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Adiabatic potential energy surfaces for the ground electronic state of the

Xe· · ·NO(X2Π) van der Waals complex have been calculated using the spin-restricted

coupled cluster method with single, double and non-iterative triple excitations

(RCCSD(T)). The scalar relativistic effects present in the Xe atom were included

by effective core potential and we extended basis with bond functions to improve

the description of the dispersion interaction. It has been found that the global mini-

mum on the A′ adiabatic surface occurs at a T-shaped geometry with γe = 94◦ and

Re = 7.46 a0, and with well depth of De = 148.68 cm−1. There is also an additional

local minimum for the collinear geometry Xe-NO with a well depth of 104.5 cm−1.

The adiabat of A′′ symmetry exhibits a single minimum at a distance Re = 7.68 a0

and has a skewed geometry with γe = 64◦ and a well depth of 148.23 cm−1. Several

Cnl van der Waals dispersion coefficients are also estimated, of which C6,0 and C6,2

are in a reasonable agreement with previous theoretical results obtained by Nielson et

al. [J. Chem. Phys. 64, 2055 (1976)]. The new potential energy surfaces were used to

calculate bound states of the complex for total angular momentum quantum numbers

up to J = 7/2. The ground state energy of Xe· · ·NO(X2Π) is D0=117 cm−1, which

matches the experimental value very accurately (within 3.3%). Scattering calcula-

tions of integral and differential cross sections have also been performed using fully

quantum close coupling calculations and quasi-classical trajectory (QCT) method at

a collision energy of 63 meV. These calculations reveal the important role played by

L–type rainbows in the scattering dynamics of the heavier Rg-NO(X) systems.
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c)Electronic mail: mark.brouard@chem.ox.ac.uk
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I. INTRODUCTION

Rotational energy transfer collisions of rare gases (Rg) with NO have traditionally re-

ceived a great deal of attention both experimentally and theoretically to the point at which

they have become prototypes of the scattering of closed shell (c–s) atoms with open shell

(o–s) diatomic molecules. The NO molecule on its electronic ground state (X2Π) is eas-

ily detectable quantum state selectively using either laser induced fluorescence1, one-color

(1+1)2 or two colour (1+1′)3 resonance enhanced multiphoton ionization. State resolved

integral (ICS) and differential cross sections have been measured for He, Ar, Ne collision

with NO for spin conserving, F1 → F1, and spin changing, F1 → F2, transitions, where F1

and F2 designate the rotational manifolds that arise from the lower 2Π1/2 and upper 2Π3/2

states, respectively, as well as for transitions into different final Λ-doublet components4–9.

High level ab initio potential energy surfaces (PES) have been produced for the Rg–NO

systems over the last ten years. Currently there are accurate PESs for He+NO(X2Π)10,

Ne+NO(X2Π)11–13, Ar+NO(X2Π)14,15 and, more recently for Kr+NO(X2Π)16,17. Most of

the PESs have been determined for a fixed internuclear distance of the NO molecule which

is expected to be an excellent approximation for the study of rotational energy transfer at

relatively low collision energies, as confirmed by the good agreement between experimental

and theoretical results. However, to our knowledge, no PESs for the Xe-NO(X2Π) system

have been calculated up to date. Although the very efficient cluster formation in molecular

beam expansions with Xe poses serious experimental problems, this system is nonetheless

important to close the gap in knowledge of the series of Rg+NO(X2Π) systems.

The presence of attractive forces, whose magnitude increases with the size of the Rg

atom, makes these systems an interesting case study. Although the role of attractive forces

in rotational energy transfer has received less attention than collisions dominated mainly by

repulsive forces, it is known that the existence of attractive wells in the PES may give rise to

“L–type" rainbows, analogous to those found in elastic scattering, which show up as maxima

in the deflection function; i.e., the dependence of the scattering angle on the orbital angular

momentum or impact parameter18,19. Quantum mechanically, the occurrence of rainbows is

manifested as an interference pattern at relatively small scattering angles. In addition, the

presence of a sufficiently attractive well can give rise to a bulge in the opacity function at

the highest orbital angular momenta corresponding to those values beyond the glory impact
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parameter20,21.

The paper is organized as follows. Section II describes the calculation of the potential

energy surfaces for the Xe-NO system. The general features of the PESs are discussed

in Section III, whilst Section IV presents the results of the bound state calculations for

the Xe· · ·NO van der Waals complex. Finally, Section V describes the method used to

perform the scattering calculations, and Section VI presents the scattering results. The

paper concludes with a short summary of findings and conclusions.

II. AB INITIO CALCULATIONS OF ADIABATIC POTENTIALS

Two potential surfaces are required to describe collisions between NO(2Π1/2,3/2) molecules

with Rg atoms, of 2A′ and 2A′′ symmetry. In the 2A′ state the singly occupied π∗ orbital

of NO(X) is located in the N-O-Rg plane, while in the second it lies perpendicular to it.

To obtain the adiabatic PESs of the Xe-NO(X2Π) van der Waals system we have used the

supermolecular approach which defines the intermolecular interaction energy in the following

manner:

∆EAB(R, γ) = EAB(R, γ)− EDCBS
A (R, γ)− EDCBS

B (R, γ) , (1)

where R and γ are the Jacobi coordinates, defined in subsection II A, and DCBS stands for

the Dimer Centered Basis Set and denotes the fact that the A and B monomer calculations

are performed using a basis set of the whole AB dimer. This procedure is equivalent to

the counterpoise correction (CP) method of Boys and Bernardi22. Due to the open-shell

character of the NO(X2Π) molecule, the CP procedure is slightly more complicated than

that in the closed shell case. The complications stems from the fact that the energies of

the open-shell monomer in the DCBS basis must be calculated with the same orientation

of the singly-occupied orbital as in the corresponding dimer belonging to the A′ or A′′

representation of the Cs symmetry group.

All the electronic structure calculations were performed using the MOLPRO suite of pro-

grams23, using a similar approach as those taken for the other Rg+NO(X) PESs10,14–17.
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A. Geometries, basis sets and method

The Xe–NO(X) van der Waals complex is usually described in Jacobi coordinates. The

intermolecular vector R points from the center of mass of the NO molecule towards the Xe

atom. The angle γ is defined as the angle between R and diatomic vector r with γ = 0◦

defining the Xe-N-O collinear arrangement. The calculations have been carried out by fixing

the NO(X2Π) internuclear distance to its equilibrium value re = 1.15077Å24, such that no

dependence on r appears in the XeNO potential. Calculations of the adiabatic energies were

carried out for 28 intermolecular distances in the range between 2.75Å and 25 Å, whilst the

angular grid for the γ variable consisted of 7 values (every 30◦).

