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Materials and Methods 

Data collection 

We used multiple global data sources (interpolated and remote sensing data, standardized field 

surveys and individual plant measurements obtained in the laboratory), which are described in 

detail below. The databases chosen comprise the widest observational database on global 30 

drylands to date (BIOCOM), complemented with observations from physiological functional 

traits (20, 31) which are not well represented in BIOCOM. Also we retrieved map information to 

complement these variables (albedo, NDVI, VSI, shrubland occurrence and coefficient of 

variation of interannual precipitation) or to complete key information available in BIOCOM but 

that missed important dryland areas of the world (Vegetation Cover, SOC, soil nitrogen and sand 35 

content). The variables were selected based on their importance as surrogates of key ecosystem 

attributes/processes such as nutrient cycling, plant productivity, important biotic interactions, 

biodiversity and climatic patterns. Together, the variables selected characterize three major 

ecosystem components/processes (soils, plants and plant-soil interactions) that largely determine 

ecosystem functioning and its capacity to provide essential ecosystem services such as soil 40 

fertility and plant productivity. The variables selected are also often used to monitor soil health 

and land degradation (6, 32, 33), and are thus of particular relevance to scientists and 

stakeholders alike. 

 

 45 

Interpolated and remote sensing data 

We gathered interpolated and remote sensing information from freely available global maps (see 

list below and Table S1). Measurements from these maps were obtained by taking data from a 

point every 30 arc-minutes. This yielded a total of 500,000 sampling points, from which we 

discarded all of those not falling in terrestrial ecosystems classified as drylands (i.e., those 50 

scoring aridity index = Annual precipitation/annual potential evapotranspiration lower than 0.65 

34). The aridity index has been proposed by FAO (34) and is widely used both in the current 

scientific literature (8, 35, 36) and in management/policy activities related with desertification 

and land use management (6). This metric is also commonly used to frame both the current (2) 

and future (3, 37) extension of global drylands. The aridity index was obtained from the global 55 

maps of Zomer et al (38), which provides the averaged aridity index of the period 1970-2000, 

and has a spatial resolution of 30 arc-seconds. Apart from sites not classified as drylands, we also 

removed those points that had ever been classified as urban, cultivated lands or water bodies in 

the land use and land cover maps provided by FAO (39, also with a spatial resolution of 30 arc-

seconds). We did so to avoid outliers coming from agricultural or urban lands, as changes in the 60 

variables recorded in these areas are more likely to be driven by the direct impact of human 

activities than by changes in aridity. A total of 51,013 points remained for our analyses; these 

encompass a regularly spaced grid of sites summarizing all possible environmental situations 

found in global drylands. From these points, we extracted the following information: 

Soil variables- We extracted the following soil variables from ref. 40: carbon content, which is 65 

strongly related to soil fertility and water retention (41), nitrogen content and silt and clay 

content. These measurements are extrapolations from soil classifications and are corrected by 

environmental and other local conditions (see ref. 40 for details). 
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Plant productivity - We used the Normalized Difference Vegetation Index (NDVI) as a 

surrogate of plant productivity. NDVI is an index that combines the spectral reflectance 70 

measurements acquired in the red (visible) and near-infrared bands, and provides a global 

measure of the ñgreennessò of vegetation across the Earthôs landscapes (42, 43). It is related to 

vegetation productivity because it indicates the photosynthetically active radiation absorbed by 

plant canopies (44, 45). NDVI data for each plot were acquired from two sources:  i) the 

MOD13Q1 product from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor 75 

(46), which provides 23 images per year (every 16 days) with a pixel size of 250 m × 250 m 

(https://modis.ornl.gov/data.html) and ii) the Landsat 5 TM and Landsat 7 ETM+, with a pixel 

size of 30 m × 30 m (https://landsat.gsfc.nasa.gov/). Landsat imagery was processed to surface 

reflectance using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 

atmospheric correction algorithm (47). This algorithm is designed to work with Landsat-5 to 8 80 

products using the spectral response functions developed for the Terra MODIS instrument (48). 

MODIS data are geometrically and atmospherically corrected and include a reliability index of 

data quality based on the environmental conditions in which the data were recorded and ranging 

from 0 (good quality data) to 4 (raw or absent data) (49). At each point, we calculated the mean 

annual NDVI for each year between 2000 and 2015 and then averaged for the entire period; for 85 

that, we discarded the data with MODIS reliability index >1. NDVI estimates from MODIS and 

LANDSAT were very similar (r = 0.85). Hence, we report results from MODIS because data 

from this satellite matches more closely the spatial resolution of the aridity interpolations used. 

