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Abstract 

This review examines the current literature relating to diabetes related kidney disease 

(DKD) and the optimal management of cardio-renal risk. DKD develops in approximately 

40% of patients with type 2 diabetes mellitus. The mainstay of therapy is to reduce the 

progression of DKD by optimising hyperglycaemia, blood pressure, lipids and lifestyle. 

Evidence supports the role for renin-angiotensin system blockade in limiting the progression 

of DKD. Recent data from diabetes related cardiovascular outcome trials and renal specific 

trials have provided a novel insight on the additional benefits of sodium-glucose 

cotransporter-2 inhibitors (SGLT2i) in reducing the progression of DKD as well as 

cardiovascular risk. Lessons have been learnt from CREDENCE and there are expectations 

that DAPA-CKD and EMPA-KIDNEY will further support the benefits of SGLT2 inhibition in 

relation to DKD. As a consequence, international guidelines have been updated to reflect 

the positive benefits. In addition novel steroidal mineralocorticoid receptor antagonists offer 

a potential role in future years. The review examines the current evidence and future 

approach to optimising outcomes for renal protection in patients with diabetes.  
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1. Introduction 

Diabetes is a major risk factor for cardiovascular disease (CVD) and is a leading cause of 

chronic kidney disease (CKD). Diabetes-related nephropathy (also known as diabetic 
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nephropathy [1] or diabetic kidney disease [DKD]) develops in approximately 40% of 

patients with type 2 diabetes mellitus [2]. Furthermore, between 1990-2012, the number of 

deaths attributed to DKD rose by 94% [2, 3]. The World Health Organisation estimate that 

deaths related to diabetes will double by 2030 [4]. Notably, most of the excess risk is 

associated with CVD mortality [5]. As for other diabetes related complications, the traditional 

approach to reducing the progression of DKD involves the optimal management of 

hyperglycaemia, blood pressure, lipids and lifestyle. Whilst evidence supports a role for 

renin-angiotensin-aldosterone system (RAS) blockade in limiting the progression of DKD, 

recent data from cardiovascular outcome trials and renal specific trials has provided a novel 

insight on the additional benefits of sodium-glucose cotransporter-2 inhibitors (SGLT2i) in 

reducing the progression of DKD as well as cardiovascular risk. This review examines the 

current evidence approach to optimising outcomes for renal protection in patients with 

diabetes.  

 

2. Search strategy 

Publications were identified through searches of Medline, PubMed, Web of Science and 

Google Scholar for articles published between 1980 to 2019. Search terms included 

“diabetes kidney disease,” “diabetic nephropathy,” “chronic kidney disease,” “diabetes 

cardiovascular outcome trials,” “microvascular,” “dipeptidyl peptidase inhibitor,” “glucagon 

like peptide”, “sodium glucose transporter inhibitor”, “cardiovascular”, “macrovascular”, 

“type 2 diabetes”. For consideration, studies had to be published in English and articles 

were excluded if they were case reports, editorials, small studies or studies that the authors 

felt had methodological limitations.  

 

3. Diabetes related kidney disease: Diagnosis and prognosis 
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3.1 Diagnosis 

DKD is a clinical diagnosis based on the measurement of the estimated glomerular filtration 

rate (eGFR) and albuminuria. Patients typically exhibit a long duration of diabetes and the 

presence of other microvascular complications such as retinopathy [2, 6, 7]; however patients 

with type 2 diabetes may not have co-existing retinopathy. DKD is identified clinically by a 

persistently high urinary albumin: creatinine ratio (UACR) ≥30 mg/g (or ≥3.4 mg/mol) and/or 

a sustained reduction in eGFR below 60 mL/min per 1.73 m2 [8]. Diabetes is likely to be the 

main cause of CKD, if these features are present. Other potential causes should be 

considered in the presence of a rapid decrease in eGFR, a sudden increase in albuminuria, 

nephritis, hypertension, and the presence of an active urinary sediment with cellular casts, 

the absence of diabetes-related retinopathy in patients with type 1 diabetes, or signs or 

symptoms of other systemic diseases associated with declining renal function. A renal 

biopsy can confirm the diagnosis, but is usually not required unless atypical features are 

present [9]. Renal disease in diabetes is heterogeneous in nature and the role of biopsy is 

controversial. The routine diagnosis of nephropathy in patients with diabetes has not 

demonstrated an impact on renal prognosis or mortality [10]. 

 

Microalbuminuria is a non-invasive marker of early renal involvement and usually occurs 

five years following the onset of diabetes. It is thought to be predictive of progression to 

nephropathy and reflects podocyte loss or endothelial damage. The pathogenesis of DKD is 

multifactorial and exhibits a decline in eGFR which usually progresses over ten years in 

type 1 diabetes, but can be more variable in type 2 diabetes [11]. The American Diabetes 

Association (ADA) recommend that screening for albuminuria can be performed on a spot 

urine sample by measuring the UACR, therefore negating the need for a 24 hour urine 

collection [12]. It is worth noting that UACR may demonstrate biological variability so that two 
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of three samples collected within a three to six month period should be abnormal. 

Furthermore, exercise, infection, fever, marked hyperglycaemia and hypertension may 

elevate UACR [12]. The eGFR should be calculated from serum creatinine using a validated 

formula, and many laboratories routinely report eGFR along with serum creatinine. An 

eGFR <60 mL/min per 1.73 m2 is generally considered abnormal, though optimal thresholds 

for clinical diagnosis are debated [13]. Increased urinary albumin excretion is currently 

considered the best indicator of DKD risk. However, early progressive renal decline may 

precede the onset of microalbuminuria and elevated levels typically only appear after 

significant structural changes in the kidney have already occurred [14]. Furthermore, 

deterioration to end stage renal disease (ESRD) may also occur in spite of 

normalbuminuria. In the future, biomarkers associated with glomerular and tubulointerstitial 

histopathology may inform clinicians earlier in relation to the risk of progressive renal 

impairment due to DKD [15]. 

 

The stages of CKD are summarised in table 1. Different publications provide varied 

descriptions of the stages of DKD [12, 16]. The majorities define stages based on eGFR. All 

guidance appear to agree that at any stage of CKD, the degree of albuminuria is associated 

with the progression of CKD, and CVD risk and mortality.  

 

3.2 Prognosis 

Whilst microalbuminuria is confirmatory evidence of DKD, the progression to 

macroalbuminuria is not absolute and regression to normoalbuminuria may occur [17]. 

