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S.N. Symbols Description

1 L Length
2 W Width
3 T Thickness
4 A Cross-section area
5 I Second moment of area
6 ρ Density
7 ν Poisson ratio
8 E Young modulus
9 G Shear modulus
10 Gc Cosserat modulus
11 k Shear coefficient
12 l Characteristics length
13 ux Longitudinal deflection
14 uy Transverse deflection
15 φ Rotation of cross-section
16 ψz Rigid micro-rotation
17 ψ Independent micro-rotation
18 εx, εy Normal strains
19 εxy, εyx Transverse strains
20 γs Symmetric shear strain
21 γa Asymmetric shear strain
22 Kxz,Kyz Plane-stress curvatures
23 σx, σy Normal stresses
24 τxy, τyx Shear stresses
25 mxz,myz Curvature moments
26 Mx Moment force
27 Qxy, Qyx Shear Force
28 Pxz Curvature force
29 ζ Eigenvector
30 Ω Eigenvalue
31 ω Forcing frequency
32 ωn Natural frequency
33 Nf Normalised frequency

29

1. Introduction30

Due to its lightweight, panel walls are used as an effective alternative to the conven-31

tional bricks walls. Infill panel walls provide a degree of thermal insulation, acoustic32

insulation, weather resistance, improve the appearance of buildings, and support the33

cladding system (Lawson, M. et al. , 2001); however, it does not carry any static floor34

load. Panel walls are subjected to the lateral load during an earthquake. In this paper,35

the in-plane static and dynamic characteristics of a homogeneous panels have been36

analytically evaluated. Panels are often modeled employing beam or plane stress ele-37

ments. Current research has focused on developing new mathematical models which38

consider physical properties of materials at micro and nano-scales (Carrera, E., &39

Zozulya, V. V. , 2020). The higher-order beam theories are capable of capturing the40

curvature of edges at small scale parameters (Carrera, E., & Zozulya, V. V. et al. ,41

2019; Asghari, M., Kahrobaiyan, M. H., Rahaeifard, M., & Ahmadian, M. T. et al. ,42
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2011). Based on the underlying mechanics beam theories are classified in the following43

classes:44

(1) Euler-Bernoulli beam theory neglects the shear deformation and rotary inertia45

of the cross-section, which restricts it for thin beams only (Ghugal, Y. M., &46

Shimpi, R. P. et al. , 2001). The governing equation of motion for free vibration47

can be written as:48

Dx
∂4uy
∂x4

+ ρA
∂2uy
∂t2

= 0. (1)

(2) Lord Rayleigh added the rotary inertia of the cross-section (Elishakoff, I.,49

Kaplunov, J., & Nolde, E. et al. , 2015; Banerjee, A. et al. , 2020) in the gov-50

erning equation of the Euler-Bernoulli beam. The free vibration equation can be51

expressed as:52

Dx
∂4uy
∂x4

+ ρA
∂2uy
∂t2

− ρI ∂4uy
∂x2∂t2

= 0. (2)

(3) Timoshenko added the shear deformation of the cross-section (Elishakoff, I.,53

Kaplunov, J., & Nolde, E. et al. , 2015) in addition to the Eq. (2). Thus, Timo-54

shenko beam equation can be written as:55

Dx
∂2φ

∂x2
−Dsκ

(
∂uy
∂x

+ φ

)
− ρI ∂

2φ

∂t2
= 0,

Dsκ
∂

∂x

(
∂uy
∂x

+ φ

)
− ρA∂

2uy
∂t2

= 0.

(3)

(4) In the couple stress theory, axial deformation, two higher-order material length56

scale parameters, and micro-inertia (Asghari, M., Kahrobaiyan, M. H., Rahaei-57

fard, M., & Ahmadian, M. T. et al. , 2011) have also been considered in addition58

to Eq. (3) and equation of motion can be written as:59

Dl
∂2ux
∂x2

− ρA∂
2ux
∂t2

= 0,

Dx
∂2φ

∂x2
−Dsκ

(
∂uy
∂x

+ φ

)
+
Dxz

2

∂2

∂x2

(
φ− ∂uy

∂x

)
− ρI ∂

2φ

∂t2

−ρAJ
4

(
∂2φ

∂t2
− ∂3uy
∂x∂t2

)
= 0,

Dsκ
∂

∂x

(
∂uy
∂x

+ φ

)
+
Dxz

2

∂3

∂x3

(
φ− ∂uy

∂x

)
− ρA∂

2uy
∂t2

−ρAJ
4

(
∂3φ

∂x∂t2
− ∂4uy
∂x2∂t2

)
= 0.

(4)

where, Dl = EA, Dx = EI, Ds = GA and Dxz = GAl2 are stiffness parameters;60

E, A, I, J, G, ρ, κ, and l represents Young modulus, a cross-sectional area, second61

moment of area, micro-inertia, shear modulus, density, Timoshenko shear coefficient62

and characteristics length, respectively.63
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Euler-Bernoulli beam theory neglects transverse shear strains and miscarry the de-64

flection and natural frequency in case of thick beams where shear deformation effects65

are significant (Ghugal, Y. M., & Shimpi, R. P. et al. , 2001). Rayleigh proposed an66

improvement to the Euler-Bernoulli beam theory by including the effect of rotary iner-67

tia of the cross-section of the beam (Labuschagne, A., van Rensburg, N. J., & Van der68

Merwe, A. J. et al. , 2009). Timoshenko proposed his theory where shear deformation69

of the cross-section is also taken into account (Timoshenko, S. P. , 1921). However,70

transverse shear strain is ignored in Rayleigh theory (Elishakoff, I., Kaplunov, J., &71

Nolde, E. et al. , 2015). These theories are proved very fruitful to both theoretical72

as well as experimental aspects (Ghugal, Y. M., & Shimpi, R. P. et al. , 2001). In73

the classical continuum mechanics, the motion of material particles are described by74

position vectors identifying the location of each particle as a function of time. (Rubin,75

