- 1 Predicting performance at the group-phase and knockout-phase of the 2015
- 2 Rugby World Cup.
- 3 Mark Bennett ^{a, b*}, Neil E Bezodis ^b, David A Shearer ^{c, d}, Liam P Kilduff ^{b, c}
- 4 a Rugby Union of Russia, Moscow, Russia
- 5 b Applied Sport Technology Exercise and Medicine Research Centre (A-STEM),
- 6 College of Engineering, Swansea University, Swansea, Wales
- 7 ° Welsh Institute of Performance Science, College of Engineering, Swansea
- 8 University, Swansea, Wales
- 9 d Faculty of Life Science and Education, University of South Wales, Pontypridd,
- 10 Wales

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

12 Abstract

Objectives: The primary aim of this paper was to produce a model that predicts outcome in the group-phase of the 2015 Rugby World Cup and to determine the relevance and importance of performance indicators (PIs) that are significant in predicting outcome. A secondary aim investigated whether this model accurately predicted match outcome in the knockout-phase of the competition. Methods: Data was the PIs from the 40 group-phase games of the 2015 RWC. Given the binary outcome (win/lose), a random forest classification model was built using the data sets. The outcome of the knockout-phase was predicted using this model and accuracy of prediction of the model from the group-phase. Results: The model indicated that thirteen PIs were significant to predicting match outcome in the group-phase and provided accurate prediction of match outcome in the knockout-phase. These PIs were tackle-ratio, clean breaks, average carry, lineouts won, penalties conceded, missed tackles, lineouts won in the opposition 22, defenders beaten, metres carried, kicks from hand, lineout success, penalties in opposition 22m and scrums won. For the group-phase matches tackle ratio, clean breaks and average carry were accurate standalone predictors of match outcome and respectively predicted 75%, 70% and 73% of match outcomes. The model based on the group-phase predicted correctly 7 from

8 (87.5%) knockout-phase matches. In the knockout-phase clean breaks predicted 7 from 8 outcomes, whilst tackle ratio and average carry predicted 6 from 8 outcomes.

30

31

28

29

Keywords: Rugby World Cup, random forest, performance indicators, LIME.

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Introduction

The Rugby Union World Cup (RWC) is a quadrennial tournament with forty group-phase and eight knockout-phase matches. Factors influencing success in rugby union, as in other sports, are evaluated and quantified through performance indicators¹ (PIs). It is essential to understand the relationship between success and PIs as this information can be used to improve performance² with the most meaningful PIs differentiating successful and unsuccessful outcomes¹. Previous rugby union investigations attempting to determine the PIs associated with success at a RWC have had varied conclusions^{3–7}. Kicking from hand was a successful tactic at the 2011^{3,6} and 2015⁵ RWC. A team's average number of kicks predicted success in the 2011⁶ competition knockout stages, whilst at the 2015 knockout stages winners kicked the ball more between the halfway and opposition 22 m line⁵. Scrutinising the details of kicking strategy during the group and knockout-phases of the 2011 RWC suggests scrum halves of winning teams kicked the ball more frequently and over a greater distance than those of losing teams³. Positional attacking and defensive qualities³ were also related to success at the 2011 RWC in both the group and knockout-phases. Specifically, successful teams had scrum halves, front rows and inside backs that were more effective at the tackle area, but outside backs that missed more tackles attempts. The same study revealed that in attack, the outside and inside backs of winning teams were better ball carriers and the second and front rows of winning teams completed more offloads³. This study also demonstrated the second rows of winning teams made more line breaks, while those of losing teams made more pick and drives³. Research examining the knockout stages alone revealed that winning teams stole a greater percentage of opponents' throws⁵. In the knockout stages penalty statistics also varied; although there were

no differences in the number of penalties winners and losers conceded in 2011, winners conceded a larger percentage of penalties between halfway and the opponent's 22 m line⁶.

