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Foreword

Among the earliest engineering handbooks are those of the Greek authors
Ktesibios, Philon and Heron on the making of catapults (c. 350 BC). They
had formulæ that enabled makers to scale the catapult to the ammunition
with a view to maximising the range and impact. Their texts address practical
technologies and respond to pressing needs of the day, not least the subject
of the even earlier handbook of Aineias Tacticus How to survive under siege.
Their books are a remarkable testimony to the sophistication of Greek tech-
nology, upon which the Romans built so effectively. Writing down of a body
of knowledge that can be learned, transmitted and used in the world’s work
is not new.1

Today, the world’s work is everywhere technical and professional. It is
supported by curricula, qualifications, accreditation, charters, and —when
particularly new, in development or transformation— by concepts of best
practice, communities and regulation. The invasion of software into every-
thing has created many software engineering domains that are self-sustaining
with their own bodies of knowledge and practices, e.g., in science, engineering,
business, entertainment and transport. The pace and scale of new develop-
ments suggest that the formulation and writing down of a body of knowledge
and practice that can be used in specialised domains of software engineering
is invaluable and necessary.

This little book tackles questions about the nature of engineering knowl-
edge and practice through the concept of the practitioners’ handbook. The
conception of a handbook is demanding as its purpose is to seek and record
what knowledge and know how really matters and to make it usable. The
authors of this book combine ideas from many quarters and reflect on how
to identify and organise ‘settled’ knowledge into a handbook, in particular
regarding our capabilities for making software that is safe, secure, resilient,

1 The catapult is an extraordinary case study when thinking about the nature of engi-

neering knowledge; see T.E. Rihll, The Catapult, Westholme Publishing, 2007; and T.E.
Rihll, Technology and Society in the Ancient Greek and Roman Worlds, The American

Historical Association and the Society for the History of Technology, 2013.
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viii Foreword

etc. The roots, inspiration and focus of the book are in Formal Methods for
software engineering. The distilled handbook production approach however
applies to engineering in general. Their exemplar is of a domain of software
engineering that is coming of age, the design and implementation of software
based signalling in railways. The authors’ perspective is novel, and their dis-
cussion is revealing and stimulating. They offer us an intriguing new way of
thinking about contemporary technological knowledge.

Swansea, February 2020 John V. Tucker



Preface

Established engineering disciplines (and, in a similar way, the discipline of
medicine) have desktop handbooks which are partly descriptive and partly
normative: they give the practitioners of those disciplines a systematic
overview of their disciplines’ knowledge, which comprises both topic knowl-
edge (about the objects which are in the scope of the discipline), as well as
method knowledge (about how to proceed in order to solve problems which
often and typically arise within those scopes). For newly ‘emerging’ domains
or disciplines, however, for which no Handbook (HB) with normative author-
ity has yet been defined, the question arises of how to do this systematically
and in a non arbitrary manner; this is the focus of this book.

Its meta methodological tasks entail: clarification of what actually a ‘HB’
is, the systematic identification of what ought to be considered as ‘settled’
knowledge (extracted from historic repositories) for inclusion into such a HB,
and the ‘assembly’ of such identified knowledge into a form which is ‘fit’ for
the purpose and conforms to the formal characteristics of HBs as a ‘literary
genre’.

This book is the first to reflect upon the question of how to construct a
desktop HB. ’Settled knowledge’ is defined and identified as the key ingredi-
ent for HB production. It is demonstrated how concept analysis can be used
for identifying settled knowledge by utilizing the assembled data for classifi-
cation; a presentation scheme for HB articles is developed and demonstrated
to be suitable.

Modern society increasingly utilizes computer systems, presuming them
to be dependable, i.e., safe and secure. Railway control is a typical example.
Computer Science needs to address the challenges of (1) designing dependable
systems and (2) providing evidence for safety and security properties of such,
often complex, systems. Formal Methods are one important means to address
both of these questions. However, actual Formal Methods HBs are scarce or
nonexistent. A HB would encourage and enable practitioners to use Formal
Methods as an applicable, every day tool for software development.

ix



x Preface

This book is rooted in the philosophy and methodology of engineering.
It provides a clear definition of settled knowledge and concise presentation
of methodologies for HB development, exemplified in the railway domain.
These cover the question of how to identify settled knowledge and also of how
to transform such identified knowledge into a set of informative handbook
articles. Finally, the limitations of these methods are discussed.

With the recently emerging ‘discipline’ of ‘Formal Methods in the rail-
way domain’ as our motivating and illustrative example, this book shows, in
principle, how a HB can be reasonably constructed.

Pretoria, Kitchener, Wadhurst, Swansea Stefan Gruner
February 2020 Apurva Kumar

Tom Maibaum
Markus Roggenbach
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Part I

Background





Chapter 1

Introduction and Motivation

Practitioners of well established applied sciences, which include the old dis-
cipline of medicine, as well as mature engineering disciplines, possess desk-
top handbooks (HBs), which contain the trustworthy and widely accepted
‘recipes’ for practice in those disciplines. HBs give the practitioners of those
disciplines a systematic overview of their disciplines’ contents. HBs comprise
both topical knowledge about the entities which are in the scope of the dis-
cipline, as well as methodological knowledge about how to proceed to solve
the problems which typically arise within those scopes. HBs in the applied
sciences (and, in particular, the engineering disciplines) thus include both
descriptive and normative elements in some analogy to the ‘paradigmatic
textbooks’ which the historian and philosopher of science, Thomas Kuhn,
has characterised as constitutive and school forming for the classical scien-
tific disciplines [58].

The purpose of HBs is to offer codified methods. These constrain the cre-
ativity of the practitioner so that what is built has some likelihood of working
(being ‘fit for purpose’) and being safe. In other words, codified methods pro-
vide a clear route to guaranteed and repeatable success.

The word ‘handbook’ (or ‘manual’) has its roots in the classical Greek
word ενχει%ιδιoν (encheiridion). Such manuals already existed in times of
antiquity. Some of the oldest manuals were of a rather ‘philosophical’ bent.
For example, the Enchiridion of Epiktet provided practical moral advice on
the theoretical basis of Stoic ethics. Others were technical manuals for the
artisan crafts, devoted to more ‘practical’ matters, such as to the making
of catapults. Common to these manuals is that they contained instructions
about how to do something properly, an important feature of a ‘handbook’
in our understanding.

Whereas the handbooks of historically old scholarly disciplines (e.g.,
medicine) have been ‘growing organically’ (metaphorically speaking) since
time immemorial, the situation today is fundamentally different with its
‘mushrooming’ of ever newer academic and practical disciplines and sub-
disciplines at a historically rapid pace. In these cases, we are no longer in

3



4 1 Introduction and Motivation

the position to hope and wait for the ‘organic growth’ of the handbooks for
those new disciplines ‘as time goes by’; instead, we must construct them pur-
posefully at a pace which matches the rapid ‘pace of emergence’ of those new
disciplines and subdisciplines. One example of such an emerging discipline
is that of Formal Methods in the railway domain; it has existed for approx-
imately 20 to 30 years. However, a normative and authoritative handbook
on this ‘young’ topic is not yet available. For a purpose like this (as well as
many similar ones), we need a rational HB construction method (actually a
meta method because HBs must contain method knowledge) that is effective
and efficient, as well as being justifiable methodologically and in terms of the
philosophy of science.

Such a meta method of HB construction, which is the topic of this book,
must address at least the following questions, which are together, in their
totality, both historic and systematic, as well as both descriptive and norma-
tive:

• Clarification of the fundamental question, what actually is a ‘HB’, in con-
trast to what is actually not a HB. In other words, we need to establish
criteria that distinguish HBs from non HBs.

• Then we need to be able to determine which ‘elements’ of ‘knowledge’, out
of a historically vast repository of documented knowledge, may or shall be
included into a new HB to be developed and established. Choices will have
to be made, because a HB must necessarily be smaller than a discipline’s
entire historic repository.

– Because a HB is intended to be used ‘daily’ by the practitioners of a
discipline, the HB’s contents must be considered by those practitioners
as trustworthy and reliable.

– Trustworthiness, however, can only be ascribed to knowledge and meth-
ods which have already to some extent passed the ‘test of time’ again
and again, such that they can henceforth be regarded as settled knowl-
edge, which will likely continue to remain trustworthy for years to come,
notwithstanding the usual research progress.

– Hence the meta method must deal with the questions of where to find
and how to identify ‘settled knowledge’ in a discipline’s historic repos-
itory. This, again, requires criteria which must appear as ‘reasonable’
from a philosophy of science point of view.

• Last but not least: After the ‘settled knowledge’ has been identified and
chosen for inclusion into a new HB (previous point), and after it has been
clarified what a HB must internally ‘look like’ to make it acceptable as
a HB (first point), the meta method must also provide guidelines about
how to transform the textual and structural presentation of the settled
knowledge into a form that makes it HB-compatible.

In this book, we address these elements, present steps that can be carried out
and show by example how this can be done. In other words: we devise a meta
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method and demonstrate (by example) that it is, in general, effective and
feasible. The chosen domain, from which our example is ‘extracted’, is the
already mentioned discipline of ‘Application of Formal Methods in Railway
Engineering’.

The key contribution of this book is the (example illustrated) construction
method itself, not the HB which would result from a highly detailed and very
comprehensive application of our method.

1.1 What constitutes a HB?

According to Jackson [45] an engineering handbook, which we consider to be
a HB, is not merely a compendium of fundamental principles. Instead, it con-
tains a corpus of rules and procedures by means of which those fundamental
principles can be most easily and efficiently applied to the design tasks which
typically occur in the chosen area of engineering. Thus, the ‘outline’ of a
‘typical’ design is almost always already given, as it is predetermined by the
already existing products, in conjunction with their corresponding human
needs and requirements [45]. Indeed, according to Maibaum [69], this is what
engineering bodies of knowledge ought to be about.

Peculiar ‘historical, semantic shifts’, in which the meanings of key terms
are gradually changing over time, are typical for all advanced sciences during
the course of their history [27]. Though software engineering is still a com-
paratively young discipline, it already has experienced some semantic shifts
of its key terms [33]. This is a problem that makers, as well as readers, of
HBs must always keep in mind.

For the sake of clarification, we provide the following two counter examples
of what we do not regard as HBs in the above mentioned sense:1

• The well known SWEBOK, in its 3rd edition from 2014,2, presents in
its more than 300 pages merely factual knowledge (like an encyclopedia),
but strongly lacks applicable methodical knowledge in the form of typical
problem solution ‘recipes’. By analogy we might say that the SWEBOK
is like a comprehensive treatise about all sorts of flour, eggs, milk, sugar,
and many further ingredients, however, without telling its readers anything
about how to bake a cake.

• Oliveira [72] provides a comprehensive survey about which European uni-
versities have taught what kinds of Formal Methods in their Computer
Science curricula. Although such a survey is without doubt a noble un-
dertaking, which can serve many other useful purposes, it does not help
any practitioner to ‘look up’ the ‘most recommended’ solution S for some

1 Pointers to these two counter examples were provided to us by some of our academic

colleagues during the discussion phase of this book’s manuscript prior to its publication.
2 https://www.computer.org/web/swebok



6 1 Introduction and Motivation

given Formal Methods problem P in the context of a chosen application
domain (e.g., the railway domain).

Engineering disciplines [84], as well as other science based and application
oriented disciplines such as medicine, are characterised by high levels of stan-
dardisation and the subsequent availability of readily applicable handbook
knowledge. In those engineering or applied science disciplines, a handbook is
comprised of:

• factual knowledge: explanations of concepts used;
• procedural knowledge: how we can go about doing things;
• problem classification: grouping problems with similar characteristics;
• design methods: recipes for designing solutions for problems.

These are elements that characterise a professional domain. Such HBs can be
found on the book shelf or on the desk of every serious practitioner. Positive
examples of HBs that contain all these elements (to different degrees) are:

• H. Llewelyn, H.A. Ang, K. Lewis, A. Al-Abdullah, Oxford Handbook of
Clinical Diagnosis. Oxford University Press, Third Edition, 2014.

• R.C. Dorf (ed.), The Engineering Handbook, CRC Press, 2005.
• I.N. Bronshtein, K.A. Semendyayev, G. Musiol, H. Mühlig, Handbook of

Mathematics. Springer, 2015.

From a philosophy of science point of view, we can state that the contents
of such handbooks are often presented in the ‘nomopragmatic’ logical form
[14]3, on the basis of which even more detailed ‘technological rules’ can be
formulated. In those application oriented contexts,

• ‘nomological’ statements describe lawful scientific facts on which all proper
engineering must be grounded;

• the above mentioned nomopragmatic statements describe science based
technical possibilities or options;

• whereas, the technological rules outline the adequate actual implementa-
tions of those possibilities [14].

Therefore, only ‘settled’ knowledge is trustworthy enough for inclusion into
any professional engineering HB. Seen from the point of view of the philoso-
phy of engineering, the notion of ‘settledness’ (and, hence, trustworthiness)
of engineering knowledge is closely related to Vincenti’s notion of ‘normal
design’ [84], in analogy to Kuhn’s well known notion of ‘normal science’ [58].
In the context of engineering, ‘normality’ entails “the improvement of the
accepted tradition, or its application under new or more stringent conditions”
[84]. An implied (though not explicitly stated) view of ‘normal’ engineering
design is that engineers normally design devices (as opposed to systems). A

3 Gr.: nomos = law, rule, custom; pragmatic relates to acting or doing. An example of a
nomopragmatic statement provided by Bunge is: “If a magnetized body is heated above

its Curie point, then it is demagnetized” [14](p. 149).
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device, in this sense, is an entity the design principles of which are already
well known, well defined, well structured, and subject to the principles and
conditions of ‘normal’ design. A ‘system’, on the contrary, which is a subject
of so called ‘radical design’, is an entity which lacks several of those character-
istics which would make its ‘normal’ design possible. This notion of ‘radical
design’ in engineering corresponds quite well to Kuhn’s notion of ‘science in
crisis’ [58] in the field of the theoretical (non applied) sciences. Examples of
‘devices’ given by Vincenti [84] are conventional airplanes, electric generators,
turret lathes, and the like, whereas examples of ‘systems’ are airline compa-
nies, electric power plants, or automobile factories as a whole.4 It would thus
appear that ‘systems’ become ‘devices’ when their design attains the status
of being ‘normal’, i.e., when the problem of ‘original creativity’ required for
their design becomes merely a matter of systematic choice, based on well
defined analysis, in the context of standard definitions and criteria developed
and accepted by the ‘community’ of engineers, in an analytical industrial
manner. Further details about Vincenti’s relevance for Software Engineering
and Formal Methods (along the lines of what we have briefly sketched above)
can be found in [43] [67] [68].

With similar ideas in mind, a theorist of Informatics, Dirk Siefkes, had
spoken about so called ‘small systems’ which have much in common with
what Vincenti had called ‘devices’. In [79], Siefkes called a system “small, if
it is in every aspect adequate, not exaggerated, and not too little”. In other
words, what Vincenti’s ‘devices’ and Siefke’s ‘small systems’ have in common
(as seen from a philosophy of technology point of view) is that they both
refer to something that is reasonably ‘familiar’, hence manageable, and thus
‘makes sense’ for us in a pragmatic, hermeneutical manner. Both notions
are obviously related to the ontological notion of ‘Zeug’ (i.e., ‘equipment’)
by the phenomenologist philosopher Martin Heidegger in his seminal Sein
und Zeit (Being and Time) [39]. Thus, all things of ‘Zeug’ type populate our
medium scale ‘meso’ world. ‘Zeug’ is thus neither too large nor too small for
us, since we grow up with ‘Zeug’ in a quasi natural manner prior to any deeper
philosophical analysis of it [39]. Hence it must be such a kind of ‘Zeug’ which
is represented by the contents of a HB in the practical engineering realm.
Valuable and ‘HB-ifiable’ methods in the realm of engineering are therefore
the ‘micro methods’ on the basis of ‘micro theories’ [43] that are (again)
closely related to the tasks of developing ‘devices’ in Vincenti’s sense of the
term. Accordingly, it is a highly important objective of (software) engineering
research to construct and compile useful ‘catalogues’ of such ‘micro methods’
in support of the daily work of the (software) engineering practitioner. Such a
‘catalogue’ is a HB according to our new understanding of this term. In other

4 For the sake of illustration, Whereas we have factories that produce cars almost entirely

robotically, with little human intervention on its production lines, we do not (yet) have any
meta factory to robotically produce and emit car factories on the basis of the design plans
of the cars which these factories are meant to produce. Thus, whereas the car is already a
device, its factory is not (yet) a device, given the current ‘state of the art’.
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words, unlike the ‘grand theories’ to which the classical theoretical sciences
aspire, HB oriented ‘micro theories’ describe only small and well ‘manageable’
parts of some domain of interest, such that they become immediately ‘useful’
in any development phases of ‘normal’ engineering projects [43].

1.2 Settled Knowledge

Poser [74], Vincenti [84], as well as Arageorgis and Baltas [3], described en-
gineering as a multi level activity that is both analytic and constructive.
Implied are various categories of knowledge, all of which are relevant in al-
most every engineering project [84]. Those categories include explicit forms
of knowledge, such as ‘fundamental design concepts’, ‘criteria’, and ‘theoret-
ical tools’ (e.g., Formal Methods), as well as tacit knowledge (which is much
harder to identify), such as general ‘guidelines’, ‘rules of thumb’, traditional
‘tricks of the trade’, and the like [84]. In this context, ‘settled’ knowledge is the
kind of knowledge which can become ‘officially’ codified in a HB. Its structure
would thus be consistent with Vincenti’s general epistemological categories
[84], as well as with domain specific application purposes. Such ‘officially’ cod-
ified knowledge must be stable and coherent throughout a HB’s topic range,
over a reasonably long period of time, and ought to appear in similar form
for all similar problems to be solved in that domain. Forms of engineering
knowledge could thus include mathematical formulae, semi formal descrip-
tions of applicable methods, or even pictures and diagrams, as long as they
are clearly problem solution oriented. Settled knowledge in those (and fur-
ther) forms typically stems from the ‘knowledge generating activities’ which
can be found comprehensively described in [84].

For our purposes in this book, we adopt a working definition of settled
knowledge that enables us to proceed with our investigation. Such a working
definition is not intended to be definitive, in the sense of being ‘settled’, but
is sufficiently precise and scientifically plausible to form a basis for further
work. Like any definition, it should enable precise analysis of the elements
of ideas that follow from it. It is subject to revision as we learn more about
the domain of study. Justified by the paragraph above, and supported by the
considerations below, we give the following

Working Definition of ‘Settled Knowledge’: Some piece of knowledge
is settled knowledge in a given domain if and only if it is an element of
normal design for that domain (see section 1.1).