M. B. et al. , 2013). So, in the classical theories, every particle has three displacements76

which are calculated by symmetric stress tensor that is not sufficient for describing77

the micro and nano-scales size of second-phase particles (Czekanski, A., & Zozulya,78

V. V. et al. , 2019; Wu, B., Pagani, A., Chen, W. Q., & Carrera, E. , 2019; Zozulya,79

V. V. et al. , 2017). However, in most of the engineering problems; micro and nano-80

scale structures, the major concern in deformations is inelastic range, and observed81

that strain gradient effect generally holds the regime (Xue, Z., Huang, Y., & Li, M. ,82

2002). It is a significant fact that the size of second-phase particles has an important83

effect on the macroscopic behaviour of materials (Cao, Y. P., & Lu, J. et al. , 2005).84

The strain gradient based theory of elasticity to investigate the particle size effect find85

good agreements with the experiments as well as numerical studies. The preservation86

of the planeness of cross-section requires that the averaging length should be larger87

than the beam depth (Sun, Z. H., Wang, X. X., Soh, A. K., Wu, H. A., & Wang,88

Y. , 2007; Karttunen, A. T., Romanoff, J., & Reddy, J. N. et al. , 2016). The cou-89

ple stress theory is a non-classical continuum theory based on macro-deformation and90

micro-rotation in which the full curvature vector is used to calculate the deformation91

in addition to the conventional strain (Asghari, M., Kahrobaiyan, M. H., Rahaeifard,92

M., & Ahmadian, M. T. et al. , 2011; Karttunen, A. T., Romanoff, J., & Reddy, J.93

N. et al. , 2016; Sobhy, M., & Zenkour, A. M. et al. , 2020). So, the mechanical be-94

haviour of structures based on strain gradient is capable of capturing the effect on95

small-scale particles, when the characteristic size of structures is close to the material96

length parameter (Carrera, E., & Zozulya, V. V. et al. , 2019; Chen, W., & Si, J.97

, 2013; Ebrahimi, F., & Barati, M. R. et al. , 2018a,b). In the couple stress theory,98

the rotation of the micro-structure and macro-structure is deemed to be equal and99

no constitutive equation is written for asymmetric shear stress vector. This vector is100

determined by considering the micro-structure rotational equation of motion of the101

elements (Asghari, M., Kahrobaiyan, M. H., Rahaeifard, M., & Ahmadian, M. T. et102

al. , 2011; Chen, W., & Wang, Y. et al. , 2016). Hence, the asymmetric part of the103

shear stress does not contribute to the energy density (Asghari, M., Kahrobaiyan, M.104

H., Rahaeifard, M., & Ahmadian, M. T. et al. , 2011; Karttunen, A. T., Romanoff,105

J., & Reddy, J. N. et al. , 2016). Euler-Bernoulli, Rayleigh, Timoshenko, and couple106

stress theories have been successfully implemented for the analysis of beams and ex-107

tended for panels (Ventsel, E., Krauthammer, T., & Carrera, E. J. A. M. R. et al. ,108

2002). However, these theories lack to predict the behavior such as shear deformation109

and rotational inertia of cross-section, shear deformation, strain gradient effects, and110

curvature moment contribution at energy density level, respectively. Infill wall shows111

the curvature of edges which is not predicted accurately by these theories due to the112

absence of curvature vector mechanism based on the constitutive relation (Elishakoff,113
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I., Kaplunov, J., & Nolde, E. et al. , 2015; Asghari, M., Kahrobaiyan, M. H., Rahaei-114

fard, M., & Ahmadian, M. T. et al. , 2011; Toupin, R. A. et al. , 1964; Cosserat, E.,115

& Cosserat, F. et al. , 1909).116

In this present article, Micropolar-Cosserat linear elastic beam theory has been117

considered to capture the curvature behavior (based on the constitutive relation or118

at energy density level) of the infill wall with appropriate stiffness parameters (Kart-119

tunen, A. T., Reddy, J. N., & Romanoff, J. et al. , 2018; Ramezani, S., Naghdabadi,120

R., & Sohrabpour, S. et al. , 2009). The assumption, and characteristic features of the121

Micropolar-Cosserat continuum contains micro-structure which can rotate indepen-122

dently from the surrounding medium, and existence of couple stresses and asymmetric123

shear stresses, respectively (Noor, A. K., & Nemeth, M. P. , 1980; Ramezani, S.,124

Naghdabadi, R., & Sohrabpour, S. et al. , 2009; Zozulya, V. V. et al. , 2018). The ini-125

tial theoretical work was done by the Cosserat brothers (Cosserat, E., & Cosserat, F.126

et al. , 1909), Mindlin (Mindlin, R. D. et al. , 1965), and Nowacki (Nowacki, W. et al. ,127

1972). Eringen (Eringen, A. C. et al. , 1968) explained the micro-inertia which describe128

the dynamics effects of microstructure. This additional constant micro-rotation field129

throughout the width of the beam converts the Timoshenko beam theory (first-order130

shear deformation theory) into Micropolar-Cosserat elastic beam theory (Mindlin, R.131

D., & Tiersten, H. F. et al. , 1962; Nowacki, W. et al. , 1974). So, each element132

of Micropolar-Cosserat continuum have three translational motion and three rota-133

tional ones, which are assigned to macro-structures and micro-structures, respectively134

(Ramezani, S., Naghdabadi, R., & Sohrabpour, S. et al. , 2009; Eringen, A. C. et al.135