Previous studies report that 80% of patients with microalbuminuria progress to 

macroalbuminuria over a six to fourteen year period. However with improved control of 

blood glucose, blood pressure and lipids, the progress may change. For patients with type 1 
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diabetes, the Diabetes Control and Complications Trial (DCCT) showed that 58% of 

patients with microalbuminuria regressed to normoalbuminuria over 6 years [18]. Similarly in 

the European Prospective Investigation into Cancer and Nutrition (EPIC) study, 50% of 

patients regressed to normoalbuminuria over 10 years [19]. This effect was due to improved 

management of glucose and cardiovascular risk factors [20, 21]. The improvement in 

microalbuminuria was also associated with an 89% reduction in decreased eGFR.  

 

With respect to type 2 diabetes, the clinical picture is different. Over a median follow-up of 

fifteen years in the United Kingdom Prospective Diabetes Study (UKPDS), 38% had 

microalbuminuria and 29% had a reduced eGFR [22]. The progression from 

normoalbuminuria to microalbuminuria, and from microalbuminuria to macroalbuminuria 

was approximately 2% per year. At fifteen years after diagnosis, 40% of participants had 

macroalbuminuria and 30% an eGFR <60 mL/min per 1.73 m2 or a doubling in serum 

creatinine. Gaede et al, also showed that with multifactorial intervention for patients with 

type 2 diabetes, 31% of participants with microalbuminuria progressed to 

macroalbuminuria, whereas 31% regressed to normoalbuminuria during 7.8 years of follow-

up. Another 38% remained microalbuminuric during this time period [23]. There appear to be 

differences in progression and regression of microalbuminuria relating to different ethnic 

background. For example, in Pima Indians, a study has reported that 7.3% of patients had 

microalbuminuria at enrollment with 17% at five years, 25% at ten years and 28% at fifteen 

years. The prevalence of macroalbuminuria was 50% during a median follow-up of twenty 

years [24]. It should of course be cknowledged that the above studies are now historical and 

pateints are currently treated with RAS blockade, more stringent glycemic control and 

multifactorial interventions (as discussed below) and therefore the progression and 

regression patterns of DKD may be different. 
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In later stages of DKD, as GFR declines, both renal and non-renal related DKD 

complications develop. Anaemia and bone disease develop earlier in patients with DKD and 

furthermore a greater degree of tubulointerstitial fibrosis, is associated with earlier onset 

and more sever forms of anaemia. In fact, patients with DKD are more likely to have 

deficiency of erythropoietin and vitamin D compared to patients without diabetes and CKD. 

[25]. Hepcidin is a key iron regulatory hormone, levels of which are elevated in inflammatory 

states such as CKD, resulting in functional iron deficiency anaemia. A bi-directional 

relationship exists between iron and glucose metabolism. Serum hepcidin levels have been 

shown to be elevated in type 2 diabetes [26] and one of the pleiotropic effects of hepcidin is 

to worsen insulin resistance. The cross talk between iron metabolism and diabetes, in 

addition to the frequent use of angiotensin-converting enzyme inhibitors (ACEi) in diabetes 

may explain the earlier onset of renal anaemia in DKD [27]. Furthermore diabetes may be 

associated with lower levels of parathyroid hormone as a consequence of insulin deficiency 

or insulin resistance, as insulin is a cofactor for parathyroid hormone release [28].  

 

Glycated haemoglobin (HbA1c) is widely used as the gold standard index to assess 

glycaemic control in diabetes; indicating average glucose levels over the preceding 120 

days. However in CKD, the prognostic value of HbA1c has limitations due to uraemia, 

concomitant anaemia, red blood cell lifespan and consequent iron or erythropoietin therapy 

[29]. Glycated albumin (GA) has been suggested as a more reliable biomarker for evaluating 

glycaemic control in advanced CKD. As it is calculated as a ratio it is not influenced by total 

serum albumin levels. It is believed that GA may provide a more reliable short term index of 

glycaemic control of the preceding two to three weeks, as well as a predictor of 

cardiovascular complications in patients with diabetes and DKD [30].  
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With respect to mortality, death from CVD, infection and ERSD are evident. The UKPDS 

observed that the mortality rate after the onset of DKD in those with a creatinine >177 

µmol/L or those receiving renal replacement therapy was 20% per year [31].  

 

4. From pathophysiology to therapeutics targets  

Advanced glycation end-product (AGE) generation, growth factor amplification, 

haemodynamic and hormonal changes ensue as a result of the diabetes milieu. In addition, 

the release of reactive oxygen species and other inflammatory mediators cause 

microvascular renal injury and subsequent diabetes related change. Glomerular 

hyperfiltration and hypertension, and renal hypertrophy manifest clinically as albuminuria 

and elevated blood pressure. Renal morphological changes in type 2 diabetes include early 

glomerular basement membrane thickening, mesangial expansion (figure 1) and late 

nodular (Kimmelstiel-Wilson) type or diffuse glomerulosclerosis related to DKD (figure 2) 

[11].  

 

DKD is complex and encompasses not only albuminuria, but also atheroembolic disease, 

ischemic nephropathy, and interstitial fibrosis. Many pathophysiologic pathways are 

involved in the development of DKD. Current treatment regimens focus on cardiovascular 

risk reduction, optimisation of glycaemic control, blood pressure lipids, weight management 

and inhibition of the RAS system.  

 

4.1 Haemodynamic factors 

Glomerular hyperfiltration occurs in the early stages of DKD and is defined as an eGFR 

greater than two standard deviations above normal (usually an eGFR between 120-140 
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mL/min per 1.73 m2) [32]. It is worth noting that there is an intraindividual variability of GFR, 

which can be affected by the severity of hyperglycaemia [33]. In addition, eGFR may be 

influenced by gender, ethnicity and age. The prevalence of glomerular hyperfiltration differs 

between type 1 and type 2 diabetes. Patients with type 1 diabetes of ten years duration 

have a prevalence rate of 34-67%, while the prevalence in those with type 2 diabetes is 6-

23% [32]. The lower prevalence of glomerular hyperfiltration in patients with type 2 diabetes 

may be explained by the presence of pre-existing comorbidities such as hypertension, 

dyslipidaemia and obesity, which are associated with renovascular diseases.  

 

Glomerular hyperfiltration is thought to be a result of a disproportionate difference in 

vascular resistance between afferent and efferent arterioles. In diabetes mellitus, RAS 

activation leads to increased angiotensin II levels, which subsequently results in efferent 

arteriolar vasoconstriction and aldosterone release [34]. At the same time, increased 

circulating vasodilators, such as atrial natriuretic peptide and nitric oxide (NO), and insulin 

resistance or relative insulin deficiency result in a reduction in afferent arteriolar resistance 

[32]. This results in increased glomerular pressure, increased glomerular hyperfiltration and 

subsequent glomerular sclerosis.  

