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Abstract

Single crystalline cubic sesquioxide bixbyite a-Mn,0O3 nanorods have been synthesized successfully by
asimple, low cost, environmental benign hydrothermal route. As synthesized -MnOOH were
calcined at 600 °C to obtain a-Mn, O3 nanorods, which were further subjected to various
characterizations. The alpha manganese sesquioxide cubic bixbyite-type oxide formation was
confirmed by the XRD studies. The surface morphology and elemental analysis were explored by SEM
with EDX studies, respectively. High-resolution transmission electron microscopy HRTEM and
SAED showed that the @-Mn,0; nanorods were single crystalline and were grown along the C-axis of
the crystal plane. The UV-visible spectrum indicated that the absorption was prominent in the
ultraviolet region. In addition, PL spectrum result of &«-Mn, O3 nanorods recommended possible
photocatalytic applications. The photocatalyst ensures a new platform for the decolorization of dye
molecules of the harmful cationic dyes like methylene blue and rhodamine B. Possible growth
mechanism and photocatalytic dye degradation mechanism were proposed for synthesized a-Mn, O3
nanorods.

1. Introduction

Wastewater treatment and recycling are important concerns and researchers are looking forward to developing
inexpensive and suitable technology for wastewater treatment. The wastewater has been treated by an advanced
oxidation process, which is considered as attractive and effective technology in recent days [ 1-3]. Photocatalysis
is a promising method, which can be used for the degradation of various organic and inorganic pollutants in
wastewater [4, 5]. Nanosized semiconductor materials such as TiO,, ZnO, CdS, ZnS, and WO; and Fe,O; have
the ability to play the role of higher photocatalytic activity. The two predominant photocatalytic materials found
in the literature are considered as TiO, and ZnO because of their wide-bandgap semiconducting properties. But
their photocatalytic activity is greatly decreased due to the rapid recombination rate of photoexcited electron-
hole pairs [6, 7]. Recently, a few manganese oxide-based materials have been developed as alternative materials
as a photocatalyst without any further modification. Manganese oxides have been the subject of much research
due to the magnetic, electrical, and catalytic properties, structural variability, and different oxidation states and
their broad range of physical and optical properties [8—10]. In nature, manganese oxide exhibits different
oxidation states, which consists of MnO, MnO,, Mn, O3, Mn30,, and MnsOg [11]. In particular, the preparation
of Mn, O3 has been attracted much research attention because of its environmentally friendly active catalyst for
removing CO and NO from various sources.

There a variety of chemical and physical synthetic routes are available to synthesize Mn,O; nanostructures,
including hydrothermal, sol-gel, pulsed laser ablation, and co-precipitation methods [12—14]. The
hydrothermal process offers several advantages over other methods such as lower energy consumption, reduced
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environmental impact, controlled morphology, and high crystallinity [15]. At present, many works have been
devoted to the synthesis and property studies of 1D Mn,O3 nanostructured materials, owing to their anisotropic
dimension [16]. Many results in the literature support the existence of a large number of charge carriers on the
active site of the nanostructures, which leads to a significant increase in the photocatalytic activity in comparison
to nanoparticles in the spherical form [17]. Youcun Chena et al [ 18] Javed et al synthesized a-Mn, O3 nanorods
[19] and nanowires employed by hydrothermal methods, Yong Cai et al synthesized a-Mn,O3 nanorods [12],
Pijun Gong et al synthesized a-Mn,05 nanorods [20] Yang Zhang et al synthesized a-Mn, O3 nanorods by
hydrothermal treatment has been reported [21].

Gnanam et al synthesized (a-Mn,03) nanodumb-bells had achieved the 71% degradation of the Remazol red
B dye [22], Electrospun Mn,O3 nanowrinkles prepared by Mengzhu Liu et al showed catalytic effects on
decomposition of methyl blue dye with H,O, [1] and Jianhui Zhao et al employed a facile fabrication of novel
Mn,O; which degraded of ciprofloxacin at 94.7% [4]. Seldom research reports were published on the
photocatalytic dye degradation for two cationic dye at different photocatalyst dosage for a-Mn, O3 nanorods.
In addition, the formation and growth mechanism of @-Mn, O3 nanorods was also studied.

