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Highlights 

 Analytical decomposition of the residual water level slope into river flow, 

tide-river interaction and tidal asymmetry contributions. 

 River flow and tide-river interaction contributions to the residual water level are 

dominant along the Yangtze estuary. 

 Residual water levels caused by tide-river interactions are mainly induced by the 

semidiurnal tidal species. 
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Abstract 

As river flow debouches into the sea, it is affected by the tidal fluctuation at the estuary mouth, 

which results in a backwater zone, where the rising residual water level (averaged over a lunar day) 

in the landward direction is changing periodically. This is known as backwater hydrodynamics, 

                  



especially the variation of the residual water levels that are controlled by the interplay between 

tide and river flows, while these hydrodynamics follow the traditional stage-river discharge 

relation in the upstream river-dominated region. However, the tidal asymmetry contributions to the 

residual water level that are caused by secondary tidal species (e.g., diurnal tide D1), overtide 

generation (e.g., the quarter-diurnal tide D4) and their interplay with river flow are poorly 

understood. In this study, we aim to understand the impacts of secondary and quarter-diurnal tidal 

species on the increase in residual water level in tidal rivers. To quantify the contributions made 

by different components, we decomposed the numerically computed subtidal friction into different 

components representing the contributions made by the river flow alone, the tide-river interaction, 

and tidal asymmetry due to the nonlinear interaction between different tidal species. The results 

show that the contribution by tidal asymmetry to the residual water level is minor, while the 

contributions by river flow and tide-river interaction are dominant, accounting for more than 90% 

and 80% at the upstream and downstream end of the estuary, respectively. The contribution made 

by river flow increases, while the tide-river interaction decreases in the landward direction. The 

semidiurnal tidal species (D2) predominantly control the residual water level induced by the 

tide-river interaction along the Yangtze estuary, which accounts for 70%, while the contributions 

made by the diurnal and quarter-diurnal tidal species are minor and comparable in magnitude in 

the seaward reach where tide-river interactions are important. The method proposed in this study 

to quantify the contributions of river flow and different tidal species to the residual water level 

will enhance our understanding of riverine and tidal impacts on estuarine backwater 

hydrodynamics and can be used to guide effective and sustainable water management in the 

Yangtze estuary and other tidal rivers with substantial river flow. 
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1. Introduction 

Rivers connected to the sea can be subject to considerable tidal influence imposed by the 

coastal ocean. Understanding backwater hydrodynamics in the tide-dominated portions of 

estuaries (termed here as tidal rivers) are generally essential for coastal flooding, channel 

navigation, sediment transport, water and ecological management (Munier et al., 2008; Lamb et al., 

                  



2012; Hoitink and Jay, 2016). The increased friction tends to rise the residual water level along the 

tidal river due to the nonlinear interaction between the tidal flow and river discharge (LeBlond, 

1979; Godin and Martínez, 1994; Buschman et al., 2009; Sassi and Hoitink, 2013; Zhou et al., 

2018; Kästner et al., 2019). In particular, the residual friction can be cumulative upstream along the 

tidal river and hence the resulted water level setups impact further inland than the tide-dominated 

portions (Buschman et al., 2009; Zhang et al., 2018; Kästner et al., 2019). 

The occurrence of backwater hydrodynamics is mainly associated with the interaction 

between the predominant tidal constituent (e.g., M2 or K1) and river discharge (Buschman et al., 

2009; Sassi and Hoitink, 2013; Kästner et al., 2019). However, the generation of M4, which is the 

main source of asymmetry in tidal rivers, is also considered to have an important influence on 

backwater hydrodynamics in a number of studies (Godin and Martínez, 1994; Cai et al., 2014b; 

Guo et al., 2015). In addition, the backwater effect can also be produced through the generation of 

compound overtides (LeBlond, 1979; Buschman et al., 2009). In particular, in the semidiurnal 

estuary, the interaction of the compound tides MS4 and 2MS6 with river discharge can produce 

residual water levels, while in the mixed or diurnal estuary where the tidal constituents of O1 and 

K1 are stronger than the M2 tide, the interaction of the astronomical diurnal tide and river 

discharge may result in a fortnightly modulation in residual water level variations in the tidally 

dominated area, which results in a higher residual water level during the spring tide than during 

the neap tide (LeBlond, 1979; Cai et al., 2018). Conversely, in the river-dominated area, the 

magnitude of residual water levels is mainly controlled by the variation in river flow (Sassi and 

Hoitink, 2013; Cai et al., 2018; Zhang et al., 2018). 

To understand the interactions between river flow and tidal motion in a tidal river, many 

researchers decomposed subtidal friction into the different components contributed by tides, rivers 

and tide-river interactions (Dronkers, 1964; Godin, 1991; Godin, 1999; Buschman et al., 2009; 

Sassi and Hoitink, 2013). Specifically, Dronkers (1964) adopted the Chebyshev polynomial 

approach to approximate the nonlinear behavior of bottom friction in a general formula, where the 

resulting approximation consists of arbitrary number of terms with coefficients that depend on the 

ratio of river flow velocity to the tidal velocity amplitude. Later, Godin (1991, 1999) proposed a 

compact approximation to bottom friction that retains only the first and third order terms of the 

dimensionless velocity, which is comparable with Dronker’s formula in terms of accuracy. 

                  



Recently, Kästner et al. (2019) revisited the tidal wave propagation along a river with sloping bed 

and explored how the subtidal water level setups vary with tide-river interaction. Similarly, they 

decomposed nonlinear quadratic velocity into three terms as a function of the dimensionless 

velocity. 

Alternatively, in order to investigate the effect of non-stationary tide-river interactions, 

several methods have been proposed, including continuous wavelet transform (e.g., Jay and 

Flinchem 1997), complex demodulation (e.g., Jay and Kukulka 2003), short-term harmonic 

analysis (e.g., Guo et al. 2015), nonstationary tidal analysis (e.g., Matte et al. 2013, 2014), and 

enhanced harmonic analysis (e.g., Pan et al. 2018). These methods together with analytical 

decomposition methods (e.g., Dronkers, 1964) are helpful for quantifying the relative importance 

of river flow, tide-river interactions and tidal flow on the residual water level by means of 

decomposing the subtidal friction, which is mainly balanced by the residual water level slope; 

however, the contributions made by secondary tidal species (e.g., diurnal tide D1) and 

quarter-diurnal overtide (e.g., D4) to the generation of residual water level (and hence backwater 

hydrodynamics) are not yet fully understood. 

