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Abstract We establish the existence and uniqueness of global (in time) positive strong solutions for

a generalized population dynamics equation with environmental noise, while the global existence

fails for the deterministic equation. Particularly, we prove the global existence of positive strong

solutions for the following stochastic differential equation

dXt = (θXm0
t + kXm

t )dt+ εX
m+1

2
t ϕ(Xt)dWt, t > 0, Xt > 0, m > m0 > 1, X0 = x > 0,

with θ, k, ε ∈ R being constants and ϕ(r) = rϑ or | log(r)|ϑ (ϑ > 0), and we also show that the

index ϑ > 0 is sharp in the sense that if ϑ = 0, one can choose certain proper constants θ, k and ε

such that the solution Xt will explode in a finite time almost surely.

MSC (2010): 60H10

Keywords: Stochastic differential equation; environmental noise; explosion; positive strong solu-

tion

1 Introduction and main results

Ordinary differential equation (ODE) is used in the study of the dynamical behaviour of entity

which in the sense of the given context must remain nonnegative for all times. One typical equation

is described by the following form [2]:{
Ẋt = Xtb(Xt), t > 0,

X0 = x > 0.
(1.1)
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For example, when b(r) = θ+kr (θ and k are given real numbers), (1.1) describes the single-species

population dynamics (see [16]), and for this equation, there is a unique solution which is positive.

However, if k > 0, the unique solution will explode at the following defined finite time

T =


1
θ log(1 + θ

kx), if θ, k > 0,
1
θ log(1 + θ

kx), if θ < 0, k > 0 and kx+ θ > 0,
1
kx , if θ = 0, k > 0.

Since the population dynamics is often subject to an environment noise ([7, 15]), this equation

can be amended into the following stochastic differential equation (SDE) with small multiplicative

noise {
dXt = Xt[b(Xt)dt+ εXtdWt], t > 0,

X0 = x > 0,
(1.2)

where {Wt}t>0 is a 1-dimensional standard Wiener process defined on a given stochastic basis

(Ω,F , {Ft}t>0,P). For b(Xt) = θ+ kXt (k, θ ∈ R), and any ε > 0, Mao, Marion and Renshaw [12]

proved that there is a unique global positive strong solution Xt(x) for (1.2).

Inspired by Mao, Marion and Renshaw [12], one can extend the stochastic population dynamics

(1.2) to the following more general equation (hereafter called a generalized population dynamics

equation) {
dXt = Xt(b(Xt) + kXm−1

t )dt+ εXα
t dWt, t > 0, m > 1,

X0 = x > 0,
(1.3)

for some α > 1. A very natural question is whether one can have an analogue result of Mao,

Marion and Renshaw [12] to (1.3). To be more precise, it is very interesting to investigate whether

there exists an optimal index α0 = α(m) for each m > 1 such that for every α > α0, there is a

unique global positive strong solution Xt(x) for (1.3)? In other words, does such an optimal

α0 exist and can one further get α0 explicitly if it exists?

In this paper, we are concerned with the above question for an even more general SDE{
dXt = Xt(b(Xt) + kXm−1

t )dt+ εX
m+1

2
t ϕ(Xt)dWt, t > 0, m > 1,

X0 = x > 0,
(1.4)

where k and ε are real numbers, ϕ is a continuously differentiable function on R+ = [0,+∞). Our

first main result is the following

Theorem 1.1 Let k be a real number which is not zero. Assume rb(r) ∈ C1(R+) and there exist

two positive real numbers c0 and m0 (< m) such that

|b(r)| 6 c0(1 + rm0−1), r ∈ R+. (1.5)

Assume in addition that r
m+1

2 ϕ(r) ∈ C1(R+). Let β ∈ (0, 1) and suppose there is a r0 > 0 such

that

inf
r>r0

ϕ(r) >

√
2|k|

(1− β)ε2
. (1.6)
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There is a unique global positive strong solution X·(x) to (1.4), namely, for every t > 0, Xt(x)

satisfies

Xt(x) = x+

∫ t

0
Xs(b(Xs) + kXm−1

s )ds+ ε

∫ t

0
X

m+1
2

s ϕ(Xs)dWs, P− a.s.,

and for all t > 0, Xt(x) is positive valued almost surely. Moreover, for every T > 0

sup
06t6T

EXβ
t (x) < +∞. (1.7)

