10

15

20

25

Science

AVAAAS

Supplementary Materiafer
Global ecosystem thresholds driven by aridity

Miguel Berdugo, Manuel Delgae®aquerizo, Santiago Soliveres, Rocio Hernardiemente,
YanchuangZhao, Juan J. Gaitan, Nicolas Gross, Hugo Saiz, Vincent Maire, Anika Lehman,
Matthias C. Rillig, Ricard V. Solé and Fernando T. Maestre

Correspondenc®: mglberdugo@gmail.com

This PDF file includes:

Materials and Methods
Supplementary text
Figs.S1to S14

Tables S1o S3


mailto:mglberdugo@gmail.com

30

35

40

45

50

55

60

65

Materials and Methods
Datacollection

We used multipleglobal data sources (interpolated and remote sensing data, standardized field
surveys and individual plant measuremenit¢ained in the laboratory), which are described in
detail below.The databases chosen comprise the widest observational database on global
drylands to date (BIOCOM), complemented with observations from physiological functional
traits (20, 31) which are nowell represented in BIOCOM. Also we retrieved map information to
complement these variables (albedo, NDVI, VSI, shrubland occurrence and coefficient of
variation of interannual precipitation) or to complete key information available in BIOG@M

that mssed important dryland areas of the wdki@getation Cover, SOC, soil nitrogen and sand
content). The variables were selected based on their importance as surrogates of key ecosystem
attributes/processes such as nutrient cycling, plant productivity, iampdpiotic interactions,
biodiversity and climatic patterns. Together, the variables selected characterize three major
ecosystem components/processes (soils, plants anesplamiteractions) that largely determine
ecosystem functioning and its capacity provide essential ecosystem services such as soil
fertility and plant productivity. The variables selected are also often used to monitor soil health
and land degradatiori6, 32, 33), and are thus of particular relevance to scientists and
stakeholderslike.

Interpolated and remote sensing data

We gathered interpolated and remote sensing information from freely available global maps (see
list belowand Table SI Measurementfom thesemaps werebtainedby taking data from a

point every 30 areninutes. This yielded a total of 500,000 sampling points, from which we
discarded allof thosenot falling in terrestrial ecosystems classified as drylands (i.e., those
scoring aridity index = Annual precipitati@mnual potential evapotranspiration lower than 0.65
34). The aridity index has been proposed by F@3) and is widely used both in the current
scientific literature(8, 35, 36) and in management/policy activities related with desertification
and land usenanagemen(6). This metric is also commonly used to frabwth the current(2)

and future(3, 37) extensionof global drylands. The aridity index was obtained from the global
maps of Zomer et dB88), which provides the averaged aridity index of the ped8706200Q

and has a spatial resolution of 30-aexonds. Apart from sites not classified as drylands, we also
removed those points that had ever been classified as urban, cultivated lands or water bodies in
the land use and land cover maps provide#AQ (39, also with a spatial resolution of 30 arc
seconds). We did so to avoid outliers coming from agricultural or urban lands, as changes in the
variables recorded in these areas are more likely to be driven by the direct impact of human
activities thanby changes in aridity. A total of 51,013 points remained for our analyses; these
encompass a regularly spaced grid of sites summarizing all possible environmental situations
found in global drylands. From these points, we extracted the follanfogmation:

Soil variables We extracted the following soil variables from ré@: carbon content, which is
strongly related to soil fertility and water retenti¢fl), nitrogen content and silt and clay
content. These measurements are extrapolations from soil classificatioaseadrected by
environmental andtherlocal conditions (see red0for details).



Plant productivity- We used the Normalized Difference \&ation Index (NDVI) as a

70 surrogate of plant productivity. NDVI is an index that combirtee spectral reflectance
measurements acquired in the red (visible) and-imdéared bandsand provides a global
measure of the fAgreenrfagsdsd 6cf UKndByisicmgiéeddon acr o
vegetation productivity because it indicates the photosynthetically active radiation absorbed by
plant canopieq44, 45). NDVI data for each plot were acquired from two sources: i) the

75 MOD13Q1 product from 1 Moderate Resolution Imaging Spectroradiometer (MODIS) sensor
(46), which provides 23 images per year (every 16 days) with a pixel size of 250 m x 250 m
(https://modis.ornl.gov/data.htinédnd ii) the Land4a5 TM and Landsat 7 ETM+, with a pixel
size of 30 m x 30 m (https://landsat.gsfc.nasa.gov/). Landsat imagery was processed to surface
reflectance using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)