, 1999). In Micropolar-Cosserat theory, the mutual interaction between two adjacent136

surface elements is expressed via the traction vector in addition to the couple-stress137

vector. While, the effect of a surface element on a neighboring one is expressible by138

a traction vector only; from the kinetic point of view in the classical continuum the-139

ory (Ramezani, S., Naghdabadi, R., & Sohrabpour, S. et al. , 2009; Eringen, A. C.140

et al. , 2001, 2012). Dugem and Voitgt (Zozulya, V. V. et al. , 2017) suggested that141

the relationship between two adjacent elements of the body depends on the surface142

area element; employing force and couple stress vector (Kumar, R., & Ailawalia, P.143

et al., 2005; Gharahi, A., & Schiavone, P. et al. , 2020). However, the complete the-144

ory of asymmetric elasticity was developed by the Cosserat brothers (Cosserat, E.,145

& Cosserat, F. et al. , 1909). The asymmetric elasticity is the unique features of146

Micropolar-Cosserat theory to distinguish it from other standard theories. The shear147

stress can be split into symmetric and asymmetric shear stresses which facilitates the148

full curvature tensor to capture the micro-rotation in addition to the conventional149

strain (Mindlin, R. D. et al. , 1963; Khoei, A. R., Yadegari, S., & Biabanaki, S. O. R.150

et al. , 2010). The symmetric shear stress causes the deformation of macro-structure151

and asymmetric shear stresses contribute to the rigid rotation of microstructure of152

the material. Hence, This theory provides the proficient gear to curvature moment at153

micro-scale (Ramezani, S., Naghdabadi, R., & Sohrabpour, S. et al. , 2009; Cao, Y.154

P., & Lu, J. et al. , 2005).155

In this work, a 1-D Micropolar-Cosserat elastic governing equation of motion based156

on the linear law of variation of displacement has been considered for analysis of pan-157

els. Exact in-plane macro and micro displacement, and natural frequency of the panels158

have been evaluated implementing the transfer matrix approach and the state-space159

method (Banerjee, A. et al. , 2020; Banerjee, J. R. et al. , 2001; Dion, J. M., & Com-160

mault, C. et al. , 1993). The boundary condition taken by other authors corresponding161

to the Micropolar-Cosserat elastic continuum; deflection and resultant force is equal162

to zero at fixed end and free end, respectively (Karttunen, A. T., Romanoff, J., &163
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Reddy, J. N. et al. , 2016; Karttunen, A. T., Reddy, J. N., & Romanoff, J. et al. ,164

2018; Ramezani, S., Naghdabadi, R., & Sohrabpour, S. et al. , 2009). These boundary165

conditions are not sufficient to have zero value of the curvature moment at free end166

section. So, it is necessary to have the exact values as a part of the loading defini-167

tion (Asghari, M., Kahrobaiyan, M. H., Rahaeifard, M., & Ahmadian, M. T. et al.168

, 2011; Augarde, C. E., & Deeks, A. J. et al. , 2008). In the present paper, the cur-169

vature moment (or force) has been considered due to asymmetric shear at free end170

to find the in-plane static exact response. Another unique feature of this work is a171

validation of theoretical independent micro-rotation of panel with the help of static172

response of the plane-stress element. Moreover, the study of various beam theories like;173

Euler-Bernoulli, Timoshenko, Timoshenko and Goodier exact analysis, Couple stress174

theory, and their comparison with analytical v/s finite elements analysis have done175

for building confidence. The proposed methodology can be extended for the composite176

and functionally graded panels very effectively, but for the brevity and develop the177

insight on the theory, this paper is limited only for the analysis of homogeneous panels178

(Hoffman, R. E., & Ariman, T. et al. , 1968; Vasiliev, V. V., Barynin, V. A., & Rasin,179

A. F. et al. , 2001; Reddy, J. N. et al. , 2011).180

2. Micropolar-Cosserat elastic panel theory181

2.1. Two-dimensional equilibrium equations182

The Micropolar-Cosserat solid can transmit normal as well as bending stresses due183

to having an extra macro-rotational degree of freedom. The sketch shown in Fig. 1184

depicts a 2-D free body diagram of the typical Micropolar-Cosserat element associated185

with the varying stress field.

Figure 1. (a) Normal and bending stresses acting on a planar Micropolar-Cosserat solid in a varying stress
field, and (b) The symmetric and asymmetric parts of the shear stresses.

186

The plane-stress equilibrium equations of motion for Micropolar-Cosserat element187

6



are written as follows188

∂σx
∂x

+
∂τyx
∂y
− ρ∂

2ux
∂t2

= 0, (5)

189

∂σy
∂y

+
∂τxy
∂x
− ρ∂

2uy
∂t2

= 0, (6)

190

∂mxz

∂x
+
∂myz

∂y
+ (τyx − τxy)− ρJ

∂2ψz
∂t2

= 0, (7)

Unlike in the Micropolar-Cosserat theory, an additional equilibrium equation for the191

curvature moment does not appear in the modified couple stress theory (Karttunen,192

A. T., Reddy, J. N., & Romanoff, J. et al. , 2018; Park, S. K., & Gao, X. L. et al. ,193

2008). It can be seen from Eq. (7) that the shear stresses are not necessarily symmetric,194

which is the unique features of the Micropolar-Cosserat theory to distinguish it from195

other standard theory (Lam, D. C., Yang, F., Chong, A. C. M., Wang, J., & Tong, P.196

et al. , 2003).197

2.2. Stress-strain of Micropolar-Cosserat panel198

The positive directions of the stress resultants, displacements, and cross-sectional199

shape of the panel after the development of force and couple stresses are shown in200

Fig. 2.

Figure 2. (a) Micropolar-Cosserat elastic panel and (b) Relative strains and rigid rotation of micro-structure.

