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• Proposing an approximate model based control strategy for soft robots. 
• Using data-driven approaches to approximate the robot’s model and formulate an 

•  

• . 

Highlights (for review)
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inverse dynamics controller. 
 Controlling a soft robotic finger to prove the efficacy of the controller and their

application in home automation. 
 Extensive experimental result of and comparison with other controllers are presented
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Abstract

Soft robots have the advantage of inherent flexibility, adaptability, compliance,

and safety in human interaction, and therefore attracted significant research

attention in recent years. They have found interesting applications in industrial

automation where soft robotic hands are fitted as end-effector on traditional

rigid robotic arms to handle delicate objects. Their inherent compliance with

the shape of the object reduces the complexity of sensing and actuation mech-

anisms required for the safe operation of traditional robotic hands. They also

have the potential application in the home automation, since the operation of

robots in indoor environment impose a stringent requirement on safety and

compliant design. Despite this, the dynamic manipulation of soft robots re-

mains challenging because their inherent flexibility makes their mathematical

model highly nonlinear. Existing works either use model-free control, e.g., PID,

which owing to its general formulation, does not account for the peculiarity

of soft robots, or they use the Finite-Element-Method based approach, which,

apart from being computationally expensive, requires an exact model of the soft

robots. In this paper, we take a holistic approach by first developing a low-order

approximate mathematical model for computational efficiency and then adding

a feedback loop using an inverse dynamics controller to compensate for modeling
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errors. Theoretical analysis is presented to prove the convergence and stability

of the proposed controller. Extensive experimental and comparison results also

prove the superiority of the proposed controller over other algorithms.

Keywords: Soft robotics, Modeling, Inverse dynamics.

1. Introduction

Soft robots, i.e., the development of robotic systems using soft materials,

have been gaining research attention in recent years. The significant features

distinguishing soft robots from traditional rigid robots are flexibility, compli-

ance, adaptability, and inherent safety in human interactions. Soft robots can

be used to solve several problems posed by rigid robotic systems. A heavy me-

chanical structure, a limited degree of freedom, potential structural damage, or

control circuitry malfunctions are a few of the problems posed by rigid robots

that can be solved by using soft robots. Fig. 1 illustrates the differences between

rigid and soft robots. The most common types of soft robots use pneumatic pres-

surization as the actuation source. The body of the robot consists of several

inflatable chambers, which expand when the air pressure is increased. The ac-

tuation produced by a soft robot depends on the pattern of inflatable chambers.

Soft linear actuators [1, 2], and bending soft actuators [3, 4] are popular types

of soft robots that are used to produce linear and bending motions, respectively.

These can be considered the soft counterparts of linear and servo motors and

are being used to replace them in applications requiring safe interactions with

delicate objects, especially in rehabilitation applications where soft robots can

safely interact with patients performing recovery exercises. Additionally, soft

robots are also being used in industrial automation and have the potential to be

used for developing autonomous robots for smart homes [5, 6, 7, 8]. The strin-

gent requirement of safety and robustness in a household environment making

soft robots an ideal candidate for such applications.

Despite their potential advantages, developing an accurate control algo-

rithms for dynamic manipulation of soft robots is very important if they are to
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Pros:

∗ Well-defined finite-DOF mathematical model.

Cons:

∗ Complicated force sensing mechanisms.
∗ Multiple motors inputs for a single finger.
∗ Rigid links can damage the item by excessive
force in case of a sensor error.

Pros:

∗ Simple sensing mechanism.
∗ Single-input single-output control topology.
∗ Inherent safety because of flexible fingers.
∗ Simple Pneumatic actuation for bending a finger.

Cons:

∗ Complicated infinite-DOF matematical model.