The nature of the RWC means that in the group-phase higher ranked teams face lower ranked teams, whereas in the knockout-phase teams are more evenly matched. This could lead to changes in strategy between the group and knockout-phases and hence differences in how PIs relate to outcomes. In rugby union, match-type and level of competition have previously been demonstrated as circumstantial variables when differentiating outcome. Indeed, the PIs that identified winning teams in closely contested Super 12 matches did not relate to match outcome in closely contested international matches⁸. This is corroborated by research on the 2007 RWC that demonstrated the number of rucks teams won in the group-phases of the competition was positively related to outcome, but in the knockout-phases the association was negative⁷. However, van Rooyen et al.⁷ examined only a single PI and no research has examined how multiple PIs relate to success during the group-phases of the RWC and whether these PIs can also explain success in the knockout-phases.

In rugby, outcome depends on the ability and performance of both teams. Therefore, when considering associations between PIs and outcome, equal emphasis should be placed on data from each team², with failure to do so likely distorting any relationships present¹. Processing PIs as a differential between opponents is known as descriptive conversion⁹ with this procedure providing a better evaluation of a contest's outcome^{9,10}. Descriptive conversion has been shown to alter the meaning and conclusions drawn from data in rugby union¹⁰ previously.

This study has two aims. First, to produce a model that predicts performance in the group-phase of the 2015 RWC and determine the importance and relevance of PIs that are significant in predicting match outcome. Second, to determine how effectively the group-phase model applies to the knockout-phases.

83	Methods
84	PIs from the 2015 Rugby World Cup were downloaded from the OPTA website
85	(optaprorugby.com). The data consisted of 40 group-phase and 8 knockout-phase matches.
86	All team PIs (n = 26) were utilised in the analysis; these PIs and their definitions are listed in
87	Table 1. This project has been approved by the College of Engineering Research Ethics
88	Committee, Swansea University (approval number: 2019-047).
89	
90	
91	For each match, descriptive conversion was undertaken by calculating the differences between
92	teams for each PI investegated ¹⁰ .
93	
94	Collinearity was assessed as per Bennett et al ¹⁰ , with collinearity being noted between defenders
95	beaten and tackles missed. A separate analysis was run with tackles missed eliminated ¹¹ ; results
96	indicated that collinearity had no effect on either predictive ability or causal inferences from
97	the model. Indeed, multicollinearity has no effect on extrapolation of a fitted model to a new
98	data set, provided predictor variables follow the same pattern of multicollinearity ¹² . Taking this
99	into account, the analysis was run with the full set of PIs.
100	
101	*Insert Table 1 around here*
102	
103	The 26 descriptively converted PIs were used as predictors for match outcome. To interpret
104	relationships between PIs and match outcome a random forest classification model was
105	developed, using data from the group-phase matches with randomForest 13 in the R^{14} caret 15
106	package. This ensured viable utilisation of the model with the LIME (Local Interpretable
107	Model-Agnostic Explanation) package ^{16,17} later in the analysis. Classification models predict

categorical outcomes from predictor variables¹⁸. The RandomForest package uses ensembles

of decision-making trees to classify data¹⁹. Decision trees repeatedly repartition data, with

binary splits, to maximise subset homogeneity, and estimate the class or distribution of a

108

109

response²⁰. The aggregate tree approach of a random forest algorithm has improved performance compared to a single tree¹⁹. Random forests utilise bootstrapped data samples and random subsampling of predictors in each tree to improve prediction accuracy and prevent overfitting¹⁹. The mean decrease of accuracy (MDA)¹⁹ was utilised to assess PI importance towards classification of match outcome in the group-phase. A negative MDA represents a decrease in importance, not the presence of inverse relationships²¹. The significance level (p < 0.05) of the MDA of each PI was calculated, using the rfPermute package²², which permuted the response variable and produced a null distribution for each predictor MDA and a p-value of observed. Predictive accuracy of the model was recorded (overall accuracy of prediction and balance). The predictive ability of the model's performance on the knockout-phase matches was assessed with the F-measure. The F-measure produces a single numerical value to assess predictive performance using precision and recall^{23,24}. Precision is defined as the proportion of predicted positives that are truly positive and recall as the number of true positives divided by the total number of true positives and false negatives²³. A maximal F-measure of performance would be 1, a minimum 0^{24} . For each PI found significant in predicting match outcome, a standalone value for its ability to predict match outcome was calculated, which was the percentage of matches won when that particular PI had a more advantageous relative value.

