The positive association between perceived parental responsiveness and self-esteem, anxiety, and thriving among youth rugby players: a multigroup analysis

Olivier Y. Rouquette a,h,*, Camilla J. Knight b, Victoria E. Lovett c, Donald Barrell d, and Jean-Philippe Heuzé a

a Laboratoire Sport et Environment Social (SENS), Université Grenoble Alpes, Grenoble, France; b School of Sport and Exercise Sciences, Swansea University, Swansea, United Kingdom, c Department of Psychology, Swansea University, d Rugby Football Union, Rugby House, Twickenham Stadium, United Kingdom

Corresponding author:
Olivier Y. Rouquette
Swansea University Bay Campus
Engineering East
Crymlyn Burrows
Swansea

Date of Submission: 12/06/2020
Abstract

The purpose of this study was to examine the association between young players’ perception of mother’s and father’s responsiveness with their self-esteem, anxiety (i.e., worry), and thriving (i.e., positive affect, vitality, and life satisfaction). In total, 314 male British rugby players with a mean age of 16.23 years ($SD = 0.26$) completed the study in two phases: $n = 124$ (first dataset), and $n = 192$ (second dataset). Participants trained on average 3.14 times/week ($SD = 0.94$) and had been involved in rugby for an average of 8.21 years ($SD = 2.89$). Participants completed questionnaires measuring perceived parental responsiveness (PPR) for their mother and father, self-esteem, worry about sport performance, and thriving indicators (i.e., positive affect, vitality, and life satisfaction). The results consistently indicated that participants’ perceptions of their mother’s and father’s responsiveness positively related to thriving, and negatively related to their worry about sport performance, mediated by their self-esteem. Overall, the study highlights the need for parents to be provided with insights into the value of being responsive to their child and being encouraged to regularly talk with their child regarding their needs and desires, and seeking to understand how their child perceives the support they currently receive.

Keywords: Adolescent athletes, Parent-child relationship, Psychosocial outcomes, Youth sport
There is extensive evidence that young athletes’ sport experiences are largely influenced by the quality of their sport environment (e.g., Henriksen et al., 2010; Keegan et al., 2010; Knight, Berrow, et al., 2017). One challenge for youth sport stakeholders is to ensure that such environments not only enhance performance, but also lead to healthy and happy athletes (Bergeron et al., 2015; Harwood et al., 2019). Notably, parents are identified as a key contributor to the sporting environment, as the most important social influence on children until 13-14 years of age (Wylleman & Lavallee, 2004), and a significant influence throughout athletes’ entire sporting careers (Knight, Berrow, et al., 2017).

Research in sport generally demonstrates a positive association between athletes’ perception of their parents’ supportive behaviours in sport and positive psychosocial outcomes (e.g., intrinsic motivation, self-efficacy, enjoyment for young athletes; Babkes & Weiss, 1999; Dorsch et al., 2016). For instance, a recent study among elite adolescent athletes showed that perceptions of mothers’ and fathers’ praise and understanding in sport was positively associated with increases in self-determined motivation (Lienhart et al., 2019). Studies have also demonstrated a positive association between young athletes perceptions’ of their parents’ mastery climate and increased intrinsic motivation, self-esteem, and reduced performance anxiety (O’Rourke et al., 2013, 2014). Moreover, there is evidence of a positive association between a secure parent-athlete attachment (i.e., the parent is perceived as available, responsive, and sensitive when necessary) and athletes’ wellbeing (Felton & Jowett, 2013, 2017). Taken together, such findings indicate that parents have the potential to help athletes experience positive wellbeing and performance benefits in sport (Holt & Knight, 2014; Knight, Harwood, et al., 2017).
Unfortunately, however, some parental behaviours have also been associated with negative psychosocial outcomes such as pressure, anxiety, and dropout (e.g., Bois et al., 2009; Crane & Temple, 2015; Wuerth et al., 2004). For instance, a study involving adolescent athletes and their parents showed that athletes’ perceptions of negative affect and conflict with parents was associated with their perception of pressure (Dorsch et al., 2016). Young athletes’ perception of pressure could be related to maladaptive outcomes such as controlled forms of motivation, amotivation (Lienhart et al., 2019), and dropout (Crane & Temple, 2015). Studies have also demonstrated a positive association between athletes’ insecure attachment with parents (i.e., the parent is perceived as unavailable, unresponsive, or inconsistent when necessary), thwarting of their basic psychological needs, and lower levels of wellbeing (Felton & Jowett, 2013, 2017).

Clearly, the impact of parents within sport is complicated, and identifying mechanisms through which to enhance parents’ positive impact upon young athletes performance and wellbeing is important (Knight et al., 2017).

Sport scholars characterise the joint experience of high performance and optimal wellbeing as thriving (Brown et al., 2017, 2018). Thriving is a desired end-state of optimal wellbeing that comprises five related components of hedonic (e.g., subjective wellbeing), eudemonic (e.g., goal accomplishment), psychological (e.g., positive self-regards), social (e.g., meaningful and deep connections with others), and health quality (e.g., health, fitness) (Feeney & Collins, 2015).