201

Let us consider a 2-D homogeneous, isotropic and linear elastic panel of a length L202

with rectangular cross-section of constant width W , and thickness T . The equations203

of displacement field based on the linear law of variation are204

ux(x, y, t) = yφ(x, t), uy(x, y, t) = uy(x, t), and ψz(x, y, t) = ψ(x, t). (8)

The normal strains are205

εx =
∂ux
∂x

= yφ
′
, and εy =

∂uy
∂y

= 0. (9)
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The relatives asymmetric shear strains are206

εxy =

(
∂ux
∂y
− ψz

)
= (φ− ψ) , and εyx =

(
∂uy
∂x

+ ψz

)
=
(
u

′

y + ψ
)
. (10)

Where ux, uy, φ, ψz, and ψ are the longitudinal, transverse, rotation of the cross-207

section about the neutral axis of the panel, rigid micro-rotation, and an independent208

micro-rotation of micro-structure respectively. In the microstructures, the rotating axis209

is called orthogonal directors and directors of each material point are deformable in210

the Micropolar-Cosserat solid (Karttunen, A. T., Reddy, J. N., & Romanoff, J. et al.211

, 2018; Reddy, J. N. , 2003). The symmetric and skew-symmetric shear strains are212

defined, respectively as213

γs =
(
u

′

y + φ
)
, and γa =

(
u

′

y − φ+ 2ψ
)
. (11)

We can see that the symmetric part takes the same form as the shear strain in the214

classical Timoshenko beam theory. The skew-symmetric part is twice the difference215

between the usual macro-rotation and the micro-rotation (Eringen, A. C. et al. , 2012).216

The curvatures describe the bending of planer elements due to couple-stresses are217

Kxz =
∂ψz
∂x

, and Kyz =
∂ψz
∂y

= 0. (12)

The localization of shear deformation at the material length scale parameter has been218

quantified thus enabling both the Cosserat modulus and characteristic length as an219

additional constitutive parameter present into the Micropolar-Cosserat continuum (De220

Borst, R., & Sluys, L. J. et al. , 1991; De Borst, R. E. N. É. et al , 1991). The isotropic221

stress-strain relationship for one-dimensional Micropolar-Cosserat panel can be written222

as223 
σx
τxy
τyx
mxz

 =


E 0 0 0
0 G+Gc G−Gc 0
0 G−Gc G+Gc 0
0 0 0 2Gl2




εx
εxy
εyx
Kxz

 , (13)

where Gc represents Cosserat modulus of the homogeneous panel.224

The characteristics length represents a material property and order of the magnitude225

as the maximum size of material inhomogeneities with solely softening yield (Tran, T.226

H., Monchiet, V., & Bonnet, G. et al. , 2012). However, plastic nature also developing227

during severe deformation of ductile materials with softening followed by hardening228

(Tordesillas, A., Peters, J. F., & Gardiner, B. S. et al. , 2004). In Micropolar-Cosserat229

continuum analysis, the numerical value proposed for Gc is G
3 and ratio of l

L are230

0.02083, for static and 0.01042, for dynamic analysis. In couple stress analysis, the231

numerical value of Gc is neglected and ratio of l
L are 0.02083, for static and 0.01042,232

for dynamic analysis (De Borst, R., & Sluys, L. J. et al. , 1991; De Borst, R. E. N. É.233

et al , 1991; Asghari, M., Rahaeifard, M., Kahrobaiyan, M. H., & Ahmadian, M. T.234

et al. , 2011; Hadjesfandiari, A. R., Hajesfandiari, A., Zhang, H., & Dargush, G. F. et235

al. , 2017; Khoei, A. R., & Karimi, K. et al. , 2008).236
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2.3. Balance equations for Micropolar-Cosserat panel237

Let us consider stress and displacement field do not vary across the width. Stress-strain238

and couple stress components are independent of z-coordinate. The elastic constants239

are the function of x-coordinate. The applied load is so that, no torsion occurs in240

the beam (Karttunen, A. T., Reddy, J. N., & Romanoff, J. et al. , 2018; Ramezani,241

S., Naghdabadi, R., & Sohrabpour, S. et al. , 2009). The balanced equations for 1-D242

Micropolar-Cosserat panel are expressed as243

∂Mx

∂x
−Qyx − ρ

∂2Ux
∂t2

= 0, (14)

244

∂Qxy
∂x

− ρA∂
2uy
∂t2

= 0, (15)

245

∂Pxz
∂x

+ (Qyx −Qxy)− ρAJ
∂2ψz
∂t2

= 0, (16)

where

Ux =

∫
A
uxydA and J, cubical element =

2l2

1 + ν
(DeBorst,R.,&Sluys, L.J.etal., 1991).

The stress resultants to reduce the 2-D equilibrium equations into 1-D balanced equa-246

tions are as follows247

Mx =

∫
A
σxydA, Qxy =

∫
A
τxydA, Qyx =

∫
A
τyxdA, and Pxz =

∫
A
mxzdA. (17)

From the isotropic stress-strain relationship Eq. (13) and stress resultants Eq. (17),
following can be expressed as

σx = Eεx = Eyφ
′

248

Mx = EIφ
′

= Dxφ
′
, (18)

τxy = (G+Gc) εxy + (G−Gc) εyx
249

Qxy = Ds

(
u

′

y + φ
)
−Da

(
u

′

y − φ+ 2ψ
)
, (19)

τyx = (G−Gc) εxy + (G+Gc) εyx

250

Qyx = Ds

(
u

′

y + φ
)

+Da

(
u

′

y − φ+ 2ψ
)
, (20)
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mxz = 2Gl2Kxz = 2Gl2ψ
′

251

Pxz = 2Gl2A
∂ψ

∂x
= 2Dxzψ

′
, (21)

where Da = GcA is the Cosserat stiffness parameter for a homogeneous panel. The252

stiffness parameters can also be helpful to represent, a functionally graded material253

(Reddy, J. N. et al. , 2011; Reddy, J. N. , 2003).254

2.4. Governing equations of motion255

2.4.1. Dynamic system256

Governing equations of motion for 1-D Micropolar-Cosserat panel are derived by sub-257

stituting the value of stress and force resultant Eqs. (18) to (21) into balance Eqs. (14)258

to (16). They are as follows259

Ds

(
u

′′

y + φ
′
)
−Da

(
u

′′

y − φ
′
+ 2ψ

′
)
− ρA∂

2uy
∂t2

= 0, (22)

