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Spatial inequalities of COVID-19 mortality rate in relation to 1 

socioeconomic and environmental factors across England 2 

Abstract: 3 

In this study, we aimed to examine spatial inequalities of COVID-19 mortality rate in relation 4 

to spatial inequalities of socioeconomic and environmental factors across England. Specifically, 5 

we first explored spatial patterns of COVID-19 mortality rate in comparison to non-COVID-6 

19 mortality rate. Subsequently, we established models to investigate contributions of 7 

socioeconomic and environmental factors to spatial variations of COVID-19 mortality rate 8 

across England (N = 317). Two newly developed specifications of spatial regression models 9 

were established successfully to estimate COVID-19 mortality rate (R2 = 0.49 and R2 = 0.793). 10 

The level of spatial inequalities of COVID-19 mortality is higher than that of non-COVID-19 11 

mortality in England. Although global spatial association of COVID-19 mortality and non-12 

COVID-19 mortality is positive, local spatial association of COVID-19 mortality and non-13 

COVID-19 mortality is negative in some areas. Expectedly, hospital accessibility is negatively 14 

related to COVID-19 mortality rate. Percent of Asians, percent of Blacks, and unemployment 15 

rate are positively related to COVID-19 mortality rate. More importantly, relative humidity is 16 

negatively related to COVID-19 mortality rate. Moreover, amongst the spatial models 17 

estimated, the ‘random effects specification of eigenvector spatial filtering model’ outperforms 18 

the ‘matrix exponential spatial specification of spatial autoregressive model’.  19 

Keywords: COVID-19 mortality; Spatial disparities; Matrix exponential spatial specification 20 

model; Eigenvector spatial filtering model; Socioeconomic disadvantage 21 
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COVID-19 infection and mortality are gaining increasingly attentions from both policymakers 23 

and researchers. Owing to privacy protection individual-level COVID-19 data are not publicly 24 

available, aggregate COVID-19 data plays a key role in COVID-19 research. Recently, 25 

aggregate-level geocoded or georeferenced COVID-19 mortality data in some countries or 26 

regions have been released as well. Therefore, geovisualisation and spatiotemporal analysis of 27 

COVID-19 mortality rate are performable. As empirical evidence on the association of 28 

socioeconomic and environmental factors and a variety of health outcomes have been found, 29 

we could speculate that spatial variations of COVID-19 mortality rate might be associated with 30 

spatial variations of socioeconomic and environmental characteristics (e.g., Ji et al., 2020; Yao 31 

et al., 2020; Coker et al., 2020) and this speculation could be empirically validated by 32 

geographically aggregated COVID-19 death data.  33 

In this study, we aimed to examine spatial inequalities of COVID-19 mortality rate in relation 34 

to spatial inequalities of socioeconomic and environmental factors. Specifically, we first 35 

explored spatial patterns of COVID-19 mortality rate in comparison to non-COVID-19 36 

mortality rate. Subsequently, we modelled spatial variations of COVID-19 mortality rate from 37 

local-scale socioeconomic and environmental characteristics. Empirically, we used the 38 

England-wide COVID-19 mortality rate data aggregately collected from March to May of 2020. 39 

These 3 months are experiencing most fast-growing deaths duo to COVID-19 in England. 40 

England is chosen as the empirical study area because 1) England is one of the most serious 41 

countries in Europe according to either number of COVID-19 cases or number of COVID-19 42 

deaths; 2) local-scale COVID-19 mortality data, socioeconomic data, and environmental data 43 

across England are publicly available.  44 

This study can offer more evidence on the associations of COVID-19 mortality rate, 45 

socioeconomic and environmental factors. An understanding of spatial inequalities of COVID-46 
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19 mortality rate in relation to socioeconomic and environmental characteristics can inform 47 

policymakers to prioritise areas with a lower socioeconomic status or a lower environmental 48 

quality (e.g., air quality) in response to a second wave of COVID-19 or alike crises. Compared 49 

to the previous studies, this study is the first one taking account of both socioeconomic factors 50 

and environmental factors simultaneously in explaining spatial variations of COVID-19 51 

mortality rate; and the first one focusing on spatial variations of COVID-19 mortality rate in 52 

relation to socioeconomic factors and environmental factors across England. 53 

As the regression models are applied to geospatial data in this study, spatial regression models 54 

are highly recommended. Spatial autocorrelation is likely to exist in the residuals of non-spatial 55 

regression models (e.g., ordinary least squares models) applied to geospatial data. Presence of 56 

spatially autocorrelated residuals means individual observations are not completely 57 

independent, thereby violating the assumption of observation independence in regression 58 

models. In this case, we should replace nonspatial models with spatial regression models since 59 

spatial regression models, like spatial autoregressive models, are developed to reduce the 60 

adverse impact of auto-correlation in regression residuals. Therefore, in this study, we selected 61 

two typical spatial regression models: spatial autoregressive model and eigenvector spatial 62 

filtering model as the former is the most widely used one (e.g., Chi and Zhu, 2008; Lin 2010) 63 

and the latter is likely to perform best (e.g., Chun, 2014; Helbich and Jokar Arsanjani, 2015). 64 

More specifically, the matrix exponential spatial specification model and fast random effects 65 

eigenvector spatial filtering model are selected to estimate models in this study. The ‘matrix 66 

exponential spatial specification’ is one of the best specifications in spatial autoregressive 67 

models (LeSage and Pace 2009); whilst the ‘random effects specification’ is one of the new 68 

and effective specifications in eigenvector spatial filtering models (Murakami and Griffith 69 

2015). Compared with conventional specifications of spatial autoregressive models, the ‘matrix 70 

exponential spatial specification’ has advantages on computational efficiency and 71 
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interpretation (e.g., generation of R2) (LeSage and Pace, 2007), and the ‘random effects 72 

specification’ is likely to better explain the spatial variations with a higher value of R2 or a 73 

lower value of Akaike information criterion (Murakami and Griffith 2015; Murakami and 74 

Griffith 2019). Furthermore, we will compare the performance of the models estimated and 75 

determine which models are more appropriate.  76 

This study can offer more evidence on the associations of COVID-19 mortality rate, 77 

socioeconomic and environmental factors. Particularly, this study empirically reveals that 78 

spatial variations of COVID-19 mortality rate are mainly attributable to spatial variations of 79 

socioeconomic and environmental characteristics across England. Healthcare resource 80 

allocation should prioritise some areas around Sunderland, Liverpool, and Birmingham since 81 

those areas are hotspots of COVID-19 mortality rate and non-COVID-19 mortality rate but 82 

have a lower level of access to hospital.  83 

2. Literature review 84 

Health inequalities exist among different socioeconomic groups since socioeconomic status 85 