Figure 1: The contrast between the sensing, actuation, and control mechanisms for rigid and

soft robots. The example illustrates the handling of delicate objects required from automation

robots. The figure shows the advantages and disadvantages of both robots and makes a case

for soft robots in case of home automation.
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compete with rigid robots in real-world applications. Soft robots have an infinite

degree of freedom [9, 10, 11] due to their flexible bodies, making it impossible

to formulate an accurate analytical mathematical model of the soft robot. The

lack of an analytical mathematical model poses challenges to precise motion

control and the optimization of dynamic responses [12, 13, 14]. To avoid this

modeling challenge, most works on soft robotic control have focused on model-

free control algorithms. The most commonly used model-free control algorithm

is PID [15] and its variants, such as Fuzzy PID. However, the PID algorithm

requires the tuning of the controller parameters, which is a labor-intensive task

and can possibly result in poor performance due to the subjective judgment of

the observer, who is tuning the controller parameters. PID controllers [16] are

also non-adaptive to system variations, i.e., their parameters are tuned initially

and then remain constant. Since soft robots undergo the inevitable wear and

tear and minor structural damage due to their flexible structure, their behav-

ior continually changes, and pre-tuned PIDs cannot adapt to the variations in

the system. This non-adaptability of the controller parameters can result in

unstable system behavior [17, 18]. Vikas et al. [19] formulated the soft robot

motion problem as a graph traversal problem, but their proposed scheme can

only be used for the coarse-grained control of soft robot motions. All of the

abovementioned techniques are model-free and have a generic formulation for

all robotic systems. They do not take into account the specific structure of the

soft robot and produce low-accuracy results.

The model-based control of soft robots using the Finite Element Method

(FEM) has also been studied. Faure et al. [20] and other recent works [21,

22, 23, 24] proposed a control strategy inspired by the locomotion of aquatic

life and used FEM to model the robotic system. This technique can potentially

produce highly accurate responses but requires detailed and accurate knowledge

of the mechanical properties of the fabrication material. Furthermore, the high

computational cost of FEM means that graphics processors (GPUs) are required

for their implementation, making it impossible to achieve accurate, fine-grained

control on embedded processors in real-time. Reymundo et al. [25] presented
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a control technique based on statistical modeling. They used linear regression

to model the system’s input-output relations, but their controller explicitly as-

sumes that the robot model is linear. This assumption is true only for a small

subrange of the system’s output but does not hold for the entire range. Several

works [26, 27, 28, 29, 30, 31, 32, 9, 33, 34] have proposed a model-based control

approach to optimize the dynamic response of soft robotic systems but require

a priori knowledge and a mathematical model of the soft robot.

These challenges motivated us to explore the approximate analytical model-

ing of soft robotic systems. The approximate mathematical model can then be

used in combination with the output feedback loop to compensate for inaccura-

cies in the model, and achieve highly accurate control of soft robots. Since most

soft robots are pneumatically actuated, we used Lagrangian mechanics [35] to

formulate the approximate mathematical model of a soft actuator. The approxi-

mate model is then used to formulate a closed-loop inverse dynamics controller.

Inverse dynamics have been intensively studied [36, 37, 38, 39, 40, 41, 42] in

control literature and we propose to use it owing to its simple formulation and

intuitive explanation. We considered the specific case of a soft bending actuator

for modeling, control, and experimentation. In the experimentation section, we

presented the results for both an open-loop and a closed-loop inverse dynamics

controller. We compared them with a PID controller, based on their response

to step inputs. The results of our experiment show that the presented controller

can provide better performance than model-free control algorithms such as PID.

This paper demonstrates the use of an approximate analytical model for

controlling the motions of a soft robot. The major objectives of this paper are:

• To demonstrate the formulation of an approximate analytical model for

a soft robot using principles of Lagrangian mechanics. The method for

deriving the Lagrangian of the soft robot and the assumptions used to

simplify the derivation process is explained.

• To formulate a closed-loop inverse dynamics controller based on an ap-

proximate analytical model. The convergence of the proposed controller
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is proved using a Lyapunov function. It is shown that the proposed closed-

loop system is asymptotically stable.

The main contributions of this paper are summarized as below:

• Soft robots are inherently difficult to model accurately, preventing model-

sensitive approaches to be applied for their control. Due to this reason,

the inverse dynamics method has never been reported for the control of

soft robots, and whether it is possible to be applied remains an unsolved

problem. This work gives a positive answer and presents the first inverse

dynamics controller for soft robots.

