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Abstract
We introduce the notion of tropical defects, certificates that a system of polynomial
equations is not a tropical basis, and provide two algorithms for finding them in affine
spaces of complementary dimension to the zero set. We use these techniques to solve
open problems regarding del Pezzo surfaces of degree 3 and realizability of valuated
gaussoids on 4 elements.
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1 Introduction

The tropical variety Trop(I ) of a polynomial ideal I is the image of its algebraic
variety under component-wise valuation. Tropical varieties are commonly described
as combinatorial shadows of their algebraic counterparts and arise naturally in many
applications throughout mathematics and beyond. Inside mathematics for example,
they enable new insights into important invariants in algebraic geometry [23] or the
complexity of central algorithms in linear optimization [1]. Outside mathematics, they
arise as spaces of phylogenetic trees in biology [25,29], loci of indifference prizes in
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economics [3,31] or in the proof of the finiteness of central configurations in the
4, 5-body problem in physics [10,11].

As the image of an algebraic variety, a tropical variety equals the intersection of
all tropical hypersurfaces of the polynomials inside the ideal. A natural question in
this context is whether this equality already holds for a given finite generating set
F ⊆ I , i.e.,

Trop(I ) =
⋂

f ∈I

Trop( f )
?=

⋂

f ∈F

Trop( f ) =: Trop(F). (∗)

We call Trop(F) a tropical prevariety and, if equality holds, F a tropical basis. This
question is important for two main reasons. On the one hand, tropical prevarieties can
provide upper dimension bounds where Gröbner bases are infeasible to compute, see
[10,11], and a tropical basis implies that this bound is actually sharp. On the other
hand, the difference between a tropical variety and prevariety can be interesting in and
of itself, e.g., tropical matrices of Kapranov rank r versus tropical matrices of tropical
rank r [9], tropical Grassmannians versus their Dressians [14], or other realizability
loci of combinatorial objects such as �-matroids [28] or gaussoids [5].

Nevertheless, checking the equality in (∗) is a computationally highly challenging
task. Current algorithms for computing tropical varieties require a Gröbner basis for
eachmaximalGröbner polyhedron, ofwhich there can bemany even for tropicalization
of linear spaces [19]. Additionally, it is known that deciding the equality in (∗) is co-
NP-hard, as is merely deciding whether Trop(F) is connected [30].

In practice, testing the equality in (∗) can fail for multiple reasons:

(P1) Computing Trop(F) might not be possible due to its size or due to the number
of intersections necessary to compute it.

(P2) Computing Trop(I ) might not be feasible due to its size or due to problematic
Gröbner cones in Trop(I ) whose Gröbner bases are too hard to compute.

In this article, we introduce the notion of tropical defects, certificates for gener-
ating sets which are not tropical bases, and propose two randomized algorithms for
computing tropical defects around affine subspaces of complementary dimension. An
independent verification of these certificates will require a single Gröbner basis com-
putation.

The basic idea is simple, relying on some recent results on (stable) intersections
of tropical varieties [18,24]: To reduce the complexity of the computations, we (sta-
bly) intersect both sides of Equation (∗) with a random affine space of complementary
dimension, and look for differences between the tropical variety and prevariety around
it. Under certain genericity assumptions, this yields a zero-dimensional tropical vari-
ety on the left, which is not only simpler to compute than its positive-dimensional
counterparts, but also implies that the tropical prevariety computation on the right can
be aborted if a positive-dimensional polyhedron is found. Therefore, our algorithm
operates within the realm where (P1) and (P2) are infeasible, but the following key
computational ingredients are not:

(K1) computation of zero-dimensional tropical varieties in Singular [8,15],
(K2) computation of zero-dimensional tropical prevarieties in DynamicPrevariety

[17].
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To a degree, our approach for finding tropical defects is related to the approach
for studying tropical bases in [12,13]. In [12,13], the authors consider preimages of
projections toRd+1, where d := dim Trop(I ). Our hyperplanes are generally given as
preimages of points under a projection to R

d , but can also be regarded as preimages
of lines under a projection to R

d+1. Hence, our approach can be seen as a relaxation
where instead of considering the preimage of the entire projection to R

d+1 we only
consider the parts of the projection which meet a fixed line.

In Sects. 3 and 4, we present two tropical defects found using out algorithm, dis-
proving Conjecture 5.3 in [27] and Conjecture 8.4 in [5]. Note that the tropical defects
were postprocessed for the ease of reproduction; see Remark 2.8. Code and auxiliary
materials for this article are available at software.mis.mpg.de. More information on
gaussoids can be found at gaussoids.de.

2 Tropical defects

In this section, we introduce the notion of tropical defects for generating sets of
polynomial ideals, and two algorithms to find them around generic affine spaces L =
Trop(H) of complementary dimension. To be precise, Algorithm2.9 requires a generic
tropicalization L , whereas Algorithm 2.13 merely requires a generic realization H .

We begin by briefly recalling some basic notions of tropical geometry that are of
immediate relevance to us. Our notation coincides with that of [21], to which we refer
for a more in-depth introduction of the subject.