Remark 1.1 (i) From the above result, one can claim that a multiplicative noise suppresses ex-

plosion for the solution. Besides, there exist a number of research works devoted to understanding

the effect of noise on solutions of ODEs. We just mention a few here, for instance, noise gave

rise to stochastic resonance [5, 14], noise enhanced stability [1, 11], noise delayed extinction [17],

noise stimulated explosion [10], and so on.

(ii) When ε > 0, from [8, Theorem 2.3 (i) and Theorem 2.8 (i)], there is a unique global positive

strong solution for (1.4). There are two advantages of our present result: (a) the constant ε can

take negative real number; (b) one can get the moment estimate for the strong solution. Moreover,

our proof method here is different from the proofs of Theorem 2.3 (i) and Theorem 2.8 (i) in [8].

(iii) Let b be in (1.3) which satisfies (1.5) and let α = (m + 1 + ϑ)/2 (ϑ > 0). For every

β ∈ (0, 1), if we let r0 =
(√

3|k|
(1−β)ε2

) 2
ϑ

, then

inf
r>r0

ϕ(r) = inf
r>r0
|r|

ϑ
2 =

√
3|k|

(1− β)ε2
>

√
2|k|

(1− β)ε2
.

By Theorem 1.1, there is a unique global positive strong solution Xt(x) for (1.3). However, if

ϑ = 0, then this conclusion no longer holds true.

To illustrate the last point in Remark 1.1, let us present a counterexample. For simplicity we

assume b = 0.

Example 1.1 Let b = ϑ = 0, ε = k = 1, m = 3 and α = 2. Then (1.3) degenerates into:{
dXt = X3

t dt+X2
t dWt, t > 0,

X0 = x > 0.
(1.8)

The unique strong solution for (1.8) can be represented by Xt(x) = (x−1 −Wt)
−1. Defining the

lifetime by

τ = inf{t > 0, Xt(x) = 0 or +∞},

then

τ = inf{t > 0, Xt(x) = +∞} = inf{t > 0,Wt = 1/x}
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for P(Wt = +∞) = 0. Since all paths of Winer process Wt are continuous and W0 = 0, for any

given real number x0 > 0, we derive

P{τ 6 x20} = 1− P{τ > x20} = 1− P{ sup
06t6x20

Wt < 1/x}

= 1− 2√
2πx0

∫ x−1

0
e
− r2

2x20 dr

= 1−
√

2

π

∫ x−1x−1
0

0
e−

r2

2 dr.

Therefore, Xt(x) will clearly explode in a finite time almost surely.

Remark 1.2 (i) Combining Theorem 1.1 and Example 1.1, one can see that the index α0 =

(m+ 1)/2 is optimal and thus, we give a positive answer for the question we posed.

(ii) If the noise in (1.8) vanishes, then the unique solution is given by Xt(x) = (x−2 − 2t)−
1
2 .

In this case, the lifetime is T = x−2/2. Let τ be given in Example 1.1. Then

P{τ > x−2/2} = P{ sup
06t6x−2/2

Wt < 1/x}

=
2√
πx−2

∫ x−1

0
e−

r2

x−2 dr

=
2√
π

∫ 1

0
e−r

2
dr ≈ 0.842 > 0.5. (1.9)

From (1.9), with a ‘fairly large probability’, the lifetime for (1.8) will be prolonged.

Our second main result reads as follows

Theorem 1.2 Let k, b, c0,m0, ϕ and β be given as in Theorem 1.1. We assume further that k > 0

and b(r) > 0 for r ∈ R+.

