THE CLOSE-TO-CONVEX ANALOGUE OF R. SINGH'S STARLIKE FUNCTIONS

JANUSZ SOKÓ£, DEREK K. THOMAS, AND VASUDEVARAO ALLU

Abstract

For f analytic in the unit disk \mathbb{D}, we consider the close-to-convex analogue of a class of starlike functions intoduced in 1968 by R. Singh. Coefficient and other results are obtained for this class of functions defined by $\mid z f^{\prime}(z) / g(z)-$ $1 \mid<1$ for $z \in \mathbb{D}$, where g is starlike in \mathbb{D}.

1. Preliminaries

Let \mathcal{H} denote the class of functions f analytic in the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$, and \mathcal{A} be the subclass of \mathcal{H} consisting of functions normalized by $f(0)=0=$ $f^{\prime}(0)-1$. Let $\mathcal{S} \subset \mathcal{A}$ be the class of functions univalent (i.e. one-to-one) in \mathbb{D}. Any function $f \in \mathcal{A}$ has the following series representation

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Denote by \mathcal{S}^{*} the subclass of \mathcal{S} of starlike functions. It is well-known that $f \in \mathcal{S}^{*}$ if, and only if,

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>0, z \in \mathbb{D}
$$

Denote by \mathcal{C} the subclass of \mathcal{S}^{*} of convex functions. It is well-known that $f \in \mathcal{S}^{*}$ if, and only if,

$$
f(z)=z g^{\prime}(z), \quad \text { for some } \quad g \in \mathcal{C}
$$

By \mathcal{P} we denote the class of Carathéodory functions p which are analytic in \mathbb{D}, satisfying the condition $\mathfrak{R e}\{p(z)\}>0$ for $z \in \mathbb{D}$, with

$$
\begin{equation*}
p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n} \tag{1.2}
\end{equation*}
$$

Suppose now that f is analytic in \mathbb{D}, then f is close-to-convex if, and only if, there exists $\alpha \in(-\pi / 2, \pi / 2)$, and a function $g \in \mathcal{S}^{*}$ such that

$$
\mathfrak{R e}\left\{e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}\right\}>0, z \in \mathbb{D}
$$

When $\alpha=0$, we denote this class of close-to-convex functions by \mathcal{K}, and note that $\mathcal{S}^{*} \subset \mathcal{K} \subset \mathcal{S}$.

[^0]Suppose next that $f \in \mathcal{A}$, and is given by (1.1), and for $z \in \mathbb{D}$, satisfies

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1 .
$$

This class of functions was introduced in 1968 by Singh 6]. Denoting this class by \mathcal{S}_{u}^{*}, it is clear that $\mathcal{S}_{u}^{*} \subset \mathcal{S}^{*}$. In [6], Singh showed that if $f \in \mathcal{S}_{u}^{*}$, then $\left|a_{n}\right| \leq 1 /(n-1)$ for $n \geq 2$, and that this inequality is sharp. Other properties of functions in \mathcal{S}_{u}^{*} were also given in [6].

We now define the close-to-convex analogue of the class \mathcal{S}_{u}^{*} as follows.
Definition 1.1. We say $f \in \mathcal{K}_{u}$, if for $f \in \mathcal{A}$, there exists $g \in \mathcal{S}^{*}$, such that

$$
\left|\frac{z f^{\prime}(z)}{g(z)}-1\right|<1, z \in \mathbb{D} .
$$

Again it is clear that $\mathcal{S}_{u}^{*} \subset \mathcal{K}_{u} \subset \mathcal{K} \subset \mathcal{S}$.

Remark 1.

Although \mathcal{K}_{u} represents the natural close-to-convex analogue of \mathcal{S}_{u}^{*}, we shall see that obtaining sharp estimates for the coefficients for example, represents a much more difficult problem. We note that this phenomena is often reflected in extending results from \mathcal{S}^{*} to \mathcal{K}, and will see in this paper that the class \mathcal{K}_{u} gives rise to some significant and interesting problems.

2. Lemmas

A function ω is called a Schwarz function if $\omega \in \mathcal{H}, \omega(0)=0$, and $|\omega(z)|<1$ for $z \in \mathbb{D}$. We denote the class of Schwarz functions by Ω.

Note that for $p \in \mathcal{P}$ given by (1.2), we can write $p(z)=(1+\omega(z)) /(1-\omega(z))$, for some $\omega \in \Omega$. So writing

$$
\begin{equation*}
\omega(z)=\sum_{n=1}^{\infty} \omega_{n} z^{n} \tag{2.1}
\end{equation*}
$$

and equating coefficients gives

$$
\begin{equation*}
p_{1}=2 \omega_{1}, \quad p_{2}=2 \omega_{2}+2 \omega_{1}^{2} . \tag{2.2}
\end{equation*}
$$