• A data-driven approach is employed to identify the parameters of soft

robots, and the derived data-driven model is applied for inverse dynamics

control. This work provides a model on extending powerful nonlinear

control tools to address soft robot control problems.

• Extensive experiments verify the effectiveness of the proposed control so-

lution.

The remainder of the paper is organized as follows: Section 2 presents the

architecture of the system used for modelling, controlling and experimenting.

Section 3 presents mathematical modeling using Lagrangian mechanics, system

identification, and controller formulation. Section 4 describes the experimental

methodology, platform, and results. Section 5 will conclude the paper.

2. System Architecture

In this section, the system architecture used in modelling and control algo-

rithm formulation will be explained.

2.1. Soft Actuator

A pneumatically actuated soft bending actuator [3] is one of the most popular

soft actuators, which has been widely adopted because of its simple and efficient
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Figure 2: Design of the soft bending actuator used in the experiments. Top left: Side view

of the actuator with n chambers. Top right: Dimensions of an individual chamber. Bottom

left: Inflated actuator showing the calculation of the bending angle for an n chamber bending

actuator. Bottom right: Top view of the soft bending actuator.
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Figure 3: Flowchart of the process for fabricating the soft bending actuator used in the

experimental platform.

design and ease of fabrication. The most commonly used design of soft bending

actuator consists of a series of inflatable chambers, as shown in Fig. 2. All of

the chambers are connected to each other using a thin channel in the base of

the actuator. The actuation principle is based on the simultaneous inflation of

all of the chambers, using an air pump. It is necessary to make the base of the

actuator stiffer (shown in dark color in Fig. 2) than the top chambers to create

a bending motion. The difference in stiffness causes the actuator to bend when

inflated with pressurized air and can be achieved by embedding a thick sheet

of paper in the base of the actuator. The bending angle of the soft actuator is

directly proportional to the internal air pressure [43, 44, 1, 45]. The method of

controlling the internal air pressure is explained in the next subsection.

Fig. 3 shows the flowchart of the process of fabricating the soft bending

actuator. The 3D design of the molds is open source and available in a soft

robotics toolkit [46]. The molds were printed using a 3D printer. Dragon Skin

10 from Smooth-On Inc. [47] was used as an elastomer for fabricating the

soft bending actuator. The fabrication process is briefly described as follows:

Dragon Skin 10 consists of two separate liquid mixtures called Part A and

Part B. The process of curing the elastomer starts when Part A and Part B are

mixed together (in a 1:1 ratio by weight). We created a mixture of elastomers by

thoroughly mixing both parts, and poured the resulting mixture in 3D printed

molds. The molds were set aside to cure in open air, and the process took

around 6-8 hours before the cured elastomer could be removed from the molds.

Soft robots require different sensing mechanisms from that of a rigid robots.
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(a) (b)

Figure 4: Components of the experimental platform. (4a) shows the sensing mechanism of

the soft bending actuator used in the experiment. White part: bending actuator; dark part:

bending sensor. (4b) shows the experimental platform: containing (1) an air pump, (2) a Mega

2560 microcontroller, (3) MOSFET switches, (4) valves, (5) bending sensor and actuator.

Several novel sensing mechanisms have been developed for soft robots [48, 49].

To sense the bending angle, we used a flex sensor from FlexiForce. The sensor

consists of several layers of thin resistive film. The resistance of these films

varies with their bending angle. The sensor is essentially a bend-dependent

resistor. By measuring the change in resistance at different bending angles,

a mapping was generated between the resistance value and the corresponding

bending angle of the sensor. The sensor was attached to the back side of a soft

bending actuator, so that the bending angles remained exactly same, as shown

in Fig. 4a. Since a Flexiforce sensor provides analog voltage, we used ADC pin

in our microcontroller to convert it into a digital value for further processing.

For generalized mathematical derivations, a soft bending actuator with n

chambers each having width w, height h, and breadth b, as shown in Fig. 2,

is considered. When this bending actuator is inflated through air, it will bend

to create an angle θ. For the purpose of experimentation, a soft actuator with

n = 11, i.e. 11 chambers, is fabricated.