In addition to Vincenti’s considerations concerning the epistemology of engi-
neering, we can find further methodological support in the classical philoso-
phy of science, especially applied science, by Mario Bunge [14]. An important
notion therein is the notion of operational theories, which are meta scientific
theories about scientific methods, rather than scientific theories about natu-
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ral objects [14]. For HB building, specifically in the field of applied computer
science (including software engineering), which is a highly abstract discipline
that hardly possesses any ‘natural’ objects, operational theories are of promi-
nent importance. For the sake of any future HB in our chosen domain, it is
thus especially important to identify and describe the relevant operational
theories. For the purpose of HB building, we must thus survey large amounts
of literature sources, spread out over a reasonably long period of publication
time, in a search for the most applicable (and most often reported) opera-
tional theories. These operational theories are, in the case of our extended
example, the Formal Methods of computer science (as they are applied in the
railway domain).

1.3 Formal Methods in Design and Validation of
Railway Control Systems

Formal Methods in software science and software engineering have existed
at least as long as the term ‘software engineering’ (from the NATO Science
Conference, Garmisch, 1968) itself. In many engineering based application
areas, especially the domain of railway engineering (which also includes inner
city tram lines, urban monorail systems, and the like), Formal Methods have
reached a level of maturity that already calls for the compilation of a HB.
The domain’s various methods and techniques include: algebraic specifica-
tion, process-algebraic modeling and verification, Petri nets, fuzzy logic, and
several more. The B method, for example, has already been used success-
fully for the correct development of the most relevant software components
of the Metro underground railway system of the city of Paris (France). This
successful example is indicative of the maturity and ‘HB worthiness’ of the
Formal Method applied in it.

According to Fantechi’s recent overview [26], “the verification of complex
railway signalling systems is still a main challenge” and entails “an important
percentage of the cost in the development of these systems” [26](p. 168). The
term ‘Formal Methods’ is, thus, broadly understood in the railway domain
as encompassing “all notations having a precise mathematical semantics, to-
gether with their associated analysis and development methods, that allow
to describe and reason about the behaviour and functionality of a system in
a formal manner, with the aim to produce an implementation of the system
that is provably free from defects” [26](p. 168).

Within the broader railway domain, in particular the subdomain of “sig-
nalling has been traditionally considered as one of the most fruitful areas
of intervention for formal methods” [26](p. 169), with an impressive array
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of industrial success cases [26](pp. 169-170).5 These success cases often in-
clude the model checking of interlocking systems [26](pp. 170-171). Examples
include [6] [48] [49]; see also [37] for a comparative study. In contrast, theo-
rem proving techniques are, by and large, not yet extensively applied in the
railway domain [26](p. 172). Model based design and development in the rail-
way domain is already well known and widely accepted, so that Petri nets,
state charts, and finite state machines are reported by Fantechi as especially
popular techniques [26](p. 173).

Those classical software modelling techniques, however, are increasingly
confronted with latest developments in railway engineering, such as (for ex-
ample) the shift in automated train protection (ATP) from static fixed block
to dynamic moving block track segmentation, as well as the introduction of
on train wireless communication systems, by means of which moving trains
can automatically ‘see’ (and ‘talk to’) each other [26](p. 175). At this point,
abstract software modelling is still ‘limping one step behind’ hardware engi-
neering and must ‘catch up’ with the hardware’s latest features and possi-
bilities. Further software modelling and interfacing problems in this domain
are also due to the quickly increasing integration of, hitherto, rather isolated
technical subsystems, such as (for example) interlocking and ATP [26](p.
176). Moreover, in addition to the classical safety properties found in these
topics, liveness properties are becoming increasingly important [26](pp. 179-
180), too.6 “Hence, the key is to adopt a multi level modelling approach to
address the complexity of a railway system”, Fantechi concluded [26](p. 180).

1.4 Structure of the Remainder of this Book

Chapter 2 on ‘related work’ concludes this ‘background’ part I. Chapters 3
and 4 constitute the ‘analysis’ part II of this book. Chapters 5 and 6, finally,
bring everything together in the ‘synthesis’ part III. The contents of this
book’s parts II and III is briefly outlined in the following paragraphs.

As our handbook composition method comprises of six steps in total, we
provide an overview of these steps; we identify ‘ideal roles’, describe the
different types of expertise required to carry out the different steps and char-
acterise the results of each of these steps. Later we discuss each step in more
detail.

5 By contrast, a train collision with eleven casualties between Holzkirchen and Rosenheim
in Bavaria (Germany), 9-Feb-2016, had been caused by a human operator who had man-

ually switched off the automatic train control (ATC) system; that accident was thus not

due to engineering faults nor technical defects.
6 Note that, according to [2], every possible specification can be expressed as the conjunc-
tion of a safety and a liveness property.
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Thereafter, we provide an extended example, namely of how to apply our
general method to the railway domain. This example is covered by two chap-
ters:

• Chapter 4 is devoted to illustrating the first five steps of our method. These
are of a mainly analytical nature, namely on identifying and classifying
‘settled’ knowledge. We conclude Chapter 4 with a critical evaluation of
steps 1 to 5 in the context of the Railway Example.

• Chapter 5 illustrates the sixth, final ‘transformational step’, which we rec-
ommend for the ‘HB-ification’ (i.e., HB compatible textual and structural
representation) of the selected knowledge. To this end, we provide a sketch
of a handbook entry on the topic: Verification through Model Checking of
Ladder Logic Programs for Safety. Such an entry would belong to the ‘Traf-
fic Monitoring and Control’ area of the railway domain, which we identify
in Chapter 4 as one of the areas where our extended example reveals the
existence of settled knowledge.

Note, however, that chapters 4 and 5 are only illustrative; we do not claim
to have already applied our HB construction method ‘exhaustively’, to the
extent that we could immediately start the construction of an actual HB.
The construction of a handbook for Formal Methods in the railway domain
remains future work, for which the collaboration of many experts would be
needed. Nonetheless, we conjecture that our methodological considerations
in this book will make any future HB composition project more likely to
succeed; it serves as a ‘meta recipe’ about how to write ‘recipe books’.

Chapter 6 concludes our book by highlighting its main contributions and
by outlining our view of the future work that remains to be done.





Chapter 2

Related Work

With respect to the purpose of this book, we consider as ‘related work’:

• publications that discuss the organisation of engineering knowledge,
• publications in which some systematic methods for (or approaches to) HB

construction (especially Formal Methods HB construction), are shown, as
well as

• publications in which some classifications of Formal Methods into various
categories are presented.

Accordingly, some relevant publications in these three fields are briefly reca-
pitulated in the subsequent three sections.

2.1 Organisation of Engineering Knowledge

“Engineering refers to the practice of organising the design and construction
of any artifice which transforms the physical world around us to meet some
recognised need” [76].

The nature, purpose and practices of engineering lead directly to the need
for engineering HBs. Rogers’ definition, quoted above, entails that engineer-
ing is different from science and mathematics. The differing objectives and
methods of the three disciplines induce important differences in practice.
Moreover, they induce significant differences in the education of practition-
ers. Finally, conventional engineers are taught the principles of the ‘devices’
they use in designing artefacts as well as the systematic design principles to be
used in building instances of such devices. In [76], Rogers explained in great
detail how engineering is different from science. He argues this view based
on what he called the ‘teleological distinction’, which concerns the differing
aims of science and technology:

“In its effort to explain phenomena, a scientific investigation can wander at will as

unforeseen results suggest new paths to follow. Moreover, such investigations never

13
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end because they always throw up further questions. The essence of technological

investigation is that they are directed towards serving the process of designing and
manufacturing or constructing particular things whose purpose has been clearly

defined. We may wish to design a bridge that uses less material, build a dam that

is safer, improve the efficiency of a power station, travel faster on the railways, and
so on. A technological investigation is in this sense more prescribed than a scientific

investigation. It is also more limited, in that it may end when it has led to an

adequate solution of a technical problem. The investigation may be restarted if there
is renewed interest in the product, either because of changing social or economic

circumstances or because favourable developments in a neighbouring technology
make a new advance possible. On the other hand, it may come to a complete stop

because the product has been entirely superseded by something else that will meet

humanity’s changing needs rather better”.

Moreover, we quote from the same author:

“We have seen that in one sense science progresses by virtue of discovering circum-
stances in which a hitherto acceptable hypothesis is falsified, and that scientists

actively pursue this situation. Because of the catastrophic consequences of engi-

neering failures, whether it be human catastrophe for the customer or economic
catastrophe for the firm, engineers and technologists must try to avoid falsification

of their theories. Their aim is to undertake sufficient research on a laboratory scale

to extend the theories so that they cover the foreseeable changes in the variables
called for by a new conception. The scientist seeks revolutionary change, for which

he may receive a Nobel Prize. The engineer too seeks revolutionary conceptions by

which he can make his name, but he knows his ideas will not be taken up unless
they can be realised using a level of technology not far removed from the existing

level” [76](p. 55).

Vincenti defined engineering activities slightly differently w.r.t the design,
production and operation of artefacts. Of these, especially design and oper-
ation are highly pertinent to software engineering, while it is often argued
that production plays a very small role, if any, in the practice of software
engineering.1 In discussing the focus of engineers’ activities, Vincenti also
mentioned the notion of ‘normal design’,2 which comprises “the improve-
ment of the accepted tradition or its application under new or more stringent
conditions”. The “engineer engaged in such design knows at the outset how
the device in question works, what are its customary features, and that, if
properly designed along such lines, it has good likelihood of accomplishing
the desired task” [84](p. 7).

In the context of Software Engineering, Michael Jackson discussed such
a concept of ‘normal design’, too [44], though he initially did not use this
phrase himself:3

1. “In this context, design innovation is exceptional. Only once in a thousand
car designs does the designer depart from the accepted structures by an

1 Once a software system ‘stands’, it can be (re)produced effortlessly as many times as

needed simply by copying its code text.
2 The term originated in [21].
3 Jackson adopted Vincenti’s terminology only in later publications.
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innovation like front-wheel drive or a transversely positioned engine. True,
when a radical innovation proves successful it becomes a standard design
choice for later engineers. But these design choices are then made at a
higher level than that of the working engineer: the product characteristics
they imply soon become well understood, and their selection becomes as
much a matter of marketing as of design technology. Unsuccessful innova-
tions, like the rotary internal combustion engine, never become established
as possible design choices”.4

2. “An engineering handbook is not a compendium of fundamental principles;
but it does contain a corpus of rules and procedures by which it has been
found that those principles can be most easily and effectively applied to
the particular design tasks established in the field. The outline design is
already given, determined by the established needs and products”.

3. “The methods of value are micro-methods, closely tailored to the tasks of
developing particular well-understood parts of particular well-understood
products”.

Another important aspect of engineering design is the organising principle of
hierarchical design [44]: “Design, apart from being normal or radical, is also
multilevel and hierarchical. Interesting levels of design exist, depending on
the nature of the immediate design task, the identity of some component of
the device, or the engineering discipline required”. An implied (though not
explicitly stated) view of engineering design is that engineers normally design
‘devices’ (as opposed to ‘systems’).

Hence our pursuit of HBs in the domain of Software Engineering is entirely
consistent with the general practice in Engineering.

2.2 Other Approaches to HB Construction

In spite of the many already existing handbooks in and for a plethora of
fields, and in spite of the great demand for such HBs on nearly every topic,
little has been published so far about the methods along the lines of which
such HBs ought to be systematically composed; in other words, ‘meta HBs’
on the topic of HB writing are still lacking in most fields and disciplines.

According to Taguchi (et al.), who briefly sketched their ideas on ‘building
a body of knowledge on model checking for software development’ in [81], a
body of knowledge (BOK) “is a collection of substantial concepts and skills
that represent knowledge of a certain area in engineering/scientific discipline,
and ensures its common understanding. A BOK may include technical terms

4 Note, however, that the Wankel engine mentioned above by Jackson had been successfully

used in many Mazda cars, even including a race victory at Le Mans in 1991, and that the
company recently issued a statement according to which this type of motor will be used

again as a range extender in a forthcoming generation of electric battery vehicles; see

https://www2.mazda.com/en/publicity/release/2018/201810/181002a.html
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and theoretical concepts as well as recommended practices” [81](pp. 784-785).
The authors of this paper first identified several ‘knowledge areas’ (KA1, . . .)
that were then “further classified into subareas up to four tiers”. Alas, in
[81] we cannot find much more than a descriptive listing of those knowl-
edge areas, i.e., no rationale for the detection and identification of ‘settled’
knowledge, no stepwise transformation of chosen knowledge into applicable,
problem solution oriented technical rules, and the like.

Also, Bowen and Reeves have taken a rather traditional vantage point from
which they characterised a BOK, somewhat vaguely, as “an ontology for a
particular professional domain” [13](p. 308). In the most salient parts of their
paper, Bowen and Reeves described the various aspects of the relationship
between a BOK and its supporting ‘community of practice’. As a result, they
also had to start their considerations with the observation that a proper and
useful HB for the domain of Formal Methods does not yet exist [13](p. 309), in
spite of Formal Methods having “now reached a level of maturity when an as-
sociated Body of Knowledge would be a worthwhile part of the general effort
to ensure that Formal Methods find their rightful place in the software engi-
neering profession” [13](p. 321). Most interesting in the approach of Bowen
and Reeves is their attempt at meta specifying the appropriate structure of a
Formal Methods BOK by means of Formal Methods themselves (in their case
the formal language Z), for the sake of clarity. Alas, the Z specification of a
BOK’s envisaged structure in [13](pp. 317-319) makes it clear that Bowen and
Reeves pursue a rather ‘encyclopedic’ approach, according to which a BOK
is not substantially more than an internally hyperlinked dictionary similar
to the ‘Wikipedia’5 pages on the Internet. Neither have Bowen and Reeves
emphasised in [13] the importance of applicable, problem solution oriented
‘cook book recipes’, though it was vaguely mentioned that knowledge “would
include the appropriateness of various combinations in different situations”
[13](p. 321); nor have they indicated any rational criteria by means of which
the actual contents of an envisaged BOK ought to be selected and extracted
from an already existing literature database or knowledge repository.

Most recently, a systematic method for gathering and classifying informa-
tion about relevant themes, trends, and subdomains of the railway domain
from literature resources was published in [57], without, however, our specific
focus on applicable Formal Methods, and also not with any explicit plan to
write a HB on this topic. Nonetheless their bibliometric, statistical classifi-
cation and ranking approach might well be useful for the identification of
‘settled knowledge’, which is an important ‘work package’ for the writers of
a HB in any field.

5 https://www.wikipedia.org/



2.3 Other Classifications of Formal Methods 17

2.3 Other Classifications of Formal Methods

In spite of the long history of Formal Methods research and development
[12] [30], surprisingly little has been published so far about systematic (or
taxonomic) classifications (or categorisations) of the Formal Methods which
are already known. The same is true, more specifically, for Formal Methods in
the railway domain. The few already existing taxonomies or classifications of
Formal Methods tend to be rather coarse, e.g., ‘logic-based’, ‘algebraic’, and
the like, and are typically not application domain specific. A recent ACM
computer science topic classification scheme (2012),6, for example, simply
divides ‘Formal Methods’ into four broad branches, namely, ‘Model checking’,
‘Software verification’, ‘Automated static analysis’, and ‘Dynamic analysis’,
which are neither domain exhausting nor pairwise disjoint.

The oldest Formal Methods classification attempt, of which we are aware,
dates to the year 1990 and can be found in [87]. It includes attributes such
as ‘tool supported’ versus ‘not tool supported’, and several more. Though
it is “not the intent of this book to give a complete taxonomy of all pos-
sible characteristics of a method, nor to classify exhaustively all methods
according to these characteristics” [87], several distinguishing criteria were
nevertheless provided, including: ‘model-oriented’ versus ‘property-oriented’
Formal Methods, where a system’s behaviour is specified ‘directly’ versus ‘in-
directly’.7. Furthermore, ‘visual’ Formal Methods, whose languages contain
graphical elements, were distinguished from purely textual ones, as well as
‘executable’ Formal Methods from non executable ones [87]. Several example
formalisms to match those categories were also described.

In [20], published in 1996, several Formal Methods were grouped w.r.t.
their typical intentions in relation to applications, e.g., for “specifying the
behaviour of sequential systems”, versus “specifying the behaviour of concur-
rent systems” [20]. ‘Hybrid combinations’ were also mentioned, “one for han-
dling rich state spaces and one for handling complexity due to concurrency”
[20]. Moreover, ‘model checking’ and ‘theorem proving’ were mentioned as
the two most typical verification approaches; ‘classical’ mathematical engi-
neering methods (e.g., equation solving on the basis of numerical models)
were not listed as prominent. Several industrial examples to match those cat-
egories of Formal Methods were also provided, with the understanding that
“no one formal method is likely to be suitable for describing and analysing
every aspect of a complex system” [20].

Another rather early Formal Methods classification attempt was published
by Axel van Lamsweerde [63] in the year 2000. He focused particularly on
formal specification (rather than verification) techniques, and distinguished
between ‘history based’, ‘state based’, ‘transition based’, ‘functional’, and
‘operational’ formal specifications. The functional specifications were further

6 http://www.acm.org/about/class/2012
7 In other words: ‘explicitly’ versus ‘implicitly’.
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subdivided into ‘algebraic’ and ‘higher order’ specifications [63]; several ex-
amples were provided and discussed.

In 2008, the difference between methods of ‘static analysis’ and ‘dynamic
analysis’ was briefly mentioned in [40], which served the purpose of a broad
non technical overview paper for software practitioners. Therein, ‘abstract in-
terpretation’ was mentioned as an important meta method with applicability
in several concrete Formal Methods. Rather vaguely, ‘weak’ Formal Methods
(without proof systems) were distinguished from ‘strong’ Formal Methods
(with proof systems), as well as ‘heavyweight’ versus ‘lightweight’ Formal
Methods (which distinction relates to their subjectively perceived difficulty
of practical applicability) [40].

A ‘taxonomic approach’ to classifying Formal Methods specifically for the
application domain of web services was attempted in [18] in 2010. Alas, this
project was prematurely aborted and did not produce more than a few brief
and vague suggestions. A small classification graph was shown in [18](figure
5: p. 360); unfortunately, that graph does not explain anything beyond what
was already known from other literature. In its conclusion, the paper merely
stated “that a taxonomy is needed for guiding the combination and usage
of formal methods” [18](p. 360). As in our own approach, however, formal
concept analysis (FCA) was proposed in [18] as a step towards achieving such
classifications. Like ours, the classification attempt sketched in [18] was also
domain-specific, in contrast to most of the other Formal Methods classifica-
tion attempts, which are unrelated to specific application domains.

In the same year, the need for a classification ‘ontology’ for the domain
of verification and validation (V&V) was identified in [55]: “Given the huge
number of V&V methods and tools, a formal description of the V&V domain
is mandatory in order to ease the choice of the best technology when a devel-
oper needs to verify and/or validate parts of the system he/she is building”.
The approach published in [55] “represents a knowledge sharing initiative for
the V&V domain and provides a formal representation of the key data regard-
ing this domain”. Thus, the theoretical intention and the practical purpose
of the V&V project reported in [55] are quite similar to the intention and
purpose of our work in the railway domain, though the authors of [55] “have
chosen the Web Ontology Language (OWL)” for their purpose instead of for-
mal concept analysis (FCA).8 In one of their illustrative examples, Petri nets
were classified further into ‘algebraic’, ‘decision free’, ‘timed’ and ‘consistent’
nets [55]. The “Related work” of [55](sect. 4) states that “to the best of our
knowledge, there is no ontology reported anywhere for the V&V domain”,
which coincides with our own impression concerning the scarcity of classifi-
cation literature in the Formal Methods (FM) domain, in general, as well as
for the railway domain (FM-Rail), in particular.