 

Elevated levels of angiotensin II are associated with increased albuminuria and 

nephropathy [35, 36]. Angiotensin II is also associated with increased inflammation, oxidative 

stress, fibrosis and endothelial dysfunction. Agents that result in RAS blockade have a long 

track record in reducing the doubling rate of creatinine, albuminuria, and progression to 

nephropathy, ESRD, and death. Their benefit is largely attributed to reduced 

vasoconstriction of the efferent arteriole, which consequently reduces hyperfiltration. 

Therefore, RAS blockade alleviates this effect and as a consequence, agents such as 
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ACEi, angiotensin II receptor blockers (ARB), and spironolactone have beneficial effects on 

DKD. 

 

Tubular function also plays a role in glomerular haemodynamics via a tubuloglomerular 

feedback mechanism. Sodium and glucose reabsorption are increased during moderate 

hyperglycaemia (blood glucose >10 mmol/L (180 mg/dL) due to upregulation of SGLT-2 

and SGLT-1 receptors in the proximal tubules. Increased glucose and sodium reabsorption 

in the proximal tubules leads to reduced sodium delivery to the macular densa portion of 

the distal tubules. As a result, afferent arteriolar tone is reduced with increased renal 

plasma flow and glomerular filtration [37]. SGLT-2 inhibition increases sodium delivery to the 

distal tubules, resulting in afferent arteriolar vasoconstriction and a subsequent reduction in 

renal blood flow and glomerular filtration. This is supported by observations from SGLT-2i 

trials, which demonstrated a small decrease in eGFR at initiation of therapy of 

approximately 5 mL/min per 1.73 m2 and a favourable renal outcome [38-40].  

 

4.2 Metabolic factors 

Hyperglycaemia results in increased glycolysis, which subsequently increases the activity of 

the mitochondrial electron transport chain, which in turn up-regulates superoxide 

production. This excess superoxide results in oxidative stress and up regulates four distinct 

metabolic pathways: the polyol pathway, hexosamine pathway, production of AGEs, and 

the activation of protein kinase C (PKC) [41]. The polyol pathway is a non-glycolytic pathway, 

resulting in reduced activity of the antioxidant, glutathione and subsequent increased 

oxidative stress [41]. In addition, the end-product of the polyol pathway, fructose, has been 

found to be potentially nephrotoxic in animal studies [42]. The hexosamine pathway is 

associated with increased transcription of inflammatory cytokines including tumour necrosis 
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factor-𝛼𝛼 (TNF-𝛼𝛼) and transforming growth factor-𝛽𝛽1 (TGF-𝛽𝛽1) [41]. Increased TGF-𝛽𝛽1 is 

thought to be responsible for renal cell hypertrophy and increased mesangial matrix 

components, two pathologic hallmarks of DKD. AGEs, resulting from irreversible glycation 

of proteins, damage cells by disrupting the function of intercellular and extracellular 

proteins. AGEs are also involved in activation of inflammatory cytokines such as interleukin-

1 (IL-1), interleukin-6 (IL-6), and TNF-𝛼𝛼; growth factors such as vascular endothelial growth 

factor (VEGF), connective tissue growth factor (CTGF) and the production of reactive 

oxygen species [41]. VEGF is linked to abnormal intrarenal blood flow and increased 

capillary permeability [43]. CTGF is a profibrotic contributing to glomerular membrane 

thickening [44]. The activation of PKC increases prostaglandin E2 and NO formation [41], 

which contribute to afferent arteriolar vasodilation. Therefore, the net effect of these 

pathways and subsequent activation of inflammation and increased oxidative stress is 

development of proteinuria, hypertension and decline in eGFR. 

 

5. Managing chronic kidney disease in patients with diabetes 

The therapeutic aim in patients with DKD is to avoid cardiovascular and renal associated 

mortality along with reducing the progression of CKD. Evidence supports addressing 

glycaemic control, the use of RAS blockade, lipid-lowering measures, blood pressure 

control, lifestyle modification and multiple interventions.  

 

5.1 Glucose control 

The efficacy of strict glycaemic control depends in part upon the stage of CKD and the 

evidence is best established in type 1 diabetes. The DCCT comprised of 1,441 participants 

with type 1 diabetes without CVD and with normal renal function that were randomised to 

intensive (HbA1c <6.05% [43 mmol/mol]) versus conventional (HbA1c 9.0% [75 mmol/mol]) 
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glycaemic control. Only 73 individuals had microalbuminuria at the start of the study [18]. 

Following 6.5 years of follow-up, intensive glucose control reduced the occurrence of 

microalbuminuria by 39% and macroalbuminuria by 54%. However, there were 

approximately three times as many severe hypoglycaemic episodes in the intensive control 

arm. There was no reduction in cardiovascular events in the DCCT (note, that the age was 

13-39 years). The same subjects were followed in the Epidemiology of Diabetes 

Interventions and Complications (EDIC) Study, which observed a 42% reduction in any 

cardiovascular event 10 years after both groups had similar glycaemic control, implying that 

the cardiovascular effect of intensive glycaemic control persisted after control was loosened 

[45]. 

 

For type 2 diabetes, the picture is less clear. The UKPDS, which examined sulphonylurea 

and insulin therapy, showed no real benefit on cardiovascular outcome but did demonstrate 

a 24% reduction in microvascular disease including DKD. After 12 years, intensive 

glycaemic control resulted in a 33% reduction in the risk of developing microalbuminuria or 

macroalbuminuria and a significant reduction in the proportion of patients with a doubling of 

serum creatinine (0.9% versus 3.5%) relative to the conventional therapy group [46, 47]. The 

Action to Control Cardiovascular Risk in Diabetes (ACCORD) [48], Action in Diabetes and 

Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation 

(ADVANCE) [49], and the VA Diabetes Trial (VADT) [50] studies with respect to 

cardiovascular effects, ranged from no benefit to increased risk with an increased total and 

cardiovascular mortality risk being observed in ACCORD. In ADVANCE, after a median of 5 

years, intensive glucose control significantly reduced the risk of ESRD by 65%, 

microalbuminuria by 9% and macroalbuminuria by 30%. The progression of albuminuria 

was significantly reduced by 10% and its regression significantly increased by 15% [51]. 
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Shurraw et al in a sample of 23,296 patients observed that a HbA1c > 9% was more 

prevalent in people with non-hemodialysis-dependent CKD and was associated with worse 

renal outcomes. Of interest, the excess risk of kidney failure associated with a higher 

HbA1c was highest among people with better kidney function. This suggests that timely 

glycaemic control is important [52].  

