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Abstract. For f analytic in the unit disk D, we consider the close-to-convex
analogue of a class of starlike functions intoduced in 1968 by R. Singh. Coefficient
and other results are obtained for this class of functions defined by |zf ′(z)/g(z)−
1| < 1 for z ∈ D, where g is starlike in D.

1. Preliminaries

LetH denote the class of functions f analytic in the unit disk D = {z ∈ C : |z| < 1},
and A be the subclass of H consisting of functions normalized by f(0) = 0 =
f ′(0)− 1. Let S ⊂ A be the class of functions univalent (i.e. one-to-one) in D. Any
function f ∈ A has the following series representation

(1.1) f(z) = z +
∞∑
n=2

anz
n.

Denote by S∗ the subclass of S of starlike functions. It is well-known that f ∈ S∗
if, and only if,

Re

{
zf ′(z)

f(z)

}
> 0, z ∈ D.

Denote by C the subclass of S∗ of convex functions. It is well-known that f ∈ S∗ if,
and only if,

f(z) = zg′(z), for some g ∈ C.
By P we denote the class of Carathéodory functions p which are analytic in D,
satisfying the condition Re {p(z)} > 0 for z ∈ D, with

(1.2) p(z) = 1 +
∞∑
n=1

pnz
n.

Suppose now that f is analytic in D, then f is close-to-convex if, and only if, there
exists α ∈ (−π/2, π/2), and a function g ∈ S∗ such that

Re

{
eiα

zf ′(z)

g(z)

}
> 0, z ∈ D.

When α = 0, we denote this class of close-to-convex functions by K, and note that
S∗ ⊂ K ⊂ S.
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Suppose next that f ∈ A, and is given by (1.1), and for z ∈ D, satisfies∣∣∣∣zf ′(z)

f(z)
− 1

∣∣∣∣ < 1.

This class of functions was introduced in 1968 by Singh [6]. Denoting this class by
S∗u, it is clear that S∗u ⊂ S∗. In [6], Singh showed that if f ∈ S∗u, then |an| ≤ 1/(n−1)
for n ≥ 2, and that this inequality is sharp. Other properties of functions in S∗u were
also given in [6].

We now define the close-to-convex analogue of the class S∗u as follows.

Definition 1.1. We say f ∈ Ku, if for f ∈ A, there exists g ∈ S∗, such that∣∣∣∣zf ′(z)

g(z)
− 1

∣∣∣∣ < 1, z ∈ D.

Again it is clear that S∗u ⊂ Ku ⊂ K ⊂ S.

Remark 1.

Although Ku represents the natural close-to-convex analogue of S∗u, we shall see
that obtaining sharp estimates for the coefficients for example, represents a much
more difficult problem. We note that this phenomena is often reflected in extending
results from S∗ to K, and will see in this paper that the class Ku gives rise to some
significant and interesting problems.

2. Lemmas

A function ω is called a Schwarz function if ω ∈ H, ω(0) = 0, and |ω(z)| < 1 for
z ∈ D. We denote the class of Schwarz functions by Ω.

Note that for p ∈ P given by (1.2), we can write p(z) = (1 +ω(z))/(1−ω(z)), for
some ω ∈ Ω. So writing

(2.1) ω(z) =
∞∑
n=1

ωnz
n,

and equating coefficients gives

(2.2) p1 = 2ω1, p2 = 2ω2 + 2ω2
1.

We will need the following lemmas.

Lemma 2.1. [1], [3, p.78]. Let ω ∈ Ω and be given by (2.1). Then for all n =

2, 3, . . .,
|ω2n−1| ≤ 1− |ω1|2 − |ω2|2 − |ω3|2 − . . .− |ωn|2,

and for all n = 1, 2, 3, . . .,

|ω2n| ≤ 1− |ω1|2 − |ω2|2 − |ω3|2 − . . .− |ωn−1|2 − |ωn|2.
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Lemma 2.2. [4]. Let ω ∈ Ω and be given by (2.1). If µ ∈ C, then
(2.3) |ω2 − µω2

1| ≤ max {1, |µ|} .

Using (2.2) and (2.3) immediately gives the following.

Lemma 2.3. Let p ∈ P and be given by (1.2). Then for µ ∈ C,
|p2 − µp21| ≤ 2 max {1, |2µ− 1|} .

The inequality is sharp for each complex µ.

We shall also need the following (see e.g. [7]).