The model that predicted match outcome for group-phase matches was utilised alongside the LIME package¹⁶ to predict and explain outcomes of matches from the knockout-phase using descriptively converted PIs. LIME is a novel technique that explains the predictions of classifiers in an understandable manner by learning an interpretable model locally around the prediction²⁵. The basis of the explanation is that globally complex models are approximated well at a local-level through linear models²⁵, with 'explanation' meaning the presentation of textual or visual artifacts that enables qualitative understanding between the instance's components and the prediction the model has made²⁵. To explain a prediction, LIME permutes the data-set to create replicated data with slight modifications. It then calculates similarity distance measures between this new information and the original. Outcomes for these data-sets

are then computed with the original machine-learning model and features that best describe the model are selected. A simple local model is fitted to the permuted data sets, weighting each by its similarity to the original. The feature weights are extracted from the simple model and used to describe the prediction in question¹⁷. LIME predictions provide greater than 90% recall on classifiers and the explanations provided are accurate to the original model²⁵. The explanations were presented as separate plots for each knockout-phase match classification (Figure 1). The plots examined 13 PIs (all significant PIs included in the explanations; Table 1) and their weighting towards match outcome. The X-axis represents the LIME algorithm's weighting of the PI as it related to match outcome. The greater the value assigned to the weighting the greater the influence the model suggests that the PI had on match outcome²⁵. Negative values represent PIs that contradicted a winning outcome, whereas positive values represent PIs that supported a winning outcome. The prediction of the model can be confirmed by the summation of the feature weightings, in this study a positive sum meaning a winning outcome, negative a losing outcome²⁵.

Results

Using the group-phase data, the model was trained to an accuracy of 100% (95% CI 95-100%, p<0.05). From the knockout-phase, this model then correctly predicted 7 from 8 winning data sets and 7 from 8 losing data sets for an overall accuracy of 87.5% (95% CI 62-98%, p<0.05). The F-measure for the knockout-phase was 0.88. The magnitude of the MDA values for the 26 predictors ranged from 23.90 to -3.14 (Table 2) and the model determined that 13 predictors had distributions that varied significantly from the null (p<0.05). The ability of significant PIs to predict group-phase match outcome as a standalone predictor also varied across the PIs (Table 2).

Plots representing LIME's explanation of each knockout-phase match are presented in Figure 1; negative values are red and positive are green. The explainer graphs are plotted from the winning team's relative data. Therefore an overriding green colour means that the actual

outcome agrees with the LIME explanation, a dominant red colouring means a disagreement between the actual match outcome and the LIME explanation. LIME correctly predicted seven from eight outcomes, the incorrect prediction being the match between Australia and Argentina (Figure 1, Plot F).

171

167

168

169

170

Insert Table 2 around here

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

172

Discussion

The primary aim of this study was to produce a model that predicted match outcome in the group-phase of the 2015 RWC and determine the importance and relevance of PIs deemed significant in predicting match outcome. The secondary aim was to investigate whether the model that predicts success in the group-phase of the competition could be successfully applied to the knockout-phase. The model produced from the group-phase matches predicted the outcomes with 100% accuracy. Identifying 13 PIs that predicted outcome far exceeds the number observed in the previous literature^{3–7}. The potential reasons for this disparity are twofold and relate to the structure of the data used and the analytical method. First, previous research examining multiple PIs at RWCs³⁻⁶ have not utilised descriptively converted data, meaning distortions in any relationships present¹ and inaccurate reflections of the sport's nature 9. Indeed, descriptively converted data produces a more accurate model of match outcome and identifies a greater number of significant predictors in comparison to isolated data in rugby union¹⁰. Second, the analytical method has likely influenced findings, previous methodologies have used parametric statistical methods³⁻⁶, but the complexity of the data and the possible non-linearity of relationships means these methods are sub-optimal²⁶. This is further reinforced by rugby union's dynamic and chaotic nature²⁷. The MDA values for "clean" breaks" and "percentage tackles made" are very similar in magnitude. Taking into account the stochastic nature of a random forest²⁶, it would not be advisable to conclude which of these PIs has the greater importance in predicting match outcome, only that each was highly relevant in ensuring model accuracy in predicting match result. The importance of PIs that