Vegetation fractional cover- NDVI may saturate at very low vegetation fractional cover due to 

the existence of high solar reflectance in the soil (42). Thus, its signal is less reliable in zones 90 

with very low vegetation cover. For these cases, MODIS provides a product of vegetation 

fractional cover estimation (MOD44B, 50) by making corrections using a machine-learning 

process with proven small error (50). We used MOD44B to extract vegetation fractional cover 

estimations (tree + non-tree vegetation cover), and further cross-validated it with other remote 

sensing product, the Global Bare Ground circa 10 (51, accessed from 95 

www.landcover.usgs.gov/glc). This database, which provides better spatial resolution using 

LANDSAT 7 ETM+ data, yields very similar results to those provided by MOD44B (r = 0.94). 

Again, and for the same reasons noted above, we kept MOD44B extractions as measurements of 

the fractional cover of vegetation. It is worth noting that issues related to the ability of MOD44B 

to detect trees with less than 5 m (which has raised some recent discussion; 52, 53) do not affect 100 

our results because we used the sum of tree + non-tree cover layers. 

Albedo - Albedo refers to the sunlight reflection to the atmosphere after reaching Earth surface. 

It is related to soil typology, vegetation cover and topography (54ï56). It correlates with 

ecosystem functioning in drylands (57) and has important feedbacks on climate (30). The actual 

land surface albedo may also be influenced by atmospheric conditions, the season of the year and 105 

the zenithal position of the sun (58). To avoid problems with the atmosphere and solar zenithal 

position, we used white sky-albedo (WSA). It occurs in the case of completely diffuse and 

isotropic illumination, i.e., when light from all directions is the same. We extracted WSA in the 

shortwave spectral domain (i.e., 0.3-5 µm) from MODIS MCD43B3 BRDF/Albedo Model 

Parameters Product (Collection 5) (59). This is calculated by using the RossThick-LiSparse-110 

Reciprocal (Ross-Li) BRDF model, and is independent of the atmosphere and solar zenithal 

position (54). To avoid problems related to seasonal differences in albedo, we calculated WSA 

from May to September in the northern hemisphere, and from November to March for the 

southern hemisphere. We averaged values on a yearly basis for the period 2000-2015. 

https://modis.ornl.gov/data.html
http://www.landcover.usgs.gov/glc
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Land use type (shrublands)- We extracted vegetation types using the maps provided by FAO 115 

(39), which were also used to remove agricultural and urban landscapes in a previous step. We 

did so to classify each site regarding the dominant plant form (e.g., forest, grassland, shrubland, 

savanna). As explained above, FAO maps provide detailed information on vegetation types from 

2000 to present. When changes in the dominant vegetation had occurred in time, we kept the 

most representative (i.e., the land type recorded during most years for the period 2000-2015) for 120 

each site. In particular, we were interested on the occurrence of shrublands, which have been 

associated with processes of encroachment with increasing aridity (24). Thus, we created a 

binary variable with values 1 (when FAO maps classified a given site as open or dense 

shrubland) or 0 (when a site was covered with any other vegetation type). Desert states, which 

are devoid of perennial vegetation, were excluded for the analysis of this variable. 125 

Vegetation sensitivity index (VSI)- This index is extracted from Seddon et al. (25), and 

measures the sensitivity of vegetation concerning climatic fluctuations. For doing so, VSI 

quantifies the ratio of change of enhanced vegetation index (EVI, a vegetation index very similar 

to NDVI, 60) divided by precipitation and temperature changes within a year (then averaged for 

the period 2000-2013). This index is an important component of vegetation resilience (ability to 130 

remain undisturbed with climatic fluctuations), and thus summarizes an important dynamical 

component of the ecosystem by assessing the relative response rate of vegetation to 

environmental variability. Values of VSI had a spatial resolution of 5 km (around 2.5 arc 

minutes).  

Inter -annual precipitation variability - As rainfall is extremely variable in drylands, and it is 135 

expected to become even more variable with climate change (41, 61, 62), we extracted 

precipitation variability as an important metric of the unpredictable climatic conditions faced by 

these ecosystems (63). We calculated annual precipitation for each year and then derived the 

coefficient of variation (standard deviation/mean) among years (period 2000-2015) using data 

derived from the Climatologies at High resolution for the Earthôs Land Surface Areas (64) at 30 140 

arc-secs spatial resolution.  The CV of rainfall is widely used to obtain estimates of precipitation 

inter-annual variability and has certain values (~ 30%) considered critical for the equilibrium of 

grazing areas (65, 66), which are key for the livelihoods of dryland populations in developing 

countries (67, 68). It has been suggested that areas with values of this CV higher than 30% are 

non-equilibrium ecosystems, in which the carrying capacity of the ecosystem to grazing 145 

fluctuates in a way such that herbivores need to accommodate their population each year due to 

these fluctuations (65, 66). 

