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Abstract

To characterize the regularity of distribution-path dependent SDEs in the initial
distribution which varies in the class of probability measures on the path space, we in-
troduce the intrinsic and Lions derivatives for probability measures on Banach spaces,
and prove the chain rule of the Lions derivative for the distribution of Banach-valued
random variables. By using Malliavin calculus, we establish the Bismut type formula
for the Lions derivatives of functional solutions to SDEs with distribution-path depen-
dent drifts. When the noise term is also path dependent so that the Bismut formula
is invalid, we establish the asymptotic Bismut formula. Both non-degenerate and de-
generate noises are considered. The main results of this paper generalize and improve
the corresponding ones derived recently in the literature for the classical SDEs with
memory and McKean-Vlasov SDEs without memory.

AMS subject classification 2020: 60J60, 58J65.
Keywords: distribution-path dependent SDEs, Bismut formula, asymptotic Bismut for-
mula, Malliavin calculus, Lions derivative

1 Introduction

To characterize stochastic systems with evolutions affected by both micro environment and
history, the distribution-path dependent SDEs have been considered in [21, 30], where the

∗Supported in part by NNSFC (11771326, 11831014, 12071340, 11921001), and DFG through the CRC
Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their
applications.
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Harnack type inequalities, ergodicity and long time large deviation principles are inves-
tigated. This type SDEs generalize the McKean-Vlasov (distribution dependent or mean-
field) SDEs and path dependent (functional) SDEs (or SDEs with memory). Both have been
studied intensively in the literature; see, for instance, the monographs [6, 9] and references
within.

On the other hand, as a powerful tool in the study of regularity for diffusion processes, a
derivative formula on diffusion semigroups was established first by Bismut in [7] using Malli-
avin calculus, and then by Elworthy-Li in [12] using a martingale argument. Hence, this type
derivative formula is named as Bismut formula or Bismut-Elworthy-Li formula. Moreover,
a new coupling method (called coupling by change of measures) was introduced to establish
derivative formulas and Harnack inequalities for SDEs and SPDEs; see, for example, [35]
and references therein. Due to their wide applications, the Bismut type formulas have been
investigated for different models; see, for instance, [10, 26, 32, 33, 40, 42] for SDEs/SPDEs
driven by jump processes, [16, 17, 25, 36, 37, 39, 41] for hypoelliptic diffusion semigroups,
and [2, 14, 15] for SDEs with fractional noises.

Recently, the Bismut type formulas have been established in [4] for the Gâteaux derivative
of functional solutions to path dependent SDEs, in [27] for the Lions derivative of solutions
to McKean-Vlasov SDEs. See also [3, 11] for the study of derivative in the initial points for
McKean-Vlasov SDEs, and Lions derivative for solutions to the de-coupled SDEs (which do
not depend on the distribution of its own solution) associated with McKean-Vlasov SDEs.
In these references, the noise term is distribution-path independent. However, when the
noise term is path dependent, the distribution of the solution is no longer differentiable in
the initial distribution, so that the Bismut type formula is invalid. In this case, a weaker
derivative formula, called asymptotic Bismut formula, has been established in [23].

The aim of this paper is to establish (asymptotic) derivative formulas for the Lions deriva-
tive in the initial distribution of distribution-path dependent SDEs, so that results derived in
[4, 23, 27] are generalized and improved. Since the functional solution of a distribution-path
dependent SDE takes values in the path space C([−r0, 0];Rd), where r0 > 0 is the length of
memory, to investigate the regularities of the solution in initial distributions, we will intro-
duce and study derivatives for probability measures on the path space (or more generally,
on a Banach space), which is new in the literature.

For a fixed number r0 > 0, the path space C := C([−r0, 0];Rd) is a separable Banach
space under the uniform norm

‖ξ‖C := sup
−r0≤θ≤0

|ξ(θ)|, ξ ∈ C .

For t ≥ 0 and f ∈ C([−r0,∞);Rd), the C -valued function (ft)t≥0 defined by

ft(θ) = f(t+ θ), θ ∈ [−r0, 0]

is called the segment (or window) process of (f(t))t≥−r0 . Let Lξ stand for the distribution
of a random variable ξ. When different probability measures are concerned, we also denote
Lξ by Lξ|P to emphasize the reference probability measure P. Let P(C ) be the collection
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of all probability measures on C and, for p ∈ [1,∞), Pp(C ) the set of probability measures
on C with finite p-th moment, i.e.,

Pp(C ) =
{
µ ∈P(C ) : ‖µ‖p := {µ(‖ · ‖pC )}

1
p <∞

}
,

where µ(f) :=
∫
fdµ for a measurable function f . Then Pp(C ) is a Polish space under the

Wp-Wasserstein distance defined by

Wp(µ, ν) = inf
π∈C(µ,ν)

(∫
C×C

‖ξ − η‖pCπ(dξ, dη)

) 1
p

, µ, ν ∈Pp(C ), p > 0,

where C(µ, ν) is the set of all couplings of µ and ν.
Consider the following McKean-Vlasov SDE with memory (also called distribution-path

dependent SDE):

(1.1) dX(t) = b(t,Xt,LXt)dt+ σ(t,Xt,LXt)dW (t), t ≥ 0,

where (W (t))t≥0 is an m-dimensional Brownian motion on a complete filtration probability
space (Ω,F , (Ft)t≥0,P), and

b : [0,∞)× C ×P(C )→ Rd, σ : [0,∞)× C ×P(C )→ Rd ⊗ Rm

are measurable and satisfy the following assumption.

(A) Let p ∈ [1,∞).

(A1) b and σ are bounded on bounded subsets of [0,∞)× C ×Pp(C ).

(A2) For any T > 0, there is a constant K ≥ 0 such that

2〈ξ(0)− η(0), b(t, ξ, µ)− b(t, η, ν)〉+ + ‖σ(t, ξ, µ)− σ(t, η, ν)‖2
HS

≤ K
{
‖ξ − η‖2

C + Wp(µ, ν)2
}
, ξ, η ∈ C , µ, ν ∈Pp(C ), t ∈ [0, T ].

(A3) When p ∈ [1, 2), σ(t, ξ, µ) = σ(t, ξ) depends only on t and ξ.

For any F0-measurable random variableX0 ∈ C , an adapted continuous process (X(t))t≥0

is called a solution with the initial value X0, if P-a.s.

X(t) = X(0) +

∫ t

0

b(s,Xs,LXs)ds+

∫ t

0

σ(s,Xs,LXs)dW (s), t ≥ 0,

where the segment process (Xt)t≥0 associated with the solution process

X(t) := X(t)1(0,∞)(t) +X0(t)1[−r0,0](t), t ≥ −r0

is called a functional solution to (1.1).
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According to Lemma 3.1 below, under the assumption (A), for any X0 ∈ Lp(Ω →
C ,F0,P), (1.1) has a unique functional solution (Xt)t≥0 satisfying

E
(

sup
0≤s≤t

‖Xs‖pC
)
<∞, t > 0.

To emphasize the initial distribution, we denote the functional solution by Xµ
t if LX0 = µ.

In this paper, we aim to investigate the Lions derivative of the functional µ 7→ (Ptf)(µ),
where

(1.2) (Ptf)(µ) := Ef(Xµ
t ), t > 0, f ∈ Bb(C ), µ ∈P(C ).

This refers to the regularity of the law LXµ
t

w.r.t. the initial distribution µ. Due to the weak
uniqueness ensured by Lemma 3.1 below, (Ptf)(µ) is a function of µ; i.e., it only depends
on µ rather than the choices of the initial value X0, the Brownian motion and the reference
probability space.

The remainder of this paper is organized as follows. Since C is a Banach space, in Section
2 we introduce the intrinsic and Lions derivatives for probability measures on Banach spaces,
and establish a derivative formula in the distribution of Banach-valued random variables. In
Section 3, we prove the well-posedness of (1.1) under assumption (A), which generalizes the
corresponding results derived in [21] for p = 2 and in [30] for Lipschitz continuous b(t, ·). In
Sections 4 and 5, we calculate the Malliavin derivative of Xµ

t with respect to the Brownian
motion W (t), and the Lions derivative of Xµ

t in the initial distribution µ, respectively.
Finally, in Sections 6 and 7, we establish the Bismut type formula for the Lions derivative
of (Ptf)(µ) in µ when σ(t, ξ, µ) = σ(t, ξ(0)) depends only on t and ξ(0), and the asymptotic
Bismut formula for the Lions derivative of (Ptf)(µ) in µ in case of σ(t, ξ, µ) = σ(t, ξ) (i.e.,
the diffusion term is path dependent but independent of the measure argument µ).

2 Derivatives in probability measures on a separable

Banach space

In this part, we introduce the intrinsic and Lions derivatives for probability measures on a
separable Banach space, and establish the chain rule for the distribution of Banach-valued
random variables. These will be used to establish the (asymptotic) Bismut type formulas
for the intrinsic and Lions derivatives of (Ptf)(µ).

The intrinsic derivative was first introduced in [1] on the configuration space over Rie-
mannian manifolds, while the Lions derivative (denoted by L-derivative in the literature) was
developed on the Wasserstein space P2(Rd) from Lions’ lectures [8] concerning mean-field
games, where P2(Rd) consists of all probability measures on Rd with finite second moment.
The relation between them has been clarified in the recent paper [28, 29], where the latter
is a stronger notion than the former and they coincide if both exist.

Let (B, ‖ · ‖B) be a separable Banach space, and let (B∗, ‖ · ‖B∗) be its dual space. For
any p ∈ [1,∞), denote p∗ = p

p−1
when p > 1 and p∗ =∞ as p = 1. Let P(B) be the class of
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all probability measures on B equipped with the weak topology. Then

Pp(B) :=
{
µ ∈P(B) : ‖µ‖p := {µ(‖ · ‖pB)}

1
p <∞

}
is a Polish space under the Lp-Wasserstein distance

Wp(µ1, µ2) := inf
π∈C(µ1,µ2)

(∫
B×B
‖x− y‖pBπ(dx, dy)

) 1
p

,

where C(µ1, µ2) is the set of all couplings of µ1 and µ2.
For any µ ∈Pp(B), the tangent space at µ is given by

Tµ,p = Lp(B→ B;µ) :=
{
φ : B→ B is measurable with µ(‖φ‖pB) <∞

}
,

which is a Banach space under the norm ‖φ‖Tµ,p := {µ(‖φ‖pB)}
1
p , and its dual space is

T ∗µ,p = Lp
∗
(B→ B∗;µ) :=

{
ψ : B→ B∗ is measurable with ‖ψ‖T ∗µ,p :=

∥∥‖ψ‖B∗∥∥Lp∗ (µ)
<∞

}
.

Definition 2.1. Let f : Pp(B) → R be a continuous function for some p ∈ [1,∞), and let
Id be the identity map on B.

(1) f is called intrinsically differentiable at a point µ ∈Pp(B), if

Tµ,p 3 φ 7→ DL
φf(µ) := lim

ε↓0

f(µ ◦ (Id + εφ)−1)− f(µ)

ε
∈ R

is a well-defined bounded linear functional. In this case, the unique element DLf(µ) ∈
T ∗µ,p such that

T ∗µ,p〈D
Lf(µ), φ〉Tµ,p :=

∫
B

B∗〈DLf(µ)(x), φ(x)〉Bµ(dx) = DL
φf(µ), φ ∈ Tµ,p

is called the intrinsic derivative of f at µ.

If moreover

lim
‖φ‖Tµ,p↓0

|f(µ ◦ (Id + φ)−1)− f(µ)−DL
φf(µ)|

‖φ‖Tµ,p
= 0,

f is called L-differentiable at µ with the L-derivative (i.e., Lions derivative) DLf(µ).

(2) We write f ∈ C1(Pp(B)) if f is L-differentiable at any point µ ∈ Pp(B), and the
L-derivative has a version DLf(µ)(x) jointly continuous in (x, µ) ∈ B ×Pp(B). If
moreover DLf(µ)(x) is bounded, we denote f ∈ C1

b (Pp(B)).

Theorem 2.1. Let f : Pp(B) → R be continuous for some p ∈ [1,∞), and let (ξε)ε∈[0,1] be
a family of B-valued random variables on a complete probability space (Ω,F ,P) such that
ξ̇0 := limε↓0

ξε−ξ0
ε

exists in Lp(Ω). We assume that either ξε is continuous in ε ∈ [0, 1] or the
probability space is Polish (i.e., F is the P-complete Borel σ-field induced by a Polish metric
on Ω).
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(1) Let µ0 = Lξ0 be atomless. If f is L-differentiable such that DLf(µ0) has a continuous
version satisfying

(2.1) ‖DLf(µ0)(x)‖B∗ ≤ C(1 + ‖x‖p/p
∗

B 1{p>1}), x ∈ B

for some constant C > 0, then

(2.2) lim
ε↓0

f(Lξε)− f(Lξ0)

ε
= E[B∗〈DLf(µ0)(ξ0), ξ̇0〉B].

(2) If f is L-differentiable in a neighbourhood O of µ0 such that DLf has a version jointly
continuous in (x, µ) ∈ B×O satisfying

(2.3) ‖DLf(µ)(x)‖B∗ ≤ C(1 + ‖x‖p/p
∗

B 1{p>1}), (x, µ) ∈ B×O

for some constant C > 0, then (2.2) holds.

To prove this result, we need the following lemma similar to [18, Lemma A.2] for the
special case that Pp(B) = P2(Rd) (i.e., p = 2 and B = Rd).

Lemma 2.2. Let {(Ωi,Fi,Pi)}i=1,2 be two atomless, Polish complete probability spaces, and
let Xi, i = 1, 2, be B-valued random variables on these two probability spaces respectively such
that LX1|P1 = LX2|P2. Then for any ε > 0, there exist measurable maps

τ : Ω1 → Ω2, τ−1 : Ω2 → Ω1

such that

P1(τ−1 ◦ τ = IdΩ1) = P2(τ ◦ τ−1 = IdΩ2) = 1,

P1 = P2 ◦ τ, P2 = P1 ◦ τ−1,

‖X1 −X2 ◦ τ‖L∞(P1) + ‖X2 −X1 ◦ τ−1‖L∞(P2) ≤ ε,

where IdΩi stands for the identity map on Ωi, i = 1, 2.

Proof. Since B is separable, there is a measurable partition (An)n≥1 of B such that diam(An) <
ε, n ≥ 1. Let Ain = {Xi ∈ An}, n ≥ 1, i = 1, 2. Then (Ain)n≥1 forms a measurable partition
of Ωi so that

∑
n≥1A

i
n = Ωi, i = 1, 2, and, due to LX1 |P1 = LX2|P2,

P1(A1
n) = P2(A2

n), n ≥ 1.