260

Dxφ
′′ −Ds

(
u

′

y + φ
)
−Da

(
u

′

y − φ+ 2ψ
)
− ρI ∂

2φ

∂t2
= 0, (23)

261

2Dxzψ
′′

+ 2Da

(
u

′

y − φ+ 2ψ
)
− ρAJ ∂

2ψ

∂t2
= 0. (24)

2.4.2. Static system262

By substituting time-dependent macro and micro displacement is equal to zero into263

the dynamic system of Eqs. (22) to (24), the equations derived are as follows264

Ds

(
u

′′

y + φ
′
)
−Da

(
u

′′

y − φ
′
+ 2ψ

′
)

= 0, (25)

265

Dxφ
′′ −Ds

(
u

′

y + φ
)
−Da

(
u

′

y − φ+ 2ψ
)

= 0, (26)

266

2Dxzψ
′′

+ 2Da

(
u

′

y − φ+ 2ψ
)

= 0. (27)

3. Analysis of Micropolar-Cosserat elastic panel267

3.1. In-plane static analysis268

The steps followed for the series of solutions of the equilibrium equations to find out269

in-plane static responses are elaborated by Anssi T. Karttunen into Appendix A (Kart-270

tunen, A. T., Reddy, J. N., & Romanoff, J. et al. , 2018). The solutions of a static271
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system is generated by the decoupling of Eqs. (25) to (27) using mathematical tools272

such as MAPLE. 1-D micropolar-Cosserat elastic panel consists of three displacements273

and three force vector. Hence, six boundary conditions need to be solved correspond-274

ing to the six-state vectors namely, uy, φ, ψ, Mx, Qxy and Pxz. The displacement275

equations in the form of constant stiffness parameter are written as276

uy =

[
c1 − c2x−

1

2
c3x

2 + c4{(a− b)x−
x3

3
} − α

(
c5e

βx − c6e
−βx
)]
, (28)

277

φ =
[
c2 + c3x+ c4{(a+ b) + x2} − d

(
c5e

βx + c6e
−βx
)]
, (29)

278

ψ =
[
c2 + c3x+ c4x

2 +
(
c5e

βx + c6e
−βx
)]
, (30)

where

a =
Dx +Dxz

Ds
, b =

Dxz

Da
, d =

2Dxz

Dx
, α2 =

2Dxz[(Dx +Dxz)Da +DsDxz]
2

DxDsDa (Dx + 2Dxz) (Da −Ds)
, and

β2 =
2DsDa (Dx + 2Dxz)

DxDxz (Da −Ds)
.

The force equations based on stiffness parameters are derived with the help of stress279

or force resultants Eqs. (18) to (21) and displacement Eqs. (28) to (30) are as follows280

Mx = Dx

[
c3 + 2c4x− dβ

(
c5e

βx − c6e
−βx
)]
, (31)

Qxy =

[
2 (Dsa+Dab) c4 + {(Da −Ds)αβ − d (Da +Ds)− 2Da}...

...
(
eβxc5 + e−βxc6

)]
, (32)

281

Pxz = 2Dxz

[
c3 + 2c4x+ β

(
c5e

βx − c6e
−βx
)]
. (33)

Substituting x = 0, uy = uy1 , φ = φ1, ψ = ψ1, Mx = Mx1
, Qxy = Qxy1 and Pxz =282

Pxz1 in Eqs. (28) to (33). The matrix relation between the state-vector and coefficients283

can be expressed as284 

uy1
φ1

ψ1

Mx1

Qxy1
Pxz1

︸ ︷︷ ︸
V (0)

=


1 0 0 0 −α α
0 1 0 a+ b −d −d
0 1 0 0 1 1
0 0 Dx 0 −Dxdβ Dxdβ
0 0 0 s p p
0 0 2Dxz 0 2Dxzβ −2Dxzβ


︸ ︷︷ ︸

K(0)



c1

c2

c3

c4

c5

c6

︸ ︷︷ ︸
C

, (34)
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Similarly substituting x = L, uy = uy2 , φ = φ2, ψ = ψ2,Mx = Mx2
, Qxy =285

Qxy2 and Pxz = Pxz2 in Eqs. (28) to (33). The matrix relation between the state-286

vector and coefficients can be expressed as287 

uy2
φ2

ψ2

Mx2

Qxy2
Pxz2

︸ ︷︷ ︸
V (L)

=


1 −L −1

2L
2 (a− b)L− 1

3L
2 −αeβL αe−βL

0 1 L L2 + (a+ b) −deβL −de−βL
0 1 L L2 eβL e−βL

0 0 Dx 2DxL −Dxdβe
βL Dxdβe

−βL

0 0 0 s peβL pe−βL

0 0 2Dxz 4DxzL 2Dxzβe
βL −2Dxzβe

−βL


︸ ︷︷ ︸

K(L)



c1

c2

c3

c4

c5

c6

︸ ︷︷ ︸
C

,

(35)
where, p = (Da −Ds)αβ − (Da +Ds) d− 2Da and s = 2Dab+ 2Dsa. From the Eqs.288

(34), and (35) we can write289 {
C
}

6×1
=
[
K(0)

]−1

6×6

{
V (0)

}
6×1

, (36)

290 {
C
}

6×1
=
[
K(L)

]−1

6×6

{
V (L)

}
6×1

. (37)

By putting the value of the coefficient of Eq. (36) into Eq. (37), the relation between291

the state vector for two boundary values can be written as292 {
V (L)

}
6×1

=
[
K(L)

]
6×6

[
K(0)

]−1

6×6︸ ︷︷ ︸
Ts

{
V (0)

}
6×1

. (38)

Let us assume, the transfer matrix of a static system

[
Ts
]
6×6

=

[
T11 T12

T21 T22

]
6×6

.