The calculations were performed in the basis set composed of augmented, correlation-

consistent triple zeta basis set of Dunning et al.25,26 (denoted as aug-cc-pvtz) for the NO

molecule, and an effective core potential (ECP) of the Stuttgart/Cologne group from the

MOLPRO program library for the Xe atom. The ECP46MWB effective core potential was

chosen to describe 46 inner electrons and account for scalar relativistic effects. This basis

set was augmented with the set of bond functions27 [3s3p2d1f1g] placed in the middle of

the distance R to improve description of the dispersion component of the interaction. The

bond functions had the following exponents: sp, 0.9, 0.3, 0.1; d, 0.6, 0.2; and fg, 0.3.

The spin-restricted Hartree-Fock (RHF) molecular orbitals suited as a reference orbitals

for subsequent spin-restricted coupled cluster calculations with single, double and non-

iterative triple excitations (RCCSD(T))28,29. This method ensured that there was no spin

contamination.

B. Expansion and fitting of diabatic potentials

The form of a potential expansion for a diatomic molecule in a 2Π state interacting

with an 1S state atom was first given by Alexander30. For the purpose of the bound state

and scattering calculations, it is convenient to use the diabatic potentials obtained in the

transformation from a real p-orbital basis to a Λ-signed basis, where Λ is the projection

quantum number of the singly occupied p-electron. The diabatic surfaces, Vsum and Vdiff ,
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are constructed as the half sum and half difference of the A′′ and A′ adiabats, respectively:

Vsum(R, γ) =
1

2
[VA′′(R, γ) + VA′(R, γ)] =

10∑
l=0

Vl0(R)dl00(γ) , (2)

Vdiff(R, γ) =
1

2
[VA′′(R, γ)− VA′(R, γ)] =

10∑
l=2

Vl2(R)dl20(γ) .

The Vsum and Vdiff diabatic PES’s are expanded in reduced rotation matrix elements of order

m = 0 and m = 2 to maximum l = 10, respectively30 which for one of the subindexes equal

to zero are related in a simple way to spherical harmonics and to the associated Legendre

functions31,32:

dlm0(γ) =

(
4π

2l + 1

)1/2

Ylm(γ, 0) = (−1)m

√
(l −m)!

(l +m)!
Pm
l (cos γ) (3)

Alexander has shown that within the Hund’s case (a) coupling scheme, spin-orbit (SO)

conserving transitions take place on the summed potential, Vsum, whilst spin-orbit changing

collisions take place on the difference potential Vdiff
33.

In practice, the ab initio points for the A′ and A′′ PES’s were fit separately in a two-step

procedure. First, for each value of γ, the R-dependence was fit by a variant of the functions

introduced by Degli-Esposti and Werner34,

V (R) = G(R) e−a1R−a2 − T (R)
9∑

n=6

CnR
−n, (4)

where

G(R) =
8∑

j=0

gjR
j (5)

and

T (R) = 1/2 [1 + tanh(1 + tR)] . (6)

The parameters a1, a2, gj, t, and the long-range coefficients Cn were optimized for each

value of γ, separately, by use of a modified Levenberg-Marquardt algorithm for the non-

linear variables and a standard least-squares fit for the linear variables.

For each desired value of Ri and γi, Eq. (4) was then used to generate the values of VA′

and VA′′ on the γ grid. From these the values of Vsum and Vdiff were obtained from Eq. (2).

Finally, the values of the expansion coefficients Vl0(Ri) and Vl2(Ri) were obtained by solution

of sets of linear equations.
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Both the Vsum diabat and the A′ adiabat exhibit near-homonuclear symmetry with respect

to γ = 90◦, similar to what has been observed in the case of Kr-NO17. The two-lobed shape

of the difference potential, Vdiff , is typical for NO(X) interacting with a spherical target,

similar to He–NO(X)10. In Fig. 1, we show plots of the radial expansion coefficients of the

sum and difference diabats, respectively. Because of the near-homonuclear symmetry, the

expansion coefficient with l = 2 for Vsum and l = 4 for Vdiff are slightly larger than those

with l odd.

C. Cn,l dispersion coefficients

We have also estimated van der Waals dispersion coefficients Cn,l of the expansion of the

long range potential, Vlr(R, γ), as

Vlr(R, γ) = −
Nmax∑
n=6

∑
l

Cn,l

Rn
Pl(cos γ) . (7)

This has been achieved by using a linear fit of the long range values of the corresponding

radial expansion coefficients of the Vsum diabat with a given l to the above expansion. The

results are shown in Table I. We can compare isotropic van der Waals C6,0 coefficient and

the first anisotropic C6,2 term with previous theoretical results obtained by Nielson et al.35.

Both theoretical results are similar, taking into account error bars shown by Nielson et al.

III. FEATURES OF POTENTIAL ENERGY SURFACES

The stationary points of adiabatic and diabatic Xe-NO(X) PES are given in Table II,

whilst contour plots of the adiabatic potentials are shown in Fig. 2. The surface of A′

symmetry, shown in panel (a), exhibits three stationary points: two local collinear minima

and a T-shaped global minimum. The global minimum of the A′ surface is located at γe = 94◦

and Re = 7.46 a0 with a well depth of 148.68 cm−1. The anisotropy of the A′ surface resembles

that of the A′ surfaces of the He· · ·NO10 and Ar· · ·NO systems14,15. In the case of He, the

T-shaped minimum is more skewed towards the O-end of the NO moiety (γe = 100.3◦ from

Ref.10), but, in the cases of Ar and Xe, the global minimum is around 95◦ (95.2◦ for Ar from

Ref.14). The well depths of the local collinear minima are similar, being 104.5 cm−1 deep for

the Xe· · ·N-O arrangement and 107.2 cm−1 for the Xe· · ·ON configuration. In the case of
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the A′ surface there is barrier of ≈ 48 cm−1 for rotation between the T-shape and the linear

minima.