We will need the following lemmas.
Lemma 2.1. [1, [3, p.78]. Let $\omega \in \Omega$ and be given by (2.1). Then for all $n=$
$2,3, \ldots$,

$$
\left|\omega_{2 n-1}\right| \leq 1-\left|\omega_{1}\right|^{2}-\left|\omega_{2}\right|^{2}-\left|\omega_{3}\right|^{2}-\ldots-\left|\omega_{n}\right|^{2}
$$

and for all $n=1,2,3, \ldots$,

$$
\left|\omega_{2 n}\right| \leq 1-\left|\omega_{1}\right|^{2}-\left|\omega_{2}\right|^{2}-\left|\omega_{3}\right|^{2}-\ldots-\left|\omega_{n-1}\right|^{2}-\left|\omega_{n}\right|^{2} .
$$

Lemma 2.2. [4]. Let $\omega \in \Omega$ and be given by (2.1). If $\mu \in \mathbb{C}$, then

$$
\begin{equation*}
\left|\omega_{2}-\mu \omega_{1}^{2}\right| \leq \max \{1,|\mu|\} . \tag{2.3}
\end{equation*}
$$

Using (2.2) and (2.3) immediately gives the following.
Lemma 2.3. Let $p \in \mathcal{P}$ and be given by (1.2). Then for $\mu \in \mathbb{C}$,

$$
\left|p_{2}-\mu p_{1}^{2}\right| \leq 2 \max \{1,|2 \mu-1|\}
$$

The inequality is sharp for each complex μ.
We shall also need the following (see e.g. [7]).
Lemma 2.4. Let $p \in \mathcal{P}$ and be given by (1.2). Then for $n \geq 1,\left|p_{n}\right| \leq 2$, and

$$
\left|p_{2}-\frac{1}{2} p_{1}^{2}\right| \leq 2-\frac{1}{2}\left|p_{1}^{2}\right| .
$$

The following Fekete-Szegö type inequalities of Keogh and Merkes [4] will be used extensively in Section 5 .

Lemma 2.5. [4]. Let $g \in \mathcal{S}^{*}$, and be given by

$$
\begin{equation*}
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} . \tag{2.4}
\end{equation*}
$$

Then for any $\mu \in \mathbb{C}$,

$$
\left|b_{3}-\mu b_{2}^{2}\right| \leq \max \{1,|4 \mu-3|\}
$$

and

$$
\begin{equation*}
\left|b_{3}-\mu b_{2}^{2}\right| \leq 1+(|4 \mu-3|-1) \frac{\left|b_{2}\right|^{2}}{4} \tag{2.5}
\end{equation*}
$$

Both inequalities are sharp.
We will also use the following lemma concerning functions in \mathcal{P}, the proof of which follows easily from Lemma 2.5 .

Lemma 2.6. Let $p \in \mathcal{P}$. Then for any $t \in \mathbb{C}$,

$$
\begin{equation*}
\left|p_{2}-t p_{1}^{2}\right| \leq 2+(|2 t-1|-1) \frac{\left|p_{1}\right|^{2}}{2} \tag{2.6}
\end{equation*}
$$

The inequality is sharp.
Proof. Let $p \in \mathcal{P}$, then there exists a function $g \in \mathcal{S}^{*}$ given by (2.4) such that

$$
p(z)=\frac{z g^{\prime}(z)}{g(z)}, z \in \mathbb{D}
$$

Thus

$$
\begin{aligned}
b_{2} & =p_{1} \\
b_{3} & =\frac{1}{2}\left(p_{2}+p_{1}^{2}\right)
\end{aligned}
$$

Substituting in (2.5) gives

$$
\left|p_{2}-(2 \mu-1) p_{1}^{2}\right| \leq 2+(|4 \mu-3|-1) \frac{\left|p_{1}\right|^{2}}{2}
$$

for all complex μ. Writing $\mu=(t+1) / 2$, gives (2.6) for all complex t.
The function $p(z)=(1+z) /(1-z)$ shows that the result is sharp for $|2 t-1| \geq 1$, and $p(z)=\left(1+z^{2}\right) /\left(1-z^{2}\right)$ shows the sharpness for $|2 t-1| \leq 1$.

Lemma 2.7. [5], [2, p.67]. Suppose that $f \in \mathcal{S}$, and that $z=r e^{i \theta} \in \mathbb{D}$. If

$$
m^{\prime}(r) \leq\left|f^{\prime}(z)\right| \leq M^{\prime}(r),
$$

where $m^{\prime}(r)$ and $M^{\prime}(r)$ are real-valued functions of r in $[0,1)$, then

$$
\int_{0}^{r} m^{\prime}(t) \mathrm{d} t \leq|f(z)| \leq \int_{0}^{r} M^{\prime}(r) \mathrm{d} t
$$

We begin with some distortion theorems.

