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r-UNet: Leaf Position Reconstruction in
Upstream Radiotherapy Verification

C. De Sio , J. J. Velthuis, L. Beck , J. L. Pritchard , and R. P. Hugtenburg

Abstract—Monolithic active pixel sensor (MAPS) devices are
an effective tool for upstream verification of intensity-modulated
radiotherapy (IMRT) treatments. It is crucial to measure with
high precision the positions of the multi-leaf collimators (MLCs)
used to shape the beam in real time, in order to enhance the
quality and safety of treatments. This article describes r-UNet,
a deep learning-based solution for leaf position reconstruction.
The model is used to analyze the high-resolution images produced
by a Lassena MAPS device in order to automatically determine
the leaf positions. Image segmentation and leaf position estima-
tion are performed simultaneously in a multitask setting. r-UNet
obtained an average Dice coefficient of 0.96±0.03 for the recon-
structed image masks in the held-out test set; whilst the mean
squared error (MSE) resulting from the estimation of the MLC
positions is 0.003 mm, with a resolution ranging between 45 and
53 µm for leaf extensions between 1 and 35 mm. On unseen leaf
positions, r-UNet yielded a single-leaf resolution between 54 and
88 µm depending on the leaf extension, and an average MSE
of 0.07 mm. These results were obtained using single frames of
data collected at 34 frames/s.

Index Terms—Deep learning, image segmentation, monolithic
active pixel sensors (MAPSs), multileaf collimator (MLC), posi-
tion reconstruction, radiotherapy.

I. INTRODUCTION

INTENSITY-MODULATED radiotherapy (IMRT) is a tech-
nique used to treat cancerous tumors by shaping the photon

beam through multi-leaf collimators (MLCs) [1], in order to
deliver a concentrated radiation dose to the target region, while
preserving the surrounding healthy tissue. As treatments get
more complex, it is crucial to measure the delivered dose
and the position of the collimator components (i.e., tungsten
leaves) with high accuracy. MLC position calibration is usually
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performed on a monthly basis, and given the precision of stan-
dard calibration methods [2], a calibration tolerance of ±1 mm
for the MLC leaf edge position is currently reached [3].
From the evaluation of the effects of MLC positioning errors
on the delivered treatments, it has been suggested that the
precision limit to maintain total dose errors below 2% is
around 300 μm [4], [5]. As the calibrations are generally
performed pretreatment, a high-precision, real-time verifica-
tion device would improve the treatment monitoring and could
allow for faults to be detected during the treatment delivery
and immediately addressed. This article describes an approach
to MLC position reconstruction based on artificial intelligence
(AI) techniques. In particular, we define r-UNet, a UNet-based
model that is able to simultaneously detect the leaves in the
images produced by MAPS sensors, and to estimate their
position in a multitask learning setting.

II. RADIOTHERAPY VERIFICATION

Several monitoring approaches exist to verify the radiother-
apy treatment and measure the position of the MLC. The
verification devices that are currently used can be divided
into downstream and upstream detectors. The first is posi-
tioned behind the patient, and produce images that can be
analyzed to reconstruct the delivered dose and the shape of the
treatment received by the patient. The most common devices
are radiographic films and electronic portal imaging devices
(EPIDs). The produced images, also known as portal images,
are affected by beam distortion and scattering due to the
presence of the patient.

Upstream detectors are placed before the beam reaches the
patient. The produced image is, therefore, more clear com-
pared to the previous approach, but the key challenge is
keeping the beam attenuation to a minimum.

An alternative approach is using the log files produced by
the LINAC itself as a measure of the MLC positions [6].
Use of log files is technically not verification, as it does
not take into account the possibility that the MLC monitor-
ing system is incorrectly calibrated or misaligned. Monolithic
active pixel sensor (MAPS) devices have been proven effective
for upstream verification of radiotherapy treatments [7]–[9], as
they can be made very thin and MAPS-based systems can be
produced with an attenuation below 1% [10].