Convention 2.1 For the remainder of this article, fix an algebraically closed field K
with valuation ν : K ∗ → R and residue field K with trivial valuation. Since K is
algebraically closed, there is a group homomorphism μ : ν(K ∗) → K ∗ such that
ν ◦ μ = idν(K ∗), and we abbreviate tλ := μ(λ) for λ ∈ ν(K ∗). Moreover, we fix a
multivariate (Laurent) polynomial ring K [x±1] := K [x±1

1 , . . . , x±1
n ].

Definition 2.2 (Initial forms, initial ideals) Given a polynomial f ∈ K [x±1], say
f = ∑

α∈Zn cα · xα , its initial form with respect to a weight vector w ∈ R
n is

inw( f ) := ∑
w·α+ν(cα) min. t

−ν(cα)cα · xα ∈ K[x±1].

For a finite set F ⊆ K [x±1] and an ideal I � K [x±1], we denote

inw(F) := {inw(g) | g ∈ F} ⊆ K[x±1],
inw(I ) := 〈inw(g) | g ∈ I 〉 � K[x±1].

Moreover, the Gröbner polyhedron of f , of I or of a finite set F ⊆ K [x±1] around w

is defined as

Cw( f ) :={v ∈ Rn | inw( f ) = inv( f )} ⊆ R
n,

Cw(I ) :={v ∈ Rn | inw( f ) = inv( f ) for all f ∈ I } ⊆ R
n,
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Cw(F) :={v ∈ Rn | inw( f ) = inv( f ) for all f ∈ F} ⊆ R
n .

Note that both Cw( f ) and Cw(F) are in fact convex polyhedra, while Cw(I ) is only
guaranteed to be a convex polyhedron if I is homogeneous.

Definition 2.3 (Tropical variety, tropical prevariety)Given a polynomial f ∈ K [x±1],
an ideal I � K [x±1] and a finite set F ⊆ K [x±1], the tropical varieties of f and I
and the tropical prevariety of F are defined to be

Trop( f ) := {w ∈ R
n | inw( f ) is not a monomial},

Trop(I ) := {w ∈ R
n | inw( f ) is not a monomial for all f ∈ I },

Trop(F) := {w ∈ R
n | inw( f ) is not a monomial for all f ∈ F}.

We call a finite generating set F ⊆ I a tropical basis if

Trop(F) = Trop(I ).

Note that Trop( f ), Trop(I ) and Trop(F) are supports of polyhedral complexes. For
both Trop( f ) andTrop(F) these polyhedral complexes can be chosen to be a collection
of Gröbner polyhedra, and, if I is homogeneous, so can Trop(I ).

Let T ⊆ R
n be the support of a polyhedral complex �. Recall that the star of T

around a point w ∈ R
n is given by

Starw T := {v ∈ R
n | w + ε · v ∈ T for ε > 0 sufficiently small}

and that the stable intersection of T with respect to an affine subspace H ⊆ R
n is

defined to be

T ∩st H :=
⋃

σ∈�
dim(σ+H)=n

σ ∩ H .

Example 2.4 Let K = C{{t}} be the field of complex Puiseux series and consider the
ideal I � K [x±1, y±1] which can be generated by either one of the following two
generating sets:

I := 〈x + y + 1, x + t−1y + 2︸ ︷︷ ︸
=:F1

〉 = 〈x + y + 1, (t−1 − 1)y + 1︸ ︷︷ ︸
=:F2

〉

Figure 1 compares the tropical prevarieties of both F1 and F2 with the tropical variety
of I , showing that F2 is a tropical basis while F1 is not.

For the following result, we refer to [21], where it is only shown for polyno-
mial rings. However, the result extends directly to Laurent polynomial rings, since
inw(I ∩ K [x]) · K [x±1] = inw(I ) for all I � K [x±1].
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Fig. 1 A tropical non-basis and a tropical basis

Lemma 2.5 [21, Lemma 2.4.6 and Corollary 2.4.10] Given an element f ∈ K [x±1]
and a homogeneous ideal I � K [x±1], we have for any weight vectors w, v ∈ R

n and
ε > 0 sufficiently small:

inv inw( f ) = inw+ε·v( f ) and inv inw(I ) = inw+ε·v(I ).

In particular, for a finite set F ⊆ K [x±1] or an ideal I � K [x±1] this implies

Trop(inw F) = Starw Trop(F) and Trop(inw I ) = Starw Trop(I ).

Wewill now introduce the notion of a tropical defect and two algorithms for finding
them around affine spaces of complementary dimension. For the sake of simplicity,
we restrict ourselves to affine spaces in direction of the last few coordinates; see
Example 2.10 for general affine spaces.

Definition 2.6 (Tropical defects) Let I � K [x±1] be a polynomial ideal with finite
generating set F ⊆ I . We call a finite tuple w := (w0, . . . , wk) ∈ (Rn)k+1 a tropical
defect if for all ε > 0 sufficiently small we have

w0 + εw1 + · · · + εkwk ∈ Trop(F) \ Trop(I ).

