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Highlights 

 Dynamics of viscoelastic AFG beams with axial and spinning motion is studied 

 Numerical and analytical methods for determining the stability threshold are given 

 Divergence and flutter analysis for the system are performed 

 Influence of viscosity and axial load on the stability evolution is discussed 

 Mass-addition and stiffness-hardening effects of material gradation are found 
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Abstract 

For the first time, the structural dynamics and vibrational stability of a viscoelastic axially 

functionally graded (AFG) beam with both spinning and axial motions subjected to an axial load 

are analyzed, with the aim to enhance the performance of bi-gyroscopic systems. A detailed 

parametric study is also performed to emphasize the influence of various key factors such as 

material distribution type, viscosity coefficient, and coupled rotation and axial translation on the 

dynamical characteristics of the system. The material properties of the system are assumed to 

vary linearly or exponentially in the longitudinal direction with viscoelastic effects. Adopting the 

Laplace transform and a Galerkin discretization scheme, the critical axial and spin velocities of 

the system are obtained. An analytical approach is applied to identify the instability thresholds. 

Stability maps are examined, and for the first time in this paper, it is demonstrated that the 

stability evolution of the system can be altered by fine-tuning of axial grading or viscosity of the 

material. The variation of density and elastic modulus gradient parameters are found to have 

opposite effects on the divergence and flutter boundaries of the system. Furthermore, the results 

indicate that the destabilizing effect of the axial compressive load can be significantly alleviated 

by the simultaneous determination of density and elastic modulus gradation in the axial direction 

of the system. 

 

Keywords: axially functionally graded material, viscoelastic effect, axially moving and spinning 

beam, divergence and flutter instability, stability map, structural dynamics 
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1. Introduction 

The dynamics of axially moving structures has been the subject of numerous scientific studies 

over recent years [1-3]. Comprehensive reviews on the vibration and stability characteristics of 

axially moving systems can be found in the work of Marynowski and Kapitaniak [4], and Chen 

[5]. Ghayesh and Amabili [6] studied the forced dynamics and stability of translating 

Timoshenko beams with intra-span spring supports. They demonstrated that by increasing the 

axial velocity of the beam, softening behaviour could be observed in the system. Nonlinear 

forced vibration of axially moving Timoshenko beams with internal resonance was investigated 

by Ghayesh and Amabili [7]. They solved the equations of the system utilizing the direct time 

integration and pseudo-arclength continuation approaches. They also obtained the bifurcation 

diagrams, Poincare maps, and phase plane portraits for the system. Stability and post-buckling 

bifurcations of translating beams at high axial velocities were investigated analytically by 

Ghayesh and Amabili [8]. They illustrated that increasing the axial velocity leads to the 

disappearance of the higher-order bifurcations. The dynamics of rotating structures have been 

investigated by numerous researchers due to their wide applications in different engineering 

branches. Within this context, the influence of various key factors such as temperature gradient 

[9, 10], rotation axis direction [11], asymmetric geometry [12], rotating velocity fluctuation [13], 

size-dependent effects [14], and nonlinear absorbers [15] on the dynamical response of rotating 

systems have been extensively reported in the engineering literature. 

 

Functionally graded (FG) materials are an advanced class of composite materials whose 

thermomechanical properties vary smoothly and continuously in a preferred direction of the 

structure [16-23]. Compared with homogeneous and conventional laminated materials, FG 

materials display unique features such as higher fracture toughness, lower stress concentration, 

better corrosion and thermal resistance. Ghayesh [24] surveyed the nonlinear size-dependent 

dynamics of viscoelastic FG beams based on couple stress theory. He investigated the effect of 

different parameters such as viscosity, gradient index, excitation frequency, and harmonic load 

amplitude on the forced response of the longitudinal and transverse displacements of the system. 

The nonlinear mechanical response of viscoelastic FG imperfect micro-beams was examined by 

Ghayesh [25]. His results disclosed that the viscosity and the geometric imperfection have 

considerable effects on the size-dependent forced vibration of the system. The nonlinear 
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vibration of AFG tapered beams subjected to harmonic excitation was modelled by Ghayesh 

[23]. He examined the effect of various parameters such as taper ratio and power index on the 

amplitude-frequency diagrams. He also showed that by adjusting the material and geometric 

characteristics, one could tailor the vibration of the system. As a result, utilizing FG materials in 

axially moving systems could lead to outstanding performance benefits. In this field, Piovan and 

Sampaio [26] inspected the vibrations of axially moving flexible FG beams by employing the 

finite element method. Their results proved that utilizing metal as the main component of the 

beam, compared to ceramic, leads to a lower oscillation frequency in the system. Kiani [27] 

surveyed the transverse and longitudinal instabilities of moving nanobeams made of FG 

materials. His results showed that the influence of small-scale parameters on the natural 

frequencies of the moving FG nanobeam depends significantly on the order of the mode and the 

velocity of the system. Sui et al. [28] modelled the free lateral vibration of axially moving FG 

beams using the Timoshenko beam theory. They evaluated the effect of diverse parameters such 

as the axial velocity and the power-law index on the fundamental frequency of the system. Yan 

et al. [29] considered the stability of moving FG beams with time-dependent axial velocity. They 

applied the direct multiscale method to determine the stability boundaries of the system. By 

increasing the axial velocity and support stiffness parameter, the instability threshold of the 

system decreases and increases, respectively. 

