated by multiplication with generators of the
same color as lσq . These logical operators branch from one
shrunk lattice into the other two, as illustrated in Fig. 3.

lσq

blue string

string-net
l̃σq = lσq gσf

f

(a)

(a.1)

(a.2)

(a.3)

FIG. 3. Strings and string-nets where logical opera-
tors have support. (a) 6.6.6 color code lattice with a blue
string operator lσq on the continuous and discontinuous blue

lines, and string-net operator l̃σq . The string-net operator is
composed by four paths represented by four continuous lines:
(a.1) a red path in the red shrunk lattice, (a.2) two blue paths
(the two continuous lines) in the blue shrunk lattice, (a.3) a
green path in the green shrunk lattice. Here the blue string
operator lσq , which is not well defined because it has support
on a lost qubit (the orange circle), is multiplied by the gener-
ator gσf on the blue face f and transformed into the string-net

operator l̃σq that does not have support on the lost qubit.

There a blue string operator, multiplied by a blue gen-
erator, branches into the red and the green shrunk lat-
tices and then recombines back to the blue shrunk lattice,
taking the form of a string-net operator. Therefore, this
method is equivalent to a generalized percolation problem
where the three shrunk lattices are coupled. Despite the
exponential number of possible subsets of generators, a
solution can be found efficiently, as discussed in Section
VII. Furthermore, in that section we prove that given a
set of removed qubits r, the logical information is pro-
tected if and only if r does not contain the support of
any logical operator.

(v) If the logical information is preserved, the last step
of the protocol consists of projecting the state into the
common eigenspace of the redefined generators by gen-
erator measurement. As the system is not initially de-
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i

κ′ = [i′s] κ′′ = [i′′s ]κ = [is]

is

i′s

i i′′s

Rκ′ = 2Rκ = 1 Rκ′′ = 2

R1 =
5

3

wκ′ = 1/3 wκ′′ = 1/3wκ = 1/3

i

(a) (b) (c)

FIG. 4. One loss corrections. There are three possible
corrections κ for an instance of one qubit loss i = {i} (orange
dot) depending on the selection of a neighboring qubit to
sacrifice: (a) the qubit is on the red edge, (b) the qubit i′s
on the blue edge, (c) the qubit i′′s on the green edge. We
choose each correction with a probability wκ = 1/3. From
left to right the number of red edges erased (red dotted lines)
is Rκ = 1, Rκ′ = 2, and Rκ′′ = 2. Therefore, the average
number of edges erased from the red shrunk lattice by a one-
loss event is R1 = 5/3. This value is the same for every loss
instance of one qubit loss and for every shrunk lattice.

fined in the eigenspace of the redefined generators, excita-
tions may appear when measured, i.e., the system might
be projected into the −1 eigenspace of these generators.
These excitations do not need to be removed. Instead,
one can define the new code space as determined by the
measured eigenvalues of the new generators.

A. Average number of edges erased

In order to compute analytically the critical loss rate
pc at which percolating strings disappear from the shrunk
lattices (method (1) of the Sec. III), we need to determine
the number of edges erased from the original shrunk lat-
tice that we introduce in the following.

Let us define a qubit loss instance i as a set i =
{i1, i2, . . .} containing the positions of the |i| qubits lost.
In step (ii) of the protocol, both the order in which qubit
losses are corrected, and the sacrificed qubits must be
chosen to correct i. In our protocol these selections are
made randomly in order to keep the protocol simple and
local. Then, every possible correction of a loss instance
is represented by an ordered list κ = [is1 , is2 , . . .], where
the order corresponds to the order in which the sacrificed
qubits is are selected. If we select with equal probability
each of the |i|! orderings and select with equal probabil-
ity each of the three neighbors of a loss that is corrected,
the probability of a correction κ is wκ = (|i|!)−13−|κ|,
where |κ| is the size of κ.

In step (iii) the lattice is modified according to the loss
instance i that occurred and the correction κ selected.
In this correction the number of edges erased from the
original shrunk lattice is Rκ, and the number of edges

i1

i2 = is1

i2

i′s1

Rκ′ = 3

wκ = 1/6 wκ′ = 1/18

i1

i1

i2

i1

i2

i′′s2

(a)

(b.1)

(b.2)

(b.2.1)

κ′ = [i′s1 , i
′
s2 ]κ = [is1 ]

Rκ = 1

FIG. 5. Corrections of a loss instance with two qubit
losses. To correct a loss instance i = {i1, i2} like the one
in (a) composed by two losses indicated with orange dots,
the protocol first chooses the order in which the losses are
going to be corrected. In this case, the order i1, i2 is chosen
with a probability of 1/2. To correct the first loss i1, any of
the three neighboring qubits can be chosen with a probability
1/3 as the sacrificed qubit is1 . In (b.1) the loss i2 has been
chosen as the sacrificed qubit, so there is no need to correct
the loss i2. The correction is κ = [is1 ]. The probability of this
correction is wκ = (1/2)(1/3) = 1/6 and Rκ = 1 red edges
are erased (red dotted lines). In (b.2) a qubit different from
the loss i2 has been chosen as the sacrificed qubit i′s1 (yellow
dot), and the lattice has been modified accordingly. Then, in
(b.2.1) a sacrificed qubit i′s2 has been chosen to correct the
loss i2 producing the final erasure of Rκ′ = 3 red edges with
a probability wκ′ = (1/2)(1/3)2 = 1/18, where the correction
is κ′ = [i′s1 , i

′
s2 ]. Note that the new red edge added in (b.2)

has not been counted as an erased edge in (b.2.1), because in
Rκ we count only those edges erased from the original lattice.

erased averaged over the set Ki of all possible corrections
of i is:

Ri =
∑
κ∈Ki

wκRκ. (4)

We notice that, as we are interested in the percolation of
the original lattice, in Eq. (4) only the links belonging to
the original shrunk lattice will be counted.