3. Distortion Theorems

Theorem 3.1. If $f \in \mathcal{K}_{u}$ and $z=r e^{i \theta}, 0 \leq r<1$, then

$$
\begin{equation*}
\frac{1-r}{(1+r)^{2}} \leq\left|f^{\prime}(z)\right| \leq \frac{1+r}{(1-r)^{2}}, \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2 r}{1+r}-\log (1-r) \leq|f(z)| \leq \frac{2 r}{1-r}+\log (1-r) \tag{3.2}
\end{equation*}
$$

The inequalities are sharp.
Proof. Write

$$
\begin{equation*}
f^{\prime}(z)=\frac{g(z)}{z}[1+\omega(z)], \tag{3.3}
\end{equation*}
$$

for some $g \in \mathcal{S}^{*}$, and some $\omega \in \Omega$.
It is well-known that for $g \in \mathcal{S}^{*}$, with $z=r e^{i \theta}, 0 \leq r<1$, then

$$
\begin{equation*}
\frac{1}{(1+r)^{2}} \leq\left|\frac{g(z)}{z}\right| \leq \frac{1}{(1-r)^{2}} \tag{3.4}
\end{equation*}
$$

Thus using the Schwarz lemma, we have

$$
\begin{equation*}
1-r \leq|1+\omega(z)| \leq 1+r \tag{3.5}
\end{equation*}
$$

and so from (3.3), using (3.4) and (3.5), we immediately obtain (3.1).

The inequalities in (3.1) are sharp when $f_{1} \in \mathcal{K}_{u}$ is given by

$$
f_{1}^{\prime}(z)=\frac{g_{0}(z)}{z}(1+z), \quad \text { and } \quad g_{0}(z)=\frac{z}{(1-z)^{2}},
$$

in which case

$$
f_{1}^{\prime}(-r)=\frac{1-r}{(1+r)^{2}}, \quad \text { and } \quad f_{1}^{\prime}(r)=\frac{1+r}{(1-r)^{2}}
$$

Clearly (3.2) follows from Lemma 2.7, since $\mathcal{K}_{u} \subset \mathcal{S}$.
The upper bound in (3.2) is sharp for $f_{1} \in \mathcal{K}_{u}$ given by

$$
f_{1}(z)=\frac{2 z}{1-z}+\log (1-z),
$$

and the lower bound for $f_{2} \in \mathcal{K}_{u}$ given by

$$
f_{2}(z)=\frac{2 z}{1+z}-\log (1+z) .
$$

4. Coefficients

In [6], Singh was able to use the method of Clunie to obtain sharp coefficient estimates for functions in \mathcal{S}_{u}^{*}. Since this is not possible in \mathcal{K}_{u}, the problem of extending the coefficient inequalities in [6] to the class \mathcal{K}_{u} appears not to be straightforward, with exact bound not easy to find. We give the following.

Theorem 4.1. Let $f \in \mathcal{K}_{u}$, and be given by (1.1). Then
$\left|a_{2}\right| \leq \frac{3}{2}, \quad\left|a_{3}\right| \leq \frac{5}{3}, \quad\left|a_{4}\right| \leq \frac{7.3731 \ldots}{4}=1.8443 \ldots, \quad\left|a_{5}\right| \leq \frac{8}{5}+\frac{3}{5 \sqrt[3]{4}}=1.97 \ldots$
The inequalities for $\left|a_{2}\right|$ and $\left|a_{3}\right|$ are sharp.
Proof. Write

$$
\begin{equation*}
z f^{\prime}(z)=g(z)[1+\omega(z)] \tag{4.1}
\end{equation*}
$$

for some $g \in \mathcal{S}^{*}$ and some $\omega \in \Omega$.
Equating coefficients in (4.1), and using (2.1) and (2.4) gives

$$
\begin{align*}
& 2 a_{2}=b_{2}+w_{1} \tag{4.2}\\
& 3 a_{3}=b_{3}+b_{2} w_{1}+w_{2} \tag{4.3}\\
& 4 a_{4}=b_{4}+b_{3} w_{1}+b_{2} w_{2}+w_{3} \tag{4.4}
\end{align*}
$$

where for $n \geq 1,\left|b_{n}\right| \leq n$ and $\left|w_{n}\right| \leq 1$. Therefore (4.2) gives

$$
2\left|a_{2}\right| \leq\left|b_{2}\right|+\left|w_{1}\right| \Rightarrow 2\left|a_{2}\right| \leq 3 .
$$

Now write $x_{1}=\left|w_{1}\right|, x_{2}=\left|w_{2}\right|$, and $x_{3}=\left|w_{3}\right|$, and so from (4.3) we obtain

$$
3\left|a_{3}\right| \leq\left|b_{3}\right|+\left|b_{2}\right|\left|w_{1}\right|+\left|w_{2}\right|,
$$

so that Lemma 2.1 implies

$$
3\left|a_{3}\right| \leq 3+2\left|w_{1}\right|+\left(1-\left|w_{1}\right|^{2}\right) \leq 5,
$$

since $0 \leq 4+2 x_{1}-x_{1}^{2} \leq 5$ for $x_{1} \in[0,1]$.
The bound for $\left|a_{4}\right|$ is more complicated. Again from (4.4) and Lemma 2.1 we have

$$
\begin{aligned}
4\left|a_{4}\right| & \leq\left|b_{4}\right|+\left|b_{3}\right| w_{1}\left|+\left|b_{2}\right|\right| w_{2}\left|+\left|w_{3}\right|,\right. \\
& \leq 4+3 x_{1}+2 x_{2}+x_{3},
\end{aligned}
$$

and so

$$
0 \leq x_{1} \leq 1, \quad x_{2} \leq 1-x_{1}^{2}, \quad x_{3} \leq 1-x_{1}^{2}-x_{2}^{2} .
$$

