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Highlights 

Vibration Analysis for Anti-Symmetric Laminated Composite Plates 

Resting on Visco-Elastic Foundations with Temperature Effects  

A. Rahmani, S. Faroughi, M.I. Friswell   

1- Comprehensive vibrational analysis of anti-symmetric laminated composite 
plates. 

2- Vibrational analysis includes an elastic foundation and thermal effects. 

3- HSDT is applied to estimate the effects of the higher-order transverse shear. 

4- Effects of damping, elastic, aspect and slenderness ratios are discussed in detail. 

5- Different anti-symmetric laminates and boundary conditions are considered. 
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Vibration Analysis for Anti-Symmetric Laminated Composite Plates 

Resting on Visco-Elastic Foundation with Temperature Effects  

A. Rahmani1, S. Faroughi1, M.I. Friswell2  1* 

   

Abstract 

In this work, a comprehensive vibrational behavior analysis is performed on anti-symmetric 

laminated composite plates resting on visco-elastic foundations undergoing thermal effects. Here, 

the governing equations of motion are developed through Hamilton’s principle and Reddy’s plate 

theory as higher-order shear deformation theory (HSDT) is employed to capture high accuracy. 

Also, the generalized differential quadrature method (GDQM) is used to predict the vibration 

response and the natural frequencies. The effects of temperature change, Winkler-Pasternak and 

damping coefficients for the elastic foundation, the elastic ratio, the arrangement of different anti-

symmetric laminates, and the aspect and slenderness ratios are observed and discussed in detail. 

The results are extracted for fully clamped boundary conditions and the effects of other boundary 

conditions are also illustrated. 

Keywords: Anti-symmetric Laminated Composite Plates; Thermal Effects; Elastic Foundation; 

Higher-Order Shear Deformation Theory; GDQM 

1. Introduction 

In recent years, the applications of composite structures such as laminated composite plates and 

shells have increased progressively in almost all industries such as aeronautical, aerospace and 

satellites, marine, civil and large space structures, automotive, sports goods, and medical devices, 

because of their outstanding mechanical properties such as high stiffness to weight, high strength 

to weight and low maintenance cost. For example, more than 50% of aeronautical structures in the 

A350 XWB and Boeing 787 aircraft are composite. Meanwhile, anisotropic and 

symmetric/asymmetric/anti-symmetric laminated composite plates have been extensively used in 

weight sensitive engineering structures from aerospace applications to infrastructures and car 

industries [1-4]. Accordingly, to achieve a proper design and to increase the safety and reliability, 
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the accurate evaluation and detailed study of mechanical behaviors, such as bending, buckling, 

vibration and wave propagation of plates, is required. Hence, many researchers have considered a 

range of static and dynamic analysis of laminated composite structures, especially 

symmetric/asymmetric/anti-symmetric laminated composite plates recently [5-11]. Therefore, the 

following brief literature review considers recent papers that investigate the mechanical behavior 

of laminated composite structures.  

There are many approaches to analyze laminated composite plates, such as classical, first and 

higher order shear deformation theories and also layer-wise theory, which have attracted the 

interest of many researchers [12-15]. Classical (CLT) and first order shear deformation (FSDT) 

theories have been extensively employed for the vibration analysis of anisotropic laminated 

composite plates and shells [16-20]. Nevertheless, higher-order shear deformation theory and 

layer-wise theories have given accurate results especially for thick laminated composite plates 

[21]. 

Thai and Kim [22] analyzed the free vibration of laminated composite plates. They derived the 

equations of motion through two variable refined plate theory and Hamilton's principle. They 

employed Navier’s method to calculate the results. Zhu et al. [23] investigated the bending and 

vibration of CNT-reinforced thin and thick composite plates. They used FSDT and FEM in their 

studies. Mantari et al. [24] developed a novel shear deformation theory for composite plates where 

the shear correction factor is not required. They derived the governing equations of motion using 

the principle of virtual work and employed the Navier solutions to obtain the results. Fazzolari and 

Carrera [25, 26] investigated the vibration analysis of anisotropic multilayered plates and sandwich 

plates with anisotropic sheets including thermal effects and using the HTR formulation. Chen et 

al. [27] showed the sensitivity of the natural frequencies and buckling load of laminated composite 

plates to thermal stresses and initial stresses. Nedri et al. [28] studied the vibration of laminated 

composite plates resting on an elastic medium employing refined hyperbolic shear deformation 

theory. Li et al. [29] determined vibro-acoustic and buckling behaviors of fully clamped laminated 

composite plates with thermal effects. They applied CLT and FSDT to establish the model. Kiani 

[30] developed free vibration analysis of FG-CNT reinforced composite skew plates. They utilized 

FSDT to obtain the model and the Ritz method to obtain the results. Pingulkar and  Suresha [31] 

developed natural frequency and mode shape analysis of cantilever laminated composite plates 

using the FEM with various fiber volume fractions. Zhang et al. [32] considered the vibration of 
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laminated composite plates with non-uniform BCs using an improved Fourier series method, and 

the results were verified by FEM data. Zamani et al. [33] considered the vibration analysis of 

viscoelastic composite plates. They employed higher-order shear deformation theory for a 

reinforced polymeric matrix on a visco-Pasternak foundation to extract the model and present 

closed form solutions for the transient response. Zhang and Selim [34] studied the free vibration 

of CNT reinforced laminated composite plates using Reddy’s higher-order shear deformation 

theory. They applied the element-free IMLS-Ritz method to establish the results. Canales and 

Mantari [35] studied the free vibration of thick isotropic and laminated rectangular beams with 

arbitrary boundary conditions using the Carrera Unified Formulation and the Ritz method. They 

obtained accurate results for the first mode and validated these results using the 3D finite element 

solution. Chernikov et al. [36] presented an optimization problem of the dynamic response for an 

anisotropic composite plate using multi-field coupling with thermal constraints. They found 

optimal characteristics of an electro-magnetic field to reduce the amplitude of the plate vibrations. 

Fallah and Delzendeh [37] developed a novel meshless finite volume method with first order shear 

deformation theory to study vibrational behavior of laminated composite plates.  Alaimo et al. [38] 

studied vibrational behavior of composite plates embedding viscoelastic layers. They developed 

layer-wise models of plates using the principle of virtual displacements and employed a Navier 

procedure to solve the problem. Zhang et al. [39] developed a novel exact solution for transverse 

vibration of rotationally-restrained orthotropic plates. They proposed a new formulation using the 

finite integral transform. Hachemi and Cherif [40] reported the free vibration investigation of 

composite laminated plate using higher-order shear deformation theory and a curved quadrilateral 

p-element. Tanzadeh and Amoushahi [41] considered various plate deformation theories to study 

the free vibration and buckling behavior of piezoelectric laminated composite plates. Vidal et al. 

[42] employed a variable separation method to investigate free vibration analysis of laminated 

composite plates. They used an iterative process to solve the non-linear problem. Faroughi et al. 

[43] employed NURBS-based isogeometric method to investigate the buckling and vibration and 

divergence analyses of anisotropic shells. They also applied a novel isogeometric higher-order 

shear deformation model to present the dynamic stability of anisotropic composite plates [44]. 

Safaei [45] investigated free vibrational analysis of laminated composite plates with a porous core. 

He applied first order shear deformation theory and FEM to solve the eigenvalue equation. 

Marchetti et al. [46] studied the dynamic behavior of sandwich structures and laminated composite 
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plates using an equivalent thin plate methodology with experimental validation. Sinha et al. [47] 

presented numerical and experimental investigation on vibration of woven glass fiber composite 

laminated plates. They employed an FFT analysis and an FE model in their study. 

The investigation of the mechanical behavior of anti-symmetric laminated composite structures 

has been the subject of extensive research in recent years. Topal et al. [48] proposed a Teaching 

Learning Based Optimization (TLBO) to optimize the fundamental frequency of anti-symmetric 

laminated composite plates. They selected the fibre orientations of the layers as the optimization 

variables. They used the Artificial Bee Colony (ABC) algorithm to solve the problem. Narwariya 

et al. [49] developed a numerical study and harmonic analysis of free vibration for anti-symmetric 

cross-ply laminated composite plates. They employed FEM to determine the natural frequencies, 

mode shapes and harmonic analysis of anti-symmetric cross-ply laminated composite plates. Javed 

et al. [50] investigated the free vibrational behavior of symmetric and anti-symmetric cross-ply 

laminated composite plates. They considered higher-order shear deformation theory and a spline 

method to estimate the response for multi-layered plates under simply supported boundary 

conditions. Zhang et al. [51] presented the visco-elastic behavior of anti-symmetric laminated 

composites. They considered time and temperature dependent properties and employed classical 

lamination theory and Maxwell’s visco-elasticity model. Shukla et al. [52] employed a mesh-free 

approach using artificial intelligence and radial basis functions (RBF) to study the buckling 

analysis of symmetric and anti-symmetric laminated composite plates. Sahla et al. [53] 

investigated the vibration analysis of anti-symmetric laminated composites and soft core sandwich 

plates. They used a simple four-variable trigonometric shear deformation model and found an 

analytical solution. Belbachir et al. [54] addressed the bending response of anti-symmetric cross-

ply laminated composite plates using a refined plate theory and a nonlinear thermo-mechanical 

loading model. The Navier solution was used to determine the results. Moreover, they developed 

a thermal flexural analysis of anti-symmetric cross-ply laminated plates [55]. Chai et al. [56] 

considered bistable anti-symmetric composite shells and presented a systematic study in 

hygrothermal environments to define the effect of temperature and moisture. They employed 

classical laminate theory and FEM simulation to extract the results. They also verified the 

theoretical results with experiments. Zhang et al. [57] predicted chaotic vibrations of a bi-stable 

asymmetric laminated composite square panel under foundation forces for the first time. 
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In the literature, many different applications for anti-symmetric laminated composite plates have 

been suggested and studied. Chattibi et al. [58] suggested their research is relevant to nuclear and 

aerospace engineering structures. The application of unsymmetric and anti-symmetric composite 

laminated plates have been reported in reconfigurable antenna [59], lightning striker [60], 

morphing structures [61] and stiffened plates with omega stringers [62]. For structures designed 

for dynamic control and stability with requirements such as high resonance frequency, vibration 

control and low centrifugal forces, the application of composite materials such as 

carbon/epoxy/graphite fiber reinforced polymers, can be a reliable choice [63].  

Anti-symmetric laminated composite plates can be extensively used for many industrial 

applications and components such as fuselage structures, engine cowls, wing structures, flaps and 

aircraft access panels, which are surrounded by elastic media and exposed to temperature changes. 

Therefore, a comprehensive investigation of the vibration characteristics of anti-symmetric plates 

considering different lay-ups, the visco-elastic foundation, temperature effects and various 

boundary conditions is essential. However, according to the above literature review, the existing 

investigations on vibrational behavior of composite laminated plates do not include a 

comprehensive study for the combined effects of different anti-symmetric laminated 

arrangements, visco-elastic foundations, temperature and various boundary conditions. So, the 

deficiencies and shortcomings of previous studies are clear and studies including these aspects are 

necessary for safe and accurate design. Hence, in this study, the vibrational behavior analysis of 

anti-symmetric laminated composite plates resting on elastic foundations undergoing thermal 

effects is considered. In this comprehensive study, Hamilton’s principle and higher-order shear 

deformation theory are employed to extract the governing equations of motion. A detailed 

numerical analysis using GDQM is performed for various temperatures, visco-elastic foundations, 

elastic properties, aspect and slenderness ratios, the arrangement of the anti-symmetric laminates 

and damping coefficients. Also, the results are extracted for different boundary conditions such as 

CCCC, SCCC, SCCS, SSCS and SSSS. 

