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ABSTRACT
Bayesian optimisation is a popular surrogate model-based approach

for optimising expensive black-box functions. Given a surrogate

model, the next location to expensively evaluate is chosen via max-

imisation of a cheap-to-query acquisition function. We present an

ϵ-greedy procedure for Bayesian optimisation in batch settings in

which the black-box function can be evaluated multiple times in

parallel. Our ϵ-shotgun algorithm leverages the model’s prediction,

uncertainty, and the approximated rate of change of the landscape

to determine the spread of batch solutions to be distributed around

a putative location. The initial target location is selected either in an

exploitative fashion on the mean prediction, or – with probability

ϵ – from elsewhere in the design space. This results in locations

that are more densely sampled in regions where the function is

changing rapidly and in locations predicted to be good (i.e. close to

predicted optima), with more scattered samples in regions where

the function is flatter and/or of poorer quality. We empirically eval-

uate the ϵ-shotgun methods on a range of synthetic functions and

two real-world problems, finding that they perform at least as well

as state-of-the-art batch methods and in many cases exceed their

performance.
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1 INTRODUCTION
Global optimisation of non-convex and black-box functions is a

common task in many real-world problems. These include hyper-

parameter tuning of machine learning algorithms [36], drug dis-

covery [21], analog circuit design [28], mechanical engineering

design [6, 8, 31] and general algorithm configuration [23]. Bayesian

optimisation (BO) has become a popular approach for optimising

expensive, black-box functions that have no closed-form expres-

sion or derivative information [35, 36]. It employs a probabilistic

surrogate model of a function using available function evaluations.

The location at which the function is next expensively evaluated is

chosen as the location that maximises an acquisition function (or

infill criterion) that balances exploration and exploitation.

In real-world problems it is often possible to run multiple ex-

periments in parallel by using modern hardware capabilities to

expensively evaluate several locations at once. When optimising

machine learning algorithms, for example, multiple model configu-

rations can be evaluated in parallel across many processor cores

on one or multiple machines [4, 26]. Consequently, this has led to

the development of batch (or parallel) BO algorithms, which use

acquisition functions to select q locations to be evaluated at each

iteration. Clearly, a strictly serial evaluation makes the best overall

use of the available CPU time because each new location to be eval-

uated is selected with the maximum available information. Parallel

evaluation, however, holds the promise of substantially reducing

the wall-clock time to locate the optimum.

The selection of a good set of locations to evaluate at each batch

iteration is a non-trivial problem. In sequential BO, techniques

which favour greedy exploitation of the surrogate model have been

shown to be preferable to the more traditional acquisition func-

tions [10, 33]. De Ath et al. [10], for example, show that using an

ϵ-greedy strategy of exploiting the surrogate model the majority of

the time and, with probability ϵ (where ϵ ≈ 0.1), randomly selecting

a location to explore yields superior optimisation performance on a

https://doi.org/10.1145/3377930.3390154
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variety of synthetic and real-world problems. Consequently, in this

work we investigate ϵ-greedy methods in the batch BO setting.

We present ϵ-shotgun, a novel approach to batch BO, which

uses an ϵ-greedy strategy for selecting the first location x′
1
in a

batch, and then samples the remaining q − 1 points from a normal

distribution centred on x′
1
, with a scale parameter determined by

the surrogate model’s posterior mean and variance at x′
1
and the

magnitude of the gradient in the vicinity of x′
1
. This embodies

maximum exploitation of the surrogate model the majority of the

time by virtue of the choice of x′
1
. The remaining q−1 locations may

be exploratory or exploitative depending on the characteristics of

the local landscape. Larger regions of decision space will be sampled

when x′
1
is surrounded by a relatively flat landscape, while denser

sampling will occur where x′
1
is in a locally steeper region, such as

the landscape around a local (or global) optimum.

Our contributions can be summarised as follows:

• We present ϵ-shotgun, a new batch Bayesian optimisation

approach based on the ϵ-greedy strategy of exploiting the

surrogate model.

• We empirically compare a range of state-of-the-art batch

Bayesian optimisers across a variety of synthetic test prob-

lems and two real-world applications

• We empirically show that the ϵ-shotgun approaches are

equal to or better than several state-of-the-art batch BO

methods on a wide range of problems.

We begin in Section 2 by briefly reviewing Bayesian optimisation

along with Gaussian processes (the surrogate model generally used

in BO) and common acquisition functions. Batch BO and the algo-

rithm archetypes used for selecting the batch locations are then

reviewed in Section 2.2, which leads to the proposed ϵ-shotgun
approach in Section 3. Empirical evaluation on well-known test

problems and two real-world applications are presented in Section 4.

We finish with concluding remarks in Section 5.

2 BAYESIAN OPTIMISATION
Our goal is to minimise a black-box function f : X 7→ R, defined
on a compact domain X ⊂ Rd . The function itself is unknown, but

we have access to the results of its evaluations f (x) at any location

x ∈ X. We are particularly interested in cases where the evaluations

are expensive, either in terms of time or money or both, and we

seek to minimise f in either as few evaluations as possible to incur

as little cost as possible or for a fixed budget.