From the Eq. (38) we can write293 {
D2

F2

}
6×1

=

[
T11 T12

T21 T22

]{
D1

F1

}
6×1

, (39)

where
{
Dk

}
T =

{
uyk φk ψk

}
,
{
Fk
}
T=

{
Mxk

Qxyk Pxzk
}

and k=1, 2. From the294

Eq. (39), the relationship between displacement, force, and transfer matrix is expressed295

as296 uy2φ2

ψ2

 =
[
T11

]
3×3

uy1φ1

ψ1

+
[
T12

]
3×3

Mx1

Qxy1
Pxz1

 , (40)

297 Mx2

Qxy2
Pxz2

 =
[
T21

]
3×3

uy1φ1

ψ1

+
[
T22

]
3×3

Mx1

Qxy1
Pxz1

 . (41)
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A homogeneous panel is solved as a 1-D cantilever elastic panel. Hence, for fixed end,298

{D1} = 0 and for free end, Mx2
= 0 but Qxy2 6= 0 and Pxz2 6= 0. It can be derived299

from Eqs. (40) and (41)300 uy2φ2

ψ2

 =
[
T12

]
3×3

[
T22

]−1

3×3

 0
Qxy2
Pxz2

 , (42)

where flexibility and stiffness matrix of cantilever panel are,
[
F
]
3×3

=301 [
T12

]
3×3

[
T22

]−1

3×3
and

[
Ks

]
3×3

=
[
F
]−1

3×3
, respectively. The value of

{
D2

}T
=302

1

L

[
F
]
3×3

, means curvature moment, Pxz2 = 2GKxz2 l
2. The Eqs. (37) and (42) the303

value of coefficient matrix is304

{
C
}

6×1
=
[
Kc

]−1

6×3

[
T22

]−1

3×3︸ ︷︷ ︸
Kt

 0
Qxy2
Pxz2


3×1

, (43)

where305

[
Kt

]
=



− α

Dxβ (1 + d)
0

α

2Dxzβ (1 + d)

0 −a+ b

q
0

1

Dx (1 + d)
0

d

2Dxz (1 + d)

0
1 + d

q
0

− 1

2Dxβ (1 + d)

a+ b

2q

1

4Dxzβ (1 + d)
1

2Dxβ (1 + d)

a+ b

2q
− 1

4Dxzβ (1 + d)


6×3

, and (44)

q = (Da −Ds) {αβ (a+ b)− d (a− b)− 2a}.306

Substitute the Eq. (44) into Eq. (43), and upshots of the Eq. (43) is used to find307

out macro and micro displacements of homogeneous panel via Eqs. (28) to (30). Yield308

stress and force resultants can be obtained by putting the values of displacements into309

the Eqs. (18) to (21).310

3.2. Finite Element analysis for static response311

The FE model (Plane-stress element) for the plot of displacements is shown in Fig. 3.312

The volume and surface area of panel are LWT and 2(LW +LT +WT ), respectively.313

The detailed description of FE model are given as314

(1) Geometry: 2-D planar deformable shell element.315

(2) Section: Homogeneous solid.316

(3) Mesh size: 0.025m.317

(4) Mesh controls: Quad-dominated.318

(5) Element shape: Quad.319

13



(6) Element type: CPS4R.320

Figure 3. In-plane static displacement (m) due to the surface traction force.

3.3. Comparative results of static panel321

Consider a homogeneous cantilever panel with geometric and material properties322

to study the comparative macro and micro-displacements. Modulus of elasticity,323

E = 2.1 × 1011 N/m2, Poisson ratio, ν = 0.30, ρ = 7850 kg/m3, L = 1 to 3 m,324

W = 0.15 to 2.75 m and constant T = 0.15 m. The Micropolar-Cosserat analysis,325

Timoshenko and Goodier exact cantilever analysis (Augarde, C. E., & Deeks, A. J. et326

al. , 2008) and Timoshenko couple stress analysis (Asghari, M., Kahrobaiyan, M. H.,327

Rahaeifard, M., & Ahmadian, M. T. et al. , 2011) with respect to FE analysis at 1328

N/m2 surface traction for the varying dimensions are summarised as follows,329

3.3.1. Lateral displacement and stiffness330

Deflection and stiffness of cantilever panels are found directly from FE analysis. Typi-331

cal graphs for comparative analysis of lateral deflection and stiffness are shown in Fig.332

4 and Fig. 5, respectively.333

(1) Timoshenko and Goodier exact cantilever (Augarde, C. E., & Deeks, A. J. et al.334

14



Figure 4. Lateral deflection of the homogeneous panel.

Figure 5. Stiffness of the homogeneous panel.

, 2008) expression for displacement335

ux =
Qxyy

6Dx

[
(6L− 3x)x+ (2 + ν)

(
y2 − W 2

4

)]
,

uy =
Qxy
6Dx

[
3νy2(L− x) + (4 + 5ν)

W 2x

4
+ (3L− x)x2

]
.

(45)
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(2) Timoshenko couple stress (Asghari, M., Kahrobaiyan, M. H., Rahaeifard, M., &336

Ahmadian, M. T. et al. , 2011) expression for displacement337

ux =
Qxyyf

2

[
(1− e)

(
cosh λ(x− L)

cosh λL
− 1

)
− g

(
x2

2
− Lx

)]
,

uy =
Qxyf

2

[
(1 + e)

(
x− sinh λ(x− l) + sinh λL

λ cosh λL

)
+ g

(
Lx2

2
− x3

6

)]
,

(46)

where,

λ = 2

√
Ds

(
1

Dx
+

1

2Dxz

)
, e =

1

λ2

(
λ2Dx − 2Ds

Dx +Dxz

)
, f =

1

Ds

(
Dxz +Dx

2Dxz +Dx

)
and,

g =

(
2Ds

Dx +Dxz

)
.