Example 2.7 For I = 〈F1〉 from Example 2.4, the tuple (w, v) with w := (0, 1) and
v := (0, 1) is a tropical defect, while the singleton (w) is not. On the other hand, the
singleton (u) with u := (0, 2) is a tropical defect, see Fig. 2.

Remark 2.8 (Singleton tropical defects) Note that any tropical defect (w0, . . . , wk) of
a homogeneous ideal can be transformed into a singleton tropical defect u through a
single (tropical) Gröbner basis [6] or standard basis computation [22]:

One can simulate the weight vector wε := w0 + εw1 + · · · + εkwk for ε > 0
sufficiently small through a sequence of weights as in Lemma 2.5. In particular, we
can compute a Gröbner basis with respect to the sequence of weights, which gives
us the inequalities and equations of the Gröbner cone Cwε(I ) by [21, proof of Prop.
2.5.2]. Any u ∈ Relint Cwε(I ) is a singleton tropical defect.

For the ease of verification, the tropical defects in Sects. 3 and 4 have been trans-
formed into singletons.
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Fig. 2 Two tropical defects

Algorithm 2.9 checks for tropical defects around affine subspaces which satisfy a
strong genericity assumption.

Algorithm 2.9 (Testing for defects, strong genericity)
Input: (F, v), where

(1) F ⊆ K [x±1], a finite generating set of a d-dimensional prime ideal I ⊆
K [x±1], and assume w.l.o.g. that

π(Trop(I )) = R
d , (∗)

where π : Rn → R
d denotes the projection onto the first d coordinates.

(2) v ∈ R
d , describing an affine subspace H := π−1(v) ⊆ R

n of complementary
dimension n − d such that the following strong genericity assumption holds:

Trop(I ) ∩ H = Trop(I ) ∩st H . (SG)

Output: (b,w), such that

(1) if b=true, then w is a tropical defect,
(2) if b=false, then Trop(F) ∩ H = Trop(I ) ∩ H . (In this case, w := 0.)

1: Set F ′ := F ∪ {xi − tvi | i = 1, . . . , d} and I ′ := I + 〈xi − tvi | i = 1, . . . , d〉.
2: Compute the tropical prevariety Trop(F ′).
3: if ∃w ∈ Trop(F ′) with dim Cw(F ′) > 0 then
4: Pick 0 = u ∈ Span(Cw(F ′) − w). // where Cw(F ′) − w := {v − w | v ∈ Cw(F ′)}
5: return (true, (w, u)).
6: Compute the tropical variety Trop(I ′).
7: if ∃w ∈ Trop(F ′) \ Trop(I ′) then
8: return (true, w)
9: else
10: return (false, 0)

Correctness of Algorithm 2.9. Note that (SG) implies that Trop(I ) ∩ H is at most
zero-dimensional, since H is of complementary dimension to Trop(I ) and by [21,
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Trop(ψ(F ))

(ψ )−1H0 (ψ )−1L−1

Fig. 3 Trop(I ) ⊆ Trop(F) in Example 2.10

Theorem 3.6.10], while (∗) ensures that it is not empty. By [24, Theorem 1.1], we
therefore have

Trop(I ′) = Trop(I + 〈xi − tvi | i = 1, . . . , d〉)
= Trop(I ) ∩ Trop(〈xi − tvi | i = 1, . . . , d〉) = Trop(I ) ∩ H .

If the algorithm terminates at Line 5, thenCw(F ′) is a positive-dimensional polyhe-
dron contained in Trop(F ′) = Trop(F)∩ H , whereas Trop(I )∩ H consists of finitely
many points. In particular, we have thatw+εu /∈ Trop(I ) for ε > 0 sufficiently small.

If the algorithm terminates at Line 8, then w is a tropical defect since

w ∈ Trop(F ′) \ Trop(I ′) = (Trop(F) ∩ H) \ (Trop(I ) ∩ H) ⊆ Trop(F) \ Trop(I ).

Finally, should the algorithm terminate at Line 10, then

Trop(F) ∩ H = Trop(F ′) = Trop(I ′) = Trop(I ) ∩ H . ��

Example 2.10 Consider the generating set F of the following one-dimensional ideal:

I := 〈(x + 1)(y + 1), (x − 1)(y + 1)︸ ︷︷ ︸
=:F

〉 ⊆ C[x±1, y±1],

and let π : R{x,y} → R
{x} denote the projection onto the x-coordinate. Figure 3 shows

the tropical variety Trop(I ) and the tropical prevariety Trop(F).
Then, for any v ∈ R the affine line Hv := π−1(v) satisfies (SG). Algorithm 2.9

yields a tropical defect if and only if v = 0, in which case it terminates at Line 5.
We can also use arbitrary rational affine subspaces like Lv := v ·ex +Span(ex +ey)

by applying a unimodular transformationψ on the ring of Laurent polynomials whose
induced map ψ� on the weight space aligns Lv with the coordinate axes:

ψ : K [x±1, y±1] ∼−→ K [a±1, b±1], x �→ ab, y �→ b,

ψ� : R
{x,y} ∼←− R

{a,b}, ex ← � ea, ex + ey ← � eb.
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Fig. 4 Trop(I ) ⊆ Trop(F) from
Example 2.11 ⊆ Trop(F )

ex

ey

Trop(I)

ez

ex ey ez

This transformation yields

ψ(F) = {(ab + 1)(b + 1), (ab − 1)(b + 1)} and
(ψ�)−1(Lv) = v · ea + Span(eb) ⊆ R

{a,b},

which always satisfies (SG) and for which Algorithm 2.9 terminates at Line 8 if and
only if v = 0, as Trop(ψ(F)) ∩ (ψ�)−1(Lv) consists of two points of which only one
belongs to the tropical variety Trop(ψ(I )); see Fig. 3.

