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Abstract

To characterize the regularity of distribution-path dependent SDEs in the initial
distribution which varies in the class of probability measures on the path space, we in-
troduce the intrinsic and Lions derivatives for probability measures on Banach spaces,
and prove the chain rule of the Lions derivative for the distribution of Banach-valued
random variables. By using Malliavin calculus, we establish the Bismut type formula
for the Lions derivatives of functional solutions to SDEs with distribution-path depen-
dent drifts. When the noise term is also path dependent so that the Bismut formula
is invalid, we establish the asymptotic Bismut formula. Both non-degenerate and de-
generate noises are considered. The main results of this paper generalize and improve
the corresponding ones derived recently in the literature for the classical SDEs with
memory and McKean-Vlasov SDEs without memory.

AMS subject classification 2020: 60J60, 58J65.
Keywords: distribution-path dependent SDEs, Bismut formula, asymptotic Bismut for-
mula, Malliavin calculus, Lions derivative

1 Introduction

To characterize stochastic systems with evolutions affected by both micro environment and
history, the distribution-path dependent SDEs have been considered in [21, 30], where the
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Harnack type inequalities, ergodicity and long time large deviation principles are inves-
tigated. This type SDEs generalize the McKean-Vlasov (distribution dependent or mean-
field) SDEs and path dependent (functional) SDEs (or SDEs with memory). Both have been
studied intensively in the literature; see, for instance, the monographs [6, 9] and references
within.

On the other hand, as a powerful tool in the study of regularity for diffusion processes, a
derivative formula on diffusion semigroups was established first by Bismut in [7] using Malli-
avin calculus, and then by Elworthy-Li in [12] using a martingale argument. Hence, this type
derivative formula is named as Bismut formula or Bismut-Elworthy-Li formula. Moreover,
a new coupling method (called coupling by change of measures) was introduced to establish
derivative formulas and Harnack inequalities for SDEs and SPDEs; see, for example, [35]
and references therein. Due to their wide applications, the Bismut type formulas have been
investigated for different models; see, for instance, [10, 26, 32, 33, 40, 42] for SDEs/SPDEs
driven by jump processes, [16, 17, 25, 36, 37, 39, 41] for hypoelliptic diffusion semigroups,
and [2, 14, 15] for SDEs with fractional noises.

Recently, the Bismut type formulas have been established in [4] for the Gateaux derivative
of functional solutions to path dependent SDEs, in [27] for the Lions derivative of solutions
to McKean-Vlasov SDEs. See also [3, 11] for the study of derivative in the initial points for
McKean-Vlasov SDEs, and Lions derivative for solutions to the de-coupled SDEs (which do
not depend on the distribution of its own solution) associated with McKean-Vlasov SDEs.
In these references, the noise term is distribution-path independent. However, when the
noise term is path dependent, the distribution of the solution is no longer differentiable in
the initial distribution, so that the Bismut type formula is invalid. In this case, a weaker
derivative formula, called asymptotic Bismut formula, has been established in [23].

The aim of this paper is to establish (asymptotic) derivative formulas for the Lions deriva-
tive in the initial distribution of distribution-path dependent SDESs, so that results derived in
[4, 23, 27] are generalized and improved. Since the functional solution of a distribution-path
dependent SDE takes values in the path space C([—7q, 0]; R?), where ry > 0 is the length of
memory, to investigate the regularities of the solution in initial distributions, we will intro-
duce and study derivatives for probability measures on the path space (or more generally,
on a Banach space), which is new in the literature.

For a fixed number 79 > 0, the path space € := C([~rp,0]; R?) is a separable Banach
space under the uniform norm

1€

w:= sup [§(0)], (€.

—rg<0<0
For t > 0 and f € C([—rg, 00); R?), the ¥-valued function (f;);>o defined by
fi(0) = f(t+0), 6¢€[—r0

is called the segment (or window) process of (f(t))i>_r,. Let % stand for the distribution
of a random variable £. When different probability measures are concerned, we also denote
Ze by Zep to emphasize the reference probability measure P. Let &?(%’) be the collection



of all probability measures on ¢ and, for p € [1,00), Z,(%) the set of probability measures
on ¢ with finite p-th moment, i.e.,

2y(€) = {pe P(E): |lully == {u(] - |2)}7 < oo},

where p(f) := [ fdu for a measurable function f. Then Z2,(%) is a Polish space under the
W,-Wasserstein distance defined by

W,(1v) = inf ( L (F||€—n||%7f(d§,dn)), v e PE), p>0,

meC(p,v)

O

where C(u,v) is the set of all couplings of p and v.
Consider the following McKean-Vlasov SDE with memory (also called distribution-path
dependent SDE):

(1.1) AX (t) = b(t, Xy, Ly, )dt + ot, X,y L) AW (L), >0,

where (W(t));>0 is an m-dimensional Brownian motion on a complete filtration probability
space (2, Z, (F)i>0, P), and

b:[0,00) x € x P(€) =R 0:[0,00) x € x P2(€) = R'@R™
are measurable and satisfy the following assumption.
(A) Letpell,o0).
(A1) b and o are bounded on bounded subsets of [0,00) X € x Z,(F).

(As) For any T > 0, there is a constant K > 0 such that

2(6(0) = 1(0),b(t, &, p1) = b(t,m,v))* + [lo(t, &, p) — ot n, v)|lis
< K{[I€ = nll% +Wy(u,v)*}, &neC v e P(€),te(0,T).

(As) When p € [1,2), o(t,&, ) = 0(t,£) depends only on ¢ and &.

For any .#,-measurable random variable X, € ¢, an adapted continuous process (X (t))¢>0
is called a solution with the initial value Xy, if P-a.s.

t t
X(t>=X(0)+/ b(s,Xs,c%XS)dH/ o(s, Xy, Zx.)dW(s), t >0,
0 0

where the segment process (X;)¢>o associated with the solution process
X (1) = X ()10 () + Kol ro(8), 2 10

is called a functional solution to (1.1).



According to Lemma 3.1 below, under the assumption (A), for any X, € LP(2 —
€, F0,P), (1.1) has a unique functional solution (X;);>¢ satisfying

E( sup ||X,

Z;;) < oo, t>0.
0<s<t

To emphasize the initial distribution, we denote the functional solution by X} if Zx, = p.
In this paper, we aim to investigate the Lions derivative of the functional pu — (P, f)(u),
where

(1.2) (Bef)(p) :=Ef(XE), t>0,f€By(E),neP(E)

This refers to the regularity of the law Zxx w.r.t. the initial distribution x. Due to the weak
uniqueness ensured by Lemma 3.1 below, (P,f)(x) is a function of y; i.e., it only depends
on g rather than the choices of the initial value X, the Brownian motion and the reference
probability space.

The remainder of this paper is organized as follows. Since % is a Banach space, in Section
2 we introduce the intrinsic and Lions derivatives for probability measures on Banach spaces,
and establish a derivative formula in the distribution of Banach-valued random variables. In
Section 3, we prove the well-posedness of (1.1) under assumption (A), which generalizes the
corresponding results derived in [21] for p = 2 and in [30] for Lipschitz continuous b(¢, ). In
Sections 4 and 5, we calculate the Malliavin derivative of X}" with respect to the Brownian
motion W (t), and the Lions derivative of X}' in the initial distribution pu, respectively.
Finally, in Sections 6 and 7, we establish the Bismut type formula for the Lions derivative
of (P.f)(u) in g when o(t,&, 1) = o(t,£(0)) depends only on ¢ and £(0), and the asymptotic
Bismut formula for the Lions derivative of (P,f)(u) in g in case of o(t, &, u) = o(t,€) (i.e.,
the diffusion term is path dependent but independent of the measure argument ).

2 Derivatives in probability measures on a separable
Banach space

In this part, we introduce the intrinsic and Lions derivatives for probability measures on a
separable Banach space, and establish the chain rule for the distribution of Banach-valued
random variables. These will be used to establish the (asymptotic) Bismut type formulas
for the intrinsic and Lions derivatives of (P,f) ().

The intrinsic derivative was first introduced in [1] on the configuration space over Rie-
mannian manifolds, while the Lions derivative (denoted by L-derivative in the literature) was
developed on the Wasserstein space 95(R?) from Lions’ lectures [8] concerning mean-field
games, where &, (R?) consists of all probability measures on R? with finite second moment.
The relation between them has been clarified in the recent paper [28, 29], where the latter
is a stronger notion than the former and they coincide if both exist.

Let (B,|| - ||s) be a separable Banach space, and let (B*, || - ||g«) be its dual space. For
any p € [1,00), denote p* = ]% when p > 1 and p* = o0 as p = 1. Let #(B) be the class of
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all probability measures on B equipped with the weak topology. Then

1
Zy(B) = {p € PB) : |ully == {ulll - IB)}> < oo}
is a Polish space under the LP-Wasserstein distance

W) = ot ([ o alintana) )
BxB

meC(p1,p2)

where C(u1, p2) is the set of all couplings of p; and ps.
For any p € &2,(B), the tangent space at p is given by

Typ=LP(B — B; u) := {¢ : B — B is measurable with u(||¢[|5) < oo},
which is a Banach space under the norm ¢z, , = {u(||q§||fl;)}%, and its dual space is

T:,=L"(B—B*pu) := {1y : B— B* is measurable with ||¢|[7: = ||[[¢[[e-

Ly < 0OF-

Definition 2.1. Let f : &2,(B) — R be a continuous function for some p € [1,00), and let
Id be the identity map on B.

(1) f is called intrinsically differentiable at a point p € Z2,(B), if

Tup > ¢ DEf(p) = lim flpo(1d + ffj)‘ ) — flp)

eR

is a well-defined bounded linear functional. In this case, the unique element DL f(u) €
T, , such that

T[{,p<DLf(:u)a ¢>Tu,p = /IB B* <DLf(:u)(x)> ¢($)>Bﬂ(dx) = Dé/f(:u)ﬂ (b € Tu,p

is called the intrinsic derivative of f at u.

If moreover

|fpo(Id+¢)™") — f(u) — DL f ()]

lim =0
1617, 5 10 19l|7.., ’

f is called L-differentiable at p with the L-derivative (i.e., Lions derivative) D f(u).

(2) We write f € C*(Z,(B)) if f is L-differentiable at any point u € Z,(B), and the
L-derivative has a version D* f(u)(z) jointly continuous in (z,u) € B x Z,(B). If
moreover DY f(u)(z) is bounded, we denote f € C(Z2,(B)).