2. Formulation 

2.1. Description 

A multi-layered laminated composite plates resting on a Winkler-Pasternak foundation is 

considered taking into account thermal effects. as shown in Fig. 1.  
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2.2. Kinematics 

Third Shear Deformation Theory (TSDT) is applied to present the kinematics model of plate 

resting on Winkler-Pasternak foundations. The displacement fields in third order shear 

deformation theory are: 

𝑢(𝑥. 𝑦. 𝑧. 𝑡) = 𝑢0(𝑥. 𝑦. 𝑡) + 𝑧𝜙𝑥(𝑥. 𝑦. 𝑡) −
4

3ℎ2
𝑧3 (𝜙𝑥 +

𝜕𝑤0

𝜕𝑥
)    (1a) 

𝑣(𝑥. 𝑦. 𝑧. 𝑡) = 𝑣0(𝑥. 𝑦. 𝑡) + 𝑧𝜙𝑦(𝑥. 𝑦. 𝑡) −
4

3ℎ2
𝑧3(𝜙𝑦 +

𝜕𝑤0

𝜕𝑦
)    (1b)  

𝑤(𝑥. 𝑦. 𝑧. 𝑡) = 𝑤0(𝑥. 𝑦. 𝑡)         (1c)  

where (𝑢0. 𝑣0. 𝑤0) are the displacements along the (𝑥. 𝑦. 𝑧) directions and (𝜙𝑥 . 𝜙𝑦) indicate 

rotations about (𝑥. 𝑦), respectively. The linear strains associated with Reddy’s displacement fields 

can be obtained as: 

 

Fig. 1: Multi-layered laminated composite plate resting on a visco-elastic foundation 

 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
+ 𝑧 (

𝜕𝜙𝑥

𝜕𝑥
) − 𝑐1𝑧

3 (
𝜕𝜙𝑥

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2
)      (2a)  

𝜀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
=

𝜕𝑣0

𝜕𝑦
+ 𝑧 (

𝜕𝜙𝑦

𝜕𝑦
) − 𝑐1𝑧

3 (
𝜕𝜙𝑦

𝜕𝑦
+

𝜕2𝑤0

𝜕𝑦2
)      (2b)  

𝛾𝑥𝑦 =
1

2
(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) =

𝜕𝑢0

𝜕𝑦
+

𝜕𝑣0

𝜕𝑥
+ 𝑧 (

𝜕𝜙𝑥

𝜕𝑦
+

𝜕𝜙𝑦

𝜕𝑥
) − 𝑐1𝑧

3 (
𝜕𝜙𝑥

𝜕𝑦
+

𝜕𝜙𝑦

𝜕𝑥
+ 2

𝜕2𝑤0

𝜕𝑥𝜕𝑦
)  (2c)  

𝛾𝑥𝑧 =
1

2
(
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
) = 𝜙𝑦 +

𝜕𝑤0

𝜕𝑦
− 𝑐2𝑧

2 (𝜙𝑦 +
𝜕𝑤0

𝜕𝑦
)      (2d)  
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𝛾𝑦𝑧 =
1

2
(
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
) = 𝜙𝑥 +

𝜕𝑤0

𝜕𝑥
− 𝑐2𝑧

2 (𝜙𝑥 +
𝜕𝑤0

𝜕𝑥
)      (2e)  

where c1 =
4

3ℎ2
 and𝑐2 = 3c1 . 

Eq. (2) can be rewritten as: 

{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝛾𝑥𝑦
} = {

𝜀𝑥𝑥
(0)

𝜀𝑦𝑦
(0)

𝛾𝑥𝑦
(0)

} + 𝑧{

𝜀𝑥𝑥
(1)

𝜀𝑦𝑦
(1)

𝛾𝑥𝑦
(1)

} + 𝑧3 {

𝜀𝑥𝑥
(3)

𝜀𝑦𝑦
(3)

𝛾𝑥𝑦
(3)

}       (3a) 

{
𝛾𝑦𝑧
𝛾𝑥𝑧
} =     {

𝛾𝑦𝑧
(0)

𝛾𝑥𝑧
(0)
} + 𝑧2 {

𝛾𝑦𝑧
(2)

𝛾𝑥𝑧
(2)
}         (3b) 

where the form of 𝜀𝑥𝑥
(0). 𝜀𝑥𝑥

(1). 𝜀𝑥𝑥
(3). 𝜀𝑦𝑦

(0). 𝜀𝑦𝑦
(1). 𝜀𝑦𝑦

(3). 𝛾𝑥𝑦
(0). 𝛾𝑥𝑦

(1). 𝛾𝑥𝑦
(3). 𝛾𝑥𝑦

(1). 𝛾𝑥𝑦
(2). 𝛾𝑥𝑦

(1)
 and 𝛾𝑥𝑦

(2)
 are given in 

Appendix A. 

2.3. Governing Equations of Motion 

Using Hamilton principle, the governing equations of motion based on TSDT are extracted for 

laminated composite plates. Hamilton’s principle is given by: 

𝐻 = ∫ (
𝑇

0
𝛿Π𝑠 + 𝛿Π𝑤 − 𝛿Π𝑘)𝑑𝑡 = 0        (4) 

where 𝛿Π𝑠. 𝛿Π𝑤 and 𝛿Π𝑘 are the first variation of the strain energy, virtual work which is done by 

the external forces and the kinetic energy, respectively and can be computed as: 

𝛿Π𝑠 = ∫[𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 𝜎𝑦𝑦𝛿𝜀𝑦𝑦 + 𝜎𝑥𝑦𝛿𝛾𝑥𝑦 + 𝜎𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜎𝑦𝑧𝛿𝛾𝑦𝑧]

𝑣

𝑑𝑣

= ∫[𝑁𝑥𝑥𝛿𝜀𝑥𝑥
(0) +𝑀𝑥𝑥𝛿𝜀𝑥𝑥

(1) − 𝑐1𝑃𝑥𝑥𝛿𝜀𝑥𝑥
(3) +𝑁𝑦𝑦𝛿𝜀𝑦𝑦

(0)
+𝑀𝑦𝑦𝛿𝜀𝑦𝑦

(1)
− 𝑐1𝑃𝑦𝑦𝛿𝜀𝑦𝑦

(3)

𝐴

+𝑁𝑥𝑦𝛿𝛾𝑥𝑦
(0) +𝑀𝑥𝑦𝛿𝛾𝑥𝑦

(1) − 𝑐1𝑃𝑥𝑦𝛿𝛾𝑥𝑦
(3) + 𝑄𝑥𝛿𝛾𝑥𝑧

(0) − 𝑐2𝑅𝑥𝛿𝛾𝑥𝑧
(2) −𝑄𝑦𝛿𝛾𝑦𝑧

(0)

− 𝑐2𝑅𝑦𝛿𝛾𝑦𝑧
(2)
]𝑑𝑥𝑑𝑧 

            (5) 

where: 

(𝑁𝑖𝑗 .𝑀𝑖𝑗 . 𝑃𝑖𝑗) = ∫ 𝜎𝑖𝑗(1. 𝑧. 𝑧
3)𝑑𝑧    

ℎ

2

−
ℎ

2

        (6a) 

(𝑄𝑖 . 𝑅𝑖) = ∫ 𝜎𝑖𝑧(1. 𝑧
2)𝑑𝑧

ℎ

2

−
ℎ

2

         (6b) 

In Eqs. (6), 𝑖 and 𝑗 take the symbols 𝑥 and 𝑦.  
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Also: 

𝛿Π𝑘 = ∫ 𝜌0 [(
𝜕𝑢0
𝜕𝑡

+ 𝑧
𝜕𝜙𝑥
𝜕𝑡

− 𝑐1𝑧
3(
𝜕𝜙𝑥
𝜕𝑡

+
𝜕2𝑤0
𝜕𝑥𝜕𝑡

)) (𝛿(
𝜕𝑢0
𝜕𝑡
) + 𝑧𝛿(

𝜕𝜙𝑥
𝜕𝑡
) − 𝑐1𝑧

3𝛿(
𝜕𝜙𝑥
𝜕𝑡

𝑣

+
𝜕2𝑤0
𝜕𝑥𝜕𝑡

))

+ (
𝜕𝑣0
𝜕𝑡

+ 𝑧
𝜕𝜙𝑦
𝜕𝑡

− 𝑐1𝑧
3(
𝜕𝜙𝑦
𝜕𝑡

+
𝜕2𝑤0
𝜕𝑥𝜕𝑡

))(𝛿(
𝜕𝑣0
𝜕𝑡
) + 𝑧𝛿(

𝜕𝜙𝑦
𝜕𝑡
) − 𝑐1𝑧

3𝛿(
𝜕𝜙𝑦
𝜕𝑡

+
𝜕2𝑤0
𝜕𝑥𝜕𝑡

)) + 𝑤0𝛿𝑤0] 𝑑𝑣

= ∫ [(𝑚0

𝜕𝑢0
𝜕𝑡

+𝑚1

𝜕𝜙𝑥
𝜕𝑡

− 𝑐1𝑚3(
𝜕𝜙𝑥
𝜕𝑡

+
𝜕2𝑤0
𝜕𝑥𝜕𝑡

)) 𝛿(
𝜕𝑢0
𝜕𝑡
)

𝐴

+ (𝑚1

𝜕𝑢0
𝜕𝑡

+ 𝑚2

𝜕𝜙𝑥
𝜕𝑡

− 𝑐1𝑚4(
𝜕𝜙𝑥
𝜕𝑡

+
𝜕2𝑤0
𝜕𝑥𝜕𝑡

)) 𝛿(
𝜕𝜙𝑥
𝜕𝑡
)

− 𝑐1 (𝑚3

𝜕𝑢0
𝜕𝑡

+𝑚4

𝜕𝜙𝑥
𝜕𝑡

− 𝑐1𝑚6(
𝜕𝜙𝑥
𝜕𝑡

+
𝜕2𝑤0
𝜕𝑥𝜕𝑡

)) 𝛿(
𝜕𝜙𝑥
𝜕𝑡

+
𝜕2𝑤0
𝜕𝑥𝜕𝑡

)

+ (𝑚0

𝜕𝑣0
𝜕𝑡

+ 𝑚1

𝜕𝜙𝑦
𝜕𝑡

− 𝑐1𝑚3(
𝜕𝜙𝑦
𝜕𝑡

+
𝜕2𝑤0
𝜕𝑥𝜕𝑡

)) 𝛿(
𝜕𝑣0
𝜕𝑡
)

+ (𝑚1

𝜕𝑣0
𝜕𝑡

+ 𝑚2

𝜕𝜙𝑦
𝜕𝑡

− 𝑐1𝑚4(
𝜕𝜙𝑦
𝜕𝑡

+
𝜕2𝑤0
𝜕𝑥𝜕𝑡

)) 𝛿(
𝜕𝜙𝑦
𝜕𝑡
)

− 𝑐1 (𝑚3

𝜕𝑣0
𝜕𝑡

+𝑚4

𝜕𝜙𝑦
𝜕𝑡

− 𝑐1𝑚6(
𝜕𝜙𝑦
𝜕𝑡

+
𝜕2𝑤0
𝜕𝑥𝜕𝑡

))𝛿(
𝜕𝜙𝑦
𝜕𝑡

+
𝜕2𝑤0
𝜕𝑥𝜕𝑡

)] 𝑑𝑥𝑑𝑦 

            (7) 

where 𝑚𝑖 = ∫ 𝜌0

ℎ

2

−
ℎ

2

(𝑧)𝑖𝑑𝑧 and for multi-layered laminated composite is equal to:  

𝑚𝑖 = ∑ ∫ 𝜌(𝑘)(𝑧)𝑖𝑑𝑧
𝑧𝑘+1

𝑧𝑘

𝑛
𝑘=1      (𝑖 = 0.1.2.… .6)      (8) 

where 𝑛 is number of layers. Moreover, for external forces the variation of virtual work can be 

considered as: 

𝛿Π𝑤 = ∫ [(𝑞 + 𝐾𝑤𝑤0 + 𝐾𝑝 (
𝜕2𝑤0

𝜕𝑥2
+

𝜕2𝑤0

𝜕𝑦2
) + 𝐾𝑑

𝜕𝑤0

𝜕𝑡
) 𝛿𝑤0] 𝑑𝑥𝑑𝑦𝐴

    (9) 

where 𝑞 is transverse distributed force of laminate and 𝐾𝑤 , 𝐾𝑝 and 𝐾𝑑 are the Winkler, Pasternak 

and damping coefficients due to the visco-elastic foundation, respectively. 