As we show in Fig. 4, for a loss instance with only one
qubit lost i = {i1}, there are three possible corrections
κ happening with a probability wκ = 1/3, one for every
selection of a sacrificed qubit is1 . The corrections erase
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Rκ = 1, Rκ′ = 2, and Rκ′′ = 2 red edges, so the aver-
age number of edges erased from the original red shrunk
lattice to correct {i1} is:

R1 =
5

3
. (5)

R1 is the same for every loss instance containing only
one loss and it is also the same for every shrunk lattice.
Moreover, since every color code is trivalent, R1 will be
the same for every (also irregular) geometry.

In Fig. 5 we show two possible corrections of a two-
qubit loss instance i = {i1, i2}. In the correction depicted
in (b.1), the qubit sacrificed is1 to correct the loss i1
coincides with the second loss i2, so no second qubit needs
to be sacrificed in order to correct i2. The probability of
this correction is then wκ = 1/6. This correction shows
that the set of lost and sacrificed qubits can overlap. In
the correction depicted in (b.2.1) two qubits i′s1 and i′s2
have been sacrificed, so the probability is wκ′ = 1/18.
Note that the Rκ′ = 3 edges erased are counted only
from the original shrunk lattice.

IV. ANALYTICAL RESULTS FOR
PERCOLATING STRINGS

The main result of this paper is the analytical com-
putation of the critical loss rate pc below which there
are well defined string operators that percolate through
a shrunk lattice. This critical point corresponds to the
qubit loss rate p at which the shrunk lattice does no
longer percolate. This happens when the average frac-
tion of edges erased r(p) from the original lattice equals
the bond-percolation threshold rc [55] of the shrunk lattice

r(pc) = rc. (6)

Therefore, pc can be obtained analytically from the
knowledge of r(p) and rc as shown in Fig. 6 where we
plot the curve r(p) and the critical loss rates pc obtained
from the intersection of r(p) with the values of rc for the
three shrunk lattices of the 4.6.12 geometry of the color
code. In Table I we summarize the values of rc and pc
also for the other geometries.

Note that strings live only on one shrunk lattice, so
we can treat the percolation of the three shrunk lattices
independently. A value of pc is then obtained for each
of the three shrunk lattices in each of the three regular
geometries of the color code depicted in Fig. 1.

We study the bond-percolation problem of the shrunk
lattice instead of the site-percolation problem because
the erased edges of the lattice of the color code coincide
with the erased edges of the shrunk lattices, while the
removed qubits do not sit on the nodes of the shrunk
lattice (recall that the nodes of the shrunk lattices are
centered on the plaquettes).

We would like to point out that in the bond-percolation
problem the edges erased are uniformly distributed in the
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23
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thresholds of the 4.6.12. lattice

FIG. 6. Fraction of edges erased r(p) as a function of
the qubit loss rate p. The points correspond to the nu-
merical estimation, while curves are the analytical estima-
tion. The analytical results with the first three coefficients:
r(p) ' α1p+α2p

2 +α3p
3 for the red, blue, and green shrunk

lattices are represented by the red, blue, and green points and
curves respectively. The three curves are almost superposed.
By comparing the analytical curves with the bond-percolation
thresholds rc (horizontal lines that from the top correspond
to the blue, green and red shrunk lattices) taken from Ta-
ble I we obtain the loss thresholds pc of the shrunk lattices.
The numerical data is obtained by a Monte-Carlo sampling
of losses at various values of the qubit loss rate p. The points
for the three colors are also almost superposed.

graph. However, this is not the case in the color code,
given that the edges removed to correct a qubit loss are
generally erased in groups, like in Fig. 4, where in the
last two corrections the two red edges erased are close
to each other. Nevertheless, we assume a uniform dis-
tribution of qubit losses without any spatial correlation,
so the edges erased will be approximately uniformly dis-
tributed, and therefore, we can safely identify rc with
r(pc). The accuracy of this approximation is confirmed
by the agreement between the values of the critical qubit
loss rate pc computed analytically from Eq. (6) and com-
puted numerically as shown in Table I.

A. Average fraction of edges erased r(p)

The average fraction of edges erased r(p) is the average
number of edges erased divided by the total number of
edges e = N/2 in the shrunk lattice that is being studied,
where N is the total number of qubits. In the following,
the error model we consider is the erasure channel which
assumes local and uncorrelated losses, each of them hap-
pening with probability p. In this noise model p is also
the loss density, so the average number of qubits lost is
pN . If the density is low, qubit losses predominantly oc-
cur far apart from each other, so they can be treated in-
dependently, and therefore, the average number of edges
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FIG. 7. Fraction of edges erased r(p) as a function of
the qubit loss rate p for every shrunk lattice of the three
regular geometries of the color code. The continuous lines
correspond to the first three orders in the expansion of r(p)
in powers of p (Eq. (7)). The coefficients of this curve were
obtained analytically without performing any approximation.
The numerical data (dots) are obtained by a Monte-Carlo
sampling of losses at various values of the qubit loss rate p.

erased by each loss is R1 = 5/3, giving an average frac-
tion of edges erased of R1pN/e = 2R1p. Then, the aver-
age fraction of edges erased grows linearly with p for low
densities:

r(p) = 2R1 p+
∑
`≥2

α` p
`. (7)

Our goal is to systematically compute the coefficients α`
up to a given desired order `. These coefficients are cor-
rections to the linear behavior and they are determined
by the interaction that takes place between losses that
are close to each other. We say that ` losses interact
if the number of edges erased from the original lattice
to correct those losses is less than `R1, which is the
number of edges erased if these losses are far apart from
each other. Given that the interaction between losses
reduces the number of edges erased, and that the num-
ber of interacting instances increases with the density
p of losses, the erasure of edges slows down as p increases.