(i) Then there is a real number T0 > 0 such that

sup
06t<T0

EXt(x) = +∞. (1.10)

(ii) If there is some γ ∈ (β, 1) such that

sup
r>0

ϕ(r) <

√
2k

(1− γ)ε2

(
>

√
2k

(1− β)ε2

)
, (1.11)

then there is a real number T0 > 0 such that

sup
06t<T0

EXγ
t (x) = +∞. (1.12)

Remark 1.3 The above result can be used to discuss the blow up problems for stochastic parabolic

equations on bounded domains, and for this topic, we refer the interested reader to [9, 13]. For

more details, one also sees [3, 4].
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Let us give some examples to further illustrate our main results.

Example 1.2 Let m > 1 be a given real number. Suppose 1 6 m0 < m and θ ∈ R, we set

b(r) = θrm0−1 for r ∈ R+. Choose ϕ(r) = log(r), and consider the following SDE{
dXt = (θXm0

t + kXm
t )dt+ εX

m+1
2

t log(Xt)dWt, t > 0, m > 1,

X0 = x > 0,
(1.13)

where k, ε ∈ R are given real numbers. Then rb(r) = θrm0 ∈ C1(R+). For every β ∈ (0, 1), if one

takes r0 = e

√
3|k|
1−β , then

inf
r>r0

log(r) =

√
3|k|

(1− β)ε2
>

√
2|k|

(1− β)ε2
.

By our Theorem 1.1, there is a unique global positive strong solution Xt(x) to (1.13). Furthermore,

for every β ∈ (0, 1), and every T > 0, sup06t6T EXβ
t (x) < +∞. However, by our Theorem 1.2, if

θ > 0 and k > 0, then there is a real number T0 > 0 such that sup06t<T0 EXt(x) = +∞.

Remark 1.4 (i) In (1.13), r
m+1

2 ϕ(r) = r
m+1

2 log(r) ∈ C1(0,+∞). Since

lim
r→0

[r
m+1

2 log(r)] = lim
r→0

[r
m+1

2 log(r)]′ = 0,

if one defines r
m+1

2 log(r)|r=0 = 0, then the function is continuously differentiable on [0,+∞). All

assumptions in Theorems 1.1 and 1.2 are validated.

(ii) More generally, one can use | log(Xt)|ϑ (ϑ > 0) instead of log(Xt) in (1.13).

Example 1.3 Let m, θ, k, m0, θ and ε be given as in Example 1.2. Suppose ϑ > 0 and ϕ(r) = r
ϑ
2 .

Consider the following SDE{
dXt = (θXm0

t + kXm
t )dt+ εX

m+1+ϑ
2

t dWt, t > 0, m > 1,

X0 = x > 0.
(1.14)

Let β be in (0, 1). If we fetch r0 =
(√

3|k|
(1−β)ε2

) 2
ϑ

, then

inf
r>r0
|r|

ϑ
2 =

√
3|k|

(1− β)ε2
>

√
2|k|

(1− β)ε2
.

By our Theorem 1.1, there is a unique global positive strong solution Xt(x), and for every small

enough κ > 0, the (1− κ)-order moment of Xt(x) is finite. But, by our Theorem 1.2, we conclude

that the mean value of Xt(x) explodes at a finite time.
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2 Proof of Theorem 1.1

Since the coefficients are locally Lipschitz continuous, for every given initial value x > 0, there

exists a unique local solution Xt(x) on [0, τ) (see [6]), where τ is the lifetime, i.e.

lim
t→τ

Xt ∈ {0,+∞}.

To show that for almost all ω ∈ Ω, the solution exists globally, it only suffices to prove that

τ = +∞ a.s..

For n > 0, we define a stopping time by

τn = inf{t > 0, Xt(x)∈(
1

n
, n)}. (2.1)

Then τn < τ and τ∞ 6 τ . If we prove that τ∞ = +∞ a.s., the desired result is then followed. We

prove this statement by contradiction.