Recently, Cai et al. (2014a, 2014b, 2016) proposed an analytical approach to determining 

backwater hydrodynamics in tidal rivers. However, the theoretical analysis only accounts for one 

predominant tidal constituent (e.g., semidiurnal M2 tide), while the major secondary tidal species 

(e.g., D1) and the contribution made by tidal asymmetry due to overtide generation (e.g., D4) and 

their interplay with river flow are poorly understood. In this paper, a fully nonlinear 2D numerical 

model is used to help understanding the impacts of the secondary tidal species and a nonlinear D4 

overtide on backwater hydrodynamics. The key objective is the decomposition of the quadratic 

velocity in the friction term, which allows for the quantification of different components (i.e., tide, 

river and tide-river interaction) of the residual water level. Then, the relative importance of each 

contribution is explored. 

Understanding the causes of residual water level setups are important for interpreting the 

influences of backwater hydrodynamics, which may provide new insights into how the primary 

tidal species and tide-river interactions physically influence the morphology, hydrology and 

ecology in estuaries. Zhang et al. (2018) suggests that tide-river interactions influence tidal 

asymmetry by modulating residual water levels and are a key factor controlling sediment transport 

                  



and hence the morphodynamics. Hoitink and Jay (2016) have emphasized the special vulnerability 

of deltas to mean sea level rise by focusing on the additional effect of water level setup from 

nonlinear interaction between river discharge and the tides, which will not only exacerbate 

problems of flood vulnerability but also limit freshwater availability due to enhanced salinity 

intrusion. Sassi and Hoitink (2013) argued that the location where the amplitude of seasonal 

residual water level variation is comparable to that of the primary tidal constituent indicates a 

transition between tidal and fluvial dominance. This location is around Zhenjiang to Jiangyin in 

the Yangtze estuary, where the flow ceases to reverse in direction during the dry and wet seasons, 

respectively (Guo et al., 2015). In this transitional zone, the seasonal variation of the flow reversal 

and backwater hydrodynamics affects channel morphology and riparian ecology in terms of 

inundation frequency, flow velocity and sediment transport. 

The remainder of the paper is arranged as follows. In the following section, the analytical 

description of the residual water level slope and decomposition method of the subtidal friction into 

contributions by river flow alone, tide-river interaction and tidal asymmetry components are 

introduced. Subsequently, the analytical decomposition method is applied to the Yangtze estuary, 

where the velocity and water level fields are extracted by using a numerical model (section 3). In 

this section, the decomposition of the tide into its main constituents and the decomposition of the 

residual water level slope into different contributions made by rivers, tide-river interactions and 

tides are presented. In section 4, the relative importance of various tidal species, the channel 

convergence (i.e., landward decrease in cross-sectional area) role on the backwater hydrodynamics, 

some other factors that can influence the subtidal water level offset, and the implications for tidal 

rivers are discussed. Finally, the conclusions are presented in section 5. 

2. Methodology 

The key for quantifying the impacts of secondary and quarter-diurnal tidal species on 

backwater hydrodynamics lies in the decomposition of the residual water level slope into different 

contributions made by rivers, tide-river interactions and tides, where the last two components 

depend on wave behavior of different tidal species. It is well known that the residual water level 

slope is primarily balanced by the residual frictional effect (e.g., Buschman et al., 2009; Sassi and 

Hoitink, 2013, see a brief derivation in Section 2.1), which is a quadratic function of the velocity. 

Hence, a linearization of the squared velocity is required in order to link the residual water level 

                  



slope to the contributions made by different tidal species (see Section 2.2). Subsequently, the 

impact of individual tidal species on the backwater hydrodynamics can be quantified based on the 

harmonic constants (i.e., amplitude and phase) derived either from observed or numerically 

computed time series of velocity. In this study, a schematized numerical model with a simplified 

estuarine geometry was adopted to obtain the required velocity fields (see Section 2.3). Note that 

we mainly focus on the residual water level dynamics relative to the mean water level at the 

estuary mouth, therefore the influence of seasonal variation of mean sea level over a year is 

implicitly taken into consideration when subtracting the mean water level at the estuary mouth for 

the residual water level along the channel. 

2.1 An analytical decomposition of the residual water level slope 

The residual water level slope can be determined from the simplified 1D momentum equation 

when the density stratification and internal waves are negligible, which is described as follows: 
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where U is the cross-sectional average velocity, Z is the free surface elevation, h is the water depth, 

g is the gravity acceleration, t is the time, x is the longitudinal coordinate directed landward, and K 

is the Manning-Strickler friction coefficient. 

Assuming a periodic variation in flow velocity, the integration of Eq. (1) over a tidal cycle 

leads to the following expression (Vignoli et al., 2003; Cai et al., 2014b): 
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where the overbars denote the tidal average. The second contribution in Eq. (2) to the residual 

water level originates from the advective acceleration, which is relatively small when compared to 

the first contribution induced by the residual frictional effect as long as the Froude number is 

small. 

2.2 Analytical decomposition of the residual water level slope 

It was shown by Hoitink et al. (2003) that tidal constituents with similar angular frequency 

can be lumped into a single combined harmonic. Thus, for the case in a tidal river considering 3 

principle tidal species, i.e., diurnal tidal species (D1), semidiurnal tidal species (D2) and 

quarter-diurnal species (D4), extracted using the Fourier analysis, the cross-sectional flow velocity 

U at a specific position can be approximated by the following expression: 
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where t is time, u0 is the residual flow velocity mainly generated by the river flow, υ1, υ2 and υ4 are 

the velocity amplitudes of D1, D2 and D4, respectively, ω is the frequency of the diurnal tide and 

𝜓1, 𝜓2 and 𝜓4 are the velocity phases of D1, D2 and D4, respectively. Godin (1991, 1999) 

showed that the quadratic velocity U|U| in the momentum equation can be approximated by the 

Chebyshev polynomials approach, which leads to the following equation: 
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where 𝜐′ is the maximum possible value of the velocity (i.e., 𝜐′ = 𝑢0 + 𝜐1 + 𝜐2 + 𝜐4), and 

𝜀0 = 𝑢0/𝜐
′, 𝜀1 = 𝜐1/𝜐

′, 𝜀2 = 𝜐2/𝜐
′ and 𝜀4 = 𝜐4/𝜐

′ are the dimensionless velocity amplitudes 

scaled by the maximum velocity 𝜐′. 