The interaction may come in different fashions as de-
picted in Fig. 5. For example, in the correction (b.1)
when the sacrificed qubit coincides with a lost qubit, or
in the correction (b.2.1), where one of the edges erased to
correct the qubit loss i2 is not an edge from the original
shrunk lattice but a new edge added from the correction
of the first loss i1, and therefore, it is not counted in r(p).
If we compute the number of edges erased R{i1,i2} for this
loss instance as specified by Eq. (4) we will obtain that
R{i1,i2} < 2R1.

The interaction between losses can be understood by
thinking about the number of edges erased as a sum of
energies. An instance {i} containing a single loss i erases

an average of R1 edges as explained in Fig. 4, so let us
define E{i} = R1 as the internal energy of every single
loss. As mentioned, an instance {i1, i2} with two losses
erases a number R{i1,i2} of edges that might be smaller
than 2R1, so in this case, there is a non-vanishing interac-
tion energy E{i1,i2} that makes R{i1,i2} smaller than 2R1.
We define this two-body interaction energy from the en-
ergy sum R{i1,i2} = E{i1} + E{i2} + E{i1,i2}. Note that
E{i1,i2} = 0 if the losses do not interact. Analogously,
an instance {i1, i2, i3} of three losses erases a number of
edges that can be expressed as:

R{i1,i2,i3} = E{i1} + E{i2} + E{i3} + E{i1,i2}

+ E{i1,i3} + E{i2,i3} + E{i1,i2,i3}
(8)

where {i1, i2}, {i1, i3}, {i2, i3} are the two-body in-
stances contained in {i1, i2, i3}.

Following this idea, one can write the number of edges
erased by any instance as a sum of energies:

Ri =
∑
j⊂i

Ej (9)

where the sum is performed over all subsets of the set i.
For the empty set ∅ ⊂ i we define the interaction energy
E∅ = 0 as zero, while for all the subsets with j = {j}
one loss j the energies are equal: E{j} = R1. Eq. (9) can
be represented by a full-rank linear system between {Ri}
and {Ei}. By inverting it, we obtain the energies defined
by the number of edges erased:

Ei = (−1)|i|
∑
j⊂i

(−1)|j|Rj (10)

where R∅ = 0 and Rj = R1 for all j with |j| = 1. See
Appendix A for the proof of this relation.

Now we can show that the coefficients α` are given by
the fully-interacting energies. In our model every loss
happens with probability p, so the probability of a loss
instance i is p|i|(1 − p)N−|i|. If the average number of
edges erased to correct i is Ri, the average fraction of
edges erased can be written as:

r(p) = e−1
∑
i∈I

p|i|(1− p)N−|i|Ri (11)

where I is the set of all possible loss instances. By ex-
panding in powers of p as done in Appendix B and using
Eq. (10) we can identify the coefficients α` of Eq. (7) with
the energies:

α` = e−1
∑

i∈I, |i|=`
Ei. (12)

However, many energies are zero. For example, as
mentioned earlier, the interaction energy of two losses
that are far apart from each other vanishes. Analogously,
if an instance i can be split into two disjoint, non-empty
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subsets i(A) ∪ i(B) = i such that Ri = Ri(A) + Ri(B) the
interaction energy Ei = 0 vanishes (proof in Appendix
C), and we call i a separable instance. This happens be-

cause the parts i(A), i(B) are too far from each other to
interact. On the contrary, the instances that can not be
divided in this way are called fully-interacting instances,
and their energy is non-zero. Therefore the sum over I
in Eq. (12) can be reduced to the sum over the fully-
interacting instances I(f-i).

We also observe that the values of many energies are
repeated given that in I(f-i) there are loss instances that
are equal up to the symmetries of the lattice of the color
code. In the regular geometries of the color code, every
node is indistinguishable under the symmetries of the
lattice, so we can represent the set of all fully-interacting
instances I(f-i) by the set of all fully-interacting instances

I(f-i)i1
that have the qubit loss i1 in common. Then, ev-

ery instance i ∈ I(f-i)i1
is repeated N/|i| times in I(f-i).

Therefore, Eq. (12) can be reduced to:

α` = 2`−1
∑

i∈I(f-i)i1
, |i|=`

Ei (13)

where we used that e = N/2 in the thermodynamic limit.
For a concrete example, in Fig. 8, on the horizontal axis

we show the values of the energies Ei of the interacting

instances i = {i1, i2} ∈ I(f-i)i1
and, on the vertical axis, the

number of instances that have the same energy. These
energies Ei are the ones that appear in Eq. (13). By
recalling that, from Eq. (10), the energy Ei is given by
the difference between the number of edges erased by the
two-loss instance {i1, i2} and the number of edges erased
separately by each of the single loss {i1}, {i2}, it is clear
that the instance that has the biggest energy (in absolute
value) corresponds to the couple of qubits residing at
the smallest possible distance, as depicted in panel (a).
Likewise, the instance that has the smallest energy (in
absolute value) is the one where the qubits have a larger
distance that still allows for some corrections to erase a
common link (panel (b)).

Note that to be fully-interacting, all the losses in an

instance i ∈ I(f-i)i1
must be within a finite distance from

i1. Then, the number of instances in I(f-i)i1
that have up

to a certain number of losses ` does not depend on the

lattice size N . From the number I` of instances in I(f-i)i1
with ` losses we can compute the following averages, that
are independent of the system size N :

R̄`= I−1`
∑

i∈I(f-i)i1
, |i|=`

Ri (14)

Ē`= I−1`
∑

i∈I(f-i)i1
, |i|=`

Ei (15)

Note that there is only one instance of one loss, so
R̄1 = Ē1 = R1. Given that interaction does not increase

FIG. 8. Energies Ei of instances i ∈ I(f-i)i1
of two losses

i1, i2 for the red shrunk lattice of the 6.6.6 geometry of the
color code. In the horizontal axis we indicate the value of
the interacting energies computed from the averaged number
of edge erased (Eq. (10)). These energies are rescaled by
a factor of 2! · 32 = 18 that represents the number of all
possible corrections for each of the two-loss instance. In the
vertical axis we indicate the occurrence of each energy, i.e., the

number of instances i ∈ I(f-i)i1
that have the same energy Ei.