(SES) reportedly influences health outcomes (e.g., Nobles et al 2013; Präg et al 2016; Kosidou 86 

et al 2011). A number of studies had offered empirical evidence on the association of 87 

socioeconomic factors and human health, including physical health (e.g., Nobles et al 2013; 88 

Präg et al 2016) and mental health (e.g., Nobles et al 2013; Präg et al 2016; Kosidou et al 2011). 89 

Adverse socioeconomic factors such as poverty, unemployment, and occupational risks are 90 

likely to cause negative health consequences. Socioeconomically disadvantaged people are 91 

likely to live a less healthy life, including lower access to healthcare, healthy food, or 92 

recreational facilities, a lower level of physical activity, a higher level of exposure to alcohol 93 

and/or tobacco, less knowledge of health maintenance, or a lower level of self-discipline.  In 94 

general, people with a lower socioeconomic position are more likely to suffer from health 95 
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problems than those with a higher socioeconomic position. Apart from socioeconomic factors, 96 

environmental factors are found to influence health outcomes (e.g., Hoek et al., 2013; Beelen 97 

et al., 2014; Wheeler et al. 2015; Lelieveld et al., 2015; Di et al., 2017). For instance, increased 98 

mortality due to different causes is reportedly associated with  air pollution exposure (Hoek et 99 

al., 2013; Beelen et al., 2014; Lelieveld et al., 2015; Di et al., 2017), road traffic noise exposure 100 

(Halonen et al., 2015; Héritier et al., 2017), temperature (Gasparrini et al., 2015; Guo et al., 101 

2014), and humidity (Barreca and Shimshack, 2012; Ou et al., 2014).  102 

Some recent studies had performed interesting research using georeferenced COVID-19 case 103 

data though those data had been aggregated to a variety of geographic units (e.g., state/province, 104 

county/town/city, etc.) before being released. To search for COVID-19 incidence hotspots, 105 

some researchers detected spatiotemporal clusters of COVID-19 cases across United States 106 

(Hohl et al., 2020; Desjardins et al., 2020). To understand socioeconomic and environmental 107 

effects, some scholars modelled spatial variations of COVID-19 incidence rate from 108 

socioeconomic and environmental factors in China (e.g., Huang et al., 2020; Guliyev 2020), 109 

United States (e.g., Mollalo et al., 2020), and Africa (e.g., Adekunle et al., 2020). Besides, 110 

some city-wide researches had been conducted as well (e.g., Cordes and Castro, 2020). 111 

Moreover, some scholars modelled the dynamic spread of COVID-19 through travel patterns 112 

of people (Zheng et al., 2020; Gatto et al., 2020; Velásquez and Lara, 2020; Danon et al., 2020; 113 

Pujari and Shekatkar, 2020).  114 

Although not being discussed as much as COVID-19 infection or spread, COVID-19 mortality 115 

and its associations with socioeconomic and environmental characteristics have been discussed 116 

in a few studies.  On the one hand, socio-economically advantaged communities are likely to 117 

have a higher risk of COVID-19 mortality. A recent study of primary COVID-19 data in 118 

England uncovers that Black, Asian and minority ethnic groups in England are at increased 119 
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risk of death from COVID-19 (Aldridge et al., 2020). Similarly, another recent study reveals 120 

that substantial racial/ethnic disparities are observed in COVID-19 case fatality and mortality 121 

with Blacks/African Americans disproportionately affected across the United States (Holmes 122 

et al., 2020). In the United States, black people are being admitted to hospital and dying in 123 

disproportionate numbers from the covid-19 pandemic (Dyer, 2020). A systematic review of 124 

recent literature concludes that Black, Asian, and Minority Ethnic (BAME) individuals are at 125 

an increased risk of worse clinical outcomes from COVID-19 (Pan et al., 2020). Moreover, 126 

unemployment and poverty are reported to be an important factor in determining COVID-19 127 

mortality rates in France (Goutte et al., 2020). More specifically, focusing on a densely 128 

populated region of France, Goutte et al. (2020) documented evidence that higher economic 129 

“precariousness indicators” such as unemployment and poverty rates, lack of formal education 130 

and housing are important factors in determining COVID-19 mortality rates. Besides, access 131 

to healthcare is likely to play a key role in affecting COVID-19 mortality rate. Spatial variations 132 

in healthcare resource availability and accessibility might partly explain spatial disparities 133 

variations in COVID-19 mortality rate across China (Ji et al., 2020). On the other hand, 134 

environmental characteristics (e.g., air quality, temperature range, and humidity) are likely to 135 

affect COVID-19 mortality. For instance, a recent study found positive associations between 136 

particulate matter pollution (PM2.5 and PM10) and COVID-19 case fatality rate (CFR) in 137 

Chinese cities (Yao et al., 2020). Another study on other Asian cities suggests that there exists 138 

a positive correlation between the level of air pollution of a region and the lethality related to 139 

COVID-19, indicating air pollution to be an elemental and concealed factor in aggravating the 140 

global burden of deaths related to COVID-19 (Gupta et al., 2020). Similarly, a positive 141 

association of ambient PM2.5 concentration on excess mortality related to the COVID-19 142 

epidemic was found in Northern Italy (Coker et al., 2020). Effects of temperature variation and 143 

humidity on COVID-19 mortality rate were reported as well (Ma et al., 2020). More 144 
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specifically, Ma et al. (2020) explored the effects of meteorological factors on COVID-19 145 

mortality in Wuhan, and found that diurnal temperature range is positively associated with 146 

daily death counts of COVID-19 while absolute humidity is negatively associated with daily 147 

death counts of COVID-19. 148 

3. Materials and methods 149 

3.1 Research data 150 

The mortality data is available for March, April and May in 2020 151 

(https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/d152 

atasets/deathsinvolvingcovid19bylocalareaanddeprivation). The data offer the number of 153 

deaths and age-standardised rates by local authority districts (LADs) according to deaths 154 

occurring between March and May. Figure 1 maps three-month COVID-19 mortality rate and 155 

non-COVID-19 mortality rate across England at the local authority district (LAD) level. 156 