 

5.2 Hypertension 

In the UKPDS study, patients with newly diagnosed type 2 diabetes, treating to a target 

blood pressure of <150/85 mmHg over a median of fifteen years resulted in a 37% risk 

reduction of microvascular complications compared to those treated to a target of <180/105 

mmHg [22]. Each 10 mmHg increase in mean systolic blood pressure was associated with a 

15% increase in the risk of development of both micro- and macroalbuminuria and impaired 

renal function defined as eGFR <60 mL/min per 1.73 m2 or doubling of the blood creatinine 

level. A baseline systolic blood pressure >140 mmHg in patients with type 2 diabetes has 

been associated with higher risk of ESRD and death [53, 54]. Many guidelines recommend a 

target of 140/90 mmHg for patients with diabetes regardless of CKD [55-57]. Other guidelines 

suggest a target of 130/80 mmHg in the presence of micro or macroalbuminuria [57, 58]. In 

summary, those patients at low risk with diabetes and normoalbuminuria could be treated to 

a target of 140/90 mmHg, while those at high risk or significant macroalbuminuria should 

have a lower target of 130/80 mmHg. 

 

5.2.1 Choice of antihypertensive agents 

Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers: 

Angiotensin-converting enzyme inhibitors (ACEi) have been widely studied in relation to 

DKD. Captopril was the first agent to demonstrate a reduction in the progression of 
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albuminuria and renal function in patients with type 1 diabetes [59-61]. Evidence for patients 

with type 2 diabetes in reducing new onset microalbuminuria and macroalbuminuria is 

provided for the combination of perindopril and indapamide from the ADVANCE trial [62]. Of 

interest, serum creatinine and ESRD were not affected. In addition, the BErgamo 

NEphrologic DIabetes Complications Trial (BENEDICT) demonstrated a delay in the onset 

of microalbuminuria [63].  

 

With respect to Angiotensin II receptor blockers (ARB), in the irbesartan Diabetic 

Nephropathy Trial (IDNT) in patients with type 2 diabetes, irbesartan reduced the risk of 

ESRD or a doubling of serum creatinine by 20-23% compared to amlodipine or placebo [63]. 

In the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan 

(RENAAL) trial of patients with type 2 diabetes and nephropathy, losartan reduced the risk 

of ESRD or doubling of serum creatinine by 25-28% compared to placebo [64]. Olmesartan 

in the Randomized Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) 

trial of patients with type 2 diabetes was also associated with a reduction in the progression 

to microalbuminuria [65]. 

 

The Diabetics Exposed to Telmisartan And enalaprIL (DETAIL) trial compared the ACEi 

enalapril with the ARB, telmisartan, in type 2 diabetes patients with early DKD. In the 

DETAIL trial, 250 participants with early DKD were randomly assigned to enalopril or 

telmisartan. This trial indicated that telmisartan was not inferior to enalopril in reducing a 

decline in eGFR over five years [66].  With the lack of data for ARBs in type 1 diabetes, most 

clinicians prefer initiating treatment with an ACEi for DKD. For the primary prevention of 

DKD, a meta-analysis of 11,906 participants found that ACEis reduced the risk of new 

onset microalbuminuria, macroalbuminuria, or both when compared to placebo (relative risk 
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0.71; 95% confidence interval [95% CI]: 0.56–0.89) [67]. However, similar benefits could not 

be demonstrated for ARBs. Therefore, there is no proven benefit in starting ARB treatment 

in normotensive, normoalbuminuric type 1 or type 2 diabetes. Neither ACEi nor ARB are 

currently recommended in normotensive, normoalbuminuric patients for the primary 

prevention of DKD [35]. 

 

Studies have also evaluated the combined ACEi and ARB approach to DKD. Early studies 

in patients with diabetes supported combination therapy for lowering albuminuria and blood 

pressure versus either alone [68-70], however the effects on the preservation of eGFR have 

not been demonstrated. In the Aliskiren Trial in Type 2 Diabetes Using Cardiovascular and 

Renal Disease Endpoints (ALTITUDE) there was no beneficial effect on renal, outcomes 

but a delayed progression to microalbuminuria and macroalbuminuria, and improved 

regression to microalbuminuria and normoalbuminuria was observed [71]. In the Veterans 

Affairs Nephropathy in Diabetes (VA NEPHRON-D) study, the addition of lisinopril to 

losartan treatment failed to reduce the composite endpoint of a 50% reduction in eGFR, 

ESRD or death [72]. Combination treatment was also associated with an increase in acute 

kidney injury and hyperkalaemia and therefore, the dual ACEi and ARB treatment strategy 

has essentially been abandoned. 

 

Aldosterone antagonists: In patients with diabetes, spironolactone appears to reduce 

proteinuria on its own or in combination with ACEi or ARB [73, 74]. The combination of 

aldosterone antagonists and other RAS inhibitors increases the risk of hyperkalaemia and 

there is lack of long-term data relating to renal function with combination blockade. 

Therefore the combination of aldosterone antagonists and ACEi or ARB is unclear and 

carries the risk of hyperkalaemia.   
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Calcium channel blockers: In type 2 diabetes, verapamil and diltiazem have been shown 

to lower proteinuria [75]. Furthermore, the addition of verapamil to lisinopril or trandolapril 

has been observed to be additive in reducing albuminuria and slowing the decline in eGFR 

[53, 75]. In the MicroAlbuminuria Reduction With VALsartan (MARVAL) study where patients 

with type 2 diabetes were randomised to valsartan or amlodipine, valsartan was more 

effective than amlodipine in reducing albuminuria, including remission to normoalbuminuria 

[76].  

 

Diuretics: Thiazide diuretics when combined with an ACEi reduced albuminuria in patients 

with type 2 diabetes, but the combination is associated with postural hypotension [21].  

 

5.3 Lipid-lowering agents 

Studies in type 1 diabetes [77] and type 2 diabetes [5, 78] show an association between 

abnormalities in apolipoprotein B, HDL-cholesterol and triglycerides with the risk of DKD. 

There is paucity in the available literature with respect to renal outcomes. Simvastatin [79] 

and rosuvastatin [80] have been shown to reduce albuminuria in patients with type 2 

diabetes. Furthermore, in the Heart Protection Study, simvastatin was associated with a 

slower decline in eGFR compared to placebo, a difference that was greater in patients with 

diabetes [81]. Atorvastatin in the Collaborative Atorvastatin Diabetes Study (CARDS) 

improved the annual decline in eGFR, particularly in those with albuminuria [82].  

 

5.4 Lifestyle and diet 

Smoking cessation, weight control, and increased physical activity should be encouraged. 

Smoking is an independent risk factor for DKD. Smokers have a higher prevalence of 
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proteinuria and a higher rate of eGFR decline compared to non-smoker [83]. Obesity is a risk 

factor for CVD, hypertension and diabetes, but also an independent risk factor for the 

development of CKD and ESRD [84]. A direct causal link between obesity and ESRD exists, 

independent of associated co-morbidities. Glomerular hyperfiltration is thought to occur as a 

precursor to CKD in the diabetic population [34]. In addition, patients with diabetes and co-

existing obesity have a two-fold increased risk of new onset kidney disease [85].  