9
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s

Pump

Electromechanical valve

Microcontroller

PWM signal

Soft Actuator

Figure 5: Mechanism to control the air pressure to the soft bending actuator. Electromechan-

ical valves are controlled using the PWM signal of a specified duty cycle.

2.2. Actuation Mechanism

Apart from the fabrication and sensing of a soft bending actuator. The

bending of the soft actuator is directly proportional to the internal air pressure

[43, 44, 1]. To contol the internal air pressure, we used electromechanical valves.

These valves can be controlled by using a microcontroller through MOSFETS

switches. A 12V DC pump was attached to the the electromechanical valves.

The pressure control mechanism is shown in Fig. 5. By switching the valves

repeatedly and controlling their opening and closing times, the air pressure at

output of the valves can be controlled as shown by [44]. The opening time

of the valves was controlled using a PWM signal of 30 Hz, according to valve

specifications. The air pressure at output of valve is a monotonically increasing

function of valve’s opening time i.e. duty cycle (D) of PWM signal.

2.3. Bending Control

The bending angle control system mainly consist of two parts; Microcon-

troller and and the MOSFET switches. The purpose of these parts is to control

the valve opening time according the PWM duty cycle (D). The controlling

mechanism is shown in Fig. 5. We used Arduino Mega 2560 as our microcon-

troller, since it has a built-in Analog to the Digital Converter (ADC) for reading

sensor values and to a PWM generator to control the switching of valves. The
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microcontroller cannot be used directly to control the switching of valves be-

cause the ATMega2560 I/O pins operate at 5V, whereas valves operate at 24V.

Furthermore, the pins can only provide a maximum current of 40mA, which

is insufficient to drive the valves. To solve this problem, we added a layer of

MOSFET switches between the microcontroller and the valves. The MOSFETs

were connected to a 24V DC battery. Since MOSFET switches can operate at

an input voltage of 5V and on negligible current, their input was directly con-

nected to the microcontroller pins and the output was connected with valves.

By changing the duty cycle of PWM through the microcontroller, the valves can

be opened and closed for specific amounts of time and the air pressure at output

of the valves can be regulated. The experimental platform that was constructed

is shown in Fig. 4b.

3. Controller formulation

This section presents details of the modeling process using Lagrangian me-

chanics and a formulation of the inverse dynamic controller along with proof of

its convergence.

3.1. System Modeling

As explained in Section 1, soft robotic systems have a soft continually de-

formable structure, which makes it impossible to formulate an accurate closed-

form mathematical However, in this section we will develop an approximate

model of the soft bending actuator based on Lagrangian mechanics.

In Lagrangian mechanics, the dynamics of the system can be modeled using

the energetics of the system. The Lagrangian L of a system is mathematically

defined as:

L = T− V, (1)

where T is the kinetic energy present in the system whereas V is the potential

energy contained in the system. The dynamics of the system can be derived
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using Lagrange’s equations of the first kind [35]

∂L
∂rk
− d

dt

∂L
∂ṙk

+
∑

λi
∂fi
∂rk

= 0, (2)

where rk represent variables present in the system, i.e. θ in our case, and fis are

the functions modeling constraints of the system. Now we will demonstrate the

process of deriving relations for potential energy V and kinetic energy T for the

soft bending actuator. We then use those relations to calculate the dynamics of

the actuator using (1) and (2).

Potential Energy: There are mainly two types of potential energies present

in an actuated soft bending robot: elastic potential energy or strain energy and

gravitational potential energy. The gravitational potential energy gained after

actuation is given by Vg = mg∆h, where m is the mass of the actuator, g is

the acceleration due to gravity and ∆h is the difference in the height of the

center of gravity between the actuated and unactuated actuator. Since in the

case of the soft bending actuator (Fig. 2), the variation in the height of system

is negligible, its gravitational potential energy can safely be ignored. Elastic

potential energy Vε is the main contributor to the total potential energy of an

actuated soft bending robot and is given by following relation:

Vε =
1

2
VεEε

2, (3)

where Vε is the volumetric strain of actuated bending robot, E is Young’s mod-

ulus and ε is the material strain. Young’s modulus E is the ratio between stress

and strain. It is a mechanical property of the material and for strain below

50% this ratio remains constant. By using the same approach as [26], we can

argue that the strain produced in the actuator is directly related to the bending

angle of the actuator, i.e., ε = k1θ. This is even intuitively correct, because the

greater the bending angle of the soft bending actuator, the greater is the elastic

potential energy stored in it. By making use of all of these observations, we can

get following relation for the elastic potential energy of the actuator.