Lemma 2.4. Let p ∈ P and be given by (1.2). Then for n ≥ 1, |pn| ≤ 2, and∣∣∣∣p2 − 1

2
p21

∣∣∣∣ ≤ 2− 1

2

∣∣p21∣∣ .
The following Fekete-Szegö type inequalities of Keogh and Merkes [4] will be used

extensively in Section 5.

Lemma 2.5. [4]. Let g ∈ S∗, and be given by

(2.4) g(z) = z +
∞∑
n=2

bnz
n.

Then for any µ ∈ C,
|b3 − µb22| ≤ max {1, |4µ− 3|} ,

and

(2.5) |b3 − µb22| ≤ 1 + (|4µ− 3| − 1)
|b2|2

4
.

Both inequalities are sharp.

We will also use the following lemma concerning functions in P , the proof of which
follows easily from Lemma 2.5.

Lemma 2.6. Let p ∈ P. Then for any t ∈ C,

(2.6) |p2 − tp21| ≤ 2 + (|2t− 1| − 1)
|p1|2

2
.

The inequality is sharp.

Proof. Let p ∈ P , then there exists a function g ∈ S∗ given by (2.4) such that

p(z) =
zg′(z)

g(z)
, z ∈ D.

Thus

b2 = p1,

b3 =
1

2
(p2 + p21).
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Substituting in (2.5) gives

|p2 − (2µ− 1)p21| ≤ 2 + (|4µ− 3| − 1)
|p1|2

2
,

for all complex µ. Writing µ = (t+ 1)/2, gives (2.6) for all complex t.

The function p(z) = (1 + z)/(1− z) shows that the result is sharp for |2t− 1| ≥ 1,
and p(z) = (1 + z2)/(1− z2) shows the sharpness for |2t− 1| ≤ 1. �

Lemma 2.7. [5], [2, p.67]. Suppose that f ∈ S, and that z = reiθ ∈ D. If
m′(r) ≤ |f ′(z)| ≤M ′(r),

where m′(r) and M ′(r) are real-valued functions of r in [0, 1), then∫ r

0

m′(t) dt ≤ |f(z)| ≤
∫ r

0

M ′(r) dt.

We begin with some distortion theorems.

3. Distortion Theorems

Theorem 3.1. If f ∈ Ku and z = reiθ, 0 ≤ r < 1, then

(3.1)
1− r

(1 + r)2
≤ |f ′(z)| ≤ 1 + r

(1− r)2
,

and

(3.2)
2r

1 + r
− log(1− r) ≤ |f(z)| ≤ 2r

1− r
+ log(1− r).

The inequalities are sharp.

Proof. Write

(3.3) f ′(z) =
g(z)

z
[1 + ω(z)],

for some g ∈ S∗, and some ω ∈ Ω.

It is well-known that for g ∈ S∗, with z = reiθ, 0 ≤ r < 1, then

(3.4)
1

(1 + r)2
≤
∣∣∣∣g(z)

z

∣∣∣∣ ≤ 1

(1− r)2
.

Thus using the Schwarz lemma, we have

(3.5) 1− r ≤ |1 + ω(z)| ≤ 1 + r,

and so from (3.3), using (3.4) and (3.5), we immediately obtain (3.1).

The inequalities in (3.1) are sharp when f1 ∈ Ku is given by

f ′1(z) =
g0(z)

z
(1 + z), and g0(z) =

z

(1− z)2
,

in which case

f ′1(−r) =
1− r

(1 + r)2
, and f ′1(r) =

1 + r

(1− r)2
.
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Clearly (3.2) follows from Lemma 2.7, since Ku ⊂ S.

The upper bound in (3.2) is sharp for f1 ∈ Ku given by

f1(z) =
2z

1− z
+ log(1− z),

and the lower bound for f2 ∈ Ku given by

f2(z) =
2z

1 + z
− log(1 + z).

�

4. Coefficients

In [6], Singh was able to use the method of Clunie to obtain sharp coefficient esti-
mates for functions in S∗u. Since this is not possible in Ku, the problem of extending
the coefficient inequalities in [6] to the class Ku appears not to be straightforward,
with exact bound not easy to find. We give the following.

Theorem 4.1. Let f ∈ Ku, and be given by (1.1). Then

|a2| ≤
3

2
, |a3| ≤

5

3
, |a4| ≤

7.3731 . . .

4
= 1.8443 . . . , |a5| ≤

8

5
+

3

5 3
√

4
= 1.97 . . . .

The inequalities for |a2| and |a3| are sharp.