A. Monolithic Active Pixel Sensors

A MAPS device consists of three layers (Fig. 1). From bot-
tom to top: a highly p-type doped substrate, referred to as
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Fig. 1. Diagram of MAPS sensor. Incoming particles (photons) generate
ionization and electron-hole pairs are created. Electrons propagating in the
silicon are then collected in the n-well.

the bulk; a lower p-type doped epitaxial layer (EPI) of sili-
con; and a highly p-doped layer on top of the EPI layer. In
the top layer, n-wells are created to collect the charge. The
top layer also houses electronics, typically a single transistor
where the first stage of amplification takes place. Sensors with
more complicated circuits do exist.

When ionizing radiation propagates through the sensor,
electron-hole pairs are generated. The electrons produced in
the EPI layer are confined to that layer by the built-in potential
due to the different p doping concentrations. These elec-
trons diffuse through the EPI layer, and eventually reach
the depleted zone underneath the diode, in which they are
collected.

The top layer that houses the transistors is very thin, much
less than a micron thick. The top of the substrate layer is
needed to create the built-in potential difference. The rest of
the bulk is only for mechanical support. The EPI layer, where
signal generation occurs, is typically between 2 and 20-μm
thick. The device can thus be thinned from the back, up to
30 μm or less, without significant loss of signal-to-noise. In a
radiotherapy verification scenario, a sensor with this thickness
would attenuate the beam by less than 0.1%.

Previously, with the Achilles sensor [11] which has an area
of 6 × 6 cm2 and a 15-μm pitch, a leaf edge resolution of
52±4 μm at the iso-center has been achieved. This article was
done using 0.1 s of data taken at 400 monitor units (M.Us.)
per minute, for leaves with a width of 1 cm at isocenter [10].
The algorithm used to calculate the leaf profile was based on
a Sobel filter. Leaf misplacements as small as 0.5 mm were
detected and moving leaves were tracked [12].

In this article, we use the Lassena sensor [13]: a 12×14 cm2,
3T sensor with 50-μm pitch. Despite having larger pixel sizes,
leading to a lower resolution, this device is 3-side buttable,
which allows the coverage of large areas by tiling sensors in a
2×N configuration, without significant dead space in between.
For example, a 2×2 matrix of these sensors can cover a large
enough area to verify a radiotherapy treatment with field as
large as 30 × 30 cm, thus it could be clinically deployed in
the future. Moreover, the sensor can be operated at a frame
rate of 34 frames/s.

III. ARTIFICIAL INTELLIGENCE FOR RADIOTHERAPY

VERIFICATION

Nowadays, machine learning (ML) is used for sev-
eral applications in medicine, medical imaging, and
radiotherapy [14], [15]. In particular, different ML-based
solutions have been defined in the literature for radiotherapy
verification. For example, volumetric dose prediction [16] was
performed using fully convolutional neural networks (FCNNs)
to predict new dose distributions from the analysis of existing
treatment plans; portal images are used as input data to
assess the quality of radiotherapy treatments, and classify the
delivered treatment as acceptable or not acceptable, compared
to the treatment plans [17]. ML models are also used to
estimate the position of the MLC, using the positions reported
in the LINAC log files as ground truth, as well as estimating
the delivered dose [18].

In this article, images obtained using a Lassena sensor are
used as input to an FCNN model that is trained to simulta-
neously detect the leaf in the sensor image, and extract its
position (i.e., displacement from the leaf bank hosting the
components of the MLC). From an ML perspective, this can
be seen as the combination of an image segmentation problem
and a regression problem. Once trained, the model produces
a multiple output consisting of the segmented images and the
estimated positions, inferred directly from corresponding input
sensor images. The aim of this article is to achieve the best
possible position resolution with the least possible amount of
radiation, in order to be able to provide an early intervention.
We are exploring ML techniques for their power in working
with large datasets and providing a fast response (after the
training process has been completed).