Since the probabilities (Pi)i=1,2 are atomless, according to [19, Theorem C in Section 41],

for any n ≥ 1 there exist measurable sets Ãin ⊂ Ain with Pi(Ain \ Ãin) = 0, i = 1, 2, and a
measurable bijective map

τn : Ã1
n → Ã2

n

such that
P1|Ã1

n
= P2 ◦ τn|Ã1

n
, P2|Ã2

n
= P1 ◦ τ−1

n |Ã2
n
.
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By diam(An) < ε and Pi(Ain \ Ãin) = 0, we have

‖(X1 −X2 ◦ τn)1Ã1
n
‖L∞(P1) ∨ ‖(X2 −X1 ◦ τ−1

n )1Ã2
n
‖L∞(P2) ≤ ε.

Then the proof is finished by taking, for fixed points ω̂i ∈ Ωi, i = 1, 2,

τ(ω1) :=

{
τn(ω1), if ω1 ∈ Ã1

n for some n ≥ 1,

ω̂2, otherwise,

τ−1(ω2) :=

{
τ−1
n (ω2), if ω2 ∈ Ã2

n for some n ≥ 1,

ω̂1, otherwise.

Proof of Theorem 2.1. Without loss of generality, we may and do assume that P is atomless.
Otherwise, by taking

(Ω̃, F̃ , P̃) := (Ω× [0, 1],F ×B([0, 1]),P× ds), (ξ̃ε)(ω, s) := ξε(ω) for (ω, s) ∈ Ω̃,

where B([0, 1]) is the completion of the Borel σ-algebra on [0, 1] w.r.t. the Lebesgue measure
ds, we have

Lξ̃ε|P̃ = Lξε|P, E[B∗〈DLf(µ0)(ξ0), ξ̇0〉B] = Ẽ[B∗〈DLf(µ0)(ξ̃0),
˙̃
ξ0〉B].

In this way, we go back to the atomless situation. Moreover, it suffices to prove for the Polish
probability space case. Indeed, when ξε is continuous in ε, we may take Ω = C([0, 1];Rd),
let P be the distribution of ξ·, let F be the P-complete Borel σ-field on Ω induced by
the uniform norm, and consider the coordinate random variable ξ·(ω) := ω, ω ∈ Ω. Then
Lξ·|P̃

= Lξ·|P, so that Lξε|P = Lξε|P for any ε ∈ [0, 1] and L
ξ
′
0|P

= Lξ′0|P, hence we have
reduced the situation to the Polish setting.

(1) Let Lξ0 = µ0 ∈Pp(B) be atomless. In this case, (B,B(B), µ0) is an atomless Polish
complete probability space, where B(B) is the µ0-complete Borel σ-algebra of B. By Lemma
2.2, for any n ≥ 1 we find measurable maps

τn : Ω→ B, τ−1
n : B→ Ω

such that

P(τ−1
n ◦ τn = IdΩ) = µ0(τn ◦ τ−1

n = Id) = 1,

P = µ0 ◦ τn, µ0 = P ◦ τ−1
n ,

‖ξ0 − τn‖L∞(P) + ‖Id− ξ0 ◦ τ−1
n ‖L∞(µ0) ≤

1

n
,

(2.4)

where Id = IdB is the identity map on B.
Since f is L-differentiable at µ0, there exists a decreasing function h : [0, 1] → [0,∞)

with h(r) ↓ 0 as r ↓ 0 such that

(2.5) sup
‖φ‖Lp(µ0)≤r

∣∣f(µ0 ◦ (Id + φ)−1)− f(µ0)−DL
φf(µ0)

∣∣ ≤ rh(r), r ∈ [0, 1].

7



By Lξε−ξ0 ∈Pp(B) and (2.4), we have

(2.6) φn,ε := (ξε − ξ0) ◦ τ−1
n ∈ Tµ,p, ‖φn,ε‖Tµ,p = ‖ξε − ξ0‖Lp(P).

Next, (2.4) implies

(2.7) Lτn+ξε−ξ0 = P ◦ (τn + ξε − ξ0)−1 = (µ0 ◦ τn) ◦ (τn + ξε − ξ0)−1 = µ0 ◦ (Id + φn,ε)
−1.

Moreover, by ξε−ξ0
ε
→ ξ̇0 in Lp(P) as ε ↓ 0, we find a constant c ≥ 1 such that

(2.8) ‖ξε − ξ0‖Lp(P) ≤ cε, ε ∈ [0, 1].

Combining (2.4)-(2.8) leads to∣∣f(Lτn+ξε−ξ0)− f(Lξ0)− E[B∗〈(DLf)(µ0)(τn), (ξε − ξ0)〉B]
∣∣

=
∣∣f(µ0 ◦ (Id + φn,ε)

−1)− f(µ0)−DL
φn,εf(µ0)

∣∣
≤ ‖φn,ε‖Tµ,ph(‖φn,ε‖Tµ,p) = ‖ξε − ξ0‖Lp(P)h(‖ξε − ξ0‖Lp(P)), ε ∈ [0, c−1].

(2.9)

Since f(µ) is continuous in µ and DLf(µ0)(x) is continuous in x, by (2.1) and (2.4), we may
apply the dominated convergence theorem to deduce from (2.9) with n→∞ that∣∣f(Lξε)−f(Lξ0)−E[B∗〈(DLf)(µ0)(ξ0), (ξε−ξ0)〉B]

∣∣ ≤ ‖ξε−ξ0‖Lp(P)h(‖ξε−ξ0‖Lp(P)), ε ∈ [0, c−1].

Combining this with (2.8) and h(r)→ 0 as r → 0, we prove (2.2).
(2) When µ0 has an atom, we take a B-valued bounded random variable X which is

independent of (ξε)ε∈[0,1] and LX does not have an atom. Then Lξ0+sX+r(ξε−ξ0) ∈ Pp(B)
does not have atom for any s > 0, ε ∈ [0, 1]. By conditions in Theorem 2.1(2), there exists
a small constant s0 ∈ (0, 1) such that for any s, ε ∈ (0, s0], we may apply (2.2) to the family
ξ0 + sX + (r + δ)(ξε − ξ0) for small δ > 0 to conclude

f(Lξε+sX)− f(Lξ0+sX) =

∫ 1

0

d

dδ
f(Lξ0+sX+(r+δ)(ξε−ξ0))

∣∣
δ=0

dr

=

∫ 1

0

E[B∗〈DLf(Lξ0+sX+r(ξε−ξ0))(ξ0 + sX + r(ξε − ξ0)), ξε − ξ0〉B] dr.

By conditions in Theorem 2.1(2), we may let s ↓ 0 to derive

f(Lξε)− f(Lξ0) =

∫ 1

0

E[B∗〈DLf(Lξ0+r(ξε−ξ0))(ξ0 + r(ξε − ξ0)), ξε − ξ0〉B] dr, ε ∈ (0, s0).

Multiplying both sides by ε−1 and letting ε ↓ 0 , we finish the proof.

3 Well-posedness of (1.1)

When p = 2, the existence and uniqueness of strong solutions to (1.1) follows from [21,
Theorem 3.1]; see also [30, Theorem 3.1] for p ≥ 2, where b(t, ξ, µ) is Lipschitz continuous
in (ξ, µ) ∈ C ×Pp(C ). In the following result, the drift b(t, ξ, µ) may be non-Lipschitz
continuous w.r.t. ξ.
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Lemma 3.1. Assume (A) for some p ∈ [1,∞) and let T ≥ 0. There exists a constant c > 0
such that for any X0 ∈ Lp(Ω→ C ,F0,P), (1.1) has a functional solution X[0,T ] := (Xt)t∈[0,T ]

satisfying

(3.1) E
(

sup
0≤t≤T

‖Xt‖pC
)
≤ c

(
1 + E‖X0‖pC

)
,

and any two functional solutions X[0,T ] and Y[0,T ] satisfy

(3.2) E
(

sup
0≤t≤T

‖Xt − Yt‖pC
)
≤ cE‖X0 − Y0‖pC .

Consequently, the SDE (1.1) is strongly and weakly well-posed.

Proof. By Itô’s formula and BDG’s inequality, it is easy to derive estimates (3.1) and (3.2)
from assumption (A). In particular, the strong uniqueness holds. Next, according to [31,
Theorem 2.3], the assumption (A) implies the well-posedness of the decoupled SDE with
memory: for any µ ∈ C([0, T ]; Pp(C )) and X0 ∈ Lp(Ω→ C ,F0,P),

(3.3) dY µ(t) = b(t, Y µ
t , µt)dt+ σ(t, Y µ

t , µt)dW (t), t > 0, Y µ
0 = X0.

As shown in the proof of [22, Lemma 2.1], the weak well-posedness of (1.1) follows from the
strong one. So, it remains to prove the strong existence, for which we use the fixed point
theorem in the distribution variable as explained in the proof of [20, Theorem 3.3]. For fixed
T > 0, define

DT =
{
µ ∈ C([0, T ]; Pp(C )) : µ0 = LX0

}
,

which is a Polish space under the metric

Wp,λ(µ, ν) := sup
0≤t≤T

(
e−λtWp(µt, νt)

)
, λ > 0.

Let
(H(µ))t := LY µt

, t ∈ [0, T ], µ ∈ DT .

By the fixed-point theorem, for the strong existence and uniqueness of (1.1), it is sufficient
to prove the contraction of the mapping H under the metric Wp,λ for large λ > 0; that is,
we only need to verify

(i) H : DT → DT ,

(ii) There exist constants λ > 0 and α ∈ (0, 1) such that

Wp,λ(H(µ), H(ν)) ≤ αWp,λ(µ, ν), µ, ν ∈ DT .

Under the assumption (A), (i) follows easily from Itô’s formula and BDG’s inequality. Below
we only prove (ii). For any µ, ν ∈ DT , let Ψ(t) = Y µ(t)−Y ν(t), t ∈ [−r0, T ]. By Itô’s formula
and (3.3), we find a constant c1 > 0 such that

d|Ψ(t)|p ≤ c1

{
‖Ψt‖pC + Wp(µt, νt)

p
}

dt+ dM(t),(3.4)
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where

M(t) := p

∫ t

0

|Ψ(s)|p−2
〈
Ψ(s), (σ(s, Y µ

s , µs)− σ(s, Y ν
s , νs))dW (s)

〉
.

By BDG’s inequality, and when p ∈ [1, 2) the coefficient σ(t, ξ, µ) depends only on (t, ξ) so
that (A) implies

‖σ(s, Y µ
s , µs)− σ(s, Y ν

s , νs)‖2
HS ≤ K‖Ψt‖2

C ,

we find constants c2, c3 > 0 such that

E
(

sup
0∨(t−r0)≤s≤t

|M(s)|p
)
≤ c2E

(∫ t

0∨(t−r0)

|Ψ(s)|2(p−1)
{
‖Ψs‖2

C + 1{p≥2}Wp(µs, νs)
2
}

ds

) 1
2

≤ 1

2
E‖Ψt‖pC + c3

∫ t

0

{
E‖Ψs‖pC + Wp(µs, νs)

p
}

ds.

This, together with (3.4) and Y µ
0 = Y ν

0 = X0, yields

E‖Ψt‖pC ≤ c4

∫ t

0

{
E‖Ψs‖pC + Wp(µs, νs)

p
}

ds, t ∈ [0, T ],

for some constant c4 > 0. Thus, the Gronwall inequality gives

E‖Ψt‖pC ≤ c4ec4T
∫ t

0

Wp(µs, νs)
pds, t ∈ [0, T ],

which implies that for any λ > 0,

e−λtE‖Ψt‖pC ≤ c4ec4T
∫ t

0

e−λ(t−s)e−λsWp(µs, νs)
pds ≤ c4ec4T

λ
Wp,λ(µ, ν).

Since
Wp,λ(H(µ), H(ν)) ≤ sup

0≤t≤T

(
e−λtE‖Ψt‖pC

)
,

this implies (ii) for α = 1
2

and large enough λ > 0. Therefore, the proof is finished.

4 The Malliavin derivative of Xµ
t

Consider the separable Banach space C with the uniform norm ‖ξ‖C := supt∈[−r0,0] |ξ(t)|.
For a Gâteaux differentiable matrix-valued function f on C , let

‖∇f(ξ)‖ = sup
η∈C ,‖η‖C≤1

‖(∇ηf)(ξ)‖HS, ξ ∈ C ,

where

(∇ηf)(ξ) := lim
ε↓0

f(ξ + εη)− f(ξ)

ε
.

Besides (A), we will need the following assumption. A function f on C is called C1-smooth,
denoted by f ∈ C1(C ), if it is Gâteaux differentiable with derivative ∇f(ξ) continuous in ξ.
Moreover, if the derivative is bounded, we write f ∈ C1

b (C ). It is well known that a function
f ∈ C1(C ) is Fréchet differentiable.
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(B) Let p ∈ [1,∞). σ(t, ξ, µ) and b(t, ξ, µ) are bounded on bounded subsets of [0,∞)×C ×
Pp(C ), C1-smooth in ξ ∈ C and L-differentiable in µ ∈ Pp(C ), and satisfy the following
conditions.

(B1) {(∇ησ)(t, ·, µ)}(ξ) is continuous in (ξ, η) ∈ C ×C , and there exist increasing functions
K1, K2 : [0,∞)→ [0,∞) such that

‖{(∇b)(t, ·, µ)}(ξ)‖ ≤ K1(t)
{

1+‖ξ‖
(p−2)+

2

C +K2(‖µ‖p)
}
, (t, ξ, µ) ∈ [0,∞)×C×Pp(C ).

(B2) b(t, ξ, ·), σ(t, ξ, ·) ∈ C1(Pp(C )) with

sup
(t,ξ,µ)∈[0,T ]×C×Pp(C )

{µ(‖DLb(t, ξ, ·)(µ)(·)‖2
C ∗) + µ(‖DLσ(t, ξ, ·)(µ)(·)‖2

C ∗)} <∞, T > 0.

(B3) For any T > 0 there exists a constant K > 0 such that for any t ∈ [0, T ],

2〈ξ(0), {(∇ξb)(t, ·, µ)}(η)〉+ + ‖{(∇ξσ)(t, ·, µ)}(η)‖2
HS ≤ K‖ξ‖2

C , ξ, η ∈ C , µ ∈Pp(C ).

(B4) If p ∈ [1, 2), then σ(t, ξ, µ) = σ(t, ξ) depends only on t and ξ, and there exists an
increasing function K : [0,∞)→ [0,∞) such that

‖σ(t, ξ, µ)‖ ≤ K(t)
(
1 + ‖ξ‖

p
2

C

)
, ξ ∈ C .

Obviously, (B) implies (A) so that Lemma 3.1 applies. For any T > 0, set CT :=
C([0, T ];Rm) and consider the Cameron-Martin space

H =

{
h ∈ CT

∣∣∣h(0) = 0, ḣ(t) exists a.e. t, ‖h‖H :=

(∫ T

0

|ḣ(t)|2dt

) 1
2

<∞
}
.