The unique instance that has the biggest energy (in absolute
value) is depicted in (a), while one of the four instances with
the smallest energy (in absolute value) is depicted in (b). The
other three instances with the same energy as (b) can be found
by lattice symmetries. The instance in (b) corresponds to
an interacting instance since the red link between the two
sacrificed qubits (yellow circles) is erased to correct both qubit
losses.

the number of edges erased, the following hierarchy of
inequalities is expected:

R1 ≥
R̄2

2
≥ R̄3

3
≥ · · · ≥ R̄`

`
≥ · · · ≥ 1

2
. (16)

By using these definitions we finally obtain that the
coefficients in the power expansion of r(p) in Eq. (7)

α` = 2I`
Ē`
`

(17)

can be seen as the total energy per loss inside the fully-
interacting instances. Clearly, given that I` and Ē` do
not depend on the system size N , the coefficients α` are
also independent of the system size. This confirms that
the average fraction r(p) of edges erased from a shrunk
lattice depends only on the density of losses p, which is
a clear signature of the connection with the percolation
theory.

The algorithm that we used to obtain I`, R̄`, Ē`, α`
is described in Section VI, and the values obtained are
summarized in Table III.

V. SUMMARY OF RESULTS

We compute the tolerance of the color code under qubit
loss in two different ways: (1) searching for percolating
strings in the shrunk lattices, and (2) searching for a
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FIG. 9. Convergence of the first three orders in the
power expansion of the average fraction of edges erased r(p)
for the red shrunk lattice of the 4.8.8 geometry of the color
code. We compute analytically the first three coefficients
α1, α2, α3 in Eq. (7). The dotted line is the first order of
the power expansion, the dashed line contains up to the sec-
ond order, and the continuous line up to the third order. The
lines approach the numerical data (red dots) as more orders
are added. The numerical data is obtained by a Monte-Carlo
sampling of losses at various values of the qubit loss rate p
and a posterior scaling analysis.

subset G such that the logical operator l̃σq in Eq. (3) does
not have support on the removed qubits.

Regarding (1) we present the main results of this pa-
per: (1.a) we obtain analytically the average fraction of
edges erased r(p) as a function of the qubit loss rate p,
and (1.b) from r(p) we compute analytically the critical
loss rate pc below which the logical information is pro-
tected. (1.c) We also compare r(p) with numerical simu-
lations. (1.d) Moreover, pc is also computed numerically
by a scaling analysis.

In relation to (2), we provide in Section VII an
algebraic technique that efficiently finds a solution G.
(2.a) This technique is used in a scaling analysis to
obtain numerically the fundamental qubit loss threshold
pf of the color code. (2.b) Finally we comment on the
differences between the values of pc and pf obtained.

(1.a) Using the analysis in Section IV and the algo-
rithm in Section VI we compute the first three expansion
coefficients α1, α2, α3 of r(p) in Eq. (7) for the three
shrunk lattices of the three regular geometries of the color
code (values are summarized in Table III). Then (1.b),
using the bond-percolation thresholds rc, we obtain pc
analytically by solving Eq. (6) up to third order:

rc = α1pc + α2p
2
c + α3p

3
c . (18)

The values of rc and pc are summarized in Table I. At the
critical point r(p) ' α1p+ α2p

2 + α3p
3 crosses the value

of the bond-percolation threshold rc as we show in Fig. 6
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pc - percolation
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0.3

0.4

0.5
p f - fundamental

0.0 0.1 0.2
0.2

0.3

0.4
(c)
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0.3
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4.6.12

(f)

(d)

(b)

FIG. 10. Critical qubit loss rate pc and fundamental
qubit loss rate pf obtained numerically. By sampling
loss instances with a Monte Carlo method, we compute the
values of pc (percolation), and pf (fundamental) for various
code distances L of the three regular geometries of the color
code. The thresholds are plotted as a function of 1/L1/ν with
a critical exponent ν = 4/3 as expected from the percolation
theory. Red circles, blue squares and green triangles repre-
sent the numerical data for the red, blue and green shrunk
lattices, respectively. The continuous lines fit the points and
their intercepts (marked with the same symbols as the data)
give the critical threshold in the limit L→∞. In the graphs
(a), (b) for the 4.8.8 lattice, the green shrunk lattice is not
represented because it has the same geometry as the blue. In
(c), (d) the blue and the green shrunk lattices of the 6.6.6 lat-
tice have the same geometry as the red, so only the red is
represented. In (e), (f) for the 4.6.12 lattice, the three shrunk
lattices are represented.

for the 4.6.12 lattice, and in Fig. 7 for each of the three
shrunk lattices of the three regular geometries of the color
code. As one can see in Fig. 6, the curves r(p) for the
three shrunk lattices of the 4.6.12 color code lattice are
almost superposed. Indeed, the curves of all shrunk lat-
tices of all the geometries of the color code depicted in
Fig. 7 are almost superposed (not shown). This indicates
that r(p) does not depend strongly on the geometry of
the shrunk lattice. Therefore, the differences between the
values of pc in the shrunk lattices depend mostly on their
bond-percolation threshold rc. This shows the strong
connection between percolation theory and the tolerance
of the color code to qubit loss.