A. Data Description and Experimental Setup

The Lassena device produces 2800 × 2400 pixel images,
showing the position of the MLC leaves in terms of attenua-
tion of the radiotherapy beam. Different regions are associated
with different pixel intensities. A series of measurements was
recorded keeping the sensor fixed in one position and moving
a single central leaf of the MLC forward from the leaf bank in
a 10 × 10 cm2 square field. The dataset used in this article is
composed of approximately 9000 images. For each considered
leaf position (i.e., 1, 2, 3, 4, 10, 15, 20, 25, 30, and 35 mm)
a sample of 900 consecutive frames was acquired with our
sensor. The 900 frames correspond to ∼ 30 s of data per posi-
tion, acquired in 3 consecutive runs of 300 frames. During the
acquisition, the MLC configuration and the detector were kept
still. To avoid overfitting, as well as to test the generalization
capabilities of the model, two separate evaluation protocols
have been adopted in this article. 1) To test the ability of the
model to correctly estimate the position of a leaf from a single
image, all the images corresponding to 4 (out of 10) positions,
namely, 1, 3, 15, and 30 mm, have been used only for test-
ing. In the rest of this article, this dataset will be referred to
as “external unseen dataset.” None of these images, as well
as their corresponding leaf positions, have been used during
the training of the neural network. The aim is to evaluate the
ability of the model to generate correct estimations for “new”
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Fig. 2. (a) Input image. (b) Contour selected by the Chen-Vese algorithm,
superimposed to the input image. (c) Ground truth binary mask used for
training. The shown images refer to a leaf displacement of 25 mm.

leaf positions never seen before, emphasising the advantages
of the regression settings, over a more simplistic classification.
2) The data for the remaining six positions (i.e., 2, 4, 10, 20,
25, and 35 mm, corresponding to 5400 images) are further
split into a training set and a “held-out” test set, accounting
for the 80% and the 20% of this data set, respectively (i.e.,
4320 and 1080 images). It is worth noting that the selection
of the frames during the split is completely randomized (i.e.,
refers to randomly selected frames within the 30 s interval) so
to avoid any possible bias in the selection of training and eval-
uation data. The held-out test set is kept completely unseen,
whereas an additional 20% of the training set is further used
for internal validation during the training process (i.e., 864 out
of 4320 samples). This internal validation set is used to analyze
the evolution of the loss during the training, and to monitor
possible cases of overfitting. The random selection algorithm
used to sample images to account for the internal validation
set is the same one used for the held-out test set generation.
Stratification is used in the splitting, to keep the proportions
of each leaf position in the three subsets and reduce biases
in the training. A fixed seed is set in the random data split-
ting, for reproducibility purposes. The single leaf images used
in this article have been collected at the Singleton Hospital
in Swansea, using an Elekta Synergy LINAC to deliver a
user-defined treatment at 400 M.U./min, in a 6-MV photon
field. The MLC system is an Elekta Agility, featuring 160
tungsten leaves (2 × 80) with 5 mm width at iso-center. The
sensor was operated at 34 fps, collecting approximately 30 s
of treatment per leaf position.

B. Ground Truth Masks Generation

Binary masks are used as ground truth for the segmenta-
tion task. The mask generation steps are illustrated in Fig. 2.
Input images (a) were initially processed to identify the con-
tour of the leaf. The Chan-Vese segmentation algorithm [19]
was used, as available in the scikit-image library [20]. From
the obtained profile (b), the portion of the image containing the
leaf was selected, and plotted on a black background, using
the “fill_between” method from the matplotlib library [21].
This plot, showing a white leaf on a black background, is the
binary mask (c). The mask is generated with the same size
of the input image, so that it can be superimposed to filter
the leaf as a segmentation mask. We considered single-leaf
images due to the complexity in the generation of the ground
truth masks.

IV. MODEL AND TRAINING

As the problem of identifying leaves in the sensor images
requires the localization of objects in the input data, a neu-
ral network model inspired by UNet [22] was defined. It has
been shown that UNet-based models are an effective technique
for medical image segmentation (see [15], [23]). Our r-UNet
model extends the classic UNet, including regression layers
to estimate the MLC positions. This approach is end-to-end
and multitask, as the two estimations are produced simulta-
neously and directly from the single input images. The main
advantage of this learning strategy is that the model is able
to identify the leaves directly from raw data, and calculate
their position without requiring any manual intervention (e.g.,
manually selecting the leaves). A schematic representation of
r-UNet is shown in Fig. 3.

r-UNet is composed of a contracting path and an expan-
sive path; its structure allows it to learn a segmentation of
the input image, and to produce an output image of the same
size (typically a binary mask), isolating the target structure.
It is composed of convolutional blocks, each composed of
two 2-D Convolutions, each followed by a rectified linear
unit (ReLU) [24], with increasing or decreasing feature size
depending on the path. The contraction is implemented by
adding MaxPooling [25] downsampling layers after each con-
volutional block. Each convolutional block has double the
number of feature channels of the previous one. Differently
from the original UNet model, r-UNet uses smaller feature
map sizes (i.e., 16, 32, 64, 128, and 256). These sizes have
been chosen experimentally, considering a tradeoff between
performance and computation time.