2. Experimental section

2.1. Materials

All chemical components used for the preparation of y-MnOOH and a-Mn, 03 nanorods, used as without any
further purification. Potassium permanganate [KMnQO,], and polyethylene glycol (PEG-400) were purchased
from MERCK. Distilled water (DW) was used for the preparation of the aqueous solution. (PEG-400) non-ionic
surfactant, low-cost, low toxicity, water-soluble organic polymer, and controls the size, and prevents
agglomeration.

2.2. Synthesis of a-Mn, O3 nanorods

The a-Mn,0O; nanorods were prepared by hydrothermal method. 0.5 g of KMnO4 was dissolved in 70 ml of
distilled water under magnetic stirring, and 1.9 ml of (PEG-400) was added to the above solution. The purple
colour of the solution slowly changed to brown (indicating onset of the formation of manganese oxhydroxide).
The manganese oxyhydroxide formed based on the redox reaction after that; the solution was transferred to a
100 ml capacity of Teflon-lined stainless steel autoclave, then hydrothermally treated at 150 °C for 15 h and then
cooled to room temperature naturally. The resultant brown solid product was filtered, and vacuum dried at

90 °C for at 12 h. Finally, a brown powder (v-MnOOH) was obtained that was calcined at 600 °C to form
(a-Mn,O3) nanorods.

2.3. Characterization

The prepared (a-Mn,03) nanorods were characterized by x-ray powder diffractometer (XRD), which was
obtained using Bruker, D8 Advance. FT-IR data of the product was collected using Fourier transform infrared
(FT-IR) spectroscopy that was carried out on IR Affinity-1. The UV data was collected by UV—visible absorbance
spectroscopy, and that was conducted using JASCO (V-670 PC). The room temperature of Photo-luminescence
spectroscopy (RTPL), which was performed using F-7000 FL spectrophotometer. Morphology studies and
chemical compositions were observed through scanning electron microscopy with energy-dispersive x-ray
spectroscopy and elemental mapping (Zeiss EVO 18, Germany). High-resolution Transmission Electron
Microscopy (HRTEM) was performed using FEI-TECNAIG2-20 TWIN at an operating voltage of 100kv and
Bruker EDX with LN2 free detect. Photocatalytic dye degradation application was carried out by Mercury UV
light source.

2.4. Photocatalytic measurements

The decolorization of dye molecules reaction was performed by Sankyo Denki Twelve numbers of 8W Mercury
UV lamps of 254-365 nm wavelength. The change in the absorbance spectra of Methylene Blue (MB) and
Rhodamine B (RB) with various irradiation times were determined using ultraviolet (UV) light source Typically,
6.5 mg of photocatalyst (a«-Mn, O3 ) were added to the 100 ml of the aqueous solution of the MB, and 4.5 mg of
photocatalyst added to the 100 ml of RB dye. Prior to the irradiation, the suspension was magnetically stirred in
the dark for 30 min afterward; the suspensions were irradiated by a UV light source. At given irradiation time,
the photo-reacted suspension (3 ml) was taken, and the suspension was analyzed by using a UV-vis
spectrophotometer (MODEL: Specord 201 plus).
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Figure 1. XRD patterns of the as-prepared (a) 7-MnOOH, and (b) a-Mn, O3 nanorods.

3. Result and discussion

3.1. Structural analysis

The XRD diffraction patterns of as-prepared y-MnOOH and calcined o-Mn, O3 nanorods are in figure 1. All the
diffraction peaks can be indexed to the monoclinic phase of -MnOOH figure 1(a). The strong and sharp
diffraction patterns can be compared with a standard value of JCPDS file no 41-1379. Figure 1(b) the XRD
pattern of the calcined (at 600 °C) sample confirms the bixbyite cubic phase of «-Mn,0O3 nanorods. The peaks
observed at20 = 23.2°,32.9°,38.2°,45.3° 49.3°, 55.1° and 65.7°, which can be attributed to the (211), (222),
(400), (332), (431), (440) and (622) plans for @-Mn,O3 nanorods. (JCPDS 41-1442) [23-25]. There are no other
diffraction peaks corresponding to impurities, indicating the high purity of the «-Mn,0O3 nanorods. The average
crystallite size D in nm was estimated using the Debye—Scherrer formula, whichisD = K A/ Cos (6) where \is
the wavelength of the incident X-ray beam (1.5406 &), 3is the full width at half maximum (FWHM in radian) of
the diffraction peak, 6 is the Bragg diffraction angle, and k is Scherrer constant. The estimated average crystallite
size of a-Mn,03 nanorods was 31 nm. The lattice parameter of the cubic phase was calculated by using the
combined formula of Bragg and the interplanar distance of the cubic structurea = 0.9423 nm.