The A′′ surface shown in the panel (b) has only one minimum at a skewed geometry lo-

cated with γe = 64◦ and Re = 7.68 a0 and a well depth of 148.2 cm−1. Collinear arrangements

have saddle points instead of the minima observed on the A′ surface. Again, the qualitative

similarities of the A′′ surface anisotropy to the cases of He, Ar, and Kr interacting with NO

are noteworthy.

The contour plots of the diabatic surfaces are shown in Fig. 3. The Vsum diabat (panel

(a)) has a single minimum with a T-shaped geometry at γe = 90◦ and Re = 7.52 a0, and

with the well depth of 141.7 cm−1. The anisotropy of this diabat shows near-homonuclear

character: the surface is qualitatively symmetric with respect to γ = 90◦. The difference

diabat Vdiff shown in panel (b) of Fig. 3 is mostly responsible for the spin-orbit changing

transitions, and its anisotropy is similar to the case of the other rare gas complexes with

NO(X). It exhibits two attractive lobes divided by a small repulsive region corresponding

to the node of the π∗ molecular orbital of the NO molecule.

IV. BOUND STATES CALCULATIONS

The variational fully quantum close-coupling (CC) calculations of bound states were

performed using diabatic surfaces developed in this work. We used the HIBRIDON36 suite of

programs designed for scattering and bound state calculations on many types of collisional

systems. In these CC bound state calculations the open-shell electronic structure of the NO

molecule was taken into account. Following the work of Alexander14,15, the rotational levels

of the NO molecule are described in the Hund’s case (a) basis:

|ΛΣ j mω ϵ⟩ = 2−1/2
[
|j mω⟩|ΛΣ⟩ + ϵ|j m − ω⟩ | − Λ− Σ⟩

]
. (8)

Here j stands for angular momentum quantum number of the diatomic molecule. ω and m

are projections of the angular momentum j along molecule and space-fixed z-axes, respec-

tively. The ket |ΛΣ⟩ describes the electronic component of wave function of the diatomic.

Λ is molecule-fixed projection of electronic orbital angular momentum and Σ is the spin

angular momentum projection, also in the molecule-fixed frame. The ϵ index distinguishes

the e and f spectroscopically labeled levels, which have ϵ = +1 and ϵ = −1, respectively.

The total parity of the wave functions is p = ϵ(−1)j−1/2.
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The radial part of the wave functions in the bound-state calculations is expanded in a

replicated Gaussian basis37 distributed between R=4.5 a0 and 12 a0 with a step of 0.5 a0. This

gives a total of 16 radial basis functions. The angular basis was set to run up to jmax = 10.5.

We used the following molecular constants of the NO(X2Π) molecule: the rotational constant

B0 = 1.69611 cm−124, the spin-orbit coupling constant A = 123.1393 cm−1, and Λ-doubling

parameters p = 1.172 × 10−2 cm−1, q = 6.7 × 10−4 cm−1. The reduced mass of Xe-NO

was set to 24.4398 a.m.u. The bound states were calculated for both values of the total

parity and for the total angular momentum quantum number up to J = 7
2
. The CC results

for the lowest 14 bound states for J = 1/2 and J = 3/2 are shown in Table III. The

calculated zero-point corrected dissociation energy is 117 cm−1. This is 4 cm−1 shallower

than the experimental estimate of 121 cm−1 by Gamblin et al.38. This results in the relative

error of 3.3% with respect to the experimental value. We attribute part of this error to the

incompleteness of the basis set used in the ab initio calculations and another part in the

fact that we use 2-dimensional PES with the NO geometry fixed at equilibrium value. The

inclusion of the NO bond stretching could increase the value of the D0 up to some degree

which would bring it to a closer agreement with the experimental value.

In the recent work of Kłos et al.11 on rare gas complexes with the NO(A2Σ+) molecule

there is the table of theoretical and experimental zero-point corrected dissociation energies

for both the NO(A2Σ+) and NO(X2Π) molecules that includes the result for the Xe atom

calculated in the present work.

The bound states in Table III are characterized by the number of radial ns and angular

nb nodes in the corresponding wave function. States are also labeled with the P quantum

number which is the projection of the total angular momentum J on the z-axis of the

molecular frame. As one can notice, the parity splitting is on the order of 0.04 cm−1 for

the ground ro-vibrational state. The first excited van der Waals stretch frequency ω1 is

around 21.5 cm−1. More detailed analysis of the Xe-NO bound states and new experimental

measurement of the Xe-NO spectrum is currently ongoing and will be reported elsewhere39.
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V. QCT AND QM SCATTERING CALCULATIONS

A. Quasi-classical trajectory calculation method

The quasiclassical trajectory (QCT) methodology is essentially the same as used in pre-

vious work on Ar–NO(X2Π)20,21,40 inelastic collisions. We will report only those particular

details that are pertinent to this work. Batches of 5×105 trajectories were calculated on the

Vsum PES presented in this study at a collision energy Ecol=508 cm−1 (equivalent to 63meV)

for each of the NO initial rotational levels j=0, 2, 5, 8, 11 and 14. This number of tra-

jectories ensured proper statistics and convergence of integral and differential cross sections

and the opacity functions. As noted above, in Hund’s case (a), the Vsum potential governs

rotational transitions within a given spin-orbit manifold (in this case Ω = 1/2). Since the

potential has been calculated only for NO fixed at its equilibrium internuclear distance, re,

we use the method of Lagrange multipliers to force a rigid rotor constraint (r = re) in the

integration of the classical equations of motion41.

To assign the initial and final rotational states, the square of the rotational angular

momentum was equated to j(j+1)~2. In the case of the final rotational state, the resulting

value was rounded to the nearest integer. A trajectory was deemed inelastic when the

absolute value of the difference between the final and initial rotational quantum numbers

|∆j| = |j′−j| was greater than 0.5. The only exception to this was when the initial rotational

quantum number was j=0. In this case, only trajectories leading to j ′ in the [1.0, 1.5] range

were assigned to the first excited rotational state j ′=1. This somewhat arbitrary criterion

is based on the rationale that considers that the range j′ ∈ [0, 0.5] is smaller than any

interval corresponding to any other rotationally excited state. Ultimately, this criterion is

justified by the comparison with either closed-shell (c–s) or open-shell (o–s) QM results.