 

The beneficial role of low dietary protein intake (<0.6 g/kg/day) in DKD remains unclear. 

Some studies have demonstrated that a low dietary protein intake (<0.6 g/kg/day) is 

associated with a reduction in the rate of eGFR decline [86], while others did not support 

these findings [87]. On the other hand, a high protein intake (>20% of daily calories from 

protein or a protein intake >1.3 g/kg/day) has been associated with progression of DKD as 

measured by increased albuminuria, a rapid decline in eGFR and increased CVD mortality 

[88]. The ADA therefore recommends to limit protein intake to 0.8 g/kg/day for patients with 

non-dialysis-dependent CKD [89].  

 

Dietary sodium restriction has been shown to enhance the antiproteinuric effect of ACEi 

and have beneficial effect on blood pressure and cardiovascular risk. A low salt diet should 

be considered for patients with a reduced eGFR, for whom urinary sodium excretion may 

be impaired. The ADA suggests that dietary sodium restriction (<2300 mg/day) may be 

useful but recommends that an individualised target is needed, based on co-morbidities and 

concurrent medication use, with the support of a renal dietician. [89].  

 

5.5 Multifactorial risk factor reduction 
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The Steno-2 trial of patients with type 2 diabetes with microalbuminuria demonstrated that 

multifactorial risk factor reduction with reduced dietary fat, light to moderate exercise, 

smoking cessation, tight glycaemic control (HbA1c <6.5% [48 mmol/mol]), tight blood 

pressure control (130/80 mmHg), the use of ACEi, and lipid lowering medications 

(cholesterol <4.5 mmol/L) had a beneficial effect [90]. Patients receiving multifactorial 

intervention had significantly lower risk of overt nephropathy (hazard ratio, HR 0.39, 95% 

CI: 0.17-0.87) compared to those receiving regular management. Therefore, as for all 

diabetes related complications a multi risk factor reduction strategy is essential. In addition, 

a post hoc analyses was conducted which examined the impact of intensified, multifactorial 

treatment on renal outcomes in patients with type 2 diabetes and microalbuminuria enrolled 

in the Steno-2 Study over a total follow-up up to 21 years. Progression to macroalbuminuria 

was significantly reduced in the intensive therapy group (HR 0.48, 95% CI: 0.31-0.84]. The 

decline in GFR was significantly different at 3.1 mL/min per 1.73 m2 in the intensive therapy 

group compared to 4.0 mL/min per 1.73 m2 in the conventional therapy group. Furthermore, 

ESRD combined with renal death was significantly lower (HR: 0.53, 95% CI: 0.35-0.8) [91].  

 

5.6 Metabolic acidosis  

Patients with DKD are at increased risk of metabolic acidosis due to type IV renal tubular 

acidosis, which is complicated by hyperkalaemia [92]. This tubular transport defect can limit 

the ongoing use of renoprotective anti-proteinuric ACEi therapy. Treatment includes a low-

potassium diet, diuretics to promote renal potassium wasting and base supplementation, 

traditionally with oral sodium bicarbonate tablets. Bicarbonate supplementation slows 

progression of CKD and improves nutritional status [93]. The use of metformin is limited with 

advanced CKD (eGFR <30 ml/min per 1.73 m2) due to the risk of metformin-associated 

lactic acidosis. The ongoing Evaluation of Effect of TRC101 on Progression of Chronic 
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Kidney Disease in Subjects With Metabolic Acidosis (VALOR-CKD) (NCT03710291, 

https://clinicaltrials.gov/ct2/show/NCT03710291, accessed October 2019) is a phase 3b 

randomised, double blinded, placebo controlled trial investigating the impact of veverimer 

(TRC101) in delaying CKD progression in metabolic acidosis. It includes CKD of diabetes 

aetiology and is due to complete in 2022. 

 

5.7 Current guidelines 

Several guidelines are available relating to the management of DKD. These include the 

National Kidney Foundation [1], ADA [12], NICE (https://www.nice.org.uk/guidance/CG182, 

accessed October 2019), and the Renal Association (https://renal.org/guidelines/endorsed-

guidelines, accessed October 2019), which contain the most recent updated advice relating 

to managing hyperglycaemia, hypertension and lipids. Furthermore, the ADA and European 

Association for the Study of Diabetes (EASD) Consensus Report of 2018 provide clarity in 

relation to glucose-lowering medication in type 2 diabetes, such that an SGLT2i such as 

canagliflozin or empagliflozin is recommended as second line following metformin if CKD 

predominates and the eGFR is in the licensed range for use [94, 95]. Clearly consideration 

may need to be given to local geographical practice and availability of medication and 

resources. These guidelines are available on-line and will not be discussed further in this 

review article.  

 

6. The diabetes cardiovascular outcome trials and renoprotection 

Whilst cardiovascular outcome studies have the main aim of assessing the cardiovascular 

safety of newer diabetes medications, great insight has been gained with respect to the 

effects of SGLT2i and glucagon like peptide-1 receptor agonists (GLP-1RA) on renal 

function.  

https://clinicaltrials.gov/ct2/show/NCT03710291
https://www.nice.org.uk/guidance/CG182
https://renal.org/guidelines/endorsed-guidelines
https://renal.org/guidelines/endorsed-guidelines
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6.1 Sodium-glucose cotransporter-2 inhibitors 

With respect to SGLT2is, all appear to be associated with a small decrease in eGFR at 

initiation of therapy of approximately 5 mL/min per 1.73 m2. Considerable insight and 

attention have focussed on data obtained from cardiovascular outcome studies focusing on 

SGLT2is. It should of course be noted that the participants recruited into the trials did differ 

as shown in table 2. As shown within the Empagliflozin Cardiovascular Outcome Event Trial 

in Type 2 Diabetes Mellitus Patients (EMPA-REG) more than 99% of participants had 

established CVD. Within the Canagliflozin Cardiovascular Assessment Study (CANVAS) 

66.6% had established CVD and 34.4% had multiple risk factors, where as in Multicenter 

Trial to Evaluate the Effect of Dapagliflozin on the Incidence of Cardiovascular Events 

(DECLARE-TIMI 58), 40.6% had established CVD and 59.4% had multiple risk factors. 