We therefore need to find

$$
\begin{equation*}
\max _{H} g\left(x_{1}, x_{2}, x_{3}\right) \tag{4.5}
\end{equation*}
$$

where $g\left(x_{1}, x_{2}, x_{3}\right)=4+3 x_{1}+2 x_{2}+x_{3}$, and

$$
H=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1} \leq 1, \quad x_{2} \leq 1-x_{1}^{2}, \quad x_{3} \leq 1-x_{1}^{2}-x_{2}^{2}\right\}
$$

It is clear that

$$
\max _{H} g\left(x_{1}, x_{2}, x_{3}\right)=\max _{\partial H} g\left(x_{1}, x_{2}, x_{3}\right) .
$$

Hence we consider (4.5) on the boundary ∂H. If $x_{3}=1-x_{1}^{2}-x_{2}^{2}$, and $x_{2}=1-x_{1}^{2}$, then

$$
g\left(x_{1}, x_{2}, x_{3}\right)=6+3 x_{1}-x_{1}^{2}-x_{1}^{4}, 0 \leq x_{1} \leq 1 .
$$

Solving this equation (using Wolfram Alpha), we obtain

$$
\max \left\{6+3 x_{1}-x_{1}^{2}-x_{1}^{4}: 0 \leq x_{1} \leq 1\right\}=7.3731 \ldots \text { at } x_{1}=0.72808 \ldots,
$$

where

$$
\begin{aligned}
7.3731 \ldots= & \frac{1}{24}\left\{148-\frac{968}{\sqrt[3]{54181+2259 \sqrt{753}}}+\sqrt[3]{54181+2259 \sqrt{753}}\right\} \\
& 0.72808 \ldots=\frac{\sqrt[3]{27+\sqrt{753}}}{2 \sqrt{39}}-\frac{1}{\sqrt[3]{3(27+\sqrt{753})}}
\end{aligned}
$$

Hence

$$
\left|a_{4}\right| \leq \frac{7.3731 \ldots}{4}=1.8443 \ldots
$$

Applying the same method for a_{5} gives

$$
5\left|a_{5}\right| \leq 8+\frac{3}{\sqrt[3]{4}}=9.889 \ldots, \text { and so } \quad\left|a_{5}\right| \leq 1.97 \ldots
$$

The inequalities for a_{2} and a_{3} are sharp when

$$
f(z)=\frac{2 z}{1-z}+\log (1-z)=z+\sum_{n=2}^{\infty} \frac{2 n-1}{n} z^{n} .
$$

Inequalities for the coefficients of close-to-convex functions can exhibit unpredictable behaviour (see e.g the solution to the Fekete-Szegö problem [4]). On the basis of the extremal function for the coefficients a_{2} and a_{3} above, the obvious conjecture is the following, which may prove not to be correct.

Conjecture.

Let $f \in \mathcal{K}_{u}$, and be given by (1.1). Then for $n \geq 2$,

$$
\left|a_{n}\right| \leq \frac{2 n-1}{n}
$$

Remark 2.

It is clear that other non-sharp bounds for $\left|a_{n}\right|$ when $n \geq 5$ can be obtained using the same techniques used in the proof of Theorem 4.1. However the analysis becomes more involved as n increases, and requires computer aided numerical methods.

We also note that the coefficients a_{n} are bounded. To see this, it follows from (4.1) and the Schwarz Lemma that, with $z=r e^{i \theta} \in \mathbb{D}$,

$$
\begin{aligned}
n\left|a_{n}\right| & \leq \frac{1}{2 \pi r^{n}} \int_{0}^{2 \pi}\left|z f^{\prime}(z)\right| d \theta \\
& \leq \frac{1}{\pi r^{n}} \int_{0}^{2 \pi}|g(z)| d \theta
\end{aligned}
$$

Since $\int_{0}^{2 \pi}|g(z)| d \theta=\mathcal{O}(1-r)^{-1}$, as $r \rightarrow 1$ for $g \in \mathcal{S}^{*}$, choosing $r=1-1 / n$ shows that $a_{n}=\mathcal{O}(1)$ as $n \rightarrow \infty$.

5. Fekete-Szegö Theorems

We first give the following bounds for Fekete-Szegö functonal, noting that not all the inequalities are shown to be sharp.