 

The combination of FG materials and spinning structures is examined by several authors [30]. 

For instance, Li and Zhang [31] interpreted the dynamical response characteristics of spinning 

tapered AFG beams using the B-spline approach. They addressed the influence of the taper ratio, 

material heterogeneity, hub radius, and spin velocity on the dynamics of the system. Shafiei et al. 

[32] focused on the size-dependent vibrational characteristics of a non-uniform spinning FG 

microbeam based on the modified couple stress theory. They asserted that by considering small-

size effects, the influence of shear deformation on the dynamical behaviour of the system is more 

significant. Ebrahimi and Mokhtari [33] assessed the free transverse vibrational behaviour of 

rotating FG porous Timoshenko beams using the semi-analytical differential transform method. 

In contrast to the slenderness ratio effect, the variation of the power-law index could 

considerably affect the dynamical behaviour of the system. Zarrinzadeh et al. [34] exploited the 

finite element method to analyze the free vibration of spinning tapered FG beams with various 

                  



5 

 

boundary conditions. They explored the effect of the rotating velocity parameter, material 

heterogeneity, and the taper ratio on the dynamics of the system. Oh et al. [35] carried out a 

numerical investigation on the thermoelastic stability of thin-walled whirling FG circular beams. 

They demonstrated that the variation of the power index could significantly change the stability 

boundaries of the system. Ramesh and Rao [36] obtained the natural frequencies of pre-twisted 

rotating FG cantilevered beams. They investigated the coupling between the flapwise and 

chordwise bending modes on the dynamical response of the system for various material 

gradients. Oh et al. [37] performed a comprehensive study on the vibrations of turbomachinery 

rotating blades made of FG material and operating at high temperatures. They determined the 

effective material properties via the simple rule of mixtures and the Mori-Tanaka procedure. 

Azimi et al. [38] scrutinized the thermomechanical vibrations of rotating AFG Timoshenko 

nanobeams. They deduced that when the temperature is lower than the critical value, the 

fundamental vibrational frequency of the system decreases when the nonlocal parameter 

increases. Librescu et al. [39] simulated the dynamics of rotating thin-walled FG beams in a 

thermal environment. They concluded that the temperature gradient, as well as the alteration in 

material properties, play key roles in the determination of the critical buckling velocities of the 

system. 

 

Axially moving and spinning beams are one of the most critical elements in the design of 

mechanical and aerospace structures. Due to the combination of axial and spinning motions of 

these practical systems, they have rich dynamics amongst all of the gyroscopic systems that are 

ubiquitous in engineering. Despite the importance of the mathematical modelling and simulation 

analysis of these structures, only a few investigations have been conducted in this field. Yuh and 

Young [40] investigated the dynamical modelling of an axially moving and spinning beam 

through experimental and simulation approaches. They revealed that at high axial velocities, the 

inertia force effect on the oscillation of the system is significant. Based on the Euler-Bernoulli 

beam theory, the vibrational response of pre-twisted moving and rotating cantilevered beams was 

studied by Lee [41]. He illustrated that for relatively fast whirling and axial motions, the tip 

displacement of the system exhibits an apparent oscillatory behaviour. Zhu and Chang [42] 

extended Rayleigh beam theory and analytically investigated the stability of axially moving and 

whirling beams. They indicated that by increasing the rotary inertia factor, the stability 
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boundaries of the system shrink. Yang et al. [43] studied the dynamics of axially moving and 

spinning beams. They obtained the natural frequencies and bifurcation points of the system for 

variations of axial and rotational velocities. Ghayesh et al. [44] computed the nonlinear vibration 

of a rotor with axial motion. They calculated the nonlinear frequencies and stability conditions of 

the steady-state response of the system via the multiple scales method. Sahebkar et al. [45] 

discussed the nonlinear vibration of an axially moving drill string in an inclined well. They 

explained the influence of unbalanced mass and the nonlinear force of the fluid on the nonlinear 

modes of the system. Unlike moving and spinning homogeneous structures, the existing 

literature on the vibrational analysis of axially moving and spinning composite systems is 

limited. Recently, Li et al. [46] determined the coupled vibrational characteristics of an axially 

moving and spinning thin-walled composite beam. They presented a numerical study to show the 

effect of geometry characteristics such as thickness- and length-to-radius ratios, as well as 

material characteristics such as the fiber orientation angles, on the dynamical behaviour of the 

system. 

 

To the best of the authors’ knowledge, the stability and vibrational analysis of viscoelastic AFG 

beams with both axial and rotational motions subjected to axial loads has not been discussed. 