2.1 Sequential Bayesian Optimisation
Bayesian Optimisation (BO), also known as Efficient Global Op-

timisation, is a global search strategy that sequentially samples

design space at locations that are likely contain the global optimum,

taking into account the predictions of the surrogate model and their

associated uncertainty [25]. It starts by generatingM initial sam-

ple locations {xi }Mi=1 with a space filling algorithm, typically Latin

hypercube sampling [29], and expensively evaluates them with the

function, fi = f (xi ). This collected set of observations forms the

dataset with which the surrogate model is initially trained. Follow-

ing model training, and at each iteration of BO, the next location

for expensive evaluation is selected according to an acquisition

function (or infill criterion). These usually combine the surrogate

model’s prediction and prediction uncertainty of the design space

to balance the exploitation of promising solutions (those with good

predicted values) and those solutions with high uncertainty. The

location x′ maximising this criterion is used as the next point to be

expensively evaluated. The dataset is augmented with x′ and f (x′)
and the process is repeated until the budget is exhausted. The value

of the global minimum fmin is estimated to be the best function

evaluation seen during the optimisation run, i.e. f ⋆ = mini { fi }.
2.1.1 Gaussian Processes. Gaussian processes (GP) are a popu-

lar and versatile choice of surrogate model for f (x), due to their

strengths in function approximation and uncertainty quantification

[32]. A GP is a collection of random variables, and any finite number

of these are jointly Gaussian distributed. A GP prior over f can be

defined as GP(m(x),κ(x, x′ | θ )) wherem(x) is the mean function,

κ(·, ·) is the kernel function (also known as a covariance function)

and θ are the hyperparameters of the kernel. Given data consisting

of f (x) evaluated atM sampled locationsD = {(xi , fi ≜ f (xi ))}Mi=1,
the posterior estimate of f at location x is a Gaussian distribution:

p(f (x) | x,D,θ ) = N(µ(x),σ 2(x)) (1)

with mean and variance

µ(x | D,θ ) = κ(x,X )K−1f (2)

σ 2(x | D,θ ) = κ(x, x) − κ(x,X )⊤K−1κ(X , x), (3)

where X ∈ RM×d is matrix of input locations in each row and

f ∈ RM is the corresponding vector of true function evaluations

{ f1, f2, . . . , fM }. The matrix K ∈ RM×M contains the kernel evalu-

ated at each pair of observations, and κ(x,X ) is theM-dimensional

vector whose elements are [κ(x,X )]i = κ(x, xi ). Kernel hyperpa-
rameters θ are learnt via maximising the log likelihood:

logp(D | θ ) = −1
2

log∥K ∥ − 1

2

f⊤K−1f − M

2

log(2π ). (4)

For notational simplicity, we drop explicit dependencies on the data

D and kernel hyperparamters θ from now on.

2.1.2 Acquisition Functions. An acquisition function α(x) is used
to measure the anticipated quality of expensively evaluating f at

any given location x: the location that maximises the acquisition

function is chosen as the next location for expensive evaluation.

While this strategy may appear merely to transfer the problem of

optimising f (x) to a maximisation of α(x), the acquisition function

is cheap to evaluate so the location of its global optimum can be

cheaply estimated using an evolutionary algorithm.

Acquisition functions attempt, either implicitly or explicitly, to

balance the trade-off between maximally exploiting the surrogate

model, i.e. selecting a location with the best predicted value, and

maximally exploring the model, i.e. selecting the location with the

most uncertainty. Perhaps the two most widespread acquisition

functions, are Expected Improvement (EI) [25] and Upper Confi-

dence Bound (UCB) [37]. EI measures the positive predicted im-

provement over the best solution observed so far and UCB is a

weighted sum of the surrogate model’s mean prediction µ(x) and
uncertainty σ 2(x). These were both shown [10] to be monotonic

with respect to increases in both µ(x) and σ 2(x) and that the solu-

tions that maximise them both belong to the Pareto set of locations
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which maximally trade-off exploitation (minimising µ(x)) and ex-

ploration (maximising σ 2(x)).
Recently, ϵ-greedy approaches have been successfully used as

acquisition functions [10]. These select a maximally exploitative

solution, x′ = argminx µ(x) with probability 1 − ϵ and select a

random solution with probability ϵ . De Ath et al. [10] present two

methods for selecting the random solution, either uniformly from

X or from the approximate Pareto set of solutions of the surrogate

model’s mean prediction and variance. They showed that ϵ-greedy
approaches are particularly effective on higher dimensional prob-

lems, and that performing pure exploitation (i.e. ϵ = 0) is compet-

itive with the best-performing methods. This result was recently

confirmed by Rehbach et al. [33], who empirically show that solely

using the surrogate model’s predicted value performs better than

EI on most problems with a dimensionality of 5 or more.