CANVAS demonstrated that canagliflozin was associated with a 27% reduction in the 

progression of albuminuria, with a 40% reduction in the composite endpoint of a reduced 

eGFR, the need for renal replacement therapy, and death from any renal cause [96]. Of note 

there was an initial fall in mean eGFR with canagliflozin from 76 to 73 mL/min per 1.73 m2 at 

three months, but eGFR remained stable through six years while gradually declining during 

the period of observation with placebo. In EMPA-REG, empagliflozin was associated with 

effects on albuminuria and eGFR [39]. An initial decline in eGFR was observed with 

empagliflozin, however during the course of the study, eGFR was consistently higher with 

empagliflozin, although this was less clear in trial participants with a baseline eGFR 

<60 mL/min per 1.73 m2. Empagliflozin also reduced the development of acute renal failure. 

Further analysis showed empagliflozin to be associated with a reduction in albuminuria, 

regardless of the baseline urine albumin level [97]. With respect to dapagliflozin, DECLARE-

TIMI 58 examined renal outcomes [40, 98]. In DECLARE–TIMI 58, 17,160 patients with type 2 
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diabetes, HbA1c 6.5-12.0 % (47.5-113.1 mmol/mol), with either established atherosclerotic 

CVD or multiple risk factors, and creatinine clearance of at least 60 mL/min were 

randomised to 10 mg dapagliflozin or placebo once daily over a median follow-up of 4.2 

years. The study included a prespecified secondary cardiorenal composite outcome defined 

as a sustained decline of at least 40% in eGFR to less than 60 mL/min per 1.73m2, ESRD 

(defined as dialysis for at least 90 days, renal transplant, or confirmed sustained eGFR 

<15mL/min per 1.73 m2), or death from renal or cardiovascular causes; a prespecified 

renal-specific composite outcome was the same but excluding death from cardiovascular 

causes. The cardiorenal secondary composite outcome was significantly reduced with 

dapagliflozin versus placebo (HR 0.76, 95% CI: 0.67-0.87, P<0.0001); excluding death from 

cardiovascular causes, the HR for the renal-specific outcome was 0.53, 95% CI: 0.43-0.66, 

P<0.0001. There was a 46% reduction in sustained decline in eGFR and the risk of ESRD 

or renal death was lower in the dapagliflozin group than in the placebo group (HR 0.41, 

95% CI: 0.20-0.82, P=0.012). As in CANVAS and EMPA-REG, six months after 

randomisation, the mean decrease in eGFR was larger in the dapagliflozin group than in 

the placebo group, but this equalised by two years, and at three and four years the mean 

decrease in eGFR was less with dapagliflozin than with placebo. 

 

6.2 Glucagon like peptide-1 receptor agonists 

In the Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Outcome 

Results (LEADER) trial, the significant 13% reduction in the primary composite outcome of 

cardiovascular death, myocardial infarction, and stroke was found on subgroup analysis to 

particularly occur among participants with stage 3 CKD, having an eGFR 30-59 mL/min per 

1.73 m2 [99]. No significant effect on eGFR was found with liraglutide, although both those 

receiving and not receiving the drug showed a decline in eGFR from approximately 75 to 
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65 mL/min per 1.73 m2 over the two year period of observation. Liraglutide administration 

was associated with a significant reduction in albuminuria, with a 25% lower likelihood of 

developing of macroalbuminuria, with the UACR being approximately 20% lower among 

treated participants, regardless of the baseline level of eGFR. Similarly, in the Evaluation of 

Lixisenatide in Acute Coronary Syndrome (ELIXA) trial, a 34% increase in the UACR was 

reported among participants receiving placebo, but the increase was 24% among those 

receiving lixisenatide [100]. For semaglutide, in the Trial to Evaluate Cardiovascular and 

Other Long-term Outcomes with Semaglutide in Subjects with Type 2 Diabetes (SUSTAIN-

6), it was reported that persistent macroalbuminuria developed among 2.7% of those 

receiving semaglutide, but among 4.9% of those receiving placebo [101]. For dulaglutide, the 

Researching Cardiovascular Events With a Weekly Incretin in Diabetes (REWIND) trial 

demonstrated a lower incidence of new macroalbuminuria in the dulaglutide group (8.9%) 

compared to the placebo group (11.3%), with a HR 0.77, 95% CI: 0.68-0.87, P<0.0001 [102]. 

Renal Outcomes were also evaluated in the EXenatide Study of Cardiovascular Event 

Lowering (EXSCEL) where a 40% decrease in a composite endpoint of eGFR decline, renal 

replacement, renal death or new macroalbuminuria was siobserved [103]. 

 

6.3 Dipeptidyl peptidase-4 (DPP-4) inhibitors 

In the Saxagliptin Assessment of Vascular Outcomes Recorded in Patients with Diabetes 

Mellitus (SAVOR) Thrombolysis in Myocardial Infarction (TIMI) 53 trial, saxagliptin was 

associated with significantly less worsening and more improvement in microalbumin levels 

at one year, at two years, and by the end of treatment [104]. The reduction in microalbumin 

levels was similar in patients with and without renal impairment. Interestingly, there was no 

relationship between improvement in albuminuria and improvement in HbA1c. The other 

DPP4i cardiovascular outcome trials have not reported effects of these agents on renal 
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function or albuminuria, but studies of sitagliptin and linagliptin suggest that these agents 

may also reduce albuminuria [105].  

 

7. Renal outcome trials with SGLT2 inhibitors: CREDENCE, DAPA-CKD and EMPA-

KIDNEY  

Whilst cardiovascular outcome trials provide exciting results related to renal outcomes, they 

enrolled a small proportion of patients with CKD at baseline and furthermore, they were not 

primarily designed to assess renal end points, but rather included secondary renal outcome 

measures. The Canagliflozin and Renal Events in Diabetes with Established Nephropathy 

Clinical Evaluation (CREDENCE) trial was designed to assess the effects of canagliflozin 

primarily on renal outcomes in participants with type 2 diabetes and albuminuria related 

CKD [38]. This double-blind, randomised trial compared canagliflozin versus placebo in 

people with type 2 diabetes with a baseline eGFR of 30-90 mL/min per 1.73 m2 and a 

UACR ratio >300-5000 mg/g. Participants received a stable dose of either an ACEi or ARB. 