Also, the effect of axial loads and utilizing viscoelastic AFG materials on the vibrational 

behaviour and dynamical stability of bi-gyroscopic systems has not been reported. Therefore, the 

main motivation of this paper is to evaluate the impact of axial loads and the application of 

viscoelastic AFG materials on the stability improvement of structures with simultaneous axial 

and rotational motion. In section 2, the dynamical equations of the system are derived using 

Hamilton’s principle. Then, in section 3, the dynamical equations of motion of the system 

transformed into the Laplace domain. The Galerkin technique is utilized to extract the reduced-

order model. In section 4, the stability conditions of the system are presented. In section 5, to 

verify the accuracy of the utilized method in the present study, the obtained results are compared 

with those reported in the literature. Afterward, the influence of material gradation, material 

distribution type, axial load, and axial and rotation motion on the dynamical characteristics and 

stability boundaries of the system are described and highlighted in detail. The divergence 

instability borders of the system are obtained numerically and analytically. Also, for the first 
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time, it is demonstrated that by using viscoelastic AFG material, the stability evolution of the 

axially moving and spinning beams can be altered. 

 

2. Problem formulation 

A schematic view of a viscoelastic AFG simply-supported beam with both axial and spinning 

motion is given in Figure 1. The beam moves along its axial direction with constant velocity, u, 

and spins with constant spin velocity, Ω, simultaneously. The beam is of length L, and an axial 

load, P, is applied at the ends of the system.  

 

Fig. 1 Schematic view of a viscoelastic AFG beam with both axial and spinning motions under an axial load 

 

The beam is symmetric in the longitudinal direction. The cross-sectional area, A, and the moment 

of inertia, I, of the system are constant in the axial direction. Also, it is assumed that the density, 

ρ(x), and elastic modulus of the beam, E(x), change linearly or exponentially in the x-direction 

as: 

 ( )     ( )   (1) 

 ( )     ( )   (2) 

where ρ0 and E0 are the density and elastic modulus at the left end of the beam (x=0). 

For the linear distribution: 

 ( )    
 

 
(    )   (3) 

 ( )    
 

 
(    )   (4) 

For the exponential distribution: 

 ( )   
   (  )

    (5) 

  ( )   
   (  )

    (6) 
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In Eqs. (3) - (6), αρ and αE are the density and elastic modulus gradient parameters, respectively. 

They are determined as: 

   
  

  
   (7) 

   
  

  
   (8) 

where ρL and EL are the density and elastic modulus at the right end of the beam, respectively. 

In practice, although the transverse motion is usually coupled with the axial motion, the axial 

displacement is negligible compared to the transverse displacement [8]. As a result, the 

transverse motion is only considered in the present study. By considering the linear strain-

displacement relation, as well as the constitutive equation of the viscoelastic material based on 

the Kelvin-Voigt model, one obtains [47-52]: 

     
   

   
  

   

   
   (9) 

    ( )    
 

  
     (10) 

where v and w are the transverse displacements of the beam in the y- and z-directions, 

respectively. Here, β, εx, and σx are the viscosity coefficient, the longitudinal strain, and the axial 

stress, respectively. The potential energy of the system is computed as [53]: 

  
 

 
∫        

 

 

   (11) 

By ignoring the axial displacement of the system, the kinetic energy of the system can be 

expressed as [43]: 

  
 

 
∫  ( ) (   (
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   )

 

)  
 

 

   (12) 

Also, the work done by the axial load can be obtained as [54]: 

   
 

 
∫  ((

  

  
)
 

 (
  

  
)
 

)   
 

 

  (13) 

To derive the dynamical equations of motion of the system, the extended Hamilton's principle is 

utilized: 

 ∫ (      )
  

  

       (14) 
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Substituting Eqs. (11) - (13) into Eq. (14), the governing dynamical equations of motion of the 

system are obtained as: 

 ( ) ( ̈     ̇     ̇                 )    ( )  ( ̇        )      

  ( )          ( )         ( )       ( ̇            )      
(15) 

 ( ) ( ̈     ̇     ̇                 )    ( )  ( ̇        )      

  ( )          ( )         ( )       ( ̇            )      
(16) 

where the prime and dot signify the spatial and temporal derivatives, respectively. 

To extract the dimensionless equations of motion, the dimensionless parameters are given as: 

   
 

 
      

 

 
      

 

 
      

 

  
√

   

   
        √

   

   
   

      √
   

   
       

   

   
     

 √ 

  √     

    (  )    ( )    

 (  )    ( )     (  )     ( )     

(17) 

It should be mentioned that in the dimensionless axial load parameter (P
*
), the positive and 

negative signs refer to compressive and tension loads, respectively. 

By substituting the dimensionless parameters of Eq. (17) into the dynamical equations of motion 

of the system and eliminating the asterisk notation from dimensionless parameters, the non-

dimensional form of the dynamical equations of motion the system can be obtained as: 

 ( )( ̈     ̇     ̇                 )   ( ) ( ̇        )      

  ( )        ( )      ( )     ( ̇            )      
(18) 

 ( )( ̈     ̇     ̇                 )   ( ) ( ̇        )      

  ( )        ( )      ( )     ( ̇            )     
(19) 

 

3. Solution procedure 

According to the Laplace transform, one can write: 

 [ ( )( )]     ( )       ( )   (20) 

Hence, the dimensionless governing equation of motion of the system in the Laplace domain, for 

zero initial conditions, can be rewritten as: 

 ( )(                              )   ( ) (         )

       ( )        ( )      ( )     (              )      
(21) 
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 ( )(                              )   ( ) (         )

       ( )        ( )      ( )     (              )     
(22) 

