THE CLOSE-TO-CONVEX ANALOGUE OF R. SINGH’S
STARLIKE FUNCTIONS

JANUSZ SOKOL, DEREK K. THOMAS, AND VASUDEVARAO ALLU

ABSTRACT. For f analytic in the unit disk I, we consider the close-to-convex
analogue of a class of starlike functions intoduced in 1968 by R. Singh. Coefficient
and other results are obtained for this class of functions defined by |zf'(z)/g(z) —
1] < 1 for z € D, where g is starlike in D.

1. PRELIMINARIES

Let H denote the class of functions f analytic in the unit diskD = {z € C : |z| < 1},
and A be the subclass of H consisting of functions normalized by f(0) = 0 =
f'(0) — 1. Let S C A be the class of functions univalent (i.e. one-to-one) in . Any
function f € A has the following series representation

(1.1) f(2) zz+Zanz”.

Denote by S&* the subclass of S of starlike functions. It is well-known that f € S*

if, and only if,
!/
me{zf(z)} >0, z€D.
f(z)
Denote by C the subclass of §* of convex functions. It is well-known that f € &* if|
and only if,

f(z) =z24'(2), forsome g e€C.

By P we denote the class of Carathéodory functions p which are analytic in D,
satisfying the condition e {p(z)} > 0 for z € D, with

(1.2) p(z) =1+ anz”.

Suppose now that f is analytic in D, then f is close-to-convex if, and only if, there
exists a € (—7/2,7/2), and a function g € S* such that
z2f(z
Re {ew‘m} >0, z€D.
9(2)
When a = 0, we denote this class of close-to-convex functions by K, and note that

S*CcKcCS.
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Suppose next that f € A, and is given by (1.1]), and for z € D, satisfies

2f'(z)

f(z)
This class of functions was introduced in 1968 by Singh [6]. Denoting this class by
S}, it is clear that S C §*. In [6], Singh showed that if f € S, then |a,| < 1/(n—1)
for n > 2, and that this inequality is sharp. Other properties of functions in S were
also given in [6].

—1| < 1.

We now define the close-to-convex analogue of the class S as follows.
Definition 1.1. We say f € IC,, if for f € A, there exists g € S*, such that

2f'(2)
9(2)

—1’<1, z € D.

Again it is clear that S} C £, C L C S.
Remark 1.

Although IC, represents the natural close-to-convex analogue of S, we shall see
that obtaining sharp estimates for the coefficients for example, represents a much
more difficult problem. We note that this phenomena is often reflected in extending
results from §* to I, and will see in this paper that the class IC,, gives rise to some
significant and interesting problems.

2. LEMMAS

A function w is called a Schwarz function if w € H, w(0) = 0, and |w(z)| < 1 for
z € D. We denote the class of Schwarz functions by €.

Note that for p € P given by (1.2)), we can write p(z) = (1 +w(z))/(1 —w(z)), for
some w € 2. So writing

(2.1) w(z) = anz”,

and equating coefficients gives

(2.2) p1=2w1, Py = 2w+ 2w,

We will need the following lemmas.
Lemma 2.1. [1], [3l p.78]. Let w € Q and be given by (2.1). Then for all n =
2.3,...,
wan—1] <1 = fwr]* = fwal” = fws* — ... = |wa|?,
and for alln =1,2,3,...,

won| <1 — Jwi]? = |waf® = Jws|? — ... = w1 |* — wa]®.
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Lemma 2.2. [4]. Let w € Q and be given by ((2.1). If u € C, then
(2.3) jwa — pwi| < max {1, |u/}.

Using ([2.2) and ({2.3) immediately gives the following.
Lemma 2.3. Let p € P and be given by (1.2). Then for p € C,
P2 — ppi| < 2max {1,]2u — 1]} .

The inequality is sharp for each complex .

We shall also need the following (see e.g. [7]).

Lemma 2.4. Let p € P and be given by (1.2). Then forn > 1, |p,| <2, and

1 1
p2—§p§ §2—§‘p%’.

The following Fekete-Szego type inequalities of Keogh and Merkes [4] will be used
extensively in Section [3]

Lemma 2.5. [4]. Let g € S*, and be given by

(2.4) g(z) =z+ Y bp2".

Then for any p € C,
|bs — pb3| < max {1, [4u — 3|},
and
2 b2
(2.5) (b3 = ubs| < 1+ (J4p = 3| = 1) =~
Both inequalities are sharp.