Example 2.11 Consider the generating set F of the following one-dimensional ideal:

I := 〈x + z + 2, y + z + 1︸ ︷︷ ︸
=:F

〉 � C[x±1, y±1, z±1],

and letπ : R{x,y,z} → R
{x} denote the projection onto the x-coordinate. Figure 4 shows

Trop(I ) as well as Trop(F). Consider the plane Hv := π−1(v) for some v ∈ R. Note
that while any Hv with v = 0 satisfies (SG), only Hv with v > 0 yields a tropical
defect in Algorithm 2.9, Line 5.

Remark 2.12 (Strong genericity) In Algorithm 2.9, the strong genericity assumption
(SG) is only required for the correctness of the output at Line 5. If the algorithm does
not terminate at Line 5, then (SG) must hold because Trop(F) ∩ H = Trop(F ′) is
zero-dimensional, and hence, so is Trop(I ) ∩ H ⊆ Trop(F) ∩ H . This implies that
for λi ∈ K generic with ν(λi ) = vi , we have

Trop(I ) ∩ H = Trop(I + 〈xi − λi 〉) = Trop(I ) ∩st H ,

where the first equality holds by [24, Theorem 1.1], and the second equality holds by
[21, Theorem 3.6.1].

One possibility to ascertain whether (SG) holds upon termination at Line 5 is to
compute the Gröbner polyhedron Cw(I ), if I is homogeneous. However, that requires
a tropical Gröbner basis or standard basis, and hence might not be viable for large
examples.
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In practice, affine subspaces satisfying the strong genericity assumption induce
several problems; see Remark 2.16. This is why we introduce Algorithm 2.13, which
relies on a weakened genericity assumption. Note that, compared to Algorithm 2.9,
Algorithm 2.13 requires the computation of Trop(inw(F)) for somew ∈ Trop(F)∩ H
at Line 5. This is unproblematic, however, since inw( f ) has fewer terms than f for
all f ∈ F , so that Trop(inw( f )) will be simpler than Trop( f ). In fact, generically
inw( f ) will be a binomial and Trop(inw( f )) a linear space.

Algorithm 2.13 (Testing for defects, weak genericity)
Input: (F, λ), where

(1) F ⊆ K [x±1], a finite generating set of a d-dimensional prime ideal I ⊆
K [x±1], and assume w.l.o.g. that

π(Trop(I )) = R
d , (∗)

where π : Rn → R
d denotes the projection onto the first d coordinates.

(2) λ ∈ (K ∗)d , describing an affine subspace H := Trop({xi − λi | i =
1, . . . , d}) ⊆ R

n of complementary dimension n − d such that the follow-
ing weak genericity assumption holds:

Trop(I + 〈xi − λi | i = 1, . . . , d〉) = Trop(I ) ∩st H . (WG)

Output: (b,w), such that

(1) if b=true, then w is a tropical defect,
(2) if b=false, then Trop(F) ∩st H = Trop(I ) ∩st H . (In this case, w := 0.)

1: Set H := Trop({xi − λi | i = 1, . . . , d}) and F ′ := F ∪ {xi − λi | i = 1, . . . , d}.
2: Compute the tropical prevariety Trop(F ′). // Trop(F ′) = Trop(F) ∩ H

3: Initialize � := ∅. // � will consist of tuples of weight vectors

// first entry: weight vector in the stable intersection Trop(F) ∩st H

// further entries: bookkeeping of the original cone in Trop(F)

4: for w ∈ Trop(F ′) with dim Cw(F ′) = 0 do
5: Compute Trop(inw F).
6: if ∃u ∈ Trop(inw F) : dim Cu(inw F) > d then
7: Let v1, . . . , vk be a basis of Span(Cu(inw F)).
8: return (true, (w, u, v1, . . . , vk)).
9: if ∃u ∈ Trop(inw F) with dim(Cu(inw F) + H) = n then
10: Let v1, . . . , vd be a basis of Span(Cu(inw F)).
11: � := � ∪ {(w, u, v1, . . . , vd)}.
12: Compute Trop(I ′), where I ′ := I + 〈xi − λi | i = 1, . . . , d〉.
13: if ∃(w, u, v1, . . . , vd) ∈ � such that w /∈ Trop(I ′) then
14: return (true, (w, u, v1, . . . , vd)).
15: else
16: return (false, 0).
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Correctness of Algorithm 2.13 Suppose the algorithm terminates at Line 8. By
Lemma 2.5, there exists δ > 0 such that D := {w+εu+ε2v1+· · ·+εk+1vk | 0 < ε <

δ} ⊆ Trop(F). Because any infinite subset of D has affine spanw+Span(Cu(inw F))

of dimension k > d = dim Trop(I ), any polyhedron onTrop(I )will have a finite inter-
section with D. In particular, this implies thatw+εu +ε2v1+· · ·+εk+1vk /∈ Trop(I )
for ε > 0 sufficiently small.