3.3.2. Rotation of cross-section338

The rotation of cross-section is derived with the help of longitudinal and lateral de-339

flection of a panel which are found from FE analysis. Typical sketch and graph for340

comparison of rotation of cross-section is shown in Fig. 6 and Fig. 7, respectively. The341

rotation of cross-section about the neutral axis is expressed as342

φ =

−ux
y

+

√
AB2

x +AB2
y

y

 , (47)

where, ABx = −y sin θ, ABy = y (1− cos θ), y =
W

2
, ψ = micro-rotation, and343

bending slope, θ =
∂uy
∂x

.

Figure 6. Macro and micro-rotation of a panel.

344

16



Figure 7. Rotation of the cross-section about the neutral axis.

3.3.3. Rotation of micro-structure345

The sketch and graph of relative rotation of micro-structure based on the displacement346

field are shown in Fig. 6 and Fig. 8, respectively. The average rotations of micro-347

structure is348

ψ =
1

2

(
φ− ∂uy

∂x

)
(48)

Using the Eq. (47) into Eq. (48), micro-rotation in based on lateral and longitudinal349

displacement350

ψ =
1

2

[
− ux

y
+

√
AB2

x +AB2
y

y
− ∂uy

∂x

]
(49)

351

The comparison of FE analysis and Micropolar-Cosserat shows the good agreements352

with the in-plane static response; macro displacement and micro-rotation concerning353

the ratio of volume to surface area of the panel. The error appears in the macro-354

displacement and micro-rotation is due to imperfection in localization of deformation355

upon mesh refinement sensitivity. The localization associated with strain softening is356

neither necessary nor sufficient in setting the constant width of the shear band and357

energy dissipation during the time of computation (De Borst, R., & Sluys, L. J. et al.358

, 1991; Bazant, Z. P., & Pijaudier-Cabot, G. et al. , 1988; Needleman, A. et al. , 1988).359

The FE analysis v/s Timoshenko and Goodier’s exact solution or Timoshenko couple360

stress analysis graph also shows the same pattern corresponding to the response. In the361

case of Timoshenko and Goodier’s cantilever, error are caused by the incompatibility362
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Figure 8. Average micro-rotation of structure based on displacement field of plane-stress element.

between the boundary conditions for complex shear stress at the corners. The top and363

bottom faces enforce a zero stress boundary condition at the corners, while the applied364

uniform traction enforces non-zero shear stress boundary conditions at the same places365

(Augarde, C. E., & Deeks, A. J. et al. , 2008). In the case of couple stress analysis, this366

error is due to the asymmetric part of shear stress which does not contribute to energy367

density into the displacement field of structural system (Asghari, M., Kahrobaiyan,368

M. H., Rahaeifard, M., & Ahmadian, M. T. et al. , 2011; Karttunen, A. T., Reddy, J.369

N., & Romanoff, J. et al. , 2018).370

3.4. Natural frequencies of the panel371

The dynamic system of coupled Eqs. (22) to (24) have no classical representation. So,
It is necessary to represent the coupled system as a two-scale matrix via sufficient
and necessary decoupling conditions (Dion, J. M., & Commault, C. et al. , 1993). The
separation variable matrix of coupled equations is expressed asDs −Da 0 0

0 Dx 0
0 0 2Dxz


︸ ︷︷ ︸

M


u

′′

y

φ
′′

ψ
′′

︸ ︷︷ ︸
U ′′

+

 0 Ds +Da −2Da

−Ds −Da 0 0
2Da 0 0


︸ ︷︷ ︸

D


u

′

y

φ
′

ψ
′

︸ ︷︷ ︸
U ′

372

+

ρAω2 0 0
0 −

(
Ds −Da − ρIω2

)
−2Da

0 −2Da 4Da + ρAJω2


︸ ︷︷ ︸

Kd

uyφ
ψ

︸ ︷︷ ︸
U

= 0. (50)
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The generalized formulation of Eq. (50) via representation of state-space method are
as follows

MU
′′

+DU
′
+KdU = 0

373

U
′′

+M−1DU
′
+M−1KdU = 0, (51)

{
U

′′

U
′

}
6×1︸ ︷︷ ︸

X′

=

[
−M−1D −M−1Kd

I3 0

]
6×6︸ ︷︷ ︸

Z

{
U

′

U

}
6×1︸ ︷︷ ︸

X

374 {
X
}′

=
[
Z
] {
X
}
. (52)

The solution of the above system of linear differential equations,
{
X
}′

=
[
Z
] {
X
}

is{
X
}

= ζeΩx
{
C
}

or
{
X
}

=
[
S(x)

] {
C
}

(O’neil, P. V. et al. , 2011; Chau, K. T. et

al. , 2017). Where, ζ and Ω are eigenvector and eigenvalue of
[
Z
]
, respectively. The

solution of a dynamic system is summarised as{
U

′

U

}
6×1

= ζeΩx︸︷︷︸
s(x)

{
C
}

6×1

375 {
U

′

U

}
6×1

=
[
S(x)

]
6×6

{
C
}

6×1
. (53)

The state vector ( or V matrix) by using displacement uy, ψ , φ and resultants force376

Eqs. (18) to (21) can be expressed as377 

uy
φ
ψ
Mx

Qxy
Pxz

︸ ︷︷ ︸
V

=


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 Dx 0 0 0 0

Ds +Da 0 0 0 Ds −Da −2Da

0 0 2Dxz 0 0 0


︸ ︷︷ ︸

R

{
U

′

U

}
6×1

, (54)

however, the formulation can be generalized as378

{
V
}

=
[
R
]{U ′

U

}
6×1

. (55)

From the Eqs. (53) and (55), the relation between state vector and coefficient is ex-379

pressed as380 {
V (x)

}
6×1

=
[
R
]
6×6

{
S(x)

}
6×6

{
C
}

6×1
. (56)
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The relation between state vector V1 and V2 by using end conditions, x = 0 and x = L381

is expressed as382 {
V (L)

}
6×1

=
[
R
]
6×6

{
S(L)

}
6×6

{
S(0)