Besides, there are 317 LADs constituting England. In Figure 1, grey areas mean areas with no 157 

data.  158 

Population by gender and LAD is available for 2019 159 

(https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/population160 

estimates/datasets/populationestimatesforukenglandandwalesscotlandandnorthernireland), 161 

and population by ethnicity and LAD is available for 2017 162 

(https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/population163 

estimates/adhocs/008781populationdenominatorsbybroadethnicgroupandforwhitebritishlocala164 

uthoritiesinenglandandwales2011to2017). Unemployment rate by LAD is available for 2019 165 

(https://www.ons.gov.uk/employmentandlabourmarket/peoplenotinwork/unemployment/data166 

sets/modelledunemploymentforlocalandunitaryauthoritiesm01/current), and percent of 167 

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsinvolvingcovid19bylocalareaanddeprivation
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsinvolvingcovid19bylocalareaanddeprivation


8 
 

households in poverty by LAD is available for 2014 168 

(https://www.ons.gov.uk/peoplepopulationandcommunity/personalandhouseholdfinances/inc169 

omeandwealth/datasets/householdsinpovertyestimatesformiddlelayersuperoutputareasinengla170 

ndandwales). A household is thought to be in poverty if its income is below 60% of the median 171 

income before housing costs. Locations of hospitals are available from UK National Health 172 

Service (NHS) (https://www.nhs.uk/about-us/nhs-website-datasets/).  173 

Since high-resolution PM2.5 data and climatic data are not available for 2020, high-resolution 174 

PM2.5 data and climatic data for 2019 were used. Specifically, Met Office offers 1x1 km 175 

gridded monthly relative humidity and air temperature (maximum and minimum) for 2019 176 

(Met Office, 2020); whilst Defra offers 1x1 km gridded annual mean PM2.5 data for 2019 177 

(https://uk-air.defra.gov.uk/data/pcm-data). Air pollution maps at 1x1 km resolution are 178 

modelled each year under Defra's Modelling of Ambient Air Quality (MAAQ) contract. These 179 

maps are used to provide policy support for Defra and to fulfil the UK's reporting obligations 180 

to Europe. The models have been calibrated using monitoring data from the national network 181 

sites. Professional monitoring stations installed in monitoring sites are used to observe air 182 

quality, humidity, and temperature (see https://uk-air.defra.gov.uk/networks/network-183 

info?view=aurn and https://www.metoffice.gov.uk/public/weather/observation/map). We used 184 

the average climatic measures of three months (i.e., March, April and May) in 2019 to represent 185 

the climatic measures (i.e., relative humidity and range of air temperature) used in this study. 186 

Although monthly high-resolution PM2.5 is not available, population-weighted LAD-level 187 

annual mean PM2.5 is available, and thereby is used to represent the annual mean PM2.5 level 188 

used in this study. Technically, monthly relative humidity and monthly air temperature were 189 

aggregated from grids to LADs. Figure 2 maps population and density of hospital across 190 

England at the local authority district (LAD) level in 2019. And, Figure 3 maps annual mean 191 

PM2.5 across England at the local authority district (LAD) level in 2019. 192 

https://www.nhs.uk/about-us/nhs-website-datasets/
https://catalogue.ceda.ac.uk/uuid/4dc8450d889a491ebb20e724debe2dfb
https://uk-air.defra.gov.uk/data/pcm-data
https://uk-air.defra.gov.uk/networks/network-info?view=aurn
https://uk-air.defra.gov.uk/networks/network-info?view=aurn
https://www.metoffice.gov.uk/public/weather/observation/map
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a) COVID-19 mortality rate b) Non-COVID-19 mortality rate 

Figure 1. 3-month COVID-19 mortality rate and non-COVID-19 mortality rate 193 

across England at the local authority district (LAD) level (March, April, and May 194 

2020) (Data source: ONS) 195 

  

a) Population (unit: 1,000 persons) 
b) Density of hospital (unit: number of 

hospitals per 1,000,000 persons) 

Figure 2. population and density of hospital across England at the local authority 196 

district (LAD) level in 2019 (Data source: ONS and NHS) 197 
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Figure 3. annual mean PM2.5 (unit: ug / m-3) across England at the local authority 198 

district (LAD) level in 2019 (Data source: Defra) 199 

 200 

3.2 Exploring spatial patterns of COVID-19 mortality rate 201 

In this study, we first explored spatial patterns of COVID-19 mortality rate in comparison with 202 

non-COVID-19 mortality. 203 

3.2.1 Assessing spatial inequalities of COVID-19 mortality and non-COVID-19 mortality 204 

In this study, we assessed spatial inequalities of COVID-19 mortality rate and non-COVID-19 205 

mortality rate by computing the Gini coefficient (the most commonly used measure of 206 

inequality). 207 

3.2.2 Exploring spatial association of COVID-19 mortality and non-COVID-19 mortality 208 

In this study, we explored spatial association of COVID-19 mortality rate and non-COVID-19 209 

mortality rate by using bivariate Moran’s I test. Specifically, bivariate Moran’s I test includes 210 

global and local ones. The global one is also called “global indicators of spatial association 211 

(GISA)”, and the local one is also called “local indicators of spatial association (LISA)”. The 212 
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global and local ones are used to quantify the global and local spatial association between two 213 

variables respectively. Specifically, a positive association (a positive Moran’s I value) means 214 

high (low) values of one variable is surrounded by high (low) values of the other variable; 215 

whilst a negative association (a negative Moran’s I value) means high (low) values of one 216 

variable is surrounded by low (high) values of the other variable.  217 

3.3 Modelling spatial variations of COVID-19 mortality rate 218 

3.3.1 Model variables 219 

Table 1 lists the variables considered in this study. The response is three-month COVID-19 220 

mortality rate (unit: deaths per 100,000 persons). The explanatory variables include 221 

socioeconomic characteristics (i.e., gender, ethnical, income, and employment characteristics), 222 

hospital accessibility, and physical environment characteristics (i.e., air pollution, humidity, 223 

and temperature measures). The range of air temperature equals the difference of maximum air 224 

temperature and minimum air temperature. Particularly, a population-based measure is used to 225 

quantify the level of hospital accessibility rather than an area-based one as the response is a 226 

population-based one as well. Table 1 also shows the statistical description for all the variables 227 