By the pathwise uniqueness of (1.1), we may regard Xµ
t as a C -valued function of Xµ

0

and W , and investigate its Malliavin derivative w.r.t. the Brownian motion W . For any
h ∈ L∞(Ω→ H,P) and ε ≥ 0, consider the SDE

dXh,ε,µ(t) =
{
b(t,Xh,ε,µ

t , µt) + εσ(t,Xh,ε,µ
t , µt)ḣ(t)

}
dt+ σ(t,Xh,ε,µ

t , µt)dW (t),

t ∈ [0, T ], Xh,ε,µ
0 = Xµ

0 , µt := LXµ
t
.

(4.1)

When h is adapted, according to the proof of Lemma 3.1, assumption (A) implies the
existence and uniqueness of this SDE.

The directional Malliavin derivative of Xµ(t) along h is given by

DhX
µ(t) := lim

ε→0

Xh,ε,µ(t)−Xµ(t)

ε

provided the limit exists in L2(Ω → C([0, T ];Rd),P). To prove the existence of this limit,
we first present the following lemma.
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Lemma 4.1. Assume (A) and let (B4) hold if p ∈ [1, 2). Let h ∈ L∞(Ω → H,P) which
is adapted if σ(t, ξ, µ) depends on ξ, and let X0 ∈ Lp(Ω → C ,F0,P). Then there exists a
constant c > 0 such that

(4.2) E
(

sup
0≤t≤T

‖Xh,ε,µ
t −Xµ

t ‖
2∨p
C

)
≤ c ε2∨p, ε ∈ [0, 1].

Proof. Below, we only consider the case that h is adapted and σ(t, ξ, µ) depends on ξ, since
the proof for the setup that σ(t, ξ, µ) is independent of ξ is even simpler.

Let Zh,ε(t) = Xh,ε,µ(t)−Xµ(t)
ε

and

τn = inf
{
t ≥ 0 : ‖Xµ

t ‖C + ‖Xh,ε,µ
t ‖C ≥ n

}
, n ≥ 1.

By (1.1) and (4.1), we have

dZh,ε(t) =
{b(t,Xh,ε,µ

t , µt)− b(t,Xµ
t , µt)

ε
+ σ(t,Xh,ε,µ

t , µt)ḣ(t)
}

dt

+
σ(t,Xh,ε,µ

t , µt)− σ(t,Xµ
t , µt)

ε
dW (t), Zh,ε

0 = 0.

(4.3)

Applying Itô’s formula and taking (A) and Zε
0 = 0 into account yields, for q := 2 ∨ p,

|Zh,ε(t ∧ τn)|q ≤ q

2

∫ t∧τn

0

{2

ε
〈Zh,ε(s), b(s,Xh,ε,µ

s , µs)− b(s,Xµ
s , µs)〉

+
q − 1

ε2
‖σ(s,Xh,ε,µ

s , µs)− σ(s,Xµ
s , µs)‖2

HS

}
ds+N ε(t) +M ε(t)

≤ c

∫ t∧τn

0

‖Zh,ε
s ‖

q
C ds+N ε(t) +M ε(t),

(4.4)

for some constant c > 0, where, by setting r0 = 1 for r ∈ [0,∞) in case of p = 1,

N ε(t) : = q

∫ t∧τn

0

|Zh,ε(s)|q−1|σ(s,Xh,ε,µ
s , µs)ḣ(s)|ds,

M ε(t) : =
q

ε

∫ t∧τn

0

|Zh,ε(s)|q−2〈Zh,ε(s), (σ(s,Xh,ε,µ
s , µs)− σ(s,Xµ

s , µs))dW (s)〉.

Let ψ > 0 be a constant such that ‖h‖H ≤ ψ due to h ∈ L∞(Ω → H,P). By Hölder’s and
Young’s inequalities, Lemma 3.1, (A) and (B4) when p ∈ [1, 2), we find constants c0, c1 > 0
such that

E
(

sup
0≤s≤t∧τn

|N ε(s)|
)
≤ qψE

(
sup

0≤s≤t∧τn
|Zh,ε(s)|2(q−1)

∫ t∧τn

0

‖σ(s,Xh,ε,µ
s , µs)‖2ds

)1/2

≤ 1

4
E
(

sup
0≤s≤t∧τn

|Zh,ε(s)|q
)

+ c0E
(∫ t

0

(1 + ‖Xh,ε,µ
s ‖2∧p

C )ds

) 2∨p
2

≤ 1

4
E
(

sup
0≤s≤t∧τn

|Zh,ε(s)|2
)

+ c1, t ∈ [0, T ].

(4.5)
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By (A) and the BDG inequality, there exist constants c2, c3 > 0 such that

E
(

sup
0≤s≤t∧τn

|M ε(s)|
)
≤ c2E

(
sup

0≤s≤t∧τn
‖Zh,ε

s ‖
q
C

∫ t∧τn

0

‖Zh,ε
s ‖

q
C

)1/2

≤ 1

4
E
(

sup
0≤s≤t∧τn

‖Zh,ε
s ‖

q
C

)
+ c3

∫ t

0

E‖Zh,ε
s∧τn‖

q
C ds.

(4.6)

Combining (4.4)-(4.6), we find a constant c > 0 such that

E
(

sup
0≤s≤t∧τn

‖Zh,ε
s ‖

q
C

)
≤ c+ c

∫ t

0

E‖Zh,ε
s∧τn‖

q
C ds <∞, t ∈ [0, T ], ε ∈ [0, 1].

By applying Gronwall’s inequality followed by letting n→∞, we derive (4.2).

Lemma 4.2. Assume (B). For any Xµ
0 ∈ Lp(Ω→ C ,F0,P) and h ∈ L∞(Ω→ H,P) which

is adapted if σ(t, ξ, µ) depends on ξ, the limit

(4.7) DhX
µ
t := lim

ε↓0

Xh,ε,µ
t −Xµ

t

ε
, t ∈ [0, T ]

exists in L2(Ω → C([0, T ]; C ),P), and it is the unique solution of the following SDE with
memory

dwh(t) =
{
{(∇wht

b)(t, ·, µt)}(Xµ
t ) + σ(t,Xµ

t , µt)ḣ(t)
}

dt

+ {(∇wht
σ)(t, ·, µt)}(Xµ

t )dW (t), t ∈ [0, T ], wh0 = 0, µt := LXµ
t
.

(4.8)

Proof. By (B3) and the boundedness of σ due to (B1), for any adapted h ∈ L2(Ω→ H,P),
the SDE (4.8) has a unique solution in L2(Ω→ C([0, T ]; C ),P) and for some constant C > 0,

(4.9) E
(

sup
0≤t≤T

‖wht ‖2
C

)
≤ CE‖h‖2

H <∞.

So, it remains to prove that the limit in (4.7) exists in L2(Ω→ C([0, T ]; C ),P), and it solves

(4.8). Let Λh,ε(t) = Zh,ε(t)−wh(t), where Zh,ε(t) := Xh,ε,µ(t)−Xµ(t)
ε

as before. Then, it suffices
to verify

(4.10) lim
ε→0

E
(

sup
0≤t≤T

|Λh,ε(t)|2
)

= 0.

Observe that (4.2) and (4.9) imply

(4.11) E
(

sup
0≤t≤T

|Λh,ε(t)|2
)
<∞.

By (4.3) and (4.8), we have

dΛh,ε(t) =
{
{(∇Λεt

b)(t, ·, µt)}(Xµ
t ) + Γε1(t)

}
dt

+
{
{(∇Λεt

σ)(t, ·, µt)}(Xµ
t ) + Γε2(t)

}
dW (t),

(4.12)
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where

Γε1(t) : =
(
σ(t,Xh,ε,µ

t , µt)− σ(t,Xµ
t , µt)

)
ḣ(t)

+

∫ 1

0

{
{(∇Zh,εt

b)(t, ·, µt)}(Xµ
t + θ(Xh,ε,µ

t −Xµ
t ))− {(∇Zh,εt

b)(t, ·, µt)}(Xµ
t )
}

dθ

Γε2(t) : =

∫ 1

0

{
{(∇Zh,εt

σ)(t, ·, µt)}(Xµ
t + θ(Xh,ε,µ

t −Xµ
t ))− {(∇Zh,εt

σ)(t, ·, µt)}(Xµ
t )
}

dθ.

(4.13)

Obviously, when σ(t, ξ, µ) = σ(t, µ) does not depend on ξ, the noise term in (4.12) disappears
so that the SDE reduces to an ODE for which we can allow h to be non-adapted. Applying
Itô’s formula yields

|Λh,ε(t)|2 ≤
∫ t

0

{
2〈Λh,ε(s), {(∇Λh,εs

b)(s, ·, µs)}(Xµ
s )〉+ 2‖{(∇Λh,εs

σ)(s, ·, µs)}(Xµ
s )‖2

HS

}
ds

+ 2

∫ t

0

{
〈Λh,ε(s),Γε1(s)〉+ ‖Γε2(s)‖2

HS

}
ds

+ 2

∫ t

0

〈
Λh,ε(s), {{(∇Λh,εs

σ)(s, ·, µs)}(Xµ
s ) + Γε2(s)}dW (s)

〉
=: Υε

1(t) + Υε
2(t) + Υε

3(t).

Obviously, (B3) implies

(4.14) E
(

sup
0≤s≤t

Υε
1(s)

)
≤ 3K

∫ t

0

E‖Λh,ε
s ‖2

C ds,

while Cauchy-Schwarz’s inequality gives

E
(

sup
0≤s≤t

|Υε
2(s)|

)
≤
∫ t

0

{
2E|Λh,ε(s)|2 + E|Γε1(s)|2 + 2E‖Γε2(s)‖2

HS

}
ds.(4.15)

Next, by (B3) and BDG’s inequality, we find constants c1, c2 > 0 such that

E
(

sup
0≤s≤t

Υε
3(s)

)
≤ c1E

(
sup

0≤s≤t
|Λh,ε(s)|2

∫ t

0

∥∥{(∇Λh,εs
σ)(s, ·, µs)}(Xµ

s ) + Γε2(s)
∥∥2

ds
)1/2

≤ 1

2
E
(

sup
0≤s≤t

|Λh,ε(s)|2
)

+ c2

∫ t

0

{
E‖Λh,ε

s ‖2
C + E‖Γε2(s)‖2

}
ds.

(4.16)

Combining (4.14), (4.15) with (4.16), there exists a constant c3 > 0 such that

E
(

sup
0≤s≤t

|Λh,ε(s)|2
)
≤ c3

∫ t

0

E‖Λh,ε
s ‖2

C ds+ c3

∫ t

0

{
E|Γε1(s)|2 + E‖Γε2(s)‖2

HS

}
ds.

By Gronwall’s inequality and (4.11), this implies

(4.17) E
(

sup
0≤s≤t

|Λh,ε(s)|2
)
≤ c3ec3tE

∫ t

0

{
|Γε1(s)|2 + ‖Γε2(s)‖2

HS

}
ds.
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Moreover, by (4.13), we have

(4.18) |Γε1(t)|2 + ‖Γε2(t)‖2
HS ≤ Iε(t)|ḣ(t)|2 + Jε(t)‖Zh,ε

t ‖2
C ,

where according to (B1) and (B3) we find a constant c(T ) > 0 increasing in T such that

Iε(t) := 2‖σ(t,Xh,ε,µ
t , µt)− σ(t,Xµ

t , µt)‖2,

Jε(t) := 2

∫ 1

0

{∥∥{(∇b)(t, ·, µt)}(Xµ
t + θ(Xh,ε,µ

t −Xµ
t ))− {(∇b)(t, ·, µt)}(Xµ

t )‖2

+ ‖{(∇σ)(t, ·, µt)}(Xµ
t + θ(Xh,ε,µ

t −Xµ
t ))− {(∇σ)(t, ·, µt)}(Xµ

t )‖2
}

dθ

≤ c(T )
(
1 + ‖Xµ

t ‖
p−2
C + ‖Xh,ε,µ

t −Xµ
t ‖

p−2
C +K2(‖µt‖2

p)
)
, t ∈ [0, T ].

By (B3), and (4.2) and h ∈ L∞(Ω→ H,P), we obtain

(4.19) lim sup
ε→0

E
∫ T

0

Iε(t)|ḣ(t)|2dt ≤ 2K‖h‖2
L∞(Ω→H,P) lim sup

ε→0
E
[

sup
t∈[0,T ]

‖Xh,ε,µ
t −Xµ

t ‖2
C

]
= 0.

Below we complete the proof of (4.10) by considering two different cases.
(1) When p > 2, (3.1) and (4.2) imply that {‖Zh,ε

t ‖2
C (1 + ‖Xµ

t ‖
p−2
C )}ε∈[0,1] is uniformly

integrable in L1(P) and

E[‖Zh,ε
t ‖2

C ‖X
h,ε,µ
t −Xµ

t ‖
p−2
C ] = εp−2E‖Zh,ε

t ‖
p
C ≤ c εp−2 → 0 as ε→ 0.

Then, by the dominated convergence theorem, (4.2) and Jε(t)→ 0 in probability, we arrive
at

lim
ε→0

E
∫ T

0

Jε(t)‖Zh,ε
t ‖2

C dt = 0.

This, together with (4.18) and (4.19), implies

(4.20) lim
ε→0

E
∫ T

0

{
|Γε1(t)|2 + ‖Γε2(t)‖2

HS

}
dt = 0

so that (4.10) follows from (4.17).
(2) When p ∈ [1, 2], (B1) and (3.1) imply Jε(t) ≤ K for some constant K depending on

T . Then,

(4.21) E
∫ t

0

{
|Γε1(s)|2 + ‖Γε2(s)‖2

HS

}
ds ≤ εT + 2K

∫ t

0

‖Λh,ε
s ‖2

C ds, t ∈ [0, T ],

where, by the dominated convergence theorem,

εT :=

∫ T

0

E
{
Iε(t)|ḣ(t)|2 + Jε(t)‖wht ‖2

C

}
dt→ 0 as ε→ 0.

Substituting (4.21) into (4.17) and using Gronwall’s lemma, we derive

lim
ε→0

E
(

sup
0≤t≤T

|Λh,ε(t)|2
)
≤ lim

ε→0
εT e(c3+2K)T = 0.

Therefore, (4.10) holds.
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Let (D,D(D)) be the Malliavin gradient with adjoint (i.e., Malliavin divergence) (D∗,D(D∗)).
Then,

(4.22) E[DhF ] = E[FD∗(h)], F ∈ D(D), h ∈ D(D∗).

In particular, if h ∈ L2(Ω→ H,P) is adapted, then h ∈ D(D∗) and

(4.23) D∗(h) =

∫ T

0

〈ḣ(t), dW (t)〉,

see, for example, [24].

Proposition 4.3. Assume (B). For any h ∈ D(D∗) which is adapted if σ(t, ξ, µ) depends
on ξ, (4.8) has a unique functional solution satisfying (4.9) for some constant C > 0, and
for any f ∈ C1

b (C ),

(4.24) E
[
(∇whT

f)(Xµ
T )
]

= E
[
f(Xµ

T )D∗(h)
]
.

Proof. As explained in the proof of Lemma 4.2, the first assertion follows from assumptions
(A) and (B). So it suffices to prove (4.24).