To discretize the dynamical equations of motion of the system and obtain the reduced-order 

model, the Galerkin discretization scheme is utilized. Therefore, the transverse displacements of 

the system can be approximated by [43, 55, 56]: 

 (   )  ∑  ( )  ( )

 

   

   (23) 

 (   )  ∑  ( )  ( )

 

   

   (24) 

where n is the number of basis functions, and q and p are the dimensionless generalized 

coordinates in the y- and z- directions, respectively. Also,   is the dimensionless approximation 

function for the system displacements along y- and z- directions and is defined for pinned-pinned 

boundary conditions as [42, 57, 58]: 

  ( )  √    (   )   (25) 

Substituting Eqs. (23) and (24) into Eqs. (21) and (22) and then applying the Galerkin scheme, 

the dimensionless generalized form of the discretized equations of the system can be expressed 

in the form: 

 ( )  [
    

     
]   [

    

     
]    [

   
   

]   (26) 

where Z denotes the coefficient matrix, and the elements of matrices M1, G1, G2, K1, and K2 can 

be expressed as: 

(  )   ∫  ( )  ( )  ( )  
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(  )     ∫  ( )  ( )  
  ( )  
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(30) 

(  )       ∫  ( )  ( )  
 ( )  

 

 

   ∫  ( )  ( )  ( )  
 

 

   (31) 

 

4. Stability analysis 

For the existence of non-trivial solutions, the determinant of the coefficient matrix must be equal 

to zero. suhT 

   [ ( )]      (32) 

The complex-valued roots ( ) of Eq. (32) are the eigenvalues of the system and can be calculated 

in terms of axial load, viscosity coefficient, axial and spin velocities, density and elastic modulus 

gradient parameters. The imaginary parts of the eigenvalues (ω=Im( )) are the damped natural 

frequencies of the system. The real parts of the eigenvalues ( =Re( )) are related to the damping 

of the system. It should be mentioned that the system experiences divergence instability when 

Im( )=0. Also, flutter instability occurs in the system when Im( ) 0 and Re( )>0 [43, 50, 59]. 

 

5. Results and discussion 

In this section, a comparison study is performed to ensure the accuracy of the presented 

procedure. Then, the influence of axial load, density and elastic modulus gradations along the 

beam length on the stability boundaries is clarified. Finally, the effect of material distribution 

types, viscosity coefficient, axial load, and simultaneous variation of the material properties on 

the dynamical behaviour of the system are discussed. 

 

5.1. Model validation 

Firstly, the natural frequencies of the system are obtained by ignoring the axial material 

gradation, viscoelastic effect, and external axial load, and are compared with existing results in 

the literature. The real and imaginary parts of the first four natural frequencies of the 

homogeneous beam are given in Figures 2 (a-b) when Ω=5. The results of the present study are 
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in good agreement with those reported by Yang et al. [43]. As shown in Figure 2, compared with 

axially moving beams and spinning beams, the beams with both axial and spinning motions 

experience the following stability evolution: stable – first mode divergence – stable – mode-

coalescence flutter – stable – first mode divergence – stable – mode-coalescence flutter. Hence, 

in contrast to mono-gyroscopic systems, bi-gyroscopic systems may experience two different 

divergence velocities (ud
1
, ud

2
) and two different flutter velocities (uf

1
, uf

2
) as the axial velocity 

increases. 

 

(a) 
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(b) 

Fig. 2 (a) Imaginary and (b) real parts of the first four dimensionless eigenvalues of the homogeneous 

system when ζ=0, P=0, Ω=5, u=2 

 

5.2. Effect of the elastic modulus gradient parameter 

In this subsection, it is assumed that the elastic modulus of the system varies linearly along the 

axial direction. Figures 3 (a-d) show the natural frequencies of the system against the axial 

velocity for various spin velocities and P=0. As shown in Figure 3a, in the absence of the spin 

velocity (Ω=0), the fundamental frequency of the system has one branch. Thus, the transverse 

frequencies of the system coincide. In this case, by increasing the axial velocity, the fundamental 

frequency of the system decreases monotonically until it vanishes at the critical divergence axial 

velocity (ud). As shown in this figure, by increasing the elastic modulus gradient parameter, both 

the fundamental frequency and the critical divergence axial velocity of the system increase. This 

trend can be justified by the fact that the elastic modulus gradient parameter only contributes to 

the stiffness matrix of the system; hence, increasing αE induces the stiffness-hardening effect in 

the system and leads to a stiffer system. In other words, by increasing αE, the divergence strength 

of the system increases, and the divergence phenomenon occurs at higher axial velocities. 
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Figures 3(b-d) show that the Coriolis gyroscopic effect causes a bifurcation of the natural 

frequency when the system has combined axial and spinning motions. As a result, the natural 

frequency of the system is divided into two separate branches, namely backward whirling (lower 

branch) and forward whirling (upper branch). In this case, the forward and backward whirling 

motions occur alternatively for the first two modes, and a traveling wave with spatial 

configuration can occur. The effect of the axial velocity variation on the natural frequency curves 

of the system is dramatically dependent on the spin velocity of the system. Figure 3(b) shows 

that, for small spin velocities (e.g., Ω=5), firstly, by increasing the axial velocity, the backward 

and forward frequencies of the system decrease gradually reaching to a specific axial velocity 