in this study.  228 

There might be still potential bias because all the explanatory variables are measured in 2019 229 

or earlier while the response (COVID-19 mortality rate) is measured in 2020. We made an 230 

assumption that spatial variations of socioeconomic and environment characteristics across a 231 

country should be consistent between continuous years. For instance, spatial variations of 232 

socioeconomic and environment characteristics across England in 2020 should be proportional 233 

to those in 2019; likewise, spatial variations of socioeconomic and environment characteristics 234 

in 2019 should be proportional to those in 2018 as well. Table 2 lists the correlations of LAD-235 

level explanatory variables and their counterparts in the previous years (Note that P_HIP is not 236 

included due to the absence of data in other years). As Table 2 shows, high values of Pearson’s 237 
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correlation coefficients (R > 0.9) indicate that spatial variations of socioeconomic and 238 

environment characteristics in 2019 is highly proportional to those in 2018. Based on the 239 

assumption, spatial variations of socioeconomic and environment characteristics in 2020 is 240 

likely to be highly proportional to those in 2019 as well. Therefore, we can use spatial variations 241 

of socioeconomic and environment characteristics in 2019 or earlier to approximately represent 242 

spatial variations of them in 2020.  243 

Table 1. Summary of variables and data sources in this study. 244 

Variable Full Name Mean SD Year Source 

CMR 3-month COVID-19 mortality rate 

(unit: deaths per 100,000 persons) 
79.4 36.89 2020 ONS 

P_F Percent of females 50.65 0.83 2019  

 

 

ONS 

P_A Percent of Asians 6.11 8.11 2017 

P_B Percent of Blacks 2.52 4.65 2017 

P_HIP Percent of households in poverty 15.84 3.36 2014 

UE_R Unemployment rate (%) 3.66 1.21 2019 

D_P Density of population (unit: 1,000 

persons per km2) 
1.8 2.64 2019 

D_H Density of hospital (number of 

hospitals per 1,000,000 persons) 
23.33 27.96 2019 NHS 

AM_PM Annual mean PM2.5 (ug / m-3) 9.38 1.59 2019 Defra 

R_H 3-month mean relative humidity (%) 76.28 1.9 2019 
Met Office 

R_AT 3-month mean range of air 

temperature (oC) 
8.97 0.84 2019 

 245 

 246 

 247 

 248 

 249 

 250 

 251 
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Table 2. Correlations of LAD-level explanatory variables and their counterparts in 252 

the previous year or earlier (N=317) 253 

Pearson’s 

correlation 

coefficient 

P_F 

2018 

P_A 

2016 

P_B 

2016 

UE_R 

2018 

D_P 

2018 

AM_PM 

2018 

R_H 

2018 

R_AT 

2018 

P_F 

2019 

0.993        

P_A 

2017 

 0.999       

P_B 

2017 

  0.999      

UE_R 

2019 

   0.995     

D_P 

2019 

    0.999    

AM_PM 

2019 

     0.935   

R_H 

2019 

      0.9  

R_AT 

2019 

       0.933 

 254 

 255 

 256 

 257 

3.3.2 Model selection and estimation 258 

To select and estimate appropraite models, we will first estimate spatial regression models as 259 

well as non-spatial regression models, and subsequently check whether spatial regression 260 

models can reduce residual spatial autocorrelation in comparion with non-spatial regression 261 

models.  262 

Moran's I: Testing for spatial dependence: 263 

To test whether there is significant spatial autocorrelation present in regression residuals, we 264 

will use the Moran’s I testing method proposed by Moran (1950). Moran’s I is widely used to 265 

measure the level of spatial autocorrelation between adjacent locations (Moran 1950; Getis and 266 

Ord 1992).  267 
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Variable selection: the Lasso technique 268 

Lasso (Tibshirani, 1996) performs automatic variable selection and is most likely the preferred 269 

method (Friedman 2010; Engebretsen and Bohlin, 2019). In this study, we used Lasso to select 270 

explanatory variables and further estimate models to improve model estimation.  271 

Spatial regression models: 272 

If significant spatial autocorrelation is found to exist in the residuals of non-spatial regression 273 

models estimated conventionally, we should consider spatial regression models. In this study, 274 

we will select two specifications from two types of spatial regression models (i.e., spatial 275 

autoregressive and eigenvector spatial filtering) since the former is the most widely used one 276 

and the latter is thought to be most high-performance one. Specifically, we will use the matrix 277 

exponential spatial specification (MESS) and random effects specification (RES) as 278 

specifications in the spatial autoregressive (SAR) models and in eigenvector spatial filtering 279 

(ESF) models respectively.  280 

Spatial autoregressive model (MESS-SAR): Among different types of spatial regression 281 

models, spatial autoregressive model is the most popular one. A variety of spatial 282 

autoregressive (SAR) models have been proposed to remedy residual spatial autocorrelation. 283 

Specifically, we choose the matrix exponential spatial specification (MESS) as the specific 284 

SAR model in this study since the MESS model has analytical, computational, and interpretive 285 

advantages over other SAR models (LeSage and Pace, 2007). Additionally, the MESS-SAR 286 

model produces R2 values which are direct measures of the explanation capacity of the model; 287 

whilst conventional spatial regression models do not. The coefficients estimated in the MESS-288 

SAR model are usually similar to those in OLS models, but residual spatial correlation is much 289 

lower (LeSage and Pace 2007; LeSage and Pace 2009). The MESS model can be described as 290 

follow (LeSage & Pace, 2007; LeSage & Pace, 2009):  291 
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“A spatial regression mode can be expressed as 292 

𝑆𝑦 = 𝑋𝛽 +  ɛ                                            (1) 293 

where the vector y contains n observations on the dependent variable, each associated with one 294 

region or point in space. The matrix X represents an n × k full column rank matrix of constants 295 

which correspond to observations on k independent variables for each region. The n-element 296 

vector ɛ is distributed as N (0, 𝜎2 𝐼𝑛). The k element vector β is a vector of corresponding 297 

parameters, and S denotes an n × n non-singular matrix of constants that may depend on an 298 

unknown real, scalar parameter.  299 

The MESS specification replaces the conventional geometric decay of influence from higher-300 

order neighbouring relationships implied by the spatial autoregressive process with an 301 

exponential pattern of decay in influence from higher-order neighbouring relationships. 302 

Specifically, the MESS model transforms S to model spatial dependence among the elements 303 

of the vector y:  304 

𝑆 = 𝑒∝𝑊 = ∑
∝𝑖 𝑊𝑖

𝑖!