We first consider h ∈ L∞(Ω→ H,P)∩D(D∗). By Lemma 4.2, the chain rule and (4.22),
we obtain

(4.25) E
[
(∇whT

f)(Xµ
T )
]

= E
[
Dh{f(Xµ

T )}
]

= E
[
f(Xµ

T )D∗(h)
]
.

In general, for adapted h ∈ D(D∗), we choose (hn)n≥0 ⊂ L∞(Ω→ H,P) ∩D(D∗) such that

(4.26) lim
n→∞

E
[
‖hn − h‖2

H + |D∗(hn)−D∗(h)|2
]

= 0.

In terms of (4.25), we have

(4.27) E
[
(∇whnT

f)(Xµ
T )
]

= E
[
f(Xµ

T )D∗(hn)
]
, n ≥ 1.

By (B) and (4.8), we find a constant C > 0 such that

E‖whnT − w
h
T‖2

C ≤ CE‖h− hn‖2
H.

This, together with f ∈ C1
b (C ) and (4.26), yields the desired formula (4.24) by taking n→∞

in (4.27).

5 The Gâteaux and intrinsic derivatives

For fixed p ∈ [2,∞) and Xµ
0 ∈ Lp(Ω → C ,F0,P) with the distribution µ, let (Xµ

t )t≥0 be
the unique solution to (1.1) starting from Xµ

0 . To calculate the intrinsic derivative of Xµ
t

w.r.t. µ, we consider the tangent space Tµ,p := Lp(C → C , µ), where C := C([−r0, 0];Rd)
endowed with the uniform norm ‖ξ‖C := supt∈[−r0,0] |ξ(t)| is a separable Banach space with
the dual space C ∗ consisting of all bounded linear functionals α : C → R. We denote the

16



dualization between C ∗ and C by C ∗〈α, ξ〉C = α(ξ) for α ∈ C ∗, ξ ∈ C . For any µ ∈Pp(C )
and φ ∈ Tµ,p, let

µφ = µ ◦ (Id + φ)−1 = L(Id+φ)(Xµ
0 ).

Let (Xµφ

t )t≥0 be the functional solution to (1.1) with Xµφ

0 := (Id + φ)(Xµ
0 ), and denote

µφt = L
Xµφ

t

, t ≥ 0.

Then the directional intrinsic derivative of Xµ
t along φ is given by

(5.1) DL
φX

µ
t := lim

ε→0

Xµεφ

t −Xµ
t

ε

provided the limit above exists.
More generally, for ξ ∈ Lp(Ω → C ,F0,P) and ε ∈ [0, 1], we let Xεξ,µ

t be the functional
solution to (1.1) with Xεξ,µ

0 = εξ + Xµ
0 , and denote µξ,εt = LXεξ,µ

t
. Then the Gâteaux

derivative of Xµ
t along ξ is

(5.2) ∇ξX
µ
t := lim

ε→0

Xεξ,µ
t −Xµ

t

ε

provided the limit above exists. Obviously,

(5.3) ∇ξX
µ
t = DL

φX
µ
t if ξ = φ(Xµ

0 ).

To prove the existence of ∇ξX
µ
t , we need the following lemma.

Lemma 5.1. Assume (A). For any T > 0 and q ≥ p, there exists a constant c > 0 such
that

(5.4) E
(

sup
0≤s≤t

‖Xεξ,µ
s −Xµ

s ‖
q
C

)
≤ εq ectE‖ξ‖qC , t ∈ [0, T ], ε ∈ [0, 1], ξ ∈ Lq(Ω→ C ,F0,P).

Proof. Set Φξ,ε(t) := Xεξ,µ(t)−Xµ(t)
ε

, t ≥ −r0, ε > 0. Since Xεξ,µ
t and Xµ

t solve (1.1) with the

initial values Xεξ,µ
0 and Xµ

0 , respectively, one has

dΦξ,ε(t) =
1

ε

{
b(t,Xεξ,µ

t , µξ,εt )− b(t,Xµ
t , µt)

}
dt

+
1

ε

{
σ(t,Xεξ,µ

t , µξ,εt )− σ(t,Xµ
t , µt)

}
dW (t), t ≥ 0,Φξ,ε

0 = ξ.
(5.5)

By (A), and applying Itô’s formula and the fact that

Wp(µ
ξ,ε
s , µs)

p ≤ E‖Xεξ,µ
s −Xµ

s ‖
p
C = εpE‖Φξ,ε

s ‖
p
C ≤ εp{E‖Φξ,ε

s ‖
q
C }

p
q ,

we find a constant c1 > 0 such that

|Φξ,ε(t)|q ≤ q

2

∫ t

0

|Φξ,ε(s)|q−2
{2

ε
〈Φξ,ε(s), b(s,Xεξ,µ

s , µξ,εs )− b(s,Xµ
s , µs)〉

+
q − 1

ε2
‖σ(s,Xεξ,µ

s , µξ,εs )− σ(s,Xµ
s , µs)‖2

HS

}
ds+M ε(t)

≤ c1

∫ t

0

{
‖Φξ,ε

s ‖
q
C + E‖Φξ,ε

s ‖
q
C

}
ds+M ε(t), t ≥ 0,

(5.6)
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where

M ε(t) :=
q

ε

∫ t

0

|Φξ,ε(s)|q−2
〈
Φξ,ε(s), (σ(s,Xεξ,µ

s , µξ,εs )− σ(s,Xµ
s , µs))dW (s)

〉
.

Next, by BDG’s inequality and (A), there exist some constants c2, c3 > 0 such that

E
(

sup
0≤s≤t

M ε(s)
)
≤ c2

ε
E
(

sup
0≤s≤t

|Φξ,ε(s)|q
∫ t

0

|Φξ,ε(s)|q−2‖σ(s,Xεξ,µ
s , µξ,εs )− σ(s,Xµ

s , µs)‖2ds

) 1
2

≤ 1

2
E
(

sup
0≤s≤t

|Φξ,ε(s)|q
)

+ c3E
∫ t

0

‖Φξ,ε
s ‖

q
C ds.

Combining this with (5.6), we derive

E
(

sup
0≤s≤t

‖Φξ,ε
s ‖

q
C

)
≤ 2E‖Φξ,ε

0 ‖
q
C + c4

∫ t

0

E‖Φξ,ε
s ‖

q
C ds, t ≥ 0

for some constant c4 > 0. By stopping at an exit time as in the proof of Lemma 4.1, we may

assume E
(

sup0≤s≤t ‖Φξ,ε
s ‖

q
C

)
<∞, such that (5.4) follows from Gronwall’s inequality.

Consider the following SDE with memory

dvξ(t) =
{
{(∇vξt

b)(t, ·, µt)}(Xµ
t ) + (EC ∗〈DLb(t, η, ·)(µt)(Xµ

t ), vξt 〉C )
∣∣∣
η=Xµ

t

}
dt

+
{
{(∇vξt

σ)(t, ·, µt)}(Xµ
t ) + (EC ∗〈DLσ(t, η, ·)(µt)(Xµ

t ), vξt 〉C )
∣∣∣
η=Xµ

t

}
dW (t)

(5.7)

with the initial value vξ0 = ξ, where, for t ≥ 0, µt := LXµ
t

and

C ∗〈DLb(η, ·)(µt)(Xµ
t ), vξt 〉C : =

(
C ∗
〈DLbi(η, ·)(µt)(Xµ

t ), vξt 〉C
)

1≤i≤d ∈ Rd

C ∗〈DLσ(η, ·)(µt)(Xµ
t ), vξt 〉C : =

(
C ∗
〈DLσij(η, ·)(µt)(Xµ

t ), vξt 〉C
)

1≤i≤d,1≤j≤m ∈ Rd ⊗ Rm.

Let p ≥ 2. By (B), this linear SDE has a unique solution. Moreover, by Itô’s formula and
BDG’s inequality, we find a constant c > 0 such that

(5.8) E‖vξt ‖
q
C ≤ cE‖ξ‖qC , t ∈ [0, T ], ξ ∈ Lq(Ω→ C ,F0,P).

Lemma 5.2. Assume (B) for some p ≥ 2. Then for any ξ ∈ Lp(Ω → C ,F0,P), the limit
in (5.2) exists in L2(Ω→ C([0, T ]; C ),P) and it gives rise to the unique functional solution
of (5.7).

Proof. Let Ξξ,ε
t = Φξ,ε

t −v
ξ
t , where (Φξ,ε

t )t≥0 solves (5.5). To end the proof, it suffices to prove

(5.9) lim
ε→0

E
(

sup
0≤t≤T

‖Ξξ,ε
t ‖2

C

)
= 0, T > 0.

Set
Xε,θ(t) := Xµ(t) + θ(Xεξ,µ(t)−Xµ(t)), t ≥ −r0, θ ∈ [0, 1].
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By (5.5), (5.7) and Theorem 2.1, we obtain

dΞξ,ε(t) =
{
{(∇Ξh,εt

b)(t, ·, µt)}(Xµ
t ) + (EC ∗〈(DLb(t, η, ·))(µt)(Xµ

t ),Ξξ,ε
t 〉C )

∣∣∣
η=Xµ

t

+ Υε
1(t)
}

dt

+
{
{(∇Ξh,εt

σ)(t, ·, µt)}(Xµ
t ) + (EC ∗〈(DLσ(t, η, ·))(µt)(Xµ

t ),Ξξ,ε
t 〉C )

∣∣∣
η=Xµ

t

+ Υε
2(t)
}

dW (t),

where

Υε
1(t) : =

∫ 1

0

{
{(∇Φξ,εt

b)(t, ·, µξ,εt )}(Xε,θ
t )− {(∇Φξ,εt

b)(t, ·, µt)}(Xµ
t )
}

dθ

+

∫ 1

0

{
(EC ∗

〈
(DLb(t, η, ·))(LXε,θ

t
)(Xε,θ

t )− (DLb(t, η, ·))(µt)(Xµ
t ),Φξ,ε

t

〉
C

)
}∣∣∣

η=Xµ
t

dθ,

Υε
2(t) : =

∫ 1

0

{
{(∇Φξ,εt

σ)(t, ·, µξ,εt ))}(Xε,θ
t )− {(∇Φξ,εt

σ)(t, ·, µt)}(Xµ
t )
}

dθ

+

∫ 1

0

{
(EC ∗

〈
(DLσ(t, η, ·))(LXε,θ

t
)(Xε,θ

t )− (DLσ(t, η, ·))(µt)(Xµ
t ),Φξ,ε

t

〉
C

)
}∣∣∣

η=Xµ
t

dθ.

By Itô’s formula, we obtain

(5.10) |Ξξ,ε(t)|2 ≤ Θε
1(t) + Θε

2(t) + Θε
3(t) + Θε

4(t), t ≥ 0,

where

Θε
1(t) :=

∫ t

0

{
2〈Ξξ,ε(s), (∇Ξξ,εs

b)(s, ·, µs)(Xµ
s )〉+ 3 ‖(∇Ξh,εs

σ)(s, ·, µs)(Xµ
s )‖2

HS

+ 2
〈
Ξξ,ε(s), {EC ∗〈DLb(s, η, ·)(µs)(Xµ

s ),Ξξ,ε
s 〉C }

〉∣∣∣
η=Xµ

s

+ 3‖(EC ∗〈(DLσ(s, η, ·))(µs)(Xµ
s ),Ξξ,ε

s 〉C )‖2
HS

∣∣∣
η=Xµ

s

}
ds,

Θε
2(t) :=

∫ t

0

{
3‖Υε

2(s)‖2
HS + 2〈Ξξ,ε(s),Υε

1(s)〉
}

ds,

Θε
3(t) := 2

∫ t

0

〈
Ξξ,ε(s),

{
(∇Ξh,εs

σ)(s, ·, µs)(Xµ
s )

+ (EC ∗〈(DLσ(s, η, ·))(µs)(Xµ
s ),Ξξ,ε

s 〉C ) + Υε
2(s)

}∣∣∣
η=Xµ

s

dW (s)
〉
.

By (B), we find a constant c1 > 0 such that for any t ∈ [0, T ],

E
(

sup
0≤s≤t

Θε
1(s)

)
≤ c1

∫ t

0

{
E‖Ξξ,ε

s ‖2
C + E|Ξξ,ε(s)|

√
E‖Ξξ,ε(s)‖2

C

}
ds

≤ 2c1

∫ t

0

E‖Ξξ,ε
s ‖2

C ds.

(5.11)

Next, there exists a constant c2 > 0 such that

(5.12) E
(

sup
0≤s≤t

Θε
2(s)

)
≤ c2

∫ t

0

{
E|Ξξ,ε(s)|2 + E|Υε

1(s)|2 + E|Υε
2(s)|2

}
ds, t ∈ [0, T ].
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Moreover, applying BDG’s inequality and using (B3), we find constants c3, c4 > 0 such that

E
(

sup
0≤s≤t

Θε
3(s)

)
≤ c3E

(
sup

0≤s≤t
|Ξξ,ε(s)|2

∫ t

0

{
‖{(∇Ξh,εs

σ)(s, ·, µs)}(Xµ
s )

+ (EC ∗〈(DLσ(s, η, ·))(µs)(Xµ
s ),Ξξ,ε

s 〉C ) + Υε
2(s)‖2

HS

∣∣∣
η=Xµ

s

}
ds

)1/2

≤ 1

2
E
(

sup
0≤s≤t

|Ξξ,ε(s)|2
)

+ c4

∫ t

0

{
E‖Ξξ,ε

s ‖2
C + E‖Υε

2(s)‖2
HS

}
ds, t ∈ [0, T ].

Substituting this and (5.11), (5.12) into (5.10), and noting that Ξξ,ε
0 = 0, we find a constant

c > 0 such that

E
(

sup
0≤s≤t

‖Ξξ,ε
s ‖2

C

)
≤ c

∫ t

0

E‖Ξξ,ε
s ‖2

C ds+ c

∫ t

0

{
E|Υε

1(s)|2 + E‖Υε
2(s)‖2

HS

}
ds, t ∈ [0, T ].

Since E
(

sup0≤s≤t ‖Ξξ,ε
s ‖2

C

)
<∞ due to (5.4) and (5.8), Gronwall’s inequality yields

(5.13) E
(

sup
0≤s≤T

|Ξξ,ε(s)|2
)
≤ c ecT

∫ T

0

{
E|Υε

1(t)|2 + E‖Υε
2(t)‖2

HS

}
ds.

This implies (5.9) by following the argument to deduce (4.10) from (4.17).

Let C1
p(C ) be the class of functions f ∈ C1(C ) such that for some constant c > 0,

(5.14) ‖∇f(ξ)‖ ≤ c (1 + ‖ξ‖p−1
∞ ), ξ ∈ C .

Proposition 5.3. Assume (B) for some p ≥ 2. For any T ≥ 0, f ∈ C1
p(C ) and µ ∈Pp(C ),

(PTf)(µ) is L-differentiable w.r.t. µ ∈Pp(C ) and

DL
φ (PTf)(µ) = EC ∗〈∇f(Xµ

T ),∇φ(Xµ
0 )X

µ
T 〉C .