Making use of the trigonometric equations to expand the power of the cosine functions (e.g., 

cos3(𝜔t + 𝜓1) and cos2(𝜔t + 𝜓1)) and extracting the original harmonics with frequencies of ω, 

2ω and 4ω, Eq. (4) can be reduced as follows: 
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For illustration, approximations using Eqs. (4) and (5) with ε0 = 0.3, ε1 = 0.1, ε2 = 0.05, and ε4 

= 0.4 are displayed in Fig. 1. The Chebyshev polynomial approximation (4) matches the nonlinear 

quadratic velocity well, while Eq. (5), which retains only the original frequencies (ω, 2ω and 4ω), 

approximately captures the first-order trend of the quadratic velocity. 

Hence, it follows directly from Eqs. (2) and (5) that the residual water level slope is given as 

follows 
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where the terms fr, ftr and ft quantify the river flow alone, tide-river interaction and tidal 

asymmetry contributions to the resulting residual water level relative to the mean water level at 

the estuary mouth, respectively. Note that the contribution of tidal asymmetry ft depends on the 

relative phase difference among diurnal, semidiurnal and quarter-diurnal species, thus the Fourier 

analysis is required in order to derive the harmonic constants (including tidal velocity amplitudes 

and phases) for different tidal species as the inputs for Eq. (10). 

In Eq. (10), it should be noted that we implicitly assumed that 
1

  / 
̅̅ ̅̅̅

=
1

 ̅ / 
, i.e., neglecting the 

non-linearity of the periodic variation of water depth in the denominator of the friction term. This 

is not a restrictive assumption as long as the tidal amplitude to the depth ratio is small, which is 

generally the case in alluvial estuaries (e.g., Savenije, 2012). However, this non-linearity on the 

residual water level setup would become important since it is the main underlying mechanism that 

draws the water surface back to the level that it would without tides far upstream from the sea 

(Kästner et al., 2019). In this study, we mainly concentrate on backwater hydrodynamics in the 

downstream part of the estuary so that we ignore the influence of non-linearity of the periodic 

variation of water depth on residual water level setup. 

                  



 

Fig. 1. Approximation of the quadratic velocity U|U| by the Chebyshev polynomials approach for 

the case of three tidal constituents. Here, 

𝑈 = −0.3 + 0.1 cos(𝜔𝑡) + 0.05 cos(𝜔𝑡) + 0.4 cos(2𝜔𝑡) + 0.1 cos(2𝜔𝑡) + 0.05 cos(4𝜔𝑡) , 

where ω represents the tidal frequency of the diurnal component. 

2.3 Numerical description of a schematized tidal river model 

Since the existing analytical model (e.g., Cai et al., 2014a, 2014b, 2016, 2019) is only able to 

reproduce the backwater hydrodynamics accounting for one predominant tidal constituent (e.g., 

semidiurnal M2 tide), a schematized numerical model is used to help understanding the backwater 

hydrodynamics accounting for various tidal constituents. In particular, the numerical model 

provides high-resolution velocity fields that can be used to decompose into different tidal species 

for further analysis by means of the analytical decomposition method presented in Section 2.2. 

The numerical model is constructed using the unstructured finite element model TELEMAC-2D, 

which solves the Navier-Stokes equations for an incompressible fluid under shallow water and the 

Boussinesq assumptions. The controlling equations were discretized and solved based on irregular 

triangular meshes, which were suitable for representing the curved riverbanks and irregular 

shorelines of a natural estuary. For more details on the governing equations, the reader is referred 

to Hervouet (2000) and the TELEMAC-2D user’s manual (Operating Manual, 2016). To better 

                  



represent the geometry of the tidal river with funnelling width and prismatic cross section, model 

channel width B and cross-sectional area A were generated based on the following expressions on 

a tidally averaged scale (Cai et al., 2014a; Toffolon et al., 2006): 
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where 𝐵0 and 𝐵r represent the channel width at the seaward end and landward end, respectively, 

𝐴0 and 𝐴r represent the cross-sectional area (below the mean sea level) at the seaward end and 

landward end, respectively, and a and b are the convergence lengths of cross-sectional area and 

channel width, respectively. 

The above Eqs. (11)-(12) account for not only the exponential convergence estuary in the 

seaward part but also the constant width and cross-sectional area in the landward part. Figure 2a 

shows the model geometry used in this study. By changing the convergence length b, the geometry 

shows no inflection point of the transition from exponential river mouth to constant river channel. 

Assuming that the cross section of the estuary is schematized as rectangular, the bathymetric depth 

is given by H= A/B, and is defined as the bed elevation zb relative to a fixed datum (Fig. 2b). The 

hydraulic depth is different from the distance between mean sea level and bed level, and is defined 

as the tidally averaged depth h between the mean water level zws and the bed level zb (see Fig. 2b). 

                  



  

Fig. 2. Geometry of the schematized tidal river (presented in a distorted length scale) for (a) 

channel width and (b) water levels together with the bed elevation. 

3. Application to the Yangtze estuary 

3.1 Physical setting of the Yangtze estuary 

The Yangtze River is the third longest and the fourth largest river in the world in terms of 

freshwater discharge, and the river stretches approximately 6,300 km from the Tibetan Plateau in 

the west to the East China Sea near Shanghai. The Yangtze River drains a catchment of 

approximately 1.8 million km
2
 and has a strongly seasonal variation in flow rate (Xu and Milliman, 

2009). Estuarine studies typically focus on the reach downstream of Datongzhen (in Anhui 

province) (Fig. 3a), where there is a hydrological station (i.e., Datong) that indicates the influence 

of tidal flow is vanishing (Zhang et al., 2016a). This reach is approximately 600 km long and 

flows through a flat alluvial plain, where the valley gradient is small and the river meanders 

extensively. The main course of the river is constrained at intervals by bedrock that gives rise to 

narrow gorges followed by pools and islands, causing the channel to branch (Fig. 3a). Tidal effects 

become considerable downstream of the large bend approximately 250 km from the mouth and are 

                  



dominant over the last 150-200 km (Zhang et al., 2016a), resulting in a well-defined branching 

structure. The South Branch is the main channel outlet conveying more than 98% of the river flow, 

while the North Branch is connected perpendicular to the South Branch and functions in isolation 

(Dai et al., 2016) (see their positions in Fig. 3a). Therefore, we only consider the South Branch 

and the river channels further upstream until the Datong hydrological station in the following 

analysis. 