By substituting Eqs. (5), (7) and (9) into (4) and using some algebraic simplifications, the equations 

of motion are generated as: 
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𝛿𝑢0 :     
𝜕𝑁𝑥𝑥

𝜕𝑥
+

𝜕𝑁𝑥𝑦

𝜕𝑦
= 𝑚0𝑢̈0 + 𝑚̅1𝜙̈𝑥 − 𝑐1𝑚3

𝜕𝑤̈0

𝜕𝑥
      (10a) 

𝛿𝑣0 :     
𝜕𝑁𝑥𝑦

𝜕𝑥
+

𝜕𝑁𝑦𝑦

𝜕𝑦
= 𝑚0𝑣̈0 + 𝑚̅1𝜙̈𝑦 − 𝑐1𝑚3

𝜕𝑤̈0

𝜕𝑦
      (10b)  

𝛿𝑤0 :     
𝜕

𝜕𝑥
(𝑄𝑥 − 𝑐2𝑅𝑥) +

𝜕

𝜕𝑦
(𝑄𝑦 − 𝑐2𝑅𝑦) +

𝜕

𝜕𝑥
(𝑁𝑥𝑥

𝜕𝑤0

𝜕𝑥
+𝑁𝑥𝑦

𝜕𝑤0

𝜕𝑦
) +

𝜕

𝜕𝑦
(𝑁𝑥𝑦

𝜕𝑤0

𝜕𝑥
+

𝑁𝑦𝑦
𝜕𝑤0

𝜕𝑦
) + 𝑐1 (

𝜕2𝑃𝑥𝑥

𝜕𝑥2
+ 2

𝜕2𝑃𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑃𝑦𝑦

𝜕𝑦2
) + 𝑞+𝐾𝑤𝑤0 + 𝐾𝑝 (

𝜕2𝑤0

𝜕𝑥2
+

𝜕2𝑤0

𝜕𝑦2
) + 𝐾𝑑

𝜕𝑤0

𝜕𝑡
= 𝑚0𝑤̈0 −

𝑐1
2𝑚6(

𝜕2𝑤̈0

𝜕𝑥2
+

𝜕2𝑤̈0

𝜕𝑦2
) + 𝑐1 [𝑚3 (

𝜕𝑢̈0

𝜕𝑥
+

𝜕𝑣̈0

𝜕𝑦
) + 𝑚̅4 (

𝜕𝜙̈𝑥

𝜕𝑥
+

𝜕𝜙̈𝑦

𝜕𝑦
)]    (10c)  

𝛿𝜙𝑥 :     
𝜕

𝜕𝑥
(𝑀𝑥𝑥 − 𝑐1𝑃𝑥𝑥)  +

𝜕

𝜕𝑦
(𝑀𝑥𝑦 − 𝑐1𝑃𝑥𝑦) − (𝑄𝑥 − 𝑐2𝑅𝑥) = 𝑚̅1𝑢̈0 + 𝑚̿2𝜙̈𝑥 − 𝑐1𝑚̅4

𝜕𝑤̈0

𝜕𝑥
 

            (10d) 

𝛿𝜙𝑦 :     
𝜕

𝜕𝑥
(𝑀𝑥𝑦 − 𝑐1𝑃𝑥𝑦)  +

𝜕

𝜕𝑦
(𝑀𝑦𝑦 − 𝑐1𝑃𝑦𝑦) − (𝑄𝑦 − 𝑐2𝑅𝑦) = 𝑚̅1𝑣̈0 + 𝑚̿2𝜙̈𝑦 − 𝑐1𝑚̅4

𝜕𝑤̈0

𝜕𝑦
 

            (10e) 

where: 

𝑚𝑖 = ∫ 𝜌0

ℎ

2

−
ℎ

2

(𝑧)𝑖𝑑𝑧 = ∑ ∫ 𝜌(𝑘)(𝑧)𝑖𝑑𝑧
𝑧𝑘+1

𝑧𝑘

𝑛
𝐾=1      (𝑖 = 0.1.2.… .6)    (11a) 

𝑚̅𝑖 = 𝑚𝑖 − 𝑐1𝑚𝑖+2          (11b) 

𝑚̿2 = 𝑚2 − 2𝑐1𝑚4 + 𝑐1
2𝑚6         (11c) 

In addition, the stress resultants in terms of strains can be written as: 

{

{𝑁}

{𝑀}

{𝑃}
} = [

[𝐴] [𝐵] [𝐸]

[𝐵] [𝐷] [𝐹]

[𝐸] [𝐹] [𝐻]
]{

{𝜀(0)}

{𝜀(1)}

{𝜀(3)}

} − {

{𝑁𝑇}

{𝑀𝑇}

{𝑃𝑇}

}      (12) 

{
{𝑄}
{𝑅}

} = [
[𝐴] [𝐷]
[𝐷] [𝐹]

] {
{𝛾(0)}

{𝛾(2)}
}         (13) 

where {𝑁}. {𝑀}. {𝑃}  are defined by Eq. (6a) as 3 × 1 vectors and {𝑄}, {𝑅}  are 2× 1 vectors 

expressed by Eq. (6b). Also, {𝑁𝑇}, {𝑀𝑇}, {𝑃𝑇}  are the thermal stress resultants that are described 
as: 

{𝑁𝑇} = {

𝑁𝑥𝑥
𝑇

𝑁𝑦𝑦
𝑇

𝑁𝑥𝑦
𝑇

} = ∑ ∫ [𝑄̅]𝑘 {

𝛼𝑥𝑥
𝛼𝑦𝑦
2𝛼𝑥𝑦

}

𝑘

∆𝑇 𝑑𝑧
𝑧𝑘+1

𝑧𝑘

𝑛
𝑘=1       (14a) 

{𝑀𝑇} = {

𝑀𝑥𝑥
𝑇

𝑀𝑦𝑦
𝑇

𝑀𝑥𝑦
𝑇

} = ∑ ∫ [𝑄̅]𝑘 {

𝛼𝑥𝑥
𝛼𝑦𝑦
2𝛼𝑥𝑦

}

𝑘

∆𝑇 𝑧𝑑𝑧
𝑧𝑘+1

𝑧𝑘

𝑛
𝑘=1       (14b) 
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{𝑃𝑇} = {

𝑃𝑥𝑥
𝑇

𝑃𝑦𝑦
𝑇

𝑃𝑥𝑦
𝑇

} = ∑ ∫ [𝑄̅]𝑘 {

𝛼𝑥𝑥
𝛼𝑦𝑦
2𝛼𝑥𝑦

}

𝑘

∆𝑇 𝑧3𝑑𝑧
𝑧𝑘+1

𝑧𝑘

𝑛
𝑘=1       (14c) 

where [𝑄̅]𝑘 and {𝛼𝑖𝑗}
𝑘

are the 3 × 3 transformed reduced stiffness coefficients matrix and the 3 ×

1 vector of thermal expansion coefficients for the 𝑘𝑡ℎ layer respectively, and presented in 
Appendix B. Also, ∆𝑇 is the thermal field which assumed as uniform in current work. 

In addition, [𝐴], [𝐵], [𝐷], [𝐸], [𝐹] and [𝐻] are defined as: 

𝐴𝑖𝑗 = ∑ 𝑄̅𝑖𝑗
(𝑘)𝑁

𝑘=1 (𝑧𝑘+1 − 𝑧𝑘)   ;  𝐵𝑖𝑗 =
1

2
∑ 𝑄̅𝑖𝑗

(𝑘)𝑁
𝑘=1 (𝑧𝑘+1

2 − 𝑧𝑘
2)  

𝐷𝑖𝑗 =
1

3
∑ 𝑄̅𝑖𝑗

(𝑘)𝑁
𝑘=1 (𝑧𝑘+1

3 − 𝑧𝑘
3)  ;  𝐸𝑖𝑗 =

1

4
∑ 𝑄̅𝑖𝑗

(𝑘)[(𝑧𝑘+1)
4 − (𝑧𝑘)

4]𝑁
𝑘=1    (15) 

𝐹𝑖𝑗 =
1

5
∑ 𝑄̅𝑖𝑗

(𝑘)[(𝑧𝑘+1)
5 − (𝑧𝑘)

5]𝑁
𝑘=1   ;  𝐻𝑖𝑗 =

1

7
∑ 𝑄̅𝑖𝑗

(𝑘)[(𝑧𝑘+1)
7 − (𝑧𝑘)

7]𝑁
𝑘=1   

For Eq. (12), (𝑖, 𝑗 = 1,2,6) and for Eq. (13), (𝑖, 𝑗 = 4,5). Eqs. (12) and (13) are given in detail in 

Appendix C.  