Proof. Write

(4.1) zf ′(z) = g(z)[1 + ω(z)],

for some g ∈ S∗ and some ω ∈ Ω.

Equating coefficients in (4.1), and using (2.1) and (2.4) gives

2a2 = b2 + w1,(4.2)

3a3 = b3 + b2w1 + w2,(4.3)

4a4 = b4 + b3w1 + b2w2 + w3,(4.4)

where for n ≥ 1, |bn| ≤ n and |wn| ≤ 1. Therefore (4.2) gives

2|a2| ≤ |b2|+ |w1| ⇒ 2|a2| ≤ 3.

Now write x1 = |w1|, x2 = |w2|, and x3 = |w3|, and so from (4.3) we obtain

3|a3| ≤ |b3|+ |b2||w1|+ |w2|,
so that Lemma 2.1 implies

3|a3| ≤ 3 + 2|w1|+ (1− |w1|2) ≤ 5,

since 0 ≤ 4 + 2x1 − x21 ≤ 5 for x1 ∈ [0, 1].

The bound for |a4| is more complicated. Again from (4.4) and Lemma 2.1 we
have

4|a4| ≤ |b4|+ |b3|w1|+ |b2||w2|+ |w3|,
≤ 4 + 3x1 + 2x2 + x3,
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and so
0 ≤ x1 ≤ 1, x2 ≤ 1− x21, x3 ≤ 1− x21 − x22.

We therefore need to find

(4.5) max
H

g(x1, x2, x3),

where g(x1, x2, x3) = 4 + 3x1 + 2x2 + x3, and

H = {(x1, x2, x3) : x1 ≤ 1, x2 ≤ 1− x21, x3 ≤ 1− x21 − x22}.
It is clear that

max
H

g(x1, x2, x3) = max
∂H

g(x1, x2, x3).

Hence we consider (4.5) on the boundary ∂H. If x3 = 1−x21−x22, and x2 = 1−x21,
then

g(x1, x2, x3) = 6 + 3x1 − x21 − x41, 0 ≤ x1 ≤ 1.

Solving this equation (using Wolfram Alpha), we obtain

max{6 + 3x1 − x21 − x41 : 0 ≤ x1 ≤ 1} = 7.3731 . . . at x1 = 0.72808 . . . ,

where

7.3731 . . . =
1

24

{
148− 968

3
√

54181 + 2259
√

753
+

3

√
54181 + 2259

√
753

}
,

0.72808 . . . =
3
√

27 +
√

753

2
√

39
− 1

3

√
3(27 +

√
753)

.

Hence

|a4| ≤
7.3731 . . .

4
= 1.8443 . . . .

Applying the same method for a5 gives

5|a5| ≤ 8 +
3
3
√

4
= 9.889 . . . , and so |a5| ≤ 1.97 . . . .

The inequalities for a2 and a3 are sharp when

f(z) =
2z

1− z
+ log(1− z) = z +

∞∑
n=2

2n− 1

n
zn.

�

Inequalities for the coefficients of close-to-convex functions can exhibit unpre-
dictable behaviour (see e.g the solution to the Fekete-Szegö problem [4]). On the
basis of the extremal function for the coefficients a2 and a3 above, the obvious con-
jecture is the following, which may prove not to be correct.

Conjecture.

Let f ∈ Ku, and be given by (1.1). Then for n ≥ 2,

|an| ≤
2n− 1

n
.

Remark 2.
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It is clear that other non-sharp bounds for |an| when n ≥ 5 can be obtained using
the same techniques used in the proof of Theorem 4.1. However the analysis becomes
more involved as n increases, and requires computer aided numerical methods.

We also note that the coefficients an are bounded. To see this, it follows from
(4.1) and the Schwarz Lemma that, with z = reiθ ∈ D,

n|an| ≤
1

2πrn

∫ 2π

0

|zf ′(z)| dθ

≤ 1

πrn

∫ 2π

0

|g(z)| dθ.

Since
∫ 2π

0
|g(z)| dθ = O(1− r)−1, as r → 1 for g ∈ S∗, choosing r = 1−1/n shows

that an = O(1) as n→∞.

5. Fekete-Szegö Theorems

We first give the following bounds for Fekete-Szegö functonal, noting that not all
the inequalities are shown to be sharp.

Theorem 5.1. Let f ∈ Ku, and be given by (1.1), and let µ ∈ R.