Consequently, letting Φ : C → C ∗ be a measurable function such that

Φ(Xµ
0 ) = E({∇Xµ

T}
∗∇f(Xµ

T )|Xµ
0 ),

we have DL(PTf)(µ) = Φ.

Proof. Let Xφ,µ
t = X

µ◦(Id+φ)−1

t be the functional solution to (1.1) with initial value Xµ
0 +

φ(Xµ
0 ). For any f ∈ C1

p(C ), by Lemma 5.2, (5.8) and (5.14), we may apply Taylor’s expansion
to derive that for small ‖φ‖Tµ,p ,

(PTf)(µ◦(Id+φ)−1)−(PTf)(µ) = E[f(Xφ,µ
T )−f(Xµ

T )] = EC ∗〈∇f(Xµ
T ),∇φ(Xµ

0 )X
µ
T 〉C +o(‖φ‖Tµ,p).

This implies the desired assertion.
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6 Bismut formula for the L-derivative

In this section, we consider (1.1) with σ(t, ξ, µ) = σ(t, ξ(0)) dependent only on t and ξ(0),
i.e.,

(6.1) dX(t) = b(t,Xt,LXt)dt+ σ(t,X(t))dW (t).

We aim to investigate the intrinsic derivative of (Ptf)(µ), given by (1.2) associated with Xµ
t .

The main results (Theorems 6.2, 6.3 and 6.4 below) of this part generalize those derived
in [4] for SDEs with memory and in [27] for McKean-Vlasov SDEs without memory. Going
back to the case r0 = 0 (i.e. without memory), the conditions in Theorems 6.2 and 6.3
are weaker than the corresponding ones used in [27], since the drift b herein is allowed to
be non-Lipschitz continuous w.r.t. the space variables. We will first prove a general result
and then apply it to establish the Bismut formula for (1.1) with additive and multiplicative
noise, respectively.

6.1 A general result

Theorem 6.1. Assume (B) for some p ≥ 2, and let T > r0. Suppose that for any µ ∈
Pp(C ) and ξ ∈ Lp(Ω → C ,F0,P), there exists hξ,µ ∈ D(D∗), which is adapted when
σ(t, ξ, µ) depends on ξ, such that

(6.2) w
hξ,µ
T = ∇ξX

µ
T ,

where ∇ξX
µ
T is in (5.2) and w

hξ,µ
T solves (4.8) for h = hξ,µ. Moreover, suppose that for some

increasing function αT : [0,∞)→ [0,∞) we have

(6.3) E|D∗(hξ,µ)|2 ≤ αT (‖µ‖p)(E‖ξ‖pC )
2
p , ξ ∈ Lp(Ω→ C ,F0,P), µ ∈Pp(C ).

Then the following assertions hold.

(1) For any f ∈ Bb(C ),

(6.4) |(PTf)(µ)− (PTf)(ν)| ≤
√
αT (‖µ‖p ∨ ‖ν‖p)‖f‖∞Wp(µ, ν), µ, ν ∈Pp(C ).

(2) For any f ∈ C1
b (C ), (PTf)(µ) is intrinsically differentiable in µ ∈Pp(C ) such that

(6.5) DL
φ (PTf)(µ) = E

[
f(Xµ

T )D∗(hφ(Xµ
0 ),µ)

]
, φ ∈ Tµ,p.

Consequently,

(6.6) ‖DL(PTf)(µ)‖2
T ∗µ,p
≤ αT (‖µ‖p)(PTf 2)(µ), µ ∈Pp(C ).

(3) If moreover

(6.7) lim
Wp(ν,µ)→0

sup
E‖ξ‖pC∈(0,1)

E|D∗(hξ,ν)−D∗(hξ,µ)|2

(E‖ξ‖pC )
2
p

= 0, µ ∈Pp(C ),

then for any f ∈ Cb(C ), (PTf)(µ) is L-differentiable in µ ∈Pp(C ) and (6.6) holds.
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Proof. (1) We first consider f ∈ C1
b (C ). Recall that Xεξ,µ

t is the functional solution to (1.1)
with Xεξ,µ

0 = εξ +Xµ
0 , and µξ,εt = LXεξ,µ

t
. Then, we have

d

ds
Ef(Xsξ,µ

T ) := lim
ε→0

Ef(X
(s+ε)ξ,µ
T )− Ef(Xsξ,µ

T )

ε
= ∇ξ(PTf)(µξ,s), s ∈ [0, 1].

Then, by applying (6.2) with µ replaced by µξ,s and using Proposition 4.3, we obtain

d

ds
Ef(Xsξ,µ

T ) = E
[
C ∗
〈∇f(Xsξ,µ

T ),∇ξX
sξ,µ
T 〉C

]
= E

[
C ∗
〈∇f(Xsξ,µ

T ), w
h
ξ,µξ,s

T 〉C
]

= E
[
f(Xsξ,µ

T )D∗(hξ,µξ,s)
]
.

(6.8)

Whence, one has

(PTf)(LXµ
0 +ξ)− (PTf)(µ) = Ef(Xξ,µ

T )− Ef(Xµ
T ) =

∫ 1

0

d

ds
Ef(Xsξ,µ

T )ds

=

∫ 1

0

E
[
f(Xsξ,µ

T )D∗(hξ,µξ,s)
]
ds, f ∈ C1

b (C ).

(6.9)

Let

µ̃T (A) =

∫ 1

0

E[1A(Xsξ,µ
T )D∗(hξ,µξ,s)

]
ds, A ∈ B(C ).

Since C1
b (C ) is dense in L1(LXξ,µ

T
+ LXµ

T
+ µ̃T ) ⊃ Bb(C ), (6.9) implies

(6.10) (PTf)(LXµ
0 +ξ)− (PTf)(µ) =

∫ 1

0

E
[
f(Xsξ,µ

T )D∗(hξ,µξ,s)
]
ds, f ∈ Bb(C ).

Now, for any ν ∈Pp(C ), let ξ ∈ Lp(Ω→ C ,F0,P) such that LXµ
0 +ξ = ν and

Wp(µ, ν) = {E‖ξ‖pC }
1
p .

We deduce form (6.10) that

|(PTf)(µ)− (PTf)(ν)| ≤ ‖f‖∞ sup
s∈[0,1]

(
E|D∗(hξ,µξ,s)|2

) 1
2

≤ ‖f‖∞Wp(µ, ν) sup
s∈[0,1]

√
αT (‖µξ,s‖p).

Combining this with

‖µξ,s‖p = {E‖Xµ
0 + sξ‖pC }

1
p = {E‖s(Xµ

0 + ξ) + (1− s)Xµ
0 ‖

p
C }

1
p

≤ (1− s){E‖Xµ
0 ‖

p
C }

1
p + s{E‖Xµ

0 + ξ‖pC }
1
p ≤ ‖µ‖p ∨ ‖ν‖p, s ∈ [0, 1],

we prove (6.4).
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(2) Let f ∈ C1
b (C ), µ ∈Pp(C ) and φ ∈ Tµ,p. Applying (6.8) with ξ = φ(Xµ

0 ) and s = 0,
we obtain (6.5), which, together with (6.3), implies

|DL
φ (PTf)(µ)|2 ≤ αT (‖µ‖p){E‖φ(Xµ

0 )‖pC }
2
pE[f 2(Xµ

T )] = αT (‖µ‖p)‖φ‖2
Tµ,p(PTf

2)(µ), φ ∈ Tµ,p.

Therefore, (6.6) holds true.
(3) Let f ∈ Cb(C ). To prove that (PTf) is L-differentiable, it suffices to verify

(6.11) Iµ(φ) :=
|(PTf)(µ ◦ (Id + φ)−1)− (PTf)(µ)− γφ|

‖φ‖Tµ,p
→ 0 as ‖φ‖Tµ,p ↓ 0,

where
γφ := E[f(Xµ

T )D∗(hφ(Xµ
0 ),µ)

]
, φ ∈ Tµ,p.

By (6.10) and the definition of γφ, it is easy to see that

(6.12) Iµ(φ) ≤ Aµ(φ) +Bµ(φ)

holds for

Aµ(φ) :=
1

‖φ‖Tµ,p

∫ 1

0

E
[∣∣{f(X

sφ(Xµ
0 ),µ

T )− f(Xµ
T )
}
D∗(hφ(Xµ

0 ),µ)
∣∣]ds,

Bµ(φ) :=
‖f‖∞
‖φ‖Tµ,p

∫ 1

0

(
E[|D∗(hφ(Xµ

0 ),µ◦(Id+sφ)−1)−D∗(hφ(Xµ
0 ),µ)|2]

) 1
2 ds.

Since f ∈ Cb(C ), and (5.4) implies E‖Xsφ(Xµ
0 ),µ

T −Xµ
T‖

p
C → 0 as ‖φ‖Tp,µ → 0, it follows from

(6.3) and the dominated convergence theorem that

lim
‖φ‖Tµ,p→0

Aµ(φ) = 0.

Finally, (6.7) implies lim‖φ‖Tµ,p→0Bµ(φ) = 0. Therefore, (6.11) follows from (6.12).

Remark 6.1 When r0 = 0 (i.e. without memory), the Bismut formula for the L-derivative
has been establish in [27] for all f ∈ Bb(C ), by applying a formula like (6.10) for small
ε > 0 replacing T . However, in the present case (6.10) is available merely for T > r0, so
that this technique is invalid. So, in Theorem 6.1 we only establish the Bismut formula of
the L-derivative for f ∈ Cb(C ).

6.2 Additive noise: non-degenerate case

Theorem 6.2. Assume (B) for some p ≥ 2, and consider (1.1) with σ(t, ξ, µ) = σ(t)
independent of (ξ, µ) such that (σσ∗)(t) is invertible with (σσ∗)−1(t) locally bounded in t.

(1) There exist an increasing function C : [r0,∞)→ [0,∞) and a constant c > 0 such that
for any T > r0, f ∈ Bb(C ), and µ, ν ∈Pp(C ),

|(PTf)(µ)− (PTf)(ν)|

≤ C(T )‖f‖∞
{

1 + (T − r0)−
1
2 +K2(c(1 + ‖µ‖p + ‖ν‖p))

+ (‖µ‖p + ‖ν‖p)
p−2
2

}
Wp(µ, ν).

(6.13)
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(2) For any T > r0 and f ∈ Cb(C ), (PTf)(µ) is L-differentiable in µ ∈Pp(C ) such that

(6.14) DL
φ (PTf)(µ) = −E

(
f(Xµ

T )

∫ T

0

〈{σ∗(σσ∗)−1}(t)Hφ(t), dW (t)〉
)
, φ ∈ Tµ,p

holds for

Hφ(t) : =
{

(∇Ztb)(t, ·, µt)
}

(Xµ
t ) + (E[C ∗〈DLb(t, ξ, ·)(µt)(Xµ

t ), Zt〉C ])|ξ=Xµ
t

+
φ(Xµ

0 )(0)1[0,T−r0](t)

T − r0

,

where µt := LXµ
t

and (Zt)t≥0 is the segment of (Z(t))t≥−r0 given by

Z(t) :=

{
φ(Xµ

0 )(t), if t ∈ [−r0, 0],
(T−r0−t)+

T−r0 φ(Xµ
0 )(0), if t ≥ 0.

Consequently, there exist an increasing function C : [r0,∞) → (0,∞) and a constant
c > 0 such that
(6.15)

‖DL(PTf)(µ)‖T ∗µ,p ≤ C(T )
{

1 + (T − r0)−
1
2 +K2(c(1 + ‖µ‖p)) + ‖µ‖

p−2
2

p

}
{(PTf 2)(µ)}

1
2

holds for all T > r0, f ∈ Cb(C ) and µ ∈Pp(C ).

Proof. To apply Theorem 6.1, for any µ ∈Pp(C ) and ξ ∈ Lp(Ω→ C ,F0,P), let

(6.16) hξ,µ(t) := −
∫ t

0

{
σ∗(σσ∗)−1

}
(s)Hξ,µ(s)ds, t ∈ [0, T ],

where

Hξ,µ(t) := {(∇Zξt
b)(t, ·, µt)}(Xµ

t ) + (E[C ∗〈DLb(t, η, ·)(µt)(Xµ
t ), Zξ

t 〉C ])|η=Xµ
t

+
ξ(0)1[0,T−r0](t)

T − r0

,

Zξ(t) := ξ(t)1[−r0,0](t) +
(T − r0 − t)+

T − r0

ξ(0)1(0,∞)(t).

(6.17)

By (B), the boundedness of (σσ∗)−1(t) in t ∈ [0, T ], and the definition of Hξ,µ(t), we find a
constant c1 = c1(T ) > 0 increasing in T such that

(6.18) |ḣξ,µ(t)|2 ≤ c1‖ξ‖2
C

{
(T − r0)−21[0,T−r0](t) + ‖Xµ

t ‖
p−2
C +K2(‖µt‖p)2

}
, t ∈ [0, T ].

Note that (3.1) and µ ∈Pp(C ) imply

sup
t∈[0,T ]

‖µt‖p ≤ c (1 ∨ ‖µ‖p)
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for some constant c = c(T ) > 0 increasing in T . This, combining (3.1) with (4.23) and
(6.18), yields

E|D∗(hξ,µ)|2 = E
∫ T

0

|ḣξ,µ(t)|2dt

≤ c2(E‖ξ‖pC )
2
p
{

(T − r0)−1 + (E‖Xµ
t ‖

p
C )(p−2)/p +K2(c (1 ∨ ‖µ‖p))2

}
≤ c3(E‖ξ‖pC )

2
p
{

1 + (T − r0)−1 + ‖µ‖p−2
p +K2(c (1 ∨ ‖µ‖p))2

}
<∞

(6.19)

for some constants c2 = c2(T ), c3 = c3(T ) > 0 increasing in T .
Note that (Zξ

t )t∈[0,T ] is the functional solution to the SDE with memory

dZξ(t) =
{
{(∇Zξt

b)(t, ·, µt)}(Xµ
t ) + σ(t)ḣξ,µ(t)

+ (E[C ∗〈DLb(t, η, ·)(µt)(Xµ
t ), Zξ

t 〉C ])|η=Xµ
t

}
dt, t ∈ [0, T ], Zξ

0 = ξ.
(6.20)

On the other hand, by Lemmas 4.2 and 5.2, the process

∇ξX
µ(t)− whξ,µ(t), t ∈ [0, T ]

also solves (6.20) with the same initial value ξ. By the uniqueness of (6.20) and Zξ
T = 0, we

derive ∇ξX
µ
T = w

hξ,µ
T , that is, (6.2) holds. Moreover, (3.2) implies

Wp(µt, νt) ≤ cWp(µ, ν), t ∈ [0, T ]

for some constant c > 0, where νt := LXν
t
, so that (6.16), (6.17) and the continuity of

b(t, ξ, µ) in µ imply (6.7). Therefore, the desired assertions follow from Theorem 6.1 and
(6.19).

