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Abstract

An effective discrete element modelling strategy for triangular mesh represented spher-
ical harmonic particles is proposed. It features: 1) using a golden spiral lattice on the
unite sphere to generate an initial triangular mesh with any number of vertices/triangles
for a star-shaped surface; 2) applying an edge contraction mesh simplification algorithm
to reduce the mesh size to any desired level; and 3) adopting an energy-conserving linear
normal contact model to compute the contact geometric and force features of contacting
particles. In particular, the edge contraction algorithm is applicable to any triangular
mesh. It is algorithmically very simple and highly effective, and can be easily incorpo-
rated into existing discrete element frameworks. Numerical experiments are conducted
to demonstrate that the simplified mesh by the edge contraction can not only have a
very low geometric approximation error but also achieve expected mechanical responses.
Thus this mesh simplification approach can serve as an ideal pre-processing tool to op-
timise a large input triangular mesh in order to significantly reduce the computational
cost associated with discrete element simulations without compromising the modelling
accuracy.

keywords: Spherical harmonic, Mesh simplification, Discrete element method, Energy con-
serving contact model

1 Introduction

Real particles encountered in applications are irregular and mostly non-convex shaped. Using
the discrete element method (DEM) [1] to model arbitrarily shaped particles, and non-convex
in particular, has been a major challenging issue in two aspects: how to represent real particle
shapes or their surfaces; and how to model contacts between these particles.

A 3D surface can be expressed either in an analytical, discrete or digital form. An analytical
form can be implicit or explicit (i.e. parametric). A surface Ω is implicit if it can be expressed
by the zero-set of a scalar-valued function f ∶ R3 → R, i.e. Ω = {x ∈ R3 ∣ f(x) = 0}, where
x = (x, y, z) are the coordinates of a point on the surface. In an explicit form the coordinate
components (x, y, z) are expressed as three individual functions in terms of two parameters
in a 2D parametric space. However, even an implicit form may need to be parametrised to
facilitate the subsequent contact modelling between these particles.
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Very limited implicit functions can be used to represent a non-convex shape in the discrete
element method, as comprehensively reviewed in [2]. Super-quadrics [3, 4, 5] have been used
in DEM to represent non-spherical particles, and by choosing certain ranges of shape con-
stants in the super-quadric expression, some non-convex shapes can be defined. However, the
resulting shapes may be too special to be taken as a good representation of real particles.
Similarly, NURBS (or B-spline) [6] and iso-geometric functions [7], both being parametric
functions, can also be used to represent complex solids or surfaces [8, 9] in DEM, but these
methods use control points to indirectly manipulate the resulting surfaces. This is not suf-
ficiently flexible and thus limits their ability to conveniently construct arbitrary non-convex
shapes.

A more powerful analytical approach is to utilise spherical harmonics to represent more real-
istic particles [10, 11, 12]. Spherical harmonics form a complete set of orthonormal functions
on the unit sphere, and possess a coarse to fine representation hierarchy whereby using more
high frequency harmonic functions, more detailed surface features can be captured. These
favourable properties make spherical harmonics a natural choice as the basis functions to
represent a 3D surface. Note that the spherical harmonic representation is also expressed
in a 2D parametric form. Standard spherical harmonic expansions [11, 12] can only repre-
sent star-shaped surfaces, but can be extended to construct more general shapes [13]. As
demonstrated in [14], spherical harmonics can be adopted to compactly represent solids or
volumetric surfaces acquired by digital technologies. In general, a large number of spherical
harmonic functions may often be needed to adequately describe a complex surface.

3D shapes can also be represented in discrete or digital forms. The most universal approach
to acquire realistic particle shapes is to employ various 3D shape digitalisation technologies,
such as laser and computerised tomography (CT) scanning [14, 15]. The acquired 3D model
is processed and represented either by a discrete pixel/voxel cloud, a polygonal/triangular
surface mesh or a smoothed analytical form, such as the spherical harmonic expansion. In
most cases, a triangular mesh provides the most generic and versatile representation to ac-
commodate any arbitrary surface. However, to capture finer details of a real surface, a large
number of vertices/triangles are needed.

