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Abstract

In recent years, the diagnosis of

brain tumors has been investigated

with attenuated total reflection-

Fourier transform infrared (ATR-FTIR)

spectroscopy on dried human serum

samples to eliminate spectral inter-

ferences of the water component,

with promising results. This research

evaluates ATR-FTIR on both liquid

and air-dried samples to investigate

“digital drying” as an alternative

approach for the analysis of spectra obtained from liquid samples. Digital dry-

ing approaches, consisting of water subtraction and least-squares method, have

demonstrated a greater random forest (RF) classification performance than the

air-dried spectra approach when discriminating cancer vs control samples,

Abbreviations: ATR, attenuated total reflection; ATR-FTIR, attenuated total reflection-Fourier transform infrared; DFIR, discrete frequency infrared;
EMSC, extended multiplicative signal correction; FTIR, Fourier transform infrared; GBM, glioblastoma multiforme; IRE, internal reflection element;
LS, least-squares method; QCL, quantum cascade laser; QCL-IR, quantum cascade laser-infrared; RF, random forest; SD, standard deviation; SMOTE,
synthetic minority over-sampling technique; WS, water subtraction.

Received: 31 March 2020 Revised: 28 May 2020 Accepted: 30 May 2020

DOI: 10.1002/jbio.202000118

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2020 The Authors. Journal of Biophotonics published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

J. Biophotonics. 2020;e202000118. www.biophotonics-journal.org 1 of 10

https://doi.org/10.1002/jbio.202000118

https://orcid.org/0000-0001-6417-9706
mailto:matthew.baker@strath.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://www.biophotonics-journal.org
https://doi.org/10.1002/jbio.202000118
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fjbio.202000118&domain=pdf&date_stamp=2020-06-23


reaching sensitivity values higher than 93.0% and specificity values higher than

83.0%. Moreover, quantum cascade laser infrared (QCL-IR) based spectroscopic

imaging is utilized on liquid samples to assess the implications of a deep-

penetration light source on disease classification. The RF classification of

QCL-IR data has provided sensitivity and specificity amounting to 85.1% and

75.3% respectively.
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1 | INTRODUCTION

In 2018, the global cancer burden was reported to
amount to over 18 million new cases with almost 10 mil-
lion deaths; worldwide, during their lifetime, one man in
five and one woman in six develop cancer, which is lethal
for one man in eight and one woman in eleven [1].
Health services are struggling to cope with the large
number of suspected cancer patients referred for further
examination, often leading to late diagnosis and treat-
ment. Despite the development of novel therapies,
patients are not always able to benefit from them in time
[2]. Accurate and early diagnostic tools are urgently
required for use in the clinical setting.

Brain cancer is a primary example of this diagnostic
problem. Only 3.7% of patients referred for medical imaging
have been found to have major abnormal structural lesions
indicative of cancer [3]. An early and accurate method of
disease detection would aid health professionals in patient
prioritization during the referral process, leading to a
reduced demand on medical imaging resources and subse-
quent economic benefits to the health care system [4]. For
patients, a diagnosis time improvement would potentially
lead to higher life quality and expectancy [5].

Human blood serum and other biofluids are easily
obtained following a minimally invasive procedure, providing
the possibility of repeated sampling. They contain several bio-
molecular components, which are useful to determine the dis-
ease state of the patient [6, 7]. Extensive research has been
carried out to explore the potential of biological fluids, includ-
ing early detection of cancer using IR spectroscopy [8–10].

Attenuated total reflection-Fourier transform infrared
(ATR-FTIR) spectroscopy represents a well-established
technique to analyze biofluids, and a potential solution to
counteract the issues related to a late diagnosis [11]. The
acquisition of a unique spectrum, serving as a spectral fin-
gerprint, allows the discrimination between various biologi-
cal matrices and has been shown to detect disease signals
within biofluids [12]. This instrumental analysis can be
complementary to other techniques currently employed in

the disease classification process, for instance histopathol-
ogy [13, 14]. Hands et al. showed that ATR-FTIR spectros-
copy can be used to discriminate between healthy and
diseased patients, as well as decipher disease severity, dur-
ing the investigation of different types of brain tumors [15].