 

Standardized field surveys 

We used data from a standardized field survey conducted at 236 dryland ecosystems worldwide 150 

(21 countries from six continents, 14, 69). These sites encompass all dryland subtypes except 

hyper-arid, and span a wide range of environmental conditions and vegetation and soil types (14, 

69). In brief, vegetation was sampled in situ at each site using four 30-m long transects 

interspaced 8 m from each other. Along these transects, adjacent quadrats of 1.5 by 1.5 m were 

located, and the relative cover of each species on each quadrat was measured (80 quadrats per 155 

site were surveyed). Also, five composite soil samples (0-7.5 cm depth) beneath the dominant 

plants and other five in bare ground areas devoid of vascular vegetation were collected. These 

soil samples were dried and shipped to the laboratory of Rey Juan Carlos University (Móstoles, 

Spain) for analyses. See refs. 69 and 14 for additional details on the field survey and the handling 

of soil samples. We completed the data from this global survey with data from independent 160 
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sources obtained using comparable survey methodologies. For instance, microbial abundance 

and fungal functional types were expanded adding sites from Australia (see unpublished data in 

ref: 70). Soil carbon data were expanded by adding plots from Australia (71) and North-America 

(72). In all cases, we used data collected with standardized field and laboratory protocols to 

ensure their comparability (73). Overall, the variables from field surveys included in this study 165 

are the following: 

Soil organic carbon (N = 627)- Measured by colorimetry after oxidation with a mixture of 

potassium dichromate and sulfuric acid (74) using samples coming from bare ground areas 

devoid of vascular vegetation. 

Vegetation effect on soils (N = 204)- Vegetation can modify its environment at local scales via 170 

its effects on soils (24, 75ï77). Indeed, soils under plant canopies in drylands typically show 

increased nutrient contents and biological activity compared to adjacent bare ground areas (the 

so-called ñfertility islandò effect, 76, 78). We assessed this effect by calculating the differences 

in soil organic carbon under plant canopies and adjacent bare ground areas in each of the sites 

surveyed. Thus, this metric measures the net soil organic carbon gain in microsites covered with 175 

vegetation regarding bare ground microsites. 

Plant-plant interactions (N = 185)- The use of spatial patterns as a proxy for biotic interactions 

has been widely used in plant ecology, particularly in drylands where biotic interactions produce 

a strong spatial signal (79ï81). We approximated the type (positive-negative) and dominance of 

plant-plant interactions using spatial network analyses of the vegetation surveyed as described in 180 

Saiz et al. (82). In short, we assessed the mean link weight distribution in the community using 

co-occurrence matrices of the species for each site. This index represents the dominant type of 

spatial pattern in the community, with values > 0 and < 0 indicating spatial aggregation and 

segregation, respectively. To account for the effect of species abundance distribution, for each 

site the index was calculated as the difference between the observed value and the expected 185 

value calculated from 2000 networks generated by randomizing the spatial distribution of 

abundances at the site. The occurrence of species and their relative abundances were extracted 

from the 1.5 x 1.5 m quadrat samples surveyed in the field. 

Stability of soil aggregates (N = 220)- Soil aggregation is a key structural parameter with 

important implications for soil fertility and erosion resistance (83). We measured the size 190 

distribution of soil aggregates, expressed as their mean weight diameter, as a proxy of this 

feature. We did so by using a modified protocol by Kemper and Rosenau (84). Briefly, the pre-

sieved samples (< 2 mm) were passed through a stack of four sieves (1, 0.5, 0.212 and 0.053 

mm) hence separating the soil into five fractions of decreasing particle size. To avoid abrasion, 

we vertically moved the sieve stack four times to allow the soil aggregates to separate through 195 

the different mesh sizes. Weights of the different fractions were calculated as the mean diameter 

of each fractions weighted by the proportion of total soil mass of the size fraction. By doing so 

the mean weight diameter (in mm) increases with increasing amounts of large aggregates in a 

sample. 

Soil microbial communities (N = 100)- Soil DNA was extracted from 0.25 g of defrosted soil 200 

samples using the Powersoil® DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA, USA). 

