High Performance Piezo-phototronic Devices Based on Intersubband Transition of Wurtzite Quantum Well

Minjiang Dan¹, Gongwei Hu¹, Jiaheng Nie¹, Lijie Li²,* and Yan Zhang¹,³,⁴,∗

¹ School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
² College of Engineering, Swansea University, Swansea, SA1 8EN, UK
³ Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences; Beijing 100083, China
⁴ College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

*To whom correspondence should be addressed, E-mail: zhangyan@uestc.edu.cn and L.Li@swansea.ac.uk

Abstract

III-nitride semiconductors play much more important roles in the areas of modern photoelectric applications, whereas strong polarization in their heterostructures is always a challenge to restrict the efficiency and performance of photoelectric devices. In this study, piezo-phototronic effect on near-infrared intersubband absorption is explored based on polar GaN/AlN quantum wells. The results show that externally applied pressure leads to the redshift of absorption wavelength by reducing polarization field of the quantum well. The sensitivity to estimate pressure-dependent intersubband absorption wavelength is almost two orders of magnitude higher than interband photoelectric devices. Additionally, such sensitivity is further enhanced by 2.6 times at 20 GPa as a result of piezo-phototronic effect. This study paves avenue for designing high performance near-infrared piezo-phototronic devices based on intersubband transition.

Keywords: Piezo-phototronic effect, GaN/AlN quantum well, intersubband transition, near-infrared absorption.
I. Introduction

Piezo-phototronics has acquired numerous research interests based on the coupled properties of piezoelectric, semiconductor and photoexcitation [1-3]. Polarization at junction or contact of piezoelectric semiconductors can be used for controlling carrier generation, transport and recombination [4, 5]. A variety of high performance devices have been developed, such as piezo-phototronic solar cells [6], LEDs [7] and pressure sensors [8]. InGaN/GaN quantum well array [9] and ZnO nanowire array [10] were utilized to achieve high-resolution distributed pressure imaging.

Pressure sensors converting external pressure stimulus into optical or electronic signals have found increasing applications in flexible electronics [11, 12], energy harvesting [13, 14] and human-computer interaction [15, 16]. Optical pressure sensors can extract the pressure values through wavelength shift under externally applied pressure. The interband transitions between conduction electrons and valence holes [17, 18] are typical in conventional InGaN/GaN quantum wells with sensitivity 0.002 GPa$^{-1}$ at wavelength 0.441 μm [19]. InGaN quantum dot had a higher pressure sensitivity of 0.015 GPa$^{-1}$ at wavelength 0.414 μm [20].

Intersubband transition is widely used in optoelectronic devices for infrared and terahertz applications [21, 22]. The infrared absorption wavelength ranges from 1.75 to 4.2 μm for GaN/AlGaN quantum wells [23]. Terahertz can be obtained by the intersubband electroluminescence of Si/SiGe quantum wells [24].

Polarization at GaN/AlGaN quantum wells was a well-proved approach to control the wavelength of intersubband transition [25, 26]. In this study, the pressure sensitivity of GaN/AlN quantum well has been calculated to reach up to 0.012 GPa$^{-1}$ at 4.69 GPa, compared with 3.32×10^{-5} GPa$^{-1}$ based on the interband transition [19]. The intersubband pressure sensitivity can be increased from 0.007 GPa$^{-1}$ to 0.010 GPa$^{-1}$ at 1.67 μm, indicating a 43% increase by the piezo-phototronic effect [27]. Here the absorption spectrum and wavelength are calculated by self-consistently solving the Schrödinger–Poisson equations. The results provide innovative guidance for high performance optical pressure sensors based on the piezo-phototronic effect.

II. Method and Model
Wurtzite GaN/AlN quantum well is comprised of two types of strong piezoelectric material, and only axial pressure acting on the materials are taken into account. Total polarizations can be calculated from \(P_{\text{piezo}}^{b(w)} = P_{\text{sp}}^{b(w)} + e_{33}^{b(w)} S_{33}^{b(w)} + e_{13}^{b(w)} (S_{11}^{b(w)} + S_{22}^{b(w)}) \), where the superscript \(b(w) \) is the barrier (well) layer, \(e_{33} \) and \(e_{13} \) are piezoelectric coefficients, \(S_{11}, S_{22} \) and \(S_{33} \) are axial strains caused by the pressure and \(P_{\text{sp}} \) stands for the spontaneous polarization. Strain can be obtained from the strain-stress relationship \(\sigma = (C) \cdot (s) \), where \(C \) is elastic constant, \(\sigma \) and \(s \) are the applied pressure and induced strain, respectively.