Theorem 5.1. Let $f \in \mathcal{K}_{u}$, and be given by (1.1), and let $\mu \in \mathbb{R}$.
If $\mu \leq 0$, then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{5}{3}-\frac{9}{4} \mu \tag{5.1}
\end{equation*}
$$

If $0 \leq \mu \leq 2 / 3$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2\left(10-18 \mu+9 \mu^{2}\right)}{3(4-3 \mu)} .
$$

If $2 / 3 \leq \mu \leq 1$, then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2}{3} \tag{5.2}
\end{equation*}
$$

If $1 \leq \mu \leq 10 / 9$, then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{3 \mu-5}{3(3 \mu-4)} \tag{5.3}
\end{equation*}
$$

If $\mu \geq 10 / 9$, then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{9}{4} \mu-\frac{5}{3} \tag{5.4}
\end{equation*}
$$

Inequalities (5.1), (5.2) and (5.4) are sharp.

Proof. Since $f \in \mathcal{K}_{u}$, we can write

$$
\begin{equation*}
z f^{\prime}(z)=g(z)\left[\frac{2 p(z)}{1+p(z)}\right] \tag{5.5}
\end{equation*}
$$

where $p \in \mathcal{P}$ and $g \in \mathcal{S}^{*}$. Thus equating coefficients in (5.5) we obtain from (1.2) and (2.4) the following two alternative expressions:

$$
\begin{align*}
& a_{3}-\mu a_{2}^{2}=\frac{1}{3}\left(b_{3}-\frac{3 b_{2}^{2} \mu}{4}\right)+\frac{b_{2} p_{1}}{12}(2-3 \mu)+\frac{1}{6}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)-\frac{1}{16} p_{1}^{2} \mu, \tag{5.6}\\
& a_{3}-\mu a_{2}^{2}=\frac{1}{3}\left(b_{3}-\frac{3 b_{2}^{2} \mu}{4}\right)+\frac{b_{2} p_{1}}{12}(2-3 \mu)+\frac{1}{6}\left(p_{2}-\frac{4+3 \mu}{8} p_{1}^{2}\right) . \tag{5.7}
\end{align*}
$$

We now treat the following cases.
Case 1. $\mu \leq 0$.
We use (5.6) with $\left|p_{1}\right|=x$. Noting that $\left|b_{2}\right| \leq 2$, and using Lemma 2.4 and Lemma 2.5, we obtain from (5.6)

$$
\begin{align*}
\left|a_{3}-\mu a_{2}^{2}\right| & =\left|\frac{1}{3}\left(b_{3}-\frac{3 b_{2}^{2} \mu}{4}\right)+\frac{b_{2} p_{1}}{12}(2-3 \mu)+\frac{1}{6}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)-\frac{1}{16} p_{1}^{2} \mu\right| \\
& \leq \frac{1}{3}|3 \mu-3|+\frac{1}{6}|2-3 \mu| x+\frac{1}{6}\left|2-\frac{x^{2}}{2}\right|-\frac{1}{16} x^{2} \mu \\
& =\frac{1}{3}(3-3 \mu)+\frac{1}{6}(2-3 \mu) x+\frac{1}{6}\left(2-\frac{x^{2}}{2}\right)-\frac{1}{16} x^{2} \mu, \tag{5.8}
\end{align*}
$$

where $x \in[0,2]$. Since the right hand side of (5.8) increases with respect to $x \in[0,2]$, we obtain

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq\left[\frac{1}{3}(3-3 \mu)+\frac{1}{6}(2-3 \mu) x+\frac{1}{6}\left(2-\frac{x^{2}}{2}\right)-\frac{1}{16} x^{2} \mu\right]_{x=2} \\
& =\frac{5}{3}-\frac{9 \mu}{4}
\end{aligned}
$$

The result is sharp on choosing $b_{3}=3, b_{2}=p_{1}=p_{2}=2$ in (5.6), i.e. $g(z)=$ $z /(1-z)^{2}, p(z)=(1+z) /(1-z)$.

Case 2. $0 \leq \mu \leq 2 / 3$.
We again use (5.6) with $x=\left|p_{1}\right|$ which gives

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{3}(3-3 \mu)+\frac{1}{6}(2-3 \mu) x+\frac{1}{6}\left(2-\frac{x^{2}}{2}\right)+\frac{1}{16} x^{2} \mu .
$$

Since the above expression has a maximum value at $x=4(3 \mu-2) /(3 \mu-4)$ in [0,2], the bound for $0 \leq \mu \leq 2 / 3$ follows.

Case 3. $2 / 3 \leq \mu \leq 1$.

We apply (2.5) and (2.6) in (5.7) to obtain

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| \leq & \frac{1}{3}\left(1+(|3 \mu-3|-1) \frac{\left|b_{2}\right|^{2}}{4}\right)+\frac{\left|b_{2} p_{1}\right|}{12}|2-3 \mu| \\
& +\frac{1}{6}\left(2+\left(\left|\frac{4+3 \mu}{4}-1\right|-1\right) \frac{\left|p_{1}\right|^{2}}{2}\right) \\
\leq & \frac{1}{3}\left(1-\frac{3 \mu-2}{4}\left|b_{2}\right|^{2}\right)+\frac{3 \mu-2}{12}\left|p_{1}\right|\left|b_{2}\right|+\frac{1}{6}\left(2-\frac{4-3 \mu}{4} \frac{\left|p_{1}\right|^{2}}{2}\right) \\
= & -\frac{3 \mu-2}{12}\left|b_{2}\right|^{2}+\frac{3 \mu-2}{12}\left|p_{1}\right|\left|b_{2}\right|-\frac{4-3 \mu}{48}\left|p_{1}\right|^{2}+\frac{2}{3} \\
= & \frac{3 \mu-2}{12}\left(-y^{2}+x y-\frac{4-3 \mu}{4(3 \mu-2)} x^{2}\right)+\frac{2}{3}
\end{aligned}
$$

where $y=\left|b_{2}\right| \in[0,2], x=\left|p_{1}\right| \in[0,2]$.