Alternatively, the quantization (j′ + 1/2)2~2 was also used to assign the final rotational

states. For ∆j = ±1 the agreement between QM and QCT ICS is slightly better, but for

the remaining ∆j transitions the difference between the results using these different types

of quantization was negligible.

To determine the value of the maximum impact parameter, bmax, used in the calcula-

tions, the change in rotational quantum number was monitored. The impact parameter

was increased until no trajectories leading to |∆j| > 0.5 were found. The values of bmax
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ranged from 8Å for j=0 to 5.5Å for j=14. With these values, approximately 50% of the

trajectories were assigned to inelastic collisions. The inelastic collision probabilities, P (J),

were calculated by the method of moment expansion in Legendre polynomials as detailed

in Appendix C of ref. 42. Notice that P (J) are functions of the total angular momentum

quantum number, J , and except for j=0, they are not the same as the actual opacity func-

tions as a function of the orbital angular momentum, P (ℓ), or those as a function of the

impact parameter P (b), especially for J (ℓ) values comparable to j.

The solid angle differential cross sections, dσ/dω, were also calculated by the method of

moment expansion in Legendre polynomials. To determine the scattering angle differential

cross sections, dσ/dθ = 2π sin θ dσ/dω, an expansion in sine Fourier series was used.

B. Fully quantum close coupling scattering method

Open–shell (o–s) and closed–shell (c–s) QM calculations were carried out with the close

coupling (CC) method. The o–s QM scattering calculations were performed at a collision

energy of 63 meV with respect to ground spin-orbit (Ω = 1/2) and for the e Λ-doublet

level of the initial rotational states j = 1/2, 5/2, 11/2, 17/2, 23/2 and 29/2. The c–s QM

calculations were carried out at the same collision energy for the initial rotational states

j = 0, 2, 5, 8, 11, and 14. These two calculations were performed using the Vsum diabatic

PES, therefore treating approximately the NO(X) molecule as a closed shell species.

The state-resolved opacity functions in the case of the o–s QM and c–s QM approaches

can be calculated in the following way42,43 from the S-matrix elements:

Pjα→j′α′(J) =
1

(2min(J, j) + 1)

J+j∑
ℓ=|J−j|

∑
ℓ′

∣∣SJ
j′α′ℓ ′,jαℓ

∣∣2 , (9)

or from the partial cross sections:

Pjα→j′α′(J) =
k2

π

2j + 1

(2J + 1)(2min(J, j) + 1)
σJ
j′α′,jα , (10)

where the total angular momentum quantum number, J , is half-integer in the case of the o–s

QM treatment, and ℓ (ℓ′) is the initial (final) orbital angular momentum quantum number.

α denotes the set of additional indices characterizing the quantum state (i.e. the Λ-doublet

level). SJ
j′α′ℓ ′,jαℓ refers to the S-matrix element for transition between initial rotational

quantum number j and final j′, expressed in the space-fixed orbital angular momentum
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representation. In order to compare the o–s QM opacity function with those obtained by

c–s QM and QCT calculations, the opacity functions, P∆Ω=0
j (J), for spin–orbit conserving,

F1 → F1, and P∆Ω=1
j (J) for spin–orbit changing, F1 → F2, transitions were added. The

total inelastic probability as a function of J (the opacity function) was summed over final

rotational states.

In addition, since the o–s QM transition for each ∆j and ∆Ω corresponds to four distinct

Λ-doublet resolved transitions (e → e, f → f , e → f , and f → e), we assume that the

QCT and c–s QM opacity functions, and integral and differential cross sections, should be

compared with the sum over the two final Λ-doublet levels and the averaged over the two

initial Λ-doublet levels of the o–s QM quantities, for both SO conserving and SO changing

transitions. Specifically, for j → j′ integral cross sections, σ(∆j), the expression is given by

σQCT(∆j) ≈ 1

2

∑
Ω′

∑
ϵ,ϵ′

σQM(j, ϵ,Ω → j′, ϵ′,Ω′) , (11)

where ϵ is the parity (Λ-doublet) index. The analogous equations were applied to compare

differential cross sections and final state-resolved partial opacity functions between QCT,

c–s QM and o–s QM methods.

In the QM calculations the set of close coupling equations44 was propagated numerically

using the hybrid propagator of Manolopoulos and Alexander45,46 with a maximum of the

total angular momentum quantum number, J , set between 200 to 300 for convergence.

The Hamiltonian of the system was diagonalized using a rotational basis consisting of 20

functions of the NO molecule. The molecular parameters of the NO were kept the same as

described in Section IV. The propagation was performed from 5.0 a0 to 35 a0 with a step of

0.1 a0. For both the o–s QM and c–s QM calculations the HIBRIDON36 suite of codes was

used.

VI. SCATTERING RESULTS

A. Integral cross sections

The integral cross sections (ICS) at Ecol=63meV from the initial state j=1/2 (j=0 for the

c–s QM and QCT data) are represented in Fig. 4. The c–s QM ICSs show oscillations that are

not present in either the o–s QM results once averaged over Λ–doublet transitions or in the
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QCT results. This oscillatory structure, which is more pronounced at low ∆j values, arises

from the dominance of even terms in the Legendre expansion of the internuclear molecule

that reflects the near–homonuclear character of the NO molecule. This effect was discussed

and explained within the framework of a semiclassical model by McCurdy and Miller47 as

an interference effect originating from scattering from either end of the molecule. At low ∆j

values, ≤ 6, the parity conserving (∆j even) transitions exhibit larger cross sections than

those for parity breaking transitions (∆j odd), whilst the opposite occurs for ∆j > 8.

The agreement between the three sets of calculations is fairly good, especially between

the o–s QM and QCT results. It should be borne in mind that the QCT cross section for

∆j=1 have been calculated neglecting those trajectories whose (real) rotational product

quantum number was below j=1. The cross sections for the XeNO(X) system at the same

collision energy are larger than for other Rg+NO(X) processes, most notably as compared

to He+NO(X) and to a lesser extent Ar+NO(X).