Emerging research indicates that athletes’ thriving could be enhanced through contextual facilitators such as perceived available support, high quality relationships (Brown & Arnold, 2019), or unconditional positive regard (McHenry et al., 2020), while thriving could be hindered by controlling behaviours (Gucciardi et al., 2017).
Although research on thriving in sport is still in its infancy, research from social psychology examining close personal relationships indicates that a central component of an individual’s thriving may relate to the responsiveness of the support they receive, or perceive (Maisel & Gable, 2009). Reis and colleagues (2004) defined responsiveness as a broad construct that describes how people in a relationship (e.g., parent and athlete) attend to and support each other’s needs and goals. Individuals perceive support to be responsive when they feel the support provider understands, validates, and cares for them (Reis et al., 2004). Applied within the parent-child relationship, understanding occurs when a parent comprehends their child’s core self (e.g., needs, desire, weaknesses); validation is when a parent demonstrates respects or value for their child’s view of their self; and when parents express affection, warmth, and concern for their child’s wellbeing they are displaying care (cf, Reis et al., 2004; Reis & Gable, 2015).

Over the last decade, studies of responsiveness within close relationships have shown that when support is perceived as responsive by the support recipient it positively contributes to the wellbeing of both individuals (Reis & Gable, 2015). Specifically, perceived responsiveness is associated with positive psychosocial outcomes such as positive affect (Dooley et al., 2018), relationship satisfaction (Gadassi et al., 2016), enhanced self-efficacy (Lemay & Neal, 2014), more effective coping strategies (Dooley et al., 2018; Lemay & Neal, 2014), and lower anxiety (Selcuk et al., 2017). Despite the evidence of numerous positive outcomes arising from responsiveness, it has yet to be examined within the parent-athlete relationship. Given the role of high quality relationships on athletes’ thriving, combined with sustained evidence that responsive interactions (Feeney & Collins, 2015) and perceived responsiveness (Reis & Gable, 2015; Selcuk et al., 2016; Tomlinson et al., 2016) can influence thriving, understanding if perceptions of parental responsiveness may influence thriving among young athletes is pertinent.
Additionally, research has indicated that responsiveness in a relationship may reduce anxiety (Selcuk et al., 2017), but despite parents being seen as a major contributor to anxiety in sport (Bois et al., 2009), this has not yet been evaluated in youth sport settings. Given that anxiety in sport, particularly precompetitive anxiety, is related with lower levels of enjoyment (Pekrun, 2018), which is a major determinant of sport dropout (Crane & Temple, 2015), identifying whether parental responsiveness may help to reduce anxiety is an important area for future research. Specifically, identifying whether parental responsiveness may reduce the worry component (i.e., concerns about performing poorly and the resulting negative consequences) of trait cognitive anxiety (Martens, 1977) may be particularly valuable because previous studies have demonstrated that it is worry, compared to other dimensions of trait anxiety (i.e., somatic anxiety, concentration disruption), that is most consistently and strongly related to young athletes’ precompetitive anxiety (Wolf et al., 2015).

The association between perceived responsiveness and psychosocial outcomes such as thriving and anxiety may not, however, be direct. Rather, research indicates that self-esteem is an important mediator (Feeney, 2007; Feeney & Collins, 2015). This idea is rooted in attachment theory (Bowlby, 1973, 1988), which suggests that a securely attached relationship (i.e., one which occurs when a support provider is responsive, sensitive, and available) can help individuals develop a more positive perception of themselves (i.e., self-esteem) (Carr, 2013; Duchesne & Larose, 2007), which subsequently facilitates the development of other positive psychosocial outcomes (Marsh et al., 2006, 2018). For instance, research has shown that self-esteem interacts in the association between the perception of responsive support and increased wellbeing among couples (Feeney, 2004). Similarly, self-esteem has been shown to mediate the relationship between perceived responsive support and individual’s own enjoyment and positive
experiences (Smith & Reis, 2012). Given such evidence, examining the influence of parent’s responsiveness on athletes' self-esteem and potential mediating influence on athletes’ thriving and anxiety is also necessary.

Study Purpose and Hypotheses

Based on the aforementioned literature, the purpose of the current study was to examine the association between adolescent rugby players’ perceptions of their mother’s and father’s responsiveness with thriving (i.e., positive affect, vitality, and life satisfaction) and the worry component of cognitive trait anxiety, mediated by their self-esteem.

The current study investigated three main hypotheses:

• Hypothesis 1: Players’ perceptions of their mother’s and father’s responsiveness would be positively related to their self-esteem.

• Hypothesis 2: Players’ self-esteem would be negatively related to their perceptions of worry but positively related to the thriving components of positive affect, vitality, and life satisfaction.

• Hypothesis 3: Players’ self-esteem would mediate the relationships between athletes' perceptions of their mother's and father's responsiveness and worry and thriving.

Rugby was selected for the present study because it is one of the most popular competitive sports in the UK (Sport England, 2019), and players selected into the Rugby Football Union (RFU) academy programmes commit extensively to training and competing with their schools, clubs, and academy, meaning their parents are often heavily involved and committed to their child’s rugby and thus, have numerous opportunities to influence their experience (Knight, 2019).
Method

Participants. An a priori power analysis Monte Carlo simulation for indirect effect (Schoemann et al., 2017) was conducted to determine the minimal sample based on key variables (i.e., perceived responsiveness, self-esteem, and thriving) from studies with a similar methodology (Feeney, 2004; Feeney et al., 2017; Lemay & Neal, 2014; Tomlinson et al., 2016). In those studies, the association perceived responsiveness, self-esteem, and outcomes consistently demonstrated moderate ($r = 0.3$) to large ($r = 0.5$) effect sizes. Inputs for determining the minimal sample for indirect effects were the following: $r = (0.35)$, $\alpha = 0.05$, power ($1-\beta$) = 0.80. The minimal sample size for indirect effects was estimated between $N = 130$ for 80% of power, and $N = 200$ for 95% of power. In total 314 male British rugby players with a mean age of 16.23 ($SD = 0.26$, min = 15.08, max = 16.58), from two independent datasets with:
n = 124 (first dataset), and n = 192 (second dataset) participated in the study. The participants trained on average 3.14 times/week ($SD = 0.94$) and had been involved in rugby for an average of 8.21 years ($SD = 2.89$). All had been selected to be part of one of the 14 England Rugby academies, which is the highest level of performance at this stage of their development. The majority (75.96%) of the participants lived with both their mother and father.