(1.c) We also estimate r(p) numerically by perform-
ing a Monte Carlo sampling of qubit loss instances for
various values of the qubit loss rate p, and estimate the
average number of edges erased to correct every instance
with a randomly chosen correction. We consider lattices
with the three geometries and with a number of qubits
close to 4000. The numerical points obtained are com-
pared with the analytical r(p) in Figs. 6 and 7. The error
bars are comparable with the point size. In the range
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Geometry Shrunk Geometry rc pc an. pc num. pf

Red square 1
2

= 0.5 0.1877 0.2028(7) 0.46(1)

4.8.8 Blue d.b. square
√

1
2

' 0.7071 0.3093 0.292(2) 0.48(3)

Green d.b. square
√

1
2

' 0.7071 0.3093 0.292(2) 0.48(3)

Red triangular 1− 2 sin π
18

' 0.6527 0.2752 0.290(2) 0.33(1)

6.6.6 Blue triangular 1− 2 sin π
18

' 0.6527 0.2752 0.290(2) 0.33(1)

Green triangular 1− 2 sin π
18

' 0.6527 0.2752 0.290(2) 0.33(1)

Red kagome 0.4756 0.1764 0.165(1) 0.198(2)

4.6.12 Blue d.b. triangular
√

1− 2 sin π
18
' 0.8079 0.3925 0.390(5) 0.438(9)

Green d.b. hexagonal
√

2 sin π
18

' 0.5893 0.2364 0.2012(8) 0.202(1)

TABLE I. Tolerance of the color code. First column: the three regular color code lattices as depicted in Fig. 1. Second
column: their respective shrunk lattices. Third column: geometry of the shrunk lattices (d.b. stands for double-bonds). Fourth
column: analytical and numerical values of the bond-percolation threshold rc of the shrunk lattices. In the shrunk lattices
with double-bonds, two bonds need to be erased in order to disconnect two nodes. If we call r the probability of erasure of
a bond connecting two nodes, the probability of disconnecting two nodes that are linked via a double bond is r2. Therefore,
the bond-percolation threshold rc (critical probability of disconnecting two nodes) of a shrunk lattice with double-bonds is the
square root of the bond-percolation threshold r̃c [56] of the lattice with simple bonds rc =

√
r̃c. For shrunk lattices with single

bonds rc = r̃c. Fifth column: critical loss threshold pc obtained analytically. Sixth column: critical qubit loss rate pc obtained
by a numerical scaling analysis. Seventh column: fundamental loss threshold pf by a numerical scaling analysis. The number
between brackets is the error of the last decimal position.

p ∈ [0.1, 0.4] that is relevant to obtain pc the maximum
difference between the analytical (up to third order) and
the numerical values of r(p) is below 6%. In Fig. 9 we
compare the numerical data with the first three orders of
r(p) to show how the curves approximate the numerical
data as more expansion terms are added. Limitations
of the numerical analysis like the finite-size effects, or
the difficulty of sampling instances with a low number of
qubits lost are the main sources of discrepancy between
the analytical and the numerical analyses.

(1.d) We also obtain pc by means of the scaling analy-
sis depicted in the first column of Fig. 10 in the following
way: In a code of distance L, we compute the critical
fraction of losses pc(L) at which, for the first time, a
percolating string ceases to exist. It is known that per-
colation theory predicts [55] the scaling of pc as L→∞
to be pc(L)− pc(∞) ∝ L−1/ν , with the scaling exponent
ν = 4/3. This scaling law is followed also by our data.
From it, we obtain numerically the value of the criti-
cal qubit loss rate pc in the thermodynamic limit (when
L−1/ν → 0). The values of pc obtained numerically by
this scaling method are in great accordance with the val-
ues obtained by the analytical analysis as can be seen in
Table I: the maximum difference is below 8%.

(2.a) The same scaling analysis is performed in order to
obtain the fundamental loss threshold pf (second column
of Fig. 10). The only difference is that the percolation
check is replaced by checking the existence of subset of

generators G that are a solution of Eq. (3). This subset
G transforms the original logical operator into a well-
defined new logical operator l̃σq as described in Section
VII. The resulting values of pf show the robustness of
color codes under qubit loss: for example, the 4.8.8 ge-
ometry can tolerate the loss of the 46(1)% of the qubits
before the first class of logical operators becomes ill de-
fined, which is close to the 50% limit imposed by the
non-cloning theorem.

(2.b) The differences between the values of pc and pf ,
which can be seen in Fig. 10, are consistent with the
expectation that pf is equal or bigger than pc for each
shrunk lattice. This is the case because pf allows for
the most general form of a logical operator, while pc in-
cludes only those logical operators spanning a shrunk lat-
tice. In this sense, pc represents the tolerance of a shrunk
lattice when it is isolated from the other two, while pf
also takes into account the interplay between the three
shrunk lattices that arises when strings can branch. The
differences between these two quantities show that this
interplay contributes positively, and for most shrunk lat-
tices also substantially, to an increase of loss tolerance.
For example in the 4.8.8 lattice the possibility of branch-
ing increases the critical qubit loss rate of the red shrunk
lattice from pc ' 0.19 to the fundamental threshold of
pf ' 0.46.



11

Input: Lattice of the color code, a number `.

Outputs: Set I(f-i)i1
containing all fully-interacting instances

i that have a loss i1 in common and contain from 2 to `
losses, the average number of edges erased Ri, and the
energy Ei.

1. Place the central loss i1 on a qubit of the lattice.
Extract the patch P of qubits at a distance 3(`− 1)
from i1.

2. Initialize an empty list I = {}.
3. For every instance i = {i, i′, . . .} ⊂ P containing from

2 to `− 1 losses do:

3.1. Compute Ri with Eq. (4).

3.2. Compute Ei with Eq. (10), that requires the
value of Ri and the values of Rj with j ⊂ i that
are stored in I. Recall that for all instances {i}
with only one loss, R{i} = R1 as explained in
Section III A.

3.3. Append [i, Ri, Ei] to I.

4. For every instance i = {i1, i, i′, . . .} ⊂ P containing `
losses (one of them the central loss i1) do:

4.1. Compute Ri with Eq. (4).

4.2. Compute Ei with Eq. (10), that requires the
value of Ri and the values of Rj with j ⊂ i that
are stored in I. Recall that for all instances {i}
with only one loss, R{i} = R1 as explained in
Section III A.