describe open field play is clear; the top three PIs predicting outcome describe the ability to prevent the opposition making metres in contact or the ability to beat opposition players. This supports previous findings where descriptively converted data has been used to describe match outcome¹⁰. The importance of the tackle area and the ability of a team to beat opposing defenders is verified by the fact that in 24 out of 25 (of a possible 40) group-phase matches where a team had both a more advantageous tackle ratio and a greater number of clean-breaks relative to the opposition, the match outcome was a win. It is unsurprising that in collision sports the team dominating the tackle and breaking opposition tackles are most likely to win matches. The number of scrums a team wins, number of lineouts won, field position of lineouts won (i.e. in the opposition 22) and percentage lineout success were all positively related to match outcome at the group-phase of the competition. The ability of a team to successfully win their own lineout ball has previously been shown to be a factor in knockoutphases of a RWC⁵ though not in group-phases. This research confirms the importance of winning lineout ball but the MDA values indicate that set-piece ability is not as important as general open-field play in deciding match outcome. Villarejo³ has previously demonstrated that tight five forwards of successful teams were superior in open-field play at the 2011 RWC. The research presented in the current paper was not able to ascertain whether superior open-field abilities of winning teams were a result of differences across the team or consist wholly of positional differences. The results of this paper indicate that in the group-phase, penalty count and location of conceded penalties are contributors to match outcome. Similarly in the knockout-phase of the 2011 RWC, winning teams conceded more penalties between the opposition 22 m and half-way lines⁶. Although this PI was not available for investigation in the current study, winning teams did win more penalties in the opposition 22. Further work is needed to investigate whether penalties won in the opposition's 22 reflect point scoring opportunities (kicks for goal) or whether, alongside lineouts in this area of the field, they provide insight into areas of the field successful teams have field position and possession.

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

The model produced on the group-phase has predicted, with a high degree of accuracy (87.5%), outcomes in the knockout-phase with only a single match being predicted incorrectly (Figure 1F). The LIME explainer plots allow examination of individual match to understand reasons behind each classification (Figure 1). The explainer plots in Figure 1 confirm the importance of open-field skills in the prediction of match outcome in the knockout-phase stages of the competition as well as the group-phase. Clean breaks predict 7 from 8 winning outcomes, with tackle ratio, average carry and number of kicks predicting 6 from 8 winning outcomes. Eventual champions New Zealand (Figure 1 B, E and H) were superior in every aspect of open field play in all knockout-phase matches. Figure 1F describes the semi-final contest between Australia and Argentina, the single match predicted incorrectly. LIME assessed the probability of a positive outcome for Australia at 46% and Argentina 54%. The explainer plots demonstrate that Australia had the greater number (+6 kicks) of kicks from hand. Prior research indicates kick number to be a strong predictor of match outcome in the RWC^{5,6}. A kick value of +6 has also been found a strong indictor of match success in English Premiership rugby leading to the suggestion that kicking possession away is a successful tactic to gain field position and provide space for attack¹⁰, and also to relieve pressure situations when penalties or turnovers become likely. The original model in the current study was built with group-phase data where the ability of teams is often not evenly matched and superior teams can play from weak positions without the need to kick, devaluing the importance of kicking in comparison to evenly matched competitions. It is therefore possible that the kicking of Australia produced success in this match and this was not weighted heavily enough in the model given that the group-phase data were used to develop/train the model. The order of the PIs in the graphs remains relatively consistent (Figure 1). The five PIs, which are most important in the group-phase, are always the most important in explaining knockout-phase matches, confirming the homogeneity of the PIs that are required for success in each stage of the tournament. It allows conjecture that the same abilities separate teams in close knockout-phase matches as separate those in unevenly contested group-phase matches, and that relative quantitative differences in these PIs are the differentiator rather than a change in PI.