Each up-sampling step is performed with 2-D transposed
convolutions, and the number of feature channels is halved in
the successive layers. Zero-Padding [25] is used to match the
size of consecutive feature maps.

The two paths are also connected horizontally, concate-
nating every last layer of the convolutional blocks in the
contracting path to the first layer of the corresponding block
in the expansive path. This allows for the learnt features to be
shared during the training of the model.

A fully connected layer with sigmoid activation is added at
the end of the contracting path to enable the MLC position
estimation. The leaf position regression is performed conside-
ring the same feature embedding used in the expanding path
to generate the output binary masks.

r-UNet is trained using the sensor images as input data,
along with the binary masks containing the corresponding leaf
region as ground truth for the segmentation, and the LINAC set
leaf positions as target labels for the regression. Input images
are converted to 8-bit, cropped, and rescaled by a factor 0.25
(size reduced to 350 × 350 pixels), to ease the processing and
reduce the memory occupation. For each input image, r-UNet
produces the pair (segmented image and estimated position). The
performance for both tasks is evaluated separately and combined.

A. Loss Functions

The r-UNet is trained on the 3456 images of the training
dataset, using a combined loss function. The Dice-Sørensen
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Fig. 3. r-UNet, the multitask FCNN model, composed of a contracting path (left-hand side), an expansive path (right-hand side), and additional regression
layers (light green), to perform image segmentation and position estimation simultaneously. The dashed blue lines are used to picture the downsampling
performed by pooling layers.

Coefficient [23], [26], [27] is used to optimize the leaf detec-
tion, whereas the leaf position regression is optimized by
calculating the mean-squared error (MSE) between target and
predicted distances. The Dice coefficient is a metric used to
estimate the similarity (spatial overlap) between two sample
sets (i.e., X and Y) [26]. It is defined as

DSC = 2|X ∩ Y|
|X| + |Y| . (1)

The Dice loss is expressed as 1 − DSC to be used as loss
function.

The resulting combined loss is defined as

L = α · Dice Loss + (1 − α) · MSE. (2)

The Adam optimizer has been used, with learning rate
lr = 10−4, β1 = 0.9, β2 = 0.999, eps = 10−8 and no
weight decay [28]. Different values for the α coefficient have
been tested in the range 0.25 − 0.75 with a 0.05 step, and
performance have been evaluated for each trained model. The
evaluation of the best model was conducted by considering
the value of the combined loss on validation data, as well
as the absolute difference between the average distance esti-
mation on test data and on external unseen data. The best
estimations were obtained for α = 0.4, corresponding to
L = 0.4 · Dice Loss + 0.6 · MSE. This particular choice allows
both problems to be optimized, whereas other values led to
model overfitting, e.g., low MSE in distance prediction but no
(or poor) binary mask generated, or good quality mask but bad
distance estimation. For example, for α = 0.75 the leaf seg-
mentation (Dice Loss) reached a plateau almost immediately
(see Fig. 4). In this case no masks were generated.

On the other hand, although the average MSE on the held-
out set seemed promising (MSE = 0.005 mm), the same
model, tested on unseen positions led to an MSE = 0.809 mm.

Fig. 4. Evolution of the Dice Loss for α = 0.75. The loss function reaches
a plateau around 0.0, indicating that the model is not learning.

Thus, the model was clearly overfitting the training positions.
This further confirms the benefits of the multitask method,
in which the two tasks are bounded to be learnt simultane-
ously; i.e., the leaf position estimation is constrained by its
corresponding leaf segmentation.