2.2 Batch Bayesian Optimisation
In batch Bayesian optimisation (BBO) the goal is to select a batch

X′ = {x′
1
, . . . , x′q } of q promising locations to expensively evaluate

in parallel. One of the earliest BBO approaches, the qEI method of

Ginsbourger et al. [15], generalised the sequential EI acquisition

function to a batch setting in which all q batch locations are jointly

estimated. However, it is not analytically tractable to compute qEI,

even for small batch sizes [17]. Although a fast approximation to qEI

does exist [5], it is not faster than naiveMonte Carlo approximations

for larger batch sizes. More recently, Wang et al. [38] proposed a

more efficient algorithm to estimate the gradient of qEI, but the

approach still results in having to optimise in a d × q dimensional

space for each set of batch locations. Two other methods that jointly

optimise the batch of locations, the parallel predictive entropy

search [34] and the parallel knowledge gradient method [42], have

also been shown to scale poorly as batch size increases [9].

Consequently, iteratively selecting the batch sample locations

has become the prevailing methodology. One such strategy is to

attempt to ensure that different locations are selected for the batch

by, for each of the q locations, sampling a realisation from the sur-

rogate model posterior (Thompson Sampling) and minimising it

[26]. However, this relies on there being sufficient uncertainty in

the model to allow for the realisations to have different minima

[11]. De Palma et al. [11] proposed sampling from a distribution of

acquisition functions, or rather from the distribution of hyperpa-

rameters that control the acquisition function’s behaviour, such as

the trade-off between exploration and exploitation in UCB.

Instead of relying on the stochasticity of either the surrogate

model or acquisition function hyperparameters, another group

of methods penalise the regions from which a batch point has

already been selected; thus they are less likely (or unable to) select

from nearby locations. A well-known heuristic to achieve this is

to hallucinate the results of pending evaluations [2, 13, 16]. In this

set of methods, the first batch location is selected by optimising an

acquisition function and then subsequent locations are chosen by

incorporating the predicted outcome of the already-selected batch

locations into the surrogate model and optimising the acquisition

function over the new model. The popular Kriging Believer method

[16] uses the surrogate’s mean prediction as the hallucinated value,

which reduces the model’s posterior uncertainty to zero at the

hallucinated locations without affecting the posterior mean.

An alternative to penalising the surrogate model via hallucina-

tion is to penalise an acquisition function in a region around the

selected batch points [1, 17]. In these methods, the first point x′
1

in a batch is selected via maximisation of a sequential acquisition

function α(x), e.g. EI; the subsequent q − 1 locations are chosen

by iteratively maximising a penalised version of the sequential

acquisition function:

x′i = argmax

x∈X

α(x)
i−1∏
j=1

φ(x | x′j )
 , i = 2, . . . ,q (5)

where φ(x | xj ) are local penalisers centred at xj . These penalise a
region around xj with decreasing penalisation as the distance from

xj increases; for example [17] use a squared exponential function.

The length scale over which the penalisation is significant is set by

r j =
|µ(x′j ) − fmin |

L
+ γ

σ 2(x′j )
L
, (6)

where fmin is equal to the global minimum of the function, L is a

valid Lipschitz constant expressing how rapidly f can change with

x, and γ ≥ 0 weights the importance of the uncertainty about xj .
In practise, the true value of fmin is unknown and therefore

the best seen value so far, f ⋆ = mini { fi }Mi=1, is used in lieu. It

can be shown [17] that L∇ = maxx∈X ∥∇f (x)∥ is a valid Lipschitz

constant and González et al. [17] approximate this using the sur-

rogate model’s mean prediction: L̃ = maxx∈X ∥∇µ(x)∥, resulting
in a global estimate of the largest gradient in the model that is

fixed for all selected batch locations. Alvi et al. [1] argue that this

under-penalises flatter regions of space in which the estimated gra-

dient of the function is much smaller, and therefore they calculate

a different value of L̃ for each selected batch location, estimating

it within a length-scale of each location. González et al. [17] set

γ = 0 and focus only on the difference between the predicted value

of xj and the global optimum, whereas Alvi et al. [1] let γ = 1 to

also include prediction uncertainty. This penalty shrinks as the

predicted value of xj approaches the global minimum and also as

the largest local (or global) gradient of the model increases.

Motivated by the success of the sequential exploitative and

ϵ-greedy approaches [10, 33], we invert the local penalisation strat-

egy and, instead, present a method that samples from within the

region that would usually be penalised (6). We empirically show

that this approach out-performs recent BBO methods on a range of

synthetic functions and two real-world problems.

3 ϵ-SHOTGUN BBO
Motivated by the recent success of ϵ-greedy methods, we extend

the two sequential methods of De Ath et al. [10] to the batch setting.

We use an ϵ-greedy acquisition function to generate the first batch

location x′
1
and then sample the remaining locations from a normal

distribution centred on x′
1
, with a standard deviation given by:

r =
|µ(x′

1
) − fmin |
L

+ γ
σ 2(x′

1
)

L
. (7)

Sampling in this manner creates a scattered set of batch points

around x′
1
, akin to a shotgun blast, whose approximate spread is
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Algorithm 1 ϵ-shotgun query point selection for BBO

Inputs:
q : Batch size

ϵ : Proportion of the time to explore

l : Kernel length scale

1: if rand() < ϵ then
2: if Using Pareto front selection then ▷ ϵS-PF

3:
˜P ← MOOptimisex∈X(µ(x),σ 2(x))

4: x′
1
← randomChoice( ˜P)