6.3 Additive noise: a degenerate case

As generalizations to the stochastic Hamiltonian system [17] and the counterpart with
memory [5] as well as the distribution dependent model [27], we consider the following
distribution-path dependent stochastic Hamiltonian system for X(t) = (X(1)(t), X(2)(t)) on
Rl+m := Rl × Rm, which goes back to (1.1) for d = l +m:

(6.21)

{
dX(1)(t) = b(1)(t,X(t))dt,

dX(2)(t) = b(2)(t,Xt,LXt)dt+ σ(t)dWt,

where (W (t))t≥0 is an m-dimensional Brownian motion on a complete filtration probability
space (Ω,F , (Ft)t≥0,P), for each t ≥ 0, σ(t) is an invertible m×m-matrix, and

b = (b(1), b(2)) : [0,∞)× C ×Pp(C )→ Rl+m

is measurable with b(1)(t, ξ, µ) = b(1)(t, ξ(0)) dependent only on t and ξ(0). Let ∇ =
(∇(1),∇(2)) be the gradient operator on Rl+m, where ∇(i) stands for the gradient opera-
tor w.r.t. the i-th component, i = 1, 2. Let ∇2 = ∇∇ denote the Hessian operator on Rl+m.
We assume
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(H1) For every t ≥ 0, σ(t) is invertible, b(1)(t, ·) ∈ C2(Rl+m → Rl), b(2)(t, ξ, µ) is C1 in both
ξ ∈ C and µ ∈ Pp(C ), and there exists an increasing function K : [0,∞) → [0,∞)
such that

‖{(∇b(1))(t, ·, µ)}(ξ(0))‖+ ‖{(∇2b(1))(t, ·)}(ξ(0))‖+ ‖{(∇b(2))(t, ·, µ)}(ξ)‖
+ ‖DLb(2)(t, ξ, ·)(µ)‖T ∗µ,p + ‖σ(t)‖+ ‖σ(t)−1‖ ≤ K(t)

holds for all t ≥ 0 and (ξ, µ) ∈ C ×Pp(C ).

Obviously, the assumption (H1) implies (B) for the SDE (6.21).
For any µ ∈ Pp(C ), let (Xµ

t )t≥0 be the functional solution to (6.21) with LXµ
0

= µ,
and denote µt = LXµ

t
as before. To establish the Bismut formula for the L-derivative of

(PTf)(µ) := Ef(Xµ
T ), we shall follow the line of [27, 39], where the case without memory

was investigated. To establish the Bismut formula, we need the following assumption (H2),
which implies the hypoellipticity.

(H2) There exist an l ×m-matrix B and some constant ε ∈ (0, 1) such that

(6.22) 〈(∇(2)b(1))(t, ·)−B)B∗a, a〉 ≥ −ε|B∗a|2, ∀a ∈ Rl.

Moreover, there exists an increasing function θ· ∈ C([0, T − r0];R+) such that

(6.23)

∫ t

0

s(T − r0 − s)KT−r0,sBB
∗K∗T−r0,sds ≥ θtIl×l, t ∈ [0, T − r0],

where, for any s ≥ 0, (Kt,s)t≥s solves the following linear random ODE on Rl ⊗ Rl:

d

dt
Kt,s = (∇(1)b(1))(t,X(t))Kt,s, t ≥ s,Ks,s = Il×l(6.24)

with Il×l being the l × l identity matrix.

Specific examples for b(1) satisfying (H2) are included in [27, Example 2.1]. Let T > r0.
According to the proof of [39, Theorem 1.1], (H2) implies that the l × l matrices

Qt :=

∫ t

0

s(T − r0 − s)KT−r0,s(∇(2)b(1))(s,Xµ(s))B∗K∗T−r0,sds, t ∈ (0, T − r0]

are invertible with

(6.25) ‖Q−1
t ‖ ≤

1

(1− ε)θ(t)
, t ∈ (0, T − r0].

To apply Theorem 6.1, for any ξ = (ξ(1), ξ(2)) ∈ Lp(Ω → C ,F0,P), we need to construct
hξ,µ ∈ D(D∗) such that (6.2) holds. To this end, as in [27], where r0 = 0 is concerned, we take
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the C -valued process αt = (α
(1)
t , α

(2)
t ), which is the segment of α(t) defined by α(t) = ξ(t)

for t ∈ [−r0, 0] and

α(2)(t) :=
(T − r0 − t)+

T − r0

ξ(2)(0)−
t(T − r0 − t)+B∗K∗T−r0,t∫ T−r0

0
θ2
sds

∫ T−r0

t

θ2
sQ
−1
s KT−r0,0ξ

(1)(0)ds

− t(T − r0 − t)+B∗K∗T−r0,tQ
−1
T−r0

∫ T−r0

0

T − r0 − s
T − r0

KT−r0,s

(
∇(2)

ξ(2)(0)
b(1)
)

(s,Xµ(s))ds,

α(1)(t) := 1[0,T−r0](t)

(
Kt,0ξ

(1)(0) +

∫ t

0

Kt,s

(
∇(2)

α(2)(s)
b(1)
)

(s, ·)(Xµ(s)) ds

)
, t ≥ 0.

(6.26)

Now, let (hξ,µ(t), whξ,µ(t))t∈[0,T ] be the unique solution to the random ODEs

ḣξ,µ(t) :=
dhξ,µ(t)

dt
= σ(t)−1

{
{(∇αtb

(2))(t, ·, µt)}(Xµ
t )− α̇(2)(t)

+
(
EC ∗〈DLb(2)(t, η, ·)(µt)(Xµ

t ), αt + w
hξ,µ
t 〉C

)∣∣
η=Xµ

t

}
,

dwhξ,µ(t)

dt
=

((
∇
w
hξ,µ (t)

b(1)
)

(t,Xµ(t)),
(
∇
w
hξ,µ
t

b(2)
)

(t, ·, µt)(Xµ
t ) + σ(t)ḣξ,µ(t)

)
,

hξ,µ(0) = 0 ∈ Rm, w
hξ,µ
0 = 0 ∈ C .

(6.27)

Let uξ(t) = ((uξ)(1)(t), (uξ)(2)(t)) = α(t) + whξ,µ(t), t ≥ −r0. Then, (6.27) implies

(uξ)(2)(t) = α(2)(0) +

∫ t

0

{{
(∇uξt

b(2))(s, ·, µs)
}

(Xµ
s )

+
(
EC ∗〈DLb(2)(s, η, ·)(µs)(Xµ

s ), vξs〉C
)∣∣
η=Xµ

s

}
ds.

Furthermore, we have

(uξ)(1)(t) = α(1)(t) +

∫ t

0

{
(∇

w
hξ,µ (s)

b(1))(s, ·)
}

(Xµ(s))ds

= α(1)(t)−
∫ t

0

{
(∇α(s)b

(1))(s, ·)
}

(Xµ(s))ds+

∫ t

0

{
(∇uξ(s)b

(1))(s, ·)
}

(Xµ(s))ds

= α(1)(0) +

∫ t

0

{
(∇uξ(s)b

(1))(s, ·)
}

(Xµ(s))ds,

where in the last identity we used

dα(1)(t) =
{

(∇α(s)b
(1))(t, ·)

}
(Xµ(t))dt,

see the proof of [27, Theorem 2.3] for more details. Moreover, the equation (5.7) for vξ(t) =
((vξ)(1)(t), (vξ)(2)(t)) associated with the present SDE (6.21) becomes

d

dt
(vξ)(2)(t) =

{
(∇vξt

b(2))(t, ·, µt)
}

(Xµ
t ) +

(
EC ∗〈DLb(2)(t, η, ·)(µt)(Xµ

t ), vξt 〉C
)∣∣
η=Xµ

t
,

d

dt
(vξ)(1)(t) =

{
(∇vξ(t)b

(1))(t, ·)
}

(Xµ(t)), vξ0 = ξ.
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Hence, the uniqueness of this equation implies

(6.28) vξ(t) = whξ,µ(t) + α(t), t ≥ 0.

Obviously, α(2)(t) = 0 for t ≥ T − r0. On the other hand, inserting the expression of
α(2)(t) into α(1)(T − r0), taking the definition of Qt and changing the order of integral yields
α(1)(T − r0) = 0, which further implies α(1)(t) = 0, t ≥ T − r0, according to the definition of
α(1). Hence, we arrive at α(t) = 0 for t ≥ T − r0. This, combining Lemma 5.2 with (6.28),
leads to

∇ξX
µ
T = vξT = w

hξ,µ
T ,

that is, (6.2) holds. Moreover, as shown in the proof of [39, Theorem 1.1] that hξ,µ ∈ D(D∗)

satisfies (6.7), and for small T−r0 > 0, E|D∗(hξ,µ)|2 has the same order as E
∫ T−r0

0
|ḣξ,µ(t)|2dt,

so that according to the construction of hξ,µ we have

E|D∗(hξ,µ)|2 ≤ C(T )(T − r0)4∫ T−r0
0

θ2
sds

, T > 0, ξ ∈ Lp(Ω→ C ,F0,P), µ ∈Pp(C )

for some increasing function C : [r0,∞) → [0,∞). Therefore, by Theorem 6.1, we have the
following result.

Theorem 6.3. Assume (H1) and (H2) for some p ≥ 2.

(1) There exists an increasing function C : [r0,∞) → [0,∞) such that for any T > r0,
f ∈ Bb(C ),

|(PTf)(µ)−(PTf)(ν)| ≤ C(T )(T−r0)2

(∫ T−r0

0

θ2
sds

)− 1
2

‖f‖∞Wp(µ, ν), µ, ν ∈Pp(C ).

(2) For any T > r0 and f ∈ Cb(C ), (PTf)(µ) is L-differentiable in µ ∈Pp(C ) such that

DL
φ (PTf)(µ) = −E

[
f(Xµ

T )D∗(hφ(Xµ
0 ),µ)

]
, φ ∈ Tµ,p,

and there exists an increasing function C : [r0,∞) → (0,∞) such that for any f ∈
Cb(C ), T > r0 and µ ∈Pp(C ),

‖DL(PTf)(µ)‖T ∗µ,p ≤ C(T )(T − r0)2

(∫ T−r0

0

θ2
sds

)− 1
2

{(PTf 2)(µ)}
1
2 .

6.4 Multiplicative noise

In this subsection, we assume σ(t, ξ, µ) = σ(t, ξ(0)). Following the line of [4] due to the idea
of [34], for any ξ ∈ Lp(Ω→ C ,F0,P) we consider the SDE with memory

dU ξ(t) =
{{(
∇Uξt

b
)
(t, ·, µt)

}
(Xµ

t ) + (EC ∗〈DLb(t, η, ·)(µt)(Xµ
t ), U ξ

t 〉C )
∣∣
η=Xµ

t

− U ξ(t)

T − r0 − t

}
1[0,T−r0)(t)dt+

{(
∇Uξ(t)σ

)
(t, ·)

}
(Xµ(t))dW (t), U ξ

0 = ξ.
(6.29)
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Then, due to (B3), the SDE (6.29) has a unique solution for t < T − r0. By repeating the
proofs of [4, Lemma 2.1 and Theorem 1.2(1)], we have

(6.30)

∫ T−r0

0

E|U ξ(t)|2

(T − r0 − t)2
dt+ E

(
sup

t∈[0,T−r0)

‖U ξ
t ‖

p
C

)
≤ C(T )

T − r0

{
E‖ξ‖pC

} 2
p

for some increasing function C : [r0,∞)→ [0,∞), so that we may extend U ξ(t) for t ∈ [0, T ]
by setting

(6.31) U ξ(t) = 0, t ∈ [T − r0, T ],

which obviously solves (6.29) up to time T .

Theorem 6.4. Assume (B) for some p ≥ 2. Let σ(t, ξ, µ) = σ(t, ξ(0)) depend only on t and
ξ(0) such that, for each x ∈ Rd, (σσ∗)(t, x) is invertible with supx∈Rd ‖(σσ∗)−1‖(t, x) locally
bounded in t. Then,

(1) There exists an increasing function C : [r0,∞) → [0,∞) such that for any T > r0,
f ∈ Bb(C ), and µ, ν ∈Pp(C ),

(6.32) |(PTf)(µ)− (PTf)(ν)| ≤ C(T )√
T − r0

‖f‖∞Wp(µ, ν).

(2) For any T > r0 and f ∈ Cb(C ), (PTf)(µ) is L-differentiable in µ ∈Pp(C ) such that

(6.33) DL
φ (PTf)(µ) = −E

(
f(Xµ

T )

∫ T

0

〈{σ∗(σσ∗)−1}(t)Hφ(t), dW (t)〉
)
, φ ∈ Tµ,p

holds for

Hφ(t) :=
{{(
∇Uξt

b
)
(t, ·, µt)

}
(Xµ

t ) +
(
EC ∗〈DLb(t, η, ·)(µt)(Xµ

t ), U ξ
t 〉C
)∣∣
η=Xµ

t

}
1[T−r0,T ](t)

+
U ξ(t)

T − r0 − t
1[0,T−r0)(t), t ∈ [0, T ].

Consequently, there exists an increasing function C : [r0,∞)→ (0,∞) such that

(6.34) ‖DL(PTf)(µ)‖T ∗µ,p ≤
C(T )√
T − r0

{(PTf 2)(µ)}
1
2

holds for all T > r0, f ∈ Cb(C ) and µ ∈Pp(C ).

Proof. To apply Theorem 6.1, for any µ ∈Pp(C ) and ξ ∈ Lp(Ω→ C ,F0,P), let

(6.35) hξ,µ(t) =

∫ t

0

{σ∗(σσ∗)−1}(s,Xµ(s))Gξ(s)ds, t ∈ [0, T ],

where

Gξ(t) :=
{{(
∇Uξt

b
)
(t, ·, µt)

}
(Xµ

t ) +
(
EC ∗〈DLb(t, η, ·)(µt)(Xµ

t ), U ξ
t 〉C
)∣∣
η=Xµ

t

}
1[T−r0,T ](t)
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+
U ξ(t)

T − r0 − t
1[0,T−r0)(t), t ∈ [0, T ].

Then, h is adapted and, by (6.30), we find some increasing function C : [r0,∞) → (0,∞)
such that

(6.36) E
∫ T

0

|ḣξ,µ(t)|2dt ≤ C(T )

T − r0

{
E‖ξ‖pC

} 2
p , T > r0, µ ∈Pp(C ), ξ ∈ Lp(Ω→ C ,F0,P)

so that (6.3) holds true. Moreover, by the regularities of b and σ ensured by (B), the
condition (6.7) holds. Therefore, according to Theorem 6.1, it remains to verify (6.2). By
(6.29), Lemma 4.2 and Lemma 5.2, we see that both U ξ(t) and ∇ξX

µ
t − whξ,µ(t) solve the

SDE with memory

dZ(t) =
{{(
∇Ztb

)
(t, ·, µt)

}
(Xµ

t )− σ(t,Xµ(t))ḣ(t)
}

dt+
{(
∇Z(t)σ

)
(t, ·)

}
(Xµ(t))dW (t)

+
{(

E[C ∗〈DLb(t, η, ·)(µt)(Xµ
t ), Zt〉C ]

)∣∣
η=Xµ

t

}
dt, Z0 = ξ, t ∈ [0, T ].