) 2112
2 sin 6

The x-ray density for a cubical system can be calculated using the Dx = zM/NV formula, where z is the
number of atoms per unit cell, M is the molecular weight, N is Avogadro’s constant and V is the volume of the
unit cell. The x-ray density calculated value was (Dx) is 5.0131 g cm ™ for a- Mn, O3 nanorods. Further, the
specific surface area (SSA) of the a-Mn, O3 nanorods has been calculated with S, = 6/D Dx formula [23, 26].
The estimated value of SSA is 38.60 x 10* cm* g~ ! for «-Mn, O3 nanorods.

3.2. Surface morphology analysis

Figures 2(a)—(c) shows the morphologies of the a-Mn, O3 nanorods at different magnifications. The samples
clearly reveal the presence of a large quantity of a-Mn, O3 nanorods aligns in the random orientation.

Figures 2(d), (e) shows the elemental mapping of &-Mn,0; nanorods. Figure 2(f) shows the EDX pattern, which
designates the purity of the a-Mn,O3 nanorods by indicative of only Mn and O. The stoichiometrical atomic
percentage of Mn is 36% and O is 64%. From TEM images, it can be seen that the a-Mn, O3 sample displayed
rod-like morphology. The single nanorods were randomly selected, which has a diameter of 318.4 nm and
length in the range of 8.15 pum. The figure 3(e) is attributed to SAED consists of spots, which are identified as the
diffraction from cubic single crystalline -Mn,O5 nanorods. It is in good agreement with the results obtained
from the XRD pattern [24]. The HRTEM images figure 7(d) show well-defined lattice fringes of a-Mn,O;
nanorods. Itis indicating the single crystallinity of the nanorods. The interplanar spacing of fringes measured to
be 0.368 nm, which corresponds to the (211) planes of «-Mn, 03 nanorods. It further confirmed the single-
crystalline nature of the a-Mn, O3 nanorods, and growth along the c-axis. Figure 6(f) showed the uniform
distribution like Mn and O throughout the a-Mn,O3 nanorods.
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Figure 2. (a)-(c) SEM images of the a-Mn, 05 nanorods at different magnification. (d), (e) Elemental mapping of &-Mn,O3 nanorods.
(f) EDX analysis of a-Mn,O3nanorods.

(b a

Figure 3. (a)-(c) TEM images of a-Mn,0; nanorods at different magnification. (d) HRTEM image. (¢) SEAD image and (f) EDX.

3.3. The growth mechanism of c:-Mn,0; nanorods

The growth mechanism of a-Mn,O; nanorods illustrated in figure 4. The growth mechanism of @-Mn, O3
nanorods fully covered by nucleation, crystal growth, coalescence, oriented attachment. A large quantity of
nanorods is formed by coalescing of nanoparticles together due to oriented attachment. Oriented attachment
mechanism could be described as a self-organised arrangement of neighboring nanoparticles, so that they share
an identical crystallographic configuration. When the crystallographic orientation is encountered, these
nanoparticles were merging together [27]. This favorable process reduces the overall surface energy due to the
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Figure 4. Schematic representation of the possible growth of @-Mn, 05 nanorods.
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Figure 5. The UV-absorption spectrum of @-Mn, 03 nanorods.

elimination of energy associated with unsatisfied bonds [28]. A decrease in the length of the a-Mn, 05 nanorods
could be explained by the limited lateral aggregation of nanoparticles. It may be possible to explain the sharp tip
of some a-Mn,05 nanorods arises because lower the surface energy and surface diffusion happened during the

growth of the nanostructures [29].