Assuming that non-convex particles have been represented either in spherical harmonics or in
a triangular mesh, the next stage in the discrete element modelling of such particles is contact
detection. This involves: 1) determining if two particles are in contact; 2) for particles in
contact, computing the contact geometric features, and 3) evaluating contact forces between
the contact pairs.

For two non-convex shaped particles, multiple contacts can occur. In this case the contact
cannot be effectively established by simultaneously solving two spherical harmonic equations
that represent the particles, so some discretised forms have to be adopted. In [11], a sophis-
ticated contact search procedure is proposed in two stages: 1) check if the bounding boxes
of the two particles have overlap; 2) use the overlap box of the bounding boxes to conduct a
detailed local search to establish if the two particles are in real contact. This procedure relies
on an equal angle discretisation of the 2D parametric space for each particle and the total
computational cost is related to the total number of the discrete points involved. In [12], the
second stage of the procedure is refined. The surface triangulation of each particle is firstly
constructed from the equal angle discretisation grid, from which a tetrahedral discretisation
of the particle is established by connecting each surface triangle to the centre of the particle.
By utilising the separating axis theorem [16] along a particular direction, a potential contact
list of the tetrahedra from the two particles is generated. From the list, the actual contact
status of the two particles can be found by checking the contact between two tetrahedra
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on the list. However, no details are provided in [11, 12] on how the contact geometry and
the contact force are computed, which are essential for non-spherical particles and should be
addressed.

In a series of our recent work [17, 18], a general energy-conserving contact model for arbitrar-
ily shaped particles has been re-established based on the previous work [19, 20]. A specialised
contact-volume-based contact model with new computational procedures has also been pro-
posed in [18] to more effectively model contacts between two particles represented by surface
triangular meshes. A large number of numerical experiments [18] have been conducted to
validate the robustness and applicability of the contact model.

This energy-considering contact modelling framework is also applicable to spherical har-
monic particles in discrete forms. However, there are two additional issues to be adequately
addressed. The first issue is how to develop a more effective approach for the surface triangu-
lation of a spherical harmonic shape than the equal angle discretisation of the 2D parametric
space used in [11, 12]. The numerical experiment conducted in [12] suggests that 5000 ∼ 6000
triangles may be needed to represent a spherical harmonic surface with less than 0.5% total
volume error. Using such a fine mesh will inevitably be computationally intensive for the con-
tact modelling as the computational complexity of the contact model for a pair of triangular
meshes is proportional to the number of triangles involved. This is also a common issue for
any real particle that is digitally acquired resulting in a fine triangular mesh representation.

On the other hand, if too fewer vertices/triangles are used to represent a particle surface in
order to reduce the computational cost, some surface geometric features may be lost which
can also have an adverse effect on the mechanical solution accuracy. Therefore, a balance
needs to be made between the level of the geometric approximation and the computational
costs. To the author’s best knowledge, no previous work has been reported to address this
issue. This leads to the second issue: how to reduce a large triangular mesh down to a size
where a reasonable modelling accuracy can still be attained.

This work will address the above two issues and the paper is organised as follows. Spherical
harmonics and its expansion to represent star-shaped surfaces will be briefly reviewed in
Section 2. Three schemes used to generate surface triangulation will be discussed in detail.
In particular, the golden spiral lattice on the unite sphere S2 will be recommended as it not
only provides a better vertex distribution, but also offers a full control of the number of
vertices/triangles to generate. Section 3 presents a simple but effective mesh simplification
algorithm based on a well-established edge contraction operation. This approach iteratively
removes one vertex and two triangles each time under some local optimal conditions and can
achieve any desired level of vertex/triangle reduction. It is highlighted that this approach is
applicable not only to surface triangulated star-shaped particles, but also to any triangular
mesh for any particle shapes. Thus it provides an ideal pre-processing tool to optimally
simplify a fine triangular mesh to a required level. The performance of the algorithm will be
assessed in terms of geometric approximation errors. Section 4 outlines the energy-conserving
linear contact model [18] that effectively handles the contact between any two triangular
meshes. Two examples will be provided in Section 5 to quantitatively assess the geometric
approximation errors and the mechanical response of the simplified meshes. Conclusions will
be drawn in Section 6.
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2 Spherical Harmonic Representation of 3D Shapes