We will also use the following lemma concerning functions in P, the proof of which
follows easily from Lemma [2.5

Lemma 2.6. Let p € P. Then for any t € C,

2
(2.6) lp2 — tp3] §2+(|2t—1|—1)%.

The inequality is sharp.
Proof. Let p € P, then there exists a function g € §* given by ([2.4]) such that

_29'(2)
p(z) = 9(2)

, 2z €D.
Thus

by = P1,

1
by = 5(]72 —Hﬁ)-
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Substituting in (2.5)) gives

2
b — @ — 2| <24 (4 — 3 — 1) 12

’pl
) 2 ?
for all complex p. Writing p = (t + 1)/2, gives (2.6 for all complex ¢.

The function p(z) = (1+2)/(1 — z) shows that the result is sharp for [2¢t — 1| > 1,
and p(z) = (1 + 22)/(1 — 2?) shows the sharpness for |2t — 1| < 1. O

Lemma 2.7. [5], [2, p.67]. Suppose that f € S, and that z = re® € D. If
m/(r) < |f'(z)| < M'(r),

where m/(r) and M'(r) are real-valued functions of v in [0,1), then
/m Ydt < |f(z \</ M'(r)dt.
We begin with some distortion theorems.

3. DISTORTION THEOREMS
Theorem 3.1. If f € K, and z =re?, 0 < r < 1, then

1—r , 1+7r
(31) A OIS oo
and
(3.2) 2" og(1— 1) < [f(2)] < =2 4 log(1 —1).
1+7r - “1-r

The inequalities are sharp.

Proof. Write
(3.3) f(2) = L2+ w(=)),
for some g € §*, and some w € ().

It is well-known that for g € S*, with z = re?, 0 < r < 1, then

1 g(2) 1
3.4 < .
(34) (1+7r)? z |7 (1—r)?
Thus using the Schwarz lemma, we have
(3.5) l—r<|l+w(z)| <1+,

and so from (3.3)), using (3.4)) and (3.5]), we immediately obtain (3.1)).

The inequalities in (3.1)) are sharp when f; € K, is given by

fie) = 2 :

(142), and go(2) =

in which case

and  f{(r) =



The Close-to-convex Analogue of R. Singh’s Starlike Functions 5

Clearly ({3.2)) follows from Lemma , since IC, C S.

The upper bound in (3.2 is sharp for f; € K, given by

fi(z) = % +log(1 — 2),

and the lower bound for fy; € IC, given by

2z

fo(z) = T4 log(1 + z).

4. COEFFICIENTS

In [6], Singh was able to use the method of Clunie to obtain sharp coefficient esti-
mates for functions in S;. Since this is not possible in C,, the problem of extending
the coefficient inequalities in [6] to the class K, appears not to be straightforward,
with exact bound not easy to find. We give the following.

Theorem 4.1. Let f € K, and be given by (1.1). Then

wl <2, ol <2 Jail < UL S 183 el < 5 +5_\§/Z —197....
The inequalities for |as| and |as| are sharp.

Proof. Write

(4.1) 2f'(2) = 9(2)[1 + w(2)],

for some g € §* and some w € €.

Equating coefficients in (4.1)), and using (2.1]) and (2.4) gives

(42) 2(12 = b2 + Wy,
(43) 3&3 = b3 + b2w1 + Wy,
(44) 4&4 = b4 + bgwl + b2w2 + w3,

where for n > 1, |b,| < n and |w,| < 1. Therefore gives
2|az| < |ba| + |wi| = 2|as| < 3.
Now write 21 = |wy|, 2 = |ws|, and z3 = |ws|, and so from (4.3]) we obtain
3las| < |bs| + [bol[wr] + |we,
so that Lemma [2.1| implies
3las| <3+ 2fwn| + (1 = [un[?) <5,

since 0 < 4 + 2z, — 22 <5 for x; € [0, 1].

The bound for |a4| is more complicated. Again from and Lemma we
have

4]ay| [ba| + [bs[w1] + [bz||wa] + [ws],

<
< 44 3x1 + 229 + 23,
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and so
2 2 2
0<z, <1, 29<1—2], 23<1—2a]—ux;.
We therefore need to find

(45) mng(SCl,.fCQ,I;g),

where g(x1, z9, x3) = 4 + 3z, + 229 + x3, and
H={(r1,209,23): 11 <1, 23<1—a? 23<1—2a?—22)
It is clear that
mgxg(xl, To,T3) = H{%%Xg(l‘l, To, T3).