5: else ▷ ϵS-RS
6: x′

1
← randomChoice(X)

7: else
8: x′

1
← argmin

x∈X
µ(x)

9: L̃ = max

x∈[x′
1
−l , x′

1
+l ]d
∥µ∇(x)∥ ▷ Largest gradient; centred on x′

1

10: f ⋆ = min { fi }Mi=1 ▷ Best seen function value

11: r =
|µ(x′

1
)−f ⋆ |
L̃

+ γ
σ (x′

1
)

L̃
12: X′ = {

x′
1

}
13: while |X′ | < q do
14: x′ ∼ N(x′

1
, r2I)

15: if x′ ∈ X then
16: X′ ← X′ ∪ {x′}
17: return X′

determined by the amount of model uncertainty of x′
1
, its predicted

value relative to the best seen function evaluation, and by the

steepest gradient within its vicinity.

We describe two alternative strategies employing this idea, which

are summarised in Algorithm 1. The first method, which we call

ϵ-shotgun with Pareto front selection (ϵS-PF), selects with probability
1−ϵ the location x′

1
with the most promising mean prediction from

the surrogate model (line 8). In the remaining cases it selects a

random element from the approximate Pareto set
˜P, which is found

using an evolutionary multi-objective optimiser (lines 3 and 4).

Following the selection of the x′
1
, ϵS-PF samples the remaining

q − 1 locations from a normal distribution N(x′
1
, r2I) centred on

x′
1
with a standard deviation equal to the radius (7) of penalisation

used in [1] (lines 9 to 16). We conservatively estimate the global

optimum fmin to be the best function evaluation seen so far, i.e.

f ⋆ = mini { fi }. The localised Lipschitz constant, similarly to Alvi

et al. [1], is estimated to be L̃ = maxx∈H ∥∇µ(x)∥, where H is a

hypercube, centred on x′
1
with side lengths of twice the length-scale

of the surrogate model’s kernel. This allows for the local gradient

to influence the size of the sampling region. If the local gradient

is small then it is beneficial to sample over a wide region to learn

more about the structure of f . Conversely, a steeper local gradient
would indicate that the modelled function is changing rapidly and

therefore sampling more densely (due to a larger L̃) is required to

accurately model f and guide the search.

Figure 1 shows three example locations of x′
1
for a surrogate

model and their corresponding probability density functions from

which samples would be drawn. The blue circle is located at the

minimum of the modelled function, and its corresponding sampling

f(
x)

x

Figure 1: ϵ-shotgun selection example. The upper panel
shows the predicted mean and uncertainty (green) of an un-
known function sampled at four locations (red crosses). The
lower panel shows the pdfs ofN(x′

1
, r2), centred on the three

correspondingly coloured locations of x′
1
in the upper figure.

radius is relatively small because |µ(x′
1
) − f ⋆ | is small, the local

gradient is small, and the predicted uncertainty is relatively large,

resulting in a fairly sharp distribution to sample from. The red

circle corresponds to a location with a sampling radius that is larger

than the previous point, because, while the difference between the

modelled function and f ⋆ and the predicted uncertainty is similar

to the blue location, the local gradient is smaller. Lastly, the black

location has a similar model uncertainty to the red location, but

has a much larger |µ(x′
1
) − f ⋆ | resulting in a much wider pdf, even

when taking into account the larger local gradient.

The second strategy, ϵ-shotgun with random selection (ϵS-RS), is
identical to ϵS-PF except that, with probability ϵ , it selects x′

1
at

a random location in the entire feasible space (line 6), instead of

a location from the approximate Pareto set. It might be expected

that ϵS-PF would outperform ϵS-RS because it selects locations

that are more informative to the optimisation process, because

they are non-dominated with respect to their predicted value and

uncertainty. However, since De Ath et al. [10] show that sequential

ϵ-greedy methods based on selection from the Pareto set have only

marginally better performance than purely random selection, we

include ϵS-RS to assess whether this is true in the batch setting.

4 EXPERIMENTAL EVALUATION
We investigate the performance of the two proposed ϵ-shotgun
methods, ϵS-PF and ϵS-RS on ten well-known benchmark functions

with a differing dimensionality and two real-world applications in

the form of an active learning problem for robot pushing and pipe

shape optimisation. Full results of all experimental evaluations are

available in the supplementary material.

Following the reported success of purely exploitative methods

[10, 33], we also compare ϵS-PF and ϵS-RS to the purely exploitative
ϵ-shotgun method without any random point selection (i.e. ϵ = 0),

which we denote ϵS-0. We also compare the batch ϵ-shotgun meth-

ods to five BBO methods representative of different styles of batch

optimisation as discussed in Section 2.2: Two acquisition function-

based penalisation methods: the popular Local Penalisation (LP)

method [17], which uses soft penalisation (φ(xj | xj ) > 0), and

the more recent PLAyBOOK [1] method that uses hard local pe-

nalisation (φ(xj | xj ) = 0). Kriging Believer (KB), which penalises



ϵ -shotgun: ϵ -greedy Batch Bayesian Optimisation GECCO ’20, July 8–12, 2020, Cancún, Mexico

Name d Name d

WangFreitas [39] 1 logSixHumpCamel
†

2

Branin
†

2 modHartman6
†

6

BraninForrester [14] 2 logGSobol [17] 10

Cosines [18] 2 logRosenbrock
†

10

logGoldsteinPrice
†

2 logStyblinkskiTang
†

10

Table 1: Synthetic functions used and their dimensionality
d . Formulae can be found as cited or at http://www.sfu.ca/
~ssurjano/optimization.html for those labelled with †.

by hallucinating the already-selected batch points [16]; and the

Thompson sampling (TS) method of Kandasamy et al. [26], which

minimises a realisation of the modelled function from the surrogate.