Although the great efficiency proved by ATR-FTIR
spectroscopy, the impact of water on the biological spec-
tra represents a major issue in the development of many
studies [16–18]. The 1700 to 1500 cm−1 range of a biologi-
cal serum spectrum has been shown to be a key region
for the discrimination of cancer vs non-cancer state; it is
given by the proteins associated with amide I and amide
II bands, which lie in this region. In liquid spectra, their
vibrations are overlapped by the O-H bending vibrational
mode (Figure 1) [19]. A solution could be to air-dry the
sample on top of the internal reflection element (IRE) in
order to acquire spectra with defined biological features.

The air-drying process requires a minimum of
8 minutes per sample, depending upon sample volume and
ambient conditions [15]. Moreover, the cleaning of the IRE
between each sample, as well as the background spectrum

FIGURE 1 Overlay of an air dried, a liquid and a water

spectrum, highlighting the water contribution in the liquid

spectrum. (Blue: water; red: liquid serum; green: air-dried serum)
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collection, need to be considered and limit the technique.
In the study by Hands et al. in 2016, a dataset of 433
patients was analyzed using the air-drying process; each
patient's serum sample took over 45 minutes to be analyzed
in triplicate, leading to more than 8 weeks of analysis of the
complete dataset [20]. A patient serum sample analyzed in
liquid form requires less than half of the time, decreasing
the time of analysis to less than 4 weeks. Spectroscopic bio-
fluid analysis has the grounds to become a powerful tech-
nique for translation; however, the methodology needs to
be improved to achieve a high throughput, while also
maintaining comparable sensitivity and specificity demon-
strated in previous studies [8, 21, 22].

To optimize the discrimination, the discrete fre-
quency infrared (DFIR) spectroscopic analysis can also
be used, with tunable narrow-bandwidth quantum cas-
cade lasers (QCLs) as a source. DFIR has already shown
to be successful in rapid diagnostics through the analysis
of dried serum spots [23]. The QCLs enable an enhanced
classification via a more brilliant source than the thermal
Globar sources used in FTIR imaging [24]. Furthermore,
once the significant frequency range for discrimination
has been detected, this technique allows the narrowing of
the data collection to those discrete frequencies [25].

In this paper, we pursue the possibility of using serum
samples in liquid form for disease discrimination of non-
cancerous patients from brain and metastatic cancer
patients. We present two different approaches to overcome
the water interference on biological spectra and hence
achieve a high-throughput liquid analysis. The first
approach consists of removing the drying step by performing
a later “digital drying” process on ATR-FTIR collected spec-
tra, representing a strategy to clear the water spectral com-
ponent via computer software. Digital dewaxing has already
employed similar techniques to remove the paraffin contri-
bution from tissue samples, such as extended multiplicative
signal correction (EMSC) and a combination of independent
component analysis and nonnegatively constrained least
squares [26]. The second approach includes the use of DFIR
spectroscopic imaging with a QCL microscopy, by selecting
discrete frequencies to achieve a rapid and efficient analysis.
These approaches could provide a disease indication within
a few minutes and transform the diagnostic and patient care
environment, leading to increased survival rates and quality
of life, alongside health and economic benefits [4].

2 | MATERIALS AND METHODS

2.1 | Samples collection and preparation

Blood samples were acquired from 150 patients; (a)
Grade IV Glioblastoma multiforme (GBM) (n = 50), (b)

metastatic brain cancer (secondary brain cancer from
multiple sites within the body) (n = 50) and (c) non-can-
cer controls (n = 50). 43% females and 57% males, across
an age range from 16 to 85 years old. In detail, cancer
samples were found in the age range from 19 to 85 years
old and included a total of 55% males and 45% females;
control samples were found in the age range from 16 to
71 years old, with a total of 60% males and 40% females.
Samples were age and gender matched to the best of the
cohort possibilities. The research was granted full ethical
approval (Walton Research Bank BTNW/WRTB 13_01/
BTNW Application #1108).

The whole blood samples were collected in BD
Vacutainer® SST tubes and left to stand upright for
30 minutes to allow clotting. They were then centrifuged at
2200 g for 15 minutes at room temperature to allow serum
separation. Subsequently, the serum samples were aliquoted
and stored in separate vials at −80�C until required.

All serum samples were fully thawed at room temperature
before spectral collection and the sample set was randomized
prior to analysis. For every patient, 1 μL serum aliquot was
pipetted onto the IRE using a calibrated pipette (Gilson,
United Kingdom). Following spectral collection, Virkon disin-
fectant (FisherScientific, United Kingdom) followed by 99.5%
ethanol (Thermo Scientific, United Kingdom) were used to
clean the crystal prior to the next analysis.