The total abundance of bacteria and fungi was quantified using qPCR and the Eub 338-Eub 518 

and ITS 1-5.8S primer sets, as described in ref (85). To characterize the relative abundance of 

fungal functional groups, amplicon sequencing was conducted using Illumina MiSeq platform 

(86) and the FITS7/ITS4 primer set (87, 88). Bioinformatic analyses were conducted using 205 

UPARSE (89) and MOTHUR (90). Operational Taxonomic Units (OTU) were picked at 97% 
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sequence similarity. Taxonomy was assigned to OTUs in MOTHUR using the UNITE version 6 

dataset (91). The resulting OTU abundance tables were rarefied. We identified these fungal 

functional groups (e.g., fungal pathogens, saprobes, mycorrhizal fungi) using FUNGUILD (92). 

We calculated the relative abundance of each functional group as the sum of the relative 210 

abundance of taxa within each fungal group, as described in ref. 93.  

Plant species richness (N = 236)- Plant species richness is of paramount importance to 

ecosystem functioning (69) and stability (94) in drylands. We estimated this variable for each 

site as the total number of plant species found in the 80 1.5 x 1.5 m quadrat samples surveyed. 

Plant functional traits at the community level (N = 119) - We assessed the specific leaf area 215 

(SLA) of perennial vascular plants, calculated as the ratio between the weight of a leaf and its 

area, by extracting these data from global datasets and local floras (see more details in ref. 29). 

This is a trait summarizing the resource economic spectrum of plant leaves, i.e., opposing leaves 

with high metabolic activity, weak stress-tolerance and low lifespan to the opposite syndrome 

(95, 96). In particular, SLA tends to decrease with increasing aridity in drylands as smaller and 220 

tougher leaves endure better water scarcity conditions (20, 97, 98). Under extreme aridity 

conditions, plants may also increase SLA by producing lighter leaves, which are not good to 

endure water scarcity periods but that are easy and less costly to produce, thus can be fast 

growing during the periods of favorable photosynthetic activity (after sporadic rains, 21, 29, 99). 

These leaves might be discarded afterwards, thus configuring a strategy of stress avoidance. 225 

Using the recorded abundance of each species, we estimated the community-weighted mean of 

SLA that reflects the most dominant plant functional strategy within communities (100).  

We completed our information on plant functional traits using photosynthetic rates from the 

database created by Maire et al. (20) and Wang et al. (31). Both datasets provide a 

comprehensive (more than 10,000 individual records of 809 plant species) and standardized 230 

measurement of the photosynthetic activity and leaf N content of vascular plants from all 

biomes, but it is biased towards dryland ecosystems. We discarded from both databases plants 

that did not come from dryland areas (sites with aridity index > 0.65). For the rest (N = 1,903), 

we focused on two key functional traits: light-saturated photosynthetic rate and leaf N content. 

Details on the methods to assess both traits can be found in ref. 20. In brief, light-saturated 235 

photosynthetic rate was measured on leaves enclosed into a chamber that measures incoming and 

outgoing CO2 and H2O fluxes under optimal light conditions (while other environmental 

conditions are kept to ambient conditions). Leaf nitrogen content is the percentage of nitrogen 

mass in respect to dry leaf weight. As nitrogen is a major compound in the composition of 

photosynthetic enzymes (20), this functional trait is directly related to potential photosynthetic 240 

activity. In addition, nitrogen content in green leaves is a good proxy of nitrogen remaining in 

leaf litter after senescence period. As such, it can also be considered as a key parameter affecting 

leaf decomposition through the regulation of microbial activity (101, 102).  

 

Data analyses 245 

Before data analysis and for map attributes, we first matched the spatial scales of assessed 

metrics. To do so, when metrics were of broader resolution than aridity (i.e., > 30 arc-sec), we 

matched the spatial scales by taking the median of aridity indices within the spatial extent of the 

response variable (e.g., 5 km in vegetation sensitivity index). When ecosystem attributes had a 

better resolution than the aridity index (e.g., NDVI), we used again the aggregated median of the 250 

attribute to match the scale of the aridity index (30 arc-secs). Other aggregation methods (such as 

the mean or the maximum value) or taking the centroid value of the coarser pixel yielded very 
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similar results (correlation between aridity values estimated with different interpolations was 

always > 0.98). Furthermore, the same best model and threshold values were chosen regardless 

of the interpolation method used (F3,396 = 1.368/1.271; P value = 0.25/0.28 for Vegetation 255 

sensitivity index/NDVI variables respectively).   