Lastly, we include qEI [15], which jointly estimates the location of

the q batch members. All methods were implemented in Python

using the same packages
1
, apart from the local penalisers of LP and

PLAyBOOK which used the PLAyBOOK implementation.
2

A zero-mean Gaussian process surrogate model with an isotropic

Matérn 5/2 kernel was used in all the experiments. The kernel

was selected due to its widespread usage and recommended use

for modelling realistic functions [36]. The models were initially

trained on 2d observations generated by maximin Latin hypercube

sampling [29], with each optimisation run repeated 51 times with

different initialisations. The same sets of initial batch locations were

common across all methods to enable statistical comparison. At

each iteration, before batch point selection, the hyperparameters of

the GP were optimised by maximising the log likelihood (4) with

L-BFGS-B [3] using 10 restarts [19].

The LP, PLAyBOOK and KB methods all used the EI acquisi-

tion function. For each location selected in LP and PLAyBOOK, we

followed the authors’ guidelines [1] and uniformly sampled the ac-

quisition function at 3000 locations, selecting the best location after

locally optimising (with L-BFGS-B) the best 5. For the other meth-

ods, a maximum budget of 10000d acquisition function evaluations

was used in conjunction with L-BFGS-B for functions with d = 1

and for d ≥ 2 we used CMA-ES using the standard bi-population

strategy [20] and (up to) 9 restarts. The approximate Pareto set
˜P of

non-dominated locations (in terms of µ(x) and σ 2(x)) in ϵS-PF was
found using NSGA-II [12] with a 100d population size,d−1 mutation

rate, 0.8 crossover rate, and crossover and mutation distribution

indices of ηc = ηm = 20. For both ϵS-RS and ϵS-PF we took ϵ = 0.1.

4.1 Synthetic Experiments
The methods were evaluated on the 10 synthetic benchmark func-

tions in Table 1 with batch sizes q ∈ {2, 5, 10, 20} and a fixed budget
of 200 function evaluations. Table 2 shows, for a batch size of q = 10,

the median difference (over 51 repeated experiments) between the

estimated optimum f ⋆ and true optimum, as well as the median

absolute deviation from the median (MAD), a robust measure of

dispersion. The method with the minimum median f ⋆ for each

function is highlighted in dark grey, and those that are statistically

equivalent to the best method according to a one-sided, paired

1
Implementation available: https://github.com/georgedeath/eshotgun

2
https://github.com/a5a/asynchronous-BO

Wilcoxon signed-rank test [27] with Holm-Bonferroni correction

[22] (p ≥ 0.05), are shown in light grey. Note that tabulated results

for all batch sizes are available in the supplementary material.

Figure 2 shows the convergence plots of the various algorithms

on six test problems for q ∈ {5, 10, 20}. As might be expected, qEI

tends to perform worse as q increases, which we suspect is linked

to the dimensionality of the qEI acquisition function being d × q.
For the 10-dimensional functions and q = 20, this requires global

optimisation in a 200-dimensional space, a far from trivial task. The

Thompson sampling method (TS) relies upon there being sufficient

stochasticity in the surrogatemodel to select batch locations that are

well distributed in space. If there is too much or too little variation

in the locations selected, as appears to be the case in these results,

the batch will be selected in either locations with poor mean values

(too much variation) or all at the same location (too little variation).

Similar performance results for TS are also shown in [1].

As shown in the convergence plots and Table 2, the ϵ-shotgun
batch algorithms, ϵS-RS and ϵS-PF, both performed well across

the range of synthetic problems for all batch sizes. ϵS-0, which
always samples at and around the surrogate’s best mean prediction,

also performed well across the majority of synthetic functions and

was statistically equivalent to ϵS-PF on all functions with a batch

size of q = 10. This indicates that fully exploiting the model at

each iteration and learning about the best mean prediction’s local

landscape (via sampling its local neighbourhood) is a sound strategy

and mirrors the findings, that being greedy is good, of Rehbach

et al. [33] and De Ath et al. [10] in the sequential setting.

Interestingly, on the modHartman6 function in particular (Fig-

ure 2, lower-left), q = 20 led to better median f ⋆ than for q = 5,

even though there were 4 times fewer batches (10 instead of 40)

and therefore the surrogate model was fitted far fewer times. This

indicates that the model poorly estimated the underlying function,

thus misleading the optimisation process. However, the expected

trend prevails: an increase in q generally led to a decrease in the

median f ⋆ as well as a decrease in the rate of convergence.

