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H I G H L I G H T S

• A novel image processing technique to more accurately measure the width of a melt pool was developed.

• Validation of the technique was provided through single frame analysis.

• Results highlighted fundamental issues with emissivity-based edge detection methods.

• New technique can create enhanced control systems and optimise deposition quality.
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A B S T R A C T

Additive manufacturing processes have previously benefited from the introduction of melt pool dimensioning
systems. These typically measure melt pool width by performing binary thresholds and highlighting edges using
common edge detection algorithms. Melt pool monitoring systems have been successfully used to develop
control systems and enhance process understanding. This paper presents an improved machine vision technique
to enhance images in melt pool monitoring systems. Enhanced images contain features that indicate true melt
pool edges. The research highlights potential flaws in more established emissivity-based image processing al-
gorithms and a new image processing technique is developed. The new technique produced improved accuracy
and performed melt pool measurements independent of emissivity values.

1. Introduction

Additive manufacturing (AM) is a growing technology used for
component fabrication and repair that has gained significant interest
from numerous industries in recent years, particularly the aerospace
sector. The term AM encompasses a range of manufacturing techniques,
all involving the net-shape production of three-dimensional prototypes
and near-fully-dense components by consolidating material layer-by-
layer with a heat source specific to the derivative. Much research is
currently available where the AM process has been monitored to enable
a more holistic understanding of the build process and a closer ob-
servation of any anomalies, with a large portion of literature focusing
on measuring data surrounding the melt pool phenomenon. The melt
pool phenomenon is a phase in the AM process where energy meets
material to form a molten metal pool. It is the first instance where key

variables interact, and monitoring can provide in-situ information
about the build. Melt pool monitoring has been used to predict de-
position quality, optimise parameters, develop control systems and
detect defects.

Much literature details the use of visual, Near Infrared (NIR),
Infrared (IR) and/or thermal cameras to monitor the melt pool beha-
viour. Meriaudeau et al integrated multiple CCD cameras into build
chambers to distinguish what the key process variables are in AM
process [1–3]. The trend of identifying key variables in AM processes to
create better process understanding and to improve part quality is
documented in the following research publications [1–4], with Ding
et al producing a recent study correlating melt pool geometry, process
parameters and microstructure [5].

Kruth et al published multiple papers using a system that combined
a CMOS camera with a photodiode [6–10]. Both sensors were set-up in
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a coaxial manner to monitor the melt pool throughout PBF processes.
The photodiode in the system is used to integrate all the recorded ra-
diation, whilst the camera is used to extract melt pool geometry.
Craeghs et al further developed this system by implementing an off-axis
camera to monitor powder distribution between different build layers
in the PBF process [11].

Klenzczski et al used an off-axis camera set-up to develop automatic
image processing techniques that detect dimensional accuracy and
powder distribution properties [12,13]. This was also studied by Scime
and Beuth who designed and compared multiple machine learning
techniques to determine which performed best in detecting powder
distribution defects [14,15].

Rodriguez et al. implemented an off-axis IR cameras into an EBM
system to monitor parameters and improve build quality, firstly using
subjective decision [16], before subsequently automating the process
[17]. They were able to automatically detect geometry deviations and
porous regions during builds. The same research group used their de-
veloped parameter monitoring technique to identify porosity in-situ
and perform corrective actions through laser re-melting [18,19].

Colodrón used a coaxial CMOS camera to monitor melt pool beha-
viour and used an emissivity-based algorithm to calculate melt pool
width [20,21]. This was later refined by Araujo et al. who used an el-
liptical approximation [22]. Hofman et al used a similar technique to
successfully reduce the effects of dilution in a DED process [23].

Clijsters et al. used NIR cameras to calculate melt pool dimensions
by correlating pixel intensity values with the solid-liquidus interface of
the melt pool [9]. Melt pool dimensions were calculated using max-
imum pixel counts on a binary image. A similar emissivity-based
technique was developed by Cheng et al. [24].

Multiple research papers have eradicated melt pool dimensioning
and have instead introduced techniques that measure melting event
signals, splatters, and/or signatures to predict process condition. Ye
et al. investigated plume and splatter signatures and correlated them to
balling defects [25]. Zhang et al. used image processing techniques to
extract signal features and related them to input parameters and formed
defects [26]. A series of other studies have correlated melt pool event
signatures to defects or poor melt conditions in built components
[27–31], with others using these techniques to predict mechanical
properties [32].