Vε =
1

2
V Ek21θ

2 → Vε = k2θ
2. (4)

12

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
As it has already been argued that the gravitational potential energy is negligible

as compared to the elastic potential energy, the total potential energy V of the

system is:

V = Vε + Vg = k2θ
2. (5)

By following the approach of [26], we define a generalized force τ that is being

produced inside the soft bending actuator by differentiating the total potential

energy V with respect to the bending angle θ, i.e., τ = ∂V/∂θ. Therefore

τ = 2k2θ = 2
k2
k1
ε, (6)

where the last equality follows from the previously explained relation, ε = k1θ.

This generalized force will be used in modeling the dynamics of the system

using a Lagrangian equation. The strain ε produced in the soft robot is directly

proportional to the internal air pressure [43, 1]. The air pressure is supplied

to the soft robot through the electromechanical valves. Since the dynamics of

the pump and valve is much faster than motion of soft robot itself, therefore

the air pressure inside the soft robot is directly proportional to the opening

time of the valves. The opening time of valves is proportional to the duty cycle

(D) of the controlling PWM signal [44] i.e. ε ∝ Pinternal ∝ Tvalve ∝ D, where

Pinternal and Tvalve denotes the internal pressure of soft robot and opening time

of the valve respectively. The proportional relationship between strain and duty

cycle (D) can be assumed linear for simplicity. The feedback control will try

to minimize the effect of unmodeled nonlinearities. Therefore, the relationship

becomes ε = k3D. Substituting this in (6) results in following relation for

generalized force:

τ = 2
k2k3
k1

D → τ = k4D. (7)

This equation reveals the relationship between generalized force and the duty

cycle of the valves and will be helpful in modeling dynamics of soft bending

actuator.

Kinetic Energy: There are two types of Kinetic energy present in a system:

13
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linear kinetic energy and rotational kinetic energy. Since a soft bending actuator

can only perform bending motions, only rotational kinetic energy energy Tr
exists and we can safely ignore linear kinetic energy Tl. The rotational kinetic

energy is related to the derivative of the bending angle with respect to time.

According to the theory of rotational dynamics, the average rotational kinetic

energy is related to the bending angle as Tr = 1
2mr

2θ̇2, where m is the mass of

actuator and r is the distance from the end of the actuator to its center of mass.

Due to its symmetrical structure, the center of the mass of the soft bending

actuator is located at its middle. Thus, the total kinetic energy T of the system

is:

T = Tl + Tr =
1

2
mr2θ̇2 → T = k5θ̇

2. (8)

Since the relationship for both kinetic energy T and potential energy V have

been derived, can write the Lagrangian of the system using (1), as follows:

L = k5θ̇
2 − k2θ2. (9)

Now (2) is used to model the dynamics of the soft bending actuator using

Lagrangian L, as follows:

∂L
∂θ
− d

dt

∂L
∂θ̇

+ τ + b′θ̇ = 0. (10)

The b′θ̇ term is introduced in the above equation to model non-conservative

frictional forces present in system, b′ is a damping coefficient. By replacing the

value of L and τ in (10), we get following model:

−2k2θ − 2k5θ̈ + k4D + b′θ̇ = 0, (11)

which can be further simplified into the standard form of a second order system,

as follows:

θ̈ = a1θ + a2θ̇ + bD. (12)

This equation captures the dynamic relationship between duty cycle D and

bending angle θ and shows that the dynamics can be represented as a second

order system. The parameters set {a1, a2, b} needs to be determined experimen-

tally.

14
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Figure 6: Input excitation and system output plots for identifying model (12) parameters.

Blue curve show the input excitation signal, i.e. input duty cycle D. Red curve shows the

response of the system corresponding to the given excitation.