Theorem 2.1. Let f : Z,(B) — R be continuous for some p € [1,00), and let (& )-cpo] be
a family of B-valued random variables on a complete probability space (2,7 ,P) such that
&o = limg 55250 exists in LP(Y). We assume that either & is continuous in € € [0,1] or the

probability space is Polish (i.e., ¥ is the P-complete Borel o-field induced by a Polish metric
on Q).




(1) Let po = %, be atomless. If f is L-differentiable such that D* f(uo) has a continuous
version satisfying

(2.1) 1D f (10 ()

for some constant C' > 0, then

(29) () — [(Z)

el0 9

pe < O+ 2|y 1geny), z€B

= E[p- <DLf(M0) (&), £0>IB%]'

(2) If f is L-differentiable in a neighbourhood O of uy such that D* f has a version jointly
continuous in (x, ) € B x O satisfying

(2:3) ID" f (1) (=)

for some constant C > 0, then (2.2) holds.

g <CO+ 27 1psy), (z,0) €B X O

To prove this result, we need the following lemma similar to [18, Lemma A.2] for the
special case that Z,(B) = Z5(R?) (i.e., p =2 and B = R?),

Lemma 2.2. Let {(€;, %, [P;)}iz12 be two atomless, Polish complete probability spaces, and
let X;,1=1,2, be B-valued random variables on these two probability spaces respectively such
that Lx,p, = Lx,p,- Then for any € > 0, there exist measurable maps

TIQ1—>QQ, 7‘_12Q2—>Ql
such that

Pi(t o7 =1dg,) =Py(ror ! =1dg,) = 1,
]Pl :P20T7 PQZ]P)lOT_la
||X1 — X2 (@) THLoo(]pl) —f- ||X2 - X1 (o] T_1||L°°(]P’2) S 5,

where Idg, stands for the identity map on €;,i =1, 2.

Proof. Since B is separable, there is a measurable partition (A, ),>1 of B such that diam(A4,) <
e,n>1. Let AY ={X; € A,},n > 1,i = 1,2. Then (A4"),>; forms a measurable partition
of Q; so that 3 -, Al =i = 1,2, and, due to Lx,|P; = Zx,|Ps,

Since the probabilities (P;);—12 are atomless, according to [19, Theorem C in Section 41],
for any n > 1 there exist measurable sets AL C Al with P;(AL \ A1) = 0,i = 1,2, and a
measurable bijective map B B

T AL — A2

such that
_ _ o -1 _
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By diam(A,) < e and P;(A% \ A’) = 0, we have
1(X1 = Xo o) 131 ey V 1Ko = X107 )1 g [ o(ry) < €

Then the proof is finished by taking, for fixed points w; € €;,1 = 1,2,

) ma(wr),  ifw € AL for some n > 1,
T(wi) =4 . :
wa, otherwise,

) = 7 wy), if wy € A2 for some n > 1,
wr, otherwise.

]

Proof of Theorem 2.1. Without loss of generality, we may and do assume that P is atomless.
Otherwise, by taking

(€, Z,P):= (2% [0,1],.Z x B([0,1]),P x ds), (£)(w,s) = &(w) for (w,s) € Q,

where Z(|0, 1]) is the completion of the Borel o-algebra on [0, 1] w.r.t. the Lebesgue measure
ds, we have

L= Lo, Els- (DM f(10) (&), E0)s] = Bl (D" (10) (&), o).

In this way, we go back to the atomless situation. Moreover, it suffices to prove for the Polish
probability space case. Indeed, when &, is continuous in e, we may take Q = C([0, 1]; R?),
let P be the distribution of &, let .# be the P-complete Borel o-field on € induced by
the uniform norm, and consider the coordinate random variable £ (w) := w,w € Q. Then
.,?5@ = Zcp, so that .,2%5@ = Z.p for any € € [0,1] and "%BI@ = L p, hence we have
reduced the situation to the Polish setting.

(1) Let Z, = po € &,(B) be atomless. In this case, (B, Z(B), 1) is an atomless Polish
complete probability space, where #(B) is the p-complete Borel o-algebra of B. By Lemma
2.2, for any n > 1 we find measurable maps

Q=B 7 B—Q
such that
P(r ' or, =1dg) = po(rpo7, ' =1d) =1

(2.4) P = g0, po=Por,*t

S|

180 = Tall ooy + 11 = &o 0 7, 2w o) <

Y

where Id = Idg is the identity map on B.
Since f is L-differentiable at g, there exists a decreasing function h : [0,1] — [0, 00)
with h(r) J 0 as r | 0 such that

(2.5) sup | fpo o (Id+¢) ") = f(uo) — Dg fo)| < rh(r), rel0,1].

1Bl Lp () <T



By Z:._¢, € Z,(B) and (2.4), we have

(2.6) One = (& = &)o' € Tupy Nbnelr, = 16 = &ollrw)
Next, (2.4) implies
(2.7) Zrreeeo =Po(Ta+& = &) = (HooT) 0 (To +& — &) = oo (Id+ @pe) ™
Moreover, by =8 — ¢, in LP(P) as ¢ | 0, we find a constant ¢ > 1 such that
(2.8) € — &ollrpy < ce, € €10,1].
Combining (2.4)-(2.8) leads to
[(Lrrecme) = F(Zeo) = Elp- (D" f)(0) (), (€ — &0))e]|

(2.9) = |flpoo (Id+ ¢ne)™) — fluo) — DE_f(po)|
< N Onellr,, Pl Pnellz,,) = 16 = Solle@ (I — &ollr@), € € 0,c7Y].

Since f(p) is continuous in p and D f(ug)(x) is continuous in x, by (2.1) and (2.4), we may
apply the dominated convergence theorem to deduce from (2.9) with n — oo that

|f(Ze.)—f(Ze)—Ele- (D" f) (0) (o), (&=&0))sl| < 1€c=Eoll oy hlll€~Eoll o)), € € 0,7

Combining this with (2.8) and h(r) — 0 as r — 0, we prove (2.2).

(2) When g has an atom, we take a B-valued bounded random variable X which is
independent of (& ).cp] and Zx does not have an atom. Then Zg sxire.—¢y) € Pp(H)
does not have atom for any s > 0,¢ € [0, 1]. By conditions in Theorem 2.1(2), there exists
a small constant sy € (0, 1) such that for any s, e € (0, so|, we may apply (2.2) to the family
o+ sX + (r+0)(& — &) for small § > 0 to conclude

1
d
f("%fa-i-sX) - f("%o-i-SX) = /0 5f(°%0+SX+(T+5)(§e*§O)) ‘5:0 dr

1
= /0 Elg (D" f(Leptsxrr(e—to) (b0 + X +1(& — &), & — &o)s) dr

By conditions in Theorem 2.1(2), we may let s | 0 to derive

f(':g’ﬂ{a) - f(':g’ﬂfo) = /0 E[B* <DLf(°g$o+r(§s—fo))(§0 + r(é& - 50))755 - §O>IB%] d?“, €c (07 30)‘

Multiplying both sides by ! and letting € | 0 , we finish the proof. m

3 Well-posedness of (1.1)

When p = 2, the existence and uniqueness of strong solutions to (1.1) follows from [21,
Theorem 3.1]; see also [30, Theorem 3.1] for p > 2, where b(t, £, i) is Lipschitz continuous
in (& p) € € x Zy(€¢). In the following result, the drift b(t,, ) may be non-Lipschitz
continuous w.r.t. &.



Lemma 3.1. Assume (A) for some p € [1,00) and let T'> 0. There exists a constant ¢ > 0
such that for any Xo € LP(Q — €,.%0,P), (1.1) has a functional solution Xy m) := (X¢)eepo,n]
satisfying

(3.1) E( suwp |X%) < e (1+EIXoll ),

0<t<T

and any two functional solutions Xo.1) and Yjo. 1) satisfy
(3.2) E( swp X~ Yill}) < cElXo - Yoll%.
0<t<T

Consequently, the SDE (1.1) is strongly and weakly well-posed.

Proof. By Itd’s formula and BDG’s inequality, it is easy to derive estimates (3.1) and (3.2)
from assumption (A). In particular, the strong uniqueness holds. Next, according to [31,
Theorem 2.3|, the assumption (A) implies the well-posedness of the decoupled SDE with
memory: for any p € C([0,T]; Z,(¢)) and X, € LP(2 — €, %, P),

(3.3) AV (t) = b(t, Y}, p)dt + o (8, Y, p)dW (L), ¢ >0, Y2 = X,

As shown in the proof of [22, Lemma 2.1], the weak well-posedness of (1.1) follows from the
strong one. So, it remains to prove the strong existence, for which we use the fixed point
theorem in the distribution variable as explained in the proof of [20, Theorem 3.3]. For fixed
T > 0, define

Dr ={ne C([0,T); Z,(€)) : 1o=Lx,},

which is a Polish space under the metric

W, v) == sup (e MWy (uy,v)), A >0,

0<t<T

Let
(H(p))e == Lyp, tel0,T],pne Prp.

By the fixed-point theorem, for the strong existence and uniqueness of (1.1), it is sufficient
to prove the contraction of the mapping H under the metric W,y for large A > 0; that is,
we only need to verify

(i) H: 91 — Pr,
(ii) There exist constants A > 0 and « € (0, 1) such that

Wy (H (), H)) < aWpa(p ), v € Zr,
Under the assumption (A), (i) follows easily from It6’s formula and BDG’s inequality. Below

we only prove (ii). For any p,v € Pr, let U(t) = YH(t)—-Y"(t),t € [—ro, T]. By It6’s formula
and (3.3), we find a constant ¢; > 0 such that

(3.4) AW (O < er {1Vl + Wy (e, v0)? bt + dM (1),

9



where
MO = p [ 19600 (5,2 1) = (s, Y)W ().