Recent research has used machine learning techniques to develop
melt event monitoring [28,29,33,34], including Zhang et al. who used
them to identify anomalies during Powder Bed Fusion (PBF) processes
[34]. Zhang et al. subsequently went on to use machine learning
techniques to identify porosity during builds [35]. Khanzadeh et al.
used machine learning to develop a defect monitoring system that could
alter parameters in-situ [28]. Scime and Beuth implemented machine
learning to counteract varying melt pool sizes in PBF processes [29].

Academic advancements are being propelled into industrial appli-
cations and commercial products. Concept Laser, a General Electric
company, have introduced a range of process monitoring systems with
one of them being melt pool focused [36,37]. The commercialisation of
these products shows that melt pool monitoring techniques are valid for
industrial applications.

Most melt pool monitoring techniques used in AM use highly satu-
rated melt pool images and emissivity values to calculate melt pool
dimensions [22,23,38–40]. The most common image processing tech-
niques are based on common edge detection algorithms (such as Canny)
to locate feature boundaries in binary images [8,11,22,40]. Common
edge detection algorithms often lead to unreliable melt pool measure-
ments, with documented inaccuracies in readings [24].

This paper improves upon the current melt pool monitoring tech-
niques by advancing machine vision techniques to produce higher
quality images. Improved images of the melt pool allow for a better
understanding of radiation mechanics. Using improved melt pool
images, a new algorithm is developed that is not emissivity-based or
material dependent. This new melt pool monitoring system is directly

compared to an emissivity based technique using a parametric study.

2. Melt pool image optimisation

The new algorithm calculates melt pool width without the need for
emissivity values. To achieve this, a system is derived to identify fea-
tures that best indicate the true melt pool edge. Improved machine
vision techniques have allowed for detailed melt pool images and edge
features when depositing with EN25.

2.1. Adaptive exposure times

To achieve a series of high quality melt pool images, a range of laser
power settings were adopted in this research with various exposure
times. Preliminary studies highlighted that low exposure times pro-
duced true melt pool edge features, but varying laser power reduced
image quality. To overcome this, a series of scans were produced to
identify the best exposure time for various laser power settings. It was
discovered that for the specific material adopted in this research
(EN25), Equation (1) could be used to identify the optimum exposure
time for laser power settings between 600 and 1200 W.

= − × +−E P6.0 10 · 0.91924 (1)

where E is the exposure time setting to be used, and P is the laser power
setting being used when depositing with EN25 powder. Fig. 1 shows the
melt pool images captured using optimum exposure times over multiple
laser power settings. None of the images show high level of saturation
and details of the melt pool are resolved.

2.2. The directional emittance phenomena

The directional emittance phenomenon occurs in melt pool images
when using optimised exposure times as a result of grey body radiation
not emitting equally in all directions [41]. This results in part of the
substrate emitting stronger radiation in the direction of the sensor even
though the surface temperature is lower.

Radiation emitted from the melt pool in the direction of the sensor is
dependent on the melt pool’s surface angle. Measured intensity is re-
duced at the edges of the melt pool due to higher surface angles. Higher
emission levels are measured from the substrate due to low surface
angles. This is referred to as the directional emittance phenomenon
throughout this paper and results in images with true melt pool edges.
Fig. 2 is a schematic representation of the emission theory.

3. Image processing algorithm

The conventional method of calculating melt pool width uses an
emissivity-based binary threshold [7,20,22,23,39]. Binary thresholds
are user defined and calculated by correlating a pixel intensity value
with the materials melting temperature. Binary images are then com-
monly subjected to erosion and dilation, before edge detection algo-
rithms are employed to identify the melt pool edge. The Canny edge
detection algorithm is a common technique that will be used in this
research [42].

The new algorithm uses the directional emittance phenomenon to
calculate melt pool width. The contrast between the bright substrate
and the dark regions of the melt pool provides features whose locations
can be extrapolated using new techniques. The width of the melt pool is
calculated by locating two edges of the melt pool independently. These
edges are named the north and south locations and are depicted in
Fig. 3.

3.1. Frame averaging

The image processing algorithm averages frames together to pro-
duce a more stable melt pool image for subsequent feature extraction.
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Averaging reduces the noise produced by radiation emitting, scattering
and reflecting from stray powder particles.

Frame averaging summates pixel intensities (at each given pixel
location) across multiple frames. The resulting summations are divided
by the total number of frames with each average frame being created by
summating frames that have been previously acquired. The mathema-
tical formula for this is given in Equation (2).