The primary outcome for the trial was a composite of ESRD (dialysis, kidney 

transplantation, or a sustained eGFR <15 mL/min per 1.73 m2), doubling of serum 

creatinine, or death from kidney or cardiovascular causes. The trial of 4,401 participants 

and 50% with a history of CVD, was stopped as during a median of 2.62 years, as benefit 

was observed with canagliflozin. The primary outcome was reduced by 30% in those 

treated with canagliflozin (HR 0.70, 95% CI: 0.59-0.82, P<0.001). In addition, the kidney-

specific composite outcome (ESRD, doubling of creatinine, or kidney-related death) was 

positive (HR 0.66, 95% CI: 0.53-0.81, P<0.001). Canagliflozin treatment was also 

associated with a lower risk for several cardiovascular-related outcomes.  
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Whilst CREDENCE has a focus on patients with type 2 diabetes, two other clinical trials are 

underway examining the effects of SGLT2is in patients with CKD, not exclusively with 

diabetes. These trials are summarised in table 3. A study to evaluate the Effect of 

Dapagliflozin on Renal Outcomes and Cardiovascular Mortality in Patients With Chronic 

Kidney Disease (DAPA-CKD) will end in November 2020 

(https://clinicaltrials.gov/ct2/show/NCT03036150, accessed October 2019). This study is 

currently recruiting 4,000 participants randomised to dapagliflozin (5mg or 10 mg) or 

placebo in participants with an eGFR of 25-75 mL/min per 1.73 m2 and albuminuria (UACR 

200-5000 mg/g) receiving a stable dose of ACEi or ARB. The study is recruiting both 

patients with type 2 diabetes and those without (type 1 diabetes is an exclusion). The 

primary outcome (up to four years) is the time to the first occurrence of any of the 

components of the composite of a ≥50% sustained decline in eGFR or reaching ESRD or 

CV death or renal death. In addition a Multicentre International Randomized Parallel Group 

Double-blind Placebo-controlled Clinical Trial of EMPAgliflozin Once Daily to Assess 

Cardio-renal Outcomes in Patients With Chronic KIDNEY Disease (EMPA-KIDNEY) will 

come to completion in June 2022 (https://clinicaltrials.gov/ct2/show/NCT03594110, 

accessed October 2019). This study is recruiting 5,000 participants randomised to 

empagliflozin or placebo. The sample consists of participants with evidence of CKD at risk 

of kidney disease progression defined by at least 3 months before and at the time of 

screening visit by an eGFR 20-45 mL/min per 1.73m² or an eGFR ≥45 to <90 mL/min per 

1.73m² with a UACR ≥200 mg/g (or protein: creatinine ratio ≥300 mg/g). In addition, 

participants are already receiving an ACEi or ARB. One exclusion includes patients with 

type 2 diabetes and prior atherosclerotic CVD with an eGFR >60 mL/min per 1.73m². The 

primary composite outcome is time to first occurrence of (i) kidney disease progression 

(defined as ESRD, a sustained decline in eGFR to <10 mL/min per 1.73m², renal death, or 

https://clinicaltrials.gov/ct2/show/NCT03036150
https://clinicaltrials.gov/ct2/show/NCT03594110
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a sustained decline of ≥40% in eGFR from randomisation) or (ii) Cardiovascular death (with 

a median follow-up approximately 3.1 years). 

 

The results of DAPA-CKD and EMPA-KIDNEY will clearly provide considerable insight into 

the effects of SGLT2is in relation to CKD. The data is likely to support the results of 

CREDENCE. These studies will provide insight into whether the SGLT2is have a class 

effect in addition to whether the effects are observed in patients with and without type 2 

diabetes. At present, the current SGLT2i labelling recommends dose reductions on the 

basis of eGFR because of diminished glucose-lowering effect with reduced kidney function, 

with use not recommended for empagliflozin, canagliflozin, and dapagliflozin in patients with 

an eGFR<45 mL/min per 1.73 m2 (and not to be initiated with an eGFR<60 mL/min per 1.73 

m2). CREDENCE demonstrates that canagliflozin use in patients with an eGFR below this 

threshold is safe and provides kidney benefit. This finding suggests that SGLT2is may offer 

an alternative for patients unable to tolerate ACEi or ARB therapy because of 

hyperkalaemia, although further evidence is needed to demonstrate improvement in kidney 

outcomes in the absence of background ACEi or ARB use [106]. 

 

8. Newer therapies in the future 

As discussed already, steroidal mineralocorticoid receptor antagonists (MRAs), such as 

spironolactone and eplerenone appear to have beneficial effects in the setting of DKD. In 

addition these agents have been used in the management of hypertension, primary 

aldosteronism and heart failure. More recently, novel nonsteroidal MRAs with improved 

safety profiles have been developed, including BR-4628 (Bayer), finerenone (Bayer, 

Leverkusen, Germany), PF-03882845 (Pfizer, Groton, CT), SM-368229 (Dainippon 

Sumitomo Pharma, Osaka, Japan), and AZD9977 (AstraZeneca, Cambridge, UK), among 
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others [107-110]. At present, none of the agents are currently marketed. Animal based 

research has shown that these agents may have beneficial effects in alleviating the effects 

of acute kidney injury in the setting of ischaemia and hypoperfusion. In a phase 2a clinical 

trial comparing the efficacy and safety of finerenone with spironolactone in patients with 

CKD and heart failure (MinerAlocorticoid Receptor Antagonist Tolerability Study: ARTS), 

participants receiving finerenone (2.5-10 mg once daily) had a lower incidence of 

hyperkalaemia and reduced albuminuria from baseline compared with those receiving 

spironolactone [111]. In the ARTS-Diabetic Nephropathy (ARTS-DN) trial, the addition of 7.5-

20 mg of finerenone to RAS blocker therapy reduced the UACR in patients with DKD [112]. 

This study observed that the placebo-corrected mean ratio of the UACR at day 90 relative 

to baseline, was reduced in the finerenone 7.5mg, 10mg, 15mg, and 20mg per day groups 

(for 7.5 mg, 0.79 [90% CI: 0.68-0.91, P=0.004] for 10 mg, 0.76 [90% CI: 0.65-0.88, 

P=0 .001]; for 15 mg, 0.67 [90% CI: 0.58-0.77, P<0.001]; for 20 mg, 0.62 [90% CI: 0.54-

0.72, P<0.001]). Of interest, many participants were receiving an ACEi or an ARB. This 

effect was replicated in a Japanese population [113]. Therefore, whilst there is encouraging 

clinical evidence for non-steroidal MRAs in reducing proteinuria in the setting of CKD, 

further studies to investigate the effectiveness are required to ascertain benefit which is 

over and beyond the existing therapies described in this review.  