80 atmospheric correction algorith(d7). This algorithm is designed to work with Land&ato 8
products using the spectral response functions developed for the Terra MODIS ins{d8nent
MODIS data are geometrically and atmospherically corrected and include a reliability index of
data gality based on the environmental conditions in which the data were recorded and ranging
from 0 (good quality data) to 4 (raw or absent dé48). At each point, we calculated the mean

85 annual NDVI for each year between 2000 and 2015 and then averaged for the entire period; for
that, wediscardedhe data with MODIS reliability index >NDVI estimates from MODIS and
LANDSAT were very similar(r = 0.85). Hencewe report results from MODIS because data
from this satellite matches more closely the spatial resolution of the aridity interpolations used.
Vegetationfractional cover- NDVI may saturate at very low vegetation fractional cover due to

90 the exstence of high solar reflectance in the $4R). Thus its signal is less reliable in zones
with very low vegetation cover. For these cases, MODIS provides a product of vegetation
fractional cover estimation (MOD44B50) by making corrections using a niéme-learning
process with proven small err(80). We used MOD44Bo extract vegetation fractional cover
estimationg(tree + nortree vegetation coverand further crossalidated it with otheremote

95 sensing product the Global Bare Ground circa 10 (51, accessed from
www.landcover.usgs.gov/gic This database, whichrovides better spatial resolution using
LANDSAT 7 ETM+ data, yield very similar resultgo those provided by MOD44B = 0.94).
Again, and for the same reasons noted abaxekept MOD44B extractions as measurements of
thefractional cover of vegetatioitt is worth noting that issues related to the ability of MOD44B

100 to detect trees with less than 5 m (which has raised some recentidigcb®s53) do not affect
our results because we used the sum of tree “treercover layers.
Albedo - Albedo refers to the sunlight reflection to the atmosphere after reaching Earth.surface
It is related to soil typology, vegetation cover and topograf@#i 56). It correlates with
ecosystem functioningn drylands(57) and has important feedbacks on clim@®). The actual

105 land surface albedo may also be influenced by atmospheric conditions, the season of the year and
the zenithal position of the syB8). To avoid problems with the atmosphere and solar zenithal
position, we used white skglbedo (WSA) It occurs in the case of completely diffuaad
isotropicillumination, i.e.,whenlight from all directions is the same. We extracted WSA in the
shortwave spectral domain (i.e., ©3um) from MODIS MCD43B3 BRDF/Albedo Model

110 Parameters Product (Collection &9). This is calculated bysing theRossThickLiSparse
Reciprocal (Rossi) BRDF mode] and is independent of the atmosphere and solarhzénit
position (54). To avoid problemselated to seasonal differences in alhede calculatedVSA
from May to September in the northern hemisphere, and from November to March for the
southern hemisphere. We averaged values on & yessis fo the period20002015.



https://modis.ornl.gov/data.html
http://www.landcover.usgs.gov/glc

115

120

125

130

135

140

145

150

155

160

Land use type(shrublands) We extracted vegetation types using the maps provided by FAO
(39), which were also used to remove agricultural and urban landscapes in a previous step. We
did so to classify each site regarding the dominant plant ferg,forest, grassland, shrubland,
savanna). As explained above, FAO maps provide detailed information on vegetation types from
2000 to present. When changes in the dominant vegetation had occurred in time, we kept the
most representative (i.e., the ¢htype recorded during most yedos the period 2002015 for

each siteln particular, we were interested on the occurrence of shrublands, which have been
associated with processes of encroachment with increasing g@dity Thus, we created a
binary variable with values 1 (when FAO maps classified a given site as open or dense
shrubland) or 0 (when a site was covered with any other vegetation type). Desert states, which
are devoid of perennial vegetation, were excluded for the analysis of this @ariabl

Vegetation sensitivity index (VSI)- This index is extracted from Seddon et @5), and
measures the sensitivity of vegetation concerning climatic fluctuatiémis.doing so, VSI
guantifiesthe ratio of change of enhanced vegetation index (BEWEgeation index verysimilar

to NDVI, 60) divided by precipitation and temperature changes within a(jlean averaged for

the period 2002013. This index is an important component of vegetation resilience (ability to
remainundisturbed with climatic fluctuationsgnd thus summarigs an important dynamical
component of the ecosystem by assessing the relative response ratgedétion to
environmental variability.Values of VSI hada spatial resolution of &m (around 2.5 &
minutes).