Procedure. Data collection occurred through an online survey. Data was collected over two successive years, providing two independent datasets offering an opportunity to replicate the findings from the first year in the second year, with a larger sample, and enable testing of the invariance of the model across the two datasets (Putnick & Bornstein, 2016).

The RFU was contacted to enquire into the possibility of collecting data from players attending an annual training camp held for players aged 16 years and under. Having obtained approval to attend the training camps, institutional ethical approval was sought and received.
Following receipt of ethical approval, a letter pertaining to this study was sent to the parents of all players attending the training camps, as well as the coaches from each academy. Parents with children aged under 16 years of age were asked to return an informed consent form to indicate they were happy for their son to complete the study survey, if their son wished too (and indicated this at the outset of the survey). As per our ethical approval, players aged 16 years provided their own consent (i.e., did not require parental consent) at the start of the survey.

On arrival at the training camp, all players were emailed an information letter about the study, along with a link to an online survey. The survey comprised a series of self-report questionnaires measuring their perceived responsiveness of their mother and their father, global self-esteem, the worry component of cognitive trait anxiety, and various factors of thriving (i.e., affect, vitality, life satisfaction) as well as collecting basic demographic information (e.g., age, years involved in rugby, number of training per week, most involved parent in rugby, family structure). The total survey was designed to take no more than 15 minutes to complete.

Measures. Questionnaires for the study were carefully chosen based on: (1) the theoretical link that they demonstrated with the selected constructs, (2) their psychometric properties among similar samples, and (3) their brevity in order to allow a short duration for the study.

Perceived parental responsiveness. Perceived responsiveness of both mother’s and father’s was collected separately because research has shown that both mothers and fathers (or assimilated) can influence young athletes (Babkes & Weiss, 1999) and their perceived and actual involvement can differ (Clarke & Harwood, 2014). Such differences in actual or perceived involvement from mothers and fathers can result in athletes perceiving the parental support from their mothers and fathers differently (Dorsch et al., 2016) and as such it was important to understand their independent influence.
Players’ perceptions of their mother’s and father’s responsiveness were assessed with a 6-item version of the Perceived Partner Responsiveness Scale (PPRS; Reis et al., 2017). The PPRS is intended to assess a specific target’s responsiveness such as romantic partner, friends, or family in various settings (Reis et al., 2011, 2017). The PPRS assessed the extent to which participants perceived that a particular relationship is responsive to their needs. The six items are: my mother/father usually, (a) knows me well, (b) understands me, (c) really listens to me, (d) seems interested in what I am thinking and feeling, (e) values my abilities and opinions, and (f) is responsive to my needs. Responses were provided on a 7-point Likert scale ranging from 1 (not at all) to 7 (completely true). In the two datasets, players’ perception of father responsiveness ($\omega_t = 0.89$, $\omega_f = 0.89$) and players’ perception of mother responsiveness ($\omega_t = 0.90$, $\omega_f = 0.89$) demonstrated a good internal consistency. Participants’ responses on the six items were averaged respectively into single scores of perceived father/mother responsiveness with higher scores representing stronger perceptions of father/mother responsiveness.

Self-esteem. Players’ self-esteem was assessed with five items from the short version of the Physical Self-Description Questionnaire (Marsh et al., 2010). This questionnaire was chosen because it aligns with the multidimensional perspective regarding individuals’ self-perceptions, which is widely accepted within psychology (Fox & Lindwall, 2014; Marsh et al., 2018). Further, it has demonstrated strong psychometric properties in studies with adolescents (Duda et al., 2013; Marsh et al., 2010).

The players indicated the extent to which, during the last month in their everyday life, they had a lot to be proud of, they did well, or things turned out well; and if they were no good or if nothing they did ever seemed to turn out right (reversed items). Their responses were provided on a 5-point Likert scale anchored by 1 (strongly disagree) and 5 (strongly agree). In the two
datasets, the scale showed a good internal consistency ($\omega_t = 0.76$, $\omega_t = 0.82$). In each dataset, participants’ responses on the five items were averaged to create a global score of self-esteem with higher scores indicating higher levels of self-esteem.

Cognitive trait sport anxiety (Worry). As mentioned above, worry is seen as the main contributor to pre-competitive anxiety. Thus, an appropriate measure to consider worry was selected, namely the five items from the Sport Anxiety Scale - 2 (Smith et al., 2006). This scale was selected because of its brevity and as it has demonstrated good psychometric properties among adolescent athletes (Smith et al., 2006). Players indicated the extent to which they usually felt before or while competing in sport (a) worry that they not play well, (b) worry that they will let others down, (c) worry that they will not play at their best, (d) worry that they will play badly, and (e) worry that they will mess up during the game. Their responses were provided on a 5-point Likert scale anchored by 1 (not at all) and 5 (very much). In the two datasets, the scale demonstrated a good internal consistency ($\omega_t = 0.91$, and $\omega_t = 0.94$ respectively). Consequently, in the two datasets, participants’ responses on the five items were averaged to create a global score of worry with higher scores indicating higher levels of worry before or while competing.