8 Here it should be noted that OWL and FCA have different purposes and semantics:

OWL is a knowledge representation language that supports (logical) analysis, while FCA
is a concept modelling language.
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More recently, in 2014, ‘specification oriented’ Formal Methods were dis-
tinguished from ‘analysis oriented’ ones in [11]. This distinction is, by and
large, the same as the previously mentioned distinction between ‘weak’ and
‘strong’ Formal Methods, as in [40]. In [11], furthermore, ‘algebraic’ Formal
Methods were distinguished from ‘model oriented’ ones, see the above men-
tioned paper [87] for comparison, where the ‘algebraic’ methods were also
called ‘property oriented’ in [11]. (However, [87] was neither mentioned nor
cited by [11].)

Specifically for the railway domain, we can find a recent classification of
often applied (mostly state based and/or algebraic) Formal Methods in [70],
which must be additionally augmented with the various methods (based on
logic programming) described in [66], and Petri nets [83].

A recent list of Formal Methods which are frequently used in the trans-
port domain (which includes the railway domain) can be found in [5]; such
summaries can be useful sources for the identification of ‘settled knowledge’
on which every reliable HB must be based. The relevance of Formal Methods
for the (general) transportation domain is also highlighted in [31](figure 10),
though it was not indicated which Formal Methods specifically are the most
important ones for this domain [31].

The use of Formal Concept Analysis (FCA) for many different classifica-
tion purposes in various application domains, which is also our approach, is
already well known and much described in the scientific literature. Several
examples, for the sake of illustration, can be found in [7] [42] [71] [75] [86].

2.4 Comparison with our Approach

In most of the related work mentioned above, existing formal specification
or verification languages or methods were grouped and categorised based
on their own intrinsic features and properties. We could thus call those re-
lated work approaches ‘intrinsic’ classification attempts. Our classification
approach, by contrast, can be characterised as ‘extrinsic’ because it groups
Formal Methods according to their occurrence (or usage) in particular appli-
cation projects as they were reported by the various sources from the railway
domain. An ‘extrinsic’ property of a Formal Method in our classification ap-
proach is thus a domain-specific application relation, not an inherent feature
of a Formal Method itself. This conceptual distinction between ‘intrinsic’
and ‘extrinsic’ schemes of classification must be taken into account method-
ologically, in order not to misunderstand the purpose and the results of our
ongoing project, which we had already previously sketched methodologically
in [36]. The purpose of our classification scheme, as already explained in [36],
is to identify and distinguish whether some particular Formal Methods are
arguably ‘settled’, i.e., already ‘mature enough’ based on rationally justifi-
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able criteria, especially w.r.t. their trustworthy applicability in the railway
domain.

Another extrinsic classification attempt for Formal Methods can be found
in [30](ch. 2: pp. 43-65), dating from 2013; there, however, we can once more
merely find a list of various application domains without more specific infor-
mation about which particular Formal Methods are most suitable in those
domains.

Our (meta) method of HB composition strongly relies on classifying For-
mal Methods into ‘settled’ or ‘not settled’ with the help of the mathematical
notion of ‘stability’ in formal concept lattices. In this context, last but not
least, one more ‘related work’ ought to be mentioned in which methodologi-
cal recommendations concerning stability analysis had been provided [22] in
2010. However, whereas formal concepts with low stability were regarded as
‘indicative’ and noteworthy in [22] (supported by an argument according to
which low stability might point to intrinsic conceptual design flaws of the
underlying formal concept lattice itself), our work, as indicated already in
[36], does not regard concepts of low stability as particularly noteworthy. We
are interested only in concepts with high stability. Thereby we assume (in
contrast to the considerations of [22]) that our underlying formal concept
lattice itself i,s by and large error free, i.e., ‘error free’ w.r.t. our empirical
observations in the data base which lead to the design of our lattice scheme.
‘Deeper’ discussions concerning the degrees of ‘interestingness’ of formal con-
cepts situated in such lattices can be found most recently in [62].
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Analysis





Chapter 3

A General Method for Composing an
Engineering HB

As is also the case in other engineering disciplines, software engineering
knowledge can be organised in the categories of engineering knowledge iden-
tified by Vincenti [84]:

1. Fundamental Design Concepts;
2. Criteria and Specifications;
3. Theoretical Tools;
4. Quantitative Data;
5. Practical Considerations;
6. Design Instrumentalities.

Fundamental design concepts include the operational principle of their de-
vice (i.e., how the engineered entity at the heart of the solution to a prob-
lem works). According to Polanyi this means “knowing for a device how its
characteristic parts . . . fulfill their special functions in combining to an over-
all operation which achieves the purpose” [73]. A second principle typically
taken for granted is the normal configuration of the device, i.e., the commonly
accepted arrangement of the constituent parts of the device. These two prin-
ciples (and possibly others) provide a framework within which normal design
takes place. Criteria and specifications allow the engineer to translate gen-
eral, qualitative goals into concrete technical terms. This translation requires
the device to follow a given operational principle and to be in a normal
configuration. The development of such criteria may be difficult. However,
the development and acceptance of such criteria is an inherent part of the
development of engineering disciplines.

Engineers require theoretical tools to underpin their work. This includes
intellectual concepts for thinking about design, as well as mathematical meth-
ods and theories for making design calculations. Both conceptual tools and
mathematical tools may be devised specifically for use by the engineer and
be of no particular value to a scientist or mathematician. Indeed, as it was
stated by Jackson, “the most useful context for the precision and reliabil-

23
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ity that formality can offer is in sharply focused micro methods supporting
specialised small scale tasks of analysis and detailed design” [45].

Engineers also use quantitative data, as well as tabulations of functions in
mathematical models. A typical example in the field of software engineering
can be found in Knuth’s compendium of sorting and searching [56].

There are also practical considerations in engineering. These are not usu-
ally subject to systematisation in the sense of the categories above, but reflect
more pragmatic concerns. For example, a designer will have to make various
trade offs that are the result of general knowledge about the envisaged device,
its use, its context, its cost, etc.

Design instrumentalities include “the procedures, ways of thinking, and
judgmental skills by which it is done” [84]. This is related to what the well
known ‘capability maturity model’ (CMM) intends where it refers to well
defined and repeatable processes in software engineering.

According to Vincenti, as noted above, the daily activities of engineers
consist of normal design as “the improvement of the accepted tradition or its
application under new or more stringent conditions”. This is the combination
of discipline and a limited amount of creativity encapsulated in engineering
‘cookbooks’: “The engineer engaged in such design knows at the outset how
the device in question works, what are its customary features, and that, if
properly designed along such lines, it has a good likelihood of accomplishing
the desired task”.

In our view, a HB organises such engineering knowledge in a form that
enables an engineer to recognise the problem of concern, to identify potential
solutions of this problem, and to systematically implement an acceptable
solution. In the following parts of this chapter we present a method along the
lines of which such a HB can be produced.

To carry out our HB production method, different types of expertise are re-
quired in the various production steps. This expertise can best be described
by way of ‘ideal roles’. Any such role can be played by an individual or a
group, i.e., we do not require a bijective (1:1) mapping between these func-
tional roles and the human experts who play these roles and serve in their
functions. These roles are briefly characterised as follows (in no particular
order of importance or priority).

Domain Expert:
knows and understands the application domain for which a HB is to be
written and can also act as ‘editor in chief’ for an entire HB production
project.

Formal Concept Analysis Expert (FCA Expert):
knows how to carry out formal concept analysis (FCA) on a given data
set.

Scientific Reader:
also understands the prospective application domain and is, moreover,
able to identify, to retrieve and to collect relevant data, as well as relevant
scientific or technical literature on the topic of interest.
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Author:
has specialized technical knowledge in a specific part of the domain and
will be mainly responsible for writing a HB chapter (or section) about this
topic.

Editor:
coordinates (like a ‘project manager’) the activities of all other role players
in an envisioned HB’s production process.

The steps of our method and the expertise required to carry them out are out-
lined briefly in the subsequent paragraphs; further details and explanations
follow throughout this book.

Step 1:
Choice of Sources for Settled Knowledge

In order to identify settled knowledge, a suitable corpus of literature about the
domain under discussion, from both academic and technical sources, must be
identified and studied. The expertise required in this step must be sufficiently
deep and wide, so as to ensure sufficiently comprehensive coverage of the
domain. The above mentioned Domain Expert will be strongly involved in
this step.

Result:
Corpus of relevant literature.

Step 2:
Choice of Domain Specific Attributes and Data Collection for
Formal Concept Analysis (FCA)

This is the first concrete step towards building a domain model. The domain
specific attributes constitute the terminological basis over which we will build
a conceptual model of our domain of interest. These attributes are identified
in a ‘dialectical’ process. On the one hand, the Scientific Reader identifies
and highlights terms and notions that appear frequently (de facto) in the
corpus produced in Step 1. On the other hand, the Domain Expert provides
terms and notions that are normatively expected to appear in the envisaged
HB’s ‘universe of discourse’. This dialectic process leads to questions like:
Which terms and notions shall remain? Another problem is the development
of univocal terminologies, as the corpus of Step 1 might contain different
words for the same entity. In such cases the Domain Expert ought to be
able to identify them. Similarly, there might also be closely related terms
and notations that are, strictly speaking, not equivocations, but which the
Domain Expert would nonetheless wish to consider as ‘equivalent’ descriptors
of one and the same entity at a slightly higher level of generalisation.
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Result:
Objects and attributes discussed in the corpus.

Step 3:
Application of FCA to the Data Collected

This step ‘organises’ the domain on the basis of the concepts, objects, and
attributes identified in the corpus. To this end, the above mentioned FCA
Expert uses tools to automatically compute a so called concept lattice and a
graphical visualisation of it. Nodes and partial order relations in this lattice
are results of a theory based computation (i.e., not a deliberate act of cre-
ativity by the FCA Expert using a tool). Lattice nodes can represent objects,
attributes and concepts. The lattice’s partial order illustrates the relation-
ships between the domain’s attributes and objects, objects and concepts,
as well as the generalisation relationship between concepts and their sub or
super concepts.

Result:
Concept lattice that captures all relevant findings from the corpus.

Step 4:
Choice of Stability Threshold

In this step, the FCA Expert uses built in statistical methods of the FCA tool
to ‘prune’ the concept lattice and to ‘clear’ it of ‘noisy’ information of lesser
importance. The theory of FCA provides an application domain independent
solution for this problem. The act of pruning focuses the expert’s attention
onto lattice elements with ‘high stability’; these seem to be central to the
domain of interest about which the envisaged HB shall be produced.

Result:
Pruned and ‘stable’ concept lattice from which ‘noisy’ information of lesser
importance has been removed.

Step 5:
Classification of Settled Knowledge

In this step, the Domain Expert evaluates if the previous (mostly automatic
steps) provide a satisfactory result that seems to ‘make sense’. The subjective
view of the Domain Expert and the algorithmic corpus analysis results are
thus supplemented and adjusted. In this step, two main problems must be
considered:
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• The corpus chosen in step 1itself might have been somehow insufficient.
Such a flaw might have biased all the subsequent analysis results. For
example, there might be some concepts or even entire subdomains which
are not properly represented at all. In such a case, the domain expert
must expand the corpus (by including previously omitted data or literature
sources) and then recompute the entire concept lattice.

• The domain expert might have had a personally biased opinion about the
domain that cannot be supported by any given corpus. In such a case,
the expert ought to ‘learn the lesson’ from observation and adjust any
inadequate or outdated personal opinions.

Result:
Consolidated representation of the ‘settled knowledge’ in the domain of
interest, including the relationships between the ‘elements’ of this settled
knowledge, which might already be regarded as a first version of the ‘Table
of Contents’ (albeit in no particular sequential order) of the envisaged HB
(possibly after several iterations).

Step 6:
Presentation of Settled Knowledge

The table of contents (albeit in no particular sequential order) and the struc-
ture of the HB arise from the results of the classification exercise sketched
above. However, the various HB entries ought to follow a standardised pre-
sentation scheme which should adequately reflect the nature of ‘normal en-
gineering methods’ [84]. Vincenti did not himself present such a standard,
though he aptly described the ‘components’ of such standardised knowledge.
The chosen scheme must subsequently be ‘filled in’ by the above mentioned
Authors who have the requisite expertise on the specific topics to write their
corresponding HB entries.

Result:
Handbook (HB).

After the foregoing sketchy overview of the six steps, the finer details of each
of them are discussed in the subsequent sections.

3.1 Step 1: Choice of Sources for Settled Knowledge

Choosing appropriate sources of settled knowledge is crucial for the success
of constructing reliable HBs. In order to do this, one must first investigate
where the settled knowledge for a chosen domain of interest may ‘live’. Sev-
eral factors are important for making this decision. Not only should such a
knowledge source be actively and successfully used in the domain; it should
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also already have been used for a reasonably long period of time.1 Duration
of use allows the separation of settled knowledge from what is merely the
‘flavour of the month’ or with what the community of experts is still only
‘tentatively experimenting’.

One might start by interviewing senior experts currently practicing in the
domain of interest; for comparison, see [4].2 The experts’ long term profes-
sional knowledge might rightfully be considered as ‘settled’ since the tech-
niques and principles they apply are used to solve practical problems en-
countered in their domains on a daily basis, with good results. However,
each practitioner might still have a unique ‘personal’ approach to the typ-
ically given problems. While large portions of the relevant knowledge can
be assumed to ‘overlap’ amongst the individual members of a community
of experts, there may nonetheless be significant variations depending on the
type of problems an expert is exposed to. However, visiting several experts
in order to gather their combined knowledge may be problematic as well,
as this approach considerably increases the time needed for information re-
trieval and for checking that the information thus retrieved is consistent (free
of mutual contradictions). Moreover: even a mutually consistent collection of
several expert opinions provides us only with a current ‘snap shot’ of domain
knowledge, such that this information retrieval procedure might have to be
repeated more than once, over an extended time period, in order to obtain
an overview of that knowledge that is sufficiently ‘long lasting’ for inclusion
into the envisaged HB. These activities are closely related to what Bjørner
had called ‘domain engineering’ in one of his books [10](pp. 7-8).

Documented knowledge (whether officially published or informally ‘in cir-
culation’) might thus be a more feasible starting point for the necessary
information retrieval. Examples of such domain specific documents include:

• Industry standards and guidelines laid out by governing bodies;
• Papers and articles published as a result of scientific research in the do-

main;
• Requirements documents produced by domain experts and specialists, in

and for ‘typical’, as well as sufficiently large and significant ‘real world’
projects.

But which of these would provide the ‘best’ resource for ‘settled’ knowledge?
Knowledge expressed in official standards or guidelines is likely settled. How-
ever, these official guidelines are often presented at rather high levels of gen-
erality in order to leave enough room for situation specific implementations

1 Scientists are most strongly interested in what is new, while engineers are more conser-
vatively interested predominantly in what ‘works well’.
2 According to the questionnaire based survey of [4], most applications of Formal methods
in industrial railway projects focus on interlocking systems; Formal Methods are mainly

used for formal specification and formal verification in the early requirements and design
phases; the B family is the most popular tool suite; the most relevant functionalities are

formal verification and support for formal modelling; the most relevant quality features

are related to the maturity and usability of the tools [4](p. 770).
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and problem solutions. Hence we cannot automatically expect such official
guidelines to be very detailed, such that additional sources of more detailed
knowledge must still be found. Moreover we must keep in mind that even
official standardisation documents can become outdated and are, thus, regu-
larly updated and replaced by newer versions. Hence we would also need to
examine different (earlier versus later) versions of the same standardisation
documents in order to find out which knowledge in them is ‘stable’ across a
longer duration of time that spans several ‘versions’ of such documents.

Scientific conferences are mainly focused the newest pieces of information
(at the ‘cutting edge’ of research) in a domain as opposed to well established
approaches to common problems in that domain. This raises the question of
whether or not scientific conferences are the right place to find what con-
stitutes settled knowledge. However, some really fundamental concepts and
notions also have long term ‘stability’ in the sciences: these concepts and no-
tions can be expected to reoccur in many scientific publications and should be
identifiable by way of literature references and ‘chains’ of citations. Indeed,
many papers at a typical conference focus on improvements or refinements
of already existing and generally accepted methods and techniques. Hence
we can expect the occurrence of ‘clusters’ of papers from the point in time
when a technique or method is first introduced until it is refined to its lat-
est modification. The identification of such ‘clusters’ thus seems to appear
important for the purpose of constructing a HB of high reliability and long
term validity. Since conference proceedings are widely available in national
or international literature databases, they are not only ‘conveniently’ acces-
sible, but also, which is methodologically important, open to public scrutiny,
verification or critique; this ultimately increases a HB’s public ‘standing’ and
trustworthiness.

However, due to the ever growing proliferation of conferences and journals,
it must also be determined which ones among those many ‘venues’ ought to be
chosen as the informational basis of ‘settled’ knowledge for the construction
of a HB. Some of these conferences are well established and have been held in
series that already span several decades, so that they can be assumed, prima
facie, to contain much ‘settled’ knowledge, while others were started rather
recently, but might nonetheless already contain highly relevant papers. In
such cases, the difficult to quantify ‘reputation’ or ‘esteem’ of a conference
(among the experienced experts of the domain’s community) might be more
important than a conference’s quantifiable age, especially if we take into
account that ‘old’ conferences might have considerably ‘evolved’ their topical
focus as the years went by.

In our book’s example case, Formal Methods of computing, insofar as
they are practically applied in the railway domain, our collection of printed
(re)sources spanned almost forty publication years during which these re-
sources had been highly recommended by experts of the domain. However,
no ‘oral’ interviews with specifically chosen practitioners were carried out in
our case.
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3.2 Step 2: Data Collection and Choice of Domain

Not all information in the knowledge corpus obtained during the previous step
can or should make it into a well organised handbook. This is because hand-
books only seek to preserve established scientific and engineering knowledge
that applies to typical real world problems to be solved in a HB’s domain.
Thus, it is necessary to filter and select only the relevant knowledge from
the large corpus of literature (perhaps even including survey results from
informal interviews with capable practitioners). Identifying this particularly
relevant knowledge requires significant domain expertise, both ‘in general’ ,
as well as in its finer details.