By substituting Eqs. (12) and (13) into Eqs. (10) and considering Eqs. (14)-(15) and Appendices 

A, B and C, the equations of motion can be derived in terms of the displacement as: 

𝐴11
𝜕2𝑢0

𝜕𝑥2
+ 2𝐴16

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐴66

𝜕2𝑢0

𝜕𝑦2
+ 𝐴16

𝜕2𝑣0

𝜕𝑥2
+ (𝐴12 + 𝐴66)

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐴26

𝜕2𝑣0

𝜕𝑦2
− 𝑐1𝐸11

𝜕3𝑤0

𝜕𝑥3
− (𝑐1𝐸12 +

2𝑐1𝐸66)
𝜕3𝑤0

𝜕𝑦2𝜕𝑥
− 3𝑐1𝐸16

𝜕3𝑤0

𝜕𝑥2𝜕𝑦
− 𝑐1𝐸26

𝜕3𝑤0

𝜕𝑦3
+ 𝐵̅11

𝜕2𝜙𝑥

𝜕𝑥2
+ 2𝐵̅16

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ 𝐵̅66

𝜕2𝜙𝑥

𝜕𝑦2
+ 𝐵̅16

𝜕2𝜙𝑦

𝜕𝑥2
+ [𝐵̅12 +

𝐵̅66]
𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ 𝐵̅26

𝜕2𝜙𝑦

𝜕𝑦2
−
𝜕𝑁𝑥𝑥

𝑇

𝜕𝑥
−
𝜕𝑁𝑥𝑦

𝑇

𝜕𝑦
=𝑚0𝑢̈0 + 𝑚̅1𝜙̈𝑥 − 𝑐1𝑚3

𝜕𝑤̈0
𝜕𝑥

  

             (16a) 

𝐴16
𝜕2𝑢0

𝜕𝑥2
+ (𝐴12 + 𝐴66)

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐴26

𝜕2𝑢0

𝜕𝑦2
+ 𝐴66

𝜕2𝑣0

𝜕𝑥2
+ 2𝐴26

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐴22

𝜕2𝑣0

𝜕𝑦2
− 𝑐1𝐸16

𝜕3𝑤0

𝜕𝑥3
−

3𝑐1𝐸26
𝜕3𝑤0

𝜕𝑦2𝜕𝑥
− (𝑐1𝐸12 + 2𝑐1𝐸66)

𝜕3𝑤0

𝜕𝑥2𝜕𝑦
− 𝑐1𝐸22

𝜕3𝑤0

𝜕𝑦3
+ 𝐵̅16

𝜕2𝜙𝑥

𝜕𝑥2
+ [𝐵̅12 + 𝐵̅66]

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ 𝐵̅26

𝜕2𝜙𝑥

𝜕𝑦2
+

𝐵̅66
𝜕2𝜙𝑦

𝜕𝑥2
+ 2𝐵̅26

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ 𝐵̅22

𝜕2𝜙𝑦

𝜕𝑦2
−
𝜕𝑁𝑥𝑦

𝑇

𝜕𝑥
−
𝜕𝑁𝑦𝑦

𝑇

𝜕𝑦
= 𝑚0𝑣̈0 + 𝑚̅1𝜙̈𝑦 − 𝑐1𝑚3

𝜕𝑤̈0
𝜕𝑦

  

             (16b) 

𝑐1𝐸11
𝜕3𝑢0

𝜕𝑥3
+ 3𝑐1𝐸16

𝜕3𝑢0

𝜕𝑥2𝜕𝑦
+ (𝑐1𝐸12 + 2𝑐1𝐸66)

𝜕3𝑢0

𝜕𝑦2𝜕𝑥
+ 𝑐1𝐸26

𝜕3𝑢0

𝜕𝑦3
+ 𝑐1𝐸16

𝜕3𝑣0

𝜕𝑥3
+ (𝑐1𝐸12 +

2𝑐1𝐸66)
𝜕3𝑣0

𝜕𝑥2𝜕𝑦
+ 3𝑐1𝐸26

𝜕3𝑣0

𝜕𝑦2𝜕𝑥
+ 𝑐1𝐸22

𝜕3𝑣0

𝜕𝑦3
− 𝑐1

2𝐻11
𝜕4𝑤0

𝜕𝑥4
− 4𝑐1

2𝐻16
𝜕4𝑤0

𝜕𝑥3𝜕𝑦
− 4𝑐1

2𝐻26
𝜕4𝑤0

𝜕𝑦3𝜕𝑥
− 2𝑐1

2(𝐻12 +

2𝐻66)
𝜕4𝑤0

𝜕𝑦2𝜕𝑥2
− 𝑐1

2𝐻22
𝜕4𝑤0

𝜕𝑦4
+ 𝑐1𝐹̅11

𝜕3𝜙𝑥

𝜕𝑥3
+ 3𝑐1𝐹̅16

𝜕3𝜙𝑥

𝜕𝑥2𝜕𝑦
+ 𝑐1[𝐹̅12 + 2𝐹̅66]

𝜕3𝜙𝑥

𝜕𝑦2𝜕𝑥
+ 𝑐1𝐹̅26

𝜕3𝜙𝑥

𝜕𝑦3
+

𝑐1𝐹̅16
𝜕3𝜙𝑦

𝜕𝑥3
+ 3𝑐1𝐹̅26

𝜕3𝜙𝑦

𝜕𝑥𝜕𝑦2
+ 𝑐1[𝐹̅12 + 2𝐹̅66]

𝜕3𝜙𝑦

𝜕𝑥2𝜕𝑦
+ 𝑐1𝐹̅22

𝜕3𝜙𝑦

𝜕𝑦3
+ 𝐴̿45[

𝜕𝜙𝑦

𝜕𝑥
+
𝜕𝜙𝑥

𝜕𝑦
+ 2

𝜕2𝑤0

𝜕𝑥𝜕𝑦
] + 𝐴̿44[

𝜕𝜙𝑦

𝜕𝑦
+

𝜕2𝑤0

𝜕𝑦2
] + 𝐴̿55[

𝜕𝜙𝑥

𝜕𝑥
+
𝜕2𝑤0

𝜕𝑥2
] −𝑁𝑥𝑥

𝑇 𝜕2𝑤0

𝜕𝑥2
− 2𝑁𝑥𝑦

𝑇 𝜕2𝑤0

𝜕𝑥𝜕𝑦
−𝑁𝑦𝑦

𝑇 𝜕2𝑤0

𝜕𝑦2
− 𝑐1(

𝜕2𝑃𝑥𝑥
𝑇

𝜕𝑥2
+ 2

𝜕2𝑃𝑥𝑦
𝑇

𝜕𝑥𝜕𝑦
+
𝜕2𝑃𝑦𝑦

𝑇

𝜕𝑦2
)+𝐾𝑝(

𝜕2𝑤0

𝜕𝑥2
+

𝜕2𝑤0
𝜕𝑦2

) +𝐾𝑤𝑤0 + 𝑞 +𝐾𝑑
𝜕𝑤0
𝜕𝑡
= 𝑚0𝑤̈0 − 𝑐1

2𝑚6(
𝜕2𝑤̈0
𝜕𝑥2

+
𝜕2𝑤̈0
𝜕𝑦2

) + 𝑐1 [𝑚3 (
𝜕𝑢̈0
𝜕𝑥
+
𝜕𝑣̈0
𝜕𝑦
)+ 𝑚̅4 (

𝜕𝜙̈𝑥
𝜕𝑥
+
𝜕𝜙̈𝑦

𝜕𝑦
)] 

             
            (16c) 
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𝐵̅11
𝜕2𝑢0

𝜕𝑥2
+ 2𝐵̅16

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐵̅66

𝜕2𝑢0

𝜕𝑦2
+ 𝐵̅16

𝜕2𝑣0

𝜕𝑥2
+ [𝐵̅12 + 𝐵̅66]

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐵̅26

𝜕2𝑣0

𝜕𝑦2
− 𝑐1𝐹̅11

𝜕3𝑤0

𝜕𝑥3
−

3𝑐1𝐹̅16
𝜕3𝑤0

𝜕𝑥2𝜕𝑦
− 𝑐1[𝐹̅12 + 2𝐹̅66]

𝜕3𝑤0

𝜕𝑦2𝜕𝑥
− 𝑐1𝐹̅26

𝜕3𝑤0

𝜕𝑦3
+ 𝐷̿11

𝜕2𝜙𝑥

𝜕𝑥2
+ 2𝐷̿16

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ 𝐷̿66

𝜕2𝜙𝑥

𝜕𝑦2
+ 𝐷̿16

𝜕2𝜙𝑦

𝜕𝑥2
+

[𝐷̿12 + 𝐷̿66]
𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ 𝐷̿26

𝜕2𝜙𝑦

𝜕𝑦2
− 𝐴̿45 [𝜙𝑦 +

𝜕𝑤0

𝜕𝑦
] − 𝐴̿55 [𝜙𝑥 +

𝜕𝑤0

𝜕𝑥
] −

𝜕𝑀𝑥𝑥
𝑇

𝜕𝑥
−
𝜕𝑀𝑥𝑦

𝑇

𝜕𝑦
+ 𝑐1(

𝜕𝑃𝑥𝑥
𝑇

𝜕𝑥
+
𝜕𝑃𝑥𝑦

𝑇

𝜕𝑦
) =

𝑚̅1𝑢̈0 + 𝑚̿2𝜙̈𝑥 − 𝑐1𝑚̅4
𝜕𝑤̈0
𝜕𝑥

  

            (16d) 

𝐵̅16
𝜕2𝑢0

𝜕𝑥2
+ [𝐵̅12 + 𝐵̅66]

𝜕2𝑢0

𝜕𝑥𝜕𝑦
+ 𝐵̅26

𝜕2𝑢0

𝜕𝑦2
+ 𝐵̅66

𝜕2𝑣0

𝜕𝑥2
+ 2𝐵̅26

𝜕2𝑣0

𝜕𝑥𝜕𝑦
+ 𝐵̅22

𝜕2𝑣0

𝜕𝑦2
+ −𝑐1𝐹̅16

𝜕3𝑤0

𝜕𝑥3
−

𝑐1[𝐹̅12 + 2𝐹̅66]
𝜕3𝑤0

𝜕𝑥2𝜕𝑦
− 3𝑐1𝐹̅26

𝜕3𝑤0

𝜕𝑦2𝜕𝑥
− 𝑐1𝐹̅22

𝜕3𝑤0

𝜕𝑦3
+ 𝐷̿16

𝜕2𝜙𝑥

𝜕𝑥2
+ [𝐷̿12 + 𝐷̿66]

𝜕2𝜙𝑥

𝜕𝑥𝜕𝑦
+ 𝐷̿26

𝜕2𝜙𝑥

𝜕𝑦2
+

𝐷̿66
𝜕2𝜙𝑦

𝜕𝑥2
+ 2𝐷̿26

𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ 𝐷̿22

𝜕2𝜙𝑦

𝜕𝑦2
− 𝐴̿44[𝜙𝑦 +

𝜕𝑤0

𝜕𝑦
] − 𝐴̿45[𝜙𝑥 +

𝜕𝑤0

𝜕𝑥
] −

𝜕𝑀𝑥𝑦
𝑇

𝜕𝑥
−
𝜕𝑀𝑦𝑦

𝑇

𝜕𝑦
+ 𝑐1(

𝜕𝑃𝑥𝑦
𝑇

𝜕𝑥
+
𝜕𝑃𝑦𝑦

𝑇

𝜕𝑦
) =

𝑚̅1𝑣̈0 + 𝑚̿2𝜙̈𝑦 − 𝑐1𝑚̅4
𝜕𝑤̈0
𝜕𝑦

  

            (16e) 

where:   

𝐵̅𝑖𝑗 = 𝐵𝑖𝑗 − 𝑐1𝐸𝑖𝑗     ;      𝐹̅𝑖𝑗 = 𝐹𝑖𝑗 − 𝑐1𝐻𝑖𝑗           

 𝐷̿𝑖𝑗 = 𝐷𝑖𝑗 − 2𝑐1𝐹𝑖𝑗 + 𝑐1
2𝐻𝑖𝑗      ;      𝐴̿𝑖𝑗 = 𝐴𝑖𝑗 − 2𝑐2𝐷𝑖𝑗 + 𝑐2

2𝐹𝑖𝑗      (17) 

Also, the mathematical forms for simply supported (SS) and clamped (C) boundary conditions, 
which are the most common for plates, are: 

𝑆𝑆: {
𝑢0 = 𝑤0 = 𝜙𝑥 = 0          at 𝑥 = 0. 𝐿𝑥
𝑣0 = 𝑤0 = 𝜙𝑦 = 0          at 𝑦 = 0. 𝐿𝑦

       (18a) 

𝐶: {
𝑢0 = 𝑤0 = 𝑤0.𝑥 = 𝜙𝑥 = 𝜙𝑦 = 0          at 𝑥 = 0. 𝐿𝑥
𝑣0 = 𝑤0 = 𝑤0.𝑦 = 𝜙𝑥 = 𝜙𝑦 = 0         at 𝑦 = 0. 𝐿𝑦

      (18b) 

3. Solution Procedure 

In this section, the governing equations of motion presented in Eqs. (16) are solved using the 

generalized differential quadrature method (GDQM).  The GDQM is a numerical technique used 

to solve IVPs and BVPs. The GDQM is an alternative to the other numerical methods such as the 

finite element method (FEM) and the finite difference method (FDM). The GDQM employs some 

weighting coefficients to transform the IVPs and BVPs to a system of algebraic equations which 

has a straight forward solution. To this end, the domain of the problem is divided into sufficient 

mesh points and then the first and high order derivatives of a function at each mesh point can be 

approximated.  