Hence we consider (4.5 on the boundary 0H. If x3 = 1—2? — 23, and 25 = 1 — 273,
then
g(x1, 29, 23) =6+ 37 — 27 — a7, 0 <y < 1.
Solving this equation (using Wolfram Alpha), we obtain
max{6 4+ 37, — 27 —af: 0<a; <1} =73731... at x; = 0.72808.. . .,

where

1 968
7.3731... = — {148 — — + {’/54181 + 2259753 § |
24 /54181 + 2259v/753

/27 + +/ 1
0.72808 ... = T+ V3 .

2v/39 $/3(27 + /753)

Hence

Applying the same method for as gives

3
5las| <8+ —==9.889...,and so |as| < 1.97....

V4

The inequalities for ay and az are sharp when

2n—1

+log(1—z):z—|—z - 2",

2z
—z

£2) =1

n=2

OJ

Inequalities for the coefficients of close-to-convex functions can exhibit unpre-
dictable behaviour (see e.g the solution to the Fekete-Szegd problem [4]). On the
basis of the extremal function for the coefficients as and az above, the obvious con-
jecture is the following, which may prove not to be correct.

Conjecture.

Let f € Ky, and be given by (L.1)). Then for n > 2,
2n —1
—

la,| <

Remark 2.
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It is clear that other non-sharp bounds for |a,| when n > 5 can be obtained using
the same techniques used in the proof of Theorem[4.1 However the analysis becomes
more involved as n increases, and requires computer aided numerical methods.

We also note that the coefficients a,, are bounded. To see this, it follows from
(4.1) and the Schwarz Lemma that, with z = re? € D,

1 27
anl < 5 [ lap ) as
0

2mrn
1 27
< — 9(2)| db.
0

Trh

Since fo% lg(2)| dd = O(1—r)~1 asr — 1 for g € §*, choosing r = 1 —1/n shows
that a,, = O(1) as n — oc.

5. FEKETE-SZEGO THEOREMS
We first give the following bounds for Fekete-Szego functonal, noting that not all

the inequalities are shown to be sharp.

Theorem 5.1. Let f € K, and be given by (L.1)), and let u € R.

If 1t <0, then

5
(5.1) jas — pas| < 5 —

If 0 < <2/3, then

2(10 — 18y + 9u?)
2
- <
’ag /’LG’Q‘ —_ 3(4_3/1/)
If2/3 < u <1, then
2

(5.2) |as — paj| < 3
If 1 < <10/9, then

3 —5
5.3 —ua? < ———,
If 1 >10/9, then

9 5
5.4 —ua?| < Sp— =,
(5.4) jas — paz| < Jp = 3

Inequalities (5.1), (5.2) and (5.4) are sharp.
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Proof. Since f € K, we can write

2p(2)
5.5 2f'(2) = g(2) | ——]|,
(55) Fe) =) | ]
where p € P and g € §*. Thus equating coefficients in ([5.5) we obtain from ({1.2))
and ([2.4) the following two alternative expressions:

3bsp bap1
6 2 16

1 1 2 1

1 3b2 b 1 443
(5.7) as—Magzg (53— j”) +2—pl(2—3u)+6(pz— 3 'up?).

We now treat the following cases.
Case 1. 1 <0.

We use (5.6) with |p;| = x. Noting that |by] < 2, and using Lemma and
Lemma , we obtain from (/5.6

1 3bs bap1 1 P2 1
—pa3l = |z (b — =2 ——(2-3 —p— ) - =pi
|a3 /“Lz’ 3<3 1 + 12( M)+6 P2 5 16p1,u
1 1 1 x? 1
< —3u-3+=2-3 12— == =2?
< gBr=3l+gl u|x+6‘ 5|~ g% H
1 1 1 x? 1
9.8 = —(3-3 —(2-3 22— ) — =22

where z € [0, 2]. Since the right hand side of (5.8 increases with respect to = € [0, 2],
we obtain

1
3
5  9u

3 4
The result is sharp on choosing b3 = 3,0y = p1 = p2 = 2 in (.6), ie. g(z) =
2/(1=2)% p(2) = (1 +2)/(1 = 2).