The tides are semidiurnal with a meso-tidal range in the South Branch, near the mouth, 

varying from 1 to 4 m over the spring-neap cycle (Wu et al., 2012). There exists a strong tidal 

asymmetry; thus, the flood tide lasts approximately for 5 hours during spring tides, whereas the 

ebb tide lasts for approximately 7.5 hours (Zhang et al., 2016a). The river discharge is highly 

variable on a seasonal time-scale. Data used at Datong (1956-2009) suggest that the average 

freshwater discharge is approximately 20,000 m
3
 s

-1
, with the monthly mean varying between 

7,600 m
3
 s

-1
 in February 1987 and 66,200 m

3
 s

-1
 in July 1983. As a result, the Canter-Cremers 

number, indicating the ratio of freshwater discharge to saline water entering the estuary over a 

tidal cycle, varies significantly between ~0.1 for the dry season and ~0.5 for the wet season. Such 

a strong variation in the Canter-Cremers number indicates that the South Branch of the estuary is a 

well-mixed channel during the dry season but becomes more stratified during the wet season, 

especially during the neap tides. In this study, we mainly focus on the dominant tide-river 

interaction process in the Yangtze estuary; hence, the influence of the sediment flux dynamics on 

the tide-river interaction is neglected. 

                  



 

Fig. 3. Map of the Yangtze estuary: (a) the field measuring point and location of cross-sections, (b) 

the geometric parameters of the cross-sectional area (CSA) A, width B, and depth H along the 

Yangtze estuary. The green lines represent the best-fitting curves. 

3.2 Description of the geometric boundary 

To quantify the secondary and quarter-diurnal tidal species on the backwater hydrodynamics, 

a schematized numerical model reproducing the main tide-river dynamics in the Yangtze estuary 

was constructed, with the domain width converging from the mouth to 600 km at the upstream 

boundary. The length of the model domain is extended from approximately -50 km at the offshore 

area to 800 km in the upstream boundary to avoid boundary effect. An unstructured triangular 

mesh was generated, with a low-resolution seaward (average cell size of 7000 m) and relatively 

high resolution (average cell size of 300 m) landward. Navigational charts of 2007 and 2008 

covering the entire Yangtze estuary were used to define the estuary and river channel elevations 

(Fig. 3a). All the depth points were first corrected relative to the national Huanghai 1985 datum 

and then projected from the WGS-84 geographic coordinates to the UTM-51 coordinates. Figure 

3b shows the schematic geometry used in the model, with channel width and cross section area 

(CSA) converging exponentially from the mouth towards a constant cross section in the river part. 

The bathymetric depth defined by H= A/B was shown to be maintained at approximately 10 m for 

the entire estuarine area, with a low bed slope of only ~1:100,000. The positions of the sampling 

locations are shown as white line segments in Fig. 3a. The present settings of the model geometry 

                  



and bathymetry allow nearly complete tidal decay and avoid tidal wave reflection at both the 

seaward and landward ends. 

Similar to the numerical model, the fitted geometry parameters used in the decomposition 

method presented in Section 2.2 were obtained by fitting Eqs. (11) and (12) against the observed 

geometric parameters, as shown in Table 1. Conventionally, an exponential function and a linear 

function were used to fit the geometry by subdividing the Yangtze estuary into two reaches, with 

an inflection point beyond approximately 280 km where the estuary geometry switches from an 

exponentially shaped mouth to a prismatic river channel (Cai et al., 2014b; Zhang et al., 2016a). 

The advantage of the present method is that it describes the whole estuary with a simple 

expression. The result shows a high correlation coefficient R
2
 of 0.97 for the cross-sectional area 

and 0.94 for the width. Notably, the bathymetric depth H presented in Fig. 2b is the flow averaged 

depth relative to the Huanghai 1985 datum. 

Table 1. The geometrical parameters of the Yangtze estuary. 

Geometrical parameter Mouth (A0 or B0) River (Ar or Br) 
Convergence 

length (a or b) 
R

2
 

CSA (A), m
2
 150,000 14,000 120,000 0.97 

Width (B), m 17,000 1,500 100,000 0.94 

3.3 Model performance 

The computational domain covers the entire Yangtze estuary area, the configuration is shown 

in Fig. 2. The external forcing considered in the model includes free surface elevations at the 

seaward boundary and a river discharge imposed at the landward end. Density-effects are 

neglected in this study, since their effects on the backwater hydrodynamics are rather small 

compared to the frictional dissipation induced by tide and river discharges (Cai et al., 2016). 

Hence, the flow is simulated in depth-averaged model.  

To demonstrate the capability of the schematized numerical model, the velocities and free 

surfaces of hydrodynamic model are well verified through the calibration of friction coefficient 

using the data observed along the Yangtze estuary. In the model calibration, the depth-averaged 

velocities are obtained in the South Branch and the mouth bar area (see their positions in Fig. 3a). 

A direct comparison between velocities from the numerical model at the 10 gauging stations 

                  



during 22–24 July 2007 (representing a neap tide) and during 29–31 July 2007 (representing a 

spring tide) is shown in Fig. S1 in the Supporting Information. It can be seen that the reproduced 

velocities follow the observations satisfactorily, with a coefficient of determination (R
2
) of 0.95, 

although the flow velocity during spring is a little underestimated at some stations and some 

disagreements occur during the maximum ebb flow. The other parameters used in the numerical 

model include: a time step of 30 s, a horizontal diffusion viscosity coefficient of 0.1. The bottom 

friction is prescribed by a decreasing Manning-Strickler friction coefficient along the channel, i.e., 

a linear reduction from 63 m
1/3

 s
-1

 at the estuary mouth to 37 m
1/3

 s
-1

 at the Datong hydrological 

station. For detailed descriptions of the model’s configuration, readers can refer to other 

publications, such as Zhang et al. (2016a, b). 

A further validation of water levels recorded during 1-30 November 2007 (representing dry 

season) and during 1-30 September 2007 (representing wet season), is shown in Table S1 in the 

Supporting Information, which illustrates the comparison between the numerically computed and 

observed residual water levels (daily averaged) at the 5 gauging stations of Datong, Wuhu, 

Maanshan, Nanjing and Zhenjiang (see their positions in Fig. 3a) along the Yangtze estuary. These 

data are corrected and referenced to the Huanghai 1985 datum. The model starts with an initial 

condition of zero elevation and a simulation period of 37 days, with the first 7 days are considered 

to be the spin-up period. After 37 days of simulation, the water level data of the last 30 days with 

an output interval of 15 minutes (same as the computational time step) are averaged to generate 

the daily mean water level (i.e., the residual water level). Subsequently, the daily mean water 

levels derived from the numerical model are compared with the field observations in Fig. 4. 