3.1. Differential Quadrature Method 

                  



 13 

In the current work, the differential quadrature method (DQM) as an effective and strong numerical 

solution is employed to solve the vibration problem of anti-symmetric laminated composite plates. 

Based on the DQM, the domain of the composite plate is discretized into x yN N mesh points in 

the x and y directions respectively. Here, to generate the mesh points the Chebyshev–Gauss–

Lobatto distribution is employed, which is given by: 

x

x

i Ni
N

i
x ...,,1)

1

1
(cos1

2

1















        (19a) 

y

y

j Nj
N

j
y ...,,1)

1

1
(cos1

2

1



















        (19b) 

To implement the DQM, all of the derivatives of ),( yxf , as a two dimensional function at each 

mesh point ),( ii yx , are defined via a weighted linear summation as: 







 x

ji

N

k

jk

nx

ikyxn

n

yxf
x

yxf

1

)(

),( ),(
),(

        (20a)  







 y

ji

N

l

li

my

jlyxm

m

yxf
y

yxf

1

)(

),( ),(
),(

        (20b) 


 






 x y

ji

N

k

N

l

lk

my

jl

nx

ikyxmn

mn

yxf
yx

yxf

1 1

)()(

),( ),(
),(

      (20c) 

where xNi ..,,1 , yNj ..,,1  and )(nx

ik  , )(my

jl  are weighting coefficients relevant to the thn  and 

thm order derivatives with respect to the x  and y directions respectively. The weighting 

coefficients for the first order derivative with respect to x  are given by [64]:  


























xN

ki
k

x

ik

kki

i

x

ik

kifor

kifor
xMxx

xM

1

)1(

)1(

)()(

)(

      (21) 

where )( ixM  is the Lagrangian polynomial: 






xN

ki
k

kii xxxM
1

)()(           (22) 
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The weighting coefficients for high order derivatives can be calculated as: 





xN

p

x

pk

x

ip

x

ik

1

)1()1()2(
           (23a) 





xN

p

x

pk

x

ip

x

ik

1

)2()1()3(
           (23b) 





xN

p

x

pk

x

ip

x

ik

1

)3()1()4(
           (23c) 

In the same way, )(my

ik  can be determined by substitution of variable y  and subscripts lj,  where 

m denotes the order of derivative. 

Using DQM principles, the governing equations of motion (Eqs. (16)) are discretized in the 

following form: 

𝐴11∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝑢0)𝑘𝑗 + 2𝐴16∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑢0)𝑘𝑙 + 𝐴66∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝑢0)𝑖𝑙 + 𝐴16∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝑣0)𝑘𝑗

+ (𝐴12 + 𝐴66)∑∑Λ𝑖𝑘
𝑥(1)

Λ𝑗𝑙
𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑣0)𝑘𝑙 + 𝐴26∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝑣0)𝑖𝑙 − 𝑐1𝐸11∑Λ𝑖𝑘
𝑥(3)

(

𝑁𝑥

𝑘=1

𝑤0)𝑘𝑗

− (𝑐1𝐸12 + 2𝑐1𝐸66)∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(2)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑤0)𝑘𝑙 − 3𝑐1𝐸16∑∑Λ𝑖𝑘
𝑥(2)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑤0)𝑘𝑙

− 𝑐1𝐸26∑Λ𝑗𝑙
𝑦(3)

(

𝑁𝑦

𝑘=1

𝑤0)𝑖𝑙 + 𝐵̅11∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝜙𝑥)𝑘𝑗 + 2𝐵̅16∑∑Λ𝑖𝑘
𝑥(1)

Λ𝑗𝑙
𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝜙𝑥)𝑘𝑙

+ 𝐵̅66∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝜙𝑥)𝑖𝑙 + 𝐵̅16∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝜙𝑦)𝑘𝑗 + [𝐵̅12 + 𝐵̅66]∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝜙𝑦)𝑘𝑙

+ 𝐵̅26∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝜙𝑦)𝑖𝑙 = −𝜔
2 [𝑚0(𝑢0)𝑖𝑗 + 𝑚̅1(𝜙𝑥)𝑖𝑗 − 𝑐1𝑚3∑Λ𝑖𝑘

𝑥(1)
(

𝑁𝑥

𝑘=1

𝑤0)𝑘𝑗] 

            (24a) 
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𝐴16∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝑢0)𝑘𝑗 + (𝐴12 + 𝐴66)∑∑Λ𝑖𝑘
𝑥(1)

Λ𝑗𝑙
𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑢0)𝑘𝑙 + 𝐴26∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝑢0)𝑖𝑙

+ 𝐴66∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝑣0)𝑘𝑗 + 2𝐴26∑∑Λ𝑖𝑘
𝑥(1)

Λ𝑗𝑙
𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑣0)𝑘𝑙 + 𝐴22∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝑣0)𝑖𝑙

− 𝑐1𝐸16∑Λ𝑖𝑘
𝑥(3)(

𝑁𝑥

𝑘=1

𝑤0)𝑘𝑗 − 3𝑐1𝐸26∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(2)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑤0)𝑘𝑙

− (𝑐1𝐸12 + 2𝑐1𝐸66)∑∑Λ𝑖𝑘
𝑥(2)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑤0)𝑘𝑙 − 𝑐1𝐸22∑Λ𝑗𝑙
𝑦(3)(

𝑁𝑦

𝑘=1

𝑤0)𝑖𝑙

+ 𝐵̅16∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝜙𝑥)𝑘𝑗 + [𝐵̅12 + 𝐵̅66]∑∑Λ𝑖𝑘
𝑥(1)

Λ𝑗𝑙
𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝜙𝑥)𝑘𝑙 + 𝐵̅26∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝜙𝑥)𝑖𝑙

+ 𝐵̅66∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝜙𝑦)𝑘𝑗 + 2𝐵̅16∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝜙𝑦)𝑘𝑙 + 𝐵̅22∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝜙𝑦)𝑖𝑙

= −𝜔2 [𝑚0(𝑣0)𝑖𝑗 + 𝑚̅1(𝜙𝑦)𝑖𝑗 − 𝑐1𝑚3∑Λ𝑖𝑘
𝑦(1)

(

𝑁𝑦

𝑘=1

𝑤0)𝑘𝑗] 

            (24b) 
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𝑐1𝐸11∑Λ𝑖𝑘
𝑥(3)

(

𝑁𝑥

𝑘=1

𝑢0)𝑘𝑗 + 3𝑐1𝐸16∑∑Λ𝑖𝑘
𝑥(2)

Λ𝑗𝑙
𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑢0)𝑘𝑙 + (𝑐1𝐸12 + 2𝑐1𝐸66)∑∑Λ𝑖𝑘
𝑥(1)

Λ𝑗𝑙
𝑦(2)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑢0)𝑘𝑙

+ 𝑐1𝐸26∑Λ𝑗𝑙
𝑦(3)

(

𝑁𝑦

𝑘=1

𝑢0)𝑖𝑙 + 𝑐1𝐸16∑Λ𝑖𝑘
𝑥(3)

(

𝑁𝑥

𝑘=1

𝑣0)𝑘𝑗

+ (𝑐1𝐸12 + 2𝑐1𝐸66)∑∑Λ𝑖𝑘
𝑥(2)Λ𝑗𝑙

𝑦1

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑣0)𝑘𝑙 + 3𝑐1𝐸26∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(2)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑣0)𝑘𝑙

+ 𝑐1𝐸22∑Λ𝑗𝑙
𝑦(3)

(

𝑁𝑦

𝑘=1

𝑣0)𝑖𝑙 − 𝑐1
2𝐻11∑Λ𝑖𝑘

𝑥(4)
(

𝑁𝑥

𝑘=1

𝑤0)𝑘𝑗 − 4𝑐1
2𝐻16∑∑Λ𝑖𝑘

𝑥(3)Λ𝑗𝑙
𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑤0)𝑘𝑙

− 4𝑐1
2𝐻26∑∑Λ𝑖𝑘

𝑥(1)
Λ𝑗𝑙
𝑦(3)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑤0)𝑘𝑙 − 2𝑐1
2(𝐻12 + 2𝐻66)∑∑Λ𝑖𝑘

𝑥(2)
Λ𝑗𝑙
𝑦(2)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑤0)𝑘𝑙

− 𝑐1
2𝐻22∑Λ𝑗𝑙

𝑦(4)
(

𝑁𝑦

𝑘=1

𝑤0)𝑖𝑙 + 𝑐1𝐹̅11∑Λ𝑖𝑘
𝑥(3)

(

𝑁𝑥

𝑘=1

𝜙𝑥)𝑘𝑗 + 3𝑐1𝐹̅16∑∑Λ𝑖𝑘
𝑥(2)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝜙𝑥)𝑘𝑙

+ 𝑐1[𝐹̅12 + 2𝐹̅66]∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(2)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝜙𝑥)𝑘𝑙 + 𝑐1𝐹̅26∑Λ𝑗𝑙
𝑦(3)

(

𝑁𝑦

𝑘=1

𝜙𝑥)𝑖𝑙

+ 𝑐1𝐹̅16∑Λ𝑖𝑘
𝑥(3)

(

𝑁𝑥

𝑘=1

𝜙𝑦)𝑘𝑗 + 3𝑐1𝐹̅26∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(2)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝜙𝑦)𝑘𝑙 + 𝑐1[𝐹̅12

+ 2𝐹̅66]∑∑Λ𝑖𝑘
𝑥(2)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝜙𝑦)𝑘𝑙 + 𝑐1𝐹̅22∑Λ𝑗𝑙
𝑦(3)

(

𝑁𝑦

𝑘=1

𝜙𝑦)𝑖𝑙 + 𝐴̿45[∑ Λ𝑖𝑘
𝑥(1)

(

𝑁𝑥

𝑘=1

𝜙𝑦)𝑘𝑗

+∑Λ𝑗𝑙
𝑦(1)

(

𝑁𝑦

𝑘=1

𝜙𝑥)𝑖𝑙 + 2∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑤0)𝑘𝑙] + 𝐴̿44[∑Λ𝑗𝑙
𝑦(1)

(

𝑁𝑦

𝑘=1

𝜙𝑦)𝑖𝑙

+∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝑤0)𝑖𝑙] + 𝐴̿55[∑Λ𝑖𝑘
𝑥(1)

(

𝑁𝑥

𝑘=1

𝜙𝑥)𝑘𝑗 +∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝑤0)𝑘𝑗] −𝑁𝑥𝑥
𝑇 ∑Λ𝑖𝑘