 

Evaluation of linear and non-linear responses to aridity 

We fitted linear and non-linear (quadratic and general additive models [GAM] 103) regressions 

to the relationships between all our ecosystem variables and aridity, and used the Akaike 260 

information criterion (AIC) to decide the model that provided the best fit in each case. This 

criterion penalizes model fit when more parameters (as used in non-linear regressions) are used, 

so that the most likely model has the lowest AIC value (104). In general, differences in AIC 

higher than 2 indicate that the models are different (104). The linear model is the null hypothesis 

and assumes a gradual response of a given ecosystem attribute in response to increases in aridity. 265 

Quadratic and GAM models evidence a nonlinear but continuous trend throughout the aridity 

gradient. We chose quadratic to synthetize the simplest case of nonlinear trend, and GAM to 

summarize more complex trends (through smoothing parameters, 103). 

 

Thresholds detection 270 

Only when non-linear regressions were a better fit to the data, thresholds may be present. 

Therefore, we explored the presence of thresholds only when non-linear models were a better fit 

to the data. We did so because threshold models (e.g., segmented, step and stegmented 

regressions) force the existence of at least one threshold, and therefore applying these methods to 

relationships that best fit linear regressions will lead to over-fitting and the detection of spurious 275 

thresholds. We typified the responses of a non-linear trend by actively searching the two types of 

thresholds according to the definition of Groffman et al. (17): continuous and discontinuous. 

Following this definition, we consider a threshold as the point in aridity in which a given 

variable either changes abruptly its value (discontinuous threshold, or breaking point) or its 

relationship with aridity (continuous threshold). Continuous thresholds may be well fitted to 280 

segmented regressions (i.e. a linear regression that modifies its slope at a certain value of the 

predictor, or threshold, 105). Also, when fitting segmented regressions to models that are better 

fitted to smooth nonlinear continuous trends (such as models that best fit GAM regressions), 

segmented regressions evidence the point of maximum curvature of the fit. This point can be 

considered a threshold in the sense that it shows a peak of change in the response of the variable 285 

to aridity, even if the fit of segmented regressions is poorer than that of GAM or other nonlinear 

models. Discontinuous thresholds attain an overall change in the intercept, apart from the slope, 

and may be fitted to either step (linear regression that changes only intercept at a given point or 

threshold) or a combination of step + segmented regressions (stegmented; exhibits changes both 

in intercept and slope at a given point or threshold, 106, 107). 290 

Thus, on those variables that were better fitted by either quadratic or GAM models than by linear 

models, we fitted segmented, step and stegmented regressions. Each of these models renders a 

parameter describing the point in the predictor (aridity) that evidences the shift in the relationship 

(in slope, intercept or slope + intercept for segmented, step and stegmented regressions, 

respectively). We consider this point as the threshold in a given non-linear relationship 295 

evaluated. To select among the three thresholds yielded by segmented, step and stegmented 

regressions, we used AIC criteria to choose the model that best fitted the data. If GAM 
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regressions where the best model when compared to threshold models, we reported so (Table S2) 

and selected the threshold yielded by segmented regressions to evidence the point of maximum 

curvature of the regression. In the particular case that there are clearly two curvatures in a 300 

nonlinear regression (e.g., those that would better fit cubic regressions such as is occurring in 

photosynthetic efficiency at the species level, Fig. S4) we also fitted a segmented regression with 

two thresholds. We did so because these trends evidence the existence of two thresholds in the 

same dataset and, therefore, the best fit cannot be performed using approaches best suited for the 

presence of a single threshold. To obtain the variance associated to each threshold, we performed 305 

200 bootstrap samplings on each database, thus allowing us to find a set of 200 plausible 

thresholds for each variable. For the probability of occurrence of shrublands variable (that is 

categorical), we conducted the same methodology described above but using generalized linear 

models with a binomial distribution link-function.  

We used the same analytical approach for variables obtained from interpolations, albeit in these 310 

cases the bootstrap procedure was performed by selecting subsets of data. We did so because the 

chnpt package (used to fit stegmented and step regressions) is not efficient with very large 

datasets due to the immense amount of permutations necessary. Additionally, we enforced 

homogeneous distribution of aridity levels when running this bootstrap procedure with remote 

sensing variables. This is important because the sampling design for remote sensing variables is 315 

spatially homogeneous. Thus, points located at certain aridity levels may exert a major influence 

in the trend just because of the different geographical coverage of different aridity levels (e.g., 

because there are more areas in the globe with an arid than with a dry-subhumid climate (2) more 

points have been sampled in arid areas, and this may influence the overall trend of the 

relationships). To correct for this issue, we divided the dataset according to aridity in windows 320 

taken each 0.005 aridity units (168 windows), and we subsampled 100 points in each window. 