2.1 Spherical Harmonics and Shape Representation

Spherical harmonics are functions defined on the unit sphere S2 = {x ∣xTx = 1,x ∈ R3}. The
spherical harmonic Y m

n (θ, φ) of degree n and order m is expressed as:

Y m
n (θ, φ) = cn,mPmn (cos θ) eimφ (n ≥ 0;−n ≤m ≤ n) (1)

where i =
√
−1; the pair (θ, φ) are the coordinates in the parametric domain [0, π] × [0,2π];

cn,m is a normalisation constant

cn,m =

¿
ÁÁÀ(n + 1)(n −m)!

4π(n +m)!
; (2)

and Pmn (x) is the associated Legendre polynomial [21]. Spherical harmonics form a complete
set of orthonormal functions. Thus any spherical or radial function r(θ, φ) can be expanded
as a unique linear combination of these spherical harmonics:

r(θ, φ) =
∞
∑
n=0

n

∑
m=−n

an,mY
m
n (cos θ) (3)

where the complex coefficients an,m are determined by :

an,m = ∫
π

0
∫

2π

0
r(θ, φ)Y m

n (θ, φ)dθ dφ (4)

in which Y
m
n is the complex conjugate of Y m

n . Since r is a real valued function, the coefficient
an,m has the following property

an,−m = (−1)man,m, (m > 0) (5)

where an,m is the complex conjugate of an,m. Thus only the coefficients an,m where m ≥ 0
need to be evaluated or stored.

The spherical harmonic expansion (3) is equivalent to a Fourier transform for functions defined
on the sphere S2, which transfers the radial function r into its frequency spectrum. In addition
to its orthonormality and completeness, spherical harmonics also have a property of a coarse-
to-fine representation hierarchy, which make them a natural choice of basis functions to
represent star-shaped surfaces.

A shape Ω is said to be star-shaped if there exists a point c ∈ R3 such that every (line)
ray emitting from c in any direction intersects the surface of Ω at exactly one point; which
implies that c must be an interior point of the shape: c ∈ Ω and the shape has genus zero.
Thus there is a one-to-one bijective mapping between each point on the surface and one point
in the spherical or parametric coordinates. Taking c as the centre of a spherical coordinate
system, the radial function r, denoting the distance from c to every point on the surface of Ω,
is well defined and thus can be represented by spherical harmonics. The spherical harmonics
expansion technique can also be extended to more general shapes [13]. In this work, the
discussion will be limited to star-shaped particles.

In practice, the expansion (3) is always truncated to include only limited terms

r(θ, φ) =
N

∑
n=0

n

∑
m=−n

an,mY
m
n (cos θ) (6)
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Figure 1: A star-shaped surface approximated by spherical harmonics with an increasing
maximum degree N = 0,5,15 and 30 (from left to right), showing a coarse-to-fine representa-
tion hierarchy

where the maximum degree N of the spherical harmonics is determined by the required
approximate accuracy and the computational cost involved. This truncation ignores higher
frequency components than N , and thus some finer details may be lost. Figure 1 shows how a
3D surface is approximated by different maximum degrees N = 0,5,15,30, where fine features
of the surface gradually emerge from a sphere when N increases, or vice versa.

For a given N , the total number of coefficients an,m is (N + 1)2. For N = 30 (which is
used for all the spherical harmonic shapes presented in the current work), there are 961
coefficients. However, due to the property (5), only an,m with m ≥ 0 are needed. So the
required coefficients can be reduced to (N + 1)(N + 2)/2. The property (5) can also be used
to improve the numerical efficiency as will be discussed below.

2.2 Shape Reconstruction

Given a set of coefficients an,m for the spherical harmonic representation of a surface, the
surface can be reconstructed by reversely applying the expansion (6). In practice, an approxi-
mate representation of the surface is required, which involves two procedures: point sampling
and topology representation. Point sampling obtains sufficient points on the surface by gen-
erating their spherical or parametric coordinates (θ, φ), while the topology representation
provides a connectivity of these sampled surface points. For the purpose of the discrete ele-
ment modelling to be discussed in Section 4, a triangular mesh from the sampled points will
be used to approximately represent a 3D spherical harmonic surface.