By the uniqueness of solution to this equation and (6.31), we obtain (6.2) and hence finish
the proof.

7 Asymptotic Bismut formula for the L-derivative

In this section, we aim to extend the asymptotic Bismut formula derived in [23] for SDEs
with memory to that on the L-derivative for distribution-path dependent SDEs. Coming
back to SDEs with memory, our conditions are slightly weaker since we allow the drift terms
to be non-Lipschitz continuous.

7.1 The non-degenerate setup

In this subsection, we assume that σ(t, ξ, µ) = σ(t, ξ) depends only on t ≥ 0 and ξ ∈ C . For
any λ ≥ 0, µ ∈Pp(C ) and φ ∈ Tµ,p, consider the following SDE with memory

dZµ,φ,λ(t) =
{
{(∇Zµ,φ,λt

b)(t, ·, µt)}(Xµ
t )− λZµ,φ,λ(t)

}
dt

+ {(∇Zµ,φ,λt
σ)(t, ·)}(Xµ

t )dW (t), Zµ,φ,λ
0 = φ(Xµ

0 ), t ≥ 0.
(7.1)

According to [31, Theorem 2.3], (B3) implies that (7.1) has a unique functional solution
(Zµ,φ,λ

t )t≥0 such that

(7.2) E
(

sup
0≤s≤t

‖Zµ,φ,λ
s ‖pC

)
<∞, t > 0, φ ∈ Tµ,p, λ > 0.

Theorem 7.1. Assume (B) for some p ≥ 2 such that (B3) holds for some constant K uni-
formly in T > 0. Moreover, suppose that (σσ∗)(t, ξ) is invertible with supξ∈C ‖(σσ∗)−1‖(t, ξ)
locally bounded in t.
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(1) For any T > 0 and f ∈ C1
p(C ), (PTf)(µ) is L-differentiable in µ ∈ Pp(C ), such that

for any µ ∈Pp(C ), φ ∈ Tµ,p and f ∈ C1
p(C ),

(7.3) DL
φ (PTf)(µ) = E

(
f(Xµ

T )

∫ T

0

〈ḣµ,φ,λ(t), dW (t)〉
)

+ E
(
∇Zµ,φ,λT

f
)
(Xµ

T ), λ ≥ 0,

where

hµ,φ,λ(t) : =

∫ t

0

{
σ∗(σσ∗)−1

}
(s,Xµ

s )
{(

EC ∗〈DLb(s, ξ, ·)(µs)(Xµ
s ), DL

φX
µ
s 〉C
)∣∣∣
ξ=Xµ

s

+ λZµ,φ,λ(s)
}

ds, t ≥ 0.

(7.4)

(2) If either p > 4 or p > 2 but ‖∇b(t, ·, µ)(ξ)‖ is bounded, then for any δ > 0 there exist
constants c, λ0 > 0 such that∣∣∣∣DL

φ (PTf)(µ)− E
(
f(Xµ

T )

∫ T

0

〈ḣµ,φ,λ(s), dW (s)〉
)∣∣∣∣

≤ c e−δT
{

(PT‖∇f‖
p
p−1 )(µ)

} p−1
p ‖φ‖Tµ,p , λ ≥ λ0, T > 0, f ∈ C1

p(C ),

(7.5)

(2) If p ∈ [2, 4] and

(7.6) K < sup
α>0

α

p(p− 1 + 32peαr0)eαr0
,

then there exist constants c, δ, λ0 > 0 such that (7.5) holds.

To prove this result, we present the following two lemmas, where the first one is due to
[13, Lemma 2.2].

Lemma 7.2. Let M(t) be a continuous real martingale with d〈M〉(t) = g(t)dt, and let

Fα(t) =

∫ t

0

e−α(t−s)dM(s), t ≥ 0, α > 0.

Then for any p > 2, there exists a function r : [0,∞)→ [0,∞) with rα → 0 as α→∞ such
that

E
[

sup
s∈[0,t]

|Fα(s)|p
]
≤ rαE

∫ t

0

g(s)
p
2 ds, t ≥ 0.

Consequently, for any progressively measurable process A(t) on Rd ⊗ Rm,

E
[

sup
s∈[0,t]

∣∣∣∣ ∫ s

0

e−α(s−u)A(u)dW (u)

∣∣∣∣p] ≤ dp−1rαE
∫ t

0

‖A(s)‖pds, t ≥ 0.

Lemma 7.3. Assume (B) for some p ≥ 2 such that (B3) holds for some constant K uni-
formly in T > 0.
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(1) If either p > 4 or p > 2 but ‖∇b(t, ·, µ)(ξ)‖ is bounded, then for any δ > 0, there exist
constants c, λ0 > 0 such that

(7.7) E[‖Zµ,φ,λ
t ‖pC ] ≤ c e−δt‖φ‖pTµ,p , t ≥ 0, µ ∈Pp(C ), φ ∈ Tµ,p, λ ≥ λ0.

(2) If p ∈ [2, 4] and (7.6) holds, then there exists constants c, δ, λ0 > 0 such that (7.7)
holds.

Proof. (1) Let p > 4 and denote by Zλ
t = Zµ,φ,λ

t . Applying Itô’s formula for (7.1) and using
(B3), we obtain

d|Zλ(t)|2 =
{

2 〈Zλ(t), {(∇Zλt
b)(t, ·, µt)}(Xµ

t )〉+ ‖{(∇Zλt
σ)(t, ·)}(Xµ

t )‖2
HS

− 2λ|Zλ(t)|2
}

dt+ dMλ(t)

≤
{
K‖Zλ

t ‖2
∞ − 2λ|Zλ(t)|2

}
dt+ dMλ(t),

(7.8)

where

(7.9) dMλ(t) := 2〈Zλ(t), {(∇Zλt
σ)(t, ·)}(Xµ

t )dW (t)〉.

Then for β ∈ (0, λ) we obtain

(7.10) |Zλ(t)|2e2βt ≤ |Zλ(0)|+K

∫ t

0

e−2(λ−β)(t−s)eβs‖Zλ
s ‖2
∞ds+

∫ t

0

e−2(λ−β)(t−s)eβsdMλ(s).

Obviously,

(7.11) e−αr0 sup
s∈[t−r0,t]

(eαs|Zλ(s)|p) ≤ Gα(t) := eα(t−r0)‖Zλ
t ‖

p
C ≤ sup

s∈[t−r0,t]
(eαs|Zλ(s)|p), α > 0.

Combining this with (7.10), Lemma 7.2 and (B3) and employing Hölder’s inequality, for
p > 4 we find a positive function r on [0,∞) with rα → 0 as α→∞ such that

e−pβr0E[Gpβ(t)] ≤ 3
p
2
−1‖φ‖pT,µ + rλ−β

∫ t

0

EGpβ(s)ds, t ≥ 0.

Thus, by Gronwall’s lemma we derive

E[Gpβ(t)] ≤ 3
p
2
−1epβr0‖φ‖pT,µ exp

[
(rλ−βepβr0)t

]
, t ≥ 0.

This yields

E[‖Zλ
t ‖

p
C ] ≤ 3

p
2
−1e2pβr0‖φ‖pT,µ exp

[
− (pβ − rλ−βepβr0)t

]
, t ≥ 0.

This implies (7.7) by taking β = δ and pδ − rλ−δe
pδr0 ≥ δ for large λ due to rα → 0 as

α→∞.
(2) Let p > 2 and ‖∇b(t, ·, µ)(ξ)‖ be bounded. By (7.1), for any β ∈ (0, λ) we have

Zλ(t)eβt =Zλ(0)e−(λ−β)t +

∫ t

0

e−(λ−β)(t−s)eβs{(∇Zλs
b)(s, ·, µs)}(Xµ

s )ds
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+

∫ t

0

e−(λ−β)(t−s)eβs{(∇Zλs
σ)(s, ·)}(Xµ

s )dW (s).

Combining this with (7.11), the boundedness of ‖∇b‖+ ‖∇σ‖ and Lemma 7.2 and applying
Hölder’s inequality, we find a function r : [0,∞)→ [0,∞) with rα → 0 as α→∞ such that

e−βpr0E[Gβ(t)] ≤ 3p−1‖φ‖pT,µ + rλ−β

∫ t

0

E[Gβ(s)]ds.

This, by using Gronwall’s inequality, yields

epβtE[‖Zλ
t ‖

p
C ] = E[Gβ(t)] ≤ 3p−1e2βpr0‖φ‖pTµ,p exp

[
rλ−βepβr0t

]
,

which implies (7.7) by taking β = 2δ and large enough λ such that epβr0rλ−β ≤ δ due to
rα → 0 as α→∞.

(3) Let p ∈ [2, 4] and (7.6). From (7.8), we have

d|Zλ(t)|2 ≤
{
K‖Zλ

t ‖2
∞ − 2λ|Zλ(t)|2

}
dt+ 2〈Zλ(t), {(∇Zλt

σ)(t, ·)}(Xµ
t )dW (t)〉.

Then for any p ∈ [2, 4] and α ∈ (0, pλ), by Itô’s formula and (B3), it follows that

d(eαt|Zλ(t)|p) ≤eαt
{
− (pλ− α)|Zλ(t)|p +

1

2
Kp(p− 1)‖Zλ

t ‖
p
C

}
dt

+ peαt|Zλ(t)|p−2〈Zλ(t), {(∇Zλt
σ)(t, ·)}(Xµ

t )dW (t)〉.
(7.12)

Using (7.11) and combining (7.12) with BDG’s inequality, we obtain

E[Gα(t)] ≤ E
[

sup
s∈[t−r0,t]

(eαs|Zλ(s)|p)
]

≤ ‖φ‖pTµ,p +
1

2
Kp(p− 1)eαr0

∫ t

0

E[ηα(s)]ds+ 4p
√

2KE
[(∫ t

(t−r0)+
e2αs|Zλ(s)|p‖Zλ

s ‖
p
C ds

) 1
2
]

≤ ‖φ‖pTµ,p +
1

2
Kp(p− 1 + 32peαr0)eαr0

∫ t

0

ηα(s)ds+
1

2
E[ηα(t)].

Whence, Gronwall’s inequality yields

E[Gα(t)] ≤ 2‖φ‖pTµ,pe
γt, γ := Kp(p− 1 + 32peαr0)eαr0 .

This, together with (7.11), leads to

E[‖Zλ
t ‖

p
C ] ≤ 2eαr0‖φ‖pTµ,pe

−(α−γ)t, t ≥ 0, α ∈ (0, pλ).

By (7.6), we may find λ0 > 0 large enough and α ∈ (0, pλ0) such that δ := α − γ > 0, so
that (7.7) holds for some constant c > 0 and all λ ≥ λ0.
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The proof of Theorem 7.1. The L-differentiability is implied by Proposition 5.3. So, it suf-
fices to prove (7.3) and (7.5). For simplicity, let hλ(t) = hµ,φ,λ(t), which was given in (7.4).
By (B), (5.8) and (7.7), hλ ∈ L2(Ω→ H;P) is adapted. According to Lemmas 4.2 and 5.2,
the process Z(t) := ∇φ(Xµ

0 )X
µ(t)−DhλX

µ(t) solves the SDE with memory

dZ(t) =
{
{(∇Ztb)(t, ·, µt)}(X

µ
t )− λZ(t)

}
dt+ {(∇Ztσ)(t, ·)}(Xµ

t )dW (t), t ≥ 0, Z0 = φ(Xµ
0 ).

Therefore, the uniqueness of solutions to (7.1) yields

Z(t) = ∇φ(Xµ
0 )X

µ(t)−DhλX
µ(t), t ≥ −r0.

Combining this with the chain rule and the integration by parts formula for the Malliavin
derivative, we derive

DL
φ (Ptf)(µ) = E[DL

φf(X ·t)(µ)] = E(C ∗〈∇f(Xµ
t ),∇φ(Xµ

0 )X
µ
t 〉C )

= E(C ∗〈∇f(Xµ
t ), Zt +DhλX

µ
t 〉C ) = E(Dhλf(Xµ

t )) + E((∇Ztf)(Xµ
t ))

= E
(
f(Xµ

t )

∫ t

0

〈
ḣλ(s), dW (s)

〉)
+ E((∇Ztf)(Xµ

t )), t ≥ 0,

i.e. (7.3) holds. Finally, by Lemma 7.3 and Hölder’s inequality, we deduce (7.5) from
(7.3).

7.2 A degenerate setup

In this subsection, we consider the following distribution-path dependent stochastic Hamil-
tonian system for X(t) = (X(1)(t), X2)(t)) on Rl+m = Rl × Rm:

(7.13)

{
dX(1)(t) = b(1)(t,Xt)dt,

dX(2)(t) = b(2)(t,Xt,LXt)dt+ σ(t,Xt)dW (t),

where (W (t))t≥0 is an m-dimensional Brownian motion on a complete filtration probability
space (Ω,F , (Ft)t≥0,P), X0 ∈ Lp(Ω→ C ,F0,P) for C := C([−r0, 0];Rl+m), and

b := (b(1), b(2)) : [0,∞)× C ×Pp(C )→ Rl+m, σ : [0, T ]× C → Rm ⊗ Rm

are measurable satisfying one of the following assumptions.

(C1) Let p ∈ (2,∞). b(t, ξ, µ) and σ(t, ξ) are bounded on bounded sets, C1-smooth in (ξ, µ) ∈
C×Pp(C ) with bounded ‖{∇b(2)(t, ·, µ)}(ξ)‖+‖{(∇σ)(t, ·)}(ξ)‖+‖DLb(t, ξ, ·)(µ)‖T ∗p,µ ,
and there exist constants β, κ > 0 satisfying

(7.14) κp < 21− p
2 pp(p− 1)1−p sup

α∈(0,β)

e−pαr0(β − α)

such that

(7.15) 〈z(1)(0), {(∇zb
(1))(t, ·)}(ξ)〉 ≤ κ|z(1)(0)| · ‖z‖C − β|z(1)(0)|2.
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(C2) Let p ∈ [2,∞). b(t, ξ, µ) and σ(t, ξ) are bounded on bounded sets, C1-smooth in (ξ, µ) ∈
C ×Pp(C ) with bounded ‖DLb(t, ξ, ·)(µ)‖T ∗p,µ , and there exist constants K, β, θ > 0
satisfying

(7.16) θ2 < sup
α∈(0,βp)

α

p(p− 1 + 32peαr0)eαr0

such that

〈z(1)(0), {(∇zb
(1))(t, ·, µ)}(ξ)〉 ≤ K|z(2)| · ‖z‖C +

θ2

2
‖z(1)‖2

C − β|z(1)(0)|2,

〈z(2)(0), {(∇zb
(2))(t, ·, µ)}(ξ)〉 ≤ K|z(2)(0)| · ‖z‖C ,

‖{(∇zσ)(t, ·)}(ξ)‖ ≤ θ‖z‖C , t ≥ 0, z, ξ ∈ C , µ ∈Pp(C ).