(ud), in which the backward frequency becomes zero and the system experiences the buckling 

phenomenon. As the axial velocity increases, the system regains its stability immediately. In this 

condition, as the axial velocity increases further, the backward frequency has an increasing trend, 

while the forward frequency has a decreasing trend. This trend continues until the lower and 

upper branches of the natural frequency coincide and merge into a single branch. In this 

condition, a two-direction coupling flutter happens in the natural frequency diagram. As a result, 

the system undergoes the flutter phenomenon, and a coupled-mode flutter occurs between the 

general coordinates in the two transverse directions. In this case, the system displacements 

become unstable with an oscillatory response. According to Figure 3(b), by increasing αE, both 

the critical divergence and the flutter axial velocities increase. Also, for axial velocities lower 

than the critical divergence axial velocity (u<ud), the axial material gradation has the same 

influence on the lower and upper branches of the system frequency, so that by increasing αE, the 

forward and backward frequencies of the system increase. While for u>ud, this effect is reversed 

for the lower branch of the natural frequency. 

 

At moderate values of spin velocity, the critical divergence axial velocity of the homogeneous 

system tends to zero. For example, as demonstrated in Figure 3(c), the critical divergence axial 

velocity of the homogeneous system becomes zero when Ω=9.87. Consequently, for αE>1, since 

the divergence phenomenon occurs in the system, the dynamical behaviour of the system and the 

effect of the axial elastic modulus gradient are similar to that of Figure 3(b). While, for αE<1, the 

system only experiences the flutter instability, and the divergence instability does not happen. In 

this case, by increasing the axial velocity, the lower and upper branches increase and decrease, 
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respectively. For high spin velocities (e.g., Ω=12), since the divergence does not happen in the 

system, the backward and forward frequencies of the system decrease and increase, respectively, 

as αE increases (see Figure 3(d)). 

 

Based on Figures 3 (a-d), by increasing the spin velocity of the system, the natural frequency 

branches of the system shift to higher frequencies. Therefore, the divergence axial velocity of the 

system (the intersection between the lower frequency branch and the x-axis) decreases by 

increasing the spin velocity. However, at high spin velocities, the divergence phenomenon does 

not happen in the system. It should be noted that the spin velocity variation does not affect the 

critical flutter axial velocity of the system, whereas both the critical divergence and flutter axial 

velocities can be affected simultaneously by increasing αE. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Fig. 3 Dimensionless natural frequencies of the system versus axial moving velocity when ζ=0, P=0, 

αρ=1 (a) Ω=0 (b) Ω=5 (c) Ω=9.87 (d) Ω=12 

 

Figure 4 shows the stability map of the system in the u-P plane when Ω=5 and the critical 

divergence axial velocities and flutter boundaries are given. The system is stable for velocities 

lower than the first critical divergence axial velocity (u<ud
1
). Moreover, the system experiences 

the flutter instability for velocities higher than the second critical flutter axial velocity (u<uf
2
). As 

the axial compressive load increases, the effective stiffness of the system decreases. As a result, 

the system stability regions shrink, and the likelihood of divergence and flutter instability 

increases. In other words, increasing the axial compressive load results in shifting the divergence 

and the flutter instability borders to lower axial velocities. Additionally, as can be observed in 

Figure 4, the elastic modulus gradient parameter plays a crucial role in the determination of the 

stability borders. Compared to homogeneous systems, by increasing αE, the critical axial 

velocities of the system tend to move to higher velocities, and the system stability regions 

expand. It should be emphasized that the effect of the axial material grading on the first critical 

divergence and flutter axial velocities of the system is more significant. 
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Fig. 4 Dimensionless critical axial velocities of the system versus the axial load when ζ=0, Ω=5, αρ=1 

 

Figures 5 (a-b) show the natural frequencies of the AFG beam against the spin velocity for two 

axial velocities when P=0. Based on Figure 5(a), when the homogeneous system has only 

spinning motion (i.e., u=0), by increasing the spin velocity, the first forward frequency increases, 

while the first backward frequency decreases. This trend continues until the first backward 

frequency becomes zero at a specific spin velocity, and the divergence phenomenon occurs in the 

system. The corresponding spin velocity is called the divergence spin velocity (Ωd). Afterward, 

by further increasing the spin velocity, both the first backward and forward frequencies of the 

system increase, and the first lower and upper frequency branches become parallel. Since the 

lower and the upper branches of the natural frequency do not coincide, one can state that the 

flutter spin velocity of the system is theoretically infinite. As shown in this figure, by decreasing 