A guideline for this process of filtering is provided by Vincenti’s above
mentioned six categories of engineering knowledge. Not each and every pa-
per in the chosen corpus might contain knowledge of all six categories, some
papers might have a stronger focus on some of those categories than other pa-
pers. In this way, the initially single corpus can be usefully divided into several
subcorpora (‘clusters’ of documents within the corpus) along the lines of Vin-
centi’s above mentioned categories. As a result, however, we must also keep
in mind that these six categories of knowledge are neither entirely mutually
exclusive, nor do they exhaustively comprise all possible types of knowledge
[84]. Hence the division of the initially given corpus into subcorpora along the
lines of those six knowledge categories is not ‘straightforward’, such that the
same initial corpus might be differently divided into various subcorpora by
different experts. For example, it might not always be easy to decide whether
some ‘knowledge item’ found in the literature would fall into the category
‘Practical Considerations’ or rather in the somewhat related category ‘De-
sign Instrumentalities’. In spite of these methodological difficulties, Vincenti’s
six categories are nonetheless helpful for bringing some form of ‘order’ into
the initially rather amorphous corpus of documents, so that anything which
does not ‘fit’ into any of those six categories at all is, prima facie, (perhaps
with some exceptions) a ‘candidate’ for exclusion from further consideration
in the HB’s composition process.

Other relevant characteristics of the papers of our corpus must also be
identified in this step. For this purpose some guiding questions, such as the
following ones, can be asked:

• Does the domain consist of distinct areas or subareas?
• Is it possible that the technical problems being solved in this domain are

so varied that different groups (‘pockets’) of settled knowledge may exist
within subdomains of the larger domain?

• How can we ‘map’ a single paper onto the above mentioned areas and
epistemic categories?

• Is the age of a publication a useful indicator of ‘settled’ knowledge?
• Does the paper contain interesting indicators of ‘settled’ knowledge that

are not ‘covered’ by the above mentioned categories?
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The domain expert and the scientific readers must also agree about termi-
nological issues in this step. They must stipulate precise definitions of the
key terms of the domain, must decide which syntactically different terms
should be regarded as synonyms of each other, or have other semantic rela-
tionships with each other (e.g., specialisation or generalisation). In particular,
homonyms (same word with different meanings in different contexts) can lead
to dangerous misunderstandings, with the consequence that considerable ef-
fort must be put into the detection and clarification of homonyms. These
efforts shall ensure, as far as possible, that discussions about and within
the given domain’s universe of discourse are not obstructed by any semantic
ambivalence.

At the end of this exercise, a set of formal ‘objects’ and formal ‘attributes’
are identified in preparation for formal concept analysis (FCA). As a result,
the ‘objects’ are the published papers (or other uniquely identifiable sources
of relevant knowledge), whereas the ‘attributes’ refer to the relevant binary
yes/no features by which the contents of those papers (objects) can be char-
acterised. For example, object o127 could be a paper about railway track
control by means of Petri nets, such that ‘safety’ as well as ‘discrete method’
could be two of the (many other) attributes of o127 for which the ‘yes’ boxes
would have to be marked.

At this point, the domain expert and the scientific readers must also col-
laborate with the FCA expert to determine what other characteristics of the
given objects (papers) may be useful in order to automate the identification
of settled knowledge. This, however, is not an easy task, as all attributes
for FCA must be binary, so that transformation into some suitable binary
representation might be needed for attributes that are ‘naturally’ of multi
valued type. For example, a paper’s year of publication might be considered
as highly relevant information for the issue of settledness; alas we cannot
simply define a non-binary age attribute with numerical values in the nat-
urals N. To represent a paper’s age in binary form (for FCA), the experts
could, for example, define three binary yes/no attributes ‘recent’, ‘older’, and
‘very old’, and must then come to some additional domain specific agreement
about which one of those three yes boxes ought to be marked in case a given
paper (object) is, for example, 4 or 8 or 16 years old (because the commu-
nity’s opinion about what is a ‘new’ or an ‘old’ paper can vary considerably
from domain to domain). Thus the transformation of ‘naturally’ multi valued
attributes into binary ones (for the purpose of FCA, see below) is a non triv-
ial but, nonetheless, necessary task in this step. The resulting ‘objects and
attributes’ structure will help us to determine (with FCA tool support) how
‘settled’ the given knowledge really is.
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3.3 Step 3: Application of FCA to the Data Collected

Formal concept analysis (FCA) [29] is a branch of ‘applied’ lattice theory
[8]. FCA is thus a discrete mathematics based technique of data analysis,
knowledge representation and information management by means of which
we can identify conceptual structures in data sets [16]. FCA can be used for
analysing attribute-object tables (formal contexts) and for exploring the vari-
ous dependencies which exist between the formal objects and their attributes
[90]. The application of FCA to the source data that we have chosen is an
important step in our method of composing an engineering HB.

In this theory, a formal context K has a structure K = (G,M, I) where
G and M are sets which represent objects and attributes.3 I is the binary
incidence relation between G and M whereby I ⊆ G x M and gIm indicates
that the object g has the attribute m.4 For a formal context K = (G,M, I),
operators ↑ : 2G → 2M and ↓ : 2M → 2G are defined for every A ⊆ G and
B ⊆M by

A↑ = {m ∈M | for each g ∈ A : gIm}

and

B↓ = {g ∈ B | for each m ∈ B : gIm}.

Within such a context K, we define a formal concept as a pair (A,B) with
A ⊆ G, B ⊆ M , A = B↓ and B = A↑. A and B are called the extent,
respectively, the intent of the formal concept (A,B).

Explanation: (A,B) is a formal concept if and only if A contains just
objects sharing all attributes from B and B contains just attributes shared
by all objects from A.

Moreover, the relationship between a subconcept and a superconcept is math-
ematically characterised by [29](def. 21):

(A1, B1) ≤ (A2, B2)⇐⇒ A1 ⊆ A2 (⇐⇒ B1 ⊇ B2)

The set of all formal concepts of context K, together with their defined or-
der relation, is denoted by B(K). The visual representation of this partially
ordered structure is called a concept lattice.

3 From the German original: K for ‘Kontext’, G for ‘Gegenstände’ (objects), and M for

‘Merkmale’ (features) [29].
4 An additional remark for the sake of completeness: The ‘pure’ theory permits the stip-
ulation of non specific, attributeless ‘mystery objects’, g0, for which I(g0) = {}. If an

application domain is characterised by its totality of attributes, M , then all we know

about such attributeless ‘mystery objects’ is that they do not belong in any way to this
application domain. Hence they can be practically excluded altogether from any further

considerations about this domain.
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Fig. 3.1 Structure of a Cross Table in FCA: Example from [29](figure 1.1).

Fig. 3.2 Concept Lattice: derived from figure 3.1.

For an object g ∈ G, its object concept γg := ({g}↑↓, {g}↑) is the smallest
concept in B(K) whose extent contains a g. Additionally, for an attribute
m ∈ M , its attribute concept µm := ({m}↓, {m}↓↑) is the greatest concept
in B(K) whose intent contains m.

A formal context can be represented in the form of a Boolean matrix
called a cross table [29], an example of which is shown in figure 3.1 (adapted
from [29](figure 1.1)). In such a table, each row represents an object and each
column represents an attribute. A cross (X, meaning ‘yes’) at the intersection
of a row and a column indicates that the object is characterised by that
particular attribute.

When such a context-representing cross table is combined with a partial
order relation ≤ on pairs, we obtain an instance of the above mentioned
concept lattice, the abstract type of which is a Galois lattice [29](sect. 0.4).
It allows us to ‘visualise’ the relationships in the given context and, thus, to
detect structures and ‘clusters’ within its data.
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The information collected in the previous step of our method must thus
be inserted into such a cross table in this step. The FCA expert usually
completes this task with the help of a tool that supports the generation of
a concept lattice from the formal context provided. Examples of such FCA
tools are ToscanaJ, Lattice Miner, Coron, FcaBedrock, or Conexp.5 The last is
the one we have used for [36] [59], as well as for the results described below
in chapter 4 of this book.

An example of such a concept lattice is shown in figure 3.2 (automati-
cally derived from figure 3.1 and conceptually identical with [29](figure 1.2)).
Concepts closer to the lattice’s top node are ‘more general’ than those below
them, which are ‘more specific’.6 A concept at the top of an edge in the lattice
graph is called a parent concept in relation to the concept at the bottom of
that edge, which is called a child concept (relative to the parent). If a child
concept has more than one parent, the parent concepts share a subset of at-
tributes of the child. Consequently, the lattice’s top node represents the least
specific concept ‘Everything’ (or ‘Anything’), which has all the context’s ob-
jects in its extent; depending on the particular application scenario, its intent
may (or might not) be empty.7

Each node in a concept lattice, depicted by ‘balls’ in figure 3.2, represents
a single concept. Certain tools, like Conexp, use the radius of the nodes to
represent the number of objects that are members of this concept; the bigger
the ‘ball’, the more objects belong to its extent. In the above example, we can
see that all balls appear to be of the same size. This is because, in this case,
this visualisation feature had been turned ‘off’. In our case study in Chapter
4, however, we are strongly interested in the sizes of our formal concepts’
extents, so that we had always switched this ball size feature ‘on’, see, e.g.,
figure 4.3.

Moreover: if the visual representation of a lattice node shows a blue filled
upper semi circle, there is a so called own attribute affiliated with this concept.
An own attribute is ‘unshared’, i.e., it belongs solely to this concept (and,
hence, its children). If a node contains a black filled lower semicircle in the
visualisation, then there exists at least one object in this concept’s extent
which is characterised exactly by this concept’s attributes (no more and no
less). Such an object is this concept’s ‘unshared’ own object, which does not
occur in the extents of any other unrelated concepts.

5 http://conexp.sourceforge.net/ https://www.upriss.org.uk/fca/fcasoftware.html https://fca-
tools-bundle.com/
6 The existence of a lattice’s bottom node (⊥) is a formal lattice theoretic necessity, which

does not, however, always correspond to any positive concept in the application domain;

in many typical application scenarios, its extent is empirically empty. The extensional
emptiness of⊥ is a logical necessity in all those application scenarios in which two attributes

m, m̂ ∈M are mutually exclusive in their ‘semantics’, so that no g ∈ G can be characterised

by both m and m̂, e.g., ‘rectangular’ and ‘spherical’.
7 The top node’s intent is nonempty if there exists at least one m ∈ M , which is ‘shared’
by all g ∈ G. Otherwise, the top node’s intent is empty, in which case the entire lattice
represents a Wittgensteinian Familienähnlichkeit (‘family resemblance’).
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Once this process is completed, a formal concept lattice representing the
knowledge of our domain can be inspected. In our domain specific scenario,
namely Formal Methods and their applications in the railway domain [9],
in which our ‘objects’ are publications and our ‘attributes’ are the various
themes and topics about which those papers were written (see chapter 4 be-
low), it is highly unlikely that we would find a paper that contains a complete
description of the entire domain. Hence we expect our domain specific lat-
tice’s bottom node (⊥) to merely represent a pseudo concept, the extent of
which will be empty. Since most papers in the engineering domain are quite
topic-specific (i.e., typically describing one main method in comparison with
only a few other methods), we can also expect most of our domain-specific
paper objects to be merely characterised by a few attributes each (though
the entire attribute set M for the domain as a whole might be very large).
Accordingly, the resulting domain specific lattice will have its own peculiar
overall ‘shape’, which we discuss in chapter 4 below.

Important Note: The property of settledness (of domain specific tech-
nological knowledge), which is our most important ‘epistemic interest’ in
this phase of the HB composition process, is not represented explicitly by
any attribute m ∈ M of our domain; otherwise, we would not need to go
through this lengthy process of lattice construction at all! Rather, we must
‘infer’ this (meta) property from a ‘hermeneutic’ interpretation of the lat-
tice’s contents (as described in the subsequent paragraphs). Whereas the
(explicit) attributes in our formal concept lattice characterise their corre-
sponding objects (i.e., the published papers which we consult as sources of
domain specific knowledge), the (meta) property of ‘settledness’ refers to
the concepts which are deduced by means of FCA from those objects and
their explicitly denoted attributes. The necessity of some additional inter-
pretive ‘hermeneutics’ (as described below) stems, thus, from the fact that
‘settledness’ is not an inherent (intrinsic) property of any of the lattice’s
structural components, as such.

3.4 Step 4: Choice of a Stability Threshold

The lattice constructed in the previous step 3 contains formal concepts
(‘nodes’) in very large numbers, as it grows exponentially in relation to the
number of objects and attributes in its underlying cross table. Typically,
such a lattice contains far more formal concepts than there were objects in
its cross table, so that, usually, many of the very many formal concepts in
the lattice will have only a few (or even very few) objects in their extents. As
the lattice nodes (formal concepts) in our application scenario are represen-
tatives of ‘engineering knowledge’, we cannot reasonably ignore the question
of which of these concepts have ‘large’ extents (i.e., are ‘supported’ by many
‘witness’ papers in our object base) or which ones have only ‘small’ extents
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(i.e., are ‘supported’ by only a few ‘witness’ objects). Technically, this ques-
tion, how many or how few ‘witness’ objects per formal concept in the lattice,
is expressed by the notion of a formal concept’s stability, which is the topic
of this section. As ‘stability’, in this sense, is merely a numeric value, we
must finally decide ‘reasonably’ and ‘with the application of expertise’ which
stability value we want to regard as ‘good enough’ for subsequent considera-
tions, or which stability values we want to regard as ‘too bad’, so that their
corresponding formal concepts shall be excluded from further consideration
in our overall HB construction procedure.

The mathematical definition of ‘stability ’, together with a corresponding
‘stability index ’, can be found in [17] [22] [60] and is given as follows: For a
context K= (G,M, I) and a concept c = (A,B),

Stab(c) :=
| {s ∈ ℘(Ext(c)) | s↑ = Int(c)} |

2|Ext(c)|

This is the relative number of subsets of the concept extent (denoted by
Ext(c)) whose description (the result of applying ↑) is equal to the concept
intent (denoted by Int(c)), where ℘(P ) is the power set of P .

According to the mathematical characterisation above, stability indicates
the degree of independence of a concept’s intent from its extent. Thus, sta-
bility implies some degree of ‘noise resistance’; a stable concept does not
immediately ‘collapse’ in case a few objects would be removed from that
context — in other words: such a concept would not merge with a different
concept, nor disintegrate into smaller concepts, in such a case.

In our domain specific scenario, ‘noise’ in the knowledge representing lat-
tice (in the form of ‘unstable’ concepts) should be expected, because the
‘objects’ of our scenario are papers (publications) and their ‘attributes’ are
related to the various research topics about which those papers were writ-
ten. Peculiar publications, which are occasionally dedicated to ‘unpopular’ or
rarely discussed ‘fringe topics’ in the engineering domain, are thus with some
likelihood represented by rather unstable concepts in our lattice. Therefore,
in contrast to the authors of [22] who are explicitly interested in unstable
concepts, we want to ‘maintain’ only sufficiently stable concepts in our lat-
tice and ‘prune’ (eliminate) the unstable ones. This desire, however, leads to
the methodological problem of how to choose, and how to reasonably justify,
a number ŝ such that any stability s < ŝ shall be normatively regarded as
‘too low’, whereas any s′ ≥ ŝ shall be regarded as ‘high enough’.

Important Note: The lattice itself does not contain this information
about ŝ, which is the reason why ‘expert wisdom’ and some ‘hermeneutics
of engineering’ are needed at this point.

In any case, in this step we extract the most relevant domain specific knowl-
edge by selecting concepts with the ‘highest’ stability indices, whatever value
of ŝ we might have chosen for this purpose. Methodologically, we conjecture
that this method of eliminating irrelevant information only at this late stage
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of the HB construction process (i.e., only after the construction of the initial
lattice), though it is, admittedly, based on a deliberate choice of a value for
ŝ, is still better (i.e., more justifiable) than a too early pre selection (based
merely on ‘gut feeling’) of those paper objects that shall be fed into the lat-
tice generating cross table in the first place; for further details and examples
see chapter 4.

In the theory of FCA, plausible methods for the systematic ‘post pro-
cessing’ of lattice data, which can reasonably inform a justifiable choice of
ŝ, have been described and explained in [17] [60] [61] [77] (so that such a
‘post processed’ lattice is not necessarily any longer one coherent data struc-
ture [77]). Nonetheless, the possibility of accidentally eliminating ‘interesting’
and ‘relevant’ information for the sake of clarity (i.e., over simplification or
over abstraction) by means of any such techniques is a risk that the HB edi-
tors must ‘wisely’ take into their methodological and editorial considerations.
Therefore, a considerable amount of ‘expertise’ is needed for the construction
and presentation of the ‘most appropriate’ final lattice, from the concepts of
which the table of contents (ToC) of the envisaged HB shall be ‘extracted’.
This entire procedure thus cannot be fully automated, though the relevant
editorial choices are aided and well informed by automated information pro-
cessing software tools.

In summary, an appropriately ‘balanced’ stability threshold value ŝ is the
result of this 4th step, so that the remaining ‘pruned’ lattice will only contain
sufficiently stable formal concepts that ‘best’ represent the ‘most relevant’
domain specific knowledge about which the envisaged HB shall be written.

3.5 Step 5: Classification of Settled Knowledge

The pruned final lattice contains many formal concepts with stability values
s′ ≥ ŝ, according to the previous step, but it is not yet a reasonably ‘linear’
table of contents (ToC) of a legible and useful HB: keep in mind that a lattice
order is only partial, not ‘linear’. Hence further steps are still needed in our
HB construction method that ‘bridge the gap’ between the lattice’s many
partially ordered concepts and the envisaged HB’s linear ToC. As the final
lattice, even after its ŝ-based ‘pruning’, is still very large, one of the most
important questions in this context is how the concepts in the lattice can
be reasonably and ‘meaningfully’ grouped, so that a group of concepts can
eventually become a ‘part’ or ‘chapter’ or ‘section’ or ‘subsection’ of the to
be written HB.8

8 This topic is related to the organisational problems of a librarian who has obtained a

new book and must now decide onto which shelf of the library it shall be put; typically,
there are several placement choice options which would all ‘make sense’ when seen from
one or another point of view.
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The necessary task of meaningfully grouping (or ‘clustering’ or ‘categorisa-
tion’) the available lattice concepts cannot be blindly ‘mechanized’, because
a machine or an algorithm cannot know, a priori, what ‘makes sense’ to us
or ‘what we are after’ (with particular ‘pedagogical’ aims and purposes in
mind). On the other hand, such ‘clustering’ should also not be entirely arbi-
trary and ad hoc; ‘reasonable’ principles and a methodologically justifiable
‘hermeneutics of engineering’ are thus needed in this step, too, though, again,
we will not disregard the opportunities of automated or semi automated deci-
sion support. Helpful algorithms for classification or clustering are well known
[23] [25], and we recommend their application, as long as a human domain
expert will still be there to review, and possibly improve, the ‘suggestions’
that those algorithms yield as their outputs; these algorithms might suggest
‘strange’ or ‘artificial’ groupings which would have no ‘canonical match’ in
the internal organisation of an engineering domain with which the engineers
(practitioners) are already familiar. A purely manual classification attempt
(without any algorithmic tool-support), on the other hand, would be a daunt-
ing (if not infeasible) task if the underlying concept lattice (even the ‘pruned’
one from the previous step) is very large.9

Thus, all in all, the domain expert evaluates in this 5th step whether all
the previous (tool supported) steps led to a satisfactory result, i.e., if the
‘subjective’ view of the domain expert and the ‘objective’ analysis results are
‘well aligned’ with each other. If, at this point, the overall result appears to
be unsatisfactory to the expert, several possible causes must be taken into
account:

• the initial corpus of domain specific literature, G, might have been poorly
chosen (relevant sources omitted or irrelevant sources inserted);

• the set of attributes M for the initial cross table might have been inap-
propriately defined (with too many or too few m ∈M);

• for any source paper g ∈ G, its attribute matching incidence relation,
I(g) := Mg ⊆ M , might have been wrongly stipulated (with relevant
attributes omitted or with irrelevant attributes assigned);

• the stability threshold value ŝ (defined in order to ‘prune’ the initial lattice)
might have been inappropriately chosen;

• the clustering algorithm, which was chosen out of many possible algorithms
in order to group the final lattice’s formal concepts into larger categories,
was not a suitable algorithm for this particular domain specific task, or
might been been wrongly applied with inappropriate initial parameters,
etc.