The acquisition penalisation-based methods, LP and PLAyBOOK,

performed similarly, with LP slightly ahead of PLAyBOOK. The

dominating factor setting the penalisation radii (6) in both methods

is the Lipschitz constant, which was estimated as being the largest

value of ∥∇µ(x)∥ over the whole problem domain for LP and locally

for PLAyBOOK. Since the global Lipschitz constant will always

be at least as large as a local one, it is perhaps unsurprising that

LP performs better, because a larger constant corresponds to a

smaller radius of penalisation, meaning that the batch points will

be, on average, closer together and, therefore, more similar to the

better-performing ϵ-shotgun batch methods.

Convergence plots for ϵS-RS and ϵS-PF have a well-defined step-
like appearance for several test functions, which is particularly

visible in the plots with larger batch sizes. This is a consequence of

the batch selection process because the first location in the batch x′
1

minimises the surrogate model’s mean function (recall Algorithm 1,

line 8). It does, however, imply that the sequential ϵ-greedy strategy
is driving the optimisation process as the subsequent evaluations in

the batch generally show little improvement over f (x′
1
). This also

means that the locations sampled around x′
1
are useful because they

improve the surrogate model accuracy, allowing the surrogate’s

mean prediction to drive the optimisation.

http://www.sfu.ca/~ssurjano/optimization.html
http://www.sfu.ca/~ssurjano/optimization.html
https://github.com/georgedeath/eshotgun
https://github.com/a5a/asynchronous-BO
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Method WangFreitas (1) BraninForrester (2) Branin (2) Cosines (2) logGoldsteinPrice (2)
Median MAD Median MAD Median MAD Median MAD Median MAD

LP 2.00 3.08 × 10−9 2.61 × 10−5 3.86 × 10−5 9.25 × 10−6 1.23 × 10−5 1.09 × 10−3 1.54 × 10−3 5.26 × 10−4 5.86 × 10−4
PLAyBOOK 2.00 4.76 × 10−10 1.25 × 10−4 1.81 × 10−4 1.79 × 10−5 2.51 × 10−5 3.70 × 10−3 4.35 × 10−3 6.48 × 10−4 8.50 × 10−4
KB 2.00 1.19 × 10−9 2.31 × 10−3 3.32 × 10−3 3.03 × 10−5 3.28 × 10−5 1.09 × 10−3 1.41 × 10−3 4.75 × 10−2 5.92 × 10−2
qEI 1.12 × 10−7 1.55 × 10−7 5.83 × 10−6 7.37 × 10−6 7.84 × 10−6 6.94 × 10−6 9.49 × 10−5 1.35 × 10−4 1.82 × 10−4 1.89 × 10−4
TS 2.00 3.02 × 10−8 4.58 × 10−4 4.77 × 10−4 1.94 × 10−4 2.15 × 10−4 1.28 × 10−3 1.14 × 10−3 1.78 × 10−3 1.59 × 10−3
ϵS-RS (0.1) 2.00 3.87 × 10−11 6.07 × 10−7 7.70 × 10−7 1.51 × 10−6 1.60 × 10−6 1.07 × 10−6 1.28 × 10−6 6.65 × 10−7 8.96 × 10−7
ϵS-PF (0.1) 2.00 1.66 × 10−12 1.20 × 10−6 1.77 × 10−6 1.91 × 10−6 1.89 × 10−6 4.21 × 10−7 5.64 × 10−7 3.27 × 10−7 4.51 × 10−7
ϵS-0 2.00 1.18 × 10−11 9.89 × 10−7 1.28 × 10−6 1.70 × 10−6 1.83 × 10−6 4.12 × 10−7 4.66 × 10−7 3.23 × 10−7 4.62 × 10−7

Method logSixHumpCamel (2) modHartman6 (6) logGSobol (10) logRosenbrock (10) logStyblinskiTang (10)
Median MAD Median MAD Median MAD Median MAD Median MAD

LP 2.22 × 10−1 2.59 × 10−1 8.25 × 10−4 1.04 × 10−3 7.58 1.96 5.97 8.36 × 10−1 2.07 3.76 × 10−1
PLAyBOOK 1.88 × 10−1 2.41 × 10−1 2.11 × 10−3 2.56 × 10−3 9.82 1.45 5.98 1.48 2.28 2.89 × 10−1
KB 4.72 1.35 7.33 × 10−3 7.64 × 10−3 7.21 1.65 5.29 2.19 1.96 3.08 × 10−1
qEI 1.49 × 10−1 1.09 × 10−1 1.44 × 10−2 9.65 × 10−3 9.84 2.11 7.94 5.00 × 10−1 2.28 2.04 × 10−1
TS 1.15 6.79 × 10−1 3.94 × 10−2 1.60 × 10−2 1.03 × 101 7.49 × 10−1 8.48 4.55 × 10−1 2.87 1.07 × 10−1
ϵS-RS (0.1) 1.38 × 10−3 2.04 × 10−3 3.08 × 10−4 3.87 × 10−4 8.07 2.53 5.03 1.58 2.05 3.64 × 10−1
ϵS-PF (0.1) 3.90 × 10−4 5.71 × 10−4 3.09 × 10−4 3.09 × 10−4 8.19 1.88 4.61 1.43 1.81 4.56 × 10−1
ϵS-0 1.15 × 10−3 1.70 × 10−3 4.24 × 10−4 4.90 × 10−4 7.40 2.23 4.45 1.44 1.81 3.55 × 10−1
Table 2: Optimisation results with a batch size ofq = 10. Median absolute distance from the optimum (left) andmedian absolute
deviation from the median (MAD, right) after 20 batches (200 function evaluations) across the 51 runs. The method with the
lowest median performance is shown in dark grey, with those with statistically equivalent performance shown in light grey.
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Figure 2: Illustrative convergence plots for six benchmark problems and three batch sizes q ∈ {5, 10, 20}. Each plot shows
the median difference between the best function value seen f ⋆ and the true optimum fmin, with shading representing the
interquartile range across the 51 runs.
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Figure 3: Synthetic function optimisation summary. Sym-
bols correspond to the proportion of times that a method
is best or statistically equivalent to the best method across
the 10 synthetic functions for q ∈ {2, 5, 10, 20}.