∞

𝑖=0

                                                             (2) 305 

where W is an n × n non-negative matrix with zeros on the diagonal and α represents a scalar 306 

real parameter. W represents a spatial weight matrix, and 𝑊𝑖𝑗 > 0 indicates that observation j is 307 

a neighbour of observation i. The matrix exponential S, along with matrix W, imposes a decay 308 

of influence for higher-order neighbouring relationships.” 309 

Eigenvector spatial filtering model (RES-ESF): Compared to spatial autoregressive models 310 

estimated based on parametric estimation methods (e.g., maximum likelihood estimation or 311 

Bayesian estimation), eigenvector spatial filtering is computer intensive since it is a 312 

nonparametric statistical method which is distribution free without sacrificing too much 313 

information in a sample (Tiefelsdorf and Griffith, 2007). Although eigenvector spatial filtering 314 
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(ESF) models are computationally demanding, they are likely to outperform spatial 315 

autoregressive models in the applications of urban and regional studies, ecological studies, and 316 

so on (Murakami and Griffith 2019). Furthermore, a random effects specification of ESF (RES-317 

ESF) had been developed because of its usefulness for spatial dependence analysis considering 318 

spatial confounding (Murakami and Griffith 2015). RES-ESF model is found to outperform 319 

conventional ESF model (Murakami and Griffith 2015; Murakami and Griffith 2019). Besides, 320 

the RES-ESF model can produce R2 values as well.  321 

The eigenvector spatial filtering (ESF) is also called Moran’s eigenvector-based spatial 322 

regression approach in regional science (Griffith 2003), and ESF with a small number of 323 

eigenvectors (i.e., small L) can greatly reduce model misspecification errors and increases 324 

model accuracy (Murakami and Griffith, 2019). The ESF model is presented as follows (Chun 325 

et al., 2016): 326 

“ESF utilizes the spectral decomposition of a transformed spatial weights matrix, C. The 327 

spectral decomposition of matrix MCM (where M = (I − 11T)/n and 1 is a vector of ones) 328 

produces a set of n eigenvalues and their corresponding eigenvectors: 329 

MCM = EΛE-1 = EΛET                                             (3) 
330 

where Λ is a diagonal matrix whose diagonal elements are the n eigenvalues λ = (λ1, λ2, …, λ n) 331 

ordered from the largest value to the smallest value, and E = (e1, e2, …, en) represents 332 

the n corresponding eigenvectors. As an output of the spectral decomposition, the eigenvectors 333 

are mutually orthogonal and uncorrelated and (n − 1) have a zero mean, while one is 334 

proportional to the vector 1. Each of these eigenvectors represents a distinct nature and degree 335 

of spatial autocorrelation. ESF introduces a subset of the eigenvectors as control variables in a 336 

regression model specification in order to capture its spatial stochastic component. 337 

In linear regression, an ESF model specification can be expressed as 338 
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Y = Xβ + Ek βE + ε                                                  (4) 339 

where Y denotes the dependent variable, X denotes a matrix of independent variables, Ek 340 

denotes a selected set of k eigenvectors selected from the n eigenvectors E, (β, βE) denote 341 

parameters, and ε denotes random noise that is distributed N(0, Iσ 2). In this 342 

specification, Ek βE captures the spatial stochastic component in the dependent variable Y. 343 

Hence, the regression model does not suffer from complications attributable to spatial 344 

autocorrelation, which is likely to be observed in its residuals if the spatial stochastic 345 

component is not explicitly addressed. 346 

The identification of Ek can be achieved through a stepwise procedure. Specifically, 347 

eigenvectors that minimize the level of spatial autocorrelation at each step can be selected. 348 

Intuitively, although this minimizing residual spatial autocorrelation criterion adheres to the 349 

notion of isolating spatial autocorrelation, it becomes computationally demanding 350 

as n increases. That is, in order to evaluate whether the addition of an eigenvector reduces 351 

spatial autocorrelation in residuals, the expected value and variance of Moran’s I for the 352 

residuals needs to be recalculated repeatedly, which involves the inversion of large matrices.  353 

This identification procedure can be assisted further by excluding irrelevant eigenvectors. The 354 

stepwise procedure can be conducted from a noticeably smaller set (i.e., a candidate set) instead 355 

of the entire set of eigenvectors, E. A candidate set can be demarcated based upon several 356 

criteria. First, eigenvectors that do not explain much spatial variation can be excluded. Second, 357 

eigenvectors that represent negative spatial autocorrelation can be excluded when variable Y 358 

displays positive spatial autocorrelation, and vice versa. This exclusion procedure can be 359 

assisted by the eigenvalues λ, because λ i is proportional to Moran’s I value of a map that is a 360 

portrayal of Ei on the spatial tessellation from which C is created; Moran’s I = λ i n/1TC1. 361 

Hence, a candidate set is often constructed with a threshold minimum Moran’s I value of 0.25, 362 
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which is related to approximately 5 % of the variation in a response variable being attributable 363 

to spatial autocorrelation.” 364 

3.3.3. Model validation 365 

To further evaluate the model performance, the dataset was further split into training and test 366 

datasets. After being estimated based on the training dataset, and all the models were applied 367 

to the test dataset. Apart from the three types of regression models, a Bayesian model (i.e., the 368 

Bayesian linear regression model) and a popular machine learning model (i.e., the Random 369 

Forest regression model) were used to predict the test dataset for a broader comparison. 370 

3.4. Implementation of analysis 371 

In this study, the model selection, estimation, and validation were all implementable in R. 372 

Specifically, OLS model estimation, Moran’s I testing, Lasso variable selection, MESS-SAR 373 

model estimation, and RES-ESF model estimation are supported by three R packages, named 374 

“stats”, “spdep”, “glmnet”, “spatialreg”, and “spmoran” respectively. And, prediction using 375 

Bayesian regression and Random Forest regression models were implemented via two R 376 

packages, named “bayesreg” and “randomForest” respectively. Besides, the bivariate Moran’s 377 

I testing was implemented in GeoDa (http://geodacenter.github.io/index.html).  378 