2.2 | Data collection with ATR-FTIR
spectrometer

ATR-FTIR spectra were collected using a Cary-600 series
FTIR spectrometer (Agilent Technologies, Santa Clara, Cali-
fornia) with a MIRacle™ single reflection ATR configured
with a diamond (Di) IRE plate (PIKE Technologies, Fitch-
burg, Wisconsin). 32 co-added scans, covering a
wavenumber range of 4000 to 600 cm−1, were combined to
produce the spectrum, using a spectral resolution of 4 cm−1.
A background spectrum of the ambient conditions was
automatically subtracted by the Resolution Pro software
(Agilent Technologies) to produce each sample spectrum.

For every patient, three measurements of the same
1 μL serum aliquot were taken immediately following
deposition. After the optimal drying time of 8 minutes,
determined from previous drying experiments [16], the
same 1 μL serum aliquot was analyzed in triplicate again.

2.3 | Data collection with QCL
spectroscopic microscopy

Liquid transmission measurements were performed using
a Specac™ FTIR micro-compression cell (Specac Ltd,
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Kent, United Kingdom). The cell comprised of an o-ring
component, followed by a 1 mm thick circular CaF2 sub-
strate with a diameter of 14 mm, on which 10 μL of
serum were placed and compressed with a second CaF2
substrate and another o-ring. For background measure-
ments, a single 2 mm thick CaF2 substrate was used.
Once assembled, the cell was placed in the spectroscopic
microscope for data acquisition.

Data, in the form of an image (Figure 2A) were
acquired using a QCL Spero™ microscope (Daylight
Solutions Inc., San Diego, CA, USA) in the 1800 to
948 cm−1 range with a data spacing of 4 cm−1. A single
frame was collected with a ×4 magnification objective, a
field of view of 2 mm × 2 mm, a numerical aperture of
0.15 and a pixel size of 4.25 × 4.25. 230 400 spectra were
obtained from a single image.

2.4 | Pre-processing of ATR-FTIR spectra
of air-dried samples

The spectral range was reduced to the fingerprint region
(1800-1000 cm−1), and baseline correction (Saviztky-
Golay filter: second derivative with a window size of five
points) and vector normalization were applied to all the
450 spectra using PRFFECT [27] (v2); an in-house devel-
oped software package running in the R environment
(R Studio software).

2.5 | Pre-processing of ATR-FTIR spectra
of liquid samples

Using PRFFECT v2, the spectral range was reduced to
the 1800 to 1000 cm−1 region, and baseline correction
(second derivative with a window size of five points) and
vector normalization were applied to all the spectra, as in
the air-dried dataset. The drying process of the serum is

affected by temperature and humidity [15, 28], and sev-
eral spectra (second and third replicates of the same sam-
ple) presented visible signs of the drying process
(Figure 3A); therefore, the dataset was reduced to 150
spectra (first replicate only) to ensure the dataset
included liquid samples only (Figure 3B).

2.6 | Pre-processing of QCL spectral
images of liquid samples

A different preprocessing was applied to this dataset to
guarantee the best classification outcomes, and therefore
obtain an equitable comparison between the techniques.

An image quality test was performed with Matlab®

software (The Mathworks) prior to extracting the mean

FIGURE 2 A, QCL raw image of a sample. B, QCL pre-

processed image of a sample, showing removed sample artifacts.

QCL, quantum cascade laser

FIGURE 3 A, ATR-FTIR 450 raw liquid spectra; first, second

and third collection for each sample. B, ATR-FTIR 150 raw liquid

spectra; first collection only for each sample. ATR-FTIR, attenuated

total reflection-Fourier transform infrared
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spectra of QCL data collected. First, the spectral range of
the QCL image (Figure 2A) was reduced to 1800 to
1000 cm−1, then the image was contrast enhanced for
additional structural resolution of image artefacts bound-
aries (eg, air bubbles and fibers). Subsequently, using the
“edge” and “imfill” functions, a binary mask was created
and overlaid onto the original hyperspectral data to
remove the undesirable spectra (Figure 2B). Spectra were
then averaged and smoothed by a three-points moving
average filter. Before performing classification, a first
derivative with a window size of nine points was also
applied to all the 150 spectra using PRFFECT v2.

