Hybrid band offset calculation for heterojunction interfaces between disparate semiconductors

Zhaofu Zhang, Yuzheng Guo, Haichang Lu, Stewart J. Clark, and John Robertson

ARTICLES YOU MAY BE INTERESTED IN

Ultrafast dynamics of hole self-localization in β-Ga$_2$O$_3$
Applied Physics Letters 116, 132101 (2020); https://doi.org/10.1063/5.0003682

Spin-transport in superconductors
Applied Physics Letters 116, 130501 (2020); https://doi.org/10.1063/1.5138905

Oxygen vacancies: The (in)visible friend of oxide electronics
Applied Physics Letters 116, 120505 (2020); https://doi.org/10.1063/1.5143309
Hybrid band offset calculation for heterojunction interfaces between disparate semiconductors

ABSTRACT

Accurate band offset calculations are challenging for heterojunction interfaces that consist of two very different host materials. For this, the key requirement is to have the correct bandgap of each material at the same time. A hybrid calculation scheme (HSE/-U scheme) is proposed to model the band offsets of such interfaces. Our HSE/-U method applies the hybrid functional for the whole interface supercell, but with an additional “reverse GGA+U” on the narrow gap semiconductor side, guaranteeing the correct bandgaps on both sides. Several supercell calculations of dielectric films including HfO2, ZrO2, Al2O3, TiO2, and GaN on an insulating phase VO2 are tested to verify it. All the studied oxides show the type-I band alignment with VO2, and the band edge line-up agrees well with the available experimental reports, supporting the reliability of the proposed hybrid calculation scheme.

The band offset (BO) of a semiconductor heterojunction is the key parameter that determines its electrical behavior.1,2 BOs can be calculated using density functional theory (DFT) and a supercell atomic model of the interface. However, such calculations using either the local density approximation (LDA) or the generalized gradient approximation (GGA) can lead to significant gap underestimation, impairing the reliability of the calculated BOs. Typically, to keep computational costs within limits, these errors are overcome by using hybrid functionals to represent the electronic exchange-correlation functional. These functionals mix a certain fraction (i.e., z) of Hartree–Fock exchange.28,29 This GGA+U method with a negative U term can be used to independently correct the DFT bandgap error in some correlated electron systems such as ZnO and GaN.26,27 This GGA+U method originated for open-shell systems, but it was also used empirically for closed-shell systems like ZnO and GaN.26,27 Thus, a typical VO2 interface calculation would need to use different values of z on each side of the interface.

Before the advent of hybrid functionals, an improvised method to correct the DFT bandgap error in some correlated electron systems was to include an on-site repulsion on d orbitals.14–16 This GGA+U method originated for open-shell systems, but it was also used empirically for closed-shell systems like ZnO and GaN.26,27 This makes it of technological interest11 for smart windows, RF or optical switches, “Mott-FETs” (MIT FETs),12 and steep slope devices.13 These devices have an interface between VO2 and a semiconductor like GaN,14–16 a substrate like TiO2,21 or a gate insulator like HfO2.17,18 The electronic structure of VO2 can be described by methods such as GW or cluster-dynamic mean field theory (c-DMFT).19,20 On the other hand, hybrid functionals describe many aspects of its electronic structure within band theory at a relatively low cost.21 However, it was recently noted that hybrid functionals over-estimate the gap of the low-temperature phase, also resulting in incorrect magnetic ordering.22–25 These problems could be minimized by using a smaller empirical fraction of Hartree–Fock exchange, z ~ 0.10 or less, rather than the standard value of z = 0.25.26,27 Thus, a typical VO2 interface calculation would need to use different values of z on each side of the interface.

Hybrid band offset calculation for heterojunction interfaces between disparate semiconductors

Published under license by AIP Publishing. https://doi.org/10.1063/1.5135376
tune the bandgap on both sides of an interface and thus model heterojunctions of more disparate systems. For the dielectric/VO₂ interface, we use the HSE functional with a certain mixing fraction to obtain the correct gap at the HfO₂ insulator side, but this leads to a severely overestimated VO₂ bandgap. Meanwhile, a reverse GGA+U with a negative U term on the V-d orbital is used to narrow the VO₂ gap to its experimental value. With this hybrid calculation scheme, several types of dielectrics facing an insulating M1 phase VO₂ can be calculated. The band alignments obtained by this method agree well with experimental values, indicating a reliable calculation scheme. They also allow the correct latent heat of the rutile and M1 VO₂ phases to be described, which a pure HSE calculation would not. A correct value of the R-M1 phase free energy difference or “latent heat” is critical for a correct microscopic description of the Mott-FET.

The calculations use the plane wave code CASTEP with norm-conserving pseudopotentials and a plane wave cutoff energy of 680 eV, which converged total energy differences to 1 meV/atom. A 5 × 5 × 1 k-point mesh was adopted in the calculation. The GGA-PBE exchange-correlation functional was employed to relax the geometry. The electronic calculation for interface supercells was performed with the HSE/U scheme. It is noted that the hybrid functional and GGA+U calculations were conducted simultaneously. For comparison, HSE calculations with a 10% HF fraction were also conducted. The ground state antiferromagnetic ordering for the VO₂ M1 phase is used, as previously.