 

9. Conclusions 

We provide an empirical and structured review examining the available literature relating to 

diabetes related CKD, incorporating the current information provided from cardiovascular 

outcome and renal outcomes from trials relating to diabetes and cardiorenal data. The 

mainstay of therapy consists of managing hyperglycaemia, blood pressure control, lipid 

management, and lifestyle modification along with maximising cardiovascular risk factors. 
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Over recent years there has been controversy in relating to screening for microalbuminuria 

in patients with type 2 diabetes. With the development in agents that alter the progression 

of albuminuria there is clearly a justified rationale to screen for this to allow those patients 

with identified early CKD (with microalbuminuria and a normal eGFR) to be initiated on 

disease modifying therapies. However, a proportion of patients will develop ESRD do not 

have microalbuminuria or have very microabuminuria and the effect various mecication that 

alter the risk of DKD may be independent of microalbuminuria. The exciting data related to 

SGLT2is has changed the clinical mind-set relating to the potential of reducing the 

progression of DKD and the subsequent diabetes related renal complications and the 

associated cardiovascular mortality. These studies have gained the interest of renal and 

cardiology specialists and provides the opportunity for close collaboration. This is evident 

by the fact that the renal association along with cardiac societies such as the European 

Cardiac Society and the American College of Cardiologists and the American Heart 

Association have gained an interest in the role that these agents play in reducing 

cardiovascular risk. There has also been early adoption of the use of SGLT2is on these 

guidelines. Information from EMPA-KIDNEY and DAPA-RENAL will hopefully support the 

data provided by CREDENCE and we might expect in the near future that SGLT2is would 

be part of standard therapy in the prevention of DKD, perhaps focussing on patients with all 

stages of proteinuria and reduced eGFR. There are also promising developments in relation 

to non-steroidal MRAs but more clinical trials are required within this area to understand the 

efficacy above and beyond the currently available agents. 
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Table legends 

Table 1: Classification and prognostic risk of chronic kidney disease (CKD) 

according to estimated Glomerular Filtration Rate and presence of albuminuria 

(mg/mmol) adapted from KDIGO clinical guidelines [114] 

At any stage of CKD, the degree of albuminuria, observed history of eGFR loss, and cause 

of kidney damage (including possible causes other than diabetes) may also be used to 

characterise CKD, gauge prognosis, and guide treatment decisions. Green = low risk (if no 

other markers of kidney disease, no CKD). Yellow = moderately increased risk. Orange = 

high risk. Red = very high risk.  

 

Table 2: Baseline characteristics of participants recruited into EMPA-REG, CANVAS 

and DECLARE-TIMI 58 

 

Table 3: SGLT-2 inhibitor clinical trials in CKD populations 

† Doubling of serum creatinine, renal death. 

* Includes cardiovascular death, non-fatal MI, non-fatal stroke, hospitalised congestive heart 

failure and hospitalised unstable angina. 

 

Figure legends 

Figure 1: Electron micropscopic appearance of diabetes related kidney disase 

1A: Thickened glomerular capillary basement membranes.  

2B: Mesangial expansion by extracellular amorphous material. 

 

Figure 2: Diabetes related kidney disease  
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2A: Silver stain showing marked nodular expansion of the mesangial matrix (Kimmelstiel-

Wilson) nodule, on light microscopy. 

2B: Glomerulus with features of diffuse mesangiosclerosis on light microscopy. 
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Table 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stage eGFR 

(mL/mil/1.73m2) 

Description Normoalbuminuria Microalbuminuria Macroalbuminuria 

1 >90 Normal or high Low Moderate High risk 

2 60-89 Mild reduction Low Moderate High risk 

3A 45-59 Mild-moderate 

reduction 

Moderate High risk Very high risk 

3B 30-44 Moderate-severe 

reduction 

High risk Very high risk Very high risk 

4 15-29 Severe reduction Very high risk Very high risk Very high risk 

5 <15 Kidney failure Very high risk Very high risk Very high risk 
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Table 2 

Baseline characteristics EMPA-REG CANVAS DELCARE 

Mean age (years) 63.1 63.3 63.9 

Gender (% male) 71.5 64.2 62.6 

HBA1c (%) 8.1 8.2 8.3 

Duration of diabetes (years) >10 13.5 11.9 

Insulin use (%) 48.2 50.2 40.5 

Mean eGFR (mL/min/1.73m2) 74.1 76.5 85.2 

Micro/macroalbuminuria (%) 40.6 30.2 30.3 

Myocardial infarction (%) 46.6 29.1 20.9 

Ischaemic stroke (%) 23.3 12.7 6.5 

Heart failure (%) 10.1 14.4 10.0 
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Table 3 

 CREDENCE EMPA-KIDNEY DAPA-CKD 

Composite 

Primary outcome 

• ESRD (Dialysis, renal transplant). 

• Sustained eGFR <15 mL/min per 1.73 

m2. 

• Doubling of serum creatinine. 

• Death from kidney or cardiovascular 

causes. 

• ESRD (Dialysis, kidney transplant). 

• Sustained eGFR <10 mL/min/1.73m². 

• Renal death. 

• Sustained decline of ≥40% in eGFR.  

• ESRD (Dialysis, renal transplant, sustained 

eGFR <15 mL/min/1.73m2), 

• Sustained ≥50% decline in eGFR, or death 

from kidney or cardiovascular causes. 

Secondary 

outcome 

measures 

• Time to the first occurrence of an event 

in the composite endpoint of CV death 

and hospitalised congestive heart failure. 

• Time to the first occurrence of an event 

in the composite endpoint of CV death, 

non-fatal MI, and non-fatal Stroke. 

• Time to the first occurrence of 

hospitalised congestive heart failure. 

• Time to the first occurrence of an event 

in the renal composite endpoint†. 

• Time to first hospitalisation for heart 

failure or cardiovascular death. 

• Occurrences of all-cause hospitalisation 

(first and recurrent). 

• Time to death from any cause. 

• Time to first occurrence of kidney 

disease progression. 

• Time to cardiovascular death. 

• Time to cardiovascular death or ESRD. 

 

• Time to the first occurrence of any of the 

components of the composite: ≥50% 

sustained decline in eGFR or reaching 

ESRD or renal death. 

• Time to the first occurrence of either of the 

components of the composite: CV death or 

hospitalisation for heart failure.  

• Time to death from any cause.  
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• Time to cardiovascular death  

• Time to all-cause death. 

• Time to the first occurrence of an event 

in the cardiovascular composite 

endpoint*. 

Number of 

participants 

4401 5000 4000 

Inclusion criteria • Age ≥30 years. 

• eGFR 20–45 or eGFR 45–90 

mL/min/1.73 m2 with UACR ≥200 mg/g. 

• Type 2 diabetes (HbA1c 6.5–12%). 

• eGFR 30–90 mL/min/1.73 m2. 

• Stable maximally tolerated RAS 

blockade 

• UACR 300–5000 mg/g. 

• Age ≥18 years.  

• eGFR 20–45 or eGFR 45–90 

mL/min/1.73 m2 with UACR ≥200 mg/g. 

• Clinically appropriate doses of ACE 

inhibitor or ARB, unless not tolerated. 

• Age ≥18 years.  

• eGFR 25–75 mL/min/1.73 m2. 

• Stable maximally tolerated ACE inhibitor or 

ARB if not contraindicated 

• UACR 200–5000 mg/g. 
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