4.3. Append [i, Ri, Ei] to I.

5. Initialize the output list I(f-i)i1
= {}.

6. For i in I, if Ei 6= 0 and i1 ∈ i, append [i, Ri, Ei] to

I(f-i)i1
.

7. Return I(f-i)i1
.

TABLE II. Pseudo-code summarizing the main steps to gen-

erate all fully-interacting instances i ∈ I(f-i)i1
that contain `

losses or less, the average number of edges erased Ri, and
their energy Ei. The coefficients α` in Eq. (7) can be com-
puted from these values with Eq. (13).

VI. COMPUTATION OF THE COEFFICIENTS
α`

In this Section we provide an algorithm to compute the
expansion coefficients α` of r(p) in Eq. (7). The compu-
tation of the first ` coefficients as in Eq. (13) requires
the energies Ei of all the fully-interacting loss instances

i ∈ I(f-i)i1
that have the loss i1 in common and that con-

tain from 2 to ` losses. We explain the algorithm for the
case of ` = 3 losses, and provide the pseudo-code in Table
II for any `. The steps of the algorithm are the following:

1. Place the central loss i1 on a qubit in the lattice
and extract a set of qubits P (we call it a patch) at
a finite distance from i1. By the distance between two
nodes we mean the number of edges in the shortest path

that connects these nodes. In order to consider all fully-

interacting instances in I(f-i)i1
that contain up to ` losses

it is enough to set a maximum distance of 3(`− 1) from
i1. For ` = 3, the patch P contains the qubits that are
at a distance 6 or less from i1.

2. Initialize an empty list I that will contain the in-
stances from the patch, the number of edges that they
erase and the associated energies.

3. For every instance {i, i′} ⊂ P with two different
losses one has to compute R{i,i′} from Eq. (4) by averag-
ing the number of edges erased over all possible correc-
tions. Then, with the obtained R{i,i′}, one has to com-
pute the energy of the instance {i, i′} that from Eq. (10)
takes the form:

E{i,i′} = R{i,i′} − 2R1. (19)

Recall that for all instances {i} with only one loss, R{i} =
R1 as explained in Section III A. Append the element[
{i, i′}, R{i,i′}, E{i,i′}

]
to the list I.

4. For every instance {i1, i, i′} ⊂ P with three different
losses (one of them the central loss i1) one has to compute
R{i1,i,i′} from Eq. (4), then compute the energy of the
instance from Eq. (10), that takes the form:

E{i1,i,i′} = R{i1,i,i′} −R{i1,i} −R{i1,i′} −R{i,i′} + 3R1

(20)
where we used again that for all instances {i} with only
one loss, R{i} = R1. Note that the values of R{i1,i},
R{i1,i′}, R{i,i′} are stored in I for every i, i′ ∈ P . Append

the element
[
{i1, i, i′}, R{i,i′}, E{i,i′}

]
to the list I.

Finally, from the list I, extract only those instances
that contain the central loss i1 and have non-zero en-

ergy. These constitute the set I(f-i)i1
that can be used to

compute the coefficients α2 and α3 with Eq. (13).

VII. FUNDAMENTAL THRESHOLD FOR
QUBIT LOSS

In this section we describe the algebraic technique em-
ployed to determine the existence of well-defined logical
operators that do not have support on the set of removed
qubits. This technique, which can be used to compute
the fundamental qubit loss threshold pf , determines effi-
ciently if there exists a subset G of generators such that
the logical operator l̃σq in Eq. (3) does not have support
on the set of removed qubits r by mapping this problem
to a system of linear binary equations. Furthermore, we
prove the following statement: given a set of removed
qubits r, the logical information is protected if and only
if r does not contain the support of any logical operator.

A. Algebraic technique

Here we map the problem of finding G to a system of
linear binary equations. Without loss of generality we
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GeometryShrunk I1 R1 E1 α1 I2 R̄2 Ē2 α2 I3 R̄3 Ē3 α3

Red 1 5
3

5
3

10
3

11 295
99
− 35

99
− 35

9
72 3995

972
35
972

140
81

4.8.8 Blue 1 5
3

5
3

10
3

9 233
81
− 37

81
− 37

9
102 5749

1377
95

2754
190
81

Green 1 5
3

5
3

10
3

9 233
81
− 37

81
− 37

9
102 5749

1377
95

2754
190
81

Red 1 5
3

5
3

10
3

11 295
99
− 35

99
− 35

9
122 14161

3294
29

1647
116
81

6.6.6 Blue 1 5
3

5
3

10
3

11 295
99
− 35

99
− 35

9
122 14161

3294
29

1647
116
81

Green 1 5
3

5
3

10
3

11 295
99
− 35

99
− 35

9
122 14161

3294
29

1647
116
81

Red 1 5
3

5
3

10
3

11 295
99
− 35

99
− 35

9
64 7057

1728
1
27

128
81

4.6.12 Blue 1 5
3

5
3

10
3

9 233
81
− 37

81
− 37

9
91 10214

2457
89

2457
178
81

Green 1 5
3

5
3

10
3

9 233
81
− 37

81
− 37

9
102 5749

1377
95

2754
190
81

TABLE III. Results for the analytical expansion of r(p). Representative factors for ` = 1, 2, 3 losses for the three shrunk
lattices in three regular geometries of the color code. The number of fully-interacting instances is I`, the average number of
edges erased by them is R̄`, and the average energy associated is Ē`. The coefficients of the power expansion in Eq. (7) are α`.
All these quantities have been obtained analytically without perfoming any approximation.

can choose the logical operator lσq in Eq. (3) as composed
of Pauli operators of just one type σ, like in Eq. (2),
where sσq is the set of qubits where lσq has support. When
a logical operator lσq composed by Pauli operators of just
one type σ is multiplied by generators of another type
σ′ 6= σ, the support sσq of the new operator l̃σq contains
the support of lσq : s̃σq ⊃ sσq , so if a removed qubit is
in sσq it will also be in s̃σq and the multiplication with
generators of other type σ′ will be ineffective.