Thriving. In line with current perspectives that consider wellbeing as a multidimensional state that comprises a variety of sub-component indicators (Giles et al., 2020), the present study conceptualised thriving as an optimal state of wellbeing (Feeney & Collins, 2015). Research indicates that the wellbeing sub-components belonging to different categories can be explained by a general factor of wellbeing (i.e., thriving) (Jovanović, 2015; Longo et al., 2016, 2020). Usual indicators include positive affect, vitality, and life satisfaction (Gallagher et al., 2009; Gucciardi et al., 2017; Linley et al., 2009; Longo et al., 2016) and thus these were selected as the measures for thriving within the current study. The specific measures selected were the PANAS-
C (Ebesutani et al., 2012) in dataset 1, and PANAS (Watson et al., 1988) in dataset 2 to assess players positive affect, the subjective vitality scale (Ryan & Frederick, 1997) to assess participants’ vitality, and the Cantril Ladder of self-rated life satisfaction (Cantril, 1965) to assess participants’ life satisfaction. These scale were selected because they demonstrated good psychometric properties among a similar sample (Duda et al., 2013).

Affect. For the first data collection, positive and negative affect were assessed with the five positive affect items from the 10-item Positive and Negative Affect scale for Children (Ebesutani et al., 2012). Players rated on a 5-point Likert scale from 1 (*not at all*) to 5 (*extremely*) the extent to which, at the moment, they felt *joyful, miserable, cheerful, mad, happy, afraid, lively, scared, proud, and sad.* The positive affect dimension demonstrated good internal reliability ($\omega_t = 0.85$). Participants’ responses on the five items were averaged to create a global score of positive affect, with higher scores indicating higher levels of positive affect. However, analysis indicated that the negative affect items lacked variance and demonstrated low factor loading. Consequently, the decision was made to only retain positive affect items in the analysis.

For the second data collection, a longer scale was chosen with the aim of having a reliable measure for both positive and negative affect. Players affect were assessed with the 20-item Positive and Negative Affect Scale (Watson et al., 1988). The positive affect dimension demonstrated good internal reliability ($\omega_t = 0.89$). Participants’ responses on the 10 items were averaged to create a global score of positive affect, with higher scores indicating higher levels of positive affect. Despite good psychometric qualities, the account for players' negative affect was removed as it was not possible to compare between the two datasets.

Subjective vitality. In the two datasets, players’ subjective vitality was assessed with the 5-item subjective vitality scale (Ryan & Frederick, 1997). Players rated, on a 5-point Likert scale...
from 1 (strongly disagree) to 5 (strongly agree), the extent to which, during the last month in
their everyday life, they felt full of excitement, they had high spirit, they looked forward to each
day, they felt alert and awake, and if they had a lot of energy. The five items demonstrated a
good internal reliability ($\omega_t = 0.85$, and $\omega_t = 0.87$ respectively) for the two datasets. Participants’
responses on the five items were averaged to create a global score of vitality with higher scores
indicating higher levels of vitality.

Life satisfaction. In the two datasets, life satisfaction was assessed using the single item of
Cantril Ladder of self-rated life satisfaction (Cantril, 1965). This ladder ranged from 0 (*I have
the worst possible life for me at the moment*) to 10 (*I have the best possible life for me at the
moment*). A higher score indicated higher level of life satisfaction.

Data analysis. All data were analysed with R-statistics (R Core Team, 2018). The data
analysis strategy first considered the two datasets separately using the second dataset to replicate
the findings and models from dataset 1. Eventually, as the measures, models, and results were
similar between dataset 1 and 2, the two datasets were merged, and analysis consisted of
multigroup analyses aimed at verifying if relationships were invariant between the two datasets.
The full script of analyses, questionnaires used, and comprehensive results are available upon
request to the corresponding author. Main analyses consisted of mediations accounting (1) for all
the component paths of indirect effects, and (2) the magnitude and 95% confidence interval of
indirect effects (Yzerbyt et al., 2018). The mediation analyses were performed with Structural
Equation Modelling (SEM) including the measurement and structural models (Hayes et al.,
2017). Support for the goodness of fit between the model and the observed data were considered
when; (a) comparative fit index (CFI) and Tucker Lewis index (TLI) values were close to .95 or
greater, and; (b) root mean square error of approximation (RMSEA) values were close to .06 or
below, and standardized root mean square residual (SRMR) values were close to .08 or below (Brown, 2015). SEM analyses also considered parameter estimates (e.g., factor loadings, error variances, factor variances) such as standardised residuals (Brown, 2015). Due to potential non-normal distribution of the data, SEM analyses were computed with robust maximum likelihood estimator with Satorra-Bentler scaled tests (Brown, 2015). The three hypotheses were tested together with one model accounting for participants’ perceptions of their mother’s responsiveness, and one model accounting for their perceptions of father’s responsiveness. Overall, the data analysis strategy resulted in two independent models, discussed below.

Results

Preliminary analyses

In the two datasets the correlations between constructs were in line with previous work and hypotheses (see Table 1). Variable means, standard deviations, and correlations were also very similar in the two-independent datasets (see Table 1).