If $\mu=2 / 3$ then (5.2) follows at once from (5.9).

If $\mu \neq 2 / 3$, we dividing by $3 \mu-2$, so that it suffices to show that

$$
F(x, y)=-y^{2}+x y-\frac{4-3 \mu}{4(3 \mu-2)} x^{2} \leq 0
$$

for all $2 / 3<\mu \leq 1, y \in[0,2]$ and $x \in[0,2]$.

Noting that $F(x, y)$ has no critical points in $(0,2) \times(0,2)$, we need only to check that $F(x, y) \leq 0$ when $x=0$ or $y=0$, which is trivial, and when $x=2$ or $y=2$.

If $x=2$, we have

$$
F(2, y)=-y^{2}+2 y-\frac{4-3 \mu}{3 \mu-2}=-(y-1)^{2}-\frac{6(1-\mu)}{3 \mu-2} \leq 0, \quad \text { when } \quad 2 / 3<\mu \leq 1
$$

and if $y=2$, then

$$
F(x, 2)=-2(2-x)-\frac{4-3 \mu}{4(3 \mu-2)} x^{2} \leq 0, \quad \text { when } \quad 2 / 3<\mu \leq 1
$$

which establishes (5.2).

To show the result is sharp we choose $b_{2}=0, b_{3}=1, p_{1}=0$ and $p_{2}=2$ in (5.7), i.e. $g(z)=z /\left(1-z^{2}\right), p(z)=\left(1+z^{2}\right) /\left(1-z^{2}\right)$.

Case 4. $1 \leq \mu \leq 10 / 9$.

Applying (2.5) and (2.6) in (5.7) gives for all $\mu \geq 1$,

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| \leq & \frac{1}{3}\left(1+(|3 \mu-3|-1) \frac{\left|b_{2}\right|^{2}}{4}\right)+\frac{\left|b_{2} p_{1}\right|}{12}|2-3 \mu| \\
& +\frac{1}{6}\left(2+\left(\left|\frac{4+3 \mu}{4}-1\right|-1\right) \frac{\left|p_{1}\right|^{2}}{2}\right) \\
\leq & \frac{1}{3}\left(1-\frac{4-3 \mu}{4}\left|b_{2}\right|^{2}\right)+\frac{3 \mu-2}{12}\left|p_{1}\right|\left|b_{2}\right|+\frac{1}{6}\left(2-\frac{4-3}{4} \frac{\left|p_{1}\right|^{2}}{2}\right) \\
= & -\frac{4-3 \mu}{12}\left|b_{2}\right|^{2}+\frac{3 \mu-2}{12}\left|p_{1}\right|\left|b_{2}\right|-\frac{4-3 \mu}{48}\left|p_{1}\right|^{2}+\frac{2}{3} \\
= & \frac{4-3 \mu}{48}\left(-4 y^{2}+\frac{4(3 \mu-2)}{4-3 \mu} x y-x^{2}\right)+\frac{2}{3}:=F(x, y),
\end{aligned}
$$

where $y=\left|b_{2}\right| \in[0,2], x=\left|p_{1}\right| \in[0,2]$.
Thus to show (5.3) it suffices to establish that

$$
\begin{equation*}
F(x, y)=\frac{2}{3}+\frac{4-3 \mu}{48}\left(-4 y^{2}+\frac{4(3 \mu-2)}{4-3 \mu} x y-x^{2}\right) \leq \frac{2}{3}+\frac{\mu-1}{4-3 \mu} \tag{5.10}
\end{equation*}
$$

for all $1 \leq \mu \leq 10 / 9, y \in[0,2]$ and $x \in[0,2]$.
Again we notice that $F(x, y)$ has no critical points in $(0,2) \times(0,2)$. Hence we need only to check $F(x, y) \leq 0$ when $x=0$ or $y=0$, and when $x=2$ or $y=2$. It is clear from (5.10) that in these four cases $F(x, y)$ attains the greatest value when $x=2$. Then

$$
F(2, y)=\frac{2}{3}+\frac{4-3 \mu}{48}\left(-4 y^{2}+\frac{8(3 \mu-2)}{4-3 \mu} y-4\right),
$$

and

$$
\begin{aligned}
\max _{0 \leq y \leq 2} F(2, y) & =\frac{2}{3}+\left[\frac{4-3 \mu}{48}\left(-4 y^{2}+\frac{8(3 \mu-2)}{4-3 \mu} y-4\right)\right]_{y=(3 \mu-2) /(4-3 \mu)} \\
& =\frac{2}{3}+\frac{\mu-1}{4-3 \mu}=\frac{3 \mu-5}{3(3 \mu-4)}
\end{aligned}
$$