Inter -annual precipitation variability - As rainfall is extremely variable in drylandand it is
expected to become even more variable with climate ch&hge6l, 62), we extracted
precipitation variability as an important metrictbe unpredictableclimatic conditionsfaced by
theseecosystemg63). We calculated annual precipitation for each year and then derived the
coefficient of variation (standard deviation/mean) among ygasod 20062015 usingdata

derived fromthe Climatologiest Hi gh resol ution for 64d&t&8 Earth
arcsecsspatial resolution.The CV of rainfallis widely used to obtain estimates of precipitation
interr-annual variability and has certain values (~ 30%) considered critical for thebaguailiof

grazing area¢65, 66), which are key for the livelihoods of dryland populations in developing
countries(67, 68). It has been suggested that areas watlnes of this CVhigher than 30% are
non-equilibrium ecosystems, in which the carrying capacf the ecosystem to grazing
fluctuates in a way such that herbivores need to accommodate their population each year due to
these fluctuation&65, 66).

Standardized field surveys

We used data from a standardized field survey conducted atrga®d ecosystems worldwide
(21 countriesfrom six continents14, 69). These siteencompass all dryland subtypes except
hyperarid, andspan a wide range of environmental conditions and vegettidsoiltypes(14,

69). In brief, vegetationwas sample in situ at each siteusing four 38m long transects
interspaced 8 m from each other. Alongsih transectsadjacent quadrats of 1.5 by 1.5were
located,and the relative cover of each species on each quadsaneasured80 quadrats per
site were swreyed) Also, five compositesoil samples .5 cm depthpeneath the dominant
plants and otherfive in bare ground areas devoid of vascular vegetatiere collectedThese
soil samplesvere dried and shipped to the laboratory of Rey Juan Carlos Urtivékdostoles,
Spain) for analyss. See ref 69 and14 for additional details on the field survey and the handling
of soil samplesWe completed the data fromighglobal survey with data from independent
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sources obtained using comparable survey methodologies. For instance, microbial abundance
and fungal functional types were expanded adding sites from Australia (see unpublished data in
ref: 70). Soil carbon data were expanded by adding plots from Aus{rdljaand NorthAmerica

(72). In all caseswe used data collected with standardifiettd and laboratory protocols to
ensuretheir comparability(73). Overall, the variables fromfield surveys included in this study

are the following:

Soil organic carbon (N = 627} Measured by colorimetry after oxidation with a mixture of
potassium dichromate and sulfuric a¢idd) using samples coming frorbare groundareas

devoid of vascular vesgation.

Vegetation effect on soilgN = 204} Vegetationcanmodify its envionment at local scalesa

its effects on soilg24, 75/ 77). Indeed, sils under plant canopies in drylands typically show
increased nutrient contents and biological activity compared to adjacent bare ground areas (the
socal |l ed dAf ert 76 V8. We assesseditheffect leyfcdicalating the differences

in soil organic carbon undgrlant canopies and adjacdmreground areas each of the sites
surveyed.Thus, this metric measures the net soil organic carbon gain in microsites oeitared
vegetation regarding bare ground microsites.

Plant-plant interactions (N = 185} The use of spatial pattesas a proxy for biotic interactions

has been widely used in plant ecology, particularly in drylands where biotic interactions produce
a strong spatial sign&r9i 81). We approximated the type (positimegative) and dominance of
plantplant interactions uisg spatial network analyses of the vegetation surveyed as described in
Saiz et al(82). In short, we assessed the mean link weight distribution in the community using
co-occurrence matrices of the species for each site. This index represents the dtypeaft

spatial pattern in the community, with value0>and < O indicating spatial aggregation and
segregationrespectively To account for the effect of species abundance distribution, for each
site the index was calculated as the difference betweerolbserved value and the expected
value calculated from 2000 networks generated by randomizing the spatial distribution of
abundances at the site. The occurrence of species and their relative abundances were extracted
from the 1.5 x 1.%n quadrat samplesurveyed in the field.

Stability of soil aggregaes (N = 220) Soil aggregation is a key structural parameter with
important implications forsoil fertility and erosion resistano®3). We measured the size
distribution of soil aggregates, expressed ag timeean weight diametegs a proxy of this
feature. We did sby using a modified protocol by Kemper and Rosef@). Briefly, the pre

sieved samples (2 mm) were passed through a stack of four sieves (1, 0.5, 0.212 and 0.053
mm) hence separating theilsato five fractions of decreasing particle size. To avoid abrasion,

we vertically moved the sieve stack four times to allow the soil aggregates to separate through
the different mesh size®Veights of the different fractions were calculated as the rdesmneter

of each fractions weighted by the proportion of total soil mass of the size fragi@uing so

the mean weight diameter (in mm) increases with increasing amounts of large aggregates in a
sample.