Overall the computed residual water levels agree well with observations, suggesting that the 

schematized numerical model reproduces the main tidal-river dynamics in the Yangtze estuary. 

The scatter reflects the complexity of the real bathymetry, which is substantially simplified for 

adoption in the numerical model. The presence of many islands and narrow and deep gorges 

makes the exponentially convergent geometry irregular and fluctuate in the cross-sections. Rapid 

changes make schematized modeling particularly challenging, and more detailed modeling with 

real bathymetry is needed if changes over local scales are the focus of interest. However, for this 

study, the primary interest is in the interactions of the tide and river at an estuarine scale; thus, it is 

                  



sufficient to provide information on the relative contributions of different components for the 

analytical model. 

 

Fig. 4. Comparison of the residual water level between the numerical results and observations in 

the Yangtze estuary during 1-30 November 2007, representing the dry season (a), and 1-30 September 

2007, representing the wet season (b). 

3.4 Settings of the numerical experiments and application of the analytical decomposition 

method to the numerical results 

In the current study, we consider the diurnal tide (i.e., K1 and O1), semidiurnal tides (i.e., M2 

and S2) and other secondary astronomical tides imposed at the seaward boundary of the Yangtze 

estuary. Four sets of numerical experiments were designed to examine the contributions of river 

discharge, major astronomical tidal species (i.e., D1 and D2) and generated quarter-diurnal tide (i.e., 

D4) on the backwater hydrodynamics. The amplitudes and phases of 31 tidal components, 

extracted from long-term free surface fluctuations by means of Fourier analysis of the TPXO7.2 

database (www.tpxo.net/global, accessed on 21 April 2020) for typical spring-neap cycles around 

the Jigujiao Station (see its location in Fig. 3), remain unchanged in all experiments, while that of 

the river discharge varies in each experiment. River discharges were modelled by four different 

constant discharges of Q1=60,000, Q2=35,000, Q3=15,000 and Q4=1,000 m
3
/s, representing the 

                  



peak (with the return period of approximately 2.5 years), typical wet, typical dry and extremely 

low runoff (denoted by elr, with the return period of approximately 150 years) conditions in the 

Yangtze estuary. As a result, the calculated Canter-Cremers numbers at the estuary mouth are 

approximately 0.92, 0.52, 0.19 and 0.01 for four given river discharge conditions, respectively. 

The Fourier analysis was carried out at each grid point to derive information on the harmonic 

constants for the tidal species of diurnal (D1), semidiurnal (D2) and quarter-diurnal (D4) tides of 

the velocity fields. Subsequently, the extracted tidal current harmonics were used as inputs for the 

analytical decomposition described in section 2.2, quantifying the contributions made by the river 

flow alone, tide-river interaction, and tidal asymmetry (due to the phase differences in D1-D2 and 

D2-D4). Figure 5 shows a comparison of the residual water level between the fully nonlinear 

numerically computed results and simplified analytically computed results under four river 

discharge conditions. The results show highly consistent residual water levels (R
2
>0.99 for elr, 

typical dry season, typical wet season and peak discharge conditions, respectively), demonstrating 

the good performance of analytical reconstruction approach for the residual water levels described 

in Eq. (10). 

 

Fig. 5. Comparison of the residual water level between the fully nonlinear numerically computed 

                  



results (by TELEMAC-2D) and analytically reconstructed results (only accounting for D1, D2 and 

the overtide D4 based on the harmonic results from numerical simulations) in the Yangtze estuary 

for elr, typical dry season, typical wet season and peak discharge conditions. 

3.5 The variation of spring-neap change on backwater hydrodynamics 

To highlight the importance of spring-neap change on backwater hydrodynamics, the whole 

time series of tidal variation in 2007 are divided into separate spring and neap periods based on a 

moving window analysis (see Fig. S2 in the Supporting Information). The 25 hr moving average 

filter captures the spring-neap cycle very well, which shows an apparent 14.8 d cycle by using the 

spectral analysis (Fig. S3). The Fourier analysis is then used to extract the tidal properties 

(including the tidal amplitude and phase) for each sub-period of the spring and neap time series. 

Longitudinal variations of the residual water level and its slope for the spring and neap periods 

were then reconstructed by means of the analytical decomposition method presented in Section 2.2 

for different river discharge conditions. The comparison between the observed residual water 

levels and analytically reconstructed values for the mean spring and neap tide periods and for the 

whole year period are shown in Fig. S4. The performance of the analytical method for 

reconstructing the residual water level in terms of root mean squared error (RMSE) shows a 

reasonable accuracy ranging between 0.06 and 0.29 m (Table 2). 

The spatially averaged contributions over spring and neap tide made by different forcing 

components (fr, ftr and ft) to the total residual water level, and made by different tidal species (D1, 

D2 and D4) to the residual water level owing to the tide-river interaction (   ̅̅ ̅̅ ) are shown in Table 

3. Overall, the spring-neap change of the contributions made to the residual water levels by 

diurnal (D1), semidiurnal (D2) and quarter-diurnal (D4) tidal species is relatively minor (<9%) for 

given imposed constant river discharges at the landward boundary. In addition, the spring-neap 

change of the contributions made by river flow alone (fr), tide-river interaction (ftr) and tidal 

asymmetry (ft) to the total residual water level is also minor for both the typical wet and dry river 

discharge conditions (<7%), although the spring-neap change is relatively large for the elr 

condition (< 53%), which is actually a rare condition occurred approximately once in 150 years. 

Consequently, due to the fact that the influence of spring-neap change on residual water levels is 

relatively minor, in the following sections we shall concentrate on the yearly averaged case, but 

present the cases for the spring and neap tides in the Supporting Information (see Figs. S5-S8). 

                  



Table 2. Spatially averaged contributions made from different forcing components (river flow 

alone fr, tide-river interaction ftr and tidal asymmetry ft) and different tidal species (diurnal D1, 

semidiurnal D2 and quarter-diurnal D4) to the residual water level and to the residual water level 

owing to the tide-river interaction    ̅̅ ̅̅ , respectively, for the mean spring, neap tides, and for the 

whole year periods under elr, dry, wet, and peak river discharge conditions. The RMSE represents 

the accuracy between the observed residual water level and the analytically reconstructed values. 