αE, the divergence spin velocity of the system decreases. Also, for Ω<Ωd, by decreasing αE, both 

of the first backward and forward frequencies of the system decrease, while for Ω>Ωd, the first 

backward frequency increases with decreasing αE. This trend occurs similarly for the higher 

vibrational modes and, for the higher modes, the system experiences the divergence phenomenon 

at higher spin velocities. 
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According to Figure 5(b), when the axial velocity increases (e.g., u=3), the first forward 

frequency of the system decreases in the homogeneous system. In this case, the first backward 

frequency of the system decreases for Ω<Ωd, while increases for Ω>Ωd. In other words, at the 

same spin velocity, by increasing the axial velocity, the first forward frequency of the system 

decreases. In this condition, the backward frequency of the system for spin velocities lower and 

higher than the divergence spin velocity, decreases and increases, respectively. Also, by 

increasing the axial velocity, the divergence spin velocity of the system decreases. Meanwhile, 

after the divergence phenomenon, by increasing the axial velocity, the natural frequency 

branches of the system remain parallel. By decreasing αE, the divergence spin velocity and the 

forward frequency of the system decreases. Also, by decreasing αE, for Ω<Ωd and Ω>Ωd, the 

system backward frequency decreases and increases, respectively. Based on Figures 5(a-b), by 

varying αE, the natural frequency branches of the system are displaced in parallel. For higher 

vibrational modes, increasing the axial velocity, decreases the forward frequency. While by 

increasing u, the backward frequency decreases/increases in the pre/post-buckling condition. 

Additionally, as can be shown in Figure 5(b), at high axial velocities, by decreasing αE (e.g., 

αE=0.6), the instability divergence phenomenon is not observed in the dynamical behaviour of 

the system. In this case, the first backward and forward branches coincide, and the system loses 

its stability via the flutter instability for all spin velocities. Based on Figures 3 and 5, it can be 

concluded that compared with the homogeneous case, by varying αE in the AFG systems, the 

stability evolution of the system can be changed. 
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(a) 

 

(b) 

Fig. 5 Dimensionless natural frequencies of the system versus spin velocity when P=0, ζ=0, αρ=1 (a) 

u=0 (b) u=3 
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In Figures 6 (a-b), the stability map of the system in the Ω-P plane is presented for the first and 

second vibrational modes, respectively, when u=1. Also, the divergence border and the flutter 

boundary of the system are given in these figures. In Figure 6 (a), for the homogeneous system, 

as P increases for low spin velocities (i.e., Ω<9.1), the system is initially stable. At a specific 

axial compressive load, the system experiences the divergence instability. Physically, the beam 

buckles in both transverse directions through the divergence phenomenon. Then, the system 

becomes stable again. In other words, for relatively low spin velocities, the initial instability for a 

conservative system is always of the divergence type. As is evident from this figure, the two 

stable regions are separated from each other by divergence instability border. So, the divergence 

phenomenon only occurs on this border, and the divergence instability region does not exist in 

the stability map. By further increasing the axial compressive load (i.e., P>8.9), the system loses 

its stability via the flutter instability, and the system never regains its stability. In other words, to 

the right of the vertical lines, the system undergoes the flutter instability. Also, for high spin 

velocities (e.g., Ω>9.1), the system does not exhibit the divergence type of instability. In this 

condition, by increasing the axial compressive load, first, the system is stable, and then the flutter 

instability occurs. Hence, one can state that for low spin velocities (i.e., Ω<9.1), the stability 

evolution of the homogeneous system is “stable – divergence – flutter”. While, for high spin 

velocities (i.e., Ω>9.1), the stability evolution changes to “stable – flutter”. Based on Figure 6, by 

increasing αE, the divergence border shifts to higher values of P and Ω. Also, since increasing αE 

induces the stiffness-hardening effect in the system, the flutter boundaries move to higher axial 

loads. Additionally, according to Figures 3-6, increasing the spin and axial velocities lead to a 

decrease in the divergence axial velocity and divergence spin velocity, respectively. According 

to Figure 6(b), a similar trend occurs for the second vibrational mode, with the difference that the 

divergence border and flutter threshold of the system occurs at higher spin and axial velocities. It 

should be mentioned that when the system undergoes flutter for each vibrational mode, the 

system becomes unstable. 
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(a) 

 

 

(b) 

Fig. 6 Stability map of the system in the Ω-P plane for (a) first and (b) second vibrational modes when 

ζ=0, u=1, αρ=1 
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To better investigate the dynamical behaviour of the system, the divergence spin velocity of the 

system is plotted against the elastic modulus gradient parameter in Figure 7 for various axial 

velocities. As observed, by increasing αE, the divergence spin velocity curves have an increasing 

trend for all axial velocities. By increasing the axial velocity, the divergence spin velocity of the 

system decreases. Moreover, at high axial velocities, the divergence spin velocity of the system 

vanishes for small values of the αE. In this case, even in the absence of the rotational movement, 

the axial moving beam is in the flutter instability zone. In this condition, by increasing the axial 

velocity, the flutter instability boundary extends. 

 

Fig. 7 Dimensionless critical divergence spin velocity of the system versus elastic modulus gradient 

parameter when ζ=0, P=0, αρ=1 

 

5.3. Effect of the density gradient parameter 

In this subsection, it is supposed that the system density is graded linearly in the longitudinal 

direction of the beam. To study the influence of the axial density variation on the vibrational 

behaviour of the system, for various density gradient parameters, the natural frequency of the 

system is plotted against the axial velocity in Figure 8 in the absence of the axial compressive 

load and for Ω=9.5. As can be seen, by increasing αρ, the forward frequency of the system 
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decreases for all axial velocities. Also, for axial velocities lower than the divergence axial 

velocity (u<ud), by increasing the density gradient parameter, the backward frequency decreases, 

whereas this pattern is reversed for u>ud. Additionally, the divergence and the flutter axial 

velocities of the system decrease with increasing αρ. 