4. Results 379 

In this section, spatial patterns of COVID-19 mortality rate are firstly explored, and lately, 380 

results of model selection and estimation are presented and discussed.  381 

4.1 Spatial patterns of COVID-19 mortality rate 382 

We first explored spatial patterns of COVID-19 mortality rate in comparison with non-COVID-383 

19 mortality. 384 
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4.1.1 Spatial inequalities of COVID-19 mortality and non-COVID-19 mortality 385 

The Gini coefficient for COVID-19 mortality rate and non-COVID-19 mortality rate across 386 

England is 0.257 and 0.079 respectively. COVID-19 mortality rate has a much higher (about 3 387 

times of) Gini coefficient than non-COVID-19 mortality rate. This indicates that the level of 388 

spatial inequalities of COVID-19 mortality is higher than that of non-COVID-19 mortality in 389 

England.  390 

4.1.2 Spatial association of COVID-19 mortality and non-COVID-19 mortality 391 

We performed the bivariate Moran’s I tests of COVID-19 mortality rate and non-COVID-19 392 

mortality rate. The global bivariate Moran’s I value is 0.102 and the p-value is 0.001. The 393 

global spatial association of COVID-19 mortality rate and non-COVID-19 mortality rate is 394 

statistically significant and positive. The local bivariate Moran’s I testing result is shown in 395 

Figure 4. Figure 4 maps the clusters and outliers of COVID-19 mortality rate and non-COVID-396 

19 mortality rate across England. In Figure 4, all the clusters and outliers are statistically 397 

significant at the 0.05 level. Clusters and outliers indicate the existence of positive and negative 398 

local spatial association respectively. Specifically, ‘High - High’ and ‘Low - Low’ represent 399 

two types of clusters; whilst ‘Low - High’ and ‘High - Low’ represent two types of outliers. In 400 

Figure 4, ‘High - High’ means an area (LAD) with a high value of ‘COVID-19 mortality rate’ 401 

is surrounded by areas (LADs) with a high value of ‘non-COVID-19 mortality rate’; ‘Low - 402 

Low’ means an area (LAD) with a low value of ‘COVID-19 mortality rate’ is surrounded by 403 

areas (LADs) with a low value of ‘non-COVID-19 mortality rate’；‘Low - High’ means an 404 

area (LAD) with a low value of ‘COVID-19 mortality rate’ is surrounded by areas (LADs) with 405 

a high value of ‘non-COVID-19 mortality rate’ ; and ‘High - Low’ means an area (LAD) with 406 

a high value of ‘COVID-19 mortality rate’ is surrounded by areas (LADs) with a low value of 407 

‘non-COVID-19 mortality rate’. For the COVID-19 prevention, areas deserving more 408 

attentions are ‘High - High’ and ‘High - Low’ areas. Specifically, ‘High - High’ areas are 409 
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located around Sunderland, Liverpool, and Birmingham. ‘High - Low’ areas are located around 410 

London and Reading. Besides, ‘Low - Low’ areas are located in the southern England. 411 

Although global spatial association of COVID-19 mortality and non-COVID-19 mortality is 412 

positive, local spatial association of COVID-19 mortality and non-COVID-19 mortality is 413 

negative in some areas (e.g., ‘Low - High’ and ‘High - Low’ areas).  414 

 415 

Figure 4. Clusters and outliers of COVID-19 mortality rate and non-COVID-19 416 

mortality rate across England (March, April, and May 2020)  417 

4.2 Model selection (spatial or non-spatial regression models) 418 

4.2.1 Estimates of non-spatial regression model (OLS model)  419 

First of all, non-spatial regression models (OLS models) were estimated based on 317 420 

observations (317 LADs).  421 

4.2.2 Estimates of spatial regression models (MESS and RES-ESF models) 422 

Owing to the presence of significant spatial autocorrelation in the residuals of the OLS models 423 

estimated conventionally, we should select spatial models (e.g., MESS and RES-ESF models) 424 
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instead of non-spatial models (OLS models). Likewise, spatial models were estimated based 425 

on 317 observations (317 LADs). Besides, in the estimation of ESF models, the eigenvectors 426 

were selected by a stepwise method (see sub section 2.3.2). As aforementioned, threshold for 427 

the eigenvalues is set to 0.25 (see sub section 2.3.2). As a result, 73 of 313 eigen-pairs were 428 

extracted. 429 

Table 3 lists the estimation results for the non-spatial and spatial models estimated, including 430 

OLS, MESS-SAR, and RES-ESF models (N=317). The RES-ESF model outperforms the OLS 431 

and MESS models owing to the highest R-squared value and the lowest Akaike information 432 

criterion (AIC) value (R2 = 0.797). Moreover, Moran’s I test was used to test whether spatial 433 

autocorrelation is present in the residuals of regression models estimated. As Table 3 shows, 434 

statistically significant spatial autocorrelation is present in the OLS model but is not in the 435 

MESS-SAR and RES-ESF models. This indicates that the replacing non-spatial regression 436 

models (i.e., the OLS model) with spatial regression models (i.e., the MESS-SAR and RES-437 

ESF models) can reduce the potential bias owing to residual spatial autocorrelation.  438 

Table 3 also shows the contributions of explanatory variables to spatial variations of COVID-439 

19 mortality rate. We discussed the contributions of explanatory variables according to the 440 

estimation result of RE-ESF model (see Table 3). Expectedly, D_H (density of hospital) makes 441 

a statistically significant contribution, and it is negatively related to COVID-19 mortality rate. 442 

Therefore, areas with a low level of hospital accessibility are likely to suffer a high COVID-19 443 

mortality rate. It is noted that some socioeconomic factors make statistically significant 444 

contributions to spatial variations of COVID-19 mortality rate (see Table 3). Specifically, P_A 445 

(percent of Asians), P_B (percent of Blacks), and UE_R (unemployment rate) are positively 446 

related to COVID-19 mortality rate. This indicates that areas with a high percent of Asians, a 447 

high percent of Blacks, or a high unemployment rate are likely to suffer a high COVID-19 448 

mortality rate. More importantly, R_H (relative humidity) is statistically significantly and 449 
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negatively related to COVID-19 mortality rate; whilst R_AT (range of air temperature) is not 450 

statistically significantly related to COVID-19 mortality rate. 451 

Table 3. Estimation results for the non-spatial and spatial regression models (N=317) 452 

Coefficient OLS MESS-SAR RE-ESF 

Intercept 587.326 *** 248.922 * 245.319 . 