As a consequence, we can restrict the subsets G that
multiply lσq in Eq. (3) to those subsets that only contain
generators of the same type σ. If the subset of faces
where the generators of G are defined is X , the support
of l̃σq is then given by:

s̃σq = sσq
⊕
f∈X

f (21)

where the symbol ⊕ indicates the symmetric difference
between sets: a ⊕ b = (a ∪ b) \ (a ∩ b). The symmetric
difference comes from the fact that σn = σ for odd n and
σn = I (the identity operator) for even n. For simplicity,
from now on we drop the indices q, σ.

Given a set of removed qubits r, a logical operator l̃σq ,
defined on the string s̃, has non-empty support on r if
s̃ intersects r, i.e., if r ∩ s̃ 6= ∅. Therefore, the logical
information still exists if there is a subset of faces X for
which:

r ∩

s⊕
f∈X

f

 = ∅. (22)

In order to map Eq. (22) to a system of linear equations
let us first define the binary vectors and matrices that

represent the sets appearing in the equation. Recall that
N is the number of qubits and F the number of faces.
Then:

• The set of all faces is represented by a N×F matrix
F whose elements are Fif = 1 if the qubit i is in
the face f and 0 otherwise.

• A string s is represented by a N × 1 column vector
s whose elements are si = 1 if the qubit i is in s
and 0 otherwise.

• The subset X of faces is represented by a F × 1
column matrix x whose elements are xf = 1 if the
face f is in X and 0 otherwise.

The symmetric difference between sets is mapped to
the summation modulo 2 of binary vectors and matrices.
Then, Eq. (21) is mapped to the following binary matrix
operations:

s̃ = s + Fx (23)

where Fx is the usual matrix product performed modulo
2.

The intersection between sets is mapped to the
element-wise product r◦ s̃ of binary vectors, i.e., another
N×1 column vector where the i-th element is the product
ris̃i. Then, Eq. (22) is mapped to

r ◦ (s + Fx) = 0, (24)

which can be written in the standard form of a system of
linear equations as:

(r ◦ F)x = r ◦ s. (25)
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Here r ◦ F is a N × F matrix whose elements are the
product [r ◦ F]if = riFif .

Finally, the search of a logical operator without sup-
port on the removed qubits is equivalent to finding a
solution x of the linear system in Eq. (25). This system
can be efficiently solved by Gauss elimination, in a time
that scales as ∼ N3 or better.

B. Necessary and sufficient condition for the
existence of the logical information

Here we prove that given a set of removed qubits r,
there exists a logical operator for every class {q, σ} with-
out support on the removed qubits if and only if r does
not contain the support of a logical operator. We use the
notation defined after Eq. (22).

Let us start by assuming that r includes the support
of a logical operator lσq and prove that all the logical op-

erators lσ
′
q of other type σ′ 6= σ have non-empty support

on r. The logical operator lσq anticommutes with all log-

ical operators lσ
′
q of the class {q, σ′}. Consequently the

support of lσq and the support of every logical operator

lσ
′
q have some qubits in common. As a consequence, all

logical operators lσ
′
q have non-empty support on the set

of removed qubits, and therefore, the class {q, σ′} is not
well defined.

Now we assume that the logical information does no
longer exist, i.e., the system of Eq. (25) does not have a
solution, and prove that the set of removed qubits repre-
sented by r includes a logical operator. If the system has
no solution, the rank of the augmented matrix is bigger
than the rank of the matrix r ◦ F:

rank (r ◦ [F s]) > rank (r ◦ F) . (26)

By the rank-nullity theorem, the rank of any matrix
A is the number of rows m minus the number of linearly
independent column vectors v that cancel it from the left:
vTA = 0. From Eq. (26) this means that the matrix r◦F
has at least one more vector v that cancels it from the
left than the matrix r◦ [F s]. Note that every vector that
cancels [F s] from the left also cancels F from the left.
Then, this vector satisfies that:

vT (r ◦ F) = 0 (27)

vT (r ◦ [F s]) 6= 0 (28)

or equivalently:

vT (r ◦ F) = 0 (29)

vT (r ◦ s) 6= 0 (30)

By using the commutation of the element-wise product
◦ with the usual matrix product, we get that:

(v ◦ r)
T F = 0 (31)

(v ◦ r)
T s 6= 0 (32)

which means that the vector v ◦ r has an even number
of qubits in common with the support of all generators
represented by F, but an odd number in common with
the support of the logical operator lσq represented by s.
The only possibility is that v◦r is the support of a logical
operator lσ

′
q of the class {q, σ′}.

Given that if (v ◦ r)i = 1, then ri = 1, the column
vector r represents a set of qubits r that contains the
support of the logical operator lσ

′
q . Hence, we prove the

statement in both logical directions.

VIII. CONCLUSIONS AND OUTLOOK

In this work we have explored a connection between
statistical mechanics and QEC arising from the study of
qubit loss in the topological color code. Here the prob-
lem of determining the robustness of the code to qubit
loss is mapped to a novel classical percolation problem
on coupled lattices as recently proposed in [52]. By ex-
ploring this connection we have determined analytically
the tolerance of the color code to qubit loss.

The main goal of this paper is to obtain analytically
the critical qubit loss rate pc below which the logical in-
formation in the color code is still protected. We have
shown that pc is related to the bond-percolation thresh-
old rc of the shrunk lattices of the color code through the
equation r(pc) = rc, where r(p) is the average fraction
of edges erased at a qubit loss rate p. We have devel-
oped a technique to systematically obtain the expansion
coefficients of r(p), and we have presented an algorithm
to calculate the values of these coefficients. We have
computed the first three of these coefficients and found
agreement with the numerical estimations.