 

Fig. 8 Dimensionless natural frequencies of the system versus axial velocity when ζ=0, P=0, αE=1, 

Ω=9.5 

 

The variations of natural frequencies of the system against the spin velocity are shown in Figure 

9 for u=2.5 and various density gradient parameters. Clearly, with the variation of the system 

density along the beam direction, the natural frequency curves remain parallel. Based on this 

figure, by increasing αρ, the forward frequencies of the system decrease for all values of Ω. 

Furthermore, by increasing αρ, the backward frequencies of the system decrease for the pre-

buckling regime, while this trend is reversed for the post-buckling regime. Consequently, it can 

be stated that the density gradient parameters and the elastic modulus have opposite effects on 

the vibrational behaviour of the system. 
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Fig. 9 Dimensionless natural frequencies of the system versus the spin velocity when ζ=0, P=0, u=2.5, 

αE=1 

 

To understand the stability of the system in the case of axial density gradation, the divergence 

spin velocity against the density gradient parameter is displayed in Figure 10 for P=0 and various 

axial velocities. As expected, by increasing the axial velocity, the divergence spin velocity of the 

system decreases. This indicates that the reduction of the axial velocity expands the stability 

region, especially for large values of αρ. In other words, the spinning beams without axial motion 

are more stable in comparison to the spinning and moving beams. Also, it can be seen that for 

large values of αρ, the divergence velocity of the system becomes zero by increasing the axial 

velocity. In this case, the divergence instability does not occur in the system, and the flutter 

instability happens for all spin velocities. Another important point in this figure is that in contrast 

to the Ωd-αE curves, the Ωd-αρ curves are overall descending with ascending the density gradient 

parameter. Therefore, it can be expressed that the density gradient parameter has a decreasing 

effect on the stability of the system. 
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Fig. 10 Dimensionless critical divergence spin velocity of the system versus the density gradient 

parameter when ζ=0, P=0, αE=1 

 

To better evaluate the influence of the axial density gradation on the dynamics of the system, the 

first divergence instability border of the system is presented in Figure 11 for different values of 

αρ and compared with the homogeneous case when P=0. Compared to the homogeneous system, 

by increasing αρ, the divergence phenomenon occurs at lower spin and axial velocities, and vice 

versa. According to Figures 8-11, the density gradient parameter has a mass-addition effect on 

the dynamical behaviour of the system; hence, one can conclude that ascending αρ has a 

destabilizing effect on the system. Also, based on Figures 3-11, it can be stated that the 

increment of elastic modulus gradient, as well as the decrement of the density gradient, are 

practical approaches to improve the stability behaviour of bi-gyroscopic systems and delay the 

initiation of the static and dynamic instabilities in the system. 
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Fig. 11 Effect of density gradient parameter on the first divergence instability border of the system 

when ζ=0, P=0, αE=1 

 

5.4. Effect of distribution profile of material characteristics  

In this subsection, it is assumed that either the density or the elastic modulus is graded either 

linearly or exponentially in the axial direction of the system. Figure 12 shows the backward and 

forward frequencies with linear and exponential distributions of the material properties against 

the density and elastic modulus gradient parameters for u=1 and Ω=4. By increasing αE and αρ, 

the natural frequency of the system increases and decreases, respectively. It should be noted that 

when αE=1 and αρ=1, the considered system degenerates to the homogeneous case and, 

consequently, the natural frequencies of this system for the linear and exponential distributions 

of the material properties are equal. Another important feature in this figure is that compared 

with the exponential elastic modulus distribution, the natural frequencies of the linear elastic 

modulus distribution are higher, whereas, the natural frequencies for the exponential density 

distribution are higher than that for the linear density distribution. 
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Fig. 12 Dimensionless natural frequencies of the system versus the density and elastic modulus 

gradient parameters when ζ=0, P=0, u=1, Ω=4 

 

In Figure 13, the effect of the various distributions of the material properties on the first 

divergence instability border of the system is shown for Ω=2 and P=0. As expected, for the 

exponential and linear distributions, the divergence borders of the system coincide when αE=1 

and αρ=1. Based on this figure, increasing αE and decreasing αρ expand the stability region of the 

system. As a result, the system is more stable when αE>1 and αρ<1. Clearly, in the cases of axial 

variations of density and elastic modulus, the system is more stable with the exponential and 

linear distribution profiles, respectively. In other words, for the density variation, the exponential 

distribution results in a wider stable region, while for the elastic modulus variation, the linear 

distribution leads to a more stable system. 
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Fig. 13 First dimensionless critical divergence axial velocity of the system versus the density and 

elastic modulus gradient parameters when ζ=0, P=0, Ω=2 

 

5.5. Effect of simultaneous variation of material properties 

In this subsection, it is assumed that the density and elastic modulus gradients are equal 

(αρ=αE=α) and varied simultaneously in the longitudinal direction based on the linear 

distribution. In Figure 14, the first critical divergence axial velocity of the system against the 

gradient parameter (α) is given for various axial loads. Clearly, the obtained divergence 

instability borders using the numerical solution are in good agreement with those acquired by the 

analytical approach presented in the Appendix. As expected, by decreasing the axial compressive 

load or increasing the tensile load, the stability region of the system enlarges. In the case of an 

axial compressive load, increasing the gradient parameter has a stabilizing effect on the system, 

whereas, in the case of an axial tensile load, increasing the gradient parameter is destabilizing. 