The o–s QM ICSs from the lowest initial j=0.5, Ω = 1/2 and e Λ–doublet state into

Ω=1/2 (F1) and Ω=3/2 (F2) final states are represented in the top and bottom panels of

Fig. 5, respectively, and in Table IV. The ICSs are also resolved into their final Λ-doublet

component. As might be expected, the oscillations that were averaged out by summing

over the two Λ-doublet components show up clearly when the parity conserving and parity

breaking transitions are resolved. The cross sections for e → e and even ∆j transitions

are considerably higher than those for odd ∆j, and the opposite takes place for e → f

transitions. Only for ∆j > 8, is the interference quenched and the cross section become

more similar. This effect is even more pronounced for spin changing collisions. In contrast

to the collisions of He+NO(X), the ICSs for low j′ states are on average larger than those for

higher j′ values. The F1 → F2 transitions are weaker by almost an order of magnitude than

the corresponding spin conserving transitions for all ∆j. The oscillations are even sharper

than for the spin conserving–transitions and until ∆j=8, parity conserving (even parity)

transitions are much more intense than those implying parity breaking (odd parity).

The QCT, c–s QM and o–s QM rotational energy transfer cross sections from various

initial rotational states are represented in Fig. 6. Once more the o–s QM ICSs are the

result of averaging over the initial e and f states and summing over final Ω=0, 1 and Λ-

doublet components. The agreement between the three sets of calculations is very good.

Only for ∆j = ±1 the QCT results are appreciable higher that those obtained with the QM
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approaches. Oscillations in the c–s QM ICSs are also present, but they are less pronounced

than those found for the transitions from the ground rotational state. The curves display

a clear asymmetry, with ∆j > 0 transitions being favored for initial states with initial j=2

and 5, and ∆j < 0 transitions preferred for the initial state j=14.

B. Opacity functions

In a previous study on the inelastic collisions of Ar+NO(X) the calculations revealed

the presence of an “L–type” or impact parameter rainbow, analogous to those appearing in

elastic scattering, that cause a maximum in the deflection function20. This ‘orientational’

rainbow18,48,49 is clearly manifest in the opacity function as a separate lobe at the highest

impact parameters. This structure was also confirmed in QM calculations and can be traced

back to the competition of scattering dominated by attractive and repulsive forces. Given

the fact that XeNO(X) exhibits a somewhat deeper potential energy well compared with

that found for the ArNO(X) system, one would expect similar behavior in the heavier system

of current focus.

Fig. 7 clearly shows that this is indeed the case. In this figure the total opacity function,

i.e., the total probability for inelastic collisions as a function of the total angular momentum,

J , is shown for the QCT, c–s QM and o–s QM calculations at a collision energy of 63meV.

Note that in this case the total angular momentum is equivalent to the orbital angular

momentum, since the initial rotational angular momentum of the NO(X) is either j = 0.5

in the o–s QM calculations (a negligible value considering the magnitude of the orbital

and total angular momenta involved), or 0 in the c–s QM and QCT calculations. There

is generally excellent agreement between the three theoretical treatments, although the o–s

QM calculations show a slightly reduced probability at high J compared with the c–s QM

and QCT results. The latter results are, however, in very good accord with each other. For

total angular momentum quantum numbers, J , below ∼110, corresponding to b ≃ 4.5Å, the

opacity functions from each set of calculations show a near constant value of around 0.9.

The probability above J ≈ 110 first shows a cleft with a minimum at J ≈ 125 (b=4.7 Å) and

then a maximum, reaching around 0.7 at J ≃ 140 (equivalent to b ≈ 5.0Å) and then decrease

slowly until J ≈ 200. As discussed further below, this L–type orientational rainbow feature

can be clearly associated with the maximum in the classical deflection function. The results
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shown in Fig. 7 are typical of inelastic scattering in the presence of a significant attractive

well, as discussed by Schinke et al.18 and by Mayne and Keil19 for model systems.

In the bottom panel of Fig. 7 the summed over j′ opacity function corresponding to o–

s QM calculations is shown resolved in the final SO-manifolds with Ω′ = 1/2 (F1) (brown

dot–dot-dash line) and Ω′ = 3/2 (F2) (short-dash blue line). These to quantities summed up

will form the total o–s QM opacity function presented by red dashed line in this figure. As

can be seen, the bulge associated to rainbow scattering is completely absent in the F1 →F2

opacity function that comprises only total angular momenta J ≤ 110 and becomes zero in

coincidence with the minimum of the F1 →F1 opacity function assigned to the inelastic glory

impact parameter (see below).

When the opacity functions are resolved in final states, it becomes clear that the L-

type rainbow only appears for low ∆j transitions; those which require less momentum

transfer. Fig. 8 depicts the c–s QM j′ resolved opacity functions corresponding to odd

∆j (parity changing) transitions. The behavior for ∆j (parity conserving) transitions is

very similar and follows the same pattern. The arrows in the various P (J) indicate the

minimum corresponding to the cleft in the opacity function of Fig. 7 that appears at J=123

for all these transitions. For a narrow range of orbital angular momenta around this value,

little or none rotational excitation takes place at the collision energy considered. The bulge

associated to rainbow scattering at higher values diminishes rapidly as ∆j increases, and for

∆j=7 has practically vanished. These higher ∆j transitions are dominated by the repulsive

part of the potential and take place at increasingly smaller impact parameters, hence these

transitions will be similar to those taking place in systems with shallower or well. In turn,

the lowest ∆j transitions can be considered as quasi-elastic with the anisotropic attractive

potential dominating the collision. Interestingly, calculations carried out suppressing the

attractive part of the potential (simply making Vsum(R, γ) = 0 whenever it has a negative

value) causes the complete disappearance of the bulge for all the transitions and the retreat

of the opacity function to smaller J values. This effect was also found in semiclassical

calculations by Barrett et al.48 and more recently in the case of inelastic collisions of Cl +

H2
50,51.

In Fig. 9 we compare the total opacity functions from the c–s QM calculations for the

complete series of NO(X) collisions with the rare gases, He through to Xe. The initial

rotational state is j = 0 and the collision energy is 63 meV. These data emphasize the
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increasing presence of L–type rainbow structure in the total opacity functions with increasing

rare gas atomic number, reflecting the varying role played by attractive forces in the series of

Rg-NO(X) species. Attractive forces are practically absent in the potential for He-NO(X),

and the L–type rainbow feature is barely visible in the total opacity function. On the other

hand, very significant L–type structure is observed for Kr-NO(X) and Xe-NO(X), reflecting

the importance of attractive forces in these scattering encounters. Note that the heights and

shapes of the L–type orientational rainbows in Kr-NO(X) and Xe-NO(X) are rather similar,

reflecting the similarities in their PESs and in particular of their respective well depths. In

fact, the maximum of the rainbow appears in both cases at the same impact parameter and

the different in the value of the total angular momentum is just due to the difference in their

reduced masses.