P_F 2.448 1.002 2.809 . 

P_A 1.012 ***  0.782 *** 0.892 *** 

P_B 2.758 *** 2.002 *** 2.58 *** 

P_HIP 0.831 . 0.504 0.602  

UE_R 5.943 *** 5.378 ***  4.807 *** 

D_P -1.612 -0.612 0.321 

D_H -0.099 . -0.107 *  -0.08 * 

AM_PM -1.88 -1.984 . -1.598 

R_H -8.521*** -3.715 ** -4.793 *** 

R_AT -0.795 1.512 3.852 . 

Adjusted R2 0.618 0.496 0.797 

AIC 2858.418 2773.595  2776.084 

Moran's I test for residuals 0.373*** 0.032 -0.036 

Note: ‘.’, ‘*’, ‘**’, and ‘***’ mean the p-values are below 0.1, 0.05, 0.01, and 0.001respectively. 453 

 454 

4.2.3 Estimates of models after variable selection 455 

Furthermore, to improve the model estimation, the Lasso technique is used to select the 456 

influential explanatory variables. The optimal selection of explanatory variables are: P_A, P_B, 457 

UE_R, D_H, and R_H. Table 4 lists the estimation results for the three models after the 458 

explanatory variable selection (N=317). Expectedly, all the explanatory variables are 459 

statistically significantly associated with the response in the three models. The RES-ESF model 460 

consistently outperforms the OLS and MESS models owing to the highest R-squared value and 461 

the lowest Akaike information criterion (AIC) value (R2 = 0.793). Likewise, statistically 462 

significant spatial autocorrelation is present in the OLS model but is not in the MESS-SAR and 463 

RES-ESF models (see Table 4). Consistently, this indicates that the replacing non-spatial 464 
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regression models with spatial regression models can reduce the bias owing to residual spatial 465 

autocorrelation. Moreover, Table 5 shows correlations of residuals and explanatory variables 466 

in the models estimated. In Table 5, all the Pearson’s correlation coefficients are extremely 467 

lowly valued, indicating no significant endogeneity of regressors exists. Besides, variance 468 

inflation factor (VIF) was used to detect multicollinearity in all the models estimated. In all the 469 

models estimated, the VIF values for all the independent variables (predictors) are below 5, 470 

indicating no serious multicollinearity exists in all these models estimated. This means all the 471 

all the independent variables (predictors) are not highly correlated to each other. Table 4 also 472 

shows the coefficients of the RE-ESF model is closer to the OLS model than the MESS-SAR 473 

model.  474 

Table 4. Estimation results for the non-spatial and spatial regression models (N=317) 475 

Coefficient OLS MESS-SAR RE-ESF 

Intercept 506.644 *** 199.041 ** 390.149 *** 

P_A 0.876 ***  0.708 *** 0.807 *** 

P_B 2.155 *** 1.625 *** 2.522 *** 

UE_R 6.756 *** 5.605 ***  4.971 *** 

D_H -0.124 * -0.129 **  -0.122 *** 

R_H -6.029 *** -2.366 ** -4.423 *** 

Adjusted R2 0.61 0.49 0.793 

AIC 2859.7 2769.561 2784.813 

Moran's I test for residuals 0.405*** 0.046 . -0.028 

Note: ‘.’, ‘*’, ‘**’, and ‘***’ mean the p-values are below 0.1, 0.05, 0.01, and 0.001respectively. 476 

Table 5. Correlations of residuals and explanatory variables in the models estimated 477 

Pearson’s correlation 

coefficient 

 Residuals  

OLS SAR-MESS RE-ESF 

P_A -6.729×10-17 5.826×10-18 -2.270×10-13 

P_B -7.968×10-17 -3.181×10-17 -1.580×10-13 

UE_R -4.519×10-17 -7.588×10-17 -7.004×10-14 

D_H -5.759×10-17 -7.905×10-17 1.139×10-13 

R_H -9.482×10-16 -5.200×10-16 1.164×10-12 

 478 
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4.2.4 Validation of models estimated 479 

In this study, the dataset used was further split into the training and test datasets. Specifically, 480 

20% of the cases are randomly selected as the test cases; whilst the remaining cases are selected 481 

as the training cases. Apart from OLS, MESS-SAR and RE-ESF models, Random Forest (RF) 482 

and Bayesian linear (BL) regression models were estimated based on the training dataset, and 483 

subsequently they are applied to the test data for a broader comparison. In this study, the 484 

Normalized Mean Absolute Error (NMAE) was used to measure the difference of prediction 485 

and real values after adjusting for scales. NMAE is the average of mean error normalized over 486 

the average of all the actual values. Table 6 shows the NMAE values for the predictions of 487 

COVID-19 mortality rate by different models. The RE-ESF model achieves the highest 488 

prediction accuracies with the lowest NMAE value. The prediction results indicate the RE-ESF 489 

model consistently outperforms the OLS and SAR-MESS models.  490 

Table 6. Prediction accuracies of the regression models estimated 491 

Model OLS SAR-MESS RE-ESF BL RF 

NMAE 0.267,808  0.368,653  0.267,177  0.267,18 0.284,087  

 492 

4.3 Discussion 493 

The RE-ESF model is likely to be the most proper model because 1) it outperforms the other 494 

two models in explaining spatial variations of COVID-19 mortality rate due to a higher R2; 2) 495 

its coefficients are closer to the OLS model than the SAR-MESS model; 3) it substantially 496 

reduces the residual autocorrelation in comparison with the OLS model; and 4) it consistently 497 

outperforms the other models in predicting spatial variations of COVID-19 mortality rate due 498 

to a lower NMAE.  499 
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In the empirical study, some empirical findings were uncovered. Firstly, we uncovered that 500 

relative humidity is negatively related to COVID-19 mortality rate whilst PM2.5 and air 501 

temperature measures are not significantly related. This finding is partly consistent with a 502 

previous study (e.g., Ma et al., 2020). In Wuhan, a positive association with COVID-19 daily 503 

death counts was observed for diurnal temperature range, but negative association for relative 504 

humidity (Ma et al., 2020). However, the negative association for relative humidity is 505 

consistent with our finding whilst the positive association for diurnal temperature range is not. 506 

More empirical studies are needed to examine the effects of temperature on COVID-19 daily 507 

death. Besides, a recent study found positive associations between particulate matter pollution 508 