In any of such cases, any one of the aforementioned steps (1–5) might have
to be redone until the experts are satisfied with the final result. As a conse-
quence, as usual in all engineering projects, the ‘early’ errors, if detected too
late, are much more ‘expensive’ in relation to their ‘correction costs’ than

9 A convincing application example of such FCA and lattice based semi automated classi-

fication methods in the domain of software re-engineering can be found in [7].
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the errors made at later stages. The ‘editorial engineers’ who are responsible
for an envisaged HB composition project, must also, like any other engineers
and project managers, keep these cost threats in mind.

3.6 Step 6: Presentation of Settled Knowledge

Finally, the presentation of ‘settled knowledge’ for inclusion into a HB should
follow a standardised presentation scheme which reasonably reflects the typi-
cal style and characteristics of ‘normal’ engineering methods [84], particularly
in that domain. The envisaged HB will contain many entries, so that, to avoid
confusion, some ‘uniformity’ in the presentation of all these entries ought to
be maintained. In particular, the content of each HB entry should reflect its
associated ‘category of engineering knowledge’ according to Vincenti; see the
list of categories at the beginning of this chapter. Other (similar) schemata
or categories of knowledge might also be suitable and appropriate from case
to case.

In our HB construction method, we advocate the following problem ori-
ented approach to a well structured presentation of HB entries. In other
words, each HB entry shall be given according to the following presentation
scheme; for a concrete example, see chapter 5.

Problem Class:
Characterises generally the types of problems for which solutions are de-
scribed and explained by this HB entry (possibly with subclasses).

Solutions:
Describes the family of possible and appropriate class specific solutions,
one after the other. To this end we also provide the following additional
helpful information together with each solution:

Criteria:
Here we describe the prerequisites and conditions under which a poten-
tial solution is actually applicable.

Principles:
Here we explain briefly on which laws or scientific theorems a proposed
solution is grounded. This is necessary because engineering is a science
based activity which ‘borrows’ its trustworthiness from the truth of the
underlying scientific assertions; for comparison see [14](sect. 11.2).
• For example, there are different physical principles which can be the

basis for a solution to the problem of constructing a temperature
measuring device; these could be ‘liquid in tube’ or ‘bimetallic strip’.
In computer science, computational problems can be addressed by
different problem solving approaches, such as greedy algorithms, di-
vide and conquer algorithms, backtracking algorithms.
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Process:
Here we briefly outline, step by step, the method for producing the
desired solution to the problem at hand. Depending on the ‘size’ of the
problem scenario, such a procedure might involve several analysis steps,
design steps, manufacturing or implementation steps, and the like. A full
elaboration of these steps and their possibly many substeps, however,
cannot be given at this point; literature references to relevant textbooks
(e.g., software development management or project management), in
which many further details can be found, must suffice at this point.

Validation:
Here we outline briefly the techniques of proof (mathematical, theo-
retical) or testing (experimental, empirical) that ought to be applied
in order to demonstrate with sufficient plausibility that a designed so-
lution (candidate) does indeed solve the problem that it was meant
to solve, and that this solution also does not accidentally create un-
acceptable new problems (dangerous situations or otherwise harmful
consequences) as unintended side effects.

Further Reading (optional):
In cases where a HB entry’s problem class and solution proposals are non
trivially ‘large’ or ‘complex’, so that they cannot naively be assumed to be
‘well known’ amongst all practitioners in its field, a reasonable number of
literature references (not too few and not to many) might provide helpful
pointers to further details which, for the sake of brevity, the HB entry
itself cannot provide.

At this point the HB editors and authors must not forget that, in the first
place, a HB ought to address the practitioners in the field (not the aca-
demics and researchers), which implies that there should be no exceptional
‘ingenuity’ required to follow the problem solving process that a HB entry
describes. In other words: no substantial ‘innovations’ or new ‘inventions’ (at
a significant level of originality) will be needed at such a point, though it
is (of course) presumed that a seasoned practitioner, who reads such a HB
entry, will be competent and experienced enough to come up with small, case
specific ‘modifications’ of his own; this is what the earlier use of the word
‘improvement’ intended to convey.10

In the next chapter 4, we present a domain specific example, Formal Meth-
ods of computing in the railway domain, of the HB construction steps 1–5
that we have motivated and explained in the previous sections of this chapter.
An example of our method’s 6th step follows thereafter in chapter 5.

10 An illustrative example can be found in the system of [80], which provides software

developers with help for the derivation of correct and efficient programs from formal spec-
ifications.



Chapter 4

Application of the General Method to
the Railway Domain

What knowledge of Formal Methods in the railway domain is already ‘ma-
ture’? To answer this question we must consider the most suitable sources
of knowledge in our chosen domain, as well as a suitable definition of the
notion of ‘settledness’; see chapter 3. To this end, it is also helpful to investi-
gate how the ‘discovered’ knowledge is internally structured, so that it can be
properly classified according to our ‘epistemic needs’. The answers to these
questions will lead us to some appropriate attributes that will be included
in a formal concept lattice. This lattice will represent the ‘essence’ of the
gathered knowledge. After the construction of an initial lattice, which still
contains some level of ‘noise’ (i.e., information of only little practical value),
its ‘pruning’ by way of so called stability indices leads to a final lattice which
shows the most ‘stable’, hence, ‘settled’ knowledge of practical usability in
the railway domain. As mentioned above in chapter 3, the quality or ‘prac-
tical value’ of this lattice, as a whole, depends strongly on the quality of the
chosen sources from which it was extracted and abstracted. This final lattice
is then ‘interpreted’ by the experts in order to obtain a classification, so as to
organise the relevant knowledge in a useful manner. Finally, this organisation
will be ‘materialised’ in the structure of the envisaged HB’s table of contents
(ToC).

Formal Methods of computing are almost always applied under somewhat
‘simplified’ (‘idealised’ or ‘generalised’) circumstances, at some reasonably
high level of abstraction. This is only partly due to high computational
‘costs’;1 these ‘generalisations’ (at higher levels of abstraction) also make
those techniques widely (re)usable in various circumstances and, hence, suit-
able for ‘HB-ification’. Because the level of conceptual abstraction in formal
models is typically high, refinements or variations (depending on the overall
aim of the (software) engineering project in which those formal models oc-
cur) of those models belong to the typical tasks in many projects in which
Formal Methods are applied. As mentioned above, all this is also true for the

1 Many problems in this field, such as the satisfiability problem, are NP-complete.
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railway domain [26]. Identifying the generally applicable Formal Methods (at
a ‘broad scale’, without their finer details) must thus be the first step towards
composing a HB on this topic. As mentioned above in chapter 3, this task
can be solved reasonably well by means of literature search (unless relevant
practitioners in the industry would apply secret ‘in house’ methods about
which little is known in the public domain).

4.1 Step 1: Choice of Sources for the Railway Domain

The general knowledge sources for HB composition projects were already
listed and explained above in section 3.1, so that we do not need to repeat
them at this point. In our specific example case [36] [59], by means of which we
illustrate our HB construction method throughout this book, only published
conference papers were taken into account.2 The papers chosen in our case
span more than three decades of domain specific scientific activities and were
taken from the following conferences, which belong to the most important
meetings of experts in the field of software supported railway engineering:

• Proceedings IFAC: 1975-2012,
• Proceedings FORMS-FORMAT: 2010-2014,
• Proceedings SAFECOMP: 2005-2014.

Altogether, these proceedings provided more than 300 potentially relevant
literature sources. However, about 150 of these papers did not relate specif-
ically to the use of Formal Methods and were thus excluded from our data
base [59]. Of course, many more railway related Formal Methods papers can
be found in various other repositories.

4.2 Step 2: Data Collection and Choice of Domain
Specific Attributes for FCA

In our method of HB construction, the choice of formal concept analysis [29]
leads to an attribute based classification system of domain specific knowledge.
In our example case of knowledge about Formal Methods and their applica-
tion, the simplest possible classification scheme might merely combine the
‘name’ of the Formal Method used in each literature source together with its
‘age’ (w.r.t. to the question of ‘settledness’).

2 At this point the reader ought to remember that we are presenting a HB construction

method in this book at the ‘meta’ level — not a complete ‘body of knowledge’ of all Formal

Methods in the railway domain at the ‘object’ level. Therefore it was not necessary for this
purpose to seek and exploit all the possible sources of knowledge which section 3.1 has

listed and explained.



4.3 Step 3: Application of FCA to the Data Collected 43

To judge whether a paper had been appropriately included in our data
base, the ‘scanning’ of the keywords at the beginning of each paper was
deemed as a good starting point, at least for the purposes of illustration in
this book. However, as different Formal Methods are used in different contexts
for solving different problems or classes of problems in the chosen application
domain, additional keywords (to capture more context sensitive information)
were declared as ‘refining’ attributes in our classification scheme. Whilst a
more comprehensive explication of those attributes can be found in [59], the
following points should suffice to illustrate the principles of our approach:

• In addition to ‘when’ (year), it was also necessary to know ‘where’ in the
railway domain those Formal Methods were used. To this end we recorded
the subdomains of the railway domain to which each publication pointed.
The following subdomains were explicitly represented in our classification
scheme: the ‘Net’, ‘Timetables’, ‘Scheduling and Allocation’, ‘Traffic Mon-
itoring and Control’, ‘Rolling Stock’, ‘Passenger Handling’, and ‘Freight
Handling’.3 Hence the more ‘safety critical’ a subdomain is, the more ap-
plications of Formal Methods we should be able to find in it.

• Further attributes can be included into the classification scheme in or-
der to also represent the ‘scientific maturity’ levels of the analysed source
publications. Shaw’s maturity grading scheme, which is suitable for this
purpose, can be found in [78]. Scientific maturity in this context is indi-
cated by the theoretical ‘depth’ of mathematical, descriptive or analytical
techniques, as well as by the precision and reliable repeatability of exper-
imental evaluations in support of theoretical hypotheses [78]. Hence any
literature source characterised by a low level of scientific maturity should
perhaps not be considered as a likely candidate for ‘HB-ification’.

4.3 Step 3: Application of FCA to the Data Collected

According to [29], a ‘formal context’, which is a set of ‘objects’ together with
their descriptions in the form of ‘attributes’, generates a family of ‘formal
concepts’. Hence each of these many formal concepts has an ‘intent’ and an
‘extent’.4 The extent of a concept consists of all (formal) objects which belong
to this concept, whereas the intent of a concept consists of all the Boolean
attributes that apply to all the formal objects of that concept [29]. In our ap-
proach, the objects are the sources of knowledge in the form of the published
papers from the above-mentioned repositories; each paper is one ‘object’. The
attributes stem from our ‘empirically’ observed features of those papers, i.e.,
when they were published, which subdomain they belong to, which Formal
Methods they advocated, etc. With these objects and attributes, a large FCA

3 http://euler.fd.cvut.cz/railwaydomain/
4 Synonyms are ‘intension’ and ‘extension’, respectively.
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Fig. 4.1 Sublattice representing Knowledge in the Rolling Stock Subdomain.

cross table for the railway domain was constructed: see [59] for all its details.
From this large cross table (too big for a legible and helpful graphical re-
production in this book), fed as input to the ConExp tool, we were able to
generate the corresponding Formal concept lattice. Its partial order repre-
sents the various (binary) relations between the included concepts; some are
mutually exclusive (disjoint), others are sub or superconcepts of each other,
some are ‘overlapping’ in sharing a common superconcept, etc.

Concept lattices grow exponentially in relation to the numbers of objects
and attributes [62], so that the insertion of even only a modest number of
objects (in our case, papers) will quickly lead to ‘unwieldy’ lattices which
demand large computational resources for their automated processing. Hu-
man expertise is thus still needed in our method to ‘feed’ the FCA’s input
data structure (i.e., the cross table) sufficiently ‘wisely’, so as to avoid the
notorious ‘state space explosion’ problem.5 In our case study, the resulting
lattice for the entire domain was so large and complex in its internal graph
structure that it would not be illustrative to depict it graphically here in this
book.

For this reason, figure 4.1 shows only our sublattice of the previously iden-
tified subdomain ‘Rolling Stock’ [59]. In the structure, ‘model driven engi-
neering’ (MDE) can be found as a prominent software development technique
for which Formal Methods are relevant. In the same figure, we can also see
that the sources of that knowledge stem from the years 2000–2014; thus,
they have a reasonably long historic duration, which might be regarded as
indicative of a reasonably high level of maturity or ‘settledness’.

5 For this reason we recommend the separate application of our method for each a priori
identified subdomain (yielding a smaller lattice per subdomain) rather than for the entire
domain (yielding a no longer feasible, huge lattice for ‘everything’).
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These smaller subdomain specific lattices are not only computationally
more ‘feasible’; they also permit a reasonably human friendly ‘visualisation’
of the given data set so that its relevant conceptual relations are easily ob-
servable by the ‘naked’ human eye.

At this point, our concept lattice(s) represent(s) all the domain knowledge
(including the ‘noise’) extracted from our chosen sources of information, but
we still need to determine which parts of that information may be consid-
ered as ‘matured’ or ‘settled’ enough for our purpose in constructing a HB.
The ‘noise’ in our lattice (which represents somewhat irrelevant concepts,
including, in our case, ‘immature’ or not ‘settled’ knowledge) must still be
filtered out for the sake of more accurate and more relevant analysis results.
For example, the lattice might include an insignificantly small number of ‘ob-
jects’ (papers) in which some formal techniques for the railway domain were
merely ‘proposed’ or ‘advocated’ or ‘attempted’ without much subsequent
‘echo’ over longer periods of time.

4.4 Step 4: Choice of a Stability Threshold

In the formal concept lattices corresponding to our chosen subdomains of the
railway domain, we can find many concepts which have merely one object in
their extents. This observation is not specific to the railway domain, but is
rather characteristic of our approach in which we observe a domain over an
extended period of publication time. Understandably, the more suitable and
more successful Formal Methods are applied and described more frequently
in their application domains’ publications than those with single references,
which turn out to be rather disappointing. A typical example is included in
figure 4.1: the extent that captures the use of the Frama-C language (by means
of which one can discretely model Live Sequence Charts) in the ‘Rolling Stock’
subdomain is of size 1, i.e., there is only one paper in which this particular
Formal Method was advocated. Our data set indeed includes many formal
concepts (object-attribute pairs) that appear only once in the lattice. This
was to be expected, since exploratory research requires scientists or engineers
to propose and test new methods in search for progress and improvements.
The failing ones, however, do not reappear in the literature as frequently as
the more successful ones.

This ‘line of reasoning’, which is mainly based on counting, seems, prima
facie, to be plausible. However, without deeper and farther reaching methods
of analysis, there is no sure way of knowing whether the publication sources
(papers) corresponding to those ‘singleton’ objects are pertinent to the over-
all knowledge structure, or whether they really are merely ‘noise’: see [22]
for comparison. In our approach those ‘singleton’ objects are considered ir-
relevant to begin with, with the methodical consequence that their formal
concepts are removed from the final knowledge representing lattice [59]. This
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decision, however, directly leads to a notorious methodological problem: if
only 1 object per extent is regarded as ‘not enough’, then how many n are
still ‘too few’, and how many n′ are already ‘a multitude’?6 We solve this
methodological problem by the following ‘stability’ considerations.

To obtain a suitable stability threshold value, we plot a graph of the per-
centage of data included in the lattice versus their corresponding stability
threshold indices (where the underlying definition of the notion of ‘stability’
is taken from the canonical FCA literature). The resulting stability variation
diagram, which can be seen in figure 4.2, shows the percentage of that data
which would remain in the given lattice if a particular stability index would
be used as a ‘cut off limit’ (threshold) for the purpose of ‘pruning’ the lattice
structure of ‘insignificant’ formal concepts with ‘too small’ extents. In our
specific example (figure 4.2), it is easy to see that there are two intuitively
large ‘drops’ in the graph of information inclusion: one at 25%, and another
one at 50%. This phenomenon is, on the one hand, a consequence of the
mathematical equation which defines ‘stability’, but, on the other hand, also
due to the empirically given number of concepts which occur in this specific
lattice with the methodologically ‘reasonable’ amount of at least 3 objects in
their extents.

For obvious reasons, we did not choose the stability index of merely 25%
corresponding to the first ’drop down’ in figure 4.2. Above the second ’drop
down’ threshold of 50% in the bar chart, the inclusion rates are ‘sinking’
gradually, so that we reasonably chose the 50% value as our threshold for our
above mentioned purposes: between the values of 25% and 50% the percentage
of extensional inclusion is nearly constant. Selecting this stability threshold
and correspondingly removing the ‘noise’ from the original lattice yielded the
final lattice (for our above-mentioned subdomain), shown in figure 4.3; the
explanations of many further details can be found in [59].

Thus, after selecting the most suitable threshold, as motivated above, we
‘prune’ (remove) from the initial lattice the concepts that fall below the
chosen threshold. Consequently we obtain a ‘clean’ and ‘stable’ lattice, the
formal concepts of which reasonably represent the interesting information
structures within our domain of discourse. The Formal Methods represented
by this final lattice may thus be regarded reliably as instances of ‘settled
knowledge’ in our domain and, therefore, as ‘candidates’ for inclusion into
the envisioned domain specific HB. In our example case study, they included

• Mathematical Models (in general);
• Discrete Mathematical Models;
• Discrete Event Systems;
• Markov Models;
• Petri Nets;
• Fuzzy Logic.

6 For comparison, see the sorites paradox which was already known to the philosophers of
Greek antiquity.
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Fig. 4.2 Changes in data inclusion as a function of the stability thresholds.

Interestingly, these findings were also mentioned in other, independently con-
ducted, overview studies [26] [34] by means of which we can further ‘gauge’
the ‘methodical value’ of our FCA based HB construction approach.

4.5 Step 5: Interpretation and Discussion of the
Detected Settled Knowledge

On the basis of figure 4.3, we now need to go through some further steps of
‘interpretation’ in order to obtain an initial ‘classification’ of this knowledge.
This will help us to organise the knowledge from the lattice in a useful man-
ner, so that engineers will be able to utilise this knowledge effectively in their
daily work.