By BDG's inequality, and when p € [1,2) the coefficient o(t, &, 1) depends only on (t,&) so
that (A) implies
||0(57 }/;Mv :U/S) - U(Sv Y:sya VS)||12-IS < K|"I/tH‘2€7

we find constants ¢y, c3 > 0 such that

IE( sup |M(s)|p> < CQE(/
0V (t—ro)<s<t 0

V(th'o)

=

t 2

[0 () PP LW 1F + Loy W (s, Vs)Q}dS)
1 t
< GEIWIE +eo [ (BTG + W, 02) Y.
This, together with (3.4) and Y{' = Yy = X, yields
t
BN <o [ {EIGIE +Wylu s, t€0,7],
0
for some constant ¢4, > 0. Thus, the Gronwall inequality gives
t
E||w, |, < c4ec4T/ W (s, vs)Pds, t € [0,T],
0

which implies that for any A > 0,

t caT
MBI < et [N W s < W),
0
Since
Wor(H(p), H(v)) < sup (e VE[[T]z),
0<t<T
this implies (ii) for o = % and large enough A > 0. Therefore, the proof is finished. O

4 The Malliavin derivative of X}

Consider the separable Banach space ¢ with the uniform norm [[{[|¢ = sup,e(_,, o 1€(t)]-
For a Gateaux differentiable matrix-valued function f on %, let

IVAOI = sup [[(Vyf)(E)lus, €€,

n€?,|Inll«<1

where

(Vuf)(€) = tim LEEED =S

€l0 e

Besides (A), we will need the following assumption. A function f on € is called C'-smooth,
denoted by f € C'(%¥), if it is Gateaux differentiable with derivative V f(£) continuous in .
Moreover, if the derivative is bounded, we write f € C}(%). It is well known that a function

f € CLH(¥) is Fréchet differentiable.

10



(B) Letpe[l,00). a(t,& p) and b(t, &, 1) are bounded on bounded subsets of [0, 00) X € x
P,(€), Cl-smooth in £ € € and L-differentiable in p € Z2,(€), and satisfy the following

conditions.

(B1) {(V,0)(t,-, 1)}(£) is continuous in (§,n) € € x €, and there exist increasing functions
K, Ky :[0,00) = [0,00) such that

2+

VBt O < K1+l ™ +Kalllul)}. (66 ) € [0,00)x 6 x 2,(%).
(BQ) b(t7§7 ')?O—(t757 ) < Cl(‘@p(%ﬂ)) with
sup {u([D"b(t, &, ) (1) ()]

(&) €0, TIXE X Pp()

2.)} < oo, T > 0.

)+ u(|l Do (t,8, ) (1) ()]

(Bs) For any T > 0 there exists a constant K > 0 such that for any ¢ € [0, 77,
2(6(0), {(Veb)(t. -, )} )"+ I{(Vea)(t, - ) m)llfis < K€l &0 € C, € Py(€).

o(t,€) depends only on ¢ and &, and there exists an

(By) It p € [1,2), then o(t,&, 1) =
[0,00) — [0, 00) such that

increasing function K :

lo(t, & wll < K@) (1+[j]|2), €eE.

Obviously, (B) implies (A) so that Lemma 3.1 applies. For any T' > 0, set € :=
C([0,T];R™) and consider the Cameron-Martin space

H— {h & el h(0) = 0, (1) exdists . 1, ] = (/OT |h(t)|2dt)% < oo}.

By the pathwise uniqueness of (1.1), we may regard X' as a ¢-valued function of X'
and W, and investigate its Malliavin derivative w.r.t. the Brownian motion W. For any
h € L*(Q — H,P) and € > 0, consider the SDE

AX™ () = {b(t, X", o) + eo(t, X, ) h(t) bt + o (8, X7, ) dW (1),

(4.1) hey .
te [O7T]7‘XO7 T= XOaut = gX{‘
When h is adapted, according to the proof of Lemma 3.1, assumption (A) implies the
existence and uniqueness of this SDE.

The directional Malliavin derivative of X*(¢) along h is given by

Xhen(t) — Xn(t
Dy X*#(t) := lim ®) ®)
e—0 g

provided the limit exists in L2(2 — C([0,T];R%),P). To prove the existence of this limit,
we first present the following lemma.

11



Lemma 4.1. Assume (A) and let (By) hold if p € [1,2). Let h € L*(Q2 — H,P) which
is adapted if o(t,&, u) depends on &, and let Xo € LP(Q2 — €, Fo,P). Then there exists a
constant ¢ > 0 such that

(42) E( sup X — X[[7") < e, ceo1]

Proof. Below, we only consider the case that h is adapted and o(¢, &, ) depends on &, since
the proof for the setup that o(t, &, ) is independent of ¢ is even simpler.

Let Zhe(t) = X20=X10 apg

3
T, =inf {t >0 || X}']|¢ + | X5 > n}, n>1
By (1.1) and (4.1), we have

b<t7 Xth’euua ,ut) B b<t7 Xzi,ua ,U/t)
£

dzhe (1) :{
6XIE ) — ot X
IAURY ’“t)a ott, “”t)dW(t), )

+o(t, X, ut)iz(t)}dt
(4.3)

Applying It6’s formula and taking (A) and Z§ = 0 into account yields, for ¢ := 2 V p,

tATn 2
Zreennr < d [ {22000, X0 ) — s X2 )
0
—1
(4.4) U o X294 1) — (s, X2 ) s s + N¥(8) + D70

tATh
<c [z s+ NG + ()
0

for some constant ¢ > 0, where, by setting r® = 1 for r € [0, 00) in case of p = 1,

tATh
N(t) =g / 2P (s) | o (s, X, 1, )i(s)]ds,
0

M) =4 [ 1226 s, X ) ol X IV (S).

Let ¢ > 0 be a constant such that ||kl < 1 due to h € L>®(2 — H,P). By Holder’s and
Young’s inequalities, Lemma 3.1, (A) and (B4) when p € [1,2), we find constants ¢y, c; > 0
such that

tATh

1/2
B swp [N(0)l) < quB( sup [Z7()P0 [ s, X2 )

0<s<tAThp 0<s<tATh 0
2Vp
2

t
(4.5) < E( sup |Zh’a(s)|q)+coE(/(1+||X£’E’M||3f/\p>d3)
0

0<s<tATp

1
4
1
gZE( sup ]Zh’a(s)]2>+cl, t e [0, 7).

0<s<tATp

12



By (A) and the BDG inequality, there exist constants ¢y, c3 > 0 such that

€ h,e||1q AT h,e |19 1/2
B( sup M)} < B( sup 2R [ 20
0

0<s<tATn 0<s<tATn

< 3B swp 120905) + o [ ENZig s
0

0<s<tATh

Combining (4.4)-(4.6), we find a constant ¢ > 0 such that

t
B( s 2048) < c—|—c/ E||Z'E ||tds < oo, ¢ € [0,T], ¢ € [0, 1.
0

0<s<tATp
By applying Gronwall’s inequality followed by letting n — oo, we derive (4.2). O

Lemma 4.2. Assume (B). For any X € LP(Q — €, Fy,P) and h € L*(Q — H,P) which
is adapted if o(t,&, u) depends on &, the limit

X X
(4.7) Dy X} = lim —+—— 1

, t€]0,T]
el0 g

exists in L*(Q — C([0,T);€),P), and it is the unique solution of the following SDE with
memory
dw"(t) = {{(Vupb) (t, -, ) HXI) + o (8, XE o) B(t) e

(4.8) .
+ {(Vop0) (b, ) XYW (E), ¢ € [0,T], wh = 0, 1y == L.

Proof. By (Bj3) and the boundedness of o due to (B;), for any adapted h € L*(Q — H,P),
the SDE (4.8) has a unique solution in L*(Q — C([0,T];%¢),P) and for some constant C' > 0,

(4.9) E( sup [wf|l%) < CE|A|} < oo.

0<t<T

So, it remains to prove that the limit in (4.7) exists in L*(Q2 — C([0,T); €),P), and it solves
(4.8). Let AMe(t) = Z™=(t) —wh(t), where ZM(t) := w as before. Then, it suffices
to verify

(4.10) limIE< sup |Ah’5(t)|2> ~0.

e—0 0<t<T

Observe that (4.2) and (4.9) imply

(4.11) E( sup |Ah’€(t)|2> < .

0<t<T
By (4.3) and (4.8), we have

AN () = {{(Vard)(t, - ) HXE) + T5 (1) bt

(4.12) F L{(Vas0) (-, ) JXE) + D5 (t) YW (1),

13



where

(4.13)
D(8) £ = (ot X1 ) — ot XE, ) ()

+ / {{(VZ}“Eb)@? Y :U’t)}(Xtu + 9<Xthjs7u - Xiu)) - {(VZZ“Sb)@a " :U’t)}<X#>}d9

5(t /{{ Vo)t ) HXE + 0(X " = X)) = {(V gneo) (-, ) HXT) .

Obviously, when o (¢, &, ) = o(t, 1) does not depend on &, the noise term in (4.12) disappears
so that the SDE reduces to an ODE for which we can allow h to be non-adapted. Applying
[t0’s formula yields

AP (1) < / [2AN"(5), {(V 31 B)(5, - 1) X)) + 20T 310 (5, i) } (X2 [} s
2 / [(AR(5), TS () + [T5(5) 2 bds

2 [0, AT o) s ) OXE) £ T JIV ()
=: Ti(t) + Y5(t) + Y5(¢).

Obviously, (Bs) implies

t
(4.14) E( sup Ti(s)) < 3K / EJ|A"<|2.ds,
0<s<t 0
while Cauchy-Schwarz’s inequality gives
t
@15) (s T56)) < [ BN+ BINR + 2Tl s

Next, by (B3) and BDG’s inequality, we find constants ¢y, ¢y > 0 such that

t 1/2
B sup T5)) < i sup W [ (7000005 }K0) + T30 s)
0<s<t 0<s<t
(4.16) 1
< 2E( sup [A(s) +(;2/ [EAM |2 + E|T5(s)]2}ds.
2 0<s<t

Combining (4.14), (4.15) with (4.16), there exists a constant ¢ > 0 such that

t t
B sup 14%()F) < e [ BIAMIEs a0 [ {BINOF + BITj(e) fhs}s

0<s<t

By Gronwall’s inequality and (4.11), this implies

(4.17) E( sup [A"(5)|?) < ey E / {IT5 () + IT5(5) s } s

0<s<t

14



Moreover, by (4.13), we have
(4.18) LSO + 1T s < LOIROF + L)1 2<%
where according to (B;) and (Bj) we find a constant ¢(7") > 0 increasing in 7" such that

L(t) = 2o, X ) — ok, XE, )1

Je(t) = 2/0 {HVD)(E, -, o) }XE + 00 = XE) = {(VO)(¢, -, ) HXE) P

+ (V) (@t -, ) X+ O = XE)) = {(Vo)(t, -, ) HXE) | }
< (T (L+ XN + 11X = XPNE + Ke(lwell), ¢ € [0.T].