Except for pressure-produced strain, lattice-mismatched strain in barrier layer is also present and can be written as [28, 29] \(S_{110}^{b} = S_{220}^{b} = \frac{a_b - a_w}{a_w} \), \(S_{330}^{b} = -\frac{2C_{11}}{C_{33}} S_{110}^{b} \) and \(S_{120} = S_{230} = S_{310} = 0 \), where \(a_b \) and \(a_w \) are lattice constants of barrier and well layers respectively, \(C_{13} \) and \(C_{33} \) are corresponding stiffness constants of AlN barrier layer. Here, we consider the quantum well pseudomorphically grown on GaN buffer layer, and thus GaN well layer has no lattice-mismatched strain. After obtaining polarization, we can solve built-in field in the quantum well [30] \(E_b = \frac{(P_w - P_b)L_w}{\varepsilon_0 (L_b \varepsilon_{rw} + L_w \varepsilon_{rb})} \) and \(E_w = -E_b \frac{L_w}{L_b} \), where electric field \(E_b \), total polarization \(P_b \), width \(L_b \), and relative permittivity \(\varepsilon_{rb} \) are parameters of AlN barrier layer. Electric field \(E_w \), total polarization \(P_w \), width \(L_w \), and relative permittivity \(\varepsilon_{rw} \) are parameters of GaN well layer. \(\varepsilon_0 \) denotes the vacuum permittivity.

The one-dimensional, effective-mass Schrödinger equation in quantum well system is solved from [31]

\[
\left[-\frac{\hbar^2}{2m^*(z)} \frac{d^2}{dz^2} + V(z) \right] \psi(z) = E \psi(z) \tag{1}
\]

where \(\hbar \) is the reduced Plank’s constant, \(m^* \) is the effective mass, \(V \) is the total potential energy in the conduction band, \(\psi \) is the electron wave function and \(E \) is the electron energy.

Electrical potential is given from one-dimensional Poisson equation [32]
\[
\frac{d}{dz} \left[-\varepsilon(z) \frac{d\phi(z)}{dz} + P_{\text{piezo}}(z) \right] = q \left[N_D(z) - n(z) \right]
\]
\quad (2)

where \(\varepsilon(z) \) is the position-dependent relative permittivity, \(\phi \) is the electrostatic potential which is part of the total potential energy \(V \), \(P_{\text{piezo}} \) is the total piezoelectric charges, \(N_D \) is the ionized donor density and \(n \) is the free electron density. All results are obtained by mean of self-consistently solving Schrödinger and Poisson equations \([33, 34]\). Absorption coefficient of intersubband transition can be obtained as \([29, 35]\)

\[
\alpha_{\text{abs}} = \frac{q^2 \pi}{n_r \varepsilon_r m_0^2 \omega d} \sum_{m,n} \int \frac{k_x dk_y}{2\pi} \int d\phi |M_{mn}(k_z)|^2 \frac{(f_{n}(k_z) - f_{m}(k_z))(\hbar \gamma / \pi)}{(\Delta E_{mn} - \hbar \omega)^2 + (\hbar \gamma)^2}
\]
\quad (3)

where \(m_0 \) is the rest mass of electron in free space, \(n_r \) is the refractive index, \(c \) is the velocity of light, \(\omega \) is the angular frequency of the incident light, \(d \) is the width of GaN well layer, \(M \) and \(N \) indicate the initial and final energy transition levels. \(M_{mn} = \frac{m_z}{\hbar} (E_m - E_n) \langle \phi_m | z | \phi_n \rangle \), where \(E_m \) and \(E_n \) are the mth and n th subband energy levels, respectively. \(f(k_z) = 1 + \exp((E_{m(n)} - E_F) / k_B T) \) is Fermi-Dirac function of conduction subband. \(\hbar \gamma \) is the half linewidth of Lorentzian function and \(\gamma = (0.1 \text{ps})^{-1} \) used here for simplicity. \(\Delta E_{mn} = E_n - E_m \) is the transition energy.