4.5.1 Observations (and Peculiarities)

In our case study [36] [59], we have observed that almost all the modelling ap-
proaches and formalisms are related to the ‘Traffic Monitoring and Control’
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Fig. 4.3 Final lattice of stable concepts with a stability threshold ≥ 0.5 and extent > 1.

subdomain, (and not so much to the other subdomains, with the possible ex-
ception of ‘Timetables’). The modelling languages and formalisms appearing
in our lattices find their applications mostly in the design and implementation
phases of project life cycles, and to some extent also in the testing phase.

Note also that it was worth noticing that Discrete Event Systems appeared
as a more specific concept in relation to the Petri nets concepts, which is not
entirely consistent with our previous knowledge. The reason was apparently
that the lexical keyword ‘Discrete Event Systems’ was most often used in
conjunction with ‘Petri nets’ in our underlying data base of conference publi-
cations. In general, however, there are more mentions of the term ‘Petri nets’
than of the broader term ‘Discrete Event systems’. These findings reveal the
influence of ‘keyword capturing’ (in the early stages of our HB construction
method) on the ‘validity’ of the eventually generated formal concept lattices,
and caution us to capture keywords ‘wisely’ (with expertise) before construct-
ing our approach’s initial cross tables for FCA. Indeed, a closer look into this
point revealed that every paper on Petri nets somehow discusses Discrete
Event Systems as well, even if only as somehow ‘related work’. Not taking
these finer details into account can thus possibly lead to ‘distorted’ formal
concept lattices in which the generalisation hierarchy (of subconcepts and
superconcepts) does not make much real world sense.

Interestingly, our final formal concept lattice also contained (per automatic
inference) some nameless (but nevertheless significant) combination concepts.
For example, we have found in the lattices of [59] a conceptual connection be-
tween ‘Domain Specific Languages’, the language ‘RAISE’, ‘Analytical Mod-
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els’, and the subdomain of ‘Traffic Monitoring and Control’, though none of
our many individual source objects (published papers) mentioned this ‘clus-
ter’ of conceptual connections. This observation reveals the ability of our
FCA based semi automatic method to ‘see more’ than any individual paper
author or domain expert alone can see. For the composition of a forthcom-
ing HB on the application of Formal Methods in the railway domain, those
automatically detected conceptual combinations may be particularly fruitful,
because a HB ought to put every listed method of engineering into its proper
context of application.

4.5.2 Settledness

Examining figure 4.3 for examples of settled knowledge, we can find them only
under ‘Traffic Monitoring and Control’. Indeed, in this field, many attempts
at using Formal Methods are known. ‘Timetables’ and ‘Scheduling and Al-
location’ are not significantly represented in our case study, though they
are intensely researched in other computer science communities and ‘venues’,
particularly artificial intelligence (AI) and operational research (OR), which
were not among our chosen conference topics (listed above in section 4.1).
These two well known areas indeed contain much ‘settled knowledge’, with-
out which no account of settled knowledge of Formal Methods in the railway
domain would be complete, though our chosen conference ‘venues’ did not
sufficiently ‘reflect’ this fact. Possible and actual knowledge transfer between
apparently ‘unrelated’ fields of research and engineering must thus not be
forgotten when a HB for one particular field is to be composed.

4.5.3 Limitations of our Findings

Many of the subdomains of railway engineering in our case study [36] [59] have
limited Formal Methods related to them. Hence the discussion of ‘settledness’
in these subdomains might perhaps be premature. In our case study, there
was not enough initial data to support a more ‘meaningful’ analysis and
interpretation. In our case, perhaps the observation period of publication
time was too short, or not enough literature was looked at, or possibilities
of knowledge transfer from other domains were not sufficiently considered;
or, perhaps, there is indeed not yet much ‘settled’ knowledge in these areas.
Similarly, and for similar possible reasons, the identified Formal Methods
for the subdomain of ‘Train Management and Control’ fail to exhibit any
deeper substructures for further classification (subconcepts, superconcepts,
meaningful ‘clusters’ of concepts, and the like).
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4.5.4 Guidance for a Handbook on FMs for the Railway
Domain

On the basis of our case study’s findings and their above mentioned limi-
tations, we can currently recommend and advocate the (future) production
of a HB of ‘settled’ engineering knowledge in Formal Methods of comput-
ing for ‘Train Management and Control’, (perhaps even with the addition of
‘Timetables’ and ‘Scheduling and Allocation’). Due to its above mentioned
limitations, we cannot use our case study in support of any other recom-
mendations, though other experts might already be in possession of related
‘settled knowledge’, which our case study was not able to reveal. In any case,
as our previous elaborations have shown, any such identifications and classifi-
cations need to be carried out very carefully, lest the chosen data base might
be too small to support any reliable assertions and conclusions.

How a specific ‘piece’ of such settled knowledge ought to be ‘cast’ into a
HB compatible form is the topic of chapter 5, which follows after the next
(and final) section of this chapter.

4.6 Possible Threats to Validity: Critical Evaluation of
Steps 1–5 in the Context of our Railway Example

This final section of chapter 4 serves as a continuation of the ‘Limitations
of our Findings’ subsection of the previous section (4.5.3), albeit now on the
broader scale of our entire HB construction method (as opposed to merely
its final step).

By means of our comprehensive example of domain analysis (with further
details available in [36] [59]), we have illustrated how our (meta) method for
the composition of an engineering HB is meant to be carried out. To apply our
method properly for the composition of a ‘real’ HB for any chosen application
domain, it is important not to forget any details of relevance, wherein prima
facie ‘irrelevant’ details might well turn out to be crucial in later stages of
such a project, lest the resulting HB be incomplete, even if the method of its
construction was properly followed.

In our above mentioned illustrations and examples of domain analysis,
results were obtained on the basis of several preconditions and ‘rational as-
sumptions’. Though all those assumptions can be methodologically defended
(see above) as ‘reasonable’, we must nonetheless make those preconditions
and assumptions explicit, so as to avoid any naive methodological over con-
fidence and, hence, the composition of ‘incomplete’ or otherwise unreliable
engineering HBs. For this reason, at least the following methodologically crit-
ical points must be particularly mentioned.
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4.6.1 Notion of ‘Settledness’

In asking which knowledge is sufficiently ‘settled’ for its ‘HB-ification’, we
defined a notion of ‘settledness’ which is essentially temporal. Accordingly,
such knowledge must occur and re-occur sufficiently often over a sufficiently
long period of time.

• Critical epistemologists might thus ask whether or not our time based
notion of ‘settledness’ is appropriate, particularly w.r.t. Shaw’s notion of
‘scientific maturity’ [78]. In our examples above, we also did not consider
chains of citations or cross references within the scrutinised body of liter-
ature in order to investigate ‘settledness’. Moreover: where too much em-
phasis is placed on the ‘history’ of knowledge, there might arise a choice
bias against ‘newer’ knowledge, which might nonetheless be accepted and
adopted quickly by a community of expert practitioners. For example: in
our case study lattice below, the B method does not (yet) appear at all,
although the B method is already widely regarded as a ‘paradigm’ of the
industrial applications of Formal Methods in the railway domain. Thus,
if the ‘settledness’ criterion are inappropriately defined, de facto relevant
settled knowledge might not be found by the subsequent application of
our FCA based methods of domain analysis.

4.6.2 Choice of Database

We have sought settled knowledge in public data bases, particularly in the
community relevant conference proceedings indicated in section 4.1, out of
which we extracted a representative selection.

• Critical experts might thus argue against us that those chosen conferences
were perhaps not ‘community relevant’; that the set of chosen conferences
was too small (and thus not representative), so that relevant settled knowl-
edge might have been omitted; that knowledge transfer possibilities from
other (prima facie ‘unrelated’) fields and research communities have been
ignored; or that the settled knowledge of the railway industry might per-
haps exist only in the form of corporate secrets (instead of being publicly
available). For example: in the data base of the above mentioned illus-
tration of our construction method, we did not include the proceedings
of ‘smaller’ events like the FMERail workshop series, nor journals (rather
than conferences), nor ‘isolated’ papers like [38] or [88] (which had been
published in ‘general’ conferences outside the topic specific meetings of the
FM Rail ‘community’).
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4.6.3 Choice of Formal Concept Analysis

We have chosen FCA as our method of domain analysis because FCA has
already demonstrated its epistemic usefulness [62] in various other applica-
tion domains, see, for example, the annual proceedings of the International
Conference on Formal Concept Analysis (ICFCA), and may thus be regarded
as a trustworthy method in the field of formal epistemology.

• Nevertheless there might be other, different methods that could and should
be applied in order to extract initial sources of settled knowledge. Any suit-
able alternative ‘data mining’ approaches could or should also be applied
in order to confirm or to correct and improve our preliminary findings.

4.6.4 Choice of Attributes for FCA

As mentioned above, we have used the attribute based method of FCA to
identify those concepts which we are strongly associated with ‘settled’ knowl-
edge; see section 4.2. Our declaration of the relevant attributes to be used
in FCA’s cross tables (figure 3.1) was made ‘hermeneutically’, i.e., as in the
faculty of Humanities, after thorough reading and interpretations of relevant
engineering literature.

• Critical experts might thus argue that our chosen attributes were perhaps
not identified appropriately, or that we might have wrongly omitted im-
portant attributes altogether; consequently, the automatically generated
lattice graphs (figure 4.1) would not represent an accurate ‘image’ of the
chosen domain or subdomain. For example, whereas we have taken subdo-
mains of the railway domain into account, we did not refine our analysis
to the finer level of typical problem classes within those subdomains.

4.6.5 Choice of Stability Threshold

After a first ‘raw’ lattice with too many ‘unstable’ concepts had been ob-
tained in the first phase of our application of FCA, we have selected and
included only those concepts with a ‘stability’ above a particular percentage
threshold (0 < ŝ < 1). Though the value ŝ was chosen carefully on the ba-
sis of ‘reasonable’ considerations (figure 4.2), it was nonetheless a deliberate
choice.

• Critical experts might thus argue that our choice of ŝ was not appropriate,
that an alternative threshold ŝ′ (with ŝ′ 6= ŝ) should have been chosen
instead of ŝ, or that the considerations of [22] (concerning the significance
of low stability concepts) ought to have been taken into account.
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4.6.6 Classification of Settled Knowledge

In order to obtain a classification of settled knowledge in the railway domain,
we analysed the concept lattice and gave it a meaningful ‘interpretation’.
Thus, we related our findings to our already pre existing ‘view of the do-
main’, our ‘expectations’, and our previous ‘knowledge of the field’. This
interpretation was a matter of ‘hermeneutics’, similar to the scholarly meth-
ods applied in the faculty of humanities. This interpretation led us to the
‘insight’ that only selected subdomains of railway engineering seem to lend
themselves, at this point in time, to the construction of a HB on this topic.

• Critical experts might thus argue that, in the end, our ‘view of the do-
main’, ‘expectations’, or ‘knowledge of the field’ played too large a role
in the overall analysis, so that the results of our interpretations are not
sufficiently ‘objective’.7

7 At that point we might reply that the way we utilize our ‘knowledge of the field’ was

merely to avoid over interpretation of the data; we did not add any ‘artificially invented’
concepts, but rather pointed out ‘anomalies’ and shortcomings of the automatically ex-
tracted findings.
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Chapter 5

Example HB Entry of a Formal
Method for the Railway Domain —
Step 6

In the previous chapter we identified settled knowledge concerning the use
of Formal Methods within the railway domain. Now we take a first tentative
step from analysis towards synthesis. To this end, we apply the presented
meta method to describe how settled knowledge could be presented in a HB.
We illustrate our suggestion by providing a sketch for one concrete exam-
ple, namely, on how model checking can be utilised for safety verification of
interlockings written in Ladder Logic.

Our presentation scheme has been developed based on discussions at a
workshop affiliated with the International Conference on Software Engineer-
ing and Formal Methods in 2013 (SEFM’13) on the topic of a BoK in railway
control [35]. It is deliberate that our scheme looks ‘familiar’, ‘natural’, ‘non
surprising’. Its purpose is to be intuitive, easy to understand, allowing the
reader to focus on the content rather than on the framework. To achieve this,
we took some inspiration from [1]. Naturally, such a scheme could, as con-
vincing as it might look at first sight, turn out to be unsuitable for capturing
settled knowledge. Thus, as a proof of concept, in the following we put it to
the test by applying it to a well established example in the railway domain,
drawing on the verification approach described in [47].

Using software model-checking of Ladder Logic in order to verify safety
properties of interlocking programs is well understood in academia. It is gen-
erally agreed that it belongs to settled knowledge within the railway domain.
For various academic publications see [28] [32] [46] [47] [50] [51] [52] [53] [54]
[64] [85] [91], and —for the industrial view on it— an experience report about
verification practice [24].

In section 5.3.1, we provide a short bibliography. The discussed method
belongs to the ‘Traffic Monitoring and Control’ area, for which we identi-
fied settled knowledge in section 4.5. The corpus that we considered for our
concept analysis, however, does not include the publications quoted above.

In the following we present the example and also accompany it with an
academic explanation which would not normally be included in a HB. This
part is clearly separated from the example HB entry. Sections 5.1–5.2 present

57
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(re)implement

mc for safety

test

passfail

pass

fail

Fig. 5.1 Process of model checking (mc) for Safety.

the sample HB entry. Academic explanations can be found in section 5.3.
Within the sample entry given in sections 5.1–5.2, we apply the following
writing style:

• Cross references from our sample entry to other parts of the still to be
written Handbook of Formal Methods for the Rail Domain (HB-FM-RD)
are written as, e.g., “section . . . on . . . in this HB-FM-RD”.

• In section 5.2, we illustrate (Step 3) and (Step 4) with just one variant. We
provide the headlines of other, potential variants in order to illustrate the
entry’s ‘architecture’. However, we do not provide text for these variants
as it would structurally be similar to the one already given. We put “[. . . ]”
as placeholders for those variants that are not provided.

We conclude this chapter with some experience report on writing a handbook
following the scheme together with some readers’ reactions.

5.1 Problem Class: Verification through Model
Checking of Ladder Logic Programs for Safety

The programming language Ladder Logic is often utilized to program rail-
way interlocking computers. Safety properties for interlockings arise from
regulators or customers. Model checking allows for a full system analysis and
investigates whether all ‘runs’ of the interlocking (program) are safe. Model
checking is just one verification technique that can be applied. References to
other techniques for the same problem can be found in sections . . . of this
HB-FM-RD.
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Inputs

The methods described below require as inputs:

• A ladder logic program accompanied by a variable naming scheme;
• A safety formula in a discrete time, temporal first order logic expressing a

safety property; and
• A trackplan with a corresponding route table.

Subclasses

Depending on the user’s expectation about the correctness of the program,
there are two cases to be distinguished: in the first case, Expected-Fail, the
user expects verification to fail, i.e., the user’s interest is in gaining informa-
tive counterexample traces for the purpose of debugging; in the second case,
Expected-Success, the user wants to achieve a positive verification result.

Alignment with a Verification Step

The UML activity diagram shown in figure 5.1 illustrates how model checking
for safety can precede standard (as defined in the railway industry) verifica-
tion through testing. Note that the final verification step is still testing, i.e.,
adding model checking does not change the way the safety case is made to
the regulator for the interlocking computer. In the present state of industry
and regulators, testing would still be required to be done.

Gains

Adding model checking to the program analysis will lead to a higher level of
safety assurance as all instances of the safety property are considered, rather
than just those selected instances which are encoded in a test case. It has
been demonstrated that certain test approaches are, in principle, not able to
uncover mistakes that can be found through model checking. As automated
model checking is cheaper than manual testing, adding model checking has
the potential to reduce cost.

5.2 Solution

The method has four main steps. The first two of these pre-process the input
data; here, there is no variation. The third applies model checking to pre-
processed data; here there are several subclasses. Finally, the results need to
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(i) A sample rung (ii) Illustration of Tseitin Transformation

Fig. 5.2 An Example taken from Kanso [52].

be interpreted; this interpretation depends upon the chosen model checking
approach.

(Step 1) Translating Ladder Logic into Propositional Logic

Translate the Ladder Logic program into a propositional formula Ψ using the
Tseitin transformation [82]: see section . . . of this HB-FM-RD. This results
in a Ladder Logic formula Ψ in Propositional Logic.

Example (Deriving Boolean Expressions) Reading off the Boolean ex-
pression from the Ladder Logic program shown in figure 5.2 (i) in a naive
way, one obtains

e := ¬d ∨ (c ∧ (a ∨ b)).

Reading it off via the Tseitin transformation introduces intermediate rungs
and variables, see figure 5.2 (ii). Concretely, we obtain the following program
written as a series of assignments:

x5 := b;x4 := a;x3 := x4 ∨ x5;x1 := c ∧ x3;
x2 := ¬d;x0 := x1 ∨ x2; e := x0

Note that there are more assignments thanks to the additional variables in-
troduce by the Tseitin transformation. �

The representation of a Ladder Logic program in Propositional Logic is
constructed in terms of disjoint finite sets I and C of input and output vari-
ables, where internal variables are subsumed in C. We define C ′ = {c′ | c ∈ C}
to be a set of new variables (intended to denote the output variables com-
puted in the current cycle). In addition, we need a function unprime : C ′ →
C,unprime(c′) = c.



5.2 Solution 61

Definition (Ladder Logic Formulae) A Ladder Logic formula ψ is a
Propositional formula

ψ ≡ (c′1 ↔ ψ1) ∧ (c′2 ↔ ψ2) ∧ · · · ∧ (c′n ↔ ψn)

such that the following holds for all i, j ∈ {1, . . . , n}:

• c′i ∈ C ′;
• i 6= j → c′i 6= c′j ; and

• Vars(ψi) ⊆ I ∪ {c′1, . . . , c′i−1} ∪ {ci, . . . , cn}. �

Example (Translation into Propositional Logic) The ladder logic for-
mula obtained from figure 5.2 (i) in the naive reading is

ψn ≡ (e′ ↔ ¬d ∨ (c ∧ (a ∨ b)))

Applying the Tseitin transformation results in

ψT ≡ (x′5 ↔ b)
∧ (x′4 ↔ a)
∧ (x′3 ↔ x′4 ∨ x′5)
∧ (x′1 ↔ c ∧ x′3)
∧ (x′2 ↔ ¬d)
∧ (x′0 ↔ x′1 ∨ x′2)
∧ (e′ ↔ x′0)

Applying the Tseitin transformation gives in larger formulae in this step. �

(Step 2) Specialising General Safety Properties

Transform the given safety property (in a discrete time, temporal first or-
der logic) into a propositional formula using the correct naming schemes for
propositional variables, taking into account the given track plan. This results
in a safety property ϕ in propositional logic.