Soil microbial communities (N = 100} Soil DNA was extracted from 0.25 g of defrosted soil
samples using the Powersoil® DNA Isolation Kit (Mo Bio Laboratories, Carlsbad, CA, USA).
The total abundance of bacteria and fungi was quantified using ge€heEub 338Eub 518

and ITS 15.8S primer setsas described imef (85). To characterize the relative abundance of
fungal functioral groups, amplicon sequencimgas conductedising lllumina MiSeq platform

(86) and the FITS7/ITS4 primer s¢87, 88). Bioinformatic analyses were conducted using
UPARSE(89) and MOTHUR(90). Operational Taxonomic Units (OTU) were picked at 97%
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sequence similarity. Taxonomy was assigned to OTUs in MOTHUR using the UNITE version 6
dataset(91). The resulting OTU abundance tables were rarefied. We identified these fungal
functional groups (e.g., fungal pathogens, saprobes, mycorrhizal fungi) using FUNG@R).D

We calculated the relative abundance of each functional group as the sum of the relative
abundance of taxa within each fungal group, as descrilred B8.

Plant species richness(N = 236) Plant species richness is of paramount importance to
ecosystem functionings9) and stability(94) in drylands. We estimated this varialfte each

site as the total number of plant species found in the 80 1.5m quadratsamples surveyed.

Plant functional traits at the community level (N = 119)- We assessed the specific leaf area
(SLA) of perennial vascular plantsalculated as the ratio between the weight of a leaf and its
area by extracting tksedata from global dasets and local floras (see more details in 26f.

Thisis a trait summarizing the resource economic spectrum of plant Jeaespposing leaves

with high metabolic activity, weak stregsderance and low lifespan to the opposite syndrome
(95, 96). In particular, SLA tends to decrease with increasing aridity in drylasdsnaller and
tougher leaves endureetter water scarcity conditiong20, 97, 98). Under extreme aridity
conditions, plants may also increase SLA by producing lighter leaves, wladhoargood to
endure water scarcity periods but that are easy and less costly to produce, thus can be fast
growing during the periods of favorable photosynthetic agtiéfter sporadic raing1, 29, 99).

These leaves might be discarded afterwards, toumsiguring a strategy of stress avoidance.
Using the recorded abundance of each species, we estimated the corweigtited mean of

SLA thatreflects the most dominant plant functional strategy within commun(ties).

We completed our information on plant functional traits using photosynthetic fratasthe
database created by Maire et §0) and Wang et al.(31). Both datasets provide a
comprehensive (more than 10,000 individual records of 809 plant species) adarditzed
measurement of the photosynthetic activity and leaf N contentasularplants from all
biomes but t is biased towards dryland ecosystems. We discdrdedboth databases plants
thatdid not come fromdrylandareas giteswith aridity index> 0.65). For the rest (N = 1,903),

we focused on two key functional traitgght-saturated photosynthetic raaed leaf N content
Details on the methods to assess both traits can be found i20Ordh brief, ight-saturated
photosynthetic raterasmeasired on leaves enclosed into a chamber that medsemming and
outgoing CQ and HO fluxes underoptimal light conditions (while other environmental
conditions are kept to ambient conditions). Leaf nitrogen content is the percentage of nitrogen
mass inrespect to dry leaf weight. As nitrogen is a major compound in the composition of
photosynthetic enzymgg0), this functional traitis directly related to potential photosynthetic
activity. In addition, nitrogen content in green leaves is a good proxytroDen remaining in

leaf litter after senescence period. As such, it can also be considered as a key parameter affecting
leaf decomposition through the regulation of microbial acti{@g/, 102).

Dataanalyses

Before data analysis and fonap attributes, we first matched the spatial scales of assessed
metrics. To do sowhenmetrics were of broader resolution than aridity (i.e30>arcsec),we
matched the spatial scales by taking the mediaridity indices within the spatial extent thfe
response variablée.g., 5km in vegetation sensitivity indexyVhenecosystem attributes had

better resolution thathe aridity index (e.g., NDVI)we used again the aggregated median of the
attribute to match the scale of the aridity index (3Gsaes). Other aggregation methods (such as
the mean or the maximum value) or taking the centroid value of the coarser pixel yielded very
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similar results (correlation between aridity values estimated with different interpolations was
always > 0.98). Furtharore, the same best model and threshold values were chosen regardless
of the interpolation method useds;@dgs = 1.368/1.271; P value = 0.25/0.28 for Vegetation
sensitivity index/NDVI variables respectively).