By (Bj;), and (4.2) and h € L>*(Q2 — H,P), we obtain

T
(4.19) limsupE/ L()|h(t)[Pdt < 2K||h||%oo(Q_>H’P) limsupE[ sup ||Xf’5’”—X{‘||?g} = 0.
0

e—0 e—0 t€[0,T

Below we complete the proof of (4.10) by considering two different cases.
(1) When p > 2, (3.1) and (4.2) imply that {||Z°||2(1 + || X/(|Z>)}ecio.q is uniformly
integrable in L'(P) and

E[| ZM 50X = Xl ™) = "Bl 20|l S ce”® =0 ase— 0.

Then, by the dominated convergence theorem, (4.2) and J.(t) — 0 in probability, we arrive
at

T
lim B / T 21|12t = 0.
This, together with (4.18) and (4.19), implies
T
(4.20) i E [ (L300 + U300 s b = 0
so that (4.10) follows from (4.17).

(2) When p € [1,2], (By) and (3.1) imply J.(t) < K for some constant K depending on
T. Then,

t t
(4.21) E/ {IT()P + IT5(s) s pds < er + QK/ IAL<l%ds, te[0,T],
0 0
where, by the dominated convergence theorem,
T
- / E{LOOP + (6wl 2}t =0 as e — 0.
0

Substituting (4.21) into (4.17) and using Gronwall’s lemma, we derive

limE< sup |Ah,e(t)|2> < lim 6Te(c:>,—|—2K)T —0.
e—0 OStST e—0

Therefore, (4.10) holds. O
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Let (D, 2(D)) be the Malliavin gradient with adjoint (i.e., Malliavin divergence) (D*, 2(D*)).
Then,

(4.22) E[D,F] = E[FD*(h)], F € 2(D),he 2(D").

In particular, if h € L?(Q — H,P) is adapted, then h € Z(D*) and

(4.23) D*(h) = / (i(t). AW (£)).

see, for example, [24].

Proposition 4.3. Assume (B). For any h € Z(D*) which is adapted if o(t,&, ) depends
on &, (4.8) has a unique functional solution satisfying (4.9) for some constant C > 0, and

for any f € CH(¥),
(4.24) E[(Vup /)(X7)] = E[f(X7)D*(h)].

Proof. As explained in the proof of Lemma 4.2, the first assertion follows from assumptions
(A) and (B). So it suffices to prove (4.24).

We first consider h € L*(Q — H,P)NZ(D*). By Lemma 4.2, the chain rule and (4.22),
we obtain

(4.25) E[(Vup )XF)] = E[Dp{f(XF)}] = E[f(X7)D"(h)].
In general, for adapted h € 2(D*), we choose (hy)n>0 C L®(Q2 — H,P) N 2(D*) such that
(426) i Bl = B 15" (ha) = D" (W] =0
In terms of (4.25), we have
(1.27) E[(V, ) (X2)] = B[f(XH)D* ()], n =1
By (B) and (4.8), we find a constant C' > 0 such that

Ellwy — willz < CE[lh — hall3,.
This, together with f € C} (%) and (4.26), yields the desired formula (4.24) by taking n — oo
in (4.27). O
5 The Gateaux and intrinsic derivatives

For fixed p € [2,00) and X}' € LP(QY — €, %, P) with the distribution p, let (X}')>0 be
the unique solution to (1.1) starting from X/'. To calculate the intrinsic derivative of X}'
w.r.t. p, we consider the tangent space T}, := LP(¢ — €, ), where € := C([—ro,0]; RY)
endowed with the uniform norm |[|£|l¢ 1= sup;e_,, o) [§(¢)] is a separable Banach space with
the dual space €* consisting of all bounded linear functionals o : € — R. We denote the
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dualization between €* and € by ¢« (., )¢ = a(§) for a € €*,§ € €. For any u € Z,(%)
and ¢ € T}, let

p = po (Id+0)™! = Liarsxp)-
Let (Xf¢)t20 be the functional solution to (1.1) with X6‘¢ = (Id + ¢)(X}), and denote
p =<

por 120,

Then the directional intrinsic derivative of X} along ¢ is given by

Xﬂw _ XM
Lyt iy St At
(5.1) DEX] i= li = —
provided the limit above exists.

More generally, for € € LP(Q — €, .%y,P) and € € [0, 1], we let X7** be the functional
solution to (1.1) with X" = ¢ + X%, and denote p5° = gXtag,u- Then the Gateaux

derivative of X}" along £ is

Xaf,u — XM
BT 13 t
provided the limit above exists. Obviously,
(5.3) VeX{'=DiXl!" if & = o(X]).

To prove the existence of V¢ X}, we need the following lemma.

Lemma 5.1. Assume (A). For any T > 0 and q > p, there ezists a constant ¢ > 0 such
that

(5.4) B sup X5~ XL[%) <t B, t€[0,T], € €[0,1], € € LYQ >, Fo,P),

0<s<t

Proof. Set ®%¢(t) := w,t > —rg,e > 0. Since X" and X! solve (1.1) with the
initial values XS and X/, respectively, one has

1 € €
55 AD=(t) = —{b(t, X7, 1) — b(t, XY, ) bt
5.9
1 13 € €
+ g{0-<ta thﬂumug’ ) - O(ta Xtu7ut>}dw(t)7 t > 07 q)(% = g

By (A), and applying Itd’s formula and the fact that
W, (1$%, o) < EIIXZH — XF|L = B[ 05715 < /{25714 } e,
we find a constant ¢; > 0 such that

t
(o) < [ jose(s)r
0

2

g<(I)§7€(3), b(S, XE&H? Mgs) - b<87 Xg, /~Ls)>

1
(56) + Lo, X260, i59) — (s, X2, 1) s bl + M (1)

g2 s

t
<en [ 19l + B s + (o), 020,
0
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where

M) = 2 [0 (@5 (0), (oo, X590, 15%) = o5, XE, )W (5),

Next, by BDG’s inequality and (A), there exist some constants ¢y, c3 > 0 such that

N

t
E( sup M(s)) < —E( sup [9°(5)[* [ 55 ()12 (s, X35, i)~ a(s,X5,us>r\2ds)
0

0<s<t € 0<s<t

1 t
< 3B ( sup [95°(0)1") + B [ 057 s
0

2 \o<s<t

Combining this with (5.6), we derive

t
B sup 85714 ) < ZB|@§7[% + cr [ BJ@Se|ids, +20

0<s<t 0

for some constant ¢4 > 0. By stopping at an exit time as in the proof of Lemma 4.1, we may
assume E(supogsgt H<I>§EH%) < 00, such that (5.4) follows from Gronwall’s inequality. [

Consider the following SDE with memory
A (1) = { (VD)1 ) }XE) + (B (DM (tm, ) () (X2, )

LT ,60) (6 )} (XE) + (B (DFor(t, 1, ) () (XL, 16))

}dt
=X}

t

(5.7)
}dW(t)

n=X}'

with the initial value vé = &, where, for t > 0, p; 1= Zyr and

D00, ) () (XE), ) = = (o (DM, ) () (XE),06)), .,y € R
D (0, ) () (XE), ) = (oD 0350 ) 1) (XE),0606), iy g € RESR™

Let p > 2. By (B), this linear SDE has a unique solution. Moreover, by It6’s formula and
BDG’s inequality, we find a constant ¢ > 0 such that

(5-8) Ellvf|% < cE[¢llg, t€0,T], €€ LU~ F, F,P).

Lemma 5.2. Assume (B) for some p > 2. Then for any £ € LP(Q2 — €, %y, P), the limit
in (5.2) emists in L*(Q — C([0,T);€),P) and it gives rise to the unique functional solution
of (5.7).

Proof. Let ¢ = &% — 4 where (95),5¢ solves (5.5). To end the proof, it suffices to prove

1 —=6:€1|2 _
(5.9) imE( sup [E57[7) = 0. T >0,
Set
X0(t) i= XH(t) + O(XEH(t) — XH(t)), t > —rg, 0 €0,1].
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By (5.5), (5.7) and Theorem 2.1, we obtain
=5(t) = {{(Vaweb)(f, 1) YXE) A+ (B (D0t 1, ) (1) (XE), E)e)

4 {{(T o) ()} XE) + (B (Dt ) () (XE), Z5)e)

) +T§(t)}dt

77=Xt

+T5(0) faw (@),

n=X{'

where

/ {{ e <b)( vn“t Xae) {(V(I,f,ab)(t,-,pt)}(Xé‘)}dg
b [P0 DL ) = (D100t (K0, 95), )}

n=X}'

/ HVageo) (6 tENIXE) = {(Vageo) b i) }XF) 0

+ / {Be (D o(tn, ) ZLyeo)(X77) = (Dot D)) (XE), 95),) }| a6,

n=X{'

By Ito’s formula, we obtain
(5.10) [Z55(1)]2 < O5(t) + O5(1) + O5(t) + O5(t), t >0,
where
t
01(0) = [ {2(E5(6), (Tzgeb) oot (X2 + 3 (T2 (X2 s
0
+2(E%(5), {Ee- (D"b(s,7, ) (1) (XL), Z5%) 6 })

+ 3l (B (Do (s, 1, ) (1) (XL), 25Dl x

05(t) - / 13155 12 + 2(25%(s), 15 (s)) hds,

O5(t —2/ (E54(s) v,—h o) (s, ps)(XH)
B (D 0 (s,1,)) (1s) (X1), Z5%)e) + T2(s) }

By (B), we find a constant ¢; > 0 such that for any ¢ € [0, 77,

t
E( sup ©5(s)) < e / {EIZE 1% + EIES=(s) [y EIZS=(s)|12 s
0

0<s<t

(5.11) t
<2 [ BIZ|ds
0

Next, there exists a constant ¢y > 0 such that

(5.12) E(sup @;<s)) gc2/0 (BI85 (s)[2 + E|T5(s)|” + E[T5(s)*}ds, ¢ € [0,T].