Suppose the algorithm terminates at Line 14. Again, by Lemma 2.5, there exists
δ > 0 such that D := {w + εu + ε2v1 + · · · + εd+1vd | 0 < ε < δ} ⊆ Trop(F). Any
infinite subset of D has affine span w + Span(Cu(inw F)), which intersects H stably.
We have w /∈ Trop(I ′) = Trop(I ) ∩st H by assumption (WG), so any polyhedron on
Trop(I ) aroundw can only have a finite intersection with D. In particular, this implies
that w + εu + ε2v1 + · · · + εk+1vk /∈ Trop(I ) for ε > 0 sufficiently small.

Finally, suppose the algorithm terminates at Line 16. Since Trop(F) ⊇ Trop(I ),
we always have Trop(F)∩st H ⊇ Trop(I )∩st H . For the converse, assume there exists
a weight w ∈ Trop(F) ∩st H \ Trop(I ) ∩st H . Let Cu(F) ⊆ Trop(F) be a Gröbner
polyhedron of the prevariety with w ∈ Cu(F) ∩ H and dim(Cu(F) + H) = n, which
necessarily implies dim Cu(F) ≥ d. If dim Cu(F) > d, then dim Cu(inw(F)) > d
and we would have terminated at Line 8. If dim Cu(F) = d, then w appears as the
first entry of some tuple in � by Lemma 2.5 and Lines 9 to 11; hence, we would have
terminated at Line 14, as Trop(I ′) = Trop(I ) ∩st H by assumption (WG). ��
Remark 2.14 (Weak genericity) If Algorithm 2.13 terminates at Line 8, then the output
is correct even if the input did not satisfy the weak genericity assumption (WG), since
a polyhedron in Trop(F) of too large dimension was found. On the other hand, the
correctness of a tropical defect output at Step 14 does depend on the assumption
(WG) on the input. In order to certify the correctness of the output regardless of the
validity of (WG), one needs to check that there is no sufficiently small ε > 0 such that
w + εu + ε2v1 + · · · + εd+1vd ∈ Trop I . If I is homogeneous, this can by Lemma
2.5 be achieved by certifying that the iterated initial ideal invd · · · inv1 inu inw I is the
entire Laurent polynomial ring K[x±1].
Example 2.15 Consider the generating set from Example 2.10 (see also Fig. 3):

I := 〈(x + 1)(y + 1), (x − 1)(y + 1)︸ ︷︷ ︸
=:F

〉 ⊆ C[x±1, y±1].

Unlike before, Algorithm 2.13 will be unable to find a tropical defect around Hv even
for v = 0, always terminating at Line 16. This is because without condition (SG)
H0 need not have a zero-dimensional intersection with Trop(I ), so that its positive-
dimensional intersection with Trop(F) need not arise from a tropical defect.

However, Algorithm 2.13 will still find a tropical defect for Lv for v = 0, in which
case it terminates at Line 14.

Remark 2.16 (Strong genericity vs. weak genericity from a practical point of view)
Theoretically, it is always possible to find tropical defects for generating sets which
are not tropical bases using Algorithm 2.9 with the right choice of an affine subspace.
In practice, however, it is much more reasonable to use Algorithm 2.13 instead. This
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is because generic v ∈ R
d for Algorithm 2.9 usually entail high exponents in the

polynomial computations, whereas generic λ ∈ (K ∗)d for Algorithm 2.13 only entail
big coefficients, and most computer algebra software systems such as Macaulay2
or Singular are better equipped to deal with the latter. For instance, our Singular
experiments using Algorithm 2.9 regularly failed due to exponent overflows, since
exponents in Singular are stored in the C++ type signed short (bounded by 215

for most CPU architectures), while coefficients are stored with arbitrary precision.

Remark 2.17 (Comparison with existing techniques) As hinted in the introduction,
tropical basis verification is a problem that has been studied bymany people. However,
the only software currently capable of this task is gfan [16], which, for example, has
been used to prove that the 4 × 4-minors of a 5 × n matrix form a tropical basis [7].
Its command gfan_tropicalbasis computes a tropical basis, and its command
gfan_tropicalintersection for computing tropical prevarieties Trop(F) has
an optional argument –tropicalbasistest to test whether Trop(F) equals the
tropical variety Trop(I ). Compared to the algorithms in gfan, our techniques have
the following disadvantages and advantages.