Evaluation of linear and netinear responsg to aridity

We fitted linear and nofinear (quadrati@and general additive mode[$SAM] 103 regressions

to the relationships betweeall our ecosystemvariablesand aridity, and used the\kaike
information criterion (AIC) to decide the model that proed the best fit in each caskhis

criterion penalizes model fit when more parameters (as used ilinean regressions) are used,

so that the most likely model has the lowest AIC vdll@4). In general, differences in AIC

higher than 2 indicatthat themodels are differen{tL04). The linear model is the null hypothesis

and assumes a gradual response of a given ecosystem attribute in response to increases in aridity.
Quadratic and GAM models evidence a nonlinear but continuous trend throughout thye aridit
gradient. We chose quadratic to synthetize the simplest case of nonlinear trend, and GAM to
summarize more complex trends (through smoothing paramedss

Thresholds detection

Only when nontlinear regressionsvere abetterfit to the datathresholds may be present
Therefore, we explored the presence of thresholds only whetingam models were a better fit

to the data.We did so because threshold modéésg., segmented, step anstegmented
regressionsforce the existence of at leasteotireshold, and therefore applying these methods to
relationships that best fit linear regressionk lead to overfitting and the detection of spurious
thresholdsWe typified the responses of a nrtinear trend by actively searching the two types of
threshold@ according to the definition of Groffman et &l7): continuous and discontinuous.
Following this definition, we consider a threshold as the point in aridity in which a given
variable either changes abruptly its value (discontinuous thresholokeaking point) or its
relationship with aridity (continuous threshold). Continuous thresholds may be well fitted to
segmented regressionse( alinear regression that moat itsslope at a certain value of the
predictor, or threshol|dL05). Also, when fitting segmented regressions to models that are better
fitted to smooth nonlinear continuous trends (such as models that best fit GAM regressions),
segmented regressions evidence the point of maximum curvature of the fit. This point can be
considered s¢hreshold in the sense thashiowsa peak of change in the response of the variable

to aridity, even if the fit of segmented regressions is poorer than that of GAM or other nonlinear
models Discontinuous thresholds attain an overall change in the eémtigrapart from the slope,

and may be fitted to either step (linear regression that changes only intercept at a given point or
threshold) or a combination of step + segmented regressions (stegnesthibds changes both

in intercept and slope at a givpaint or threshold106, 107).

Thus, a those variables thaterebetter fittedby either quadratic or GAM modethan by linear
models we fitted segmented, step and stegmented regressions. Each of these models renders a
parameter describing the pointtive predictor (aridity) that evidences the shift in the relationship

(in slope, intercept or slope + intercept for segmented, step and stegmegtedsions,
respectively). We consider thispoint as the thresholdin a given norinear relationship
evaluated To select among the three thresholds yieldgdsegmented, step and stegmented
regressionswe used AIC criteria to choose tmeodel that best fitted the data. If GAM

7
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regressions where the best model when @wegpto threshold models, we reported so (Table S2)
and selected the threshold yielded by segmented regressions to evidence the point of maximum
curvature of the regressioin the particular case that there are clearly two curvatures in a
nonlinear regreson (e.g., those that would better fit cubic regressions such as is occurring in
photosynthetic efficiency at the species level, B we also fittech segmented regression with

two thresholds. We did doecause thesteends evidence the existence wbtthresholds in the

same dataset and, therefore, the best fit cannot be performeappnogches best suited for the
presence of a singtbreshold.To obtain the variance associated to each threshold, we performed
200 bootstrap samplings on each dasabahus allowing us to find a set of 200 plausible
thresholds for each variabl€or the probability of occurrence of shrublands variable (that is
categoricgl, we conductedhe samemethodology described above but using generalized linear
models with a imomial distribution linkfunction.

We used the sanmanalyticalapproachfor variables obtained from interpolatiorabeit in these

cases the bootstrap procedure was performed by selecting subsets Wfeddid so becaudbe

chnpt package(used to fitstegmented and step regressiomlsshot efficient withvery large
datasets due to the immense amount of permutatiecsssaryAdditionally, we enforced
homogeneous distribution of aridity levels when running this bootstrap procedure with remote
sensingvariables. This is important becaubke sampling desigfor remote sensing variables is
spatially homogeneous. Thymints located at certain aridity levels may exert a major influence

in the trend just because of the different geographical coveragéesent aridity levels(e.qg,
because¢here are more areas in the globe with an arid than with-autityumid climat€2) more

points have been sampled arid areas,and this may influence the overall trend of the
relationshipy To correct for this issy we divided the dataset according to aridity in windows
taken each 0.005 aridity units (168 windows), and we subsampled 100 points in each window.
By doing so, the bootstrap subsampling in which regressions are fitted is built with homogeneous
distribution of aridity levels.