0<s<t
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Moreover, applying BDG’s inequality and using (B3), we find constants ¢z, ¢4 > 0 such that

( sup 055) < i s ) [ (T} 62

0<s<t 0<s<t

+ (B (D 0 (5,1, ) (1) (X1), Z5%)) + T5(5) s

1/2
}ds)
n=X£t
1

< 2E( sup [25(s)]” +@/{HT“M+EMR$%§®,tENﬂ-

2 0<s<t

Substituting this and (5.11), (5.12) into (5.10), and noting that Z5° = 0, we find a constant
¢ > 0 such that

B sup [25°17) < [ EIZE Vs +o [ {EIOF + EIT)s}ds. t€0.7]

0<s<t

Since E( supg<,<; [25°]1%) < oo due to (5.4) and (5.8), Gronwall’s inequality yields

(5.13) ]E( sup |EE’5(S)]2> < ceT / (B3 ()2 + B[ T5(1)|3s }ds.
0<s<T
This implies (5.9) by following the argument to deduce (4.10) from (4.17). O

Let C)(%) be the class of functions f € C'(%) such that for some constant ¢ > 0,

(5.14) IVAOI < e+l €€

Proposition 5.3. Assume (B) for somep > 2. ForanyT >0, f € C)(€) and pn € P,(F),
(Prf)(p) is L-differentiable w.r.t. p € Z,(€) and

D (Prf) (1) = By (Vf(X]), V gxin X
Consequently, letting ® : € — € be a measurable function such that
(X)) = EQVXP}Vf(X7) | XE),
we have DX (Prf)(u) = .

Proof. Let X" = X!U49)™ be the functional solution to (1.1) with initial value X% +
d(X{). Forany f € C)(%), by Lemma 5.2, (5.8) and (5.14), we may apply Taylor’s expansion
to derive that for small ||¢||z,

(Prf)(po(1d+¢)" ) =(Prf) (1) = E[f (X2") = f(XF)] = B (VF(XE), Voxy X1)e+o(|0]17,,)-

This implies the desired assertion. O
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6 Bismut formula for the L-derivative

In this section, we consider (1.1) with o(¢,&, 1) = o(t,£(0)) dependent only on ¢ and £(0),
ie.,

(6.1) dX(t) = b(t, X¢, Lx,)dt + o(t, X (¢))dW (¢).

We aim to investigate the intrinsic derivative of (P,f)(u), given by (1.2) associated with X7".

The main results (Theorems 6.2, 6.3 and 6.4 below) of this part generalize those derived
in [4] for SDEs with memory and in [27] for McKean-Vlasov SDEs without memory. Going
back to the case 7o = 0 (i.e. without memory), the conditions in Theorems 6.2 and 6.3
are weaker than the corresponding ones used in [27], since the drift b herein is allowed to
be non-Lipschitz continuous w.r.t. the space variables. We will first prove a general result
and then apply it to establish the Bismut formula for (1.1) with additive and multiplicative
noise, respectively.

6.1 A general result

Theorem 6.1. Assume (B) for some p > 2, and let T > rq. Suppose that for any p €
Py (€) and £ € LP(QY — €,.%0,P), there exists he,, € P(D*), which is adapted when
o(t,&, 1) depends on &, such that

(6.2) Wy = VXY,

where Ve XY is in (5.2) and wgf"‘ solves (4.8) for h = he,,. Moreover, suppose that for some
increasing function ar : [0,00) — [0,00) we have

(63)  EID*(hep) < ar(lull,)BIEIL)?, € € LP(Q— €, Fo,P), i € Z,(€).

Then the following assertions hold.
(1) For any f € %$(¥),

(6.4)  [(Prf)(p) — (Prf)(v)] < \/aT(HMHp VA oW lps, v), v € Pp(E).

(2) For any f € CHE), (Prf)(u) is intrinsically differentiable in p € P,(€) such that

(6.5) D!;(PTf)(/i) = E[f(X;)D*(h¢(X6‘)7u)}v o €Ty
Consequently,
(6.6) IDHPrH)IE < arllul,)(Prf2) i), 1e 2,().

(3) If moreover
E|D*(h¢ ) — D*(h 2
(67) lim sup ’ ( £, ) 2( 5:#)’
Wp (v,u)—0 E|l€]|.€(0,1) (MEH%)E

then for any f € Co(€), (Prf)(p) is L-differentiable in p € Z,(€) and (6.6) holds.

=0, pe P2, (6),
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Proof. (1) We first consider f € C}(€). Recall that X" is the functional solution to (1.1)
with X5 = e + X}, and pf° = ZLysen. Then, we have

Ef(X$T9) —Ef(X5)

ds e—0 - = VS(PTfXNg’S), s € [0,1].

Then, by applying (6.2) with p replaced by u®* and using Proposition 4.3, we obtain

d
65 BEET) =Bl (VI VX))
= B[ (VTG wq )] = B[F(XF)D" (he,)]

Whence, one has

(Prf)(Sage) — (Prf)(u) = EF(X5) ~ Bf(Xf) = [ SBAOGE")ds
(6.9) 0

1
= [ LD e, £ € O

Let
1
fir(A) = / E[14(X:5) D* (he e)]ds, A € B(E).
0

Since C} (%) is dense in LI(XX%# + Lxn + fir) O PBy(€), (6.9) implies
1
(6.10) (Prf)(Zxpie) — (Prf)(p) = / E[f(X5")D*(he ye)|ds, [ € Bu(E).
0
Now, for any v € Z(%), let § € LP(Q — €, F, P) such that ZLxp . = v and

W, (1, v) = {E||€|2}7.

We deduce form (6.10) that

D=

(Prf) (1) = (Prf)@)] < |[fllo sup (E[D"(he es)

2
s€[0,1] )

< ||f||oon(N7 V) sup \/ O‘T(H/ﬁ’s”p)-

s€[0,1]

Combining this with

= lp = {BILXE + séllg}> = {Ells(XE +€) + (1 — ) XE Iz}
1 1
< (1= s{E[XGle > + s{EIXG + &l <llplp vV lIvlp, s €[0,1],

we prove (6.4).
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(2) Let f € CH(€), p € Py(€) and ¢ € T,,,,. Applying (6.8) with £ = ¢(X}) and s =0,
we obtain (6.5), which, together with (6.3), implies
2
D5 (Prf)(w)? < ar(lullp) {EN6(XE)IE Y ELf2(XE)] = ar(lull,) 1617, , (Prf?) (1), ¢ € Tup.
Therefore, (6.6) holds true.
(3) Let f € Cy(%). To prove that (Prf) is L-differentiable, it suffices to verify

[(Prf)(po (Id+¢)~") — (Prf)(u) — vl
¢z,

(6.11) L(9) = 0 as ||l 1 0.

where
Yo = E[f(X;“)D*(hzzﬁ(X{)‘),u)}a ¢ € Tu,p
By (6.10) and the definition of ~,, it is easy to see that

(6.12) 1(¢) < Au(6) + Bu(9)
holds for
1 1 sh(XE
A(9) = / E[[{ (X700 — (X)L D" (o )]s,
1615 Jo
1 1
B(¢) = Wl [ D axpassir) = Doy ) ) s,
165, Jo

Since f € Cy(%), and (5.4) implies E||X;¢(Xg)’“ — X7l% — 0 as [|¢]|7,, — 0, it follows from
(6.3) and the dominated convergence theorem that

lim A = 0.
I61lz3,,,—0 a2
Finally, (6.7) implies limg),, 0 Bu(¢) = 0. Therefore, (6.11) follows from (6.12). O

Remark 6.1 When ry = 0 (i.e. without memory), the Bismut formula for the L-derivative
has been establish in [27] for all f € %,(%), by applying a formula like (6.10) for small
e > 0 replacing 7. However, in the present case (6.10) is available merely for 7" > rg, so
that this technique is invalid. So, in Theorem 6.1 we only establish the Bismut formula of
the L-derivative for f € Cy(%).

6.2 Additive noise: non-degenerate case

Theorem 6.2. Assume (B) for some p > 2, and consider (1.1) with o(t,&, ) = o(t)
independent of (&, 1) such that (o0*)(t) is invertible with (oo*)~1(t) locally bounded in t.

(1) There ezist an increasing function C' : [rg,00) — [0,00) and a constant ¢ > 0 such that
for any T > 1o, f € By(€), and p,v € Z,(¥),

|(Prf)(p) — (Prf)v)]
(6.13) < C(T)HfHoo{l + (T = 10)"% + Ka(c(L+ ||l + ¥]],))

+ (lly + 1711) "% P (1, ).
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(2) ForanyT > 1y and f € Co(€), (Prf)(n) is L-differentiable in p € P,(€) such that

(6.14) DﬁPﬁWﬂw:—E(ﬂx#yA<&f@vw4}@ﬂﬁ@mmv@»),¢ezpp
holds for

HO(t) : = {(Vz,b)(t, - o) }(X]') + (E[g- (D"b(t, €, ) (1) (X['), Zo)]) = xr
N D(X5)(0) Lo 7o) ()
T — T ’

where p; := Lyp and (Z;)i>o is the segment of (Z(t))i>—r, given by

ORI A
e (X0)(0), it =0.

Consequently, there exist an increasing function C' : [ry,00) — (0,00) and a constant
¢ > 0 such that
(6.15)

1D (Prf) ()l < C(T){1+ (T = 10) % + Ka(e(1 + |lull,) + ™ H (P}

holds for all T > 1o, f € Cy(€) and p € Z,(€).

Proof. To apply Theorem 6.1, for any u € Z,(¥¢) and £ € LP(Q2 — €, %, P), let

(6.16) he u(t) == —/0 {o*(00*) " }(s)H " (s)ds, t€[0,T],
where

HE () = {(V 5e0) (-, 1) HXE) + (Blig- (DE0(E 1, ) (1) (XE), Z5 )] e xp

§(0)Ljo7—r) ()

(6.17) + T —rg ,

(T —To — t)+
T — To

Z5(t) == €W 1) + €(0)1(0,00) ().