Assume that there is a constant T > 0 such that there is a positive real number δ and

P{τ∞ 6 T} > δ. (2.2)

Then there a positive real number N > 0 such that for every n > N ,

P{τn 6 T} > δ. (2.3)

Let f(r) = rβ − 1− β log(r). Then 0 6 f ∈ C2(0,+∞). For every t ∈ [0, τn], Xt > 0 and thus

we can use the Itô formula to f(Xt∧τn),

f(Xt∧τn) = f(x) +

∫ t∧τn

0

[
f ′(Xs)Xs(b(Xs) + kXm−1

s ) +
ε2

2
f ′′(Xs)X

m+1
s ϕ2(Xs)

]
ds

+ε

∫ t∧τn

0
f ′(Xs)X

m+1
2

s ϕ(Xs)dWs. (2.4)

Observing that, for every r > 0, we have

f ′(r)r(b(r) + krm−1) +
ε2

2
f ′′(r)rm+1ϕ2(r)

= β(rβ − 1)b(r) + kβ(rm+β−1 − rm−1) +
ε2

2
β(β − 1)rm+β−1ϕ2(r) +

ε2β

2
rm−1ϕ2(r)

6 c0β(rβ + 1)(1 + rm0−1) + |k|β(rm+β−1 + rm−1)

+
ε2

2
β(β − 1)rm+β−1ϕ2(r) +

ε2β

2
rm−1ϕ2(r)

=
β

2
rm+β−1

[
2|k| − (1− β)ε2ϕ2(r)

]
+ c0β(1 + rβ + rm0−1 + rm0+β−1)

+
β

2
rm−1

[
2|k|+ ε2ϕ2(r)

]
. (2.5)

In view of (1.6), there is a real number ε > 0, such that for every r > r0,

ϕ2(r) >
2|k|+ ε

(1− β)ε2
.
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Therefore,

2|k| − (1− β)ε2ϕ2(r) = 2|k| − 2|k|(1− β)

2|k|+ ε
ε2ϕ2(r)− (1− β)ε

2|k|+ ε
ε2ϕ2(r) 6 −(1− β)ε

2|k|+ ε
ε2ϕ2(r). (2.6)

By (2.5) and (2.6), for every r > r0, we arrive at

f ′(r)r(b(r) + krm−1) +
ε2

2
f ′′(r)rm+1ϕ2(r)

6 −β(1− β)εε2

2[2|k|+ ε]
rm+β−1ϕ2(r) + c0β(1 + rβ + rm0−1 + rm0+β−1) +

β

2
rm−1

[
2|k|+ ε2ϕ2(r)

]
=

[
− β(1− β)εε2

4(2|k|+ ε)
rm+β−1ϕ2(r) +

βε2

2
rm−1ϕ2(r)

]
+
[
− β(1− β)εε2

4(2|k|+ ε)
rm+β−1ϕ2(r) + c0β(1 + rβ + rm0−1 + rm0+β−1) + β|k|rm−1

]
6

[
− β(1− β)εε2

4(2|k|+ ε)
rm+β−1ϕ2(r) +

βε2

2
rm−1ϕ2(r)

]
+
[
− βε

4
rm+β−1 + c0β(1 + rβ + rm0−1 + rm0+β−1) + β|k|rm−1

]
=

βε2

2
rm−1ϕ2(r)

[
1− (1− β)ε

2(2|k|+ ε)
rβ
]

+β
[
c0r

β + c0r
m0−1 + c0r

m0+β−1 + |k|rm−1 − ε

4
rm+β−1

]
+ βc0,

which implies that there is a positive real number C such that

f ′(r)r(b(r) + krm−1) +
ε2

2
f ′′(r)rm+1ϕ2(r) 6 C, ∀ r > r0. (2.7)

Combining (2.7) and (2.5) and noting that the functions rm+β−1, rm−1ϕ2(r), rβ and rm0−1 are

continuous in r, we conclude that

f ′(r)r(b(r) + krm−1) +
ε2

2
f ′′(r)rm+1ϕ2(r) 6 C, ∀ r > 0. (2.8)

By (2.8), from (2.4), it yields that

f(Xt∧τn) 6 f(x) + Ct ∧ τn +

∫ t∧τn

0
f ′(Xs)X

m+1
2

s ϕ(Xs)dWs. (2.9)

By taking the expectation in (2.9), we gain

Ef(Xt∧τn) 6 f(x) + CEt ∧ τn.