Finally, although threshold regressions work well for identifying breaks in continuous trends,
there is one case in which they fail to evaluate them: when the variable of interest follow a
bimodal distribution. In this case, and besa the linear regressions that underlie them rely on
changes of the mean, threshold regressions fail on detecting changes in the mode. These trends,
in which modes of a variable are interchanged througjnadient (here aridity) and usually
overlap for acertain gradient range, are the common expected output of variables following
catastrophic shift§108 110). Hence, they are meaningful to infer potential abrupt changes. It is
important to note, however, that these regressions do not necessarily evidence critical shifts, for
which timeseries analysis are necessary. In these cases (stability of soil aggremhteganic
carbon; both from field and remote sensing; soil organic nitrogen, albedo, plant cover, NDVI and
sand content; see Fig S8), the analysis needs to focus on the central tendency of the variable,
rather than on the mean, to spot abrupt changese most common values within the data.
Thus, in the cases where a bimodal distribution of the variable was present (as evaluated by
gmdistribution.fit function in MATLAB), we changed the threshold regressions (segmented, step
and stegmented) to use qtige regressions instead of regular linear ones when finding the
threshold value. Quantile regressions correct the maximum likelihood estimation of linear
models, which rely on ordinary least squares of the residuals, to track a specific quantile of
distances with residuals of the estimated tr¢h#ll). If quantile regressions are tuned to match

the median, they effectively track the central tendency of the variable along with the predictor
and this allows estimating thresholds in variables that overtag §oven range of axis values
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(see Supplementary text for detaildgditionally, quantile regression has important advantages.
First, it downweights outliers, whiclhave a large influence on the detection of threshdg)

and are not easily idengid in vast dataset§l13. Second, quantile regressions have been
proven successful to relate variables with an unequal variation of one variable for different
ranges of the predict¢t11), something common in some of our variables. It is worth notiaig th
when ecosystem attributes follow more norntiie distributions and meet assumptions of
homoscedasticity along the aridity gradiefitting quantile regressions will be analogous to
fitting common linear regressions.

We used thehngpt(106) andgam(103) packages iR (114) to fit segmented/step/stegmented

and GAM regressions, respectively and thegmentedpackage (105 to fit segmented
regressions with two thresholds (in the case of photosynthetic efficiency).

Using other criteria than AIC to select the best models such as the Bayesian Information criterion
(BIC) did not affect our results except for fungal animal pathogens (Table S2). In this variable
the best model suggested by BIC was step regression, wihetasuggested by AIC was
stegmented. However, the thresholds found in both models were indistinguishable (0.796 c.f.,
0.798; ANOVA R 393=0.1194, P value = 0.729).

An analysis of the semivariograms for the residuals of all the variables analyzed steywe

low spatial autocorrelation in our results (Fig. S8e must note, however, that some variables
such as soil organic carbon, soil nitrogen, sand content, precipitation interannual variability,
albedo, NDVI or fractional cover, show patterns thay mnaicate some minimal autocorrelation,

with a characteristic scale of 30km. To ensure that this was not influencing our results, we
recalculated the thresholds for these variables by masking out points that where closer than 30km
from others. Results shed that the threshold values were almost identical to the ones
previously calculated (Table S3), thus this issue do not affect conclusions of the paper.

Validatingthesignificance of the thresholds identified

To further test whether the thresholds ideed significantly affected the slope and/or intercept

of the fitted regressions, we bootstrapped linear regressions at both sides of each threshold for
each variable. We then extracted the slope and the predicted value of the variable evaluated
before ad after the threshold and compared them using a Méhitney U test. In all cases, we

found significant differences in at least one of these two parameters (Figs S2 and S3).

Building homogeneous groups of thresholds

Once all threshold values were extracted and validated, we performed cluster analysis on the
bootstrapped thresholds to evaluate whether or not we could organize them in gnoli@sesr

We used the Elbow method 15 to find the number of optimum homogsus groups of
thresholds. This methodology analyzes the within clusters sum of squares for several clusters
(from 1 to 14). The optimum number of clusters is identified with the broken stick method (i.e.,
the number of clusters from which variance absotieads to an asymptote). We identified three
clusters (Fig. S10), with centroids on aridity values = 0.54, 0.69 and 0.84 corresponding to each
of the phases reported in the main text (i.e., vegetation decline, soil disruption and ecosystem
collapse). Waeassigned variables to the three phases mentioned in the text based on the most
common cluster assignment of their thresholds. We used the cluster centroids as the aridity
threshold identifying the phase (to be used in the predictions reported in Fithe3g three
phases and their associated aridity values were very similar when analyzing differences in the

9
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thresholds found for each pair of variables using the M&hriney U test (with each of the 20
ecosystem structural and functional features included factor and the bootstrapped threshold
values as response variable; data not shown).

Mapsfor future predictions

We usedthe ariditymaps provided by Huang et &B) to locate those areas that are likely to
cross the main aridity thresholdientified due to ongoing increases in aridity driven by climate
change.As thresholds to be evaluated, we selected the three groups fochdter analysis
explained aboveExtrapolations extracted from these maps provide a widely recognized prospect
for aridity trends until 2100 using two different scenarios (Representative Concentration
Pathways[RCP] 8.5 and 4.5, inferring exponential and saturated increases pfe@{3sions
respectively, seeef: 116).