If µ ≤ 0, then

(5.1) |a3 − µa22| ≤
5

3
− 9

4
µ.

If 0 ≤ µ ≤ 2/3, then

|a3 − µa22| ≤
2(10− 18µ+ 9µ2)

3(4− 3µ)
.

If 2/3 ≤ µ ≤ 1, then

(5.2) |a3 − µa22| ≤
2

3
.

If 1 ≤ µ ≤ 10/9, then

(5.3) |a3 − µa22| ≤
3µ− 5

3(3µ− 4)
.

If µ ≥ 10/9, then

(5.4) |a3 − µa22| ≤
9

4
µ− 5

3
.

Inequalities (5.1), (5.2) and (5.4) are sharp.
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Proof. Since f ∈ Ku, we can write

(5.5) zf ′(z) = g(z)

[
2p(z)

1 + p(z)

]
,

where p ∈ P and g ∈ S∗. Thus equating coefficients in (5.5) we obtain from (1.2)
and (2.4) the following two alternative expressions:

(5.6) a3 − µa22 =
1

3

(
b3 −

3b22µ

4

)
+
b2p1
12

(2− 3µ) +
1

6

(
p2 −

p21
2

)
− 1

16
p21µ,

(5.7) a3 − µa22 =
1

3

(
b3 −

3b22µ

4

)
+
b2p1
12

(2− 3µ) +
1

6

(
p2 −

4 + 3µ

8
p21

)
.

We now treat the following cases.

Case 1. µ ≤ 0.

We use (5.6) with |p1| = x. Noting that |b2| ≤ 2, and using Lemma 2.4 and
Lemma 2.5, we obtain from (5.6)

|a3 − µa22| =

∣∣∣∣13
(
b3 −

3b22µ

4

)
+
b2p1
12

(2− 3µ) +
1

6

(
p2 −

p21
2

)
− 1

16
p21µ

∣∣∣∣
≤ 1

3
|3µ− 3|+ 1

6
|2− 3µ|x+

1

6

∣∣∣∣2− x2

2

∣∣∣∣− 1

16
x2µ

=
1

3
(3− 3µ) +

1

6
(2− 3µ)x+

1

6

(
2− x2

2

)
− 1

16
x2µ,(5.8)

where x ∈ [0, 2]. Since the right hand side of (5.8) increases with respect to x ∈ [0, 2],
we obtain

|a3 − µa22| ≤
[

1

3
(3− 3µ) +

1

6
(2− 3µ)x+

1

6

(
2− x2

2

)
− 1

16
x2µ

]
x=2

=
5

3
− 9µ

4
.

The result is sharp on choosing b3 = 3, b2 = p1 = p2 = 2 in (5.6), i.e. g(z) =
z/(1− z)2, p(z) = (1 + z)/(1− z).

Case 2. 0 ≤ µ ≤ 2/3.

We again use (5.6) with x = |p1| which gives

|a3 − µa22| ≤
1

3
(3− 3µ) +

1

6
(2− 3µ)x+

1

6

(
2− x2

2

)
+

1

16
x2µ.

Since the above expression has a maximum value at x = 4(3µ − 2)/(3µ − 4) in
[0, 2], the bound for 0 ≤ µ ≤ 2/3 follows.

Case 3. 2/3 ≤ µ ≤ 1.
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We apply (2.5) and (2.6) in (5.7) to obtain

|a3 − µa22| ≤
1

3

(
1 + (|3µ− 3| − 1)

|b2|2

4

)
+
|b2p1|

12
|2− 3µ|

+
1

6

(
2 +

(∣∣∣∣4 + 3µ

4
− 1

∣∣∣∣− 1

)
|p1|2

2

)

≤ 1

3

(
1− 3µ− 2

4
|b2|2

)
+

3µ− 2

12
|p1||b2|+

1

6

(
2− 4− 3µ

4

|p1|2

2

)
= −3µ− 2

12
|b2|2 +

3µ− 2

12
|p1||b2| −

4− 3µ

48
|p1|2 +

2

3
(5.9)

=
3µ− 2

12

(
−y2 + xy − 4− 3µ

4(3µ− 2)
x2
)

+
2

3
,

where y = |b2| ∈ [0, 2], x = |p1| ∈ [0, 2].

If µ = 2/3 then (5.2) follows at once from (5.9).

If µ 6= 2/3, we dividing by 3µ− 2, so that it suffices to show that

F (x, y) = −y2 + xy − 4− 3µ

4(3µ− 2)
x2 ≤ 0

for all 2/3 < µ ≤ 1, y ∈ [0, 2] and x ∈ [0, 2].