By doing so, the bootstrap subsampling in which regressions are fitted is built with homogeneous 

distribution of aridity levels.  

Finally, although threshold regressions work well for identifying breaks in continuous trends, 

there is one case in which they fail to evaluate them: when the variable of interest follow a 325 

bimodal distribution. In this case, and because the linear regressions that underlie them rely on 

changes of the mean, threshold regressions fail on detecting changes in the mode. These trends, 

in which modes of a variable are interchanged through a gradient (here aridity) and usually 

overlap for a certain gradient range, are the common expected output of variables following 

catastrophic shifts (108ï110). Hence, they are meaningful to infer potential abrupt changes. It is 330 

important to note, however, that these regressions do not necessarily evidence critical shifts, for 

which time-series analysis are necessary. In these cases (stability of soil aggregates, soil organic 

carbon; both from field and remote sensing; soil organic nitrogen, albedo, plant cover, NDVI and 

sand content; see Fig S8), the analysis needs to focus on the central tendency of the variable, 

rather than on the mean, to spot abrupt changes in the most common values within the data. 335 

Thus, in the cases where a bimodal distribution of the variable was present (as evaluated by 

gmdistribution.fit function in MATLAB), we changed the threshold regressions (segmented, step 

and stegmented) to use quantile regressions instead of regular linear ones when finding the 

threshold value. Quantile regressions correct the maximum likelihood estimation of linear 

models, which rely on ordinary least squares of the residuals, to track a specific quantile of 340 

distances with residuals of the estimated trend (111). If quantile regressions are tuned to match 

the median, they effectively track the central tendency of the variable along with the predictor 

and this allows estimating thresholds in variables that overlap for a given range of X-axis values 
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(see Supplementary text for details). Additionally, quantile regression has important advantages. 

First, it down-weights outliers, which have a large influence on the detection of thresholds (112) 345 

and are not easily identified in vast datasets (113). Second, quantile regressions have been 

proven successful to relate variables with an unequal variation of one variable for different 

ranges of the predictor (111), something common in some of our variables. It is worth noting that 

when ecosystem attributes follow more normal-like distributions and meet assumptions of 

homoscedasticity along the aridity gradient, fitting quantile regressions will be analogous to 350 

fitting common linear regressions. 

We used the chngpt (106) and gam (103) packages in R (114) to fit segmented/step/stegmented 

and GAM regressions, respectively and the segmented package (105) to fit segmented 

regressions with two thresholds (in the case of photosynthetic efficiency). 

Using other criteria than AIC to select the best models such as the Bayesian Information criterion 355 

(BIC) did not affect our results except for fungal animal pathogens (Table S2). In this variable 

the best model suggested by BIC was step regression, whereas that suggested by AIC was 

stegmented. However, the thresholds found in both models were indistinguishable (0.796 c.f., 

0.798; ANOVA F1,398 = 0.1194, P value = 0.729).  

An analysis of the semivariograms for the residuals of all the variables analyzed showed very 360 

low spatial autocorrelation in our results (Fig. S9). We must note, however, that some variables 

such as soil organic carbon, soil nitrogen, sand content, precipitation interannual variability, 

albedo, NDVI or fractional cover, show patterns that may indicate some minimal autocorrelation, 

with a characteristic scale of 30km. To ensure that this was not influencing our results, we 

recalculated the thresholds for these variables by masking out points that where closer than 30km 365 

from others. Results showed that the threshold values were almost identical to the ones 

previously calculated (Table S3), thus this issue do not affect conclusions of the paper. 

 

Validating the significance of the thresholds identified 

To further test whether the thresholds identified significantly affected the slope and/or intercept 370 

of the fitted regressions, we bootstrapped linear regressions at both sides of each threshold for 

each variable. We then extracted the slope and the predicted value of the variable evaluated 

before and after the threshold and compared them using a Mann-Whitney U test. In all cases, we 

found significant differences in at least one of these two parameters (Figs S2 and S3). 

 375 

Building homogeneous groups of thresholds 

Once all threshold values were extracted and validated, we performed cluster analysis on the 

bootstrapped thresholds to evaluate whether or not we could organize them in groups or phases. 