Moreover, the fundamental loss threshold pf of the
three regular geometries of the color code has been com-
puted numerically. Our results confirm the high robust-
ness to qubit loss of the color code together with the
protocol to correct qubit losses [52], which is of practical
relevance for actual and future quantum processors. Fur-
thermore, in this paper we have proven that the logical
information still exists after correcting the qubit losses if
and only if the set of lost and sacrificed qubits together
does not include the support of a logical operator.

Our work establishes the theoretical framework that
might serve as a basis for future extensions of the proto-
col to correct losses. For example, the sacrificed qubits
could be selected following global criteria that take into
account the positions of all losses. Other extensions of
the protocol could involve addressing more complex error
models, e.g. taking into account possible (spatial) corre-
lations between loss events, the imperfect identification
of their positions, and the combined presence of qubit
loss, computational, and measurement errors.
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Appendix A: Proof of Eq. (10)

In this Appendix we prove that the energy Ei of a
loss instance i can be expressed in terms of the average
number of edges Rj as expressed in Eq. (10).

Let us rewrite Eqs. (9) and (10) by using a delta func-
tion that equals 1 if j ⊂ i and zero otherwise:

Rj=
∑
k∈I

Ekδk⊂j (A1)

Ei= (−1)|i|
∑
j∈I

(−1)|j|Rjδj⊂i. (A2)

Here I is the set of all loss instances. Substituting the
first equation into the second one yields:

Ei = (−1)|i|
∑
k∈I

Ek
∑
j∈I

(−1)|j|δk⊂jδj⊂i. (A3)

Instead of summing over j we sum over the set differ-
ence t = j\k, that contains all the subsets of i\k. Then,
we have that:∑

j∈I
(−1)|j|δk⊂jδj⊂i = δk⊂i

∑
t⊂i\k

(−1)|t|+|k| (A4)

where δk⊂i indicates that all the terms vanish if k 6⊂
i. The sum over t equals zero unless |t| = 0, thus the
number of elements of the sets k and i needs to be equal,
i.e. |k| = |i|:∑

t⊂i\k
(−1)|t|+|k| = (−1)|k|δ|k|=|i|. (A5)

Then, the sum over j is reduced to a sign and two deltas:

Ei = (−1)|i|
∑
k∈I

Ek(−1)|k|δk⊂iδ|k|=|i|. (A6)

The condition imposed by the two deltas is satisfied if
the sets k and i are equal so the only term surviving in
the sum over k is k = i. Hence the proof of Eq. (10).

Appendix B: Proof of Eq. (12)

In this Appendix we prove that the `-th coefficient α`
in the expansion of the average fraction of edges erased
r(p) in powers of p is given by the sum of energies Ei of
loss instances i that contain ` losses.

By substituting the number of edges erased Ri in
Eq. (11) by its expression in terms of energies in Eq. (9)
one gets that the average fraction of edges erased is:

r(p) = e−1
∑
i∈I

p|i|(1− p)N−|i|
∑
j⊂i

Ej . (B1)

The condition in the second sum can be dropped by in-
troducing a delta function δj⊂i that equals 1 if j ⊂ i and
0 otherwise:

r(p) = e−1
∑
j∈I

Ej
∑
i∈I

p|i|(1− p)N−|i|δj⊂i. (B2)

For a fixed j the instances i for which the delta does not
vanish are of the form i = j∪k where k is a subset of the
rest of qubits k ⊂ V \ j. Here V is the set of all qubits.
Then |i| = |j|+ |k| and the sum on i can be substituted
by a sum over k:

r(p) = e−1
∑
j∈I

Ejp
|j| ∑
k∈V\j

p|k|(1− p)(N−|j|)−|k|. (B3)

The second sum equals one because it is a sum of the
probabilities of every loss instance constrained to the
qubits in V \ j. This finalizes the proof of Eq. (12).

Appendix C: Separable instances have zero energy

In this Appendix we prove that the energy Ei for a sep-

arable instance i vanishes. If two disjoint parts i(A), i(B)

of an instance i = i(A) ∪ i(B) are far enough from each
other, the number of edges erased is the sum of the edges
erased by the two parts: Ri = Ri(A) + Ri(B) . This is
defined as a separable instance.

In this situation, every loss in i(A) is far from every

loss in i(B), so every subset j ⊂ i that contains some

losses from i(A) and some losses from i(B):

j ∩ i(A) 6= ∅ , j ∩ i(B) 6= ∅ (C1)
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is also a separable instance:

Rj = Rj∩i(A) +Rj∩i(B) . (C2)

In particular, for the subsets {j1, j2} with just two
losses, R{j1,j2} = R{j1} +R{j2}. So from Eq. (10) we get
that the energy of these subsets vanishes E{j1,j2} = 0.

For separable subsets {j1, j2, j3} containing three
losses R{j1,j2,j3} = R{j1} + R{j2,j3}. These subsets con-
tain two subsets, {j1, j2}, {j1, j3} whose energy vanishes.
Then, using Eq. (10) and canceling the vanishing ener-
gies at both two sides we have that the left and the right
side of the previous equation are

R{j1,j2,j3} = E{j1,j2,j3} + E{j2,j3}

+ E{j1} + E{j2} + E{j3},
(C3)

R{j1} +R{j2,j3} = E{j1} + E{j2,j3}

+ E{j2} + E{j3},
(C4)

respectively. This results in a vanishing energy
E{j1,j2,j3} = 0.

Applying this derivation iteratively from subsets j ⊂
i of a separable instance i we obtain that all energies
Ej = 0 vanish. In particular, for the last iteration, when
j = i, the energy of i vanishes Ei = 0, proving the initial
statement.
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