Since the essential requirement for interface modeling is the local bonding rather than long-range crystalline symmetry, the monoclinic M1 phase VO₂ was strained to be orthorhombic to match the crystalline insulators. Several dielectrics are considered, namely, high dielectric constant oxide HfO₂ (and ZrO₂), wide bandgap oxide Al₂O₃, narrower gap oxide TiO₂, wide gap semiconductor GaN, and Al₂O₃ were strained as well. For these cases, the traditional HSE electronic calculations with different HF exchange-correlation functional was employed to relax the geometry. The HSE-PBE exchange-correlation functional was employed to relax the geometry. The electronic calculation for interface supercells was performed with the HSE/U scheme. It is noted that the hybrid functional and GGA+U calculations were conducted simultaneously. For comparison, HSE calculations with a 10% HF fraction were also conducted. The ground state antiferromagnetic ordering for the VO₂ M1 phase is used, as previously.

The traditional HSE electronic calculations with different HF fractions (x values) were performed first on bulk VO₂ and bulk dielectrics. We found that for x = 30%, the wider gap oxide HfO₂, ZrO₂, and Al₂O₃ have correct bandgaps of 5.93 eV, 5.53 eV, and 6.05 eV, respectively. With a 25% mixing, the narrower gap insulator VO₂ shows a bandgap of 2.97 eV. For GaN, an x value of 27% is used to obtain a gap of 3.4 eV. These HSE gaps agree well with previous hybrid calculations and experimental values. Although some differences to the experimental gaps still exist, the key focus is the validity of this proposed hybrid calculation scheme. Thus, these mentioned HF fractions are chosen for the corresponding HSE/U interface calculation.

The HSE functional with large x leads to an underestimated VO₂ bandgap, while the negative U potential helps narrow the gap back to the experimental one. To understand the variation trends, we studied bulk VO₂ with a series of x and U parameters at first, and its calculated band energies are summarized in Table I. The partial density of states (PDOS) of VO₂ bulk with 0.30/−4.2 eV HSE/U parameters is shown in Fig. 2. The separation between the highest occupied V-d orbital and O-p state is consistent with the traditional HSE conclusion (x ~ 0.1). The bonding d orbital band has a bandwidth of 1 eV centered at ~0.6 eV below the Fermi level, in good agreement with the photoemission value.

With fixed x, a more negative U value on the V-d orbital increases the V-d O-p separation gap and thus reduces the VO₂ bandgap. We see that the V-d O-p separation gap is still close to the experimental value (~1.0 eV) compared to pure GGA+U data. Thus, this HSE/U hybrid scheme correctly represents the VO₂ gap and simultaneously maintains an acceptable band structure. Interestingly, the bonding V-d bandwidth is almost the same under different HSE/U parameters because the Coulomb interaction only affects the relative orbital energy, not the orbital bandwidth. To make a comparison, a
pure GGA+U calculation with an on-site U of 2.5 eV was also conducted, which produces the correct gap value, matching with previous reports, but the V-\(d\)-O-\(p\) separation gap is, however, less close to the experimental data compared to our HSE/-U scheme. Although the band structure details obtained using our HSE/-U scheme are not identical to those obtained from experiments, which is more or less limited by the measurement resolution in the photoemission spectra, the key point here is that our proposed HSE/-U method can reproduce the correct bandgap as well as maintain the basically correct band structure, which is the primary condition for the interface calculation.

To provide the correct bandgap at both sides, the HSE/-U scheme with \(0.30/2.4\) eV parameters is used for the HfO\(_2\) (ZrO\(_2\)) and Al\(_2\)O\(_3\) interfaces, while the \(0.25/3.0\) eV and \(0.27/4.0\) eV pairs are chosen for the TiO\(_2\) and GaN cases. Interface geometries are shown in Fig. 1. It is noted that since our work is based on the supercell calculation, both the oxide side and the VO\(_2\) side share the identical calculation parameters as mentioned here. We can see from Fig. 3 that the four proposed interfaces are all insulating, with no gap states appearing. The experimental bandgaps of both VO\(_2\) and insulators are well reproduced in the supercell calculations. These dielectric films all form the type-I band alignment with VO\(_2\), by straddling its VBM and conduction band minimum (CBM). The traditional HSE supercell calculation with a 10% fraction is also calculated (PDOS not shown here), and their band edge energies are shown in Fig. 4. By using the core-level scheme, the band edge line-up can be determined. Figure 4 summarizes the alignment of VO\(_2\) with different dielectrics by two calculation schemes, together with the previous reports. The interface dipole, induced by the charge transfer across the interface, has already been explicitly included in the VBO values obtained by our supercell calculations, as discussed previously.

It is clear that the BOs derived by \(\alpha = 0.1\) HSE calculations (yellow bars) are not close to the experimental data, owing to the severe underestimation of insulator bandgaps by the small HF fraction. As mentioned earlier, a higher HF fraction will otherwise lead to incorrect properties of VO\(_2\), including the bandgap, magnetic ordering, and the latent heat. This makes it less useful.