Since our algorithms revolve around finding tropical defects, they are incapable
to verify that a generating set is a tropical basis. As we only search around random
hyperplanes of complementary dimension, we are also blind to lower-dimensional
defects, i.e., if dim(Trop(I ) \ Trop(F)) < dim(Trop(I )) =: d, then the probability
for a random affine hyperplane of codimension d to intersect Trop(I ) \ Trop(F) is
zero. One example where our algorithms failed to return a definite answer is [28,
Conjecture 4.8].

In return, our algorithms avoid the computation of both Trop(F) and Trop(I ).
Instead of Trop(F) = ⋂

f ∈F Trop( f ), we compute Trop(F ′) = ⋂
f ∈F (Trop( f )∩H).

This is faster, since Trop( f )∩ H is covered by fewer polyhedra compared to Trop( f ).
Moreover, instead of Trop(I ) we compute Trop(I ′), where I ′ := I + 〈xi −λi | i =
1, . . . , d〉. This is easier since I ′ is zero-dimensional whereas I is not. Additionally,
Trop(I ′) consists of up to deg(I ) many points, while Trop(I ) is generally covered by
many more polyhedra.

3 Application: Cox rings of cubic surfaces

Cox rings are global invariants of important classes of algebraic varieties. For example,
they carry essential information about all morphisms to projective spaces and play a
central role in the theory of universal torsors; see [2] for further details. In this section,
we address [27, Conjecture 5.3] on Cox rings of smooth cubic surfaces, disproving it
with a tropical defect.

Definition 3.1 Consider six points p1, . . . , p6 ∈ P
2
C
in general position in the complex

projective plane. Up to change of coordinates, we may assume that

pi = (1 : di : d3
i ) for some di ∈ C,
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where di satisfy certain genericity conditions; see [26, §6]. Blowing up P
2
C
in these

points results in a smooth cubic surface X := Blp1,...,p6 P
2
C
. The geometry of this

surface is captured by its Cox ring

Cox(X) :=
⊕

(a0,...,a6)∈Z7

H0(X ,OX (a0E0 + a1E1 + · · · + a6E6)),

where

• E1, . . . , E6 ⊆ X are the exceptional divisors over the points p1, . . . , p6 ∈ P
2
C
,

• E0 ⊆ X is the preimage of a line in P2
C
not containing p1, . . . , p6, and

• H0(X ,OX (a0E0 + a1E1 + . . .+ a6E6)) ⊆ K (X) are the rational functions on X
which vanish along each Ei with multiplicity at least−ai (vanishing with negative
multiplicity meaning poles of positive order).

For a smooth cubic surface X , the Cox ring Cox(X) is a finitely generated integral
domain with a natural set of 27 generators which are the rational functions on X
establishing the linear equivalence of each of the 27 lines on the cubic surface X to a
divisor of form

∑
i ai Ei ∈ Div(X); see [4, Theorem 3.2].

Proposition 3.2 [27, Proposition 2.2] Let d1, . . . , d6 ∈ C and X be the cubic surface
that is the blowup of (1 : di : d3

i ) ∈ P
2
C

. Then,

Cox(X) ∼= C[E1, . . . , E6, F12, F13, . . . , F56, G1, . . . , G6] /
IX ,

where, up to saturation at the product of all variables, IX is generated by the following
10 trinomials and their 260 translates under the action of the Weyl group of type E6:

(d3−d4)(d1+d3+d4)E2F12 − (d2−d4)(d1+d2+d4)E3F13 + (d2−d3)(d1+d2+d3)E4F14,

(d3−d5)(d1+d3+d5)E2F12 − (d2−d5)(d1+d2+d5)E3F13 + (d2−d3)(d1+d2+d3)E5F15,

(d3−d6)(d1+d3+d6)E2F12 − (d2−d6)(d1+d2+d6)E3F13 + (d2−d3)(d1+d2+d3)E6F16,

(d4−d5)(d1+d4+d5)E2F12 − (d2−d5)(d1+d2+d5)E4F14 + (d2−d4)(d1+d2+d4)E5F15,

(d4−d6)(d1+d4+d6)E2F12 − (d2−d6)(d1+d2+d6)E4F14 + (d2−d4)(d1+d2+d4)E6F16,

(d5−d6)(d1+d5+d6)E2F12 − (d2−d6)(d1+d2+d6)E5F15 + (d2−d5)(d1+d2+d5)E6F16,

(d4−d5)(d1+d4+d5)E3F13 − (d3−d5)(d1+d3+d5)E4F14 + (d3−d4)(d1+d3+d4)E5F15,

(d4−d6)(d1+d4+d6)E3F13 − (d3−d6)(d1+d3+d6)E4F14 + (d3−d4)(d1+d3+d4)E6F16,

(d5−d6)(d1+d5+d6)E3F13 − (d3−d6)(d1+d3+d6)E5F15 + (d3−d5)(d1+d3+d5)E6F16,

(d5−d6)(d1+d5+d6)E4F14 − (d4−d6)(d1+d4+d6)E5F15 + (d4−d5)(d1+d4+d5)E6F16.