The total opacity functions, P (J ; j), from the QCT, o–s QM, and c–s QM calculations

are presented in Fig. 10, for a series of initial rotational states, j. Each of the three sets

of calculations show very similar qualitative behavior, although, as with the data shown in

Fig. 7 for initial j = 0.5, the o–s QM data possess slightly less pronounced outer maxima in

probability. L–type rainbows are generally observed at low initial j, and practically disap-

pear for j ≥ 8. One reason for this is that the anisotropy of the potential is more effectively

averaged as j increases, and thus the effects of the attractive wells are less pronounced. Rota-

tional transitions between excited rotational states imply higher radial energy and therefore

smaller impact parameters Furthermore, however, rotational inelastic scattering requires a

more impulsive encounter as j increases, since a given ∆j transition at high initial j requires

the transfer of more energy than one at low j and this implies a progressive decrease of the

maximum value of the impact parameter.

C. Differential cross sections

The manifestation of L–type rainbows are also ubiquitous in the total and quantum

state resolved differential cross sections. Panel (a) of Fig. 11 shows the classical deflection

function, the dependence of the scattering angle on impact parameter, for initial j = 0.

A strong correlation is found between scattering angle and initial impact parameter: the

figure has a strong resemblance to that found in atom-atom elastic scattering. As noted

above, similar behavior has also been observed in the case of inelastic scattering of NO(X)
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by Ar20 and in previous studies48. The outer maximum in the deflection function, which

occurs at b ≃ 5Å, coincides precisely with the outer lobe in the total opacity function.

Above the glory impact parameter (bg ≈ 4.2Å, for which θg = 0), negative deflection angles

dominate, and the trajectories are mainly far-side in nature. Beyond the outer maximum in

the deflection function trajectories principally sample the attractive limb of the potential,

but as b decreases below ≈ 5Å the repulsive part of the potential plays an increasingly

important role until the glory impact parameter reached, at which point there is a perfect

balance between the effects of the attractive and repulsive forces and no net deflection is

observed.

Panel (b) of Fig. 11 presents the total differential cross section, for each of the three

theoretical approaches employed. Note the logarithmic scale used for the y-axis. The total

DCS is very strongly forward scattered, reflecting the dominant role played by high impact

parameter collisions which lead to relatively small deflections, and which preferentially sam-

ple attractive regions of the potential. At scattering angles around 30◦ the total QCT DCS

shows a hint of a classical rainbow, mirroring the outer maximum in the total deflection

function shown in panel (a). In this scattering angle region, the corresponding o–s QM and

c–s QM data show oscillations reflecting rainbow interference between multiple pathways

leading to the same scattering outcome. Overall there is excellent agreement between the

o–s QM, the c–s QM, and the QCT data.

Figs. 12 and 13 provide a comparison of the DCSs resolved into different ∆j transitions,

starting from initial j = 0.5 and 14.5, respectively. Results are presented for the QCT and

o–s QM calculations, with the latter appropriately summed over SO and averaged/summed

over Λ-doublet transitions. The data are plotted in the form of scattering angle differential

cross sections, dσ/dθ, i.e. the solid angle DCSs weighted by 2π sin θ, so that the plots

are less dominated by forward scattering. The DCSs for j = 0.5 (or j = 0 in the QCT

case) show clear rainbow peaks at low ∆j, which in the o–s QM calculations are manifest as

strong oscillations in the forward scattered region. These structures become less pronounced

towards high ∆j, although they are still observable for ∆j = 8 (see Fig. 12). In contrast,

the DCSs for collisions starting from j = 14.5, shown in Fig. 13, do not display any clear

evidence of rainbow structure, as would be expected on the basis of the opacity function

data shown in Fig. 10. Overall, there is reasonable agreement between the averaged o–s QM

and the QCT DCS results, although somewhat surprisingly the agreement is slightly worse
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in the case of the DCSs for initial j = 14.5 compared with initial j = 0.5.

Fully Λ-doublet resolved o–s QM DCSs are shown in Fig. 14, where they are again

weighted by 2π sin θ. The initial state is Ω = 1/2, j = 0.5, e. Spin-orbit conserving transi-

tions are shown in the upper four panels, while spin-orbit changing transitions are shown

in the lower four panels for the same ∆j and Λ-doublet changing collisions. The data are

plotted in ‘parity pairs’7–9,21,40; that is, the DCSs corresponding to transitions with the same

value of n = j ′ − εε′/2 are plotted in the same panel. DCSs with total NO parity changing

transitions shown in the left panels and total parity conserving in the right panels. It has

been shown elsewhere40,52 that within a Hund’s case (a) coupling scheme, transitions to

adjacent j′ levels of the same parity form pairs of transitions which are coupled by the same

terms in the expansion of the potential, and therefore tend to be similar in magnitude and

scattering angle dependence. This behavior is clearly reproduced here for collisions of Xe

with NO(X) for both spin-orbit conserving and changing collisions. In general, the total NO

parity conserving transitions tend to have greater amplitude in the sideways and backward

directions than the parity changing collisions, consistent with the latter being controlled by

more attractive terms in the PES. There is a general tendency, particularly for the spin-

orbit conserving transitions at moderate ∆j, for the total NO parity conserving transitions

to show a more pronounced double-peaked structure in the sideways scattering region than

in the case of the parity changing collisions. Similar behavior has been found experimentally

for NO(X) + Ar, and explained in terms of an NO parity-dependent interference effect8,9,21.

It is interesting to note that this behavior is also observed here for the NO(X) + Xe system.

The multiple peaked structure is less obvious in the spin-orbit changing collisions, but recall

that these cross sections are an order of magnitude smaller than those for the spin-orbit

conserving transitions.