On the other hand, our proposed HSE/-U method reproduces well the bandgaps on both sides of the interfaces, and based on that, we can have a reliable discussion on the BOs. For the efficient operation of Mott-FET, the BOs should be larger than 1 eV to confine carriers and suppress leakage currents, similar to that in the MOSFET.

| HSE(\(\alpha\))/U(eV) parameter | VO\(_2\) \(E_g\) (eV) | V-\(d\)/O-\(p\) gap (eV) | V-\(d\)|| bandwidth (eV) | V-\(d\)|| peak below \(E_F\) (eV) |
|-------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 0/2.5 | 0.59 | 0.32 | 1.02 | 0.91 |
| \(0.10/0\) | 0.59 | 0.67 | 1.06 | 0.71 |
| 0.25/0 | 2.26 | 0.14 | 0.91 | 0.54 |
| 0.30/0 | 2.89 | 0.14 | 1.01 | 0.51 |
| \(0.30/-4.2\) | 0.64 | 1.43 | 1.01 | 0.51 |
| Exp.\(36,37\) | 0.70\(36\) | ~1 | 1.50\(36\) | 0.8–0.90 |
| Cal.\(21,26\) | 1.1–1.13 | 0.87–0.95 | 0.63–0.84 | ~0.75 |

Table I. The VO\(_2\) band structure properties with different HSE/-U parameters. Previous experimental or calculated references are listed for comparison. Bold values are highlighted as most useful for the interfaces discussed.
For a-TiO$_2$, the VBO is somewhat smaller, but the 1 eV offset is already enough for basic device applications. For r-TiO$_2$, although it also shows a type-I alignment, the CBO is only 0.4 eV, not large enough to confine electrons. Although the band edge of r-TiO$_2$ is ~1 eV lower than that of a-TiO$_2$ and in contrast to the experimental report, it is noted that the edge level is derived from different interface supercells. The considerable band edge variation between a-TiO$_2$ and r-TiO$_2$ is due to the extremely large lattice mismatch at the M1-VO$_2$/r-TiO$_2$ interface. GaN has a small CBO, thus not suitable for gate insulators, but can be used as the substrate for epitaxial growth of VO$_2$.

The correctness of our proposed HSE/-U calculation scheme is worth verifying. However, most of the studies on dielectric/VO$_2$ interfaces concern the phase transition stability and electronic characteristics, and only a few focus on the band alignments. A brief comparison with the limited reports is summarized in Fig. 4 (green bars). Nemani et al. found a VBO of 2.6 eV in the VO$_2$/HfO$_2$ film, close to our calculated 2.4 eV value. Although they also reported the 3.4 eV VBO in the HfO$_2$/VO$_2$/HfO$_2$ film, this arises from the different configuration and the interfacial dipole has affected the band edge line-up. Ramanathan et al. fabricated GaN/VO$_2$ p–n heterojunctions with a CBO of ~0.8 eV by I–V and C–V measurements, resembling to our calculated CBO of 0.6 eV. Pickett used the LDA+U method on the TiO$_2$/VO$_2$ interface, and the calculated VBO (1.0 eV) is the same as our data. No other explicit band alignment values have been reported yet.

Based on our current discussion, the proposed HSE/-U scheme can be well applied for complex interfaces containing narrow gap semiconductors and wide gap insulators. It has distinct advantages over a pure HSE or DFT+U calculation. To use such a scheme, one first chooses the suitable HF mixing fraction (i.e., x) to get the correct gap of one bulk material and then tests and determines the correct U value for the other bulk material based on this fraction value. Combining the two parameters, the HSE/-U scheme can be applied for interface supercell calculations. Although this work only focuses on various dielectric/VO$_2$ interfaces, it should be noted that this scheme can also be employed for other interfaces. For example, for the popular Si/ZnO interface that is widely used in solar cells, the standard HSE hybrid function (with $z = 25\%$) will fit the gap of Si, a positive U term on Zn-d will open up the ZnO bandgap to 3.4 eV, and a correct band alignment with experimental reports is obtained. Besides, a suitable HSE/-U parameter can be considered for high-k oxide coming into contact with the Mott insulator NiO. But for the interface with two wide gap materials, the pure hybrid functional calculation is generally acceptable, as it is widely reported.

In conclusion, we proposed a hybrid calculation scheme that combines a hybrid functional and the reverse GGA+U on complex interface supercell calculations. To verify its reliability, several dielectric films coming into contact with the insulating VO$_2$ are discussed. We find that the experimental bandgaps at both sides are well reproduced and the derived band alignment achieves a good agreement with the experimental reports. Using this HSE/-U calculation, we find that oxide insulators including HfO$_2$, ZrO$_2$, Al$_2$O$_3$, and a-TiO$_2$ all show proper band alignment with the VO$_2$ film, and they are promising for VO$_2$ based Mott-FET applications. This proposed calculation method is suitable for various complex interface supercell calculations.

The authors are grateful to the financial support from the European Union’s Horizon 2020 Research and Innovation Program PHASECHANGE SWITCH (Grant No. 737109). We also thank the support from Supercomputing Wales under Project No.SCW1070.

REFERENCES