By (B), the boundedness of (c6*)71(¢) in ¢ € [0, 7], and the definition of H*#(t), we find a
constant ¢; = ¢;(7") > 0 increasing in 7" such that

(6.18)  |he,u()* < crllEZ{(T = ro) Lor—ro) (1) + I XFIG " + Kolllpuelly)?}, ¢ € 10,7,
Note that (3.1) and p € Z2,(€) imply

sup |[pullp < c(1V [|pllp)
te[0,7)
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for some constant ¢ = ¢(T") > 0 increasing in 7. This, combining (3.1) with (4.23) and
(6.18), yields

T

E|D* (he,,)* = E / e, (1) 2t

< a(E[E15) 7 {(T = 10) ™ + EIXL) 27 + K (e (1V [lul,))*}
< es(BIE15) P {1+ (T = 7o) + 5™ + Kale (1 V [|ul],)?} < oo

(6.19)

for some constants ¢y = co(7T), c3 = c3(T") > 0 increasing in 7.
Note that (Z¢)icjor] is the functional solution to the SDE with memory

AZ5(t) ={ L b)(t, - 1) HXE) + 0 (1) u(0)
o (Bl (D bt 1, ) () (XE), ZE) ey pt, £ € [0,7T], 2§ = €.

On the other hand, by Lemmas 4.2 and 5.2, the process

(6.20)

VeXH(t) — when(t), t€[0,T)

also solves (6.20) with the same initial value &. By the uniqueness of (6.20) and Z5 = 0, we
derive VX = w;“, that is, (6.2) holds. Moreover, (3.2) implies

WP(/J’th) < CWP(:Ua V)? te [OvT]

for some constant ¢ > 0, where v, := Zx», so that (6.16), (6.17) and the continuity of
b(t,&, 1) in p imply (6.7). Therefore, the desired assertions follow from Theorem 6.1 and
(6.19). O

6.3 Additive noise: a degenerate case

As generalizations to the stochastic Hamiltonian system [17] and the counterpart with
memory [5] as well as the distribution dependent model [27], we consider the following
distribution-path dependent stochastic Hamiltonian system for X (t) = (XM (¢), X®(¢)) on
RIF™ .= R! x R™, which goes back to (1.1) for d = [ + m:

(6.21) {dX(l)(t) — (¢, X (1))dt,

AX O (1) = b2 (¢, Xy, Ly, )dt + o (t)AW,

where (W (t))i>0 is an m-dimensional Brownian motion on a complete filtration probability
space (£, ., (%#t)i>0,P), for each t > 0, o(t) is an invertible m x m-matrix, and

b=, @) :[0,00) x € x P,(€) — R+™

is measurable with 6 (¢,&, 1) = bW (t,£(0)) dependent only on t and £(0). Let V =
(V) V@) be the gradient operator on R*™, where V() stands for the gradient opera-
tor w.r.t. the i-th component, i = 1,2. Let V? = VV denote the Hessian operator on R*™,
We assume
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(H1) For every t > 0, o(t) is invertible, bV (¢, -) € C2(RH™ — R!), b@) (¢, €, 1) is C* in both
£ € € and p € Z,(%), and there exists an increasing function K : [0,00) — [0, 00)
such that

H(VOO) (- ) HEOD -+ I{V2D) (2, )} EODI + LV (E, -, 1)} ()
+ DM &, ) (w)llzg, + ol + o)~ < K ()

holds for all ¢t > 0 and (&, p) € € x Z,(¥).

Obviously, the assumption (H1) implies (B) for the SDE (6.21).

For any pu € Z2,(¢), let (X{')i>0 be the functional solution to (6.21) with Lxx = p,
and denote p; = Zxp as before. To establish the Bismut formula for the L-derivative of
(Prf)(n) := Ef(XF), we shall follow the line of [27, 39], where the case without memory
was investigated. To establish the Bismut formula, we need the following assumption (H2),
which implies the hypoellipticity.

(H2) There exist an [ X m-matrix B and some constant ¢ € (0, 1) such that
(6.22) (VP (t,.) — B)B*a,a) > —¢|B*al?, Va € R"

Moreover, there exists an increasing function 6. € C'([0,T — ro]; R, ) such that
t

(6.23) / s(T — 1o — S)KT—TQ,SBB*K';—TO75dS >0y, t €0, T —r1gl,
0

where, for any s > 0, (K} )¢5 solves the following linear random ODE on R' ® R":

d
(6.24) &Km = (VO (t, X (1) Ky, t> 5, Koy = I

with I}, being the [ x [ identity matrix.

Specific examples for b(") satisfying (H2) are included in [27, Example 2.1]. Let T > 7.
According to the proof of [39, Theorem 1.1], (H2) implies that the [ x [ matrices

t
Q= / S(T = 1o — 8)Kr_p, o(VOOV) (s, X(5)) B* K7, (s, t € (0,T ]
0

T—rg,s ’
are invertible with

(6.25) oIl < , 1€ (0, —r.

o
(1-¢)0(t)

To apply Theorem 6.1, for any & = (£€M, @) € LP(Q — €,.%,P), we need to construct
he, € 2(D*) such that (6.2) holds. To this end, as in [27], where 7y = 0 is concerned, we take
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the €-valued process oy = (a§ ), a?)), which is the segment of «(t) defined by a(t) = £(t)

for t € [—19,0] and

(6.26)
T —rg—t)* HT —ro— )t B* K5, , [T
@) () .= <—0 2 (0) — T Toﬁt/ 0201 K. W(0)d
Q ( ) T — T 5 ( ) fOT_ro Hgds . SQS T—T’O,Og ( ) S
.o B T=rop _py— s 9
- t(T —To— t>+B KTfTo,tQTiro /0 TfTOKTfro,s (Vé(g)(o)b(l)> (S, X“(S))ds,

t
awawzmwTﬂw@g&mm»+z1Q4V%mwmxa»uww»®),tzu

Now, let (he,(t), w"s(t))ep,r) be the unique solution to the random ODEs

hept) 1= L0 o)1 (9,60) 1)} (XF) — 6010
(6.27) + (B (D26 (£, 1, ) (1) (XL, 0 + w) M)\UZX#}?
dw ;:(t) — ((vwhg,u(ﬂb(lg(t,X”(t)), (Vwil&,ub@))(t’ o) (X +g(t)hm(t)>,

heu(0) =0 E€R™, wee* =0€F.

Let ué(t) = ((u®)M (1), (u®)P(t)) = a(t) + when(t),t > —ro. Then, (6.27) implies

()20) = a®(0) + [ {76, X

+ (B (DP6®) (5,1, ) (115) (X1, 08) ) \n:xy}ds'

Furthermore, we have
<w®w=dWﬂﬁfﬂv%mwwanw%m®
/{ b D)(5, ) }(XH(s m+/{ o) (5, ) X (5))ds
+/0 {(Vue()d™) (s, ) F(XH(s))ds,

where in the last identity we used

da(l)(t> = {(Va(s)b(l))(t7 )}(X‘u(t))dt,

see the proof of [27, Theorem 2.3] for more details. Moreover, the equation (5.7) for v¢(t) =
(v)D(t), (v9)P(t)) associated with the present SDE (6.21) becomes

%(UE)(Q)(t) = {(vvfb(2))(t7 7/~Lt)}(Xiu) + (E(ﬁ* <D b( )(t 1, )(/‘Lt)(Xf)7vt§>(5)|nzxﬂ7

L000) = {(Twb®) 1) HEH), o =€
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Hence, the uniqueness of this equation implies
(6.28) ve(t) = when (t) + aft), t>0.

Obviously, a®(t) = 0 for t > T — r5. On the other hand, inserting the expression of
a?(t) into M (T —ry), taking the definition of Q; and changing the order of integral yields
aM(T —ry) = 0, which further implies M) (t) = 0, t > T — ry, according to the definition of
oM. Hence, we arrive at a(t) = 0 for t > T — ry. This, combining Lemma 5.2 with (6.28),
leads to

VXl = b = wher,

that is, (6.2) holds. Moreover, as shown in the proof of [39, Theorem 1.1] that k¢, € Z(D*)

satisfies (6.7), and for small T—rq > 0, E[D*(h¢ ,)|* has the same order as E fOT_TO |he,(t)]2dt,
so that according to the construction of k¢, we have

E|D*(h5#)|2 < O(T)(T B T0)4

T[T eds

., T>0,8e€ LP(Q—C,%,P), e P(F)

for some increasing function C': [rg, 00) — [0,00). Therefore, by Theorem 6.1, we have the
following result.

Theorem 6.3. Assume (H1) and (H2) for some p > 2.

(1) There ezists an increasing function C' : [rg,00) — [0,00) such that for any T > ro,

f €%, (%),

N|=

|U%ﬁoo—ﬁaﬂwns<XTxT—mV(A'W?§M)nﬂuwgm¢m;%ueﬁz%ﬁ

(2) For any T > 1o and f € Co(€), (Prf)(n) is L-differentiable in p € 22,(€) such that

DqLﬁ(PTf)(:u) =—-E [f(X%)D*(hd)(Xg),u)}v ¢ € T,u,pa

and there exists an increasing function C : [rg,00) — (0,00) such that for any f €
Cy(€), T >ry and p € Z,(6),

=

HD%&fmmmmgcawT—mf(A_m%m)_«%ﬂxmﬁ.

6.4 Multiplicative noise

In this subsection, we assume o(t, &, u) = o(t,£(0)). Following the line of [4] due to the idea
of [34], for any £ € LP(Q — €,.%y, P) we consider the SDE with memory

dU£<t) = {{ (VUfb) (tv " /Lt)}(Xéu) + (E(K* <DLb(t7 7, )(:U’t)(Xiu)v Utg>(5) |,7:Xtﬂ
(6.29) Ue(r

- ﬁo)_t}l[w—ro)(t)dt +{(Vueo) () YXPE)AW (1), U =¢.
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Then, due to (Bjs), the SDE (6.29) has a unique solution for ¢ < T'— ry. By repeating the
proofs of [4, Lemma 2.1 and Theorem 1.2(1)], we have

T B
6.30 / = Qe+ E( osup ||JUYP
030 | g Tt E( sw IR < 7

for some increasing function C : [rg, 00) — [0, 00), so that we may extend U¢(t) for t € [0, 7]
by setting

(6.31) Us(t) =0, te[T—ry,T),
which obviously solves (6.29) up to time 7.

Theorem 6.4. Assume (B) for somep > 2. Let o(t,&, u) = o(t,£(0)) depend only on t and
£(0) such that, for each x € R?, (c0*)(t,x) is invertible with sup,cga || (co*) || (¢, z) locally
bounded in t. Then,

(1) There exists an increasing function C' : [ro,00) — [0,00) such that for any T > 7o,

f € %b(%)a and RS ‘@P<Cg)7

o)
T 1o

(2) For any T > ro and f € Co(€), (Prf)(n) is L-differentiable in p € 2,(€) such that

(6.32) ((Prf) (i) = (Prf)(v)] < [ loo W (12, ).