Noting that F (x, y) has no critical points in (0, 2)× (0, 2), we need only to check
that F (x, y) ≤ 0 when x = 0 or y = 0, which is trivial, and when x = 2 or y = 2.

If x = 2, we have

F (2, y) = −y2 + 2y − 4− 3µ

3µ− 2
= −(y − 1)2 − 6(1− µ)

3µ− 2
≤ 0, when 2/3 < µ ≤ 1,

and if y = 2, then

F (x, 2) = −2(2− x)− 4− 3µ

4(3µ− 2)
x2 ≤ 0, when 2/3 < µ ≤ 1,

which establishes (5.2).

To show the result is sharp we choose b2 = 0, b3 = 1, p1 = 0 and p2 = 2 in (5.7),
i.e. g(z) = z/(1− z2), p(z) = (1 + z2)/(1− z2).

Case 4. 1 ≤ µ ≤ 10/9.
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Applying (2.5) and (2.6) in (5.7) gives for all µ ≥ 1,

|a3 − µa22| ≤
1

3

(
1 + (|3µ− 3| − 1)

|b2|2

4

)
+
|b2p1|

12
|2− 3µ|

+
1

6

(
2 +

(∣∣∣∣4 + 3µ

4
− 1

∣∣∣∣− 1

)
|p1|2

2

)

≤ 1

3

(
1− 4− 3µ

4
|b2|2

)
+

3µ− 2

12
|p1||b2|+

1

6

(
2− 4− 3

4

|p1|2

2

)
= −4− 3µ

12
|b2|2 +

3µ− 2

12
|p1||b2| −

4− 3µ

48
|p1|2 +

2

3

=
4− 3µ

48

(
−4y2 +

4(3µ− 2)

4− 3µ
xy − x2

)
+

2

3
:= F (x, y),

where y = |b2| ∈ [0, 2], x = |p1| ∈ [0, 2].

Thus to show (5.3) it suffices to establish that

(5.10) F (x, y) =
2

3
+

4− 3µ

48

(
−4y2 +

4(3µ− 2)

4− 3µ
xy − x2

)
≤ 2

3
+

µ− 1

4− 3µ

for all 1 ≤ µ ≤ 10/9, y ∈ [0, 2] and x ∈ [0, 2].

Again we notice that F (x, y) has no critical points in (0, 2) × (0, 2). Hence we
need only to check F (x, y) ≤ 0 when x = 0 or y = 0, and when x = 2 or y = 2. It
is clear from (5.10) that in these four cases F (x, y) attains the greatest value when
x = 2. Then

F (2, y) =
2

3
+

4− 3µ

48

(
−4y2 +

8(3µ− 2)

4− 3µ
y − 4

)
,

and

max
0≤y≤2

F (2, y) =
2

3
+

[
4− 3µ

48

(
−4y2 +

8(3µ− 2)

4− 3µ
y − 4

)]
y=(3µ−2)/(4−3µ)

=
2

3
+

µ− 1

4− 3µ
=

3µ− 5

3(3µ− 4)
.

This gives (5.3).

Case 5. µ ≥ 10/9.

From (5.7) we obtain with x = |p1| and y = |b2|,

|a3 − µa22| ≤
1

3

(
1 + (3µ− 4)

y2

4

)
+
xy

12
(3µ− 2) +

1

6

(
2− x2

2

)
+
µx2

16

:= H(x, y).

Since the only critical point of H(x, y) is when x = y = 0, and H(0, 0) = 2/3,
we need only to check the end points of H(x, y) on [0, 2] × [0, 2]. First H(0, y) =
1/3+1/3(1+1/4(3µ−4)y2 ≤ (3µ−2)/3 ≤ 9µ/4−5/3 when µ ≥ 10/9 and 0 ≤ y ≤ 2.
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Next H(2, y) = µ/4 + (3µ − 2)y/6 + 1/3(1 + (3µ − 4)y2/4), which increases on
y ∈ [0, 2], and so H(2, y) ≤ 9µ/4− 5/3 again.

Next H(x, 0) = 2/3 + (3m − 4)x2/48. Then H ′(x, 0) = 0 when either x = 0 or
µ = 4/3. Since H(4/3, 0) = 2/3 ≤ µ/4−5/3, we need only consider the cases x = 0,
and x = 2, However since H(0, 0) is again 2/3, and H(2, 0) = 1/3+µ/4 ≤ 9µ/4−5/3
the result follows in this case.