Figure 3 summarises the performance of each of the 7 evalu-

ated methods for the 4 batch sizes. We note that the ϵ-shotgun
methods are consistently the best or statistically indistinguishable

from the best performing methods across the set of benchmark

functions across all batch sizes. Interestingly, the older Kriging

Believer [16], that penalises the surrogate model’s variance around

selected batch points, performed better than the newer, acquisition-

based penalisers, particularly for larger batch sizes. The increase in

relative performance may be related to the particular acquisition

function used because, as shown in [10], EI weights improvements

over the current f ⋆ much more highly than increases in variance.

This may lead to the variance penalisation in KB having a smaller

radius of effect than the penalisation in EI-space by the LP and

PLAyBOOK methods, resulting in KB sampling locations closer

together, in a more similar fashion to the ϵ-shotgun methods.

As shown in Figure 3, for the ϵ-shotgun-based algorithms, there

is little to differentiate overall between selecting a location at ran-

dom from either the Pareto front (ϵS-PF) or uniformly across the

feasible space (ϵS-RS). However, ϵS-PF appears to be marginally bet-

ter on lower-dimensional functions, most likely due to the surrogate

model better describing the overall structure of the modelled func-

tion. Conversely, ϵS-RS is slightly better on higher-dimensional

functions because the modelled function with naturally be of a

poorer quality and therefore relying solely on it, without sufficient

stochasticity, could hinder the optimisation process.

Pure exploitation, i.e. ϵ = 0, the ϵS-0 method, leads to state-of-

the-art performance across for many problems and dimensionalities.

However, for problems in which a large amount of exploration is

needed in order to locate a deceptive optimum, the ϵ-shotgun meth-

ods with little exploration are unable to escape local minima or

expend enough of their optimisation budget exploring the land-

scape. This is particularly apparent on the WangFreitas problem

[39], which has a large, shallow local minimum and a narrow, deep

global minimum surrounded by plateaus; see [39] for a plot. Figure 4

compares the performance of the ϵ-shotgun methods for different ϵ
on this problem. Note how ϵS-RS (green) is able tomore consistently

find the global optimum for smaller values of ϵ , because, unlike
ϵS-PF (red), it is not constrained to only select non-dominated areas

of decision space. ϵS-PF, on the other hand, is consistently misled

by the surrogate model’s incorrect estimation of the function and

therefore fails to correctly optimise the function even when ϵ = 0.5.
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Figure 4: Distribution of | fmin − f ⋆ | after 200 function evalu-
ations, taken over 51 runs, for ϵS-RS (green) and ϵS-PF (red,
hatched) for different values of ϵ (horizontal axis) on the
WangFreitas test problem with a batch size of q = 10.

4.2 Active Learning for Robot Pushing
Following [10, 24, 41], we optimise the control parameters for two

active learning robot pushing problems [40]; see [10] for diagrams.

In the first problem, push4, a robot is required to push an object

towards an unknown target location. It receives the object-target

distance once it has finished pushing. Its movement is constrained

such that it can only travel in the direction towards the object’s

initial location. The parameters to be optimised are the robot’s

initial location, the orientation of its hand and for how long it travels.

Thus optimising the values of the four parameters to reduce the final

object-target distance can be cast as a minimisation problem. The

object’s initial location is always set to be the centre of the domain

[10, 41], but the target location is changed in each optimisation run,

with these common across methods to ensure fair comparison. The

performance of an optimisation algorithm is thus averaged over

problem instances rather than the same function with different

initialisations, as with the synthetic functions previously.

Similarly, in the second problem push8, two robots push their

own objects towards unknown targets, with the complication that

they may block each other’s path. The 8 parameters controlling

both robots can be optimised to minimise the summed final object-

target distances. Initial object locations were fixed and target’s

positions were generated randomly, while ensuring that each pair

of target positions allowed each object to touch its target without

the objects overlapping. However, in some problem instances it is

not possible for both robots to push their objects to their targets

because the objects may be positioned such that the robots need to

cross each other’s paths. In order to report the difference between

f ⋆ and the true optimumwe estimate the optimum of each problem

instance by randomly sampling in the feasible space with 10
5
sets

of robot parameters and locally optimising the best 100 of these

using L-BFGS-B. We therefore report the difference between the

algorithm’s optimum and this estimated global optimum.