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

1	_	Λ
Z	כ	u

- This research compares the importance of multiple PIs across the group-phase and knockout-
- 252 phase of a RWC, the first time this type of comparison has occurred. It demonstrates the
- importance of basic open play abilities in the competition and suggests they are just as relevant
- in the knockout-phase as in the group stages, indeed the winners of the competition are superior
- in every aspect of open play in the knockout-phase of the competition.

257

Acknowledgements

No funding was provided

- Hughes MD, Bartlett RM. The use of performance indicators in performance analysis. *J Sports Sci.* 2002;20(10):739-754.
- McGarry T. Applied and theoretical perspectives of performance analysis in sport:
 Scientific issues and challenges. *Int J Perform Anal Sport*. 2009;9(1):128-140.
- Villarejo D, Palao J-M, Ortega E, Gomez-Ruano M-Á, Kraak W. Match-related
 statistics discriminating between playing positions during the men's 2011 Rugby
 World Cup. Int J Perform Anal Sport. 2015;15(1):97-111.
- Hughes MT, Hughes MD, Williams J, James N, Vuckovic G, Locke D. Performance indicators in rugby union. *J Hum Sport Exerc*. 2012;7(2).
- Hughes A, Barnes A, Churchill SM, Stone JA. Performance indicators that
 discriminate winning and losing in elite mens and womens Rugby Union. *Int J Perform Anal Sport*. 2017;0(0):1-11. doi:10.1080/24748668.2017.1366759
- Bishop L, Barnes A. Performance indicators that discriminate winning and losing in the knockout stages of the 2011 Rugby World Cup. *Int J Perform Anal Sport*.
 2013;13(1):149-159. doi:10.1080/24748668.2013.11868638
- van Rooyen KM, Diedrick E, Noakes DT. Ruck Frequency as a predictor of success in the 2007 Rugby World Cup Tournament. *Int J Perform Anal Sport*. 2010;10(1):33-46.
- Vaz L, Van Rooyen M, Sampaio J. Rugby game-related statistics that discriminate
 between winning and losing teams in IRB and Super twelve close games. *J Sports Sci Med*. 2010;9(1):51.
- 9. Ofoghi B, Zeleznikow J, MacMahon C, Raab M. Data mining in elite sports: a review and a framework. *Meas Phys Educ Exerc Sci.* 2013;17(3):171-186.
- Bennett M, Bezodis N, Shearer DA, Locke D, Kilduff LP. Descriptive conversion of performance indicators in rugby union. *J Sci Med Sport*. 2019;22(3):330-334.
- Woods CT, Sinclair W, Robertson S. Explaining match outcome and ladder position in the National Rugby League using team performance indicators. *J Sci Med Sport*. 2017.
- 287 12. Gujarati D, Porter D. Multicollinearity: What happens if the regressors are correlated. *Basic Econom.* 2003;363.
- 289 13. Breiman L, Cutler A, Liaw A, Wiener M. Package'randomForest'. *Softw available* 290 *URL http://stat-www berkeley edu/users/breiman/RandomForests*. 2011.
- 291 14. Team RC, others. R foundation for statistical computing. Vienna, Austria. 2013;3(0).
- 292 15. Kuhn M. The caret package. *R Found Stat Comput Vienna, Austria URL https//cran r-project org/package= caret.* 2012.
- 294 16. Pederson TL. Package 'lime.' https://cran.r-project.org/web/packages/lime/lime.pdf.