Finally H(x, 2) = (3µ−3)/3+(3µ−2)x/6+µx2/16+(2−x2/2)/6, which increases
for x ∈ [0, 2] when µ ≥ 10/9. Since H(2, 2) = 9µ/4− 5/3, the proof is complete.

The result is sharp on choosing b3 = 3, b2 = p1 = p2 = 2 in (5.8), i.e. g(z) =
z/(1− z)2, p(z) = (1 + z)/(1− z). �

The following Fekete-Szegö theorem for complex µ is probably not sharp.

Theorem 5.2. Let f ∈ Ku and be given by (1.1). Then if µ ∈ C

(5.11) |a3 − µa22| ≤
1

3
[max {1, |4µ1 − 3|}+ max {1, |2µ2 − 1|}+ |2− 3µ|] ,

where

µ1 =
3µ

4
, µ2 =

4 + 3µ

8
.

Proof. From (5.7), we obtain

|a3 − µa22| ≤
1

3

∣∣∣∣b3 − 3µ

4
b22

∣∣∣∣+
1

12
|b2p1| |2− 3µ|+ 1

6

∣∣∣∣p2 − 4 + 3µ

8
p21

∣∣∣∣
≤ 1

3

∣∣∣∣b3 − 3µ

4
b22

∣∣∣∣+
1

3
|2− 3µ|+ 1

6

∣∣∣∣p2 − 4 + 3µ

8
p21

∣∣∣∣ .
Applying Lemma 2.3 and Lemma 2.5 gives (5.11). �

6. The radius of convexity

We first recall the well-known condition that f maps D onto a convex domain if,
and only if, f ∈ A and

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0, z ∈ D.

A number r0 ∈ [0, 1], is called the radius of convexity for a particular subclass of A,
if r0 is the largest number such that

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0

for all f in the subclass, and |z| < r0. It was shown in [6] that the radius of convexity
for functions in S∗u is (

√
13 − 3)/2. We now show that when f ∈ Ku, the radius of

convexity is (3−
√

5)/2.
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Theorem 6.1. The radius of convexity for Ku is

r0 =
3−
√

5

2
= 0.381966 . . . .

Proof. Since f ∈ Ku, we write

zf ′(z) = g(z)[1 + ω(z)],

for some g ∈ S∗, and some ω ∈ Ω. Thus

(6.1) 1 +
zf ′′(z)

f ′(z)
=
zg′(z)

g(z)
+

zω′(z)

1 + ω(z)
.

It is well-known (see e.g. [7]), that for g ∈ S∗, with z = reiθ, 0 ≤ r < 1, then

Re

{
zg′(z)

g(z)

}
≥ 1− r

1 + r
.

Also from the Schwarz Lemma, |w(z)| ≤ |z| = r, and from [3, p.77],

|ω′(z)| ≤ 1− |ω(z)|2

1− |z|2
=

1− |ω(z)|2

1− r2
.

Thus from (6.1), for z = reiθ, 0 ≤ r < 1, we obtain

Re

{
1 +

zf ′′(z)

f ′(z)

}
≥ Re

{
zg′(z)

g(z)

}
−
∣∣∣∣ zω′(z)

1 + ω(z)

∣∣∣∣
≥ 1− r

1 + r
− r

1− |ω(z)|
|ω′(z)|

≥ 1− r
1 + r

− r

1− |ω(z)|
1− |ω(z)|2

1− r2

=
1− r
1 + r

− r(1 + |ω(z)|)
1− r2

≥ 1− r
1 + r

− r(1 + r)

1− r2

=
1− 3r + r2

1− r2
> 0,

when r ∈ [0, (3 −
√

5)/2). Thus the radius of convexity for the class Ku is at least
(3−

√
5)/2.

To see that this is the largest such radius, consider the function f0 ∈ Ku defined
by

f ′0(z) = g′0(z)[1 + ω0(z)], g0(z) =
z

(1− z)2
, ω0(z) = z.
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Then {
1 +

zf ′′0 (z)

f ′0(z)

}
z=−r0

=

{
zg′0(z)

g0(z)
+

zω′0(z)

1 + ω0(z)

}
z=−r0

=

{
1 + z

1− z
+

z

1 + z

}
z=−r0

=
1− 3r0 + r20

1− r20
= 0,

which shows that the radius of convexity in the class Ku cannot be larger than
r0. �
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