It is worth noting that the results of this esise are temporal extrapolations of results obtained
using spatial gradients, and therefore constitute what is known as afeptio®e substitution
approach(117). The use of this approach is common in ecolddg 120), as it allows to infer
hypotheseselated to temporal changes when temporal series are not available or do not suffice
to cover processes that operate at very slow temporal (Et&s119). While spacdor-time
substitutions have been proven successful in some situti®f)s they havealso been criticized

as spatial gradients may include drivers different than those driving temporal changes in
ecosystem variables and do not include adaptation of ecosystems to the new envi(baghent
123). The interpretation of these results, thus,smaonsider this limitation. For instance,
prospects in areas that aret drylandstoday, which delimit the spatial extent of the data used in
our analyses, are extrapolations. These extrapolations may be unreliablefduexample, the
importance ofnvironmental variables other than aridity (e.g., temperature in the case of boreal
forests) as drivers of changes in the ecosystem attributes investigated. To acknowledge this,
areas crossing the aridity thresholds identified in our study in the futtitbdiware not drylands
today are mad&ansparent in Figs3 and S7 Due to the uncertainty surrounding these results,
they should be interpretedith caution.We present in the manuscrigsults fromRCP 8.5
scenarig but those fronRCP4.5 canbe foundin Fig. S7.

Dataaccessibility

All analyses were performed using(R14). The codes used as well as the data extracted are
available from refl24.
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Supplementary text: On the relevance of tracking the central tendency to identify
thresholds in bimodalvariables

Introductionto the problemandits relevance

There isa particularcase in which threshold models (segmented, stegmented and step models)
fail to identify the threshold of a variable of interest (here ecosystem features) througtxian x
variable (here aridity). Thi®ccurs wherthe variable of interest exhibits two trends that overlap

in a certain range of-axis conditions.Situations like thisare important, as they exemplify
circumstances which the variable of interest charsges mode hrough the xaxis but not the

mean of overall values. These cases match what is expected when the variable of interest follows
two regimes that cexist for a certain range of conditions (summarized by the x variable). For
instance, the existence of diféeit stable states has been hypothesized to follow these trends
(209. In these caseghe dynamics of the system exhibit two attractors whose stable states
coexist for a certain range of x conditions as is the case of systems exhibiting critical transition
Other situations may also yield coexisting reginv@ghout meaning that these states are
interchangeable through tim@.g., the existence of savannas or different types of forests
depending on temperature or soils). These overlapping states, are ahfjerayt regimes and

the fact that they changdbruptlythrough increases in theaxisis relevant to study, even if it is

not possible to infer temporal changes or catastrophic sfifisrefore, the finding of the
threshold in which modes of variablesinterest change is important to track the possibility of
their existence through the-axis. In particular, in these situations, we are interested in the
threshold from which a shift between regimes is more likely to occur, and those are better
exemplfy by the changes of the mode (or the central tendency) than by changes in the mean
values of the variable of interest.

Fitting bimodaldata

The chngpt R packagd06) fits two glm regressions to the data using different thresholds and
finds the thresholdhat minimizes OLS residuals. This would show greater uncertainty when
there is an overlap in values of Y for a given value of X (aridity in our case), which is what
would be expected in a hysteregipe respons€l09) Stegmented regressions calculatsthg

OLS, as implemented in the chngpt R package, rely on the mean of least squares, and this mean
is biased by the increasing number of outliers found when two levels of Y overlap under a given
range of X. As a result, applying mean least squares résiduavariables that follow two
regimes that overlap for a certain range of tkexis often results on detection of the threshold at
the point in which the overlap zone starts or finishes dA). To minimize this issue is why,

we used quantile reggsions. Quantile regressions weight the residuals to fit the central
tendency, thus correcting for the bias and finding the optimum fit in the proper aridity value (Fig.
S11B). To do so, we developed a custom function that works similarly to the chngjptabr
function, but uses quantile regression instead of linear models.

Examplewith soil organiccarbondata

We illustrate this point with our sailrganic carbomlata. When using regressions based on linear
OLS, we found a (soft) threshold around OaMhére a smooth change in slope is detected in the

11
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smoothed values shown in F8j2A). However, when applying quantile regressions, we found
that there is a clear thresholdaaidity = 0.7 instead of 0.6 (see bothifigs at Fig. S3).