2.2.1 Point sampling

For a given pair of coordinates (θ, φ) in the parametric domain, the expansion (6) is used to
compute the radial coordinate r(θ, φ). Then from the resulting spherical coordinates (r, θ, φ),
the Cartesian coordinates of the point x = (x, y, z) on the surface can be attained through
the transformation

x(θ, φ) = r(θ, φ)x0(θ, φ), with x0(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ) (7)

Since x0 is the projection of the parametric coordinates (θ, φ) on S2, the shape reconstruction
can be virtually done in two steps: 1) compute the radial distance r(θ, φ); and 2) project the
parametric point (θ, φ) to x0 on S2 and scale x0 by r to obtain the point x.
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The key step of the point sampling is to compute the radial function by (6). Clearly, for a
large N and many points to be sampled, the computational cost involved in the evaluation
can be substantial. It is therefore important to seek a more efficient scheme than directly
applying (6).

As an,m and eimφ are complex numbers, it is desirable to perform all the operations in (6) in
real numbers. Define a (real) spherical associated Legendre polynomial Rmn (θ) as

Rmn (θ) = cn,mPmn (cos θ) (8)

Because the associated Legendre polynomial Pmn (x) has a property

P −m
n (cos θ) = (−1)mPmn (cos θ) (9)

and by using the definition of cn,m in (2), it is easy to establish that

R−m
n (θ) = (−1)mRmn (θ) (10)

Then for m > 0, let

rmn (θ, φ) = an,−mR−m
n (θ)e−imφ + an,mRmn (θ)eimφ (11)

Utilising (5), (10) and e−imφ = eimφ (the complex conjugate of eimφ), we have

rmn (θ, φ) = Rmn (θ) (an,m eimφ + ān,m eimφ) (12)

which can be further simplified as

rmn (θ, φ) = 2Rmn (θ) [aR
n,m cosmφ − aI

n,m sinmφ] (13)

where aR
n,m and aI

n,m are the real and imaginary parts of an,m = aR
n,m + iaI

n,m.

Finally (6) can be re-written as

r(θ, φ) =
N

∑
n=0

{R0
n(θ)aI

n,0 + 2
n

∑
m=1

Rmn (θ) [aR
n,m cosmφ − aI

n,m sinmφ]} (14)

In this new expression, all the operations involved are real numbers. In addition, only N
pairs of {cos(mφ), sin(mφ)} ,m = 1, ...,N , function evaluations are needed, and can be pre-
computed by using the relation ei(m+1)φ = eiφeimφ. The remaining part is the evaluation of
each spherical associated Legendre function Rmn which is already supported by several com-
puter programming languages, or by using (10) where the associated Legendre function Pmn
is supported by almost all modern programming languages.

The new expression (14) can be employed not only to obtain points on the surface, but also
to check if a given point, either in the parametric space or in the global (x, y, z) space, is
inside or outside of the surface, which is the most important and costly operation in contact
detection for spherical harmonic particles [11, 12].

2.2.2 Triangular mesh representation

Several approaches can be adopted to obtain a triangular mesh from the sampled points. A
common practice is to firstly construct a triangular mesh in the rectangular (θ, φ) domain.
Then by making use of the periodicity in φ, the same triangular connectivity is used as the
mesh for the mapped points on the surface Ω. As parametric coordinates are equivalent to
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Table 1: Numbers of vertices (v) and triangles (f) of icosahedral subdivision meshes at
different levels

Level 0 1 2 3 4 5

(v, f) (12, 20) (42, 80) (162, 320) (642, 1280) (2562, 5120) (10242, 20480)

spherical coordinates on the unit sphere S2, an alternative approach attempts to generate a
triangular mesh on S2. Again, the mapped triangular mesh on the surface Ω will be a valid
triangulation of the surface. Three triangulation schemes within the above two approaches
are introduced as follows.

1). The equal angle grid in [0,2π] × [0, π]. Divide this rectangular parametric domain
into equal