Here,

• Ei represents the exceptional divisor over the point pi ,
• Fi j represents the strict transform of the line through pi and p j ,
• Gi represents the strict transform of the conic through {p1, . . . , p6} \ {pi }.
The following theorem answers [27, Conjecture 5.3] negatively:
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Theorem 3.3 For generic d1, . . . , d6 ∈ C, the 270 trinomial generators of IX

described in Proposition 3.2 are not a tropical basis.

Proof Fix the following ordered set of variables:

S := {E1, E2, E3, E4, E5, E6, F12, F13, F14, F15, F16, F23, F24, F25, F26,

F34, F35, F36, F45, F46, F56, G1, G2, G3, G4, G5, G6}.

Let IX be the ideal in the polynomial ring C(d1, . . . , d6)[S] generated by the 270
trinomials described in Proposition 3.2, and consider the weight vector

w := (2, 1, 0, 1, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ R
S .

One can verify that w is a tropical defect, i.e., w lies in the tropical prevariety, since
inw( f ) is at least binomial for each trinomial generator f , and outside the tropical
variety, since inw(IX ) contains the monomial E6F56G6. ��

Remark 3.4 The statements in the proof of Theorem 4.3 can be easily verified using
a computer algebra system such as Singular. The following script is available on
software.mis.mpg.de, and the following shortened transcript was produced using Sin-
gular’s online interface (version 4.1.1) available at singular.uni-kl.de:8003/:

> LIB "tropicalBasis.lib"; // initializes necessary libraries and helper
functions
> intvec wMin = 2,1,0,1,1,1,0,2,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,

0,0,0,0;
// wMin is in min-convention

> intvec wMax = -wMin; // Singular uses max-convention
> intvec allOnes = onesVector(size(wMax ));
> ring r = (0,d1 ,d2 ,d3 ,d4 ,d5 ,d6),(E1 ,E2 ,E3 ,E4,E5 ,E6 ,
. F12 ,F13 ,F14 ,F15 ,F16 ,F23 ,F24 ,F25 ,F26 ,F34 ,F35 ,F36 ,F45 ,F46 ,F56 ,
. G1 ,G2 ,G3 ,G4 ,G5 ,G6),(a(allOnes),a(wMax),lp);

// prepending allOnes makes no difference
mathematically

// as the ideal is homogeneous,
// but it helps computationally

> ideal F = // Singular ideals are lists of polynomials
. (d3 -d4)*(d1+d3+d4)*E2*F12+(d2-d4)*(d1+d2+d4)*E3*F13
. -(d2 -d3)*(d1+d2+d3)*E4*F14 ,

.

.

. [...]
. -(d5 -d6)*(d1+d3+d4)*F24*G4+(d4-d6)*(d1+d3+d5)*F25*G5
. -(d4 -d5)*(d1+d3+d6)*F26*G6;
> ideal inF = initial(F,wMax); // initial forms of the elements in F

// all are at least binomial, hence
wMax ∈ Trop(F)

> ideal IX = groebner(F);
> ideal inIX = initial(IX ,wMax);// initial forms of Gröbner basis elements

// this is a Gröbner basis of inwMax(IX )

> NF(E6*F56*G6 ,inIX); // normal form is 0 hence E6 ∗ F56 ∗ G6 ∈
inwMax(IX )

0
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4 Application: realizability of valuated gaussoids

Gaussoids are combinatorial structures introduced by Lněnička and Matúš [20] that
encode conditional independence relations among Gaussian random variables. Rem-
iniscent of the study of matroids, Boege et al. [5] introduced the notions of oriented
and valuated gaussoids. In this section, we address the question whether all valuated
gaussoids on four elements are realizable, disproving it with a tropical defect. This
was initially conjectured in the first version of [5], as found on arXiv. The published
version has since been updated with our Theorem 4.3.

Definition 4.1 [5, §1] Fix n ∈ N. Consider the Laurent polynomial ring

Rn := C
[

p±1
I | I ⊆ [n]][a±1

{i, j}|K | i, j ∈ [n] distinct, K ⊆ [n] \ {i, j}],

in which we abbreviate a{i, j}|K to ai j |K , and the ideal Tn generated by the following
2n−2

(n
2

)
square trinomials and the following 12 · 2n−3

(n
3

)
edge trinomials:

a2
i j |K − pK∪{i} pK∪{ j} + pK∪{i, j} pK for i, j ∈ [n] distinct, K ⊆ [n] \ {i, j},

pL∪{k} ai j |L\{i, j} − pL ai j |L∪{k}\{i, j} − aki |L\{i} akj |L\{ j}
for i, j, k ∈ [n] distinct, L ⊆ [n] \ {k}.

A valuated gaussoid is a point in the tropical prevariety defined by the square and
edge trinomials. It is called realizable if it lies in the tropical variety Trop(Tn).

Remark 4.2 The variables of the ring R correspond to the principal and almost-
principal minors of a symmetric n×n-matrix (i.e., determinants of square submatrices
whose row and column index sets differ by at most one index). The ideal Tn corre-
sponds to the polynomial relations among these minors for symmetric matrices with
nonzero principal minors by [5, Proposition 6.2].