(7.17)

Let µt = LXµ
t

with LX0 = µ ∈ Pp(C ), and let φ ∈ Tµ,p. For any λ > 0, consider the

linear SDE with memory for Z(t) = (Z(1)(t), Z(2)(t)) on Rl+m

dZ(t) =
{
{(∇Ztb)(t, ·, µt)}(X

µ
t )− λ

(
0, Z(2)(t)

)}
dt

+
(
0, {(∇Ztσ)(t, ·)}(Xµ

t )dW (t)
)
, Z0 = φ(Xµ

0 ).
(7.18)

By [31, Theorem 2.3], under assumption (C1) or (C2), (7.18) has a unique functional
solution. We denote the functional solution by Zµ,φ,λ

t to emphasize the dependence on µ, φ
and λ. When σσ∗ is invertible, let

hµ,φ,λ(t) =

∫ t

0

{σ∗(σσ∗)−1}(s,Xµ
s )
{
λZ(2)(s))

+ E
[
C ∗
〈DLb(2)(s, ξ, ·)(µs)(Xµ

s ), DL
φX

µ
s 〉C
]∣∣
ξ=Xµ

s

}
ds, t ≥ 0.

(7.19)

Theorem 7.4. Assume (C1) or (C2), and let σσ∗ be invertible with ‖(σσ∗)−1‖∞ < ∞.
Then for any T > 0 and f ∈ C1

p(C ), (PTf)(µ) is L-differentiable in µ ∈Pp(C ) such that
(7.20)

DL
φ (PTf)(µ) = E

(
f(Xµ

T )

∫ T

0

〈ḣµ,φ,λ(s), dW (s)〉
)

+ E(∇ZT f)(Xµ
T ), µ ∈Pp(C ), φ ∈ Tµ,p.

Consequently, there exist constants c, δ, λ0 > 0 such that∣∣∣∣DL
φ (PTf)(µ)− E

(
f(Xµ

T )

∫ T

0

〈ḣµ,φ,λ(s), dW (s)〉
)∣∣∣∣

≤ c e−δT
{

(PT‖∇f‖
p
p−1 )(µ)

} p−1
p ‖φ‖Tµ,p , λ ≥ λ0, T > 0, f ∈ C1

p(C ).

(7.21)

To prove this result, we first present the following lemma.

Lemma 7.5. Assume (C1) or (C2). Then there exist constants c, δ, λ0 > 0 such that for
any λ ≥ λ0,

(7.22) E[‖Zµ,φ,λ
t ‖pC ] ≤ c e−δt‖φ‖pTµ,p , t ≥ 0, µ ∈Pp(C ), φ ∈ Tµ,p.
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Proof. We denote Xµ = X,Zµ,φ,λ = Z = (Z(1), Z(2)), and ‖Z(i)
t ‖C = sups∈[t−r0,t] |Z

(i)(t)|, i =
1, 2.

(1) Let (C1) hold. By (7.18), we have

Z(2)(t)eαt =φ(2)(X0)e−(λ−α)t +

∫ t

0

e−(λ−α)(t−s)eαs{(∇Zsb
(2))(s, ·, µs)}(Xs)ds

+

∫ t

0

e−(λ−α)(t−s)eαs{(∇Zsσ
(2))(s, ·)}(Xs)dW (s).

Then, by the boundedness of ‖∇b(2)‖ + ‖∇σ‖ and applying Lemma 7.2, we find a constant
c1 > 0 and a function r : [0,∞)→ [0,∞) with rs → 0 as s→∞ such that

(7.23) epα(t−r0)E‖Z(2)
t ‖

p
C ≤ c1‖φ(2)‖pTµ,p + rλ−α

∫ t

0

eαpsE‖Zs‖pC ds.

On the other hand, by (7.15) we have

d|Z(1)(t)| ≤ {κ‖Zt‖C − β|Z(1)(t)|}dt

so that for α ∈ (0, β),

eαt|Z(1)(t) ≤ ‖φ(Xµ
0 )‖C e−(β−α)(t−s) + κ

∫ t

0

eαs−(β−α)(t−s)‖Zs‖C ds.

Hence for any ε > 0 there exists a constant c2 > 0 such that

e(t−r0)pαE[‖Z(1)
t ‖

p
C ] ≤ E

[
sup

s∈[t−r0,t]
{|Z(1)(s)|eαs}p

]
≤ c2‖φ‖pTµ,p + κp

(1− 1/p

β − α

)p−1

(1 + ε)

∫ t

0

epαsE[‖Zs‖pC ]ds.

Combining this with (7.23), we arrive at

epαtE[‖Zt‖pC ] ≤ 2
p
2
−1epαtE[‖Z(1)

t ‖
p
C + ‖Z(2)

t ‖
p
C ] ≤ c3‖φ‖pTµ,p + γλ,ε

∫ t

0

epαsE[‖Zs‖pC ]ds

for some constants c3 > 0 with

γλ,ε := 2
p
2
−1
(
κp
(1− 1/p

β − α

)p−1

(1 + ε) + rλ−α

)
epαr0 .

By Gronwall’s lemma, we obtain

E[‖Zt‖pC ] ≤ c3‖φ‖pTµ,p exp
[
− (γλ,ε − pα)t].

Due to (7.14), we find a constant ε > 0 such that

pα > 2
p
2
−1κp

(1− 1/p

β − α

)p−1

(1 + ε)epαr0 .
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This implies

lim
λ→∞

γλ,ε = 2
p
2
−1κp

(1− 1/p

β − α

)p−1

(1 + ε)epαr0 < pα.

Hence, we may find constants λ0, δ > 0 such that αp− γλ,ε ≥ δ for λ ≥ λ0. Therefore, (7.22)
holds.

(2) Let (C2) hold. For ε ∈ (0, 1), set

ρ(t) :=
√
|Z(1)(t)|2 + ε|Z(2)(t)|2, t ≥ 0.

By (7.17) and Itô’s formula, for λ ≥ 4β, we have

d|ρ(t)|2 =
[
2〈Z(1)(t), {(∇Z(t)b

(1))(t, ·, µt)}(Xµ
t )〉+ 2ε〈Z(2)(t), {(∇Ztb

(2))(t, ·, µt)}(Xµ
t )〉

+ ε‖{(∇Ztσ)(t, ·)}(Xµ
t )‖2

HS − ελ|Z(2)(t)|2
]
dt+ 2ε〈Z(2)(t), {(∇Ztσ)(t, ·)}(Xµ

t )dW (t)〉

≤
{

2K(1 + ε)|Z(2)(t)| · ‖Zt‖C + θ2‖Z(1)
t ‖2

C − 2β|Z(1)(t)|2 + εθ2‖Zt‖2
C − λε|Z(2)(t)|2

}
dt

+ 2ε〈Z(2)(t), {(∇Ztσ)(t, ·)}(Xµ
t )dW (t)〉

≤
{
− 2β|Z(1)(t)|2 − λε

2
|Z(2)(t)|2 + θ2‖Z(1)

t ‖2
C + ε

(
θ2 +

2K2(1 + ε)2

λε2

)
‖Zt‖2

C

}
dt

+ 2ε〈Z(2)(t), {(∇Ztσ)(t, ·)}(Xµ
t )dW (t)〉

≤
{
− 2β|ρ(t)|2 + γλ,ε‖ρt‖2

C

}
dt+ 2ε〈Z(2)(t), {(∇Ztσ)(t, ·)}(Xµ

t )dW (t)〉,

where ‖ρt‖C := sup−r0≤θ≤0 |ρ(t+ θ)| and

(7.24) γλ,ε := max
{
θ2 + ε

(
θ2 +

2K2(1 + ε)2

λε2

)
, θ2 +

2K2(1 + ε)2

λε2

}
.

Then, for any p ≥ 2 and (α ∈ (0, pβ)), it follows that

d(eαt|ρ(t)|p) ≤eαt
{
− (βp− α)|ρ(t)|p +

1

2
p(γλ,ε + (p− 2)θ2)‖ρt‖pC

}
dt

+ εpeαt|ρ(t)|p−2〈Z(2)(t), {(∇Ztσ)(t, ·)}(Xµ
t )dW (t)〉.

(7.25)

Noting that

(7.26) e−αr0 sup
s∈[t−r0,t]

(eαs|ρ(s)|p) ≤ ηα(t) := eα(t−r0)‖ρt‖pC ≤ sup
s∈[t−r0,t]

(eαs|ρ(s)|p),

and combining (7.25) with BDG’s inequality, for any α ∈ (0, βp], we obtain

E[ηα(t)] ≤ E
[

sup
s∈[t−r0,t]

(eαs|ρ(s)|p)
]

≤ E[‖φ(Xµ
0 )‖pC ] +

1

2
p(γλ,ε + (p− 2)θ2)

∫ t

0

E[eαs‖ρs‖pC ]ds

+ 4
√

2pθE
[(∫ t

(t−r0)+
ε2e2αs|ρ(s)|2p−4|Z(2)(s)|2‖Zs‖2

C ds

) 1
2
]
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≤ ‖φ‖pTµ,p +
1

2
p(γλ,ε + (p− 2)θ2)eαr0

∫ t

0

ηα(s)ds+ 4
√

2pθeαr0E
[
|ηα(t)|

(∫ t

0

ηα(s)ds

) 1
2
]

≤ ‖φ‖pTµ,p +
(1

2
p(γλ,ε + (p− 2)θ2) + 16p2θ2eαr0

)
eαr0

∫ t

0

ηα(s)ds+
1

2
E[ηα(t)].

By Gronwall’s inequality, we arrive at

E[ηα(t)] ≤ 2‖φ‖pTµ,pe
cλ,ε(α)t, cλ,ε(α) :=

(
p(γλ,ε + (p− 2)θ2) + 32p2eαr0θ2

)
eαr0 .

This and (7.26) yield

E[‖ρt‖pC ] ≤ 2eαr0‖φ‖pTµ,pe
−{α−cλ,ε(α)}t, t ≥ 0.

Note that (7.24) implies

lim
ε↓0

lim
λ→∞

cλ,ε(α) = eαr0
(
p− 1 + 32peαr0

)
pθ2.

Then, by (7.16), we may find α ∈ (0, βp), small enough ε > 0 and large enough λ0 > 0 such
that δ := α− cλ0,ε(α) > 0, so that

E[‖Zt‖pC ] ≤ ε−pE[‖ρt‖pC ] ≤ 2ε−peαr0‖φ‖pTµ,pe
−δt, t ≥ 0, λ ≥ λ0.

Then (7.22) holds.

Proof of Theorem 7.4. Since the L-differentiability is implied by Proposition 5.3, while (7.21)
follows from Lemma 7.5 and (7.20), it suffices to prove (7.20).

Simply denote h = hµ,φ,λ. By (C1) or (C2) , there exists a constant c1 > 0 such that

(7.27) E‖vφt ‖
p
C ≤ c ec1t‖φ‖pTµ,p , t ≥ 0, φ ∈ Tµ,p.

This together with (7.19) and (7.22) implies that h ∈ L2(Ω → H,P) is adapted. Let
wht = (wh,1t , wh,2t ) be the unique functional solution to the following SDE with memory

dwh(t) = {(∇wht
b)(t, ·, µt)}(Xµ

t )dt+
(
0, σ(t,Xµ

t )ḣ(t)
)
dt

+ (0, {(∇wht
σ)(t, ·)}(Xµ

t )dW (t)), t ∈ [0, T ], wh0 = 0.
(7.28)

By Lemma 4.2, we have wht = DhX
µ
t . Next, according to Lemma 5.2, vφt = (vφ,1t , vφ,2t ) :=

DL
φX

µ
t exists in L2(Ω→ C([0, T ]; C ),P) and is the unique solution to

dvφ(t) = {(∇vφ(t)b)(t, ·, µt)}(Xµ
t )dt+ (EC ∗〈DLb(t, ξ, ·)(µt)(Xµ

t ), vφt 〉C )
∣∣∣
ξ=Xµ

t

dt

+
(
0, {(∇vφt

σ)(t, ·)}(Xµ
t )dW (t)

)
, t ∈ [0, T ], vφ0 = φ(Xµ

0 ).
(7.29)

From (7.28) and (7.29) we see that

Z(t) := vφ(t)− whµ,φ,λ(t)

solves (7.18). In particular, ZT = vφT − whT = DL
φX

µ
T − DhX

µ
T . Then (7.20) follows from

Proposition 4.3.
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[8] Cardaliaguet, P., Notes on mean field games, P.-L. Lions lectures at College de France.
https://www.ceremade.dauphine.fr/∼cardaliaguet/MFG20130420.pdf.

[9] Cardaliaguet, P., Delarue, F., Lasry, J.-M., Lions, P.-L., The Master Equation and the Con-
vergence Problem in Mean Field Games, Princeton University Press, 2019.

[10] Cass, T. R., Friz, P. K., The Bismut-Elworthy-Li formula for jump-diffusions and applications
to Monte Carlo pricing in finance, arXiv:math/0604311.

[11] Crisan, D., McMurray, E., Smoothing properties of McKean-Vlasov SDEs, Probab. Theory
Relat. Fields 171 (2018), 97–148.

[12] Elworthy, K. D., Li, X.-M., Formulae for the derivatives of heat semigroups, J. Funct. Anal.
125 (1994), 252–286.

[13] Es-Sarhir, A., Scheutzow, M., van Gaans, O., Invariant measures for stochastic functional
differential equations with superlinear drift term, Diff. Int. Equ. 23 (2010), 189–200.

[14] Fan, X., Ren, Y., Bismut formulas and applications for stochastic (functional) differential
equations driven by fractional Brownian motions, Stoch. Dyn. 17 (2017), 1750028, 19pp.

[15] Fan, X., Derivative formulas and applications for degenerate stochastic differential equations
with fractional noises, J. Theor. Probab. 32 (2019), 1360–1381.

[16] Fuhrman, M., Smoothing properties of nonlinear stochastic equations in Hilbert spaces,
NoDEA 3 (1996), 445–464.

[17] Guillin, A., Wang, F.-Y., Degenerate Fokker-Planck equations: Bismut formula, gradient
estimate and Harnack inequality, J. Diff. Equat. 253 (2012), 20–40.

[18] Hammersley, W., S̆is̆ka, D., Szpruch, L., McKean-Vlasov SDE under measure dependent
Lyapunov conditions, arXiv:1802.03974v1

[19] Halmos, P. R., Measure Theory, Springer. 1950.

[20] Huang, X., Ren,P., Wang, F.-Y., Distribution dependent stochastic differential equations,
Front. Math. China (to appear), arXiv:2012.13656.
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