(PM2.5 and PM10) and COVID-19 case fatality rate (CFR) in Chinese cities (Yao et al., 2020); 509 

whilst this study found no significant association between PM2.5 and COVID-19 mortality rate. 510 

Secondly, we uncovered that percent of Asians and percent of Blacks is positively related to 511 

COVID-19 mortality rate. This is consistent with some previous findings on ethnical disparity 512 

in COVID-19 mortality (e.g., Aldridge et al., 2020; Holmes et al., 2020; Dyer, 2020; Pan et al., 513 

2020). Thirdly, we uncovered that: unemployment rate is positively related to COVID-19 514 

mortality rate; while density of hospital is negatively related to COVID-19 mortality rate. 515 

Consistent findings have been found to exist in France and China as discussed in the literature 516 

review section (Goutte et al., 2020; Ji et al., 2020). Particularly, combining Figure 4 and Figure 517 

2b, we examined whether the hotspots of COVID-19 mortality rate and non-COVID-19 518 

mortality rate are the areas with a lower level of access to hospital. As Figure 4 shows, high 519 

levels of COVID-19 mortality rate and high levels of non-COVID-19 mortality rate co-occur 520 

around Sunderland, Liverpool, and Birmingham. Those areas are likely to have a lower level 521 

of density of hospital as well (see Figure 2b). Healthcare resource allocation should prioritise 522 

those areas around Sunderland, Liverpool, and Birmingham. 523 
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Furthermore, the model estimation results reveal that spatial variations of COVID-19 524 

mortality rate across England is mainly attributable to spatial variations of socioeconomical 525 

and environmental factors. This suggests that the reduction of socioeconomic disadvantage 526 

could potentially contribute to decrease in COVID-19 mortality risk across England. 527 

Socioeconomically disadvantaged areas are more likely to suffer a high risk of COVID-19 528 

mortality. Governments and policy makers should consider how to reduce spatial disparities in 529 

COVID-19 mortality risk through decreasing socioeconomically disadvantaged population. 530 

Extremely disadvantaged areas should be given priority in policy making. Furthermore, we 531 

compared the non-spatial regression models (OLS models) and the spatial regression models 532 

(MESS-SAR and RES-ESF models) estimated in this study. The R2 value of RES-ESF model 533 

estimated are higher than those of OLS and MESS-SAR models. Therefore, RES-ESF model 534 

is empirically found to outperform OLS and MESS-SAR models in this study. Applications of 535 

spatial regression models are likely to better model spatial variations of COVID-19 mortality 536 

rate across England. Moreover, RES-ESF model is highly recommended to be applied to a 537 

variety of applications in urban or regional studies.  538 

In this study, PM2.5 is not reported to be significantly associated with COVID-19 mortality 539 

whilst the significant association is reported in studies on some other regions (e.g., Yao et al., 540 

2020; Gupta et al., 2020; Coker et al., 2020). One possible reason is: compared to the cities or 541 

areas in the previous studies (Yao et al., 2020; Gupta et al., 2020; Coker et al., 2020), England 542 

has a lower level of PM2.5, thereby spatial variations of PM2.5 between English LADs is likely 543 

to be smaller than those between the cities or areas in the previous studies. Additionally, we 544 

have taken account of other air pollutants (e.g., NO2 and SO2) as other potential environmental 545 

factors in more model estimations like Table 3 and 4. Defra also offers 1x1 km gridded annual 546 

mean NO2 and SO2 data for 2019 (https://uk-air.defra.gov.uk/data/pcm-data). Like PM2.5, NO2 547 

https://uk-air.defra.gov.uk/data/pcm-data
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and SO2 are not statistically significantly related to COVID-19 mortality rate after adjusting 548 

for the other socioeconomic and environmental factors.  549 

5. Conclusion 550 

In this study, we examined the spatial patterns of COVID-19 mortality rate in relation to 551 

socioeconomic and environmental factors across England. Two newly developed specifications 552 

of spatial regression models were established successfully to estimate COVID-19 mortality 553 

rate. The level of spatial inequalities of COVID-19 mortality is higher than that of non-COVID-554 

19 mortality in England. Although global spatial association of COVID-19 mortality and non-555 

COVID-19 mortality is positive, local spatial association of COVID-19 mortality and non-556 

COVID-19 mortality is negative in some areas. The model estimated indicate that 1) relative 557 

humidity is negatively related to COVID-19 mortality rate; 2) hospital accessibility is 558 

negatively related to COVID-19 mortality rate; and 3) percent of Asians, percent of Blacks, 559 

and unemployment rate are positively related to COVID-19 mortality rate. Moreover, the RES-560 

ESF model estimated outperforms the MESS-SAR model in modelling spatial variations of 561 

COVID-19 mortality rate across England. 562 

However, there are some limitations in this study. Firstly, in this study, we take no account of 563 

behavioural factors, such as alcohol consumption and sugar drinks intake, due to the lack of 564 

data. Human health is found to be affected by behavioural factors (e.g., dietary patterns, diet 565 

quality, sugary drinks intake, fruits and vegetable intake, alcohol and tobacco consumption, 566 

sleep duration, sleep quality, etc.) (Richter et al. 2012; Patel et al. 2013). Secondly, as the 567 

poverty data used is for 2014, the time gap between poverty data and other data is relatively 568 

large. The existence of this time gap might have a potential influence on the model estimation 569 

in this study. Besides, the poverty data is available for 2014, whether the spatial variations of 570 

poverty are proportional to those in continuous years needs to be empirically validated.  Thirdly, 571 
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the data used reflect the registered deaths caused by COVID-19, but they might completely 572 

reflect the actual deaths caused by COVID-19.  On the one hand, the presence of false positives 573 

is likely to over-estimate the number of deaths owing to COVID-19. On the other hand, some 574 

deaths caused by COVID-19 are likely to be recognised as non-COVID-19 deaths especially 575 

in the earlier stage of pandemic when testing capacity is low.  576 

In the future, we will improve this study by addressing those limitations. Firstly, we will 577 

attempt to acquire data on behavioural characteristics from questionnaire-based surveys in 578 

collaboration with National Health Service (NHS) England. The acquired data will be used to 579 

measure behavioural factors. Secondly, the study needs to be repeated once some research data 580 

(e.g., poverty data) is updated in the future. The results would be compared with the those in 581 

this paper to discuss the influence of time gap in some data on the model estimation results.  582 
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