Figure 5 shows the convergence for q ∈ {5, 10, 20}. In push4

the ϵ-shotgun methods have statistically equivalent performance,

but outperform other methods for q = 5 and q = 10. KB also has

statistically similar performance to the exploitative methods when

q = 20, echoing its efficacy on the synthetic problems in which it

also comparatively improved with increasing q.
In the harder push8, all methods were statistically equivalent

with q = 10, while TS and KB were worse with q = 5; they were

also worse, along with LP for q = 20. ϵS-RS and ϵS-PF consistently
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Figure 5: Convergence plots for the robot pushing problems
(rows) over three batch sizes q ∈ {5, 10, 20} (columns). Each
plot shows themedian value of | f ⋆− fmin |, with shading rep-
resenting the interquartile range across the 51 runs.

had the lowest median fitnesses, although other techniques were

statistically equivalent. Interestingly, and echoing the results on

the synthetic modHartman6 function, ϵS-PF had a lower median

fitness value for q = 10 and q = 20 than for the smaller batch sizes.

4.3 Pipe Shape Optimisation
We also evaluated the BBO methods on a real-world computational

fluid dynamics (CFD) design problem. The PitzDaily test problem

[7], involves reducing the pressure loss along a pipe of different

inflow and outflow diameters by optimising the pipe’s internal

shape. The optimisation aims to find the shape of the lower wall of

the pipe that minimises the pressure loss. The loss is evaluated by

running a CFD mesh generation and partial differential equation

simulation of the two-dimensional flow. Each function evaluation

takes between 60s and 90s, depending on mesh complexity.

The pipe’s lower wall geometry is represented by a Catmull-

Clark sub-division curve, whose control points comprise the deci-

sion variables.We use 5 control points, resulting in a 10-dimensional

decision vector. The control points are constrained to lie within

a polygon and the initial locations used in the optimisation runs

are uniformly sampled in this constrained domain. Similarly, for

the batch optimisation methods themselves, we take the naive ap-

proach of rejection sampling when optimising acquisition functions

for the KB, qEI and the ϵ-shotgun approaches; we do not consider

locations that violate the constraints for LP, PLAyBOOK and TS.

Convergence plots of the flow loss with q ∈ {5, 10, 20} are shown
in Figure 6. The Kriging Believer (KB) consistently optimised the

problem well, although ϵS-RS, ϵS-PF, ϵS-0 and LP were statistically

equivalent with batch sizes q = 10 and q = 20. The rates at which

KB reaches its best flow losses, however, were superior to the other

methods on the PitzDaily problem. In the q = 10 case, KB reaches

close to its best flow losses after only 5 batches. We note that all

methods were able to discover pipe shape configurations that led to

flow losses that were better than 0.0903 found by an adjoint (local,
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Figure 6: Convergence plots for the PitzDaily problem with
q ∈ {5, 10, 20}. Each plot shows the median best seen flow
loss, with shading representing the IQR across the 51 runs.

gradient-based) optimisation method [30], although TS, qEI, and

PLAYbOOK were not able to reach a median flow loss of lower than

the adjoint solution for all batch sizes.

5 CONCLUSIONS AND FUTUREWORK
Our novel ϵ-shotgun method, which uses an ϵ-greedy acquisition

function to select the first batch location and samples the remaining

locations around it, is both conceptually simple and computationally

efficient because, unlike many other batch methods, only one global

optimisation run is needed to select the batch locations. The method

is competitive with state-of-the-art BBO algorithms and better than

them in several cases. We attribute this to the exploitative nature

of the first batch point selected together with benefit of learning

an accurate function model with the remainder of the batch.

Pure exploitation (ϵ = 0: ϵS-0) led to good performance on the

majority of problems because the surrogate model poorly estimates

the true function, particularly on higher-dimensional functions,

thus inducing enough exploration. However, in the case of degen-

erate functions, e.g. WangFreitas, the surrogate model is too poor

to optimise well, requiring a larger ϵ to promote exploration. We

have found that ϵ = 0.1 works well.

Future research questions revolve around how best to select the

locations of the q − 1 batch points. Although not described in detail

here, we also investigated an alternative ϵ-shotgun approach of

always selecting the first batch location as the surrogate model’s

best mean prediction and dividing the remaining samples into two

groups. One group, selected with probability 1−ϵ for each location,

was used identically to the greedy shotgun approach of sampling

around the first batch location and the second group (probability

ϵ) were randomly sampled in space or on the approximated Pareto

front. This approach gave similar results to ϵ-shotgun.
One possible extension is use Latin hypercube sampling instead

of drawing random samples to better spread out the batch locations,

making the best use of each function evaluation. In addition, it may

be beneficial to tailor the sampling covariance to sample less/more

densely in directions that are flatter/steeper in decision space.

Lastly, the function evaluation may take different times depend-

ing on location and computational hardware, resulting in some

evaluations finishing before others. Current research, therefore,

focuses on extending the ϵ-shotgun method to asynchronous BBO.
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