∑=
=

P
n

a1
xy

i

n

xy
1

i
(2)

where Pxy is the average pixel value at a given xy location in the

averaged melt pool image, n is the number of frames averaged across,
and axy is the pixel value at a given xy location in melt pool image i.

The value of n used was seven. Values higher than seven resulted in
blurred images with a lack of resolution, and values lower resulted in
images with noise.

The frame averaging technique is performed using frames that have
been previously recorded, meaning that performing frame averaging
before frame number n requires a slightly different equation. Equation
(3) shows the mathematical formula for this.

Fig. 1. A series of melt pool images for various laser powers taken using the best exposure time. The laser power settings are: (a) 600 W (b) 750 W (c) 900 W (d)
1050 W and (e) 1200 W.
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where m is the number of frames that have been acquired.

3.2. Centre of mass

The centre of mass calculation is used as an anchor point for sub-
sequent melt pool width extraction. It is performed by reducing both
rows and columns, before scanning the resultant arrays. Scanned arrays
are then subject to conditional statements to determine half intensity
locations in both the x and y directions.

The reduction equations for columns and rows are described in
Equations (4) and (5) respectively.

=
=

R
Y

Xa
y 1

x xy

(4)

where Rx represents the reduction value for a given column (x) in image
a, y represents the column number, Y represents the maximum number

of columns and axy represents a pixel at the given xy location.

=
=
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(5)

where Ry represents the reduction value for a given row (y) in image a, x
represents the row number and X represents the maximum number of
rows.

The resultant arrays from these equations are then subject to an
inclusive scan algorithm, as defined in Equation (6).

=
=

S
N

X
n 1

n Rn
(6)

where Sn is the resultant scan array with total length N, and R is the
input array subject to the cumulative scan summation.

The two scan arrays are then used to calculate the centre of mass in
both the x (Cx) and y (Cy) directions using Equations (7) and (8) re-
spectively.

= ≤ < +C i where S S S
2x i
X

i 1 (7)

= ≤ < +C i where S S S
2y i
Y

i 1 (8)

where X and Y are the width and height of the image respectively.

3.3. Edge detection

The centre of mass is used in the edge detection algorithm as an
anchor point for signal extraction. A signal is extracted, by averaging a
set of columns located about the calculated Cx, that contains the di-
rectional emittance phenomenon. The average signal extracted is de-
fined in Equation (9).
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where Ay is the average signal, 2j+ 1 is the size of the average window,
Cx is the centre of mass in the × direction, and a is the averaged image.

The size of the image window used in this research was eleven.
Values higher than eleven resulted in signals with reduced directional
emittance prominence and values lower resulted in noisy signals.

The signal was then subjected to a moving average equation to
eradicate excess noise using Equations (10) and (11).
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Fig. 2. (a) A schematic representation of directional emittance from a flat surface. (b) Directional emittance of a blackbody and real body [41].

Fig. 3. An image showing the north and south locations calculated using the
directional emittance technique.
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or

= ≤ − < ≤T A wheny k and Y k y Y .y y (11)

Ty is the smoothed signal, 2 k + 1 is the size of the smoothed
window, y is the location of the cell in the array and Y is the length of
the array.

The size of the smoothed window used in this research was seven.
Values higher than seven reduced the prominence of directional emit-
tance feature and values lower resulted in noisy signals.

Upper and lower thresholds were used to section parts of the signal
that contain the directional emittance phenomenon. This reduced the
chance of image processing error caused by noise in the melt pool
image. The upper and lower thresholds are defined in Equations (12)
and (13), with Equation (14) defining Ic.

⎜ ⎟⎜ ⎟= ⎛
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(12)

U is the upper threshold for a given laser power (P), Umax is the user
defined upper threshold value at the lowest laser power setting, Umin is
the user defined upper threshold value at the highest laser power set-
ting, Ic is the central intensity, and Pmax and Pmin are the maximum and
minimum operating laser powers respectively. The values used for Umax

and Umin were 0.7 and 0.4 respectively.
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where L is the lower threshold for a given laser power (P), Lmax is the
user defined lower threshold value at the lowest laser power setting,
Lmin is the user defined lower threshold value at the highest laser power
setting. The values used for Lmax and Lmin were 0.4 and 0.2 respectively.
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where Tn is a cell in the smoothed signal at a given location y. Cy is the
centre of mass in the Y-direction and 2 m + 1 is the window size se-
lected to calculate the central intensity Ic.