3.2. Inverse Dynamics Controller Design

Now we will present the design of an inverse dynamics based controllers

based on the actuator model given in (12). The main task here is to formulate

a strategy to control the duty cycle D of the PWM signal, i.e., writing D in

terms of a dynamic relation of the bending angle θ. First, we will present a

method to experimentally identify the system parameters {a1, a2, b}; then, we

will describe the controller formulation based on closed loop inverse dynamics.

To identify the system parameters, we excited the system using a periodic

step signal, as shown in Fig. 6, and recorded the output response. We used the

MATLAB system identification toolbox [50] to identify the system parameters

and calculated following parameter values: a1 = −1.945×104, a2 = −1.579×104

and b = 3.816× 106.

Now we will derive a control law for controlling the bending angle (θ) of

the soft bending actuator by inverting the system model (12) and solving the

equation for (D):

D =
1

b
(θ̈ + a1θ + a2θ̇). (13)

From this equation a feed-forward open loop controller can be formulated similar

to [44]. If the reference angle of the soft bending actuator is represented by θr
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Figure 7: A schematic diagram of the soft robotic platform used in this paper. The dia-

gram illustrates how the actuator and the inverse dynamics controller connectes in a feedback

configuration.

then we have following relation from the definition of θ̈

θ̈r =
θr − 2θ[n] + θ[n− 1]

∆t2
. (14)

where ∆t is the sampling time period and θ[n] is the current value of the bending

angle, while θ[n − 1] represents the past value. Similarly, we have following

relation:

θ̇r =
θr − θ[n]

∆t
. (15)

Replacing these values in (13) results in the following relation for the feed-

forward open loop controller

D =
1

b
(θ̈r + a1θr + a2θ̇r). (16)

An important point to note is that the steady state response is given by D = a1θr/b.

Thus, a1 and b are main factor controlling steady state response and resultantly

steady state error. Since open loop feed-forward systems usually exhibit a con-

stant steady state error, during the experiments we tried adjusting these pa-

rameters to improve the steady state performance of the open loop controller.

Details of this process are provided in Section 4.
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Now we will design a closed loop controller to compensate for variations

and uncertainties in parameters {a1, a2, b}. Based on (12), a closed loop inverse

dynamic based controller can be formulated that is similar to one proposed in

[36], as:

D =
1

b
(ν − a1θ − a2θ̇), (17)

where ν = κpθ̃ + κd
˙̃
θ + θ̈r and θ̃ = θr − θ is the output error. The schematic

diagram of the controller is shown in the Figure 7. To analyze the error dynamics

of the proposed controller, substitute D from (17) to (12). The error dynamics

of the system are governed by the following differential equation:

¨̃
θ + κpθ̃ + κd

˙̃
θ = 0. (18)

For this error dynamics equation we will now show that error X̃ → 0 as t→∞,

i.e., the closed loop controller is asymptotically stable.

In order to analyze the stability of the proposed controller, we consider the

following Lyapunov candidate function:

V (θ̃,
˙̃
θ) =

1

2
κpθ̃

2 +
1

2
˙̃
θ2. (19)

We take the first-order derivative of this function and replace
¨̃
θ from (18):

V̇ (θ̃,
˙̃
θ) = κpθ̃

˙̃
θ +

˙̃
θ

¨̃
θ,

= κpθ̃
˙̃
θ +

˙̃
θ(−κpθ̃ − κd ˙̃

θ),

= −κd ˙̃
θ2 ≤ 0. (20)

The above inequality holds as long as κp, κd ≥ 0. Thus, the closed loop control

system is asymptotically stable and the output error will converge to zero.

4. Experiments & Discussion

In this section we will present the experimental platform used to verify the

efficacy of the presented controller. The experiment methodology to get the re-

sponse of the soft bending actuator to the proposed controller will be presented.
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Figure 8: An example showing bending of the soft actuator with time as air is pumped into

it. At t = 0s: the soft actuator is rest. From t = 0.5s to 1s: the soft actuator is inflated

and starts to move from rest. From t = 1.5s to 2.5s: the soft actuator has been inflated to a

visible angle and keeps bending further. At t = 3.0s: the soft actuator arrived at the desired

angle. From t = 3.5s to 4.0s, the soft actuator overshoot slightly around the desired angle.