2.7 | Digital drying of ATR-FTIR spectra
of liquid samples

First, a water spectral reference was collected onto the
same ATR-FTIR spectrometer used for the liquid serum
analysis. One microliter of MilliQ water—collected from
the MilliQ water unit in the University of Strathclyde,
Glasgow (United Kingdom)—was deposited onto the
center of the Diamond IRE after air-background collec-
tion, and three spectra were then recorded and averaged
to a single spectrum. Subsequently, three approaches
were investigated in order to remove the water spectral
component in liquid spectra via computer software; (a)
a direct water subtraction (WS) using Matlab®; the
water spectral reference was subtracted from each spec-
trum of the liquid dataset. (b) The application of the
least-squares method (LS) using Matlab®. This consisted
of the “lscov” function, which returned the coefficients
of the least-squares solution to the linear systems of
each liquid spectra and the water spectral reference.
These coefficients were then multiplied by the water
spectral reference to produce the water spectral contri-
bution, which was subsequently subtracted from each
liquid spectrum. (c) The EMSC algorithm [29] applica-
tion, using PRFFECT v2. This algorithm allows the cor-
rection of spectra for specific features using an input
reference; the water spectral reference was used to cor-
rect each liquid spectrum.

The three datasets were then pre-processed using
PRFFECT v2. The spectral range was reduced to 1800 to
1000 cm−1, and vector normalization and a second deriv-
ative with a window size of five points were applied.

2.8 | Data analysis: Random forest
classification

The machine learning package randomForest by Liaw
and Wiener, was used as method of classification [30,

31]. The algorithm allows the detection of features associ-
ated with input classes, presenting easily interpretable
results. The performance of the model can be determined
from the random forest (RF) statistical outputs, while the
Gini plot highlights features responsible for the results
and their importance in the discrimination [32].

Using PRFFECT v2, each dataset was split into 70%
training set and 30% test set based upon patient popula-
tion, to ensure distinct sets; a failure in separating the
sets may result in a biased model, which would not allow
a proper classification of yet unseen data. The training
set was used to train the model by pairing the input with
the known, expected output; also, a 5-fold cross-valida-
tion was used to validate the training set before each clas-
sification. This was then used as a measure of the model
training performance. ntree (number of trees) and
nodesize (minimum size of the node) default settings
were maintained to 500 and 1 respectively, while mtry
(number of variables selected for splitting at each node)
was set to 30; nevertheless, it has previously been seen
that the RF algorithm is relatively insensitive to its tuning
parameters [33]. The sampling, which consists in training
each RF model on different samples, was reiterated 100
times to ensure that the reported results were not biased
to a certain patient population and the variance within
the sample dataset was fully encompassed. Due to class
imbalance when distinguishing between cancer (100
patients) vs non-cancer (50 patients), synthetic minority
over-sampling technique (SMOTE) [34] was used
throughout the classifications to eliminate any eventual
bias on statistical metrics within the model [35].

3 | RESULTS AND DISCUSSION

3.1 | ATR-FTIR of air-dried and liquid
samples

Optimal results were achieved with the RF classification
of air-dried spectra. The test set (TS) reached a sensitivity
of 91.8% and a specificity of 83.2%. The classification
model of liquid spectra showed lower results; sensitivity
and specificity amounted to 89.9% and 81.2% respectively.
Although SMOTE was used to overcome class imbalance,
both precision and F1 score were reported along with
accuracy of the test sets (Table 1). This was done as it has
been previously reported that accuracy is not always a
reliable indicator of the classifier performance in case of
an uneven class distribution [35]. Notwithstanding the
high standard deviation (SD) values of both TS specificity
outputs, the models produced high precision and F1
score values above 90%, suggesting stability and reliabil-
ity of both models. Moreover, the cross-validation sets
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(CV) results were also reported (Table 1) to provide an
estimate of the training sets performance [32].

The RF (mean decrease Gini) importance plots (Fig-
ures S1 and S2) identified the main spectral features
involved in the classification. Proteins, lipids, nucleic
acids and carbohydrates are the biomacromolecules
responsible for class discrimination in both datasets. 20
higher RF importance spectral features to the
corresponding IR molecular vibrations of both air-dried
and liquid spectra were assigned in Table 2 [4, 14, 35–38].
Only the air-dried dataset classification used the amide II
features (1600-1500 cm−1) for discrimination.

The peaks assigned to the carbohydrates in the region
1200 to 1000 cm−1 are typical of the furanose structures,
which can also be found in nucleic acids [36, 38].