The window size value used to calculate Ic was 21. Values higher
than 21 resulted in lower intensity pixel values being used in the cal-
culations and values lower resulted in calculations being more sub-
jected to noise.

The equations for extracting the north and south locations of the
melt pool using the upper threshold, lower threshold, and smoothed
signal are described in Equations (15) and (16).
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where yNorth is the pixel location of the melt pool’s north edge and ySouth
is the pixel location of the melt pool’s south edge.

An example of a still image with its calculated north and south lo-
cations is depicted in Fig. 3.

4. Experimental configuration

4.1. Equipment set-up

In this research a Trumpf Trudisk 8002 5.3 kW disc laser DED
system was used with a TruControl 1000 controller. Trumpf BEO D70
processing optics with a motorised collimation laser deposition head
were employed with a Reis RV60-40 robot, a Reis RDKVv05 two axis
manipulator and a Sulzer Metco 10-C powder feeder with a dual 1.5 kg

hopper arrangement.
A NIR CMOS machine vision camera was installed to improve melt

pool imaging and was combined with a UV/VIS cut off imaging filter
with a 135 nm notch. The filter had an optical density of 3.0 for wa-
velengths of 200–750 nm and 4.0 for wavelengths of 1000–1200 nm.
The notch filter and NIR CMOS camera were coaxially installed into the
laser deposition head to allow for a clear birds-eye view of the melt
pool.

4.2. Material

The deposition material for this study was the steel alloy EN25,
supplied by Carpenter with produce code MicroMelt EN25. The com-
position is presented in Table 1. It should be noted that powder from
different manufacturers and even different batches of powder can cause
changes in melt pool characteristics.

4.3. Method

To determine the accuracy of the new technique’s melt pool di-
mensioning, single line cladding tracks were deposited and recorded for
image process analysis. Clad tracks of 150 mm length were deposited
with all parameter settings fixed (3.5 L/min carrier gas flow rate, 6 L/
min shielding gas flow rate, 11.25 mm/s velocity, 1.5 mm laser spot
size and 4.8 g/min powder mass flow rate), apart from laser power
which was varied between 600 W and 1200 W. Forty-two clad tracks
were deposited using both fixed and adaptive exposure times with in-
crements of 30 W. Recorded videos of deposition tracks were subjected
to both the conventional Canny edge detection and new directional
emittance image processing algorithms in a MATLAB environment.
Hand calculations and track width measurements were performed to
determine algorithm accuracies. Hand calculations were performed
using a second MATLAB program where measurements of random
sample frames (total of 20) were used to calculate melt pool width
averages. Track width measurements were performed using a VHX-
700F digital microscope.

4.4. Results

Melt pool width averages were calculated for all techniques on
multiple laser power settings. The averages were plotted against each
other, to establish algorithm accuracies. The results of this study are
displayed in Fig. 4.

The relationship between track measurements and melt pool width
calculations proved to be complex. The change in polynomial trend
between these curves is expected to be a result of both shrinkage and
’slumping’. Slumping is when the forces of gravity act on the melt pool
during its liquid state, causing the track to spread laterally. At higher
laser power settings, slumping is more prominent as the melt pool is in a
liquid state for a longer period. Due to the complex relationship be-
tween melt pool and solidified track widths, correlating algorithm
calculations with measured track widths was deemed unreliable.

Fig. 4 shows that there are large differences between the calculated
Canny edge detection values and both the directional emittance and
hand calculations for the lower laser power settings. Observing mea-
surements on individual frames highlighted major issues with the
emissivity-based (Canny edge) technique. It was found that the melt

Table 1
The chemical composition of the EN25 powder used for experimental deposi-
tion (wt%).

Al Cr Cu Mn Mo Ni P Si C
0.003 0.69 0.006 0.64 0.59 2.66 0.004 0.26 0.32
S O N Fe TAO B Mg Zr Co
0.003 0.02 0.003 Bal 0.01 < 0.001 < 0.001 < 0.01 0.01
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pool edge cannot be approximated using a single binary threshold.
Fig. 5 displays a melt pool image with its corresponding binary
threshold. The image shows a correctly and incorrectly calculated edge,
proving that the melt pool edge doesn’t always occur at the same pixel
intensity.