295 Published 2018. Accessed March 1, 2019. 296 17. Pederson TL, Benesty M. Understanding Lime. https://cran.rproject.org/web/packages/lime/vignettes/Understanding lime.html. Published 2018. 297 298 Accessed March 1, 2019. 299 18. Kabacoff RI. R in Action. manning; 2010. 300 Breiman L. Random forests. Mach Learn. 2001;45(1):5-32. 19. 301 20. Jones Z, Linder F. Exploratory data analysis using random forests. In: *Prepared for* 302 the 73rd Annual MPSA Conference.; 2015. 303 21. Ng VW, Breiman L. Bivariate variable selection for classification problem. In: 304 Technical Report, Department of Statistics, University of California-Berkeley.; 2005. 305 22. Archer E. rfPermute: estimate permutation p-values for Random Forest importance 306 metrics. R Packag (Zenodo), Version. 2016;2(1). 307 23. Lantz B. Machine Learning with R. Packt Publishing Ltd; 2015. 308 24. Sasaki Y, others. The truth of the F-measure. *Teach Tutor mater*. 2007;1(5):1-5. 309 25. Ribeiro MT, Singh S, Guestrin C. Why should I trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference 310 311 on Knowledge Discovery and Data Mining.; 2016:1135-1144. 312 Strobl C, Malley J, Tutz G. An introduction to recursive partitioning: rationale, 26. 313 application, and characteristics of classification and regression trees, bagging, and 314 random forests. Psychol Methods. 2009;14(4):323. 315 Robertson S, Back N, Bartlett JD. Explaining match outcome in elite Australian Rules 27. 316 football using team performance indicators. J Sports Sci. 2016;34(7):637-644. 317 318 319

334

335

Table 1. Isolated and descriptively converted PIs from a single game (South Africa V Argentina)

	Isola	ited	Descriptive	conversion
Team	South Africa	Argentina	South Africa	Argentina
Round	Knock out	Knock out	Knock out	Knock out
Outcome	Win	Lose	Win	Lose
Carries made	96	184	-88	88
Metres made	367	560	-193	193
Average carry	3.82	3.04	0.78	-0.78
DefenderBeaten	17	32	-15	15
Offloads	6	15	-9	9
Passes	134	245	-111	111
Tackles	195	106	89	-89
Tackles missed	32	17	15	-15
Ratio tackles made to tackles missed	0.164	0.160	0.004	-0.004
Turnovers	14	21	-7	7
Kicks from hand	29	18	11	-11
Clean breaks	8	7	1	-1
LO throws won on own ball	15	13	2	-2
LO throws lost on own ball	1	0	1	-1
LO Opp 22	3	1	2	-2
Percentage line out success	93.8%	100.0%	-6.3%	6.3%
Scrums Won	4	5	-1	1
Scrums Lost	0	1	-1	1
Percentage scrums won	100%	83.3%	16.7%	-16.7%
Rucks won	67	141	-74	74
Rucks lost	3	6	-3	3
Penalties conceded	11	15	-4	4
Free kicks conceded	1	0	1	-1
Scrums won opposition 22	0	1	-1	1
Penalties in opposition 22	2	2	0	0
Yellow cards	0	1	-1	1

Table 2. Performance indicators (PIs) downloaded from OPTA website including operational definitions.