Fig. 1(a) schematically shows the GaN/AlN quantum well structure, corresponding to potential profile of conduction band and wave functions under no externally applied pressure. The quantum well is formed by a 7 nm-thick GaN layer sandwiched between two 8 nm-thick AlN layers. Doping concentration of well and barrier layer are at the level of \(10^{17} \text{ cm}^{-3} \) and \(10^{16} \text{ cm}^{-3} \) and temperature is fixed at room temperature (300 K). The potential profile are inclined due to the presence of built-in field from spontaneous and piezoelectric polarization \([36]\). The arrow shows the intersubband transition from ground state to the first excited electronic state. Fig. 1(b) shows the case that quantum well is endured an externally applied pressure along [0001] direction. In this case, potential profile becomes flatter by pressure-induced piezoelectric polarization which is reversed to the built-in field, hence weakening it. The change of internal field in quantum well can effectively tune the subband energies and wave functions,
thus control the intersubband transition of near-infrared photoelectric detection.

III. Results and discussion

Fig. 2(a) shows the pressure-dependent polarization field of well layer. As it can be seen, polarization field is weakened by pressure and has the magnitude of MV/cm. Such polarization field is so strong that the commonly used gate voltage cannot effectively control it. This is the reason why gate voltage is difficult to modulate photoelectric characteristics of polar quantum well. By contrast, polarization field in well layer is reduced by about 0.133 MV/cm per GPa. Fig. 2(b) shows intersubband absorption spectra under different external pressures. The absorption spectra are in the wavelength out of Restrahlen band of substrate materials (GaN, AlN and sapphire) [35, 37], hence it can be made available for designing photoelectric devices. Due to the light doping and selection rules, only intersubband transition from ground state to the first excited state and p-polarized light are mainly studied here. As we can see, absorption wavelength is increased with pressure, which is due to the quantum-confined Stark effect by the decrease of polarization field in GaN well layer [26, 38, 39]. Fig. 2(c) shows absorption wavelength as a function of pressure. Absorption wavelength increases monotonously from 1.66 μm to 2.24 μm when the pressure grows from 0 GPa to 20 GPa.

To estimate the ability of using pressure to control absorption wavelength, we calculate pressure sensitivity from [40]

\[
S = \frac{\delta(\Delta \lambda / \lambda_0)}{\delta \sigma} = \frac{1}{\lambda_0} \frac{\delta \lambda}{\delta \sigma}
\]

where \(\lambda \) and \(\lambda_0 \) are the peak absorption wavelengths with and without external pressure, \(\sigma \) is the externally applied pressure. Fig. 2(d) shows the pressure sensitivity that is remarkably enhanced by pressure. At the pressure of 20 GPa, the sensitivity reaches to 0.026 GPa\(^{-1}\), 2.6 times higher than that of no pressure. When a higher pressure is applied, the absorption spectrum moves into a longer wavelength and the device exhibits a better pressure sensitivity.

Fig. 3(a) shows absorption wavelength as a function of pressure in different quantum well widths. Absorption wavelength increases in near-infrared region with growing pressure for three quantum wells. Moreover, absorption wavelength becomes longer when the well width
increases from 7 to 9 nm under a fixed barrier width of 8 nm. This is because of the weakened polarization field in well layer [41]. By contrast, increasing the barrier width from 8 to 10 nm leads to the decrease of absorption wavelength due to the enhanced polarization field [42].

Fig. 3(b) compares pressure sensitivity between the present work and previous experimental results [19, 43, 44]. It clearly shows that pressure sensitivity based on intersubband transition is much higher than those of interband transition. For those using the interband transition, pressure sensitivity has the value mostly at the level of 10^{-3}, whereas it is in level of 10^{-2} in this study. By increasing pressure from 0 to 19 GPa, its sensitivity rises from 7.66×10^{-4} GPa$^{-1}$ to 0.025 GPa$^{-1}$. The improvement of absorption performance is attributed to the piezo-phototronic effect.

In order to globally study the influence of pressure and structure of quantum well, Fig. 4 shows the contour of intersubband absorption wavelength and its pressure sensitivity. Figs. 4(a, c) show the case under well width of 7 nm, and Figs. 4(b, d) show the case under barrier width of 8 nm. Fig. 4(a) shows that either increasing pressure (fixed barrier width) or decreasing barrier width (fixed pressure) can make absorption wavelength increased. In this situation, pressure sensitivity is enhanced by increasing pressure or lowing barrier width, as seen in Fig. 4(c). The variation of absorption wavelength and pressure sensitivity becomes reverse when well width is grown at a fixed barrier width, as shown in Figs. 4(b, d). This can be well understood since the dependence of polarization field of well layer on well and barrier width is exactly reverse from the periodic boundary condition $E_x L_0 + E_z L_u = 0$ [30]. Even so, it has a common result that pressure can lead increased absorption wavelength and enhanced sensitivity.