The best model was trained for 100 epochs, using an early
stopping criterion. The evolution of the combined loss function
across the training and validation phases is reported in Fig. 5,
along with the evolutions of the Dice Loss and MSE. These
two plots are shown separately due to difference in the corre-
sponding scales. The peak observed in the Dice Loss evolution
plot around epoch 55 may be due to the fact that the optimizer
yielded an update to the learning rate to skip over potential
saddle points. As can be seen from the figures, the training
converges very quickly to a stable solution for the two learning
tasks, with this coefficient value. To validate the conclusion,
several starting points have been experimentally tested, leading
to the same best model.
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Fig. 5. Evolution of the loss functions during training (dashed lines) and
validation (solid lines) of the best model (α = 0.4). From top to bottom:
combined loss, according to 2; Dice Loss; MSE loss.

B. Model Implementation

The model was implemented in Python using the PyTorch
framework [29]. It was trained on a NVIDIA GeForce Titan
Xp, producing a memory footprint of 2.5 GB, and performing
1 epoch in 4 min on the train dataset (composed by 3456
images in training and 864 in validation). The inference time
was 0.17 s per image (1080 in the test dataset and 3532 images
in the external unseen dataset).

V. RESULTS

A. Performance on Test Dataset

The trained r-UNet model was tested on the 1080 images,
corresponding to 20% of the total dataset, not used for training.
The Dice coefficient resulting on test set images is 0.96±0.03,
whereas the average MSE on the same images is 0.003 mm.
The distribution of the prediction error (evaluated as difference
between estimated and true leaf extension) for the test dataset
is shown in Fig. 6. Calculated as the σ of the Gaussian fit, the
position resolution at iso-center for all test data is 50 ± 1 μm,
ranging from 45 μm to 53 μm depending on the leaf extension,
as shown in Fig. 9.

An example of the binary mask estimation from an input
image as produced by the r-UNet is shown in Fig. 7.

B. Performance on External Unseen Dataset

To assess the generalization capability of the proposed
approach, the model performance was tested on four samples

Fig. 6. Error distribution on all test dataset and gaussian fit.

Fig. 7. (a) Input test image. (b) r-UNet-generated binary mask.

Fig. 8. Distribution of reconstructed position error for on a sample of unseen
data (15 mm) and gaussian fit, yielding a reconstruction resolution of 54 μm
and an MSE of 0.07 mm.

of unseen positions: 1, 3, 15, and 30 mm. Notably, r-UNet was
not shown these positions in training. The obtained results
are good: the average MSE ranges from 0.01 to 0.10 mm,
depending on the positions. The distribution of the prediction
errors for a sample of unseen images obtained for a leaf exten-
sion of 15 mm is shown in Fig. 8. A Gaussian fit yielded a
reconstruction resolution of 54 μm and an MSE of 0.07 mm.

The single-leaf resolutions, calculated for each estimated
position (held-out test and external unseen datasets) are shown
in Fig. 9. Overall, the position resolutions range between
54 and 88 μm and are slightly worse in the case of unseen
positions, but still below 100 μm even in the worst case (3 mm
leaf extension). Furthermore, the leaf position resolution does
not depend on the leaf extension.

These leaf position resolutions are far below the 300 μm
precision required to limit dose errors to below 2%. Please
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Fig. 9. Position resolution at iso-center for the test data (blue) and unseen
data (black).

Fig. 10. Estimated versus set leaf positions, with linear fit compatible with
y = x.

note that these results are achieved in single frames which
are taken at 34 frames/s. The speed and precision allows for
real-time intervention during treatments.

In Fig. 10, the estimated positions are plotted as a function
of the LINAC set positions. A straight line fit resulted in a
slope of 0.999±0.004 and an intercept of 0.061±0.032, which
is compatible with the expected relation of y = x. Hence, the
procedure yields the correct positions with excellent precision.

C. Uncertainty in the Reference Positions

The “intended” leaf positions, i.e., the MLC positions set in
the Linac, were used as ground truth to train the network and
evaluate the performance of the estimations. The data was col-
lected in small consecutive sessions, to reduce the possibility
of leaf repositioning by the machine. For each configuration
(i.e., single leaf displacement), 3 runs of 300 frames were
taken, corresponding to ∼10 s each, without changing the leaf
position or moving the sensor between consecutive runs. The
stability of the detected leaf positions was analyzed as a func-
tion of the frame number, to assess whether a (major) leaf
repositioning occurred during the data taking.