𝑥(2)
(

𝑁𝑥

𝑘=1

𝑤0)𝑘𝑗

− 2𝑁𝑥𝑦
𝑇 ∑∑Λ𝑖𝑘

𝑥(1)Λ𝑗𝑙
𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑤0)𝑘𝑙 −𝑁𝑦𝑦
𝑇 ∑Λ𝑗𝑙

𝑦(2)
(

𝑁𝑦

𝑘=1

𝑤0)𝑖𝑙+𝐾𝑝(∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝑤0)𝑘𝑗

+∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝑤0)𝑖𝑙)+𝐾𝑤(𝑤0)𝑖𝑗 + 𝑞𝑖𝑗 + 𝜔[𝐾𝑑(𝑤0)𝑖𝑗] 
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−𝜔2 [𝑚0(𝑤0)𝑖𝑗−𝑐1
2𝑚6 (∑Λ𝑖𝑘

𝑥(2)(

𝑁𝑥

𝑘=1

𝑤0)𝑘𝑗 +∑Λ𝑗𝑙
𝑦(2)(

𝑁𝑦

𝑘=1

𝑤0)𝑖𝑙)

+ 𝑐1(𝑚3(∑Λ𝑖𝑘
𝑥(1)

(

𝑁𝑥

𝑘=1

𝑢0)𝑘𝑗 +∑Λ𝑗𝑙
𝑦(1)

(

𝑁𝑦

𝑘=1

𝑣0)𝑖𝑙)

+ 𝑚̅4(∑Λ𝑖𝑘
𝑥(1)(

𝑁𝑥

𝑘=1

𝜙𝑥)𝑘𝑗 +∑Λ𝑗𝑙
𝑦(1)(

𝑁𝑦

𝑘=1

𝜙𝑦)𝑖𝑙))] 

            (24c) 

𝐵̅11∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝑢0)𝑘𝑗 + 2𝐵̅16∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑢0)𝑘𝑙 + 𝐵̅66∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝑢0)𝑖𝑙 + 𝐵̅16∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝑣0)𝑘𝑗

+ [𝐵̅12 + 𝐵̅66]∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑣0)𝑘𝑙 + 𝐵̅26∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝑣0)𝑖𝑙 − 𝑐1𝐹̅11∑Λ𝑖𝑘
𝑥(3)

(

𝑁𝑥

𝑘=1

𝑤0)𝑘𝑗

− 3𝑐1𝐹̅16∑∑Λ𝑖𝑘
𝑥(2)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑤0)𝑘𝑙 − 𝑐1[𝐹̅12 + 2𝐹̅66]∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(2)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑤0)𝑘𝑙

− 𝑐1𝐹̅26∑Λ𝑗𝑙
𝑦(3)

(

𝑁𝑦

𝑘=1

𝑤0)𝑖𝑙 + 𝐷̿11∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝜙𝑥)𝑘𝑗 + 2𝐷̿16∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝜙𝑥)𝑘𝑙

+ 𝐷̿66∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑥

𝑘=1

𝜙𝑥)𝑖𝑙 + 𝐷̿16∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝜙𝑦)𝑘𝑗 + [𝐷̿12 + 𝐷̿66]∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝜙𝑦)𝑘𝑙

+ 𝐷̿26∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝜙𝑦)𝑖𝑙 − 𝐴̿ 45[(𝜙𝑦)𝑖𝑗 +∑Λ𝑗𝑙
𝑦(1)

(

𝑁𝑦

𝑘=1

𝑤0)𝑖𝑙] − 𝐴̿ 55[(𝜙𝑥)𝑖𝑗

+∑Λ𝑗𝑙
𝑥(1)

(

𝑁𝑥

𝑘=1

𝑤0)𝑖𝑙] = −𝜔
2 [𝑚̅1(𝑢0)𝑖𝑗 + 𝑚̿2(𝜙𝑥)𝑖𝑗 − 𝑐1𝑚̅4∑Λ𝑗𝑙

𝑥(1)
(

𝑁𝑥

𝑘=1

𝑤0)𝑖𝑙] 

            (24d) 
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𝐵̅16∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝑢0)𝑘𝑗 + [𝐵̅12 + 𝐵̅66]∑∑Λ𝑖𝑘
𝑥(1)

Λ𝑗𝑙
𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑢0)𝑘𝑙 + 𝐵̅26∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝑢0)𝑖𝑙

+ 𝐵̅66∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝑣0)𝑘𝑗 + 2𝐵̅26∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑣0)𝑘𝑙 + 𝐵̅22∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝑣0)𝑖𝑙

− 𝑐1𝐹̅16∑Λ𝑖𝑘
𝑥(3)

(

𝑁𝑥

𝑘=1

𝑤0)𝑘𝑗 − 𝑐1[𝐹̅12 + 2𝐹̅66]∑∑Λ𝑖𝑘
𝑥(2)

Λ𝑗𝑙
𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑤0)𝑘𝑙

− 3𝑐1𝐹̅26∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(2)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝑤0)𝑘𝑙 − 𝑐1𝐹̅22∑Λ𝑗𝑙
𝑦(3)

(

𝑁𝑦

𝑘=1

𝑤0)𝑖𝑙 + 𝐷̿16∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝜙𝑥)𝑘𝑗

+ [𝐷̿12 + 𝐷̿66]∑∑Λ𝑖𝑘
𝑥(1)Λ𝑗𝑙

𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝜙𝑥)𝑘𝑙 + 𝐷̿26∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝜙𝑥)𝑖𝑙 + 𝐷̿66∑Λ𝑖𝑘
𝑥(2)

(

𝑁𝑥

𝑘=1

𝜙𝑦)𝑘𝑗

+ 2𝐷̿26∑∑Λ𝑖𝑘
𝑥(1)

Λ𝑗𝑙
𝑦(1)

𝑁𝑦

𝑙=1

𝑁𝑥

𝑘=1

(𝜙𝑦)𝑘𝑙 + 𝐷̿22∑Λ𝑗𝑙
𝑦(2)

(

𝑁𝑦

𝑘=1

𝜙𝑦)𝑖𝑙 − 𝐴̿44[(𝜙𝑦)𝑖𝑗

+∑Λ𝑗𝑙
𝑦(1)

(

𝑁𝑦

𝑘=1

𝑤0)𝑖𝑙] − 𝐴̿45[(𝜙𝑥)𝑖𝑗 +∑Λ𝑗𝑙
𝑥(1)

(

𝑁𝑥

𝑘=1

𝑤0)𝑖𝑙]

= −𝜔2 [𝑚̅1(𝑣0)𝑖𝑗 + 𝑚̿2(𝜙𝑦)𝑖𝑗 − 𝑐1𝑚̅4∑Λ𝑗𝑙
𝑦(1)

(

𝑁𝑥

𝑘=1

𝑤0)𝑖𝑙] 

            (24e) 

where: 

0 0 0 0 0 0
( ) ( , ),( ) ( , ),( ) ( , ),( ) ( , ), ( ) ( , )

ij i j ij i j ij i j x ij x i j y ij y i j
u u x y v v x y w w x y x y x y          

Equations (24) can be rewritten as: 

    2[ ] [ ] [ ] 0K C M W            (25) 

where: 

   0 0 0

T

x y
W u v w           (26) 

and  K ,  M  and  C  are the equivalent stiffness, mass and damping matrices obtained by proper 

arranging the elements from Eqs. (24). These matrices take the form: 
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 

(5 5 )

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0

0 0 0 

 
 
 
 
 
 
 
 
 
 

K K K K K

K K K K K

K K K K K

K K K K K

K K K K K

u u u v u w u u

v u v v v w v v

w u w v w w w w

u v w

u v w
N N

x y

x y

x y

x x x x x x y

y y y y x y x
x y

 

 

 

      

      

K      (27a) 

 

(5 5 )

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0

0 0

0 0 

 
 
 
 

  
 
 
 
  

M 0 M M 0

0 M M 0 M

M M M M M

M 0 M M 0

0 M M 0 M

u u u w u

v v v w v

w u w v w w w w

u w

v w
N N

x

y

x y

x x x x

y y y x
x y





 

   

   

M      (27b) 

 

(5 5 )

0 0
w w

N Nx y

 
 
 
 
 
 
 
 

0 0 0 0 0

0 0 0 0 0

0 0 C 0 0

0 0 0 0 0

0 0 0 0 0

C         (27c) 

For eigenvalue analysis, Eq. (25) and the boundary conditions should be satisfied 

simultaneously. Based on GDQM, the boundary conditions can be written as constraints on the 

degrees of freedom as: 

𝐑1
T𝐖̅ = 𝟎 (28) 

where R1 is matrix that depends on the type of boundary conditions. Boundary conditions 

involving derivatives can be defined in the form of Eq. (28) by using Eq. (18). 

The boundary conditions can be enforced by defining a transformation T1, which is orthogonal 

to R1, i.e. 𝐑𝟏
𝐓𝐓𝟏 = 𝟎, and where the matrix  [ R1 T1]  is square and non-singular. One convenient 

option is to choose the correct number of boundary degrees of freedom (i.e. equal to the number 

of boundary conditions) and reorder 𝐖̅  as 𝐖̅ = {
𝐖̅𝑏

𝐖̅𝑑

}, so that R1 becomes 

 𝐑𝟏
𝐓 = [𝐑𝑏 𝐑𝑑]          (29) 

where 𝐑𝑏 is square and non-singular. A suitable transformation is then  
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 𝐓𝟏 = {−𝐑𝑏
−1𝐑𝑑
𝐈

},         (30) 

which eliminates the boundary degrees of freedom since 

 𝐖̅ = {
𝐖̅𝑏

𝐖̅𝑑

} = 𝐓𝟏𝐖̅𝑑         (31) 

The mass and stiffness matrices are then rearranged to match the ordering given in Eq. (29), 

and the transformed mass and stiffness matrices are 

 𝐌̅ = 𝐓𝟏
𝐓𝐌𝐓𝟏   and   𝐂 = 𝐓𝑇𝐂𝐓  and   𝐊̅ = 𝐓𝟏

𝐓𝐊𝐓𝟏     (32) 

The eigenvalue problem then becomes 

 [𝐊̅ + 𝜔𝐂 + 𝜔2𝐌̅]𝐖̅𝑑 = 𝟎        (33) 

The standard form for the solution of the eigenvalue problem in Eq. (33) is: 

[−𝐌̅
−𝟏𝐂 −𝐌̅−𝟏𝐊
𝐈 𝟎

] {
𝑾̇̅̅̅𝒅

𝐖̅𝑑

} = 𝜔 {
𝑾̇̅̅̅𝒅

𝐖̅𝑑

}       (34) 

The eigenvalues of Eq. (34) are complex, where the real part describes the damping characteristics 

and the imaginary part gives the damped natural frequency. 

4. Numerical Results and Discussions 

In this section, the numerical results are of the vibration analysis aare obtained for anti-symmetric 

laminated composite plates considering the variation of eight parameters. The effects of 

temperature, Winkler coefficient, Pasternak coefficient, elastic ratio, different anti-symmetric 

laminates arrangement, aspect and slenderness ratios are illustrated and discussed in detail. The 

results in Sections 4.1 to 4.8 are extracted for CCCC boundary conditions with 0dk  . Also, the 

effects of other boundary conditions and the visco-damping coefficient are given in Sections 4.9 

and 4.10 respectively. For the parameter studies, we fix six of the parameters out of the eight 

parameters available at each step and change the remaining two parameters to investigate the 

effects and their interactions. The thermo-mechanical properties of carbon/epoxy lamina which is 

utilized for the simulation are given in Table 1:  

Table 1:  Material properties of carbon/epoxy composite [13] 

1 ( )E GPa  2 ( )E GPa  12 13 23 ( )G G G GPa   12  

140 10 7 0.3 
1

1 ( )C 
 

1

2 ( )C 
 

3( / )kg m  
( )h mm  
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1e-6 30e-6 1520 25 

 

4.1. DQM Accuracy and convergency 

Fig. 2 shows the effect of the number of grid points on the caculated natural frequency and 

evaluates the accuracy and convergence of the DQM. The fast rate of convergence of the DQM is 

easily observed. Accurate results can be obtained for grids with 19x yN N   points for 1   and 

25x yN N   points for 4  . Hence the aspect ratio affects the convergence rate of the DQM, and 

thus to ensure sufficient accuracy in the following results the number of grid points is set to 

27x yN N  . Accuracy, fast convergence and simplicity are the advantages of the DQM compared 

to other numerical methods such as the finite element method, the finite difference method and the 

boundary element method. 