(6.33) Di(PTf)(u)=—E<f(X%F) / <{a*<aa*>-1}<t>H¢<t>,dW(t»), beT
holds for

H¢(t> = {{(vab)( ) 7:ut)}(X ) (E‘f <D b(t 7, )(:ut)(X#)vUE)%”)‘n:)(f}l[Tfm,T](t)

U(t)
—— 0 (t), te[0,T).
e ter (), tE[0.7]

Consequently, there exists an increasing function C' : [rg,00) — (0,00) such that

o am

PRI ﬁ
holds for all T > 1o, f € Co(€) and p € Z,(€).

Proof. To apply Theorem 6.1, for any p € &2,(¢) and £ € LP(Q2 — €, %, P), let

(6.34) IDX(Prf) ()] e {(PrfA)(p)}2

(6.35) he (1) /{a oo*) (s, X*(s))G4(s)ds, t€[0,T],
where
Gé(t) = {{(VUfb)( ) 7Mt)}(X ) (Eo”* <D b(t 1, )(Nt)(Xt!L)?Uz€£>(tf)}n:Xf}1[T—ro,T](t)
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US(t)
—1] o) (T t , 1.
_'_T—T —t[OT 0)() G[O ]

Then, h is adapted and, by (6.30), we find some increasing function C' : [rg,00) — (0, 00)
such that

T
(6.36) IE/ e u(£)2dt < TC(_—T) T > 1o, p € Po(€),€ € P — €, Fo, P)
0

so that (6.3) holds true. Moreover, by the regularities of b and o ensured by (B), the
condition (6.7) holds. Therefore, according to Theorem 6.1, it remains to verify (6.2). By
(6.29), Lemma 4.2 and Lemma 5.2, we see that both U¢(t) and V¢ X} — w"ex(t) solve the
SDE with memory

aZ(t) = {{(Vb) (&, 1) }(XE) = o1, XMO)h(0) falt + { (V700 (1) HX“()aW (1)
+ { (Bl (D 0(t 0, ) ) (XE), Zye)) |, e Jlt, Zo = €t € [0,T],

By the uniqueness of solution to this equation and (6.31), we obtain (6.2) and hence finish
the proof. O

7 Asymptotic Bismut formula for the L-derivative

In this section, we aim to extend the asymptotic Bismut formula derived in [23] for SDEs
with memory to that on the L-derivative for distribution-path dependent SDEs. Coming
back to SDEs with memory, our conditions are slightly weaker since we allow the drift terms
to be non-Lipschitz continuous.

7.1 The non-degenerate setup

In this subsection, we assume that o(¢,&, u) = o(t,€) depends only on ¢t > 0 and £ € €. For
any A >0, € Zy(€) and ¢ € T}, ,, consider the following SDE with memory

dZPOAt) = {{(V goab) (-, 1) HXE) — NZHOA(t) }dt

(7.1) I A Iz
+{(V wa')( N AW (@), 25" = ¢(Xg), t = 0.

According to [31, Theorem 2.3], (Bs) implies that (7.1) has a unique functional solution
(Z!"*),=o such that

(7.2) E( sup ||th’¢vk||£;) <00, t>0, p€Ty A>0.

0<s<t

Theorem 7.1. Assume (B) for some p > 2 such that (Bs) holds for some constant K uni-
formly in T > 0. Moreover, suppose that (o0*)(t,) is invertible with supgcy ||(c0*)71|(t,€)
locally bounded in t.
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(1) For any T >0 and f € C}(%), (Prf)(u) is L-differentiable in p € Z,(€), such that
for any p € Py(€), ¢ € T,y and f € C)(F),

(73) DEPR)() =B FOX) [ 20, AW (@) ) + BV o $)OXD, A0
where
(7.4)

B0 = [ {000 Y5, X (B (D05, ) ) (X2). DEXE)e)

+ )\Z“’d”’\(s)}ds, t>0.

E=X¢

(2) If either p > 4 or p > 2 but ||Vb(t,-, 1)(§)] is bounded, then for any d > 0 there exist
constants ¢, \g > 0 such that

DEPe) )~ B(70x8) [ (9 (), aw(s)
\ (s | )

< ce LRIV IIFD) W)} 7 16llz,,, A>T >0, feClE),

(7.5)

(2) Ifp € [2,4] and

(6%
7.6 K <su ,
(7.6) o p(p — 1+ 32peaoyears

then there exist constants c,6, \g > 0 such that (7.5) holds.

To prove this result, we present the following two lemmas, where the first one is due to
[13, Lemma 2.2].

Lemma 7.2. Let M(t) be a continuous real martingale with d(M)(t) = g(t)dt, and let
¢
E,(t) = / e =AM (s), t>0, a>0.
0

Then for any p > 2, there exists a function r : [0,00) — [0, 00) with 1o, — 0 as a — 0o such
that

t
E{ sup |Fa(s)|p] < ra]E/ g(s)2ds, t>0.
0

s€[0,t]

Consequently, for any progressively measurable process A(t) on R @ R™,

P ¢
E[ sup } < dplraIE/ |A(s)||Pds, t > 0.
0

s€[0,t]

/S e~ A (u)dW (u)

Lemma 7.3. Assume (B) for some p > 2 such that (Bs) holds for some constant K uni-
formly in T > 0.
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(1) If either p >4 or p > 2 but |Vb(t,-, 1) ()| is bounded, then for any § > 0, there exist
constants ¢, \g > 0 such that

(7)) EIZE < ce M6l 120, pE PyB), 6 € Tup A2 N,

(2) If p € [2,4] and (7.6) holds, then there exists constants c,d, g > 0 such that (7.7)
holds.

Proof. (1) Let p > 4 and denote by Z} = Z"**. Applying Itd’s formula for (7.1) and using
(B3), we obtain

A2t = {2(2°(), {(V ) (t, -, o) X)) + [{(V zp0) (&, ) X s
(7.8) — 2X|Z(t) |2}dt+dMA()
<A{K|Z})|Z = 2X\ZMt)|* }dt + dMA(2),
where
(7.9) AMA(t) = 2(Z7 (), {(V zr0) (t, ) HXL)AW (1)),

Then for 8 € (0,)\) we obtain
t t

(7.10) |Z*(t)]e® < |ZMN0)| + K / e 2A=AE=9) 6B ) 7212 ds + / e 2A=AE=) B g VA (s).
0 0

Obviously,

(7.11) e sup (e™|Z3(s)]”) < Galt) == e 2} < sup (e**[Z(s)), a > 0.

SEt—ro,t] SEt—ro,t]

Combining this with (7.10), Lemma 7.2 and (Bs) and employing Holder’s inequality, for
p > 4 we find a positive function r on [0, 00) with r, — 0 as @ — oo such that

p

t
e PPOR[G ()] < 327 1H¢||Tu+7"/\—,8/ EGps(s)ds, t>0.
0

Thus, by Gronwall’s lemma we derive
E[Gys(t)] < 3271797, exp [(ma-sge” )], t > 0.

This yields
B[|ZM5] < 327|017, exp [ — (P8 — ra—pe?™™)t], ¢ > 0.
This implies (7.7) by taking 8 = § and pd — ry_se?®™ > § for large A due to 7, — 0 as
a — 00.
(2) Let p > 2 and ||Vb(t,-, 1)(§)|| be bounded. By (7.1), for any 8 € (0, \) we have

t

20" =22 0)e Pk [ o 0PI (T )., X
0
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b [ PN 305, DKW 6),

Combining this with (7.11), the boundedness of |Vb|| + ||Vo|| and Lemma 7.2 and applying
Holder’s inequality, we find a function r : [0,00) — [0, 00) with r, — 0 as a — oo such that

t
PG (1)) < 3ol + racs [ EGa()ds.
0
This, by using Gronwall’s inequality, yields
SB[ Z22) = E[Gs(0)] < 37|, exp [mase?™].

which implies (7.7) by taking 8 = 2§ and large enough A such that e??or, 5 < § due to
re — 0 as a — oo.
(3) Let p € [2,4] and (7.6). From (7.8), we have

dZOP < {K(Z}% = 2\ 22 @0) P}t + 2(Z7 (), {(V zp0) (¢, ) HXF)AW (1)),
Then for any p € [2,4] and « € (0, p)), by Itd’s formula and (Bj3), it follows that

A2 D) <] ~ (oA — )| 2 OF + 5 Kplp ~ DIZE Jot
+pe!| 2220, {(V 7p0) (8, ) HXE)AW (D).

(7.12)

Using (7.11) and combining (7.12) with BDG’s inequality, we obtain

BG.(0]<E| s (@|2()P)

sEt—ro,t]

< ll6llg, -+ 2 Kp(p— 1) /O tE[na(sﬂdsHpﬂEK /(

2 t—rg)t

t

3
e2a5|zk<s>|f’||zsl|%ds) ]

t
<101, + 5K 1+32e)e™ [y (s)ds + 5B (o)
Whence, Gronwall’s inequality yields
EGa(t)] < 2(¢ll7, e 7= Kp(p — 1+ 32pe™™)e™.
This, together with (7.11), leads to
E[|Z|5] < 2| 0ll7, e, t 2 0,a € (0,pN).

By (7.6), we may find A\g > 0 large enough and a € (0,pAg) such that § := a —~ > 0, so
that (7.7) holds for some constant ¢ > 0 and all A > . O
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The proof of Theorem 7.1. The L-differentiability is implied by Proposition 5.3. So, it suf-
fices to prove (7.3) and (7.5). For simplicity, let h*(t) = h*?A(t), which was given in (7.4).
By (B), (5.8) and (7.7), h* € L*(Q — H;P) is adapted. According to Lemmas 4.2 and 5.2,
the process Z(t) := Vqs(Xg)X”(t) — Dyn X*#(t) solves the SDE with memory

= {{(Vab)(t, - n) HXP) = AZ(t) }dt + {(Vz,0)(¢, ) HX[)AW (1), t >0, Zo = $(X().
Therefore, the uniqueness of solutions to (7.1) yields
Z(t) == V¢(X5)X“(t) — DhAXMOf), t Z —To.