Case 2. 0 < <2/3.

las — paj| <

1 1 2\ 1,
(3—3u)+6(2—3u)x+6 <2—?) - —x MLZQ

We again use (5.6) with = = |p;| which gives

1 1 1 ? 1
—pa3] < -(3-3 ~(2-3 — (22— ) + —=2%u
las — pay| < 5(3 = 3p) + (2= 3p)z + = 5 ) T gt H

Since the above expression has a maximum value at z = 4(3u — 2)/(3u —4) in
[0,2], the bound for 0 < u < 2/3 follows.

Case 3. 2/3<pu<1.
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We apply (2.5) and (2.6]) in (5.7)) to obtain

1 b 2 b
|a3—,ua§|<3<1+(|3u 3|_1)‘i’ )+|2p1||2

1 4+ 3u 1|
~ (2 —1]—1

1 3u 20 1 3u 1 4= 3pp|?
<—-(1- b b 2 —
_3( ‘2’) |p1|!2| 6< 4 5
3 —2 5 du—2 4 — 3u 2 2
(59) | palb il 2
C3u-2( 4-3u 2
D ( R TCy Y +3’

where y = |by| € [0,2], x = |pi| € [0,2].
If p=2/3 then (5.2)) follows at once from (/5.9)).

If p # 2/3, we dividing by 3u — 2, so that it suffices to show that
4—3u
F — _ 2 o 2 < 0
(z,y) = —y" +ay Gn-2” <
forall2/3 < pu <1,y €[0,2] and z € [0, 2].

Noting that F(z,y) has no critical points in (0,2) x (0, 2), we need only to check
that F'(z,y) <0 when z = 0 or y = 0, which is trivial, and when z =2 or y = 2.

If x = 2, we have

4—3,&__( _1)2_6(1_“) SO

_ hen 2/3<pu<1
3 — 2 3 — 2 when 2/3 <p <1,

)

F(2,y) = —y" +2y —

and if y = 2, then
4—3u

iy )
ABu—2)" =

F(z,2)=-2(2—x) — when 2/3 < p <1,

Y

which establishes (/5.2]).

To show the result is sharp we choose by = 0, b3 = 1, p; = 0 and py = 2 in (5.7)),
ie. g(z) = 2/(1—2%), p(z) = (L +2%)/(1 - 2%).

Case 4. 1 < 11 <10/9.



10 J. Sokét, D. K. Thomas and A. Vasudevarao

Applying (2.5 and . in gives for all pu > 1,

1 b 2 b
|a3—ua§|§§(1+(|3u—3|—1)‘ 2 >+’2p1‘|2 3l

4
1 4+ 3u 21
~ (2 —1/—-1
e (e ()

1 4— 3u 9 3pu—2 1 4—3|p1)?
< (1- b byl 4= (2222
<5 ( ) + 2 2l + 5 (2- 21

4—-3 3pu— 2 4 — 3 2
Elbal? + s Ipallbe] = — i+

4-3 4(3p — 2 2
_ 2 (—4y2+(ﬂ—ﬂ)xy—x2) +§ = F(z,y),

where Y= |b2| S [072]7 T = |p1| S [07 2]

Ip|* +

Thus to show (5.3) it suffices to establish that

2 4-3pu o  4(3u—2) 9 2 pu—1
5.10 Flz,y) = g SR ) <2
(5.10) @y)=35+—5 ( Ve T ) S 3T 3,

forall 1 < <10/9,y € [0,2] and = € [0, 2].

Again we notice that F(z,y) has no critical points in (0,2) x (0,2). Hence we
need only to check F'(z,y) <0 when z =0 or y =0, and when x =2 or y = 2. It
is clear from (5.10) that in these four cases F'(x,y) attains the greatest value when

x = 2. Then
2 4-3p >, 833 —2)
F(2,y) == R
and
2 4—3 8(3pu — 2
max F'(2,y) = —+{ N(—4QQ+L?J—4)]
0<y<2 3 48 4—3u y=3p—2)/(4—3p)
2 pu—1 3 —5
3 4-3u 303u—4)
This gives (5.3)).

Case 5. © > 10/9.

From (j5.7) we obtain with z = |p;| and y = |bs|,

1 y? Ty 1 x? px?
—udd <= (1+6u-0L )+ ¥ i3u—2 —(2 ) He
= H(x,y).