Piezoelectric property of AlN barrier layer was already considered in this work. More calculations for one of dimension sets have been conducted for several scenarios in order to understand the impact of the polarization of the AlN layer (Fig. 5). Both AlN and GaN have strong piezoelectric properties. When the polarization of GaN and AlN layer are considered, absorption wavelength is red shifted due to the reduction of polarization field by pressure, as shown by the black dotted line in Fig. 5 and similar results in Figs. 2-4. When the piezoelectric property of AlN barrier layer is neglected in GaN/AlN quantum well, polarization field is...
enhanced by pressure leading to blue shift of the absorption wavelength, as shown by the blue line in Figure 5. It is seen from the blue line in Fig. 5, the absorption wavelength reduces from initially shifted 2.5 μm to 1.4 μm with the increase of pressure. The results match closely with previous findings in [45]. The red or blue shift phenomenon based on the intersubband transition mainly depends on the introduction of piezoelectric field [42]. The change of the absorption wavelength purely by pressure if not considering the polarization will be comparably very small, as seen from calculated results in Fig. 5 (red line).

IV. Conclusion

In summary, we have investigated the impact of piezo-phototronic effect on intersubband absorption in near-infrared wavelength in the GaN/AlN quantum well. On one hand, pressure sensitivity of intersubband absorption is much higher than those based on interband transition. On the other hand, external pressure can further enhance the intersubband sensitivity by the piezo-phototronic effect. Pressure sensitivity is also dependent on the width of barrier and well layer. This study provides a guidance for designing next generation high-sensitive near-infrared piezo-phototronic devices based on intersubband transition.

ACKNOWLEDGMENTS

The authors are thankful for the support from University of Electronic Science and Technology of China (Grant No.ZYGX2015KYQD063), and Engineering and Physical Sciences Research Council (grant no. EP/T019085/1).
Reference

Figure captions

Fig. 1 Schematic diagram of a single GaN/AlN QW and its corresponding potential profile of conduction band (a) without stress $\sigma = 0$ and (b) with stress $\sigma = 10$ GPa. The potential profile is calculated based on a QW with GaN and AlN width of 2 nm and 4 nm, respectively. e_1 and e_2 is wave function of ground state and first excited state. Intersubband transition occurs between e_1 and e_2 when a light with special wavelength is incident.

Fig. 2 (a) Polarization field in well layer as a function of external pressure. (b) Near-infrared absorption spectra under different pressures. (c) Absorption wavelength and (d) pressure sensitivity versus externally applied pressure.

Fig. 3 (a) Absorption wavelengths against pressure at different well and barrier widths. (b) Comparison of pressure sensitivity between present work and other studies.

Fig. 4 Contour plot of absorption wavelength versus applied pressure as well as (a) barrier layer width and (b) well layer width. Pressure sensitivity as a function of applied pressure as well as (c) barrier layer width and (d) well layer width. (a, c) and (b, d) are obtained under the fixed well width 7 nm and barrier width 8 nm, respectively.

Fig. 5 Absorption wavelengths versus pressure under different polarization conditions. Considering polarization for both GaN and AlN layers (black dotted line); only considering polarization for GaN layer (blue line); not considering polarization for both layers (red line).
Figures

(a)

(b)

Figure 1
Figure 2
Figure 3

(a) Wavelength λ (μm) vs. Pressure σ (GPa) for different values of L_w: $L_w=7$ nm, $L_b=10$ nm (blue), $L_w=7$ nm, $L_b=8$ nm (green), $L_w=9$ nm, $L_b=8$ nm (red).

(b) Sensitivity S (GPa$^{-1}$) vs. Pressure σ (GPa) for references [43], [19], [44], and this work (red).
Figure 4
Figure 5
Piezo-phototronic effect on the intersubband absorption properties is investigated in GaN/AlN quantum well. Optical pressure sensitivity based on the intersubband transition is far higher than interband transition devices, which can be further improved by external applied strains.