In particular, we choose t = T , then

Ef(XT∧τn) 6 f(x) + CT, (2.10)

which also implies that

δf(Xτn) 6 P{τn 6 T}f(Xτn) 6 Ef(XT∧τn) 6 f(x) + CT. (2.11)

7



Observing that Xτn = 1
n or n, and

f(n) = nβ − 1− β log(n), f(
1

n
) = n−β − 1 + β log(n),

thus for every n > N , we conclude from (2.11) that

δ(nβ − 1− β log(n)) ∧ (n−β − 1 + β log(n)) 6 f(x) + CT. (2.12)

When n tends to infinity, the left hand side in (2.12) is infinity but the righthand side is finite,

this contraction implies that (2.2) is not true and so the solution is positive for every t > 0 almost

surely.

If we use the function g(r) = rβ instead of f(r) = rβ − 1− β log(r) and repeat all calculations

from (2.4) to (2.10) to get

EXβ
t∧τn(x) 6 f(x) + Ct, ∀ t > 0.

Therefore,

EXβ
t (x) 6 lim inf

n→∞
EXβ

t∧τn(x) 6 f(x) + Ct, ∀ t > 0. (2.13)

From (2.13), we get the estimate (1.7) and the proof is then completed. �

3 Proof of Theorem 1.2

(i) Let τn be given by (2.1). By taking the expectation in (1.4) for Xt∧τn , we arrive at

EXt∧τn = x+ E
∫ t∧τn

0
Xs[b(Xs) + kXm−1

s ]ds > x+ k

∫ t

0
EXm

s∧τnds. (3.1)

Set Yt,n = EXt∧τn , and let Yt = EXt. Let T > 0, if Yt < +∞ for every 0 < t < T , by using

the dominated convergence theorem (since 0 < Xt∧τn 6 1 +Xt) and Fatou’s lemma, it leads from

(3.1) to

Yt = lim
n→∞

Yt,n > x+ k

∫ t

0
lim inf
n→∞

Y m
s,nds = x+ k

∫ t

0
Y m
s ds. (3.2)

Consider the following ODE{
dZt
dt = kZmt , t > 0, m > 1, k > 0,

Z0 = x > 0.

Then the explicit solution of Zt is given by

Zt =
[
x1−m − k(m− 1)t

]− 1
m−1

.

Applying the comparison principle for ODE, we conclude that

Yt >
[
x1−m − k(m− 1)t

]− 1
m−1

. (3.3)
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From (3.3), there is a T0 6 x1−m/(km− k) such that limt→T0 Yt = +∞.

(ii) By Theorem 1.1 the solution Xt(x) is positive for all t > 0 almost surely, thus we can use

the Itô formula to Xγ
t∧τn , and then get

Xγ
t∧τn = xγ +

γ

2

∫ t∧τn

0

[
2Xγ

s (b(Xs) + kXm−1
s )− (1− γ)ε2Xm+γ−1

s ϕ2(Xs)
]
ds

+γε

∫ t∧τn

0
X

m+1
2

+γ−1
s ϕ(Xs)dWs

> xγ +
γ

2

∫ t∧τn

0

[
2kXm+γ−1

s − (1− γ)ε2Xm+γ−1
s ϕ2(Xs)

]
ds

+γε

∫ t∧τn

0
X

m+1
2

+γ−1
s ϕ(Xs)dWs. (3.4)

From (3.4), then

EXγ
t∧τn > x

γ +
γ

2
E
∫ t∧τn

0

[
2k − (1− γ)ε2ϕ2(Xs)

]
Xm+γ−1
s ds, (3.5)

With the help of (1.11), from (3.5), there is a real number c > 0 such that

EXγ
t∧τn > x

γ + cE
∫ t∧τn

0
Xm+γ−1
s ds = xγ + c

∫ t

0
EXm+γ−1

s∧τn ds,

The arguments from (3.2) to (3.3) apply here again, we conclude that

EXγ
t >

[
x1−m − c(m− 1)

γ
t
]− γ

m−1
. (3.6)

From (3.6), there is a T0 6 γx1−m/(cm− c) such that limt→T0 EX
γ
t = +∞. We are done. �
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