3.2 | Digital drying of liquid samples
spectra

Results of three different approaches were investigated to
evaluate their potential in removing the water spectral
component and, subsequently, their performance in RF
classification. Figure 4 shows the spectral fingerprint
regions of liquid spectra after using the three different
approaches.

Both WS (Figure 4A) and LS (Figure 4B) approaches
highlighted enhanced peak shapes in the 1500 to
1000 cm−1 region and drastically reduced the absorbance
intensity of all peaks, when compared to the liquid spec-
tra (Figure 5B). However, WS significantly affected the
amide I and amide II peak absorbance ratio, notably

deviating from the common peak ratio, as it can be seen
in both air-dried and liquid spectra (Figure 5). Although
LS also affected the amide I and amide II peak absor-
bance ratio, the peak of amide II remained lower than
the amide I peak (Figure 4B). This ratio is clearly differ-
ent from the one seen in liquid spectra (Figure 5B); how-
ever, it appears to be more similar to the one commonly
seen in air-dried spectra (Figure 5A), as well as the rest of
the fingerprint spectral region, showing a great perfor-
mance of LS as digital drying method. On the other hand,
EMSC approach (Figure 4C) did not show an enhance-
ment of the 1500 to 1000 cm−1 region, nor significant vis-
ible variations from the liquid spectra (Figure 5B); only a
slight increase of absorbance values can be seen in the
amide I and amide II region of the spectra (1700-
1500 cm−1).

Both WS and LS approaches gave optimal results with
RF classification. Sensitivity and specificity values of both
datasets exceeded not only the ones of the liquid samples
spectral dataset, but also the ones of the air-dried one
(Table 1); the outputs accounted for more than 93% of
sensitivity and more than 83% of specificity (Table 3),
which account for 2.5% to 3.8% increase in overall sensi-
tivity and specificity performance over the liquid samples
spectral dataset and a 0.5% to 1.9% increase over the air-
dried one. On the contrary, RF classification for the
EMSC dataset performed worse than the liquid samples
spectral dataset; sensitivity was 89.5% and specificity

TABLE 1 Statistical outputs of RF classification of air-dried

and liquid samples

Air-dried (%) Liquid (%)

Value SD Value SD

CV Sensitivity 91.7 2.2 88.9 2.7

Specificity 81.8 3.4 79.4 4.5

Accuracy 88.4 2.3 85.7 2.5

Precision 91.0 1.6 89.6 2.1

F1 Score 91.3 1.7 89.2 1.9

TS Sensitivity 91.8 4.7 89.9 5.3

Specificity 83.2 7.7 81.2 10.9

Accuracy 88.9 3.4 87.0 4.4

Precision 91.8 3.4 90.8 4.7

F1 Score 91.7 2.6 90.2 3.3

Abbreviations: CV, cross-validation set; RF, random forest; TS,
test set.

TABLE 2 Assignment of the main spectral features in the RF

importance plots for air-dried and liquid datasets

Wavenumber (cm−1)

Tentative assignmentAir-dried Liquid

1645 1664 “Amide I” of proteins ν(CO)/ν(CN)/
δ(NH)

1547-1539 / “Amide II” of proteins δ(NH)/ν(CN)

1498 / ν(CC)/δ(CH) of proteins

1463-1461 1464 δs(CH2) of lipids

1415-1413 1415-1412 ν(CN) of proteins

1390-1386 1390-1386 νs(COO−) of proteins

1377 1379 δs(CH3) of proteins

/ 1298 “Amide III” of proteins δ(NH)/
ν(CN)

/ 1153-1151 νas(CO-O-C) of carbohydrates

1078-1076 1097-1079 νs(PO2
−) of nucleic acids

1060 / νs(CO) of carbohydrates

1041-1033 1041-1033 νs(CO-O-C) of carbohydrates

Abbreviation: RF, random forest.
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reached only 80.0%. Moreover, only WS and LS obtained
a F1 score above 90%, which is indicative of stable and
reliable classification methods.

The RF (mean decrease Gini) importance plots (Fig-
ures S3, S4, and S5) identified proteins, lipids, nucleic
acids and carbohydrates as the biomacromolecules
affecting the classification models of the datasets. As
performed for the air-dried and liquid spectral datasets,
the assignment of 20 higher RF importance spectral
features to the corresponding IR molecular vibrations
in each dataset was attempted in Table 4 [4, 14, 36–39].
The asymmetric phosphate stretching of the nucleic
acids was used as one of the main discriminating fea-
tures only when LS was applied. It is interesting to
notice that the feature was not employed in the classifi-
cation of the air-dried and the other liquid datasets and
may represent a starting point for further investigation
on spectral biomarkers involved in cancer vs non-can-
cer discrimination.