3.4. Optical absorption analysis

UV-visible absorption spectrum of @-Mn,O3 nanorods were plotted in figure 5(a). A well-defined sharp and
strong absorbance peaklocated at 300 nm due to the electron excitation from filled to the empty band was
observedin m — 7" electronic transition [14]. The energy bandgap of the sample was calculated using the Tauc
expressed in a relation between the absorption coefficient (o) and the energy of the photon (hv) as follows,

(ahv)? = (hv — Ep)" 2

It reveals that the obtained plotting gives to the linear portion of the curves in a certain region. The energy
bandgap (Eg) was estimated using the intercept of the linear portion of the curve (ahv)* versus (hv) shown in the
inset of figure 6(b) and was found energy bandgap was 3.4 eV. This value is reported in the early reports of
a-Mn,03 nanorods [8]. The absorption edge and bandgap of a-Mn, 05 nanorods showed that photocatalytic
reaction under UV conditions. Especially in the light wavelength range is 300 nm in photocatalytic application.
Thus, it was necessary to understand its optical property and band structure.

3.5. Photoluminescence properties

The room temperature PL spectrum of the a-Mn, O3 nanorods was examined using the Xe excitation source
with excited wavelength at 300 nm is shown in figure 6. It can be seen that the PL spectrum of a-Mn,0;
nanorods exhibits a broad blue emission band [21]. The broad blue band emission is due to the presence of
oxygen vacancies that oxygen vacancies generally act as a deep defect the intrinsic point defect levels confined
between the Mn 3d band, and O 2p band can result in a broader blue emission ban. In conclusion, our PL results
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2.5 1'2- () min
—am ® ) -
20{ o mo 1.0 2ol
=20 min —50111;:
] ——30 min ¥ 0.8 B
g 1.54 —40 min g _w:::
—50 min = -
% —60 m:n 'E 0.6- —::E::
s 1.04 —T0) m?n e
7 ~——80 min 2 0.4+
': ——90 min <
—100 mi
0.54 —1202:: 0.2-
—————
A L T I 0'(3":10 500 600 700 800
400 500 600 700 800

Wavelength(nm) Wavelength(nm)

Figure 7. (a) UV-Visible absorption for the degradation of Methylene Blue. (b) Rhodamine B in the presence of «-Mn, 05 nanorods.

have evidenced the presence of vacancy in oxygen. In addition, many literature studies report oxygen vacancy
was increased the photocatalytic reaction [30].

4. Photocatalytic dye degradation

The efficient photocatalytic activity of «-Mn, 03 nanorods was evaluated by the degradation of methylene blue
(MB) and rhodamine B (RB) under UV illumination at different irradiation times. The decolorization of dye
molecules efficiency was calculated using the formula E % = (1—C/Co) *100, where C is the residual
concentration of MB and RB at different illumination time intervals. Co is the concentration of the MB and RB
before illumination [31]. Figures 7(a) and (b) reports the presence of photocatalyst with (MB) and (RB) under
UV lamp conditions, respectively. As the irradiation time increases, the maximum absorbance peak decreases
slowly. This observation denotes that the concentration of the MB and RB decreases.

Figure 7(a) shows the complete dye degradation at 120 min for MB. Figure 7(b) rhodamine B (RB)
absorbance peak was completely decreased at 70 min that indicates the total degradation of MB and RB dye and
also designates the destroyed double bond of the chromophore [32]. In order to study the effect of ®-Mn, O3
photocatalyst on RB and MB, the blank without photocatalyst was also tried, which were presented in
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Figure9. (a) The degradation efficiency for Methylene blue and RhodamineB. (b) Photocatalytic degradation of (MB) and (RB) under
the irradiation of UV light over a-Mn, 03 nanorods.

figures 8(a), (b), respectively. Even after 30 min of irradiation time, the absorbance peak looked slightly changed,
and there was no decolorization took place. However, the significant decrease in the absorbance spectrum and
the effect of decolorization were observed in 30 min of irradiation when the a-Mn,O5 photocatalyst added with
RBand MB.