Apart from these parity dependent structures, however, a key point to emphasize based

on the parity resolved DCSs shown in Fig. 14 is the presence of strong rainbow interference

structure at low ∆j, which reflects the L–type rainbow features in the opacity functions

shown in Figs. 7 and 10.
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VII. SUMMARY AND CONCLUSIONS

In this work we have presented new electronic structure, bound state, and inelastic scatter-

ing calculations on the NO(X2Π)–Xe system. High-level intermolecular potential energy sur-

face calculations have been performed for the lowest A′ and A′′ states of the Xe· · ·NO(X2Π)

van der Waals complex. It is shown that the global minimum on the A′ adiabatic surface

occurs at a T-shaped geometry and has a well depth of De = 148.68 cm−1. The adiabat of A′′

symmetry exhibits a single minimum at a skewed geometry with a well depth of 148.23 cm−1.

The new potential energy surfaces were used to calculate bound states of the Xe· · ·NO(X2Π)

complex, thereby enabling a prediction to be made of the ground state dissociation energy

of the complex, D0=117 cm−1.

Scattering calculations of integral and differential cross sections have also been performed

using full open–shell (o–s) and closed–shell (c–s) CC QM and QCT methods at a collision

energy of 63meV. The QM and QCT results are generally in good agreement, and reveal the

important role played by L–type rainbows in the scattering dynamics, particularly for low

initial rotational states of NO(X), and for transitions involving low ∆j. L–type rainbows

are shown to play an increasing role in the dynamics of the Rg-NO(X) systems with increas-

ing rare gas atomic number, reflecting the varying role played by attractive forces in the

series of Rg-NO(X) species. Attractive forces play a negligible role for He-NO(X), and the

L–type rainbow feature is barely visible in the total opacity function. On the other hand,

very significant L–type structure is observed for Kr-NO(X) and Xe-NO(X), reflecting the

importance of attractive forces in these scattering encounters. With increasing rotational

excitation the rainbow structures disappear due to the requirements of shorter impact pa-

rameters and to the effective average of the potential anisotropy diminishing the effects of

the attractive forces. Future experiments capable of measuring fully state–to–state DCS,

similar to those recently carried for Ar+NO inelastic collisions, will be most useful to deter-

mine the accuracy of the present potential and most especially of the attractive part of the

PES.

Further detailed comparisons between the Rg-NO(X) systems will be presented in a future

publication.
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TABLE I. Dispersion coefficients, Cn,l, of the Vsum diabat of the Xe-NO(X2Π) complex in units of

Eha
n
0 .

(n, l) Cn,l, This work Nielson et al. Ref.35

(6,0) 134 170±31

(6,2) 14.6 24.4±8
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TABLE II. The interaction energies at the stationary points of adiabatic A′ and A′′ surfaces, and

the diabatic Vsum surface.

PES Configuration De/cm−1

A′ Xe· · ·N-O, γ = 0◦, R = 8.73 a0 104.49

A′ Xe· · ·O-N, γ = 180◦, R = 8.37 a0 107.23

A′ Re = 7.46 a0, γe = 94◦ 148.68

A′′ Re = 7.68 a0, γe = 64◦ 148.23

Vsum Re = 7.52 a0, γe = 90◦ 141.70
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TABLE III. Selected bound states (up to energy of -68 cm−1) of Xe-NO(X2Π) complex for J = 1
2 up

to 3
2 . Energies are in cm−1 relative to the energy of the separated monomers. ns and nb specify the

number of nodes in the van der Waals stretching and bending modes of the complex, respectively.

The P quantum number denotes the projection of the total angular momentum J on the z-axis of

the molecular frame. The + and − signs denote the total parity p.

(ns, nb) P J = 1
2+ J = 1

2− (ns, nb) P J = 3
2+ J = 3

2−

(0,0) 1/2 -116.927 -116.884 (0,0) 1/2 -116.828 -116.768

(0,0) 1/2 -116.814 -116.859 (0,0) 1/2 -116.667 -116.731

(0,1) 1/2 -100.125 -100.099 (0,1) 3/2 -113.244 -113.244

(0,1) 1/2 -99.678 -99.713 (0,1) 3/2 -113.058 -113.058

(1,0) 1/2 -95.421 -95.425 (1,0) 1/2 -100.031 -99.981

(1,0) 1/2 -94.307 -94.307 (1,0) 1/2 -99.538 -99.605

(0,2) 1/2 -87.557 -87.558 (0,2) 3/2 -95.409 -95.404

(0,2) 1/2 -86.098 -86.098 (0,2) 1/2 -95.307 -95.322

(1,1) 1/2 -82.469 -82.475 (1,1) 3/2 -94.256 -94.250

(1,1) 1/2 -80.274 -80.279 (1,1) 1/2 -94.176 -94.183

(1,2) 1/2 -74.817 -74.923 (2,0) 3/2 -90.180 -90.180

(1,2) 1/2 -74.604 -74.502 (2,0) 3/2 -88.721 -88.721

(2,1) 1/2 -71.026 -71.034 (0,3) 1/2 -87.449 -87.451

(2,1) 1/2 -68.726 -68.722 (0,3) 1/2 -85.987 -85.985
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TABLE IV. Integral cross sections obtained from the o–s QM, c–s QM and QCT scattering calcu-

lations for Ecol = 63meV with respect to the initial state with j = 1/2, Ω = 1/2, ϵ = e(+1) or

ϵ = f(−1) (j = 0 in case of the closed shell and QCT approach). The SO-conserving (F1 →F1)

and SO-changing (F1 →F2) o–s QM cross sections are given resolved for initial and final Λ-

doublets and also summed over final and averaged over initial Λ-doublet and summed over final Ω′

(∆Ω = 0 +∆Ω = 1 column). Cross sections are in units of Å2.