FIGURE 4 Spectral effects of the different digital drying

approaches on the fingerprint region (1800-1000 cm−1). A, water

subtraction; B, least-squares method; C, EMSC. EMSC, extended

multiplicative signal correction

FIGURE 5 ATR-FTIR raw spectra reduced to the fingerprint

region (1800-100 cm−1). A, 450 air-dried spectra; B, 150 liquid

spectra. ATR-FTIR, attenuated total reflection-Fourier transform

infrared
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3.3 | QCL spectroscopic imaging of
liquid samples

As shown in Table 5, both values of sensitivity (85.1%)
and specificity (75.3%) resulted around 5% to 6% lower
than the classification of the liquid samples spectral
dataset. Both precision and F1 score did not reach 90%,
indicating a lower model performance than the previous
ones analyzed. However, the trend of the QCL-IR classifi-
cation results followed the ATR-FTIR ones, showing
higher sensitivity than specificity. The CV outputs were
also lower but close to the TS outputs, indicating consis-
tency with the training set and the overall classification.

The major reason why the RF classification did not
perform as well as the previous classifications can be
assessed through the analysis of the RF importance plot
(Figure S6) where the major discriminating feature was
the region of the amide II only, not detected in the classi-
fication of the liquid samples spectral dataset. The other
biomacromolecules involved in cancer and non-cancer
classification were partially detected, with a RF impor-
tance significantly lower than the proteins; however, no
carbohydrates specific features were used in this
classification.

The assignment of 20 higher RF importance spectral
features to the corresponding IR molecular vibrations in

TABLE 3 Statistical outputs of RF classification of digital drying approaches

WS (%) LS (%) EMSC (%)

Value SD Value SD Value SD

CV Sensitivity 92.7 2.3 92.2 2.3 89.1 2.5

Specificity 82.2 4.7 81.1 4.6 79.2 4.6

Accuracy 89.1 2.3 88.5 2.3 85.8 2.3

Precision 91.3 2.1 90.7 2.1 89.6 2.1

F1 Score 91.9 1.7 91.5 1.8 89.3 1.8

TS Sensitivity 93.7 4.1 93.4 4.2 89.5 5.6

Specificity 84.0 9.1 83.5 8.9 80.0 10.6

Accuracy 90.4 3.7 90.1 3.8 86.3 4.8

Precision 92.3 4.1 92.1 4.0 90.2 4.7

F1 Score 92.9 2.7 92.6 2.8 89.7 3.7

Abbreviations: CV, cross-validation set; EMSC, extended multiplicative signal correction; LS, least-squares method; RF, random forest; TS,
test set; WS, water subtraction.

TABLE 4 Assignment of the main

spectral features in the RF importance

plots for the digital drying datasets

Wavenumber (cm−1)

Tentative assignmentWS LS EMSC

1545 / / “Amide II” of proteins δ(NH)/ν(CN)

1466-1464 1466-1464 1466-1464 δs(CH2) of lipids

1414 1417-1414 1421-1414 ν(CN) of proteins

1390-1387 1392-1387 1392-1387 νs(COO−) of proteins

1379-1377 1379 1379 δs(CH3) of proteins

/ 1298 / “Amide III” of proteins δ(NH)/ν(CN)

/ 1225 / νas(PO2
−) of nucleic acids

1161 1184-1155 1171-1155 νas(CO-O-C) of carbohydrates

1097-1078 1097-1078 1091-1082 νs(PO2
−) of nucleic acids

1039-1037 1039-1036 1043-1036 νs(CO-O-C) of carbohydrates

1012-1011 1010 / ν(CC) of carbohydrates

Abbreviations: EMSC, extended multiplicative signal correction; LS, least-squares method; RF,
random forest; WS, water subtraction.
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each dataset was performed [4, 14, 36–39] and correlated
to the tentative assignments of the liquid samples spectral
dataset in Table 6. The symmetric carbonyl stretching of
lipids was highlighted for the first time in these
classifications.