The following theorem negatively answers Conjecture 8.4 in the first arXiv-version
of [5], and is now Theorem 8.4 in the final published version of [5]:

Theorem 4.3 Not all valuated gaussoids on four elements are realizable, i.e., the
square and edge trinomials in Definition 4.1 are not a tropical basis of T4.

Proof Consider the following ordered set S of the variables of R4 and weight vector
w ∈ R

S :

S :={p∅, p1, p12, p123, p1234, p124, p13, p134, p14, p2, p23, p234, p24, p3, p34, p4,

a12, a12|3, a12|34, a12|4, a13, a13|2, a13|24, a13|4, a14, a14|2, a14|23, a14|3,
a23, a23|1, a23|14, a23|4, a24, a24|1, a24|13, a24|3, a34, a34|1, a34|12, a34|2}

w :=(14, 10, 6, 0, 6, 8, 8, 2, 8, 6, 6, 2, 8, 8, 8, 8, 8, 4, 2, 10, 9, 3, 5, 5, 9, 11,

1, 5, 7, 5, 5, 5, 7, 7, 1, 5, 8, 6, 4, 4) ∈ R
S .
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One can check that w is a tropical defect, i.e., w lies in the tropical prevariety, since
inw( f ) is at least binomial for all square and edge trinomials, and outside the tropical
variety, since inw(T4) contains the monomial a23a23|1. ��
Remark 4.4 The statements in the proof of Theorem 4.3 can be easily verified using
a computer algebra system such as Singular. The following script is available on
software.mis.mpg.de, and the following shortened transcript was produced using Sin-
gular’s online interface (version 4.1.1) available at singular.uni-kl.de:8003/:

> LIB "tropicalBasis.lib"; // initializes necessary libraries and helper
functions
> intvec wMin = 14,10,6,0,6,8,8,2,8,6,6,2,8,8,8,8,8,4,2,10,9,3,
5,5,9,11,

. 1,5,7,5,5,5,7,7,1,5,8,6,4,4; // wMin is in min-convention
> intvec wMax = -wMin; // Singular uses max-convention
> intvec allOnes = onesVector(size(wMax ));
> ring r = 0,(p,p1 ,p12 ,p123 ,p1234 ,p124 ,p13 ,p134 ,p14 ,p2 ,p23 ,
p234 ,p24 ,p3 ,p34 ,p4 ,

. a12 ,a12_3 ,a12_34 ,a12_4 ,a13 ,a13_2 ,a13_24 ,a13_4 ,a14 ,
a14_2 ,a14_23 ,a14_3 ,
. a23 ,a23_1 ,a23_14 ,a23_4 ,a24 ,a24_1 ,a24_13 ,a24_3 ,a34 ,
a34_1 ,a34_12 ,a34_2),
. (a(allOnes),a(wMax),lp); // prepending allOnes makes no difference

mathematically
// as the ideal is homogeneous,
// but it helps computationally

> ideal F = // Singular ideals are lists of polynomials
. a34_12*a13_24+p124*a14_23 -a14_2*p1234 ,

.

.

. [...]
. -p1*p2+a12^2+p*p12;
> ideal inF = initial(F,wMax); // initial forms of the elements in F

// all are at least binomial, hence
wMax ∈ Trop(F)

> ideal I = groebner(F);
> ideal inI = initial(I,wMax); // initial forms of all elements

in the Gröbner basis
// this is a Gröbner basis of inwMax(I )

> NF(a23*a23_1 ,inI); // normal form is 0 hence a23a23|1 ∈ inwMax(I )
0

Remark 4.5 (sampling affine subspaces for tropical defects) The tropical defects in
Theorems 3.3 and 4.3 were found by repeatedly running Algorithm 2.13 on random
affine subspaces H ⊆ R

n . In the sampling of the affine subspaces, a situation which
we tried to avoid are two subspaces intersecting the tropical variety in exactly the same
Gröbner polyhedra. In the following, we describe our sampling approach which we
based on this thought.

Even though we were unable to compute the tropical variety Trop(I ) or the tropical
prevariety Trop(F) in both problems, we were able to compute

(1) a Gröbner basis of I with respect to a graded reverse lexicographical ordering,
(2) for selected finite fields F and d + 1 := dim(I ) + 1 variables xi0 , . . . , xid , the

generator g ∈ F[xi0 , . . . , xid ] of the principal elimination ideal (I ⊗Z F) ∩
F[xi0 , . . . , xid ].

In other words, (2) allowed for educated guesses for generators g of principal elimi-
nation ideals I ∩ K [xi0 , . . . , xid ], while (1) allowed for tests whether the guesses were
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correct. Thus, we were able to compute tropical hypersurfaces Trop(g) ⊆ R
d+1 which

are the images of Trop(I ) under selected orthogonal projections π : Rn → R
d+1.

For each projection, we then constructed affine lines L1, . . . , Lk ⊆ R
d+1 such

that each maximal polyhedron of Trop(g) intersects at least one line. Their preim-
ages π−1L1, . . . , π

−1Lk are then d-codimensional affine subspaces which were our
samples for H .
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