Figure 9(a) shows the % of degradation of the MB and RB dye with different photocatalyst dosage. In order to
compare the efficiency of photocatalyst, the % of degradation of MB at 120 min and RB at 70 min were estimated
as 95% and 80%, respectively. The values were listed in table 1, which was compared with the earlier reports in
table 2. Figure 9(b) shows the decreasing concentration of the MB and RB dye versus different illumination time
intervals for the samples. It depicts that the good surface states and crystallinity of single-crystalline a-Mn, O3
nanorods improve the photocatalytic performance [27].

4.1. Decolorization of dye molecules mechanism

The schematic diagram in figure 10 represents the photocatalytic charge transfer taking place mechanism of
a-Mn,0O; nanorods. Photocatalytic reaction was initiated by the photon incident on the photocatalyst, where
the photoelectron excited from the valence band of a photocatalyst to the conduction band [39, 40]. The
photoelectron excitation process leaves behind a hole in the valence band. The net result electron and hole pairs
(e~ /h™) generated as a photocatalyst equation (3).
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Table 1. The optimized condition for the degradation of Methylene blue and Rhodamine blue
using o- Min, O3 nanorods and the degradation efficiency.

Parameters Methylene blue Rhodamine B Degradation efficiency
Volume of the sample 100 ml 100 ml

Initial concentration 2.5 mg 2.5 mg

Weight of catalyst source 6.5 mg 4.5mg 95% (MB)
Source 254 nm 254 nm 80% (RB)

Time taken for degradation 120 min 70 min

Table 2. Comparison of a-Mn, O3 Nanorods by absorption with
reported literature values.

Catalyst Reaction time Removal % References
a-Mn,0; 120 90.2 [33]
CeO,/V,0s5 300 76.9 [34]
CeO5/CuO 300 85.7 [35]
a-Bi,0; 360 30 [36]
NiO 300 70.2 [37]
Fe,05/TiO, 60 80 [38]
a-Mn,0; 240 71 22]

a- Mn,0; 120 95 Present work
a-Mn,03 70 80 Present work

Electron transfer
e+02 0,

»
C0,+H,0

Cy16H15CI NS (MB)
hy(UV) C,¢H;,Cl N,0, (RB)

a-Mnz203

h+ h+ h+

VB {
w

Figure 10. Photocatalytic dye degradation mechanism of a-Mn,05.

Mn,0; + hv(UV) — Mn,O3 + h*(VB) + e (CB) 3)
While surface-bound water molecules react with the photogenerated hole (h* v ) to produce hydroxyl
radicals. The hydroxyl radicals (OH) is a powerful oxidizing potential agent equation (5)
H,O — H" + OH~ (4)
OH™ + h*(VB) — OH°(Hydroxyl radicals) 5)
Electron in the conduction band is occupied by the oxygen in order to produce anionic superoxide radicals

equation (6). This reduction and oxidation process is capable of degradation of the MB and RB under UV light
[10,41].

0O, + e (CB) — Of~ (Anionic superoxide radicals) 6)
OH° + MB(or)RB — CO,_ + H,0 7)
05~ + RB(or)MB — CO, + H,O 8)

In the case of one- dimensional nanostructured a-Mn,O5 nanorods, the photogenerated electrons can
traves along the length of the crystal as the space-charge region is well constructed in the longitudinal direction

8
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[16]. The increase in the delocalization of electrons in a-Mn, O3 nanorods can lead to decrease in the probability
of electron-hole pair recombination. This results in the existence of a large number of charge carriers on the
active sites of - Mn,0; nanorod surface, which has better degradation efficiency as compared with spherical
nanoparticles [17].

5. Conclusions

In summary, v-MnOOH in the monoclinic phase has been synthesized by the hydrothermal method. A cubic
bixbyite a-Mn, O3 nanorods were obtained by calcined v-MnOOH at 600 °C for 4 h. XRD, SEM, TEM, and
HRTEM showed the formation of cubic phase structure and well-defined large quality of rod-like morphology
with a diameter of 318.4 nm length 8.15 um, and growth mechanism of nanorods a-Mn,0; was discussed. The
decolorization of dye molecules performance for the methylene blue and rhodamine B dye solution under UV
irradiation for 120 min and 70 min. The photocatalytic dye degradation efficiency was estimated as MB (95%),
RB (80%). The results show that the degradation efficiency also depended on the photocatalyst dosage.
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