This gives (5.3).
Case 5. $\mu \geq 10 / 9$.
From (5.7) we obtain with $x=\left|p_{1}\right|$ and $y=\left|b_{2}\right|$,

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| \leq & \frac{1}{3}\left(1+(3 \mu-4) \frac{y^{2}}{4}\right)+\frac{x y}{12}(3 \mu-2)+\frac{1}{6}\left(2-\frac{x^{2}}{2}\right)+\frac{\mu x^{2}}{16} \\
& :=H(x, y) .
\end{aligned}
$$

Since the only critical point of $H(x, y)$ is when $x=y=0$, and $H(0,0)=2 / 3$, we need only to check the end points of $H(x, y)$ on $[0,2] \times[0,2]$. First $H(0, y)=$ $1 / 3+1 / 3\left(1+1 / 4(3 \mu-4) y^{2} \leq(3 \mu-2) / 3 \leq 9 \mu / 4-5 / 3\right.$ when $\mu \geq 10 / 9$ and $0 \leq y \leq 2$.

Next $H(2, y)=\mu / 4+(3 \mu-2) y / 6+1 / 3\left(1+(3 \mu-4) y^{2} / 4\right)$, which increases on $y \in[0,2]$, and so $H(2, y) \leq 9 \mu / 4-5 / 3$ again.

Next $H(x, 0)=2 / 3+(3 m-4) x^{2} / 48$. Then $H^{\prime}(x, 0)=0$ when either $x=0$ or $\mu=4 / 3$. Since $H(4 / 3,0)=2 / 3 \leq \mu / 4-5 / 3$, we need only consider the cases $x=0$, and $x=2$, However since $H(0,0)$ is again $2 / 3$, and $H(2,0)=1 / 3+\mu / 4 \leq 9 \mu / 4-5 / 3$ the result follows in this case.

Finally $H(x, 2)=(3 \mu-3) / 3+(3 \mu-2) x / 6+\mu x^{2} / 16+\left(2-x^{2} / 2\right) / 6$, which increases for $x \in[0,2]$ when $\mu \geq 10 / 9$. Since $H(2,2)=9 \mu / 4-5 / 3$, the proof is complete.

The result is sharp on choosing $b_{3}=3, b_{2}=p_{1}=p_{2}=2$ in (5.8), i.e. $g(z)=$ $z /(1-z)^{2}, p(z)=(1+z) /(1-z)$.

The following Fekete-Szegö theorem for complex μ is probably not sharp.

Theorem 5.2. Let $f \in \mathcal{K}_{u}$ and be given by (1.1). Then if $\mu \in \mathbb{C}$

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{3}\left[\max \left\{1,\left|4 \mu_{1}-3\right|\right\}+\max \left\{1,\left|2 \mu_{2}-1\right|\right\}+|2-3 \mu|\right] \tag{5.11}
\end{equation*}
$$

where

$$
\mu_{1}=\frac{3 \mu}{4}, \quad \mu_{2}=\frac{4+3 \mu}{8}
$$

Proof. From (5.7), we obtain

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq \frac{1}{3}\left|b_{3}-\frac{3 \mu}{4} b_{2}^{2}\right|+\frac{1}{12}\left|b_{2} p_{1}\right||2-3 \mu|+\frac{1}{6}\left|p_{2}-\frac{4+3 \mu}{8} p_{1}^{2}\right| \\
& \leq \frac{1}{3}\left|b_{3}-\frac{3 \mu}{4} b_{2}^{2}\right|+\frac{1}{3}|2-3 \mu|+\frac{1}{6}\left|p_{2}-\frac{4+3 \mu}{8} p_{1}^{2}\right| .
\end{aligned}
$$

Applying Lemma 2.3 and Lemma 2.5 gives (5.11).

6. The radius of convexity

We first recall the well-known condition that f maps \mathbb{D} onto a convex domain if, and only if, $f \in \mathcal{A}$ and

$$
\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, \quad z \in \mathbb{D}
$$

A number $r_{0} \in[0,1]$, is called the radius of convexity for a particular subclass of \mathcal{A}, if r_{0} is the largest number such that

$$
\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0
$$

for all f in the subclass, and $|z|<r_{0}$. It was shown in [6] that the radius of convexity for functions in \mathcal{S}_{u}^{*} is $(\sqrt{13}-3) / 2$. We now show that when $f \in \mathcal{K}_{u}$, the radius of convexity is $(3-\sqrt{5}) / 2$.