 Elr Dry Wet Peak 

 Spring Neap Year Spring Neap Year Spring Neap Year Spring Neap Year 

fr 51% 32% 41% 69% 69% 71% 80% 81% 83% 86% 88% 89% 

ftr 87% 53% 70% 37% 30% 30% 23% 19% 18% 16% 12% 11% 

ft -37% 16% -11% -4% 3% -1% -1% 1% -1% -1% 0% 0% 

D1 12% 16% 15% 21% 28% 23% 27% 34% 28% 31% 36% 31% 

D2 67% 69% 68% 54% 56% 56% 50% 51% 52% 48% 49% 51% 

D4 21% 15% 17% 25% 16% 21% 23% 15% 20% 21% 15% 18% 

RMSE (m) 0.19 0.06 0.15 0.29 0.16 0.23 0.27 0.27 0.28 0.24 0.28 0.28 

 

3.6 Longitudinal variations in the tidal amplitude and phase under different river discharge 

conditions 

Considering the impacts of the seasonal river discharges on the tidal variations, a Fourier 

analysis procedure executed by the MATLAB program was applied to extract the harmonic 

constants of the velocity time series for four river discharge cases representing elr, typical dry 

season, typical wet season and peak discharge conditions. Figures 7-8 illustrate the longitudinal 

variations of the tidal velocity amplitude and current phases, which include two major 

astronomical tidal species (D1 and D2) and a quarter-diurnal shallow water overtide (D4). The 

dominant semidiurnal tidal species D2 has mean amplitude of approximately 0.6 m/s near the 

mouth, while the diurnal tidal species D1 has a mean amplitude of only 0.12 m/s near the mouth, 

and the amplitude of the quarter-diurnal tidal species D4 is less than 0.05 m/s near the mouth. To 

highlight the admittance between different tidal species, the longitudinal variation in the tidal 

velocity amplitude normalized by the amplitude at the estuary mouth for D1, D2 and D4 under 

different river discharge conditions are shown in Fig. S9 (see the Supporting Information). 

As the tide propagates upstream along the Yangtze estuary, the velocity is generally 

attenuated due to frictional dissipation (Dalrymple et al., 1992; Dalrymple and Choi, 2007). We 

                  



observe an exponential decrease in the D1 and D2 amplitudes in the landward direction, while the 

amplitude of the D4 overtide reaches a maximum at approximately 150 km before vanishing. In 

the seaward reach (0-150 km) of the Yangtze estuary, a rapid decrease in the amplitudes of the 

astronomical tides (D1 and D2) and growth of the overtide (D4) are identified. The evolution of 

tidal hydrodynamics in estuaries is primarily determined by a combination of frictional dissipation 

and amplification by channel convergence (Savenije et al., 2008). As noted by Dalrymple et al. 

(1992) and Dalrymple and Choi (2007), in the “hypersynchronous” system, the effect of channel 

convergence is stronger than the frictional effect so that the tidal amplitude increases before 

vanishing. The overtide D4 had a variable amplitude that differs from the astronomical tides of D1 

and D2. This phenomenon indicates that the energy of the astronomical tides is transferred to that 

of the overtide due to the nonlinear dynamics of the shallow water flow, as discussed by Parker 

(1991), including both the advective acceleration and depth-dependent frictional effect. 

Approximately 150 km upstream of the Yangtze estuary, all tidal species D1, D2 and D4 are 

attenuated nearly monotonically. The continuous damping of the tidal wave indicates that 

frictional dissipation is the dominant factor in the upstream part of the estuary. In addition, we 

observe that the larger the imposed river discharge, the greater the damping of the landward tidal 

amplitude, which is mainly due to the suppression effect of tidal propagation by the increased 

river discharges. With respect to phases, our results show that the phases of all three major tidal 

species show a clear increase with the tidal propagation upstream (Fig. 7). The values of the 

quarter-diurnal tide D4 clearly vary with the semidiurnal tide D2, with a relative phase difference 

(2𝜑2 −𝜑4) increasing linearly in the landward direction by a slope of approximately 0.8°/km. In 

all four river discharge conditions, high and low water timings are distorted, but the phases remain 

nearly unaffected by the river discharge, except for the upstream part during periods of low flow 

(elr). 

                  



 

Fig. 6. Longitudinal variation in the tidal velocity amplitudes of diurnal (a), semi-diurnal (b) and 

quarter-diurnal tidal species (c) for the different, given river discharge conditions. 

 

 

                  



Fig. 7. Longitudinal variation in the tidal velocity phases of diurnal (a), semi-diurnal (b) and 

quarter-diurnal tidal species (c) for the different, given river discharge conditions. 

3.7 Decomposition of the residual water level and its slope 

The longitudinally varying residual water level and its slope obtained using the analytical 

decomposition method presented in Section 2.2 for different river discharge conditions is shown in 

Fig. 8. The residual water level and its slope profiles for the peak and typical wet season are 

considerably steeper than those during the typical dry season and elr conditions. Obviously, this is 

induced by the dramatic increase in freshwater, which is seasonally injected into the estuary from 

the catchment. Consequently, the residual water level and its slope in the upstream part (close to 

the Datong hydrological station) are approximately 10 m higher and 2×10
-5

 steeper during the wet 

season than the dry season, while the residual water level and its slope near the mouth are more or 

less the same during the seasonal changes in river discharges because they are mainly determined 

by the local mean sea level and tidal wave deformation. The tidal amplitudes decrease in the 

landward direction (Fig. 6), while the seasonal residual water levels decrease in the seaward 

direction (Fig. 8), indicating the damping effect of the residual water level on the tidal propagation 

and the barrier effect of the tide on the river discharge (Sassi and Hoitink, 2013; Zhang et al., 

2018). The damping of the main tidal species is stronger during the wet season than during the dry 

season, mostly due to the higher flow velocity in the river under larger river discharges. The 

dynamic interplay between the tidal waves and river discharge is probably best explained in terms 

of the gradual adaptation of the residual water level to the changing river discharges, as discussed 

by Cai et al. (2016, 2018). 