  
(a) (b) 

Fig. 2: Convergence and accuracy of the DQM for a [0/90]2 laminated plate. Here 𝑁 = 𝑁𝑥 = 𝑁𝑦. 

a) aspect ratio=1         b) aspect ratio=4          

 

 

4.2. Comparison of First and Higher Order Shear Deformation Theories 

In this section the results are compared for first shear deformation theory (FSDT) and higher-order 

shear deformation theory (HSDT). Although CLP and FSD theories can easily describe the 

kinematics of most plates and are not complicated, the higher-order shear deformation theories 

(HSDT) estimate the kinematics more accurately. This results in more accurate inter-laminar stress 

distributions and it is not necessary to apply shear correction factors. Moreover, higher-order shear 

deformation theories can describe the behavior of thick plates more accurately. Fig. 3 shows the 
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difference between FSDT and HSDT for two different aspect ratios, 1,2  . Figs. 3(a) and 3(b) 

show the variation with respect to the slenderness ratio, /xL h , and Figs. 3(c) and 3(d) show the 

variation with respect to the elastic ratio 1 2/E E . According to these results, for thick plates or 

low values of slenderness ratio, where the plates have high values of the elastic ratio and a high 

aspect ratio, the deviation between FSDT and HSDT is obvious. 

  
(a) (b) 

  
(c) (d) 

Fig. 3: Comparison between FSDT and HSDT based on the variation of slenderness and elastic ratios for [0/90]2 

a) different slenderness ratio and aspect ratio=1         b) different slenderness ratio and aspect ratio=2          
c) different elastic ratio and aspect ratio=1         d) different elastic ratio and aspect ratio=2          

 

4.3. Model Validation 

To validate the current model and verify the accuracy of the obtained results, the numerical results 

from the proposed model for the fundamental non-dimensional frequency, 
1 , with the materials 

of Ref. [65] are compared to the numerical results of Ref. [65], which were obtained by the Ritz 

method. The results are shown in Table 2 and are obtained for [45/45], [0/90], [45/-45] and [0/45] 
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layups, and fully-clamped and fully-simply-supported boundary conditions. Based on the DQM 

accuracy and convergence analysis presented in Section 4.1, the fundamental natural frequency 

estimates are sufficiently accurate for N=25 grid points, and N=27 grid points are used in our 

simulations. However, here N=33 grid points are used so that the presented results are more 

accurate than the results of Ref. [65]. Also, the DQM has two main advantages compared with the 

Ritz method, which are not very accurate for curved shells and cannot consider damped structures. 

Table 2: Model validation of a square plate by comparing the fundamental non-dimensional natural frequency 
2

1 1 2( / ) /xL h E    

 
/ 5xL h    / 100xL h   

Ref. [65] Proposed  Ref. [65] Proposed 

SSSS 

[45/45] 18.1320 18.1215  22.0812 22.0702 
[0/90] 13.4136 13.4021  14.4961 14.4876 

[45/-45] 19.0494 19.0401  23.8015 23.7851 
[0/45] 15.1286 15.1191  17.2967 17.2901 

CCCC 

[45/45] 24.2226 24.2096  40.3987 40.3807 
[0/90] 23.7414 23.7303  30.8179 30.8100 

[45/-45] 22.8171 22.7998  29.9020 29.8123 
[0/45] 23.1717 23.1617  31.3885 31.3771 

 

The comparison of the results in Table 2 shows good agreement between the results of the proposed 

method and the results of Ref. [65], which verifies our model. 

4.4. Effects of Laminates Arrangement 

The effect of the arrangement of the laminates on the fundamental frequency is illustrated in Figs 

4 and 5. The results are observed based on the variation of the aspect ratio /x yL L   from 0.5 

to 4 for different symmetric and anti-symmetric laminate arrangements. Fig. 4 shows the 

fundamental frequency variations based on the four types of different anti-symmetric layups of the 

composite plate, namely (0 /90) , (45/ 45) ,(30 / 30)n n n   and (5/ 5)n  for 1,2,3n  . For all 

cases, the natural frequencies increase with the increase in the aspect ratio and also increase with 

the number of anti-symmetric layers. However, the arrangement of the layups has a contradictory 

effect on the natural frequency. That is, for low aspect ratios, the frequency for (5/ 5)n is higher 

than the other layups and after a certain aspect ratio, the effect of the laminate arrangement will be 

reverse. For example, in Fig. 4(b), up to 1   the frequency for 2(5/ 5)  is higher and for 1 
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the frequency of 2(5/ 5) is lower than the other layups. So, for this condition 1   is called the 

intersection point. Moreover, it is obvious as the number of anti-symmetric layers increases the 

mentioned contradictory effect will appear for low   values. 

 

 

 

 
 

(a) (b) (c) 

Fig. 4: Fundamental frequency based on the variation of aspect ratio and different laminates arrangement 

Fig. 5 compares the effect of the symmetric and anti-symmetric laminates arrangement on the 

fundamental natural frequency. The results are illustrated for symmetric and anti-symmetric 

laminates arrangement of 2(0 / )  and 2(0 / /0 / )   for 5,30,45,90  . With increasing  , 

the difference of the symmetric and anti-symmetric laminates arrangement effect on the 

fundamental frequency is more evident. As an example, when 5  , the symmetric and anti-

symmetric arrangement of the laminates has no significant effect on the fundamental frequency. 

However, there is a considerable difference between the symmetric and anti-symmetric 

arrangement of the laminates for 90  . 

  
(a) (b) 
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(c) (d) 

Fig. 5: Comparison of the symmetric and anti-symmetric laminates arrangement on the fundamental frequency 
 

In addition, up to a certain value of  , the fundamental frequency for symmetric laminates is 

higher than for the anti-symmetric laminates but, for higher values of   this changes and the 

fundamental frequency for anti-symmetric laminates will be higher. 

4.5. Effects of Elastic Ratio 

In this section, the effects of elastic ratio 1 2/E E   on the fundamental frequency is considered. To 

extract the results, we fix the value of 2E  and change the value of 1E  to achieve the ratio from 10 

to 70. Also, the results are obtained for symmetric and anti-symmetric laminates arrangement with 

2(0 / )  and 2(0 / /0 / )   for 5,30,45,90  . Fig. 6 shows that the fundamental frequency 

increases with as the elastic ratio increases due to the increasing stiffness of the composite plate. 

Also, the effects of the symmetric and anti-symmetric laminates arrangement along with the effects 

of the elastic ratio on the fundamental frequency can be tracked simultaneously in Fig. 6. As an 

example, in Figs. 6(a) and 6(b) the results are plotted for the anti-symmetric 2(0 / )  layup with 

1   and 0.5  respectively. It can be easily seen that when 0.5  the fundamental frequency 

for 2(0 /5)  is the highest and for 2(0 /90)  is the lowest. But, for 1   in Fig. 6(a), and due to the 

proximity to the intersection point, the fundamental frequencies for the layups will be different. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Fig. 6: Effects of the elastic ratio of the symmetric and anti-symmetric laminates arrangement on the fundamental frequency 
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4.6. Effects of the Winkler Coefficient 

The effects of the Winkler coefficient on the fundamental frequency are illustrated based on the 

variation of the aspect ratio  , and the slenderness ratio /xL h , in Figs. 7 and 8 respectively. 

The results are obtained for the variation of the Winkler coefficient wk , from 0 to 3 3/GN m  

in six steps. Also, the anti-symmetric layups (0 /90) , (45/ 45) ,(30 / 30)n n n   and (5/ 5)n  for 

1,2,3n   are considered to establish the results. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 
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(k) (l) (m) 

Fig. 7: Effects of the Winkler coefficient on the fundamental frequency as the aspect ratio varies 

 

According to Fig. 7, for all cases, increasing the Winkler coefficient leads to an increase in the 

fundamental frequency. However, with increasing the aspect ratio, the variation of the Winkler 

coefficient has no significant effect on the fundamental frequency. Furthermore, as the number of 

the anti-symmetric laminates increases the variation of the Winkler coefficient also has no 

significant effect on the fundamental frequency. 

   
(a) (b) (c) 

   
(d) (e) (f) 
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(g) (h) (i) 

   
(k) (l) (m) 

Fig. 8: Effects of the Winkler coefficient on the fundamental frequency as the slenderness ratio varies 

 

Fig. 8 shows the effects of the Winkler coefficient on the fundamental frequency as the slenderness 

ratio varies. As the slenderness ratio increases the fundamental frequency decreases. Also, after a 

certain value of the slenderness ratio the variation of the Winkler coefficient has no effect on the 

fundamental frequency. 

4.7. Effects of Pasternak Coefficient 

The effects of the Pasternak coefficient on the fundamental frequency is observed in Fig. 9 for 

different aspect ratios from 0.5 to 4 in six steps. The Pasternak coefficient is changed from 0 to 1 

/GN m  and anti-symmetric layups (0 /90) , (45/ 45) ,(30 / 30)n n n   and (5/ 5)n  for 

1,2,3n   are considered. 
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(k) (l) (m) 

Fig. 9: Effects of the Pasternak coefficient on the fundamental frequency for different aspect ratios 

 

On the basis of the results, the fundamental frequency increases up to a certain value with 

increasing Pasternak coefficient. In other words, the increase of the Pasternak coefficient up to a 

specific value, called the corner point, affects the fundamental frequency and for coefficients 

higher than the corner point there is no effect on the frequency. As an example, in Fig. 9(k) for 

4  , 3  and 2  , the corner points are at 0.37pk  , 0.56pk   and 0.95pk   

respectively. For other aspect ratios, the corner points will definitely occur for  1pk  , which are 

not displayed in the figure. Moreover, the arrangement of the layups and the number of the anti-

symmetric layers affect the corner points. For example, according to Figs. 9(a) to 9(c) and for 
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2  , the corner points are located at 0.43pk  , 0.7pk   and 0.85pk   for the anti-

symmetric layups (5 / 5) , 2(5/ 5) and 3(5/ 5)  respectively. Note that these values can differ 

for the same layups with different aspect ratios, and for other layups can be different. 

4.8. Effects of Temperature 

Fig. 10 shows the variation of the fundamental frequency as the temperature varies for different 

anti-symmetric laminate arrangements with (0 /90) , (45/ 45) ,(30 / 30)n n n   and (5/ 5)n  

layups when 1,2,3n   and for three different aspect ratios, 1.5,2,3  . In this section, based on 

aerospace applications, the temperature variation is considered from 60  to 140 C .  