We used the Elbow method (115) to find the number of optimum homogeneous groups of 

thresholds. This methodology analyzes the within clusters sum of squares for several clusters 380 

(from 1 to 14). The optimum number of clusters is identified with the broken stick method (i.e., 

the number of clusters from which variance absorbed tends to an asymptote). We identified three 

clusters (Fig. S10), with centroids on aridity values = 0.54, 0.69 and 0.84 corresponding to each 

of the phases reported in the main text (i.e., vegetation decline, soil disruption and ecosystem 

collapse).  We assigned variables to the three phases mentioned in the text based on the most 385 

common cluster assignment of their thresholds. We used the cluster centroids as the aridity 

threshold identifying the phase (to be used in the predictions reported in Fig. 3). These three 

phases and their associated aridity values were very similar when analyzing differences in the 
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thresholds found for each pair of variables using the Mann-Whitney U test (with each of the 20 

ecosystem structural and functional features included as a factor and the bootstrapped threshold 390 

values as response variable; data not shown). 

 

Maps for future predictions 

We used the aridity maps provided by Huang et al. (3) to locate those areas that are likely to 

cross the main aridity thresholds identified due to ongoing increases in aridity driven by climate 395 

change. As thresholds to be evaluated, we selected the three groups found in cluster analysis 

explained above. Extrapolations extracted from these maps provide a widely recognized prospect 

for aridity trends until 2100 using two different scenarios (Representative Concentration 

Pathways [RCP] 8.5 and 4.5, inferring exponential and saturated increases of CO2 emissions 

respectively, see ref: 116).  400 

It is worth noting that the results of this exercise are temporal extrapolations of results obtained 

using spatial gradients, and therefore constitute what is known as a space-for-time substitution 

approach (117). The use of this approach is common in ecology (118ï120), as it allows to infer 

hypotheses related to temporal changes when temporal series are not available or do not suffice 

to cover processes that operate at very slow temporal rates (117, 119). While space-for-time 405 

substitutions have been proven successful in some situations (121), they have also been criticized 

as spatial gradients may include drivers different than those driving temporal changes in 

ecosystem variables and do not include adaptation of ecosystems to the new environment (122, 

123). The interpretation of these results, thus, must consider this limitation. For instance, 

prospects in areas that are not drylands today, which delimit the spatial extent of the data used in 410 

our analyses, are extrapolations. These extrapolations may be unreliable due to, for example, the 

importance of environmental variables other than aridity (e.g., temperature in the case of boreal 

forests) as drivers of changes in the ecosystem attributes investigated. To acknowledge this, 

areas crossing the aridity thresholds identified in our study in the future but that are not drylands 

today are made transparent in Figs. 3 and S7. Due to the uncertainty surrounding these results, 415 

they should be interpreted with caution. We present in the manuscript results from RCP 8.5 

scenario, but those from RCP 4.5 can be found in Fig. S7. 

 

Data accessibility 

All analyses were performed using R (114). The codes used as well as the data extracted are 420 

available from ref. 124.  
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Supplementary text: On the relevance of tracking the central tendency to identify 

thresholds in bimodal variables 

Introduction to the problem and its relevance 425 

There is a particular case in which threshold models (segmented, stegmented and step models) 

fail to identify the threshold of a variable of interest (here ecosystem features) through an x-axis 

variable (here aridity). This occurs when the variable of interest exhibits two trends that overlap 

in a certain range of x-axis conditions. Situations like this are important, as they exemplify 

circumstances in which the variable of interest changes its mode through the x-axis but not the 430 

mean of overall values. These cases match what is expected when the variable of interest follows 

two regimes that co-exist for a certain range of conditions (summarized by the x variable). For 

instance, the existence of different stable states has been hypothesized to follow these trends 

(109). In these cases, the dynamics of the system exhibit two attractors whose stable states 

coexist for a certain range of x conditions as is the case of systems exhibiting critical transitions. 435 

Other situations may also yield coexisting regimes without meaning that these states are 

interchangeable through time (e.g., the existence of savannas or different types of forests 

depending on temperature or soils). These overlapping states, are anyway different regimes and 

the fact that they change abruptly through increases in the x-axis is relevant to study, even if it is 

not possible to infer temporal changes or catastrophic shifts. Therefore, the finding of the 440 

threshold in which modes of variables of interest change is important to track the possibility of 

their existence through the x-axis. In particular, in these situations, we are interested in the 

threshold from which a shift between regimes is more likely to occur, and those are better 

exemplify by the changes of the mode (or the central tendency) than by changes in the mean 

values of the variable of interest. 445 

 

Fitting bimodal data 

The chngpt R package (106) fits two glm regressions to the data using different thresholds and 

finds the threshold that minimizes OLS residuals. This would show greater uncertainty when 

there is an overlap in values of Y for a given value of X (aridity in our case), which is what 450 

would be expected in a hysteresis-type response (109). Stegmented regressions calculated using 

OLS, as implemented in the chngpt R package, rely on the mean of least squares, and this mean 

is biased by the increasing number of outliers found when two levels of Y overlap under a given 

range of X. As a result, applying mean least squares residuals in variables that follow two 

regimes that overlap for a certain range of the x-axis often results on detection of the threshold at 455 

the point in which the overlap zone starts or finishes (Fig. S11A). To minimize this issue is why, 

we used quantile regressions. Quantile regressions weight the residuals to fit the central 

tendency, thus correcting for the bias and finding the optimum fit in the proper aridity value (Fig. 