At 4.5s, the soft actuator returns back to the desired angle.

A comparison with a model-free benchmark controller; PID controller is also

provided to demonstrate the effectiveness of the proposed controller. PID con-

trollers are the most commonly used model-free controllers for controlling soft

robots. The results of the comparison show that our proposed model-based con-

troller can provide a better performance than PID, while avoiding the hassle of

parameter tuning, which is necessary in case of PID. This is achieved since the

controller based on the mathematical model of the actuator, thus accounting

for the specific structure of the actuator.

4.1. Experimental Platform

In this section we will explain the experimental methodology and setup to

verify the efficacy of the proposed controller and its comparison with the bench-

mark PID controller. As already explained in 2, our system consisted of a soft

bending actuator along with pneumatics and electronics to control the bending

angle of soft actuator. The major components of the experimental platform

18
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Figure 9: Dynamic response of a system using the feed-forward open loop controller of (16).

Due to absence of a feedback loop all responses show large steady state error. Since steady

state response depend on ratio −a1/b, therefore experiments were conducted with variation

of b. (9a) shows response of system when reference angle θr = 90o. (9b), (9c), and (9d)

correspond to θr = 75o, θr = 45o, and θr = 30o, respectively.
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Figure 10: Dynamic response of a system using the PID controller of (21). Ordered pairs in

these plots represents value of PID controller parameter (Kp , Ki , Kd). The steady state

error converges to zero due to the presence of an output feedback loop. Experiments were

conducted using parameters of different values to observe the effect on the system’s response.

(10a) shows the response of the system when the reference angle θr = 90o. (10b), (10c) and

(10d), correspond to θr = 75o, θr = 45o, and θr = 15o, respectively. PID controller converges

in all cases.
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Figure 11: Dynamic response of a system using the closed loop inverse dynamics controller of

(17). Ordered pairs in these plots represents value of inverse dynamics controller parameter

(κp , κd). The steady state error converges to zero as it has already been proven that the closed

loop system is asymptotically stable. Experiments were conducted using different values of

controller parameters κp and κd. (11a) shows the response of the system when the reference

angle θr = 90o. (11b), (11c), and (11d) correspond to θr = 75o, θr = 45o, and θr = 15o,

respectively.
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Figure 12: Comparison of the best observed performances of the closed loop inverse dynamic

controller against the PID controller. (12a) shows a comparison of performance when the

reference angle θr = 90o. Similarly, (12b), (12c), and (12d) shows a comparison for θr = 75o,

θr = 45o, and θr = 15o, respectively.
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consisted of a DC air pump, pneumatic valves, MOSFET switches and an AT-

Mega2560 microcontroller as shown in Fig. 4b. The soft robot and sensing

elements used are shown in Fig. 4a. Fig. 8 shows the snapshots of a typical

experiment to determine the response of the actuator to a step input signal.

To determine the accuracy of the proposed controller, and their comparison,

we excited the system with a step input signal and recorded the transient re-

sponse of the system. Mean square error between step signal and the dynamic

response is measured as the performance metric for each experiment. The first

set of experiments consisted of evaluating the performance of open loop inverse

dynamics controller of (16). The system was excited with step signal of different

amplitudes i.e. θr ∈ {30o, 45o, 75o, 90o}. These values were chosen because the

typical operating range of the bending actuator ranges from 0o to 90o. Choosing

these values covers the operational range and thus provides a systematic way to

evaluate the performance of the controllers. The second set of experiments con-

sisted of measuring the performance of benchmark PID controller. These results

are used as benchmark to evaluate the performance of the proposed closed loop

inverse dynamics controller. Similar to previous case, the system was operated

with step signal of different amplitudes and actuator’s tracking performance is

recorded. The final set of experiments consisted of evaluating the performance

of closed loop inverse dynamics controller of (17). Similar to other cases, the

system was excited with different step signals. The results of experimental trials

are presented and discussed in next section.