The analytical expression (10) can be used to explore the relative importance of river flow (fr), 

tide asymmetry (ft) and tide-river interactions (ftr) on the backwater hydrodynamics. The 

contributions by river flow alone (fr), tide-river interaction (ftr) and tidal asymmetry (ft) to the total 

residual water level under different river discharge conditions are shown in Fig. 9. The residual 

water level and its slope are dominated by the river discharge in the upstream parts and by the 

tide-river interaction at the downstream parts, which accounts for more than 90% and 80% of the 

total residual water level, respectively. The contribution made by tidal asymmetry is minor, 

accounting for less than 5% when the river discharge increased to more than 15,000 m
3
 s

-1
. The 

contribution made by the river flow alone increased in the upstream direction and with the 

                  



increase in river discharge. In contrast, the contribution made by the tide-river interaction 

decreased in the upstream direction and with the increase in river discharge. The exponential 

decrease in the landward direction indicates the fast dissipation of tide-river interaction and its 

contribution to the residual water level, while the parabolic decrease in river flow contribution to 

the residual water level in the seaward direction indicates the fast diffusion of river flow laterally 

over the width at downstream of the estuary. In contrast, the tidal asymmetry produces 

instantaneous water level fluctuations but does not change the mean water levels. 

                  



 

Fig. 8. Longitudinal variations in the residual water level (a, c, e, g) and its slope (b, d, f, h), where 

the residual water level and its slope have been decomposed into different contributions made by 

river flow alone, tide-river interaction and tidal asymmetry with Eq. (10). The computed results 

were obtained for the given river discharge conditions (a, b: elr; c, d: typical dry season; e, f: 

                  



typical wet season; and g, h: peak discharge). 

 

Fig. 9. Contributions to the residual water level along the channel due to river flow alone (fr), 

tide-river interaction (ftr) and tidal asymmetry (ft) for different river discharge conditions: (a) elr; 

(b) typical dry season; (c) typical wet season; and (d) peak discharge. 

4. Discussion 

4.1 Contributions made by different tidal species to the residual water level 

As discussed by Sassi and Hoitink (2013) and Zhang et al. (2018), tidal amplitudes decrease 

in the landward direction due to the damping by bottom friction and river discharge. While the 

residual water levels decrease in the seaward direction due to the barrier effect of the tide on the 

river discharge. However, the relative contributions made by different tidal species to the residual 

water level and its slope are not fully understood, since so far, the analyses are mostly based on 

the nonstationary tidal harmonic analysis (e.g., Matte et al. 2013, 2014; Guo et al., 2014, 2015). 

For instance, Guo et al. (2014) showed nonstationary and nonlinear tide-river dynamics along the 

Yangtze estuary and in the region beyond the point of tidal extinction, accounting for the 

contributions made by different tidal constituents. Similar nonstationary tide-river interactions 

have been identified in other large alluvial estuaries, such as the Amazon estuary, where the 

                  



modulation of tidal amplitudes varies with river flow in a nonlinear fashion (Kosuth et al., 2009). 

To quantify the contributions made by different tidal species to the resulting residual water 

level owing to tide-river interactions, we decompose the residual water level component made by 

the tide-river interaction (see the expression of ftr in Eq. 10) based on the Fourier analysis 

considering the 3 principle tidal species, i.e., diurnal tide (D1), semidiurnal tide (D2) and 

quarter-diurnal tide (D4). We omit the contribution by the tidal asymmetry, as it is relatively minor 

when compared to the other two components (see Fig. 9). The longitudinal variations in the 

different contributions made to the residual water levels by diurnal, semidiurnal and 

quarter-diurnal tidal species were compared with the total residual water levels induced by the 

tide-river interaction for different river discharge conditions to derive their percentage 

contributions (Fig. 10). Figure 10 shows that the dominant contribution made to the residual water 

level is the semidiurnal tide, which accounts for approximately 70% of the total residual water 

level with regard to the tide-river interaction process. The diurnal and quarter-diurnal tides 

contributions to the residual water level are minor and comparable in magnitudes in the 

downstream reach within 250 km from the estuary mouth, where the contribution by the 

quarter-diurnal (D4) overtide slightly increases in percentage contribution along the channel, 

which is likely due to the channel convergence leading to the potential energy gain from riverine 

flow for high river discharge conditions (Cai et al., 2018). While, the contribution made by diurnal 

tide (D1) shows slight increase further upstream from 250 km, which may be due to the channel 

divergence (i.e., landward increase in cross-sectional area) leading to the potential energy gain 

from riverine flow for high river discharge conditions (Cai et al., 2018). Notably, the contribution 

by the diurnal tide increases and that by the quarter-diurnal (D4) overtide decreases with the 

increase of river discharges. Details about the D4 tide contribution to the residual water level are 

shown in Fig. S10 in the Supporting Information. 

                  



 

Fig. 10. Contributions made by different tidal species to the residual water level generation owing 

to the tide-river interaction    ̅̅ ̅̅  along the channel for different river discharge conditions: (a) elr; 

(b) typical dry season; (c) typical wet season; and (d) peak discharge. 

4.2 The role of bathymetry in backwater hydrodynamics 

Figure 11 shows the longitudinal variations of the numerically computed residual water level, 

mean water depth, cross-sectional area and its gradient for different river discharge conditions. 

Notably, as the residual water level increases with river discharge, the cross-sectional area also 

increases owing to the increasing mean water depth. Moreover, as seen from Fig. 11c, during the 

peak flow condition, there is a minimum value of cross-sectional area corresponding to a critical 

position in the upstream part of the estuary, beyond which the cross-sectional area increases 

slightly in the landward direction.  

This results in a switch in the cross-sectional area gradient from negative (indicating a 

convergent cross-sectional area) to positive (indicating a divergent cross-sectional area) value. 

Figure 8 shows that the residual water surface slope tends to become constant in the upstream part, 

which is related to the river discharge influence on the backwater hydrodynamics, which on the 

one hand, enhances the residual frictional effect by increasing the quadratic velocity in the friction 

                  



term and reduces the channel convergence by increasing the water depth (see Fig. 11c, d), and on 

the other hand, reduces the effective friction by increasing the mean water depth in the numerator 

of the friction term (see also Cai et al. 2019). 

 

Fig. 11. Longitudinal variations in the range of residual water level  ̅ (a), mean water depth ℎ̅ 

(b), cross-sectional area A (c), and cross-sectional area gradient dA/(Adx) in the idealized estuary. 