The directional emittance measurements showed a very strong re-
lationship with the hand calculations. Both techniques display a similar
relationship and all data points of the direction emittance measure-
ments are closer to the hand calculations than the Canny edge mea-
surements. A second order polynomial was fitted to all data sets to
display the relationship between melt pool/track width and the laser
power settings.

To determine the accuracy of the new algorithm, hand calculations
were deemed to be true values. Both the Canny and directional emit-
tance algorithms were directly compared. The new algorithm calcu-
lated melt pool width values within 1% of the hand calculations. The
Canny edge algorithm calculated width values within 4.8% of the hand
calculations.

5. Discussion

This research analysed the accuracy of existing melt pool di-
mensioning techniques and created an improved alternative. The new
technique calculates melt pool width without material dependant
emissivity values. This allow users to develop versatile melt pool
monitoring systems that can perform material independent melt pool
width measurements. The new algorithm showed improved accuracy.
Melt pool monitoring systems with higher accuracy will likely improve
process understanding, control system effectiveness and deposition
quality.

There have been multiple studies that have attempted to calculate
melt pool width in AM processes, but many have used emissivity-based
values to correlate the melt pool edge with a pixel value
[7,20,22,23,39]. Others have approximated that melt pool edges occur
at the same pixel intensity [24]. Research papers have claimed that
using emissivity values in this way to correlate a pixel intensity value
with temperature is not reliable [16,17,24]. This research has expanded
on these claims to provide clear evidence, whilst introducing a new
solution that calculates melt pool width based on the newly discovered
edge features.

Fig. 4. Average melt pool width measurements for different laser power settings.

Fig. 5. (a) An original melt pool image with marked Canny edge calculations. (b) The melt pool image after it has undergone binarisation, erosion and dilation
processes.
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Conventional edge detection techniques have been used on multiple
occasions to develop advanced AM control systems [8,11,22,40]. The
new algorithm could be used in a similar manner.

The rate at which DED clad tracks shrink during solidification could
not be found in literature, but shrinkage rates in PBF processes are said
to be influenced by both layer thickness and powder packing density
[43]. Performing solidified track width measurements and comparing
them to melt pool width measurements highlighted that the solidified
track width is influenced by the laser power setting. Although both
studies concern different processes, both this research and the refer-
enced literature complement each other by suggesting that shrinkage
rates can be influenced by process parameters.

Determining algorithm accuracy had limitations as there is no way
of performing a physical measurement of the melt pool itself. This re-
search determined the new algorithm was more accurate than the
conventional Canny edge technique, but there was no determination of
how accurate the systems were compared to the true melt pool width
value. Hand calculations are a good indication of system accuracy, but
further work should explore physical melt pool width measurements to
improve confidence.

Studies have used melt pool monitoring systems to better under-
stand the effects of parameter changes within AM processes including
work from Meriaudeau et al. [1–3] and more recently Ding et al. [5].
Future work should utilise the new algorithm, with improved accuracy,
to provide a more detailed understanding of process parameter inter-
actions in DED processes. In addition, studies should be carried out to
analyse the effects that changing both powder mass flow rate and path
velocity has on melt pool dimensions, as improved process under-
standing often leads to improved deposition quality [20,25,26,31]. The
use of the new algorithm on multiple materials should also be explored.
The newly developed technique is not reliant on material dependant
emissivity values, meaning that it should be able to perform melt pool
calculations on new materials.

Conventional emissivity-based edge detection techniques do not
accurately measure melt pool width. The newly developed directional
emittance algorithm outperformed the Canny edge detection technique
and was considered more accurate. This research has produced a melt
pool dimensioning technique, with improved accuracy, that does not
require material dependant emissivity values to perform calculations.

6. Conclusions

This research introduced a novel image processing technique that
can more accurately measure the width of a melt pool when compared
to conventional emissivity-based edge detection techniques. The accu-
racy of the new technique was validated by comparing measurements
to hand calculations and performing single frame analysis.
Measurements of solidified tracks were performed using an optical
microscope, but it was discovered that the correlations between these
and the melt pool could not be made due to the complex changes in
width that occur during the solidification stage.

The results highlighted fundamental issues with emissivity-based
edge detection techniques and showed that the melt pool edge often
occurs at different thresholds. The new directional emittance algorithm
detects the edge of the melt pool using changes in intensity and is not
subject to the same issues. The advanced melt pool dimensioning
techniques developed can be used to improve process understanding,
create enhanced control systems and to optimise deposition quality.
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