Final state ϵ ∆Ω = 0 +∆Ω = 1 Closed shell

∆j ϵ′ e f e f o–s QM QCT c–s QM

F
1
→

F
1

0
f 3.89 290

F
1
→

F
2

– – 3.89 – –
e 291.0 3.89

1
f 8.19 8.02 1.24 0.27

17.9 31.1 11.6
e 8.01 8.45 0.29 1.25

2
f 2.63 12.3 0.26 0.66

16.2 17.3 22.9
e 12.5 2.64 1.12 0.25

3
f 4.83 3.42 1.34 0.13

10.0 11.9 6.78
e 3.41 4.90 0.15 1.86

4
f 1.42 6.09 0.13 0.83

8.64 9.23 11.8
e 5.68 1.44 1.54 0.15

5
f 3.88 1.25 1.14 0.10

6.49 6.77 3.98
e 1.28 3.35 0.13 1.86

6
f 1.20 4.22 0.11 0.60

6.04 5.57 6.90
e 3.30 1.26 1.20 0.19

7
f 2.90 1.18 0.57 0.12

4.59 4.83 4.46
e 1.16 1.98 0.20 1.08

8
f 1.16 2.81 0.16 0.22

3.97 3.95 3.46
e 1.79 1.04 0.47 0.30

9
f 1.86 1.17 0.15 0.15

2.95 3.32 4.50
e 0.97 1.00 0.28 0.31

10
f 1.12 1.40 0.12 0.06

2.31 2.76 1.52
e 0.75 0.78 0.12 0.28

26



FIG. 1. Radial Vlm(R) expansion coefficients of the a) Vsum and b) Vdiff diabats, respectively.
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FIG. 2. (Color online) Contour plots of the adiabatic surfaces, a) A′ and b) A′′. Energy in cm−1.

γ=0◦ corresponds to the linear Xe–N–O configuration. The contour corresponding to 508 cm−1

represents that of the collision energy of 63 meV. Negative energy contours, dashed (blue) line;

positive energy contours, solid (red) line.

γ / degrees

R
 /
 a

0

−30

−50

−70

−90

−100

−100

−110

−130
−140

−
1
4
5

−90
−100

0
0

200

508 1000
2000

0 30 60 90 120 150 180
6

7

8

9

10

11

a)

γ / degrees

R
 /
 a

0

−30

−50

−70

−90−110

−130

−140

−145

−120

−100
−100

−100

−100

0

0200

508

1000

2000

0 30 60 90 120 150 180
6

7

8

9

10

11

b)

28



FIG. 3. (Color online) Contour plots of the diabatic surfaces, a) Vsum and b) Vdiff . Energy in cm−1.

γ=0◦ corresponds to the linear Xe–N–O configuration. The contour corresponding to 508 cm−1

represents the collision energy of 63meV. Contours as in Fig. 2
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FIG. 4. (Color online) Integral cross sections at Ecol = 63meV for rotational transitions from the

initial j = 0.5 and Ω=1/2 NO rotational state. Open squares and solid (blue) line, o–s QM data;

open circles and dot–dash (black) line, c–s QM data; filled circles and dashed (red) line, QCT

results. The o–s QM results are summed over final Λ-doublet and Ω states and averaged over initial

Λ-doublet levels.
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FIG. 5. (Colour online) Open–shell QM integral cross sections at Ecol = 63meV from j=0.5,

Ω=1/2, and ϵ = +1 (e) initial state into the Ω=1/2, F1 (upper panel) and Ω=3/2, F2 (lower panel)

manifolds. Open (blue) circles e → e transitions; filled (red) circles e → f transitions.
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FIG. 6. Integral cross sections for collision energy Ecol = 63meV from the initial rotational states:

a): j = 2.5, b) j = 5.5, c)j = 8.5 and d)j = 14.5 (j=0, 2, 8 and 14, respectively, for c–s

calculations). The QM o-s results are summed over final Λ-doublet and Ω states and averaged over

initial Λ-doublet levels. Lines and symbols as in Fig. 4.
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FIG. 7. Top panel: Total opacity functions, P (J ; j = 0.5), from QCT (dashed, red line), open-shell

QM (solid, blue line) and closed-shell QM (dot–dashed, black line) calculations for Ecol = 63meV

for initial rotational state Ω=1/2, j = 0.5 (j=0 for c–s calculations). Bottom panel: Total (summed

over final rotational states) opacity functions from the o–s QM calculations resolved for the final

spin-orbit manifold with Ω′ = 1/2 (F1) and Ω′ = 3/2 (F2), respectively. They sum up to form a red

dashed line representing the total o–s QM P (J). The upper x axes show the corresponding values

of the impact parameter, b = [ℓ(ℓ+ 1)]1/2/k, where k = (2µEcoll)
1/2/~.
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FIG. 8. Rotationally state resolved opacity functions, P (J ; j = 0 → j′), from closed-shell QM

calculations for Ecol = 63meV for various odd ∆j transitions. The arrows in each panel indicate

the J value of the glory associated to the L-type rainbow; all of them correspond to a value of

J=123. As can be seen, for ∆j > 5 the bulge associated with the rainbow scattering is absent.
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FIG. 9. Total opacity functions from the closed-shell QM calculations at collision energy Ecol =

63meV for the initial rotational state j = 0 for the series of Rg-NO(X) systems.
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FIG. 10. Total opacity P (J ; j) functions from the QCT (top panel), open-shell QM, o–s, (middle

panel) and closed-shell c–s QM (bottom panel) calculations for Ecol = 63meV as a function of

initial rotational state j. The o-s results are averaged and summed over the two initial and final,

respectively, lambda doublet components transitions and summed over F1 → F1 and F1 → F2

transitions.
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FIG. 11. Panel (a): Classical deflection function (scattering angle vs. impact parameter) for

rotationally inelastic scattering of NO in its ground state (j=0) with Xe at 63 meV collision energy.

Deflection angles above the glory impact parameter (≈ 4.2Å) are negative, corresponding to far-

side collisions. The top x axis shows the values of the orbital angular momentum. Panel (b): Total

differential cross sections from the QCT, o–s QM, and c–s QM calculations at Ecol = 63meV for

initial rotational state j = 0.5 (j=0 for c–s calculations). The o–s QM DCS is summed over all

final states and averaged over initial fine states. Lines as in Fig. 10.
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FIG. 12. State–to–state angular distributions, 2π sin θdσ/dω, for selected transitions out of the

initial j = 0.5 rotational level from the QCT and o–s QM calculations at Ecol = 63meV. The o–s

QM DCSs are summed over Ω=1/2, 3/2 and e and f final states and averaged over initial e and f

states. Solid (blue) line, o–s QM data; dashed (red) line, QCT data.
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FIG. 13. Same as Fig. 12 but out of the initial j = 14.5 rotational level at a collision energy of

Ecol = 63meV.
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FIG. 14. o–s QM DCS for selected transitions out of the initial j = 0.5 rotational level and selected

Λ–doublet components at Ecol = 63meV. The left and right columns display the parity breaking

and parity conserving transitions, respectively.
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