4.3 The generation of the residual water level by other factors 

This research was mainly designed to quantify the secondary and quarter-diurnal tidal species 

as well as the river flow (fr), tide-river interaction (ftr) and tidal asymmetry (ft) contributions to the 

residual water level based on numerical simulation and analytical decomposition method of the 

residual water level slope. For a deeper insight, the contributions made by different tidal species to 

the residual water level generation owing to the tide-river interaction    ̅̅ ̅̅  and the role of channel 

convergence on backwater hydrodynamics were also discussed. However, there are still many 

other factors that may exert important influences on the backwater hydrodynamics. Such as in 

estuaries having wide intertidal area may raise residual water level through the reinforced degree 

of tidal distortion (Friedrichs and Aubrey, 1988); the occurrence of extreme anomalies of 

low-level atmospheric circulations (like Typhoon induced storm surges in west Pacific) may cause 

                  



significant changes of water levels (Escobar et al., 2004); the change of along channel salinity 

gradient may result in a residual water level amounting to 1.25% of the estuary depth over the salt 

intrusion length (Savenije, 2012); the influences of subtidal and seasonal changes of the bed 

roughness (Berne, 1993; Winterwerp, 2011) and the role of advective acceleration (Savenije, 2012) 

were all proved to have some effects on the change of residual water levels. However, they are out 

of the scope of this research and require further study in the future. 

4.4 Improvement to the previous analytical approach 

 Recently, Cai et al. (2014a, 2014b, 2016, 2019) proposed an analytical approach to explore 

the impact of river-tide dynamics on the behavior of backwater hydrodynamics in tidal rivers. The 

most distinguished advantage of this analytical approach lies in that it allows for a quick 

prediction of tidal wave propagation with only limited data input at both ends of an estuary by 

solving a set of four implicit equations. However, the analytical calculation and theoretical 

analysis only account for one predominant tidal constituent (e.g., semidiurnal M2 tide), which 

assumes negligible impacts of major secondary tidal species (e.g., D1) and the contribution made 

by tidal asymmetry due to overtide generation (e.g., D4) and their interaction between different 

tidal species (e.g. D1 and D2, D1 and D4, D2 and D4). To fill in this knowledge gap, in this 

contribution, an analytical decomposition method used together with a fully nonlinear 2D 

numerical model of TELEMAC to help understanding the impacts of the secondary tidal species 

and quarter-diurnal tide on backwater hydrodynamics. The novelty of this study relies on the 

decomposition of the quadratic velocity in the friction term, which allows for the quantification of 

different components (i.e., tide, river and tide-river interaction) to the generation of residual water 

level by Fourier decomposition into primary tidal species. 

4.5 Implications for sustainable water management in tidal rivers 

Tidal rivers are the transition zones between oceans and rivers, which are among the most 

complex areas on earth due to the substantial interactions of biological, geochemical and physical 

processes influenced by both rivers and oceans (Wu et al., 2012; Guo et al., 2018). By 

decomposing the residual water level slope into river flow alone, tide-river interaction and tidal 

asymmetry components and analyzing the contributions of different primary tidal species, the 

schematized numerical simulation designed in this study may help to understand how backwater 

hydrodynamics can physically control sediment transport, salinity and ecology over a range of 

                  



spatial and temporal scales.  

Previous studies mainly focused on the primary tidal constituents of M2 and its overtides M4 

on residual sediment transport and morphodynamics by analyzing the tidal asymmetry, without 

considering other secondary tidal species (e.g., D1 and D4) (Matte et al., 2013; Guo et al., 2014; 

2018). They concluded that a flood tidal asymmetry tends to induce a landward residual sediment 

transport and therefore deposition of the riverbed, while an ebb tidal asymmetry causes a seaward 

residual sediment transport and therefore erosion of the riverbed (Guo et al., 2014). However, the 

analytical expressions derived from current contribution demonstrate that the interaction of D2 tide 

with other secondary species of D1 and D4 will also contribute to repetitive asymmetric flow 

patterns. Hoitink et al. (2003) showed in their idealized study that residual sediment transport due 

to the tidal asymmetry induced by D2 and D1 tides are comparable to that of associated with the D2 

and D4 tides. The rate of sediment transport bears a nonlinear relation with flow velocity (Hoitink 

et al., 2003). Therefore, flow asymmetry induced by both secondary and quarter-diurnal tidal 

species exerts an important influence on the degree and direction of residual sediment transport. 

Moreover, the residual water level setups induced by the interactions between the tide and 

river flow can also have a direct effect on salinity transport. High-discharge conditions tend to 

generate a steep water surface profile and spatial acceleration of the ebb flow for the lower reach 

of estuary and therefore prevention of the saltwater intrusion, while a low residual water level 

during the dry season amplifies the tidal motion and promotes saltwater intrusion (Savenije et al., 

2012). Besides, the variations in residual water levels can cause variations in water depth that have 

an impact on regional ecosystems and navigation channels (Hoitink and Jay, 2016; Nienhuis et al., 

2018). In tidal rivers and riparian wetlands, the production of dissolved organic and inorganic 

particles, such as chlorophyll, carbon and nitrogen, varies with residual water level changes by 

seasonal and tidal inundation; thus, this subject deserves management attention (Hoitink et al., 

2003; Leonardi et al., 2015). 

5. Conclusions 

In this study, we explored the impacts of secondary tidal species (D1) and the quarter-diurnal 

tide (D4) on backwater hydrodynamics in tidal rivers by means of a simplified numerical model 

describing the nonlinear tide-river dynamics in the Yangtze estuary. An analytical decomposition 

method was designed to investigate the relative contributions to the rising residual water level by 

                  



components of the river flow alone, tide-river interaction and tidal asymmetry along a tidal river 

for four distinct river discharge conditions, representing elr, typical dry season, typical wet season, 

and extremely peak discharges. Even during low river discharge conditions (i.e., elr and typical 

dry season), the tide-river interactions contribute remarkably to the generation of residual water 

level slopes. In particular, we observed that the contribution by tidal asymmetry to the residual 

water level is minor compared with the river flow and tide-river interaction components, which 

account for more than 90% and 80% at the upstream and downstream boundary, respectively. The 

contribution by the river flow increases in the upstream direction and with increasing river 

discharge. In contrast, the contribution by the tide-river interaction decreases in the upstream 

direction and with the increase in river discharge. Our analysis shows the dominant tidal species 

controlling the tidal amplitude in the Yangtze estuary is the semidiurnal tide, which accounts for 

approximately 70% of the residual water level caused by the tide-river interaction. The 

contributions by the diurnal and quarter-diurnal tidal species are minor and comparable in the 

seaward reach, where the tide-river interaction component is considerable. Our study assesses in 

detail the impacts of the different tidal constituents on tide-river dynamics, which enhances our 

understanding of the tidal and riverine impacts on estuarine backwater hydrodynamics and guide 

effective and sustainable water management (e.g., navigation, flood control, salt intrusion, etc.) in 

the Yangtze estuary and other tidal rivers with substantial freshwater discharge. 
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