Example (A safety formula) A typical safety property would be: before
a route can be set, “all train detection devices in the route indicate the line is
clear”. This is one of the interlocking principles stated in [89]. This principle
can be formalized using specialized predicates

• routeOf (indicating which routes in a track plan belong to a signal) and
• tracksOf (indicating which tracks belong to a route)

which encode the given trackplan, and specialized temporal predicates

• proceed (which is true for a signal at a given time, if a train can proceed
at this signal),

• set (which is true for a route at a given time, if this route is set)
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• occupied (which is true for a track at a given time, if this track is occupied
by a train),

which encode the state associated with the track plan. Using the convention
that a primed predicate denotes the next state, the above safety property can
be formalized as:

∀s ∈ Signal, rn ∈ RouteName, t ∈ TrackSegment :
rn ∈ routesOf (s) ∧ t ∈ tracksOf (rn) =⇒

((not(proceed(s)) ∧ proceed′(s) ∧ set(rn)) =⇒
(not(occupied(t))))

An example collection of predicates that can help to formalize safety proper-
ties [85] can be found in section . . . on Domain Analysis in this HB-FM-RD.�

(Step 2.1) Transform the formula into prenex normal form. In this nor-
mal form, a formula is written as a string of quantifiers and bound vari-
ables, called the prefix, followed by a quantifier-free part, called the matrix.
See section . . . in this HB-FM-RD for an algorithm. This transformation
helps to obtain small safety formulae: after substituting values for the
bound variables in (Step 2.2), for verification we can often consider each
instantiation of the matrix as a separate formula. This is of advantage as
verification time grows with formula size.
Our example above is already in prenex normal form. Safety properties
often arise in prenex normal form starting with a universal quantification;
thus this step can usually be left out.

(Step 2.2) Replace all universal and existential quantifiers by appropriate
conjunctions and disjunctions, respectively, by using the topological infor-
mation given through the trackplan. The resulting formula will be variable
free, as all variables have been replaced by constant symbols corresponding
to the finitely many elements of the track plan.

Example (Illustration of Step 2.2) For the trackplan and the route ta-
ble in figures 5.3–5.4 and the safety formula in Example 3 we obtain:

S100(AM) ∈ routesOf (S100) ∧AA ∈ tracksOf (S100(AM)) =⇒
(not(proceed(S100)) ∧ proceed′(S100) ∧ set(S100(AM))) =⇒

(not(occupied(AA)))
∧ S100(AM) ∈ routesOf (S106) ∧AA ∈ tracksOf (S100(AM)) =⇒

(not(proceed(S106)) ∧ proceed′(S106) ∧ set(S100(AM))) =⇒
(not(occupied(AA)))

∧ S100(AM) ∈ routesOf (S110) ∧AA ∈ tracksOf (S100(AM)) =⇒
(not(proceed(S110)) ∧ proceed′(S110) ∧ set(S100(AM))) =⇒

(not(occupied(AA)))
∧ . . .
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Here, S100(AM) is a route name, S100 is a signal name, and AA is a track
name from the track plan and its route table as shown in figures 5.3–5.4. �

(Step 2.3) Eliminate true premisses; eliminate subformulæ with false pre-
misses. After Step 2.2., the formula consists of a number of subformulae
joined by conjunctions. Each of these subformulæ involves an implication
using elements of the fixed track plan and its associated route table, rela-
tive to which the premise of each and every subformula can be evaluated.

Example (Illustration of Step 2.3) The first subformula in the example
illustrating Step 2.2 is:

S100(AM) ∈ routesOf (S100) ∧AA ∈ tracksOf (S100(AM)) =⇒
(not(proceed(S100)) ∧ proceed′(S100) ∧ set(S100(AM))) =⇒

(not(occupied(AA)))

According to the trackplan and its associated route table, as shown in figures
5.3–5.4, the premiss of this subformula is true (S100(AM) is a route that
starts at signal S100 as we can see from the route table; track AA belongs to
route S100(AM) as route S100(AM) starts at signal S100 and ends at signal
signal S104, c.f. the route table, and track AA is on the path from S100 to
S104 as can be seen on the trackplan). Thus, in Step 2.3 we keep

(not(proceed(S100)) ∧ proceed′(S100) ∧ set(S100(AM))) =⇒
(not(occupied(AA)))

from the first subformula.
By examining another subformula in the same example, a case in which

the premiss evaluates to false can be found:

S100(AM) ∈ routesOf (S106) ∧AA ∈ tracksOf (S100(AM)) =⇒
(not(proceed(S106)) ∧ proceed′(S106) ∧ set(S100(AM))) =⇒

(not(occupied(AA)))

Since route 100(AM) is not contained within the routes of signal S106, the
premiss of this subformula is false. Thus, in Step 2.3 we delete the whole
subformula. �
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Fig. 5.3 A track plan, cf. [85].
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Signal

Num-

ber

Route

Letter

& Class

Destination Aspect

Type

RI Type

JI/SI/MI

RI Legend Special

Notes

Line Signal

S100 A(M) DN MAIN S104 M – – –

S106 A(M) PLATFORM 1 B/STOP 400 M JI POS 1 MAR
A(C) PLATFORM 1 B/STOP 400 PL MI 1 –

B(S) PLATFORM 2 B/STOP 410 PL MI 2 NP, P

C(M) PLATFORM 3 B/STOP 420 M SI 3 MAR
D(S) PLATFORM 4 B/STOP 430 PL MI 4 NP

E(M) DN MAIN S110 M – – –

F(S) PLATFORM 6 B/STOP450 PL MI 6 P
G(M) PLATFORM 7 B/STOP460 M SI 7 MAR

G(C) PLATFORM 7 B/STOP460 PL MI 7

H(M) PLATFORM 8 B/STOP470 M JI POS4 MAR
H(C) PLATFORM 8 B/STOP470 PL MJ 8 –

S110 A(M) DN MAIN B/STOP440 M – – –

Fig. 5.4 Part of the Route table associated with the trackplan shown in figure 5.3. A row

in the route table describes a single route: in the first column, which signal the route begins
at, in the second column what the route name is, in the fourth column which signal the

route ends at.

Element Property Prefix Suffix

Track Occupied T<SEGMENT> .OCC(IL)

Route Set (Route) S<SIGNAL(ROUTE)> .U

Signal Shows Proceed S<SIGNAL> .G

Fig. 5.5 A typical variable naming scheme, cf. [85].

(Step 2.4) Replace all predicates with propositional variables according
to a variable naming scheme for ladder logic programs.

Example (Illustration of Step 2.4) In the example illustrating Step 2.3
we saw that the subformula

(not(proceed(S100)) ∧ proceed′(S100) ∧ set(S100(AM))) =⇒
(not(occupied(AA)))

remained after Step 2.3. Now we replace the state describing predicates with
propositional variables:

(not(S100.G) ∧ S100.G′ ∧ S100(AM).U) =⇒ (not(TAA.OCC(IL)))

To this end, we apply a variable naming scheme such as the one shown in
figure 5.5. �
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(Step 3): Model Checking

Use model checking to verify if a ladder logic program fulfills (satisfies) a
safety property.

(Step 3: Variant Inductive Model Checking)

Criteria

Inductive Model Checking is applicable to the subclass Expected-Success iden-
tified above, i.e., the user expects verification to succeed. Note that for debug-
ging the program, i.e., when one expects the verification to fail, the Variant
‘Bounded Model Checking’ is better suited as it provides counterexample
traces.

Principle

Inductive Model Checking checks if an over-approximation of the reachable
state space is safe; for a detailed discussion see the evaluation of the method
below.

The set of initial states of the interlocking is often given in the rail industry
by setting all output variables to 0 and then to compute one step with Ψ .
This can be expressed by a formula Init. Furthermore, we need two versions
of the safety property ϕ under discussion: ϕ itself and a formula ϕ′, which
we obtain from ϕ by adding a prime to all variables.

Inductive Model Checking is then defined by:

if ¬(Init→ ϕ′) is satisfiable then

return error state
else if ¬(ψ ∧ ϕ→ ϕ′) is satisfiable then

return pair of error states

else
return “safe”

The check if a formula is satisfiable can be done by a SAT solver. Many of
those are available as ‘off the shelf’ software packages; see section . . . of this
HB-FM-RD for a discussion of SAT solving.

(Step 3: Variant Bounded Model Checking)

[. . . ]



5.2 Solution 67

(Step 3: Variant Temporal Induction)

[. . . ]

(Step 3: Variant St̊almarck’s Algorithm)

[. . . ]

(Step 4): Validating Model Checking Results

(Step 4: Validation for Inductive Model Checking)

If verification is successful, the safety property in question has been estab-
lished and no further validation step is required. However, if verification fails,
this result requires interpretation. Failing verification can occur, e.g., due to:

1. incorrect encoding of the safety property in FOL,
2. incorrect use of names of propositional variables,
3. a deliberate deviation from the property in the Ladder Logic program,
4. a false positive,
5. a mistake in the Ladder Logic program.

Note that only two of the listed reasons concern the program, i.e., the sys-
tem under scrutiny, itself, while three of them address mistakes within other
artefacts.

As safety properties and naming conventions remain stable over longer
periods of time, these kind of mistakes can be ‘eliminated by use’, i.e., after
‘many’ verification attempts have been carried out and the process has been
updated accordingly, the proportion of these mistakes will decrease.

A similar argument will apply to the deliberate deviation from the prop-
erty in the Ladder Logic program: this will not happen only once, but will
happen only as an established programming practice. In this case, it would
be adequate to change the safety property accordingly, in order to verify that
the deviating behaviour has been encoded correctly.

A ‘false positive’ will arise when the safety property to be verified is not
‘inductive’, i.e., all reachable states are safe, however, there exists a safe,
unreachable state with a transition into an unsafe state (figure 5.6): within
the dashed circle we find all possible states of the system, where the green
region comprises of all states for which the safety property ϕ holds; in the
beginning, the system is in the state marked by an incoming arrow with no
source; the system evolves along the arrows. A ‘false positive’ is illustrated
by the two red states connected with a transition, where one state is safe,
the other is not, and the safe state is not reachable from the initial state.
Here, Inductive Model Checking will return a false positive, i.e., it will say
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Fig. 5.6 State Space Illustration according to [46].

that the system is unsafe although the safety violation will never be reached
in a system run.

One technique to exclude false positives is to add a suitable invariant to
the verification. The effect of such an invariant is that it reduces the state
space to be considered, hopefully excluding all safe, unreachable states with a
transition into an unsafe states. Finding such invariants is a challenge which
has been addressed in the literature [19]. For a discussion see section . . . of
this HB-FM-RD.

Only in the last case there is a need to actually change the Ladder Logic
program. It takes experience and (manual) work, to isolate this case from the
others.

(Step 4: Validation for Bounded Model-Checking)

[. . . ]

(Step 4: Validation for Temporal Induction)

[. . . ]

(Step 4: Validation for St̊almarck’s Algorithm)

[. . . ]
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5.3 Academic Explanation

A HB might also include some rationalisation of the method, but not like the
one we present in this section. Our rationalisation is meant for an academic
audience.

5.3.1 A Short Bibliography

The method of using software model checking of Ladder Logic to verify inter-
lockings is a well established one and belongs to settled knowledge within the
railway domain. As early as 1995, Groote et al. utilize it to verify the station
Hoorn-Kersenbooger. Their conjecture is that it would be rather straightfor-
ward to verify correctness criteria on larger railway yards [32]. Three years
later, Fokkink and Hollingshead suggest a systematic translation of Ladder
Logic into Boolean formulæ [28]. They conclude: “The intensive testing pro-
cedure for interlockings is time and money consuming, and although the
procedure is thorough and carried out by experts and semi-automated sim-
ulation, Verification of Interlockings it does not give a 100% guarantee that
an interlocking satisfies the dependencies in its control tables”. Alternative
approaches include the work by Zoubek (et al.), who provide a translation
from ladder logic into timed automata [91]; this then allows utilisation of the
Uppaal model checker as a verification tool.1 The paper [47], on which we
base our presentation here, summarises several industrially funded research
projects [51] [52] [46] [64] [85], which lead to several further publications [50]
[53] [54].

5.3.2 Solid State Interlockings

In railway systems, solid state interlockings provide a safety layer between
the controller and the track. In order to move a train, the (human) con-
troller issues a request to set a route. The interlocking uses rules and track
information to determine whether it is safe to permit this request: if so, the
interlocking will change the state of the track (move points, set signals, etc.)
and inform the controller that the request was granted; otherwise the in-
terlocking will not change the track state. In this sense, an interlocking is
like a Programmable Logic Controller (PLC). The standard IEC 61131 [41]
identifies programming languages for such controllers, including the visual
language Ladder Logic.

1 https://www.uppaal.com/
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Fig. 5.7 Control Cycle of a Westrace Interlocking according to [46].

Closely following James [46], we exemplify the typical interlocking con-
trol process by giving details of the three main stages of operation of an
interlocking of type ‘Westrace’.

Reading of Inputs: The first stage involves reading input values from
various sources. The input reading process is undertaken by a specialised
‘I/O module’. Inputs may include requests from the controller and details
from physical track sensors. It is also possible for input values to be de-
fined as remembered values from the previous execution of the ladder logic
program.

Internal Processing: The second stage involves computing new values
for output variables. This task uses the variables that have been read in
stage one. These variables are then processed by a ladder logic program.

Committing of Outputs: Finally, all calculated outputs are passed back
to the ‘I/O Module’ to be committed to various devices. Here we note that
some outputs may actually be remembered by the interlocking, ready to
be used within the next execution of the control cycle. In this stage, com-
mands to change the physical track layout may be issued and information
may be passed back to the controller.

Interlocking applications such as the Westrace interlocking discussed above
are developed according to processes prescribed by railway authorities, in
the UK, e.g., by Network Rail’s Governance for Railway Investment Projects
(GRIP) process. The first four GRIP phases define the track plan and routes
of the railway to be constructed, while phase five —the detailed design— is
contracted to a signalling company which chooses appropriate track equip-
ment, adds control tables to the track plan, and implements the solid state
interlocking. It is for part of this phase, namely for the correct implementa-
tion of a control table in a solid state interlocking, that we described support
in terms of a Formal Method.

The problem addressed is the verification of safety properties for railway
interlocking programs written in Ladder Logic, a process prescribed in stan-
dards and by authorities. Figure 5.8 shows the standard approach as usually
taken in industry as well as the suggested, improved process. In the original
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(i) Standard approach (ii) Improved process

Fig. 5.8 Process Improvement by including model checking (mc) for Safety.

process (i), the control program is implemented in Ladder Logic and tested
afterwards. In case the program fails a test, re-implementation is necessary. In
industrial practice, such an implement-test cycle is iterated about five to ten
times until the interlocking program finally passes all tests. The improved
process (ii) involves a lightweight application of a Formal Method: testing
takes place only if model checking for safety succeeds.

5.3.3 Explanation for (Step 1): Tseitin Transformation

Using the Tseitin transformation [82] to translate a Ladder Logic program
into propositional logic introduces a proxy variable for each subformula. This
leads to a formula which is equisatisfiable to the naive reading, i.e., the former
is satisfiable exactly if the latter is satisfiable. However, Tseitin’s formula is
not equivalid as it has new variables.

The advantage of the Tseitin transformation becomes apparent when one
transforms the result into CNF. The naive approach reads the Boolean ex-
pression of a rung and uses De Morgan’s laws and the distributive property
to convert it to CNF. This can result in an exponential increase in size. In
contrast, the Tseitin transformation outputs formulae whose size grows only
linearly relative to the size of the original expression.
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5.3.4 Explanation for (Step 2): Discrete Time, Temporal
First Order Logics

The presentation of the method given in (Step 2) for this step closely fol-
lows [85]. In order to capture generic safety properties and to adapt them to
specific trackplans, we are using many sorted first order logics over states and
their successors. These logics comprise of elements that enable the expres-
sion of the generic safety properties, as well as of elements that correspond
to a specific trackplan with associated route table —see figures 5.3–5.4 for
an example— and a variable naming scheme; see figure 5.5 for an example.
Having both elements in one logic, the generic ones and the specific ones,
allows us to transform the generic properties into specific ones. As also the
models are formed specific to the trackplan, route table, and variable naming
scheme, the transformation steps given in (Step 2) above are semantics pre-
serving, i.e., the original formula and the transformed formula are equivalent
in the logics. Below, we provide a sketch of these logics.

Signatures

Signatures are many sorted, first-order logic signatures (S, F, P ) where

• the set of sort symbols S = {TrackSegment ,Signal ,RouteName,Point};
• the set F of function symbols consists of

{ routesOf : Signal→ P(RouteName),
pointsOf : RouteName→ P(SetofPoint)
tracksOf : RouteName→ P(TrackSegment)},

as well as a number of constants arising from the trackplan, such as S100 :
Signal;

• and where the set P of predicate symbols consists of

– a number of unary and binary predicates symbols that relate to the
state to the trackplan, such as isInCorrectPositionFor : Point ×
RouteName and proceed : Signal and

– and a number of propositional variables generated for the given track
plan according to the variable naming scheme, e.g., S100.G.

See [85] for the complete list of predicate symbols. Some of the unary
predicate symbols and the propositional variables are connected through
equivalences, e.g., proceed(S100)⇐⇒ S100.G.

In such a signature, sorts correspond to the families of elements a trackplan
refers to, functions enable us to encode topological information, and predi-
cates encode the state of the stateful elements of a trackplan.
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Models

Models at a point of time are pairs (T, I) where

• T is a track plan
• I is a propositional model for all propositional variables associated with
T , e.g., I(S106.G) ∈ {true, false}.

Sorts and functions, are given a fixed interpretation according to the track
plan, e.g.,

• SignalT = {S100, ...} : iff T has signals S100, ...
• routesOf T (s) = {r1, ..., rn} : iff in T, signal s has routes r1, ..., rn

Predicates obtain their interpretations from a combination of looking up in-
formation from both the trackplan T and the propositional model I:

• p isInCorrectPositionForT,I r holds iff

– case 1: in T , p needs to be in reverse for r and I(p.RL) is true
– case 2: in T , p needs to be in normal for r and I(p.NL) is true

The models of a signature are then sequences of the form (T, I0), (T, I1), ...,
i.e., the trackplan in the first component stays constant, only the state of the
propositional variables is changing.

Formulæ

The formulae are standard first order logic formulæ, where predicate symbols
can also appear with a prime, e.g., S106.G and S106.G′ are both atomic for-
mulæ. The prime indicates that a predicate shall be evaluated in the successor
state.

Satisfaction

Given two models (T, I1), (T, I2), satisfaction of a formula is satisfaction as
in first order logic, where unprimed predicates are evaluated over (T, I1) and
primed predicates are evaluated over (T, I2). A formula ϕ holds in a sequence
〈(T, I0), (T, I1), . . . 〉, iff for all i ≥ 0 the formula ϕ holds over (T, Ii), (T, Ii+1).

5.3.5 Explanation of Step (3): Verification Problem
associated with Ladder Logic

One can associate an automaton with a ladder logic formula. Recall that the
representation of a ladder logic program in propositional logic is constructed
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in terms of disjoint finite sets I and C of input and output variables, where
internal variables are subsumed in C. This automaton has interpretations of
the set of propositional variables I ∪ C as its states, i.e., the configurations
of the PLC. In order to define the automaton’s transition relation, we intro-
duce paired valuations. Here, the function unprime deletes the prime from a
variable.