4 | CONCLUSIONS

The initial investigation of the cancer vs non-cancer sam-
ples classification showed comparative outputs with pre-
cision and F1 score of the model above 90%. The air-
dried dataset produced optimal results with sensitivity
and specificity accounting for 91.8% and 83.2%. Further-
more, both classifications were based on a wide range of
spectral features, but only the classification of the air-
dried dataset used the spectral features of both amide I
and amide II (1700-1500 cm−1) to discriminate the dis-
ease state.

The digital drying preliminary study was applied on
the liquid samples spectral dataset to bring increased per-
formances in the RF classification models, in terms of
statistical outputs and spectral features. Even though the
RF classifications were based on less spectral features
than the air-dried and liquid datasets classifications, the
WS and LS approaches produced outputs even greater
than the air-dried dataset; sensitivity and specificity
accounted for 93.7% and 84.0% in the WS dataset classifi-
cation and 93.4% and 83.5% in the LS dataset. On the
other side, the EMSC approach operated defectively in
RF classification with sensitivity and specificity of 89.5%
and 80.0% respectively.

The QCL spectroscopic imaging approach was
expected to overcome water interference across a defined
wavenumber range by using its higher spectral power.
Notwithstanding precision and F1 score values of the RF
classification model above 90%, preliminary results
showed poor sensitivity and specificity values, of 85.1%
and 75.3% respectively; these were around 5% lower than
the outputs of the liquid samples spectral dataset classifi-
cation obtained by ATR-FTIR spectroscopy. The analysis
of the RF importance plot suggested that the lower classi-
fication values were due to the weak ability of the model
in detecting common spectral features for classification.
However, the model detected spectral features unseen in
the other classification, which might represent the gro-
unds for a further investigation of the technique.

In conclusion, it can be considered that these prelimi-
nary results are a noteworthy investigation of the poten-
tial of ATR-FTIR spectroscopy on liquid serum samples,
in terms of needing a rapid, sensitive and specific test. A
test with high sensitivity and specificity would be able to
accurately identify patients with brain cancer, ensuring
their time-to-diagnosis is reduced, and preventing
healthy patients from unnecessary investigation. Digital
drying could be an optimal tool to overcome the water
spectral interferences, increasing sensitivity and specific-
ity during the classification of liquid samples spectra and

TABLE 5 Statistical outputs of RF classification of liquid

samples analyzed with QCL-IR vs ATR-FTIR

QCL-IR (%) ATR-FTIR (%)

Value SD Value SD

CV Sensitivity 83.6 2.3 88.9 2.7

Specificity 75.4 4.7 79.4 4.5

Accuracy 80.9 2.3 85.7 2.5

Precision 87.2 2.1 89.6 2.1

F1 Score 85.3 1.7 89.2 1.9

TS Sensitivity 85.1 4.1 89.9 5.3

Specificity 75.3 9.1 81.2 10.9

Accuracy 81.8 3.7 87.0 4.4

Precision 87.6 4.1 90.8 4.7

F1 Score 86.1 2.7 90.2 3.3

Abbreviations: ATR-FTIR, attenuated total reflection-Fourier trans-
form infrared; CV, cross-validation set; QCL-IR, quantum cascade
laser infrared; RF, random forest; TS, test set.

TABLE 6 Assignment of the main spectral features in the RF

importance plots of the liquid dataset analyzed with QCL-IR vs

ATR-FTIR

Wavenumber (cm−1)

Tentative assignmentQCL-IR
ATR-
FTIR

1732-1716 / νs(CO) of lipids

/ 1664 “Amide I” of proteins ν(CO)/ν(CN)/
δ(NH)

1592-1524 / “Amide II” of proteins δ(NH)/ν(CN)

/ 1464 δs(CH2) of lipids

/ 1415-1412 ν(CN) of proteins

/ 1390-1386 νs(COO−) of proteins

/ 1379 δs(CH3) of proteins

/ 1298 “Amide III” of proteins δ(NH)/
ν(CN)

1268 / νas(PO2
−) of nucleic acids

/ 1153-1151 νas(CO-O-C) of carbohydrates

1092-1088 1097-1079 νs(PO2
−) of nucleic acids

/ 1041-1033 νs(CO-O-C) of carbohydrates

Abbreviations: ATR-FTIR, attenuated total reflection-Fourier trans-
form infrared; CV, cross-validation set; QCL-IR, quantum cascade
laser infrared; RF, random forest; TS, test set.
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therefore, representing a precious aid for the clinical
environment.
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