Since the only critical point of H(z,y) is when z = y = 0, and H(0,0) = 2/3,
we need only to check the end points of H(z,y) on [0,2] x [0,2]. First H(0,y) =
1/3+1/3(1+1/4(3pu—4)y* < (3u—2)/3 < 9u/4—5/3 when y > 10/9 and 0 < y < 2.
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Next H(2,y) = pu/4+ (3 —2)y/6 + 1/3(1 + (3 — 4)y*/4), which increases on
y €1[0,2], and so H(2,y) < 9u/4 —5/3 again.

Next H(x,0) = 2/3 + (3m — 4)2?/48. Then H'(z,0) = 0 when either z = 0 or
w=4/3. Since H(4/3,0) = 2/3 < u/4—5/3, we need only consider the cases z = 0,
and z = 2, However since H(0,0) is again 2/3, and H(2,0) = 1/34+pu/4 < 9u/4—5/3
the result follows in this case.

Finally H(x,2) = (3u—3)/34+ (3u—2)z/6+ px*/16+(2—x%/2) /6, which increases
for x € [0,2] when p > 10/9. Since H(2,2) = 9u/4 — 5/3, the proof is complete.

The result is sharp on choosing b3 = 3,by = p; = p2 = 2 in (5.§), i.e. g(2)

Ol

2/(L=2)% p(z) = (1+2)/(1 = 2).
The following Fekete-Szego theorem for complex p is probably not sharp.
Theorem 5.2. Let f € K, and be given by (L.1)). Then if p € C
1
(5.11) las — pa3| < 3 max {1, [4u1 — 3|} + max {1, |2us — 1|} + |2 — 3u]],
where
3 4+ 3u
H1 = 4 ) Ho = ] .
Proof. From ([5.7)), we obtain
1 3 1 1 4+ 3p
|ag — paz| < 3 bs — Zbg + §|52P1| |2 = 3p| + 62~ 3 P
1 .o 1 1 4+ 3un ,
< —|bs——b -12-3 —|po — —pi| -
S 3% 42"‘3‘ /~L|+6p2 3 b
Applying Lemma and Lemma gives (5.11)). O

6. THE RADIUS OF CONVEXITY

We first recall the well-known condition that f maps ID onto a convex domain if,
and only if, f € A and

2f"(2)

f'(2)
A number 7y € [0, 1], is called the radius of convexity for a particular subclass of A,
if 7o is the largest number such that

2f"(2) }
Req 1+ >0
{ f'(2)
for all f in the subclass, and |z| < 7. It was shown in [6] that the radius of convexity

for functions in S* is (v/13 — 3)/2. We now show that when f € K,, the radius of
convexity is (3 — v/5)/2.

E)f{e{l—ir }>0, z € D.
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Theorem 6.1. The radius of convexity for K, is

3—V5

= 0.381966. . ..
5 0.381966

ro =
Proof. Since f € IC,, we write

2f'(z) = g(2)[1 + w(2)],
for some g € §*, and some w € €. Thus

) () w(2)
(6.1) RS T ek Tt

It is well-known (see e.g. [7]), that for g € §*, with z = re®, 0 < r < 1, then

(29)e 15

Also from the Schwarz Lemma, |w(z)| < |z| = r, and from [3, p.77],

/
< =
W' (2)| < T 11— 2

Thus from (6.1]), for z = re?, 0 < r < 1, we obtain

2(2) OIS
A R el e
> (e
14+ r 11— w(2)
S l—r r 1 — |w(z)?
— 14r 1—|w(z)] 1—12
_ 1= r(l+|w(z)])
1+7r 1—1r2
S 1—7’_7“(1—1-7")
— 1+ 1—1r2
B 1—3r+r2>0
1—r2 ’

when r € [0, (3 — v/5)/2). Thus the radius of convexity for the class K, is at least

(3-V5)/2.

To see that this is the largest such radius, consider the function fy € IC, defined
by

fo(2) = ()1 + wo(2)],  go(2) = =S wo(z) = 2.



The Close-to-convex Analogue of R. Singh’s Starlike Functions 13

Then
" / /
z z z z ZWpl\ 2
{1+ /0()} _{90()+ 0()}
foz) )., go(z)  1+wol(z) ).,
B {1 +z L _® }
l—z 1+z),_
. 1-— 37“0 + 7 (2)
B 1—rk
= 0,
which shows that the radius of convexity in the class K, cannot be larger than
To. O
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