4.2. Results & Discussion

We conducted several sets of experiments to compare the performance of the

proposed controller with other control techniques. Here, three types of results

will be presented: the first are those based on open loop inverse dynamics, as

given in (16)); the second are those based on the use of a PID controller; and

the third are those based on the use of closed loop inverse dynamics, as given in

(17). The results of the experiment show that the third method produces the

best results mainly because it combines the system model of method one and
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the feedback loop of method two.

4.2.1. Benchmark Controller

We also performed experiments with a PID controller. A PID controller

provides a baseline for evaluating the performance of the proposed controller.

The following formulation for discrete-time PID was used:

D[n] = Kpe[n] +Ki

n∑

i=1

e[i]∆ti +Kd
∆en
∆tn

, (21)

where n is the count of current sample number, D[n] is the duty cycle of the valve

switches, e[n] = θr − θ and Kp, Ki, and Kd are the control parameters for the

PID controller. The PID controller was tried for different values of parameters

and reference angles θr. Fig. 10 shows the results of the experiments. Each

figure represents the performance of the soft bending actuator for a constant θr

and different sets of PID parameter values. It is most important point to note

here that the steady state output error eventually converges to zero and that

the system is able to accurately track the input reference signal. It can also be

seen that by changing the parameter values, it is possible to adjust and optimize

the dynamic response of the system.

4.2.2. Open Loop Inverse Dynamics

The first set of experiments was performed to evaluate the performance of the

feed-forward open loop controller. The system was given a constant reference

angle θr and valves were controlled using open loop controller of (16). The

experiments were repeated for different values of θr and parameters. Since the

steady state response depends on having a ratio of −a1/b, therefore only b was

varied in the experiments, while {a1, a2} remained constant. The results are

shown in Fig. 9. It can be seen that the system suffers from high values of

output error, and that in most cases the steady state response was unable to

accurately track the reference signal θr. This is the result of the absence of

a feedback loop, with the controller failing to adjust itself to compensate for

variations in the parameters of the system.
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4.2.3. Closed Loop Inverse Dynamics

We now analyze the performance of the closed loop inverse dynamic con-

troller as proposed in (17). Similar to other methods, we run the system with

different sets of parameter values and with reference angle θr. The results of the

experiment are shown in Fig. 11. Each figure represents the system’s response

for a constant reference angle θr and different values of parameters. Since κp

and κd are the main design parameters in a closed loop controller, we present

the effect of variations in them. We have already proven the asymptotical con-

vergence of a closed loop control system; therefore, similar to PID the steady

state output error of the system eventually converges to zero. It can be seen

that, similar to PID, the dynamic response of this controller can be tuned and

optimized, by adjusting the parameter values.

We will now compare the performance of the presented controllers. It is

evident from Fig. 9 that the feed-forward open loop controller produces a high

steady state output error showing a poor performance, whereas Figs. 10 and

11 show that the PID controller and closed loop inverse dynamics controllers

eventually converge to the given reference angle θr. Therefore, for the purpose

of this comparison, only closed loop inverse dynamic and PID controllers are

considered. Both controllers are given the same value of θr, and the best re-

sponses are shown in Fig. 12. Each figure represents a constant value of θr

for different controllers. It can be seen that the performance of the closed loop

inverse dynamics controller is better than that of the PID controller in all cases.

Its exhibits low rise time and small steady state error as compared to PID.

5. Conclusion

In this paper we presented an approximate model of a soft bending actuator

and used it to design an inverse dynamics closed loop controller. We presented

both an open loop and closed loop design for the controller and provided an

experimental comparison of their performance with a PID controller as the

benchmark. The results of our experiment show that promising progress has
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been made in developing a model based dynamic control of a soft robotic sys-

tem, by developing an approximate model of the soft robotic system and then

compensating for variations in the model using output feedback. Before end-

ing this section as well as this paper, it is worthy mentioning that this is the

first time that an inverse dynamics control approach has been achieved for soft

robots.

A potential future research direction includes developing an adaptive con-

troller to automatically account for unknown parameters and unmodeled dy-

namics of the soft robots. The adaptive controller starts with an ideal math-

ematical model and adaptively updates its parameters based on the feedback

from sensing and control signals. Such a formulation will remove the need to

accurately estimate the robot’s model, increasing the reliability and efficiency

of the development process.
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