Performance indicator	Definition
Carries made	A player touching the ball is deemed to make a carry if they have made an obvious attempt to engage the opposition
Offloads	The ball carrier passed the ball in the process of being tackled
Clean breaks	The ball carrier breaks the first line of defence.
Defenders beaten	A ball carrier has made a defending player miss a tackle through evasive running, physical dominance or with a chip kick
Metres made	Total metres carried past the gain line
Tackles	A player has halted the progress or dispossess an opponent in possession of the ball
Tackles missed	A player has failed to affect tackle when they were in a reasonable position to make the tackle
Ratio tackles made to tackles missed	Tackles missed divided by tackles
Turnovers	A player has made an error which leads to the opposition gaining possession of the ball, either in open play or in the form of a scrum/lineout
LO throws won on own ball	Own line out throws won
LO throws lost on own ball	Own line out throws lost either from opposition stealing the ball or from an offence at the lineout
LO throws won opposition 22	Number of LO won on own throw in when in opposition 22
Percentage line out success	LO won on own ball divided by total line out throws awarded to a team
Scrums won	Scrums won on own put in
Scrums lost	Scrums lost on own put in
Scrumss won opposition 22	Number of scrum won on own put in in when in opposition 22
Percentage scrums won	Scrums won on own put in divided by total scrums awarded to a team
Penalties in opposition 22	Total penalties a team is awarded in the oppositions 22
Penalties conceded	Penalties conceded by a team
Free kicks conceded	Free kicks conceded
Kicks from hand	Kicks made when the ball is in hand, excluding penalties and free kicks.
Average carry	Total metres carried past gain line divided by carries made
Passes	The ball carrier performs a pass
Rucks won	Rucks won when in possession
Rucks lost	Rucks lost in possession
Yellow cards	The team has had a player sin binned for a penalty offence

Table 3. Mean decrease in accuracy (MDA) for the Random Forest model based on the group-phase data (* denotes significance p<0.05). Accuracy IP reflects the accuracy of the performance indicator (PI) as a standalone predictor of match outcome in the group-phase, calculated only for significant PIs.

Performance indicator	MDA	Accuracy IP
Tackle ratio	23.90 *	75%
Clean breaks	23.25 *	70%
Average carry	18.57 *	73%
LO won	18.42 *	64%
Penalties conceded	17.40 *	67%
Missed tackles	16.58 *	70%
LO won opp 22	15.08 *	65%
Defenders beaten	15.07 *	70%
Metres made	12.45 *	67%
Kicks from hand	10.91 *	54%
LO success	10.02 *	59%
Penalties in opp 22	8.07 *	60%
Scrums won	6.12 *	60%
Pass	5.29	NA
Turnovers	4.29	NA
LO lost	3.70	NA
Carries	3.40	NA
Scrum Success	2.87	NA
Tackles	1.59	NA
Rucks won	1.48	NA
Rucks lost	1.48	NA
Scrums won opp 22	0.89	NA
Offloads	0.14	NA
Scrums lost	-1.10	NA
Yellow cards	-2.61	NA
Free kicks	-3.14	NA

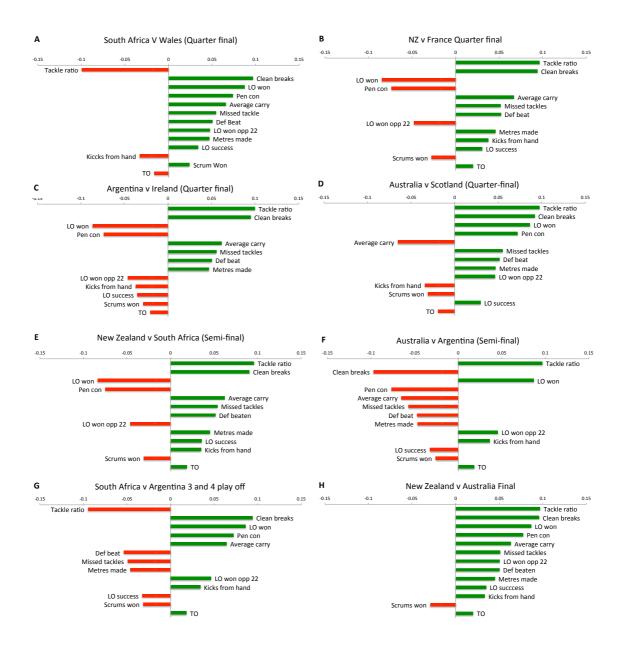


Figure 1. Graphical representation of the LIME algorithm's local explanation for the outcome of each knockout-phase match