Theorem 6.1. The radius of convexity for \mathcal{K}_{u} is

$$
r_{0}=\frac{3-\sqrt{5}}{2}=0.381966 \ldots
$$

Proof. Since $f \in \mathcal{K}_{u}$, we write

$$
z f^{\prime}(z)=g(z)[1+\omega(z)]
$$

for some $g \in \mathcal{S}^{*}$, and some $\omega \in \Omega$. Thus

$$
\begin{equation*}
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{z g^{\prime}(z)}{g(z)}+\frac{z \omega^{\prime}(z)}{1+\omega(z)} \tag{6.1}
\end{equation*}
$$

It is well-known (see e.g. [7]), that for $g \in \mathcal{S}^{*}$, with $z=r e^{i \theta}, 0 \leq r<1$, then

$$
\mathfrak{R e}\left\{\frac{z g^{\prime}(z)}{g(z)}\right\} \geq \frac{1-r}{1+r} .
$$

Also from the Schwarz Lemma, $|w(z)| \leq|z|=r$, and from [3, p.77],

$$
\left|\omega^{\prime}(z)\right| \leq \frac{1-|\omega(z)|^{2}}{1-|z|^{2}}=\frac{1-|\omega(z)|^{2}}{1-r^{2}}
$$

Thus from (6.1), for $z=r e^{i \theta}, 0 \leq r<1$, we obtain

$$
\begin{aligned}
\mathfrak{R e}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} & \geq \mathfrak{R e}\left\{\frac{z g^{\prime}(z)}{g(z)}\right\}-\left|\frac{z \omega^{\prime}(z)}{1+\omega(z)}\right| \\
& \geq \frac{1-r}{1+r}-\frac{r}{1-|\omega(z)|}\left|\omega^{\prime}(z)\right| \\
& \geq \frac{1-r}{1+r}-\frac{r}{1-|\omega(z)|} \frac{1-|\omega(z)|^{2}}{1-r^{2}} \\
& =\frac{1-r}{1+r}-\frac{r(1+|\omega(z)|)}{1-r^{2}} \\
& \geq \frac{1-r}{1+r}-\frac{r(1+r)}{1-r^{2}} \\
& =\frac{1-3 r+r^{2}}{1-r^{2}}>0,
\end{aligned}
$$

when $r \in[0,(3-\sqrt{5}) / 2)$. Thus the radius of convexity for the class \mathcal{K}_{u} is at least $(3-\sqrt{5}) / 2$.

To see that this is the largest such radius, consider the function $f_{0} \in \mathcal{K}_{u}$ defined by

$$
f_{0}^{\prime}(z)=g_{0}^{\prime}(z)\left[1+\omega_{0}(z)\right], \quad g_{0}(z)=\frac{z}{(1-z)^{2}}, \quad \omega_{0}(z)=z .
$$

Then

$$
\begin{aligned}
\left\{1+\frac{z f_{0}^{\prime \prime}(z)}{f_{0}^{\prime}(z)}\right\}_{z=-r_{0}} & =\left\{\frac{z g_{0}^{\prime}(z)}{g_{0}(z)}+\frac{z \omega_{0}^{\prime}(z)}{1+\omega_{0}(z)}\right\}_{z=-r_{0}} \\
& =\left\{\frac{1+z}{1-z}+\frac{z}{1+z}\right\}_{z=-r_{0}} \\
& =\frac{1-3 r_{0}+r_{0}^{2}}{1-r_{0}^{2}} \\
& =0
\end{aligned}
$$

which shows that the radius of convexity in the class \mathcal{K}_{u} cannot be larger than r_{0}.

References

[1] F. Carlson, Sur les coefficients d'une fonction bornée dans le cercle unité, Ark. Mat. Astr. Fys. 27A(1)(1940), 8 pp.
[2] A. W. Goodman, Univalent Functions, Vol. I, Mariner Publishing Co.: Tampa, Florida, 1983.
[3] A. W. Goodman, Univalent Functions, Vol. II, Mariner Publishing Co.: Tampa, Florida, 1983.
[4] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain class of analytic functions, Proc. Amer. Math. Soc. 20(1969), 8-12.
[5] I. I. Privalov, Sur les fonctions qui donnent la représentation conforme biunivoque, Rec. Math. D. I. Soc. D. Moscou 31(1924) 350-365.
[6] R. Singh, On a class of star-like functions, Compositio Math. 19(1)(1968) 78-82.
[7] D. K. Thomas, N. Tuneski and A. Vasudevarao, Univalent Functions: A Primer, De Gruyter Studies in Mathematics 69, De Gruyter, Berlin, Boston, 2018.
J. Sokó́, University of Rzeszów, Faculty of Mathematics and Natural Sciences, ul. Prof. Pigonia 1, 35-310 Rzeszów, Poland

E-mail address: jsokol@ur.edu.pl
D. K. Thomas, Department of Mathematics, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom.

E-mail address: d.k.thomas@swansea.ac.uk
A. Vasudevarao, nfa-18, it Campus, Indian Institute of Technology Kharagpur, Kharagpur, Pin 732302, India.

E-mail address: alluvasudevarao@gmail.com

[^0]: File: DKTSKLVA.tex, printed: 2019-5-5, 11.47
 2010 Mathematics Subject Classification. Primary 30C50, 30C55, 30C45.
 Key words and phrases. univalent function, starlike function, convex function, alpha-convex function, coefficient estimate.