Therefore, one can conclude that the destabilizing effect of the axial load can be considerably 

mitigated by the simultaneous determination of the density and the elastic modulus gradients in 

the axial direction. Also, a rapid change can be observed in the critical divergence axial velocity 

of the system at small values of the gradient parameter. However, for relatively large α values, 
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the critical divergence axial velocity loses its sensitivity to the gradient parameter, and for 

different axial loads, the stability borders of the system are parallel. 

 

Fig. 14 First dimensionless critical divergence axial velocity of the system versus gradient parameter 

when ζ=0, Ω=1 

 

5.6. Effect of viscosity 

Finally, to investigate the influence of viscoelastic materials on the dynamics of the system, the 

imaginary and real parts of the first four eigenvalues of the system against the axial velocity are 

shown in Figures 15(a-b), respectively, for different viscosity coefficients when Ω=1, u=2. 

Clearly, the critical divergence velocity of the system does not change with the viscoelastic 

effect of material. This feature can be proved by the presented analytical approach in the 

Appendix. Since the viscoelastic system is non-conservative, the natural frequencies of the 

system become complex prior to the occurrence of the divergence phenomenon, especially the 

natural frequencies of higher modes. Based on Figure 15(b), the imaginary parts of the natural 

frequency curves lose their symmetry to the x-axis. As shown, the viscoelastic system 

experiences the stability evolution as “stable – first mode divergence – stable – first mode flutter 

– first mode divergence – first mode flutter”. In addition, the first two natural frequency branches 

do not merge into a single branch beyond the critical divergence velocity. As a result, it can be 

                  



31 

 

concluded that compared with the homogeneous system, utilizing viscoelastic material changes 

substantially the stability evolution of the system. Generally, it can be explained that the 

qualitative stability of axially moving and spinning beams is dependent on the effect of the 

viscoelastic materials, while axial gradation of materials plays an important role in determining 

quantitative values of critical velocity and natural frequencies of the system. 

 

(a) 
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(b) 

Fig. 15 (a) Imaginary and (b) real parts of first four eigenvalues of the system when P=0, u=2, Ω=5 

 

6. Conclusion 

In this work, a detailed analysis of the dynamical configuration and structural stability of 

viscoelastic AFG beams with both axial and spinning motions subjected to an external axial load 

is performed. The Laplace transform, and a Galerkin discretization scheme are employed to 

solve the model equations. To investigate the divergence and flutter instability conditions, 

numerical and analytical procedures are applied. The influence of different parameters such as 

axial grading of the material properties, axial load, viscosity coefficient, axial and spin velocities 

on the vibrational behaviour of the system is studied. The results revealed that by increasing the 

elastic modulus and decreasing the density in the longitudinal direction of the system, the 

forward frequency of the system increases. The effect of axial material gradation on the 

backward frequency is more complicated. If the system is prone to experience divergence 

instability, the backward frequency increases/decreases at lower/higher velocities than the 

critical divergence axial velocity by increasing the elastic modulus gradient parameter and 

decreasing the density gradient parameter. Otherwise, increasing/decreasing the elastic 
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modulus/density gradient parameter leads to a reduction in the backward frequency. It is 

understood that an increase in the density and elastic modulus gradient parameters has 

destabilizing and stabilizing effects on the system, respectively. In other words, compared with 

the homogeneous systems, the AFG system is more stable when the density decreases and the 

elastic modulus increases in the longitudinal direction. In addition, in the case of density/elastic 

modulus variation, the exponential/linear distribution leads to a more stable system and higher 

frequencies. It is concluded that the variation of spin velocity does not affect the flutter 

instability threshold of the system. It is demonstrated that by accurately adjusting the axial 

gradation of material, the divergence instability in the system can be eliminated, and the flutter 

instability threshold can be delayed. Additionally, it is shown that by utilizing the viscoelastic 

material in the system, the stability evolution of the system can be drastically altered. Also, the 

obtained results indicated that by determining the density and the elastic modulus gradients in the 

longitudinal direction simultaneously, the destructive effects of the axial compressive load could 

be considerably alleviated. The modelling and results of the present research could be helpful in 

the design of viscoelastic inhomogeneous bi-gyroscopic continua. 

 

Appendix 

When the system has the critical divergence spin or axial velocity, the lowest natural frequency 

of the system, (i.e., the backward frequency) becomes zero. This implies that the system loses its 

stiffness in the primary mode. As a result, to extract analytically the critical divergence velocity 

related to the first mode, Eq. (26) is reduced to the following equation by considering one mode 

(r=s=1): 

    [
      

       
]  *

      

       
+  [

    
    

]   (A.1) 

By considering the linear variation of the material properties, elements can be written: 

      (    )    ((    )     )    (    )   (A.2) 

        (    )   (A.3) 

According to the stability theory of the linear gyroscopic systems [60], when the eigenvalues of 

the system are zero, the determinant of the stiffness matrix becomes zero. Therefore, the critical 

divergence spin or axial velocity of the system can be obtained from the following relation: 
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