The results are shown in Fig. 11 for the 15 mm case. The
estimated positions appear to be flat throughout the whole
∼30-s data taking. This was confirmed by selecting a sub-
set of 200 frames for each acquisition and calculating the
residual distributions for each region (see Fig. 12). Finally,
Fig. 13 shows that no significant repositioning took place

Fig. 11. Estimated position as a function of the frame number for the 15 mm
case. The three highlighted regions indicate the central 200-frame subsets
selected to study the stability.

Fig. 12. Residual distributions for 15 mm, shown for the three regions
separately. The corresponding resolutions are 51 μm, 53 μm, and 54 μm,
respectively. The dashed black line, indicating the mean of the central
distribution (blue, region 2), is shown for reference.

during our data taking: for each leaf position, the average esti-
mated positions in the three regions are compatible with one
another. Hence, the obtained resolution is a good measure of
the uncertainty on the leaf position.

VI. TOWARD MULTILEAF RECONSTRUCTION FOR

RADIOTHERAPY VERIFICATION

The results shown in this article were obtained for a 6 MV
flattened radiotherapy beam (FF) for a single central MLC leaf
displaced forward in a 10×10 cm2 photon square field. Single
leaf resolutions were calculated for ten different displacements
and the obtained results demonstrate the power of the novel
approach, which is based on ML. However, the signal in the
sensor, and thus the reconstructed leaf position, does not only
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Fig. 13. Average of estimated position for single-leaf configuration, shown for each region, separately. The estimations in each consecutive data acquisition
run are compatible with one another. Corrected (shifted) positions are shown to ease the visualization, with the corresponding leaf position in mm above.

depend on the position of the leaf under study but also on
the position of its neighbors and the field configuration. Now
that it has been proven that the approach presented here works
very well for the simple configurations used here, we plan to
extend this approach to more complicated scenarios and study
the dependency of the leaf resolution on different field sizes,
different beam energies, as well as using flattening filter free
(FFF) beams. We will progress to the study of multiple leaf
detection and complex radiotherapy treatments with moving
leaves. In essence, leaf position reconstruction is about detect-
ing the transition between the covered part of the sensor, which
will be in the dark, and the uncovered part, where the signal
will be high(er) due to the beam. The electron field smears this
transition to a certain extent. Changing the field size results
in a different contribution due to the electron field but as the
rapid light-dark transition due to the partially blocked photon
beam is still present, the algorithm will still detect the leaf
position. The different electron field might lead to a different
slope of this transition and thus to a different leaf position res-
olution, but the technique will still work and the effect should
be minimal. Similarly, an FFF beam will mainly change the
signal in the region where the sensor is not covered by the
leaves as its amplitude will become dependent on the leaf
position, but the rapid transition will still be present. Hence,
we do not expect a major difference in leaf position resolu-
tion for different fields, beam energies and FFF beams. As for
the detection of multiple leaf positions, we will use a region
of interest approach. Once the regions of interest have been
identified (image segmentation), the estimation will be per-
formed for each identified leaf iteratively, taking into account
the estimated positions for the neighboring leaves. Applying
the technique to treatments with moving leaves like VMAT is
more challenging, partly because it is difficult to define a ref-
erence position to compare to for a moving leaf. However, our
sensor integrates images at 34 frames/s. Hence, the maximum
movement between consecutive frames is about 1.47 mm for a
Varian linac [30] and 1.91 mm for a Elekta Agility [31]. Since
the detector integrates between readout cycles, the light-dark
transition will be smeared out which will give information on
the leaf position and average leaf speed. This information can
be used in training to obtain better estimates. This will be the
subject of further study.

VII. CONCLUSION

Now that IMRT is widely in use and with the novel trends
toward more intense treatments, it becomes more and more

important to independently and dynamically verify the posi-
tions of the MLC. Here, an ML algorithm is presented which
reconstructs the leaf positions in real time with a precision
well below 100 μm. All the estimations are obtained on a
single frame basis, which corresponds to 0.03 s of treatment.
The resolutions are well below the proposed limit of 300 μm,
which in turn results in dosimetric errors below 2%. Multiple
leaf position reconstruction is currently under development.
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