}−1

6×6

[
R
]−1

6×6︸ ︷︷ ︸
Td

{
V (0)

}
6×1

. (57)

Let us assume, the transfer matrix of a dynamic system

[
Td
]
6×6

=

[
T11 T12

T21 T22

]
6×6

,

so, Eq. (57) can be written as383

{
V (L)

}
6×1

=

[
T11 T12

T21 T22

]
6×6

{
V (0)

}
6×1

. (58)

The values of forcing frequency (or ω) for which the transfer matrix coefficient,384 [
T22

]
3×3

are zero. Those value are natural frequencies (or ωn) of a homogeneous can-385

tilever panel.386

3.5. Finite element analysis for natural frequency387

The FE model (Plane-stress element) for the plot of natural frequencies is shown in388

Fig. 9. The volume and surface area of panel are LWT and 2(LW + LT + WT ),389

respectively. The detailed description of FE model are given as390

(1) Geometry: 2-D planar deformable shell element.391

(2) Section: Homogeneous solid.392

(3) Mesh size: 0.025m.393

(4) Mesh controls: Quad-dominated.394

(5) Element shape: Quad.395

(6) Element type: CPS8.396

3.6. Comparative analysis of natural frequency397

Consider a homogeneous cantilever panel with geometric and material properties to398

study the comparative natural frequencies. The young modulus, E = 2.1×1011 N/m2,399

Poisson ratio, ν = 0.30, ρ = 7850 kg/m3, L = 1 to 3 m, W = 0.15 to 2.75 m and400

constant T = 0.15 m.The normalised frequencies for Micropolar-Cosserat analysis,401

Timoshenko (Hutchinson, J. R. et al. , 2001) and Euler (Mukherjee, A. R. I. N. D.402

A. M., & Agnivo, G. et al. , 2010) beam theory with respect to the FE analysis for403

varying dimensions are shown in Fig. 10. The expression of normalized frequency for404

homogeneous cantilever panel405

Nf = ωn

√
ρL2

G
. (59)

406
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Figure 9. FE model based on static stiffness for the natural frequency of first mode; 533.22 Hz.

Figure 10. Normalised frequency of the homogeneous panel.

The natural frequency’s response of Micropolar-Cosserat theory is very closer to FE407

analysis with respect to the ratio of volume to surface area of the panels. However,408

Timoshenko’s and Euler’s natural frequencies are found to have more differences with409

respect to FE analysis. This is caused by the existence of micro-rotational waves which410
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are not found in classical theories (Singh, D., & Tomar, S. K. et al. , 2008; Reda, H.,411

Rahali, Y., Ganghoffer, J. F., & Lakiss, H. et al. , 2016; Karami, B., Shahsavari, D., &412

Janghorban, M. et al. , 2018). It is observed that the micro-elastic characteristics are413

not sufficient for the realistic dispersion of waves. The micro-inertia needed in addition414

to micro-elastic characteristics (Ramezani, S., Naghdabadi, R., & Sohrabpour, S. et415

al. , 2009; Colquitt, D. J., Jones, I. S., Movchan, N. V., & Movchan, A. B. et al. ,416

2011; Papargyri-Beskou, S., Polyzos, D., & Beskos, D. E. et al. , 2009).417

4. Summary of results418

The summary of result from the study of static and dynamic systems based on classical419

and non-classical theories are as follows:420

4.1. Static system421

• This system is capable to predict the presence of curvature or micro-rotational422

field of displacement.423

• Transfer matrix method is used for the snapshot of the macro and micro dis-424

placements of the panels.425

• FE analysis of panel and simulations with Timoshenko-coupled stress, Timo-426

shenko and Goodier’s exact cantilever, and Micropolar-Cosserat analysis are427

presented.428

• The comparative study shows that differences in macro and micro-deflection and429

stiffness are up to 3% if the width of infill walls is limited up to 0.75L.430

4.2. Dynamic system431

• This system is capable to predict the presence of the dispersive phenomenon of432

flexural waves.433

• The natural frequencies of the panels are evaluated using the transfer matrix434

approach in conjunction with state-space method. This enables to decouple all435

the three coupled partial differential equations of motion.436

• FE analysis of panel and simulations with Micropolar-Cosserat theory, Timo-437

shenko shear deformation theory, and Euler theory are presented.438

• The comparative study shows that differences in natural frequencies are up to439

5% if the width of infill walls is limited up to 0.75L.440

5. Conclusions441

One-dimensional Micropolar-Cosserat elastic beam theory is used to evaluate the442

transverse displacements, stiffness, rotation of cross-section, independent rotation of443

micro-structure, and natural frequencies of the homogeneous panels. The compari-444

son of different theories show that Micropolar-Cosserat theory gives closer result in445

the case of in-plane static macro-displacement, independent micro-rotation, and natu-446

ral frequencies with the plane-stress finite element model. Timoshenko and Goodier’s447

exact cantilever analysis, and Timoshenko couple stress analysis also find the best448

agreement even for higher volume to surface ratio. However, other theories like Timo-449

shenko and Euler-Bernoulli predict the results in acceptable limits only in case of the450
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low volume to surface area ratio. The conclusions emphasizes on the contribution of451

the paper and novelty of this work includes:452

• The proposed analytical approach of transfer matrix in this work, can be used to453

evaluate the static and dynamic response for any type of boundary conditions.454

• In the present paper, the curvature moment (or force) has been considered due455

to asymmetric shear at free end to find the exact in-plane static response.456

• The validation of theoretical independent micro-rotation of panel with the help457

of static response of the plane-stress element is another unique feature of this458

work.459

• The illustration of various beam theories like; Euler-Bernoulli, Timoshenko, Tim-460

oshenko and Goodier’s exact analysis, Couple stress theory, and their comparison461

with analytical v/s finite elements analysis has not been presented before else-462

where.463

• The analytical results evidenced a good agreement with finite element analysis464

due to incorporation of proposed exact boundary condition at free end.465
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