S11B). To do so, we developed a custom function that works similarly to the chngpt original 

function, but uses quantile regression instead of linear models.  460 

 

Example with soil organic carbon data 

We illustrate this point with our soil organic carbon data. When using regressions based on linear 

OLS, we found a (soft) threshold around 0.6 (where a smooth change in slope is detected in the 
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smoothed values shown in Fig S12A). However, when applying quantile regressions, we found 465 

that there is a clear threshold at aridity = 0.7 instead of 0.6 (see both fittings at Fig. S13). 

 

The aridity value of 0.7 matches the threshold found using the Livina and Lenton´s approach 

(109, Fig. S14), which was designed precisely to study bi-stable states and uses potentials (based 

on data points distribution) to track exactly the central tendency of the data. The threshold at 0.7 470 

also matches the shift in soil C values seen when smoothing the data using the median instead of 

the mean (Fig. S12 B), minimizing the increasing uncertainty caused by overlap in Y values 

under this type of behavior.  
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 475 

Fig. S1. Location of the data points used in the study.  

A: variables obtained from a global field survey (species richness, stability of soil aggregates, 

ratio of positive vs negative plant-plant interactions, plant effects on soil organic carbon; specific 

leaf area; soil organic carbon from field studies, abundance of microbial OTUs and relative 

abundance of fungal groups); B: variables obtained from global maps and interpolations (albedo, 480 

vegetation fractional cover, coefficient of variation of interannual precipitation; NDVI; soil 

organic carbon and nitrogen from remote sensing, sand content, shrubland occurrence and 

vegetation sensitivity index): C: variables from functional traits databases (photosynthetic   

efficiency and nitrogen content in leaves).  
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 485 

Fig. S2. Differences in the predicted value of the variable at the aridity threshold. 

Violin diagrams showing bootstrapped predicted values of each variable at each side of every 

aridity threshold found in the study (red: regression before the threshold; blue, after the 

threshold). Asterisks indicate significant differences when conducting a Mann-Whitney U test 

between before and after the threshold where: ; *= P value >0.05; **= P value >0.01; ***= P 490 

value <0.01.  n.s.= not significant. SOC = soil organic carbon; NDVI: Normalized difference 

vegetation index; Photosynthesis (1 or 2) indicate the two thresholds found for photosynsthesis 

under controlled conditions. 
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 495 

 

Fig. S3. Differences in the slope at both sides of the aridity threshold. 

Violin diagrams showing bootstrapped values of the slope of the two regressions existing each 

side of every aridity threshold found in the study (red: slope before the threshold; blue, after the 

threshold). Rest of legend as in Fig. S1.  500 
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Fig. S4. Additio nal example of ecosystem attribute (photosynthesis measured under 

controlled conditions) showing non-linear responses in the vegetation phase. 

Rest of legend in Fig. 2. 

 505 
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Fig. S5. Additional examples of ecosystem attributes showing abrupt responses in the soil 

disruption phase. 

A: vegetation sensitivity to climatic disturbance (Vegetation sensitivity index); B: soil aggregate 510 

stability; C: soil nitrogen content interpolated from global maps; D: probability of occurrence of 

shrubland vegetation; E: clay and silt content in soils; F: soil organic carbon obtained from 

standardized field surveys; G: microbial abundance of soil fungi; H: positive/negative plant-plant 

interactions ratio estimated from co-occurrence networks; I: relative abundance of 

ectomycorrhizal fungi. Rest of legend as in Fig. 2.  515 
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Fig. S6. Additional examples of ecosystem attributes showing non-linear behaviour during 

the systemic collapse phase. 

A: Relative abundance of fungal animal pathogens; B: community weighted mean of specific 520 

leaf area; C: white sky albedo; D: precipitation inter-annual variability. Rest of legend in Fig. 2. 
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Fig. S7. Areas of the globe that will cross each of the thresholds described (or several of 

them) under the RCP4.5 scenario, which assumes an asymptotic increase of CO2 emissions. 525 

Rest of legend as in Fig. 3. 

  