Combining this with the chain rule and the integration by parts formula for the Malliavin
derivative, we derive

Dg(Pif)(1) = E[DFf (X)) ()] = E(e-(VF(XE), Vixpy Xi )
=B (VA(XY), Zi + Dpp X)) = E(Da f(XT)) + E((Vz, f)(XT))

=B (100) [ (9,4 (s) ) + BUVANK). ¢20,

i.e. (7.3) holds. Finally, by Lemma 7.3 and Hélder’s inequality, we deduce (7.5) from
(7.3). O

7.2 A degenerate setup

In this subsection, we consider the following distribution-path dependent stochastic Hamil-
tonian system for X (t) = (XM (¢), X?)(¢)) on RH™ = R! x R™:

dXM (1)
(7.13) {dX(2) (t)

b (¢, X,)dt,
b2 (t, Xy, Lx,)dt + o (t, X,)dW (t),

where (W(t));>0 is an m-dimensional Brownian motion on a complete filtration probability
space (0, Z, (F)0,P), Xo € LP(Q — €, F0,P) for € := C([—70,0]; R*™), and

b= (bW, 0?):[0,00) x € x Z,(€) = R*™, ¢:(0,T] x € - R™" @R™
are measurable satisfying one of the following assumptions.

(C1) Letp € (2,00). b(t,&, p) and o (¢, £) are bounded on bounded sets, C''-smooth in (€, u) €
€ x 2,(¢) with bounded [{Vo@(t, -, 1) HE | +I{(Vo) (&, ) HEOI+IDFb(t, €, ) (1)l

v,
and there exist constants (3, k > 0 satisfying

(7.14) kP < 275 (p — 1)VP sup e P0(B — a)
a€(0,8)
such that
(7.15) (zD(0), {(Vb)(t,)}(€)) < wl2D(0)] - [lzlle — Bl=V(0)2.
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(C2) Letp € [2,00). b(t, &, 1) and o(t, €) are bounded on bounded sets, C'-smooth in (&, ) €
€ x P,(¢€) with bounded || D¥b(t,&, ) () and there exist constants K, 3,0 > 0

T,
satisfying
«Q
710 0* < sup
( ) a€(0,6p) p(p -1+ 32pe°""0)earo
such that

2
(=D(0), {(V0D)(t, - )}€)) < K] - [lzll + %HZ“)H% = B2V )P,

(z2(0), {(V0P)(t, -, w)}(€)) < K[zP(0)] - ||2lle,
I{(V20) (&, Y HON < Ollzlle, t 20,2, €C,n € Pp(F).

(7.17)

Let jip = Lxp with Lx, = p € Z,(¢), and let ¢ € T, ,. For any A > 0, consider the
linear SDE with memory for Z(t) = (ZM(t), Z®(t)) on RH™

AZ(t) ={{(V2b) (£, ) }(XL) = M0, Z)(1)) e

(7.18)
+ (0, {(Vz0)(t, ) HX{)AW (1)), Zo = ¢(X7).

By [31, Theorem 2.3|, under assumption (C1) or (C2), (7.18) has a unique functional
solution. We denote the functional solution by Z! P to emphasize the dependence on pu, ¢
and A. When oc* is invertible, let

B (t) = / (0" (00") (s, X1 {222 (s))

+E[, (D"0®(s,€, ) (1s) (XY), DEX")4 ] ‘g:xﬁ}ds’ t>0.

(7.19)

Theorem 7.4. Assume (C1) or (C2), and let oo* be invertible with ||(00*) || < o0.
Then for any T >0 and f € C)(€), (Prf)(n) is L-differentiable in p € Z2,(€) such that
(7.20)

T
DEPrN) 0 = E(S0E0) [ (i0936).aW ) ) + BV A NG, € 2y(6).0 € Ty
0
Consequently, there exist constants c,d, \g > 0 such that

Dg(Prf)(p) —E( f(XF) TW""’A(S),dW(S»
1 (s0xi | )

< e T{(P IV FIF )W)} 7 19llms,, A> Ao, T >0, f e CHP).

(7.21)

To prove this result, we first present the following lemma.

Lemma 7.5. Assume (C1) or (C2). Then there exist constants c,d, Ao > 0 such that for
any A > Ao,

(7.22) [ 28] < ce™glly, . 20, p€ Pp(€), ¢ €Ty
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Proof. We denote X" = X, Z#%* = 7 = (ZW, Z?), and ||Zt(l)||<g = SUDyet—ro 4] |ZO(t)],i =
1,2.
(1) Let (C1) hold. By (7.18), we have

t
20t =g (e 07 4 [T o)} (s
0
t
+ [ e O e (7,00 (5, ) (X)W ().
0

Then, by the boundedness of [|[Vb®|| + ||Vo| and applying Lemma 7.2, we find a constant
¢1 > 0 and a function r : [0,00) — [0,00) with rs — 0 as s — oo such that

(729 FUTRNZDN < 6P, +raca [ CPEIZIS
0
On the other hand, by (7.15) we have
Az < {xll Zlle — B2V (2)[ 1t
so that for a € (0, ),
eZ00) < () o0 1 [ o= 7 s,
0
Hence for any € > 0 there exists a constant ¢; > 0 such that

e(t_m)po‘E[HZt(l)H%] < E[ sup {|Z(1)(S)|e°‘5}p}

sEt—ro,t]

1—1/p\r-1! ¢
< e2lloll,, + /fp( 5o (/Ip> (1+ 5)/ "B Z|[]ds.
0

Combining this with (7.23), we arrive at
t
B2 < 2B ZP I + 1201 < clldl, + e [ SENIZIE)S
0

for some constants c¢3 > 0 with

1-1 p—1
Tre 1= 25-1 (f#’ (—ﬁ — ép) (14+¢)+ r,\,a>epa”°.

By Gronwall’s lemma, we obtain
E[|Z:lI5] < cslloll7, , exp [ — (e — pa)t].
Due to (7.14), we find a constant £ > 0 such that

1—-1/p
b —«a

36

p_q p—1
pa > 22 /ip( ) (14 e)ePo.



This implies
. vy ,(1—=1/p
1 —95-1 P<—
g The PR B -«

Hence, we may find constants \g,d > 0 such that ap — v, > d for A > X. Therefore, (7.22)
holds.

(2) Let (C2) hold. For € € (0,1), set

p—1
) (1+¢€)e”™ < pa.

= 1200+ Zz0@), ¢ > 0.
By (7.17) and It6’s formula, for A > 43, we have
dlp(t)* = [20Z2D(0) AV 2b ")t ) HXE)) + 25022 (0), {(V 26D (8-, 1) (X))
+el{(V20) (1, )Xl — <A ZP (O] dt +25(Z3 (1), {(Vz,0) (1, )} (X)W (1))
< {261 +)Z00] - 12l + 121 — 28120 0) 2 + 62| I — Aol 2O (D)2
+2:(Z2 (1) {(V20) (1, )} (XI)AW (1))
<{ 282002 - X122 + 1201 +<(02+ T 22
+26(Z22 (1) {(V20) (1, )} (XE)AW (1))
< { = 2810 + ellorlly Fat +2:022 (), {(Vzi0) (¢, ) HXL)AW (1)),

where [|oill¢ := sup_y,<oco |o(t + 6)] and

2K2(1+5)2) 62+2K2(1+5)2}
Ae? ’ Ae? '
Then, for any p > 2 and (« € (0,pp)), it follows that

(7.24) Vre 1= Max {92 + 6(92 +

A o)) <et{ — (Bp— (O + 3 + (0~ 26

p
2 ?”}

+epe|p(t)["HZP (), {(Vz,0)(t, ) HX)AW (1)),

(7.25)

Noting that

(7.26) e sup (ep(s)[") < na(t) =T oyl < sup (e*]p(s)I?),

SE[t—r0,t] SE[t—r0,t]

and combining (7.25) with BDG’s inequality, for any « € (0, 5p|, we obtain

E[na@)]sxa{ up (@]p(s))

SE[t—70,t]

BlGDIE] + 5r(ne + (0= 206°) | Bl lplias

t 3
ravae| ([ Semlop iz PIZIkds) |
(

t7T0)+

37



< lgllz + 1p(%€ + (p — 2)0%)e*™ /Ot Na(s)ds + 4v/2phe” R {ma(m (/Ot na(s)ds> 1

1 ! 1
< H¢HTM <§p(fy>\’€ +(p—2)6%) + 16p292earo>earo /0 Na(s)ds + §E[7ya(t)].

By Gronwall’s inequality, we arrive at
E[na(t)] < 2H¢H ec“ @), Crela) = (p(’y,\s + (p—2)6%) + 32p260“"°02)e°”"°.
This and (7.26) yield
Elllpell%] < 2e°7 |07, e~ tomere@lt > 0.

Note that (7.24) implies

lim lim ¢y . (a) = e (p -1+ 32peaT°)p62.
el0 A—oo

Then, by (7.16), we may find « € (0, Bp), small enough ¢ > 0 and large enough Ay > 0 such
that § :== o — ¢y, .(a) > 0, so that

E(lZ:ll5] < e PElllpell] < 2677 [l llg, ™, t 20,1 > Xo.
Then (7.22) holds. O

Proof of Theorem 7.4. Since the L-differentiability is implied by Proposition 5.3, while (7.21)
follows from Lemma 7.5 and (7.20), it suffices to prove (7.20).
Simply denote h = h*#*. By (C1) or (C2) , there exists a constant ¢; > 0 such that

(7.27) Ellvf % < ce'lf,,, t>0, ¢€T,

This together with (7.19) and (7.22) implies that h € L?*(Q — H,P) is adapted. Let

wh = (w"', w}"®) be the unique functional solution to the following SDE with memory

(7.28) dw”(t) = {(V ) (¢, -, ) }(X[)dt + (0, 0(t, X[)A(t) )t
' + (0, {(V,p0)(t, ) HXP)AW (1)), t € [0,T], wh = 0.

By Lemma 4.2, we have w! = D, X}'. Next, according to Lemma 5.2, vf = (v f’l ) =

D} X} exists in L*(Q — C([0,T];%),P) and is the unique solution to

(7.20) V() = {(Vuob)(ts - 1) JXE)AE + (B (DPB(t, €, ) (1) (XE), 07 o) e
+(0,{(V,po)(t, ) }X)AW (#)), t€[0,T], vg = o(X).
From (7.28) and (7.29) we see that
Z(t) == v (t) — " (1)

solves (7.18). In particular, Zp = v — wh = DX} — DpX%. Then (7.20) follows from
Proposition 4.3. 0
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