In both datasets, the three components of thriving (e.g., positive affect, vitality, and life satisfaction) were positively correlated (see Table 1) with $r = [0.43: 0.53]$ for the first dataset, and $r = [0.45: 0.50]$ for the second dataset. Given that the combination of these components into a higher order factor of thriving is theoretically relevant (Feeney & Collins, 2015; Linley et al., 2009), Confirmatory Factorial Analyses (CFA) were performed to examine whether these three components could be accounted for by a global factor of thriving. CFA from the first dataset: $\chi^2 (38) = 51.79$, $p = 0.067$, CFI = 0.97, TLI = 0.95, RMSEA = 0.06, SRMR = 0.06, and second dataset: $\chi^2 (100) = 136.97$, $p = 0.01$, CFI = 0.96, TLI = 0.95, RMSEA = 0.05, SRMR = 0.06, demonstrated a good fit to the data. Further analyses provided support for the convergent and
discriminant validity with items loading above .070, and the average variance extracted (AVE) above 0.50 (0.57 for dataset 1, and 0.52 for dataset 2) (Hair et al., 2014). Thus, the scores of positive affect, vitality, and life satisfaction were averaged as a new variable, thriving ($M = 3.63 \pm 0.58$ and $M = 3.63 \pm 0.061$ in the first and second datasets, respectively), with higher scores representing higher levels of thriving.

Subsequently, a multigroup factor analysis was conducted aiming at comparing the thriving construct in the two datasets. To do this, the latent variable was estimated with single indicators and fixed reliability ($\alpha = 0.90$). This method controls for measurement errors and helps to maintain a good Type-1 error rate without increasing of the variability of the estimates (Savalei, 2019). The model comparison accounting for configural metric, scalar, and residual invariance did not demonstrate significant differences between the freely estimated and the fully constrained models: $\Delta \chi^2(5) = 0.495, p = 0.992$.

Main Results

Regardless of whether mother's or father's responsiveness are considered, the results supported the three hypotheses. Participants' perceptions of their fathers' or mothers' responsiveness were positively related to their global self-esteem (for father, $\beta = 0.506$, $p < 0.001$; for mother, $\beta = 0.511$, $p < 0.001$). The variance explained by the models for participants’ self-esteem comprised between $r^2 = 0.143$ and $r^2 = 0.209$.

The results showed that participants’ self-esteem was negatively related with worry: $\beta = [-0.345]$ for father, and $\beta = [-0.384]$ for mother; but positively related to thriving: $\beta = [0.596]$ for father, and $\beta = [0.649]$ for mother. The analyses supported the mediating role of self-esteem in the relationships between father's or mother's responsiveness and worry (for father, $\beta = -0.175$, 95% CI = [-0.293: -0.086]; for mother, $\beta = -0.196$, 95% CI = [-0.296: -0.097]). Overall, the
variance explained by the models for participants’ worry comprised between $r^2 = 0.117$ and $r^2 = 0.151$.

Finally, analyses supported the mediating role of self-esteem in the relationships between father's or mother's responsiveness and thriving (for father, $\beta = 0.302$, 95% CI = [0.157: 0.499]; for mother, $\beta = 0.332$, 95% CI = [0.167: 0.496]). Overall, the variance explained by the models for participants’ thriving was comprised between $r^2 = 0.457$ and $r^2 = 0.702$ (see Figures 1 and 2).

A two groups (dataset 1 and 2) factor analysis demonstrated a good fit to the data for perceived father responsiveness: SEM (Satorra-Bentler): Chi² (381) = 483.446, $p < 0.001$, CFI = 0.957, TLI = 0.957, RMSEA = 0.045 90% CI = [0.033: 0.056], SRMR = 0.076, and for perceived mother responsiveness: SEM (Satorra-Bentler): Chi² (381) = 396.182, $p = 0.285$, CFI = 0.993, TLI = 0.993, RMSEA = 0.017 90% CI = [0.00: 0.035], SRMR = 0.069. A model comparison accounting for configural metric, scalar, and residual invariance did not demonstrate significant differences between the freely estimated and the fully constrained models (see Table 2).

Discussion

The purpose of the current study was to examine the association between adolescent rugby players’ perceptions of their mother’s and father’s responsiveness with thriving (i.e., positive affect, vitality, and life satisfaction) and the worry component of cognitive trait anxiety, mediated by their self-esteem. The results from two independent datasets showed that players’ perceptions of their mother’s and father’s responsiveness, mediated by their self-esteem, were
negatively related to worry before or while competing, and positively related to the thriving components of positive affect, vitality, and life satisfaction. Multigroup analyses demonstrated configural, metric, scalar, and residual invariance among the two independent datasets, which indicates robustness of the tested models.

In essence, perceived responsiveness simply accounts for the extent to which an individual perceives that a close-other understands them as a person, values their choices and opinions, and cares for them (Reis & Gable, 2015). One key advantage of assessing participants’ perception of responsiveness is that it ensured that participants’ perceptions was unconditional (e.g., rather than conditional) upon their sport participation and performances. This is because research has shown that perceived parental conditional support could participate in the development of perfectionism among adolescent athletes (Curran, 2018). More generally, perceived parental conditional regard is linked with negative psychosocial outcomes such as lower levels of wellbeing, poor coping strategies, or increases in trait anxiety (Assor et al., 2004; Assor & Tal, 2012; Otterpohl et al., 2019). Therefore, an important finding of the present study is that although perceived responsiveness is not sport specific and therefore preventing of perception of conditional support, it was clearly related to participants’ experiences in sport (i.e., worry).

Players’ perceptions of mothers’ and father’s responsiveness was positively related to the thriving components of positive affect, vitality, and life satisfaction while mediated by their general self-esteem. Players’ perceived mother’s and father’s responsiveness was also directly and positively related to players’ thriving. As expected, based on previous studies investigating the association between perceived responsiveness and optimal wellbeing (i.e., thriving) in close-relationships (Feeney, 2004, 2007; Tomlinson et al., 2016), players’ perceptions of their parents’ responsiveness was largely associated to the explained variance of thriving. Such an association
is likely because players’ that generally perceived their parents as responsive to their needs have
the opportunity to develop positive self-perceptions leading to optimal wellbeing (Bowlby, 1988;
Duchesne & Larose, 2007; Marsh et al., 2018). These results align the recent conceptualization
of thriving in sport (i.e., a sustained high-level of performance, and dimensions of wellbeing;
Brown et al., 2018). As research shows that thriving in sport is facilitated by contextual
facilitators such as high quality relationships (Brown et al., 2017, 2018), the results of the present
study extend such findings by demonstrating the specific association between players’ perception
of their parents’ responsiveness and thriving. Therefore, the results of the present study reinforce
the importance of considering parents as active partners in youth sport environments aiming at
healthier and happier athletes’ (Harwood et al., 2019; Knight, Harwood, et al., 2017).

The findings of the current study also highlighted that participants’ self-esteem mediated
the relationship between their perceptions of their mother’s and father’s responsiveness and one
of the components of their trait cognitive sport anxiety. Specifically, in the present study, higher
levels of perceived responsiveness from both mother’s and father’s was associated with lower
levels of worry. Overall, the models in the present study illustrate a relatively modest
contribution (i.e., 11 to 15% of the explained variance) of responsiveness to trait cognitive
anxiety in sport. One potential explanation may be that perceived responsiveness is a general
rather than a sport-specific construct, and as such may be less strongly related to sport-specific
outcomes (such as trait cognitive sport anxiety). Identifying that responsiveness is related with
lower levels of worry before or while competing is important because it provides an alternative
perspective on parents’ influence in sport, compared to the often cited research associating
parental involvement with increases in athletes’ anxiety (e.g., Barber et al., 1999; Bois et al.,
2009; Collins & Barber, 2005; Kaye et al., 2015; O’Rourke et al., 2013). For instance, studies
have shown that parents can increase their children’s anxiety in sport through their directive behaviours and pressure (Bois et al., 2009), the motivational climate that they create (Kaye et al., 2015), or their expectations and beliefs for their children’s success in sport (Collins & Barber, 2005). In contrast, there is far more limited evidence pertaining to how parents may help to reduce athletes’ anxiety (e.g., Ullrich-French & Smith, 2006). The emphasis within literature on parents as contributors to, rather than protectors against, anxiety, may act to reinforce the stigmatisation of parental involvement in sport and subsequently coaches and organisations desires to exclude parents of their work. Consequently, the finding that parental responsiveness may lower a component of cognitive sport anxiety is important not only to provide some balance to the currently available literature, but also to further demonstrate the complexity of sport parenting, encouraging us to look beyond the overly simplistic dichotomy of pressure and support resulting in good and bad outcomes (cf., Knight, Berrow, et al., 2017).

Overall, the results of this study clearly indicate that when young male rugby players perceive their parents’ support as responsive, they experience positive psychosocial outcomes. A unique result from the present study is that both the pattern and magnitude of association between perceived mother’s and father’s responsiveness and players’ psychosocial outcomes were similar. This is interesting because, research to date has provided variable evidence regarding the relative influence of mothers versus fathers in sport, with moderated or low concordance between parents’ reported behaviours and children’s perceptions of their mothers’ and fathers’ behaviours (Babkes & Weiss, 1999; Dorsch et al., 2016) and differences between mother’s and father’s behaviours and athletes outcomes (Lienhart et al., 2019). The similarities in the results of the present study between mothers and fathers may be because, in contrast to
other studies which have focused on sport specific behaviours of parents, responsiveness is a
general construct and thus assessing athletes’ perceptions of a more general parenting behaviour.

It should be noted that the players involved in the study had a mean age around 16 years,
and were in the investment stage of their sport development (i.e., athletes’ being committed to
achieving an elite level of performance in a single sport) (Côté, 1999; Côté & Hay, 2002).
Research on parental influences in youth sport often considers that parental influences decreases
in importance in the investment stage of athletes’ development with coach and peer influence
increasing (e.g., Côté & Hay, 2002; Wylleman & Lavallee, 2004). However, the present study
reinforces the continuing influence of parents, through their responsive support, even when
athletes are situated within the investment stage of sport participation.

Applied implications. The findings of the present study offer valuable information and
applied implications for parents, coaches, and sport organisations. The results demonstrate that
players’ positive perceptions of parental responsiveness lead to positive psychosocial outcomes
in sport. As such, we would suggest that such findings could extend previous parent
education/support programmes (e.g., Dorsch et al., 2017; Thrower et al., 2016, 2017) by
highlighting the importance of not simply providing parents with information regarding, for
instance, the types of sport specific behaviours or involvement that are appropriate or useful
from parents, but rather to consider the broader interactions that occur between a parent and their
child. Specifically, we would suggest that providing parents with suggestions and strategies to
engage in regular communication with their child to learn about their specific needs and desires,
as well as their likes, dislikes and elements core to themselves, would be particularly useful. For
a parent to demonstrate responsiveness they need to know their individual child, recognising that
they will be constantly changing as they grow and thus, rather than being presented with a set of
behaviours to demonstrate, learning how to engage with their child so that they understand their
child and subsequently demonstrate this understanding while also validating and caring for their
child is key.

Limitations and future directions. The current findings should be considered within the
case and limitations of the study. Involving young male rugby with a mean aged of 16 years
in the UK, the specific features of the sport context, the limited age range of participants, and the
fact that the study only involved male participants may have influenced some of the relationships
identified between responsiveness and certain psychosocial outcomes. Further research should
consider involving more diverse participants to ensure the generalisability of the findings; for
instance, by including various sports, male and female participants, varying age groups, and
participants from varying levels of sport. Additional research would also be beneficial among
single-parent families, various socio-economic background, and in different cultural contexts.

Further, despite collecting data and demonstrating group invariance on two independent
datasets, this study was cross-sectional and did not consider the long-term effects of perceived
mother/father responsiveness on athletes’ psychosocial outcomes. Long-term influences of
responsive support on individuals are expected because individuals that are responsive in certain
specific situations are also deemed to be responsive more generally, leading to long-term distal
outcomes (Feeney & Collins, 2015; Selcuk et al., 2016; Tomlinson et al., 2016). Thus, further
research should consider the uses of a longitudinal design to examine this pathway for young
athletes. The cross-sectional design of the present study could also have led to participants’ with
higher levels of thriving rating their parental responsiveness more positively. Such limitation
requires further investigation.
Additionally, the investigation of the combined, versus unique, influence of mother and father responsiveness may also require further investigation. This is because the results of the present study showed that both the pattern and magnitude of association between perceived mother’s and father’s responsiveness were similar (e.g., perceived responsiveness negatively related with worry while mediated by participants’ self-esteem), but the analyses were conducted on distinct models for perceived mother and father responsiveness rather than one model accounting for their joint influence. Eventually, it should be recognised that athletes’ perceptions of their parents’ responsiveness do not necessarily relates with actual responsive behaviours from their parents. Nonetheless, a previous study showed that despite not being necessarily related, the provision and perception of parents’ responsiveness both contributed to athletes self-perceptions and thriving. (Rouquette et al., 2021).

Conclusion. The purpose of the current study was to examine the association between adolescent rugby players’ perceptions of their mother’s and father’s responsiveness with thriving (i.e., positive affect, vitality, and life satisfaction) and the worry component of cognitive trait anxiety, mediated by their self-esteem. The results showed that, among two independent datasets, players’ perceptions of their mother’s and father’s responsiveness were positively related to thriving (i.e., positive affect, vitality, and life satisfaction), and negatively related to their worry before or while competing. The association between players’ perception of their mother’s and father’s responsiveness with thriving and the worry component of trait cognitive anxiety was mediated by participants’ self-esteem. Overall, the study uniquely contributes to the understanding of parent-athlete relationships by demonstrating the positive outcomes associated with young male elite rugby players’ perceptions of their mother’s and father’s responsiveness.
References

Knight, C. J. (2019). Wellington 2018 research feedback and forward planning: Player pathway and support needs. Invited presentation for the RFU, Nottingham, UK.

https://doi.org/10.1016/j.cedpsych.2018.11.002

Table 1

Dataset 1 and 2 - Correlation table with confidence intervals, variable means, and standard deviations of the continuous variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dataset 1 M</th>
<th>SD</th>
<th>Dataset 1 M</th>
<th>SD</th>
<th>Dataset 2 M</th>
<th>SD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Father Responsiveness</td>
<td>5.73</td>
<td>1.18</td>
<td>5.79</td>
<td>1.14</td>
<td>0.61**</td>
<td></td>
<td>0.25**</td>
<td>0.00</td>
<td>0.39**</td>
<td>0.35**</td>
<td>0.31**</td>
<td>0.45**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[0.50, 0.70]</td>
<td></td>
<td>[0.10, 0.39]</td>
<td></td>
<td>[-0.15, 0.16]</td>
<td></td>
<td>[0.26, 0.52]</td>
<td></td>
<td>[0.21, 0.48]</td>
<td></td>
</tr>
<tr>
<td>2. Mother Responsiveness</td>
<td>5.87</td>
<td>1.11</td>
<td>5.87</td>
<td>1.10</td>
<td>0.64**</td>
<td></td>
<td>0.39**</td>
<td>-0.07</td>
<td>0.43**</td>
<td>0.46**</td>
<td>0.32**</td>
<td>0.51**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[0.56, 0.70]</td>
<td></td>
<td>[0.25, 0.51]</td>
<td></td>
<td>[-0.23, 0.08]</td>
<td></td>
<td>[0.29, 0.55]</td>
<td></td>
<td>[0.33, 0.57]</td>
<td></td>
</tr>
<tr>
<td>3. Self Esteem</td>
<td>3.89</td>
<td>0.57</td>
<td>3.88</td>
<td>0.60</td>
<td>0.30**</td>
<td></td>
<td>0.37**</td>
<td>-0.24**</td>
<td>0.57**</td>
<td>0.49**</td>
<td>0.35**</td>
<td>0.60**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[0.19, 0.41]</td>
<td></td>
<td>[0.26, 0.47]</td>
<td></td>
<td>[-0.38, -0.09]</td>
<td></td>
<td>[0.46, 0.67]</td>
<td></td>
<td>[0.37, 0.60]</td>
<td></td>
</tr>
<tr>
<td>4. Cognitive Trait Sport Anxiety</td>
<td>2.39</td>
<td>0.81</td>
<td>2.46</td>
<td>0.83</td>
<td>-0.03</td>
<td></td>
<td>-0.12*</td>
<td>-0.28**</td>
<td>-0.08</td>
<td>-0.09</td>
<td>-0.15</td>
<td>-0.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[-0.15, 0.09]</td>
<td></td>
<td>[-0.24, -0.00]</td>
<td></td>
<td>[-0.38, -0.16]</td>
<td></td>
<td>[-0.23, 0.08]</td>
<td></td>
<td>[-0.24, -0.07]</td>
<td></td>
</tr>
<tr>
<td>5. Life Satisfaction</td>
<td>7.72</td>
<td>1.58</td>
<td>7.57</td>
<td>1.66</td>
<td>0.36**</td>
<td></td>
<td>0.39**</td>
<td>0.51**</td>
<td>-0.15*</td>
<td>0.41**</td>
<td>0.50**</td>
<td>0.82**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[0.26, 0.46]</td>
<td></td>
<td>[0.28, 0.49]</td>
<td></td>
<td>[-0.26, -0.03]</td>
<td></td>
<td>[0.27, 0.52]</td>
<td></td>
<td>[0.38, 0.61]</td>
<td></td>
</tr>
<tr>
<td>6. Positive Affect</td>
<td>3.61</td>
<td>0.70</td>
<td>3.68</td>
<td>0.71</td>
<td>0.37**</td>
<td></td>
<td>0.42**</td>
<td>0.44**</td>
<td>-0.15*</td>
<td>0.43**</td>
<td>0.49**</td>
<td>0.77**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[0.26, 0.47]</td>
<td></td>
<td>[0.32, 0.52]</td>
<td></td>
<td>[-0.27, -0.04]</td>
<td></td>
<td>[0.32, 0.52]</td>
<td></td>
<td>[0.37, 0.60]</td>
<td></td>
</tr>
<tr>
<td>7. Vitality</td>
<td>3.42</td>
<td>0.69</td>
<td>3.44</td>
<td>0.71</td>
<td>0.33**</td>
<td></td>
<td>0.31**</td>
<td>0.36**</td>
<td>-0.21**</td>
<td>0.50**</td>
<td>0.53**</td>
<td>0.82**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[0.22, 0.44]</td>
<td></td>
<td>[0.20, 0.41]</td>
<td></td>
<td>[-0.33, -0.10]</td>
<td></td>
<td>[0.40, 0.58]</td>
<td></td>
<td>[0.44, 0.61]</td>
<td></td>
</tr>
<tr>
<td>8. Thriving</td>
<td>3.63</td>
<td>0.59</td>
<td>3.63</td>
<td>0.61</td>
<td>0.44**</td>
<td></td>
<td>0.47**</td>
<td>0.55**</td>
<td>-0.21**</td>
<td>0.81**</td>
<td>0.80**</td>
<td>0.82**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[0.34, 0.53]</td>
<td></td>
<td>[0.37, 0.56]</td>
<td></td>
<td>[-0.33, -0.10]</td>
<td></td>
<td>[0.77, 0.85]</td>
<td></td>
<td>[0.75, 0.84]</td>
<td></td>
</tr>
</tbody>
</table>

Note. M and SD are used to represent mean and standard deviation, respectively. Correlation below the diagonal correspond to dataset 1. Correlations above the diagonal line correspond to dataset 2. Values in square brackets indicate the 95% confidence interval for each correlation. * indicates p < .05. ** indicates p < .01.
Table 2

Table reporting tests of measurement invariance between the freely estimated model and the fully constrained models accounting for configural metric, scalar, and residual invariance.

<table>
<thead>
<tr>
<th>Model comparison</th>
<th>Δχ² (Δdf)</th>
<th>p-value</th>
<th>ΔCFI</th>
<th>ΔTLI</th>
<th>ΔRMSEA</th>
<th>ΔSRMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Father Responsiveness</td>
<td>37,985 (59)</td>
<td>0.984</td>
<td>0.011</td>
<td>0.021</td>
<td>0.011</td>
<td>0.014</td>
</tr>
<tr>
<td>Perceived Mother Responsiveness</td>
<td>31,698 (59)</td>
<td>0.998</td>
<td>0.015</td>
<td>0.019</td>
<td>0.018</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Note. N = 312, dataset 1 n = 122, dataset 2 n = 190
Figure 1

Structural Equation Model of Perceived Father Responsiveness

Note. This structural equation model shows the relationships between athletes’ perceived father responsiveness and their cognitive trait sport anxiety and thriving while mediated by their self-esteem. Statistics are standardized regression coefficients. Dotted lines represent nonsignificant relations; bold lines represent significant indirect path with p < 0.05. FPPR = Perceived Father Responsiveness, Anxiety = Cognitive Trait Sport Anxiety
Figure 2

Structural Equation Model of Perceived Mother Responsiveness

Note. This structural equation model shows the relationships between athletes’ perceived mother responsiveness and their cognitive trait sport anxiety and thriving while mediated by their self-esteem. Statistics are standardized regression coefficients. Dotted lines represent nonsignificant relations; bold lines represent significant indirect path with $p < 0.05$. FPPR = Perceived Father Responsiveness, Anxiety = Cognitive Trait Sport Anxiety