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Fig. 10: Effects of the temperature on the fundamental frequency for different aspect ratios and different layups 
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Fig. 10 shows that as the aspect ratio and the number of anti-symmetric layers increase, the 

decreasing gradient of the fundamental frequency will be smoother. In addition, the decreasing 

gradient of the fundamental frequency for (5/ 5)n  layups is sharper and for (0/90)n  is smoother 

than the others. 

4.9. Effects of Boundary Conditions 

Fig. 11 shows the results for different boundary conditions. The results are reported for fully-

clamped (CCCC), fully- simply supported (SSSS) and the combination of these two types of 

boundary conditions, as the slenderness ratio varies. The results are presented for two different 

anti-symmetric layups of 2(0 /90)  and 2(0 /90 /0 /90)  with 3  .  The fundamental frequency 

of the plate is highest for CCCC and lowest for SSSS boundary conditions. The effects of the other 

boundary conditions on the fundamental frequency are also illustrated in Fig. 11. 

  
(a) (b) 

Fig. 11: Effects of the boundary conditions on the fundamental frequency for different slenderness ratios 

 

4.10. Effects of the Visco-elastic Damping Coefficient 

The effects of viscoelastic damping on the fundamental damped frequency are now illustrated. The 

variation of the damping ratio is investigated as the viscoelastic parameter varies. Figure 12 shows 

the fundamental damped natural frequency and the damping ratio versus the parameter dk  for 

different layup arrangements. The results are obtained for anti-symmetric laminates arrangements 
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of 2( / )   and 2( / / / )      for 5,30,45  , and also for laminates 2(0 /90)  and 

2(0 /90 /0 /90) . The value of dk is changed from 0 to 10 and considered on a logarithmic scale. 

The fundamental damped natural frequency, 1d , decreases as dk  increases. However, the trend 

of the damping ratio is the reverse and increases with increasing dk . 

Also, the simultaneous effect of the aspect ratio   and the viscoelastic coefficient dk , on the 

damping ratio for different layups is given in Fig. 13. Based on the results, as the aspect ratio 

increases, the slope of the damping ratio reduces. As the number of layers increases, the damping 

ratio is lower for the same value of viscoelastic coefficient dk . 

 
 

(a) (b) 

  

(c) (d) 

Fig. 12: Effects of the visco-elastic coefficient on the fundamental damped frequency and damping ratio of laminated plates 

a)  and b) Anti-symmetric layups
2( / )          

c)  and d) Anti-symmetric layups 
2( / / / )      
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(a) (b) 

  
(b) (c) 

  
(e) (f) 

Fig. 13: Effects of the visco-elastic coefficient on the damping ratio of laminated plates for different anti-symmetric layups 

 

 

5. Conclusions 
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The goal of this paper is to present a comprehensive mathematical-mechanical model to investigate 

oscillations of an anti-symmetric composite plate resting on a visco-elastic foundation 

incorporating thermal effects. A higher-order shear deformation plate theory is employed to 

develop the equations of motion and GDQM is utilized to solve the governing . Also, the 

effects of temperature change, Winkler-Pasternak and damping coefficients for elastic foundation, 

the elastic ratio, different anti-symmetric laminates arrangement, and the aspect and slenderness 

ratios are observed and discussed in detail. Important and n

1. The fundamental frequencies increase as  the number of anti-symmetric layers 

increases. 

2. The arrangement of the layups has a contradictory effect on the frequency. 

3. The fundamental frequency increases as the elastic ratio increases. 

4. Increasing the Winkler coefficient increases the fundamental natural frequency and with 

increasing aspect ratio, the variation of the Winkler coefficient has no significant effect 

on the fundamental frequency. 

5. The fundamental frequency increases up to a certain value with increasing Pasternak 

coefficient. Also, increasing the Pasternak coefficient up to a specific value, called the 

corner point, affects the fundamental frequency, whereas values higher than the corner 

point have no effect on the frequency. 

6. The frequency generally decreases as the temperature increases. 

7. The fundamental frequency of the plate was obtained for different boundary conditions. 

8. Increasing the viscoelastic coefficient, decreases the natural frequency and increases 

the damping ratio. 

Nonlinear vibration analysis, a visco-elastic composite model and nonlinear temperature fields are 

topics for future research. 
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 {

𝜀𝑥𝑥
(3)

𝜀𝑦𝑦
(3)

𝛾𝑥𝑦
(3)

} = −𝑐1

{
 
 

 
 

𝜕𝜑𝑥

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2

𝜕𝜑𝑦

𝜕𝑦
+

𝜕2𝑤0

𝜕𝑦2

𝜕𝜑𝑥

𝜕𝑦
+

𝜕𝜑𝑦

𝜕𝑥
+ 2

𝜕2𝑤0

𝜕𝑥𝜕𝑦}
 
 

 
 

       (A.2)  

 {

𝜀𝑥𝑥
(1)

𝜀𝑦𝑦
(1)

𝛾𝑥𝑦
(1)

} =

{
 
 

 
 

𝜕𝜑𝑥

𝜕𝑥
𝜕𝜑𝑦

𝜕𝑦

𝜕𝜑𝑥

𝜕𝑦
+

𝜕𝜑𝑦

𝜕𝑥 }
 
 

 
 

         (A.3) 

 {
𝛾𝑦𝑧
(0)

𝛾𝑥𝑧
(0)
} = {

𝜑𝑦 +
𝜕𝑤0

𝜕𝑦

𝜑𝑥 +
𝜕𝑤0

𝜕𝑥

}           (A.4) 

{
𝛾𝑦𝑧
(2)

𝛾𝑥𝑧
(2)
} = −𝑐2 {

𝜑𝑦 +
𝜕𝑤0

𝜕𝑦

𝜑𝑥 +
𝜕𝑤0

𝜕𝑥

}         (A.5) 

Appendix B 

𝑄̅11 = 𝑄11𝑐𝑜𝑠
4𝜃 + 2(𝑄12 + 2𝑄66)𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃 + 𝑄22𝑠𝑖𝑛
4𝜃    (B.1) 

𝑄̅12 = (𝑄11 + 𝑄22 − 4𝑄66)𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2𝜃 + 𝑄12(𝑐𝑜𝑠

4𝜃 + 𝑠𝑖𝑛4𝜃)    (B.2) 

𝑄̅22 = 𝑄11𝑠𝑖𝑛
4𝜃 + 2(𝑄12 + 2𝑄66)𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃 + 𝑄22𝑐𝑜𝑠
4𝜃    (B.3) 

𝑄̅16 = (𝑄11 − 𝑄12 − 2𝑄66)𝑠𝑖𝑛𝜃𝑐𝑜𝑠
3𝜃 + (𝑄12 − 𝑄22 + 2𝑄66)𝑐𝑜𝑠𝜃𝑠𝑖𝑛

3𝜃   (B.4) 

𝑄̅26 = (𝑄11 − 𝑄12 − 2𝑄66)𝑐𝑜𝑠𝜃𝑠𝑖𝑛
3𝜃 + (𝑄12 −𝑄22 + 2𝑄66)𝑠𝑖𝑛𝜃𝑐𝑜𝑠

3𝜃   (B.5) 

𝑄̅66 = (𝑄11 + 𝑄22 − 2𝑄12 − 2𝑄66)𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2𝜃 + 𝑄66(𝑐𝑜𝑠

4𝜃 + 𝑠𝑖𝑛4𝜃)   (B.6) 

𝑄̅44 = 𝑄44𝑐𝑜𝑠
2𝜃 + 𝑄55𝑠𝑖𝑛

2𝜃         (B.7) 

𝑄̅45 = (𝑄55 −𝑄44)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃         (B.8) 

𝑄̅55 = 𝑄55𝑐𝑜𝑠
2𝜃 + 𝑄44𝑠𝑖𝑛

2𝜃         (B.9) 

𝛼𝑥𝑥 = 𝛼1𝑐𝑜𝑠
2𝜃 + 𝛼2𝑠𝑖𝑛

2𝜃         (B.10) 

𝛼𝑦𝑦 = 𝛼1𝑠𝑖𝑛
2𝜃 + 𝛼2𝑐𝑜𝑠

2𝜃         (B.11) 

𝛼𝑥𝑦 = (𝛼1 − 𝛼2)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃         (B.12) 
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Appendix C 

{

𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦

} = [
𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

]

{
 

 𝜀𝑥𝑥
(0)

𝜀𝑦𝑦
(0)

𝛾𝑥𝑦
(0)
}
 

 
+ [
𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

]

{
 

 𝜀𝑥𝑥
(1)

𝜀𝑦𝑦
(1)

𝛾𝑥𝑦
(1)
}
 

 
+ [

𝐸11 𝐸12 𝐸16
𝐸12 𝐸22 𝐸26
𝐸16 𝐸26 𝐸66

]

{
 

 𝜀𝑥𝑥
(3)

𝜀𝑦𝑦
(3)

𝛾𝑥𝑦
(3)
}
 

 
 

            (C.1) 

{

𝑀𝑥𝑥

𝑀𝑦𝑦

𝑀𝑥𝑦

} = [
𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

]

{
 

 𝜀𝑥𝑥
(0)

𝜀𝑦𝑦
(0)

𝛾𝑥𝑦
(0)
}
 

 
+ [
𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

]

{
 

 𝜀𝑥𝑥
(1)

𝜀𝑦𝑦
(1)

𝛾𝑥𝑦
(1)
}
 

 
+ [

𝐹11 𝐹12 𝐹16
𝐹12 𝐹22 𝐹26
𝐹16 𝐹26 𝐹66

]

{
 

 𝜀𝑥𝑥
(3)

𝜀𝑦𝑦
(3)

𝛾𝑥𝑦
(3)
}
 

 
 

            (C.2) 

{

𝑃𝑥𝑥
𝑃𝑦𝑦
𝑃𝑥𝑦

} = [
𝐸11 𝐸12 𝐸16
𝐸12 𝐸22 𝐸26
𝐸16 𝐸26 𝐸66

]

{
 

 𝜀𝑥𝑥
(0)

𝜀𝑦𝑦
(0)

𝛾𝑥𝑦
(0)
}
 

 
+ [

𝐹11 𝐹12 𝐹16
𝐹12 𝐹22 𝐹26
𝐹16 𝐹26 𝐹66

]

{
 

 𝜀𝑥𝑥
(1)

𝜀𝑦𝑦
(1)

𝛾𝑥𝑦
(1)
}
 

 
+ [
𝐻11 𝐻12 𝐻16
𝐻12 𝐻22 𝐻26
𝐻16 𝐻26 𝐻66

]

{
 

 𝜀𝑥𝑥
(3)

𝜀𝑦𝑦
(3)

𝛾𝑥𝑦
(3)
}
 

 
  

            (C.3) 

{
𝑄𝑦
𝑄𝑥
} = [

𝐴44 𝐴45
𝐴45 𝐴55

] {
𝛾𝑦𝑧
(0)

𝛾𝑥𝑧
(0)
} + [

𝐷44 𝐷45
𝐷45 𝐷55

] {
𝛾𝑦𝑧
(2)

𝛾𝑥𝑧
(2)
}      (C.4) 

{
𝑅𝑦
𝑅𝑥
} = [

𝐷44 𝐷45
𝐷45 𝐷55

] {
𝛾𝑦𝑧
(0)

𝛾𝑥𝑧
(0)
} + [

𝐹44 𝐹45
𝐹45 𝐹55

] {
𝛾𝑦𝑧
(2)

𝛾𝑥𝑧
(2)
}       (C.5)  

                  