The aridity valueof 0.7 matches thehresholdfound using the Livina and Lenton’s approach

(109, Fig. S14), which was designed precisely to studystable states and uses potentials (based

on data points distribution) to track exactly the central tendency of theTdetdhreshold at 0.7

also matches the shift in soil C values seen when smoothing the data using the median instead of
the mean (FigS12 B), minimizing the increasing uncertainty caused by overlap in Y values
under this type of behavior.
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Fig. S1. Location of the data points used in the study.

A: variables obtained from a global field survey (species richness, stability of soil aggregates,
ratio of positive vs negative plaptant interactions, plant effects on soil organic carbon; specific
leaf area; soil organic carbon from field studies, abundance of microbial OTUs and relative
abundance of fungal groups); B: variables obtained from global maps and interpolations (albedo,
vegetation fractional cover, coefficient of variation of interannuatipitation; NDVI; soil

organic carbon and nitrogen from remote sensing, sand content, shrubland occurrence and
vegetation sensitivity index): C: variables from functional traits databases (photosynthetic
efficiency and nitrogen content in leaves).
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Fig. 2. Differences in the predicted value of the variable at the aridity threshold.

Violin diagrams showing bootstrapped predicted values of each variable at each side of every
aridity threshold found in the study (red: regression before the threshadd afder the

threshold). Asterisks indicate significant differences when conducting a-Waiiney U test
between before and after the threshold where: ; *= P value >0.05; **= P value >0.01; ***= P
value <0.01. n.s.= not significant. SOC = soil orgaaibon; NDVI: Normalized difference
vegetation index; Photosynthesis (1 or 2) indicate the two thresholds found for photosynsthesis
under controlled conditions.

14



495

500

17 4
16 1
151
14 1

62 1

60 1
59 1
58 -

3000 1
2800 1
2600 1
2400 4

value

0.30
0.251
0.20 1
0.15
0.10 1

Photosynthesis (1)

* %k

Plant Cover

v

A

Ectomycorrhizal fungi

* k%

NDVI

|

* k%

=

SOC (from field sampling)

*

Plant richness

* k%

Shrublands

< i

151
10 1

0.3551
0.350 1
0.345 1
0.340 1
0.3351

9.00 1
8.75
8.50 1
8.25 1
8.00 1

0.84 4
0.814
0.78 1

161
12

52.01
51.54
51.01
50.51
50.0-

5.01
4.5+
4.0
3.5

Photosynthesis (2)

* k%

1

Precipitation (CV)

* k%

Fungal abundance
*

,4

Soil Nitrogen

< * % %

[

Fungal animal pathogens

* k%

Sand content

=

*kk

A

Mean SLA of community

* k%

I

Threshold

182.5
180.0 1
177.54
175.0 1
172.51

1.00 1
0.751
0.50 1

2.54
2.0
1.5+

0.004
-0.05 1

-0.101

16.51
16.4 1
16.3 1
16.2 1

Albedo

* k%

P

Plant effects on soil

|

Stability of soil aggregates

* %k

Nitrogen content in leaves

l
Y.

Plant-Plant interactions

¢

Vegetation sensitivity index

SOC (from remote sensing)

4 Kk ok

Fig. S3 Differences in the slope at both sides of the aridity threshold.

Violin diagrams showing bootstrapped values of the slope of the two regressions existing each
side of every aridity threshold found in the study (red: slope before the threshold; blue, after the

threshold). Rest of legend as in Fig. S1.
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Fig. $4. Additio nal example of ecosystem attribute (photosynthesis measured under
controlled conditions) showing norlinear responses in the vegetation phase.

Rest of legend in Fig. 2.
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Fig. Sb. Additional examples of ecosystem attributes showing abrupt responses imetsoil
disruption phase.

510 A: vegetation sensitivity to climatic disturbance (Vegetation sensitivity index); B: soil aggregate
stability; C: soil nitrogen content interpolated from global maps; D: probability of occurrence of
shrubland vegetation; E: clapésilt content in soils; F: soil organic carbon obtained from
standardized field surveys; G: microbial abundance of soil fungi; H: positive/negativlalaint
interactions ratio estimated from-oocurrence networks; I: relative abundance of

515 ectomycorrieal fungi. Rest of legend as in Fig. 2.
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Fig. S6. Additional examples of ecosystem attributes showing nelimear behaviour during
the systemic collapse phase.

520 A: Relative abundance of fungal animal pathogens; B: community weighted mean of specific
leaf area; C: white sky albedo; D: precipitation iraenual variability. Rest of legend in Fig. 2.
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Fig. S7. Areas of the globe that will cross each of the thresitds described (or several of
525 them) under the RCP4.5 scenario, which assumes an asymptotic increase of,@issions.

Rest of legend as in Fig. 3.
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