Definition (Paired Valuations) Given a finite set of input variables I, a
finite set of state variables C, and valuations µ, ν : (I∪C)→ {0, 1} we define
the paired valuation µ ; ν : (I ∪ C ∪ I ′ ∪ C ′)→ {0, 1} where

µ ; ν(x) =

{
µ(x) if x ∈ I ∪ C
ν(unprime(x)) if x ∈ I ′ ∪ C ′.

�

The automaton corresponding to a ladder logic formula is defined as follows:

Definition (Automaton) Given a ladder logic formula ψ over I ∪ C, we
define the automaton

A(ψ) = (S, S0,→)

where

• S = {µ |µ : I ∪ C → {0, 1}} is the set of states,

• µ
ν(I′)−→ ν if µ ; ν |= ψ, defines the transition relation, and

• S0 = {ν | ∃µ : µ |= ¬C, µ ; ν |= ψ} gives the set of initial states. Here, ¬C
expands to

∧
c∈C ¬c. �

Having associated an automaton with a ladder logic program, one can now
define the verification problem:

Definition (Verification Problem for Ladder Logic Programs) A(ψ)
|= ϕ iff for all reachable states µ of A(ψ) we have µ |= ϕ. �

This verification problem can be addressed through various model checking
approaches.

5.4 Experience Reports Concerning Step 6

The paper [47] was written with a view to sum up the Swansea Railway
Verification Group’s knowledge on the topic in HB style — however, without
having the above presentation scheme at hand.

From a writing point of view, the experience was that the scheme offers
a clear guideline of what to describe and at which point. This led to many
differences in the presentation:
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• Most prominent is the shift of perspective towards engineering: while our
paper [47] is driven by scientific questions, the main focus of the presenta-
tion in the sections 5.1–5.2 is on which steps the practitioner would have
to undertake in order to build an automated system.

• Thanks to the scheme’s concise questions, discussions of certain topics
were added: the ‘subclasses’ discussed were not a topic in [47], the explicit
need to address ‘gains’ led to a stronger discussion of the point, the same
holds for the ’validation’ section.

Though the scheme’s questions required to put more effort in the discussion
of topics that were neglected in [47], overall the writing was easier and, in
comparison, took less time.

Subsequently, test readers unanimously preferred the above handbook en-
try over our paper [47] and said that —thanks to the scheme— the discussion
of the topic has become much clearer: the reader knows what to expect where;
overall the argument is better structured. The ’step by step’ approach was
applauded and readers felt ’better informed’.

Though the scale of our experiment is small, it indicates that the suggested
presentation scheme is a step in the right direction.





Chapter 6

Conclusions and Prospects for Future
Work

A practitioner’s handbook (HB) about the application of Formal Methods of
computing to a particular domain —in our case: the railway domain [9]—
must bridge the gap between Formal Methods (which are closely related to
theoretical computer science), as such, and their practical applicability by
those engineers who have perhaps never studied theoretical computer science
in all its scholarly details. This ‘bridge’ between Formal Methods, as such, and
their practical application was called ‘formal engineering methods’ (FEM) by
Shaoying Liu [65](p. 11: figure 1.5), who has rightly emphasised the need for
helpful additional “methods that support the application of Formal Meth-
ods to the development of large-scale computer systems” [65](p. 10). Thus,
FEM “are equivalent neither to application of Formal Methods, nor to Formal
Methods themselves. They are intended to serve as a bridge between Formal
Methods and their applications, providing methods and related techniques
to incorporate Formal Methods into the entire software engineering process.
Without such a bridge, application of Formal Methods is difficult. The qual-
ity of the bridge may affect the smoothness of Formal Methods technology
transfer. Some types of bridges may make the transfer easier than others, so
the important point is how to build the bridge” [65](pp. 10-11).

In the ‘spirit’ of Liu’s above-quoted words about FEM, we have motivated
and described in this book a systematic meta method for HB construction,
with particular regard to the field of Formal Methods in the railway domain.
For this purpose, the following elements are crucial:

• Clarification of what shall be understood by the term ‘HB’,
• Clarification of what shall be regarded as ‘settled knowledge’,
• Choice of a suitable historic data base in which we can reasonably expect

to find settled knowledge,
• Extraction and interpretation of the relevant information from the chosen

data base by means of Formal Concept Analysis (FCA), and
• Syntactic-structural transformation (a.k.a. ‘HB-ification’) of the selected

contents into an HB compatible form of presentation that is problem so-
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lution oriented (in a ‘cook book’ style with ‘recipes’) for the benefit of
industrial practitioners.

We have devised a six step HB construction method, which we have illustrated
by means of a reasonably large example (case study). We do not claim that
our illustrative example is already ‘complete’ or ‘comprehensive enough’ for
the immediate composition of an envisaged FM-Railway HB. At this point
we are also able to see some ‘overlaps’ between our work and the broader
discipline of ‘information science’.1

Based on the methods and results described and discussed in this book,
an array of future tasks supporting the publication of a useful HB about
the application of Formal Methods in the railway domain still remains to be
tackled:

• Continuation and ‘deepening’ of our information scientific studies of ‘set-
tled’ knowledge (particularly of Formal Methods, particularly in the rail-
way domain) where our reported example is not yet comprehensive enough;

• Definite decision concerning the knowledge topics to be included into the
future HB on the chosen theme;

• Systematic (and more comprehensive) application (including several finer
details) of our HB-ification meta method to the selected knowledge ‘items’;

• Publication and release (with help of many additional experts) of the en-
visaged HB on the application of Formal Methods in the railway domain;

• Appropriate conceptual and methodical ‘placement’ of the HB into its
appropriate position ‘between’ the general (high-level) industrial norms
and standards (such as, for example, CENELEC or ISO-26262) on the
one hand, and the business specific individual micro practices of every
individual engineer in the industry, on the other hand, in such a manner
that the HB can rightfully be regarded as a helpful (neither too abstract
nor too case specific) ‘compliance aid’ w.r.t. to those over arching industrial
standards;

• Further iterations of the same research cycle for the sake of the still absent
HB-ifications of several other fields in which Formal Methods are also
applied, such as: automobile engineering, avionics, etc.

More generally, the problem of HB construction in engineering needs to be
considered. This is important as new Engineering subdisciplines arise at an
accelerating rate, for example, the domain of cyber physical systems. As
these new domains are fast growing, waiting for the traditional evolutionary
approach to HB construction will prove to be unsatisfactory. Here, out meta
method may be of some help.

1 https://en.wikipedia.org/wiki/Information science
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Adopting Formal Methods in an Industrial Setting: The Railways Case. LNCS 11800,

pp. 762-772, 2019.

5. M. ter Beek, S. Gnesi, A. Knapp, Formal Methods for Transport Systems. International
Journal on Software Tools for Technology Transfer 20/3, pp. 237–241, 2018.

6. U. Berger, P. James, A. Lawrence, M. Roggenbach, M. Seisenberger, Verification of the

European Rail Traffic Management System in Real-Time Maude. Science of Computer
Programming 154, pp. 61-88, 2018.

7. M. Bhatti, N. Anquetil, M. Huchard, S. Ducasse, A Catalog of Patterns for Concept

Lattice Interpretation in Software Reengineering, pp. 118-123 in: Proceedings 24th
International Conference on Software Engineering and Knowledge Engineering, 2012.

8. G. Birkhoff, Lattice Theory. 2nd ed., American Math. Soc., 1948.

9. D. Bjørner, Formal Software Techniques in Railway Systems. IFAC Proceedings
Volumes 33/9, pp. 101-108, 2000.

10. D. Bjørner, Software Engineering, Vol. 1: Abstraction and Modelling. Springer-Verlag,

2006.
11. D. Bjørner, K. Havelund, 40 Years of Formal Methods: Some Obstacles and Some

Possibilities? LNCS 8442, pp. 42-61, 2014.
12. J. Bowen, M. Hinchey, Formal Methods, ch. 71 in Computing Handbook, Vol. 1:

Computer Science and Software Engineering, 3rd ed. CRC Press, 2014.
13. J. Bowen, S. Reeves, From a Community of Practice to a Body of Knowledge: A Case

Study of the Formal Methods Community. LNCS 6664, pp. 308-322, 2011.
14. M. Bunge, Philosophy of Science, Vol. 2: From Explanation to Justification. Revised

ed., Transaction Publ., 1998.
15. P. Burmeister, ConImp — Ein Programm zur Formalen Begriffsanalyse, pp. 25-56

in: Begriffliche Wissensverarbeitung: Methoden und Anwendungen. Springer-Verlag,
2000.

16. P. Burmeister Formal Concept Analysis with ConImp: Introduction to the Basic Fea-
tures, (English transl. of [15]). Technical Report: Fachbereich Mathematik, Technische

Universität Darmstadt, 2003.

79



80 References

17. A. Buzmakov, S. Kuznetsov, A. Napoli, Is Concept Stability a Measure for Pattern

Selection? Procedia Computer Science 31, pp. 918-927, 2014.
18. K. Chan, Formal Methods for Web Services: a Taxonomic Approach, pp. 357-360 in:

32nd International Conference on Software Engineering (Vol. 2). IEEE, 2010.

19. A. Cimatti, A. Griggio, S. Mover, S. Tonetta, Infinite-State Invariant Checking with
IC3 and Predicate Abstraction. Formal Methods in System Design 49/3, pp. 190–218,

2016.

20. E. Clarke, J. Wing, Formal Methods: State of the Art and Future Directions. ACM
Computing Surveys 28/4, pp. 626-643, 1996.

21. E. Constant, The Origins of the Turbojet Revolution. Johns Hopkins Studies in the
History of Technology 5, Johns Hopkins University Press, 1980.

22. A. Cooper, D. Kourie, S. Coetzee, Thoughts on Exploiting Instability in Lattices for

Assessing the Discrimination Adequacy of a Taxonomy, art. 4 in: Proceedings CLA‘10
Concept Lattices and their Applications, 2010.

23. E. Currás, Ontologies, Taxonomies and Thesauri in Systems Science and Systematics.

Chandos Publ., 2010.
24. P. Duggan, A. Borälv, Mathematical Proof in an Automated Environment for Railway

Interlockings. IRSE News 217, pp. 2-6, 2015.

25. B. Everitt, S. Landau, M. Leese, Cluster Analysis. 4th ed., Arnold publ., 2001.
26. A. Fantechi, Twenty-Five Years of Formal Methods and Railways: What Next? LNCS

8368, pp. 167-183, 2014.

27. L. Fleck, Entstehung und Entwicklung einer wissenschaftlichen Tatsache. Benno
Schwabe & Co. Publ., 1935. English transl.: Genesis and Development of a Scientific

Fact. University of Chicago Press, 1979.
28. W. Fokkink, Verification of Interlockings: From Control Tables to Ladder Logic Dia-

grams. Invited lecture: Third International Workshop on Formal Methods for Indus-

trial Critical Systems, 1998.2

29. B. Ganter, R. Wille, Formale Begriffsanalyse: Mathematische Grundlagen. Springer-

Verlag, 1996.

30. H. Garavel, S. Graf, Formal Methods for Safe and Secure Computer Systems. Technical
Report: BSI Study 875, Bundesamt für Sicherheit in der Informationstechnik, Federal

Republic of Germany, 2013.

31. M. Gleirscher, D. Marmsoler, Formal Methods: Oversold? Underused? A Survey.
Technical Report: arXiv:1812.08815 [cs.SE], 2018.

32. J. Groote, S. van Vlijmen, J. Koorn, The Safety-Guaranteeing System at Station

Hoorn-Kersenboogerd, pp. 57-68 in: COMPASS‘95 Proceedings of 10th Annual Confer-
ence on Computer Assurance Systems Integrity, Software Safety and Process Security.

IEEE, 1995.
33. S. Gruner, On the Historical Semantics of the Notion of ‘Software Architecture’.

Journal for Transdisciplinary Research in Southern Africa 10/1, pp. 37-66, 2014.

34. S. Gruner, A. Haxthausen, T. Maibaum, M. Roggenbach, FM-RAIL-BOK Organizers’
Message. LNCS 8368, pp. XI-XII, 2014.

35. S. Gruner, A. Haxthausen, T. Maibaum, M. Roggenbach, Towards a Formal Methods

Body of Knowledge for Railway Control and Safety Systems: FM-RAIL-BOK Work-
shop 2013. Technical Report: Technical University of Denmark, 2013.3

36. S. Gruner, A. Kumar, T. Maibaum, Towards a Body of Knowledge in Formal Methods
for the Railway Domain: Identification of Settled Knowledge. CCIS 596, pp. 87-102,
2016.

37. A. Haxthausen, H. Nguyen, M. Roggenbach Comparing Formal Verification Ap-

proaches of Interlocking Systems, pp. 160-177 in: Proceedings 1st International Con-
ference on Reliability, Safety, and Security of Railway Systems, 2016.

2 http://fmics.inria.fr/workshop-3/
3 https://ssfmgroup.wordpress.com/rel/



References 81

38. A. Haxthausen, J. Peleska, Formal Development and Verification of a Distributed

Railway Control System. LNCS 1709, pp. 1546-1563, 1999; and also IEEE Transactions
on Software Engineering 26/8, pp. 687-701, 2000.

39. M. Heidegger, Sein und Zeit. Niemeyer-Verlag, 1927.

40. M. Hinchey, M. Jackson, P. Cousot, B. Cook. J. Bowen, T. Margaria, Software Engi-
neering and Formal Methods. Communications of the ACM 51/9, pp. 54-59, 2008.

41. IEC, IEC 61131-3 edition 2.0 2003-01. International Standard: Programmable Con-

trollers, Part 3: Programming Languages. 2003.
42. M. Ikeda, A. Yamamoto, Classification by Selecting Plausible Formal Concepts in a

Concept Lattice, pp. 22-35 in: Proceedings FCAIR2013 Workshop on Formal Concept
Analysis meets Information Retrieval, 2013.

43. M. Jackson, Formal Methods and Traditional Engineering. Journal of Systems and

Software 40/3, pp. 191-194, 1998.
44. M. Jackson, The Name and Nature of Software Engineering. LNCS 5316, pp. 1-38,

2008.

45. M. Jackson, The Operational Principle and Problem Frames, pp. 143-165 in: Reflec-
tions on the Work of C.A.R. Hoare. Springer-Verlag, 2010.

46. P. James, SAT-based Model Checking and its Applications to Train Control Software.

Master of Research thesis: Swansea University, 2010.
47. P. James, A. Lawrence, F. Moller, M. Roggenbach, M. Seisenberger, A. Setzer, K.

Kanso, S. Chadwick, Verification of Solid State Interlocking Programs. LNCS 8368,

pp. 253-268, 2014.
48. P. James, F. Moller, H. Nguyen, M. Roggenbach, S. Schneider, H. Treharne, On

Modelling and Verifying Railway Interlockings: Tracking Train Lengths. Science of
Computer Programming 96, pp. 315-336, 2014.

49. P. James, F. Moller, H. Nguyen, M. Roggenbach, S. Schneider, H. Treharne, Techniques

for Modelling and Verifying Railway Interlockings. International Journal on Software
Tools for Technology Transfer 16/6, pp. 685-711, 2014.

50. P. James, M. Roggenbach, Automatically Verifying Railway Interlockings using SAT-

based Model Checking. ECEASST 35, art. 10, 2010.
51. K. Kanso, AGDA as a Platform for the Development of Verified Railway Interlocking

Systems. Doctoral dissertation, Swansea University, 2013.

52. K. Kanso, Formal Verification of Ladder Logic. Master of Research dissertation:
Swansea University, 2010.

53. K. Kanso, F. Moller, A. Setzer, Automated Verification of Signalling Principles in

Railway Interlocking Systems. Electronic Notes in Theoretical Compututer Science
250/2, pp. 19-31, 2009.

54. K. Kanso, A. Setzer, A light-weight Integration of Automated and Interactive Theorem
Proving. Mathematical Structures in Computer Science 26/1, pp. 129-153, 2016.

55. M. Kezadri, M. Pantel, First Steps toward a Verification and Validation Ontology,

pp. 440-444 in: Proceedings of the International Conference on Knowledge Engineering
and Ontology Development, 2010.

56. D. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching. 2nd

ed., Addison-Wesley, 1998.
57. T. Kolesnykova, O. Matveyeva, L. Manashkin, M. Mishchenko, Railway Transportation

of Dangerous Goods: a Bibliometric Aspect, art. 03014 in: 2nd International Scientific
and Practical Conference on Energy-Optimal Technologies, Logistic and Safety on
Transport. MATEC Web of Conferences 294, 2019.

58. T. Kuhn, The Structure of Scientific Revolutions. University of Chicago Press, 1962.

59. A. Kumar, A Preparatory Study Towards a Body of Knowledge in the Field of For-
mal Methods for the Railway Domain. Master of Applied Science thesis: McMaster

University, 2015.
60. S. Kuznetsov, On Stability of a Formal Concept. Annals of Mathematics and Artificial

Intelligence 49/1-4, pp. 101-115, 2007.



82 References

61. S. Kuznetsov, D. Ignatov, Concept Stability for Constructing Taxonomies of Web-site

Users. Technical Report: arXiv:0905.1424 [cs.CY], 2009.
62. S. Kuznetsov, T. Makhalova, On Interestingness Measures of Formal Concepts. In-

formation Sciences 442-443, pp. 202-219, 2018.

63. A. van Lamsweerde, Formal Specification: a Roadmap. pp. 147-159 in: Proceedings of
the Conference on the Future of Software Engineering. ACM, 2000.

64. A. Lawrence, Verification of Railway Interlockings in SCADE. Master of Research

thesis, Swansea University, 2011.
65. S. Liu, Formal Engineering for Industrial Software Development. Springer-Verlag,

2004.
66. B. Luteberget, C. Johansen, Efficient Verification of Railway Infrastructure Designs

against Standard Regulations. Formal Methods in System Design 52/1, pp. 1-32, 2018.

67. T. Maibaum, Formal Methods versus Engineering. ACM SIGCSE Bulletin 41/2, pp.
6-12, 2009.

68. T. Maibaum, Mathematical Foundations of Software Engineering: a Roadmap, pp.

161-172 in: Proceedings of the Conference on the Future of Software Engineering.
ACM, 2000.

69. T. Maibaum, What is a BoK? (Extended Abstract). LNCS 8368, pp. 184-188, 2014.

70. F. Mazzanti, A. Ferrari, G. Spagnolo, Towards Formal Methods Diversity in Railways:
an Experience Report with Seven Frameworks. International Journal on Software Tools

for Technology Transfer 20/3, pp. 263-288, 2018.

71. N. Meddouri, M. Meddouri, Classification Methods based on Formal Concept Analysis,
pp. 9-16 in: Proceedings 6th International Conference on Concept Lattices and their

Applications, 2008.
72. J. Oliveira, A Survey of Formal Methods Courses in European Higher Education.

LNCS 3294, pp. 235-248, 2004.

73. M. Polanyi, Personal Knowledge: Towards a Post-Critical Philosophy. Routledge &
Kegan Paul, 1958.

74. H. Poser, On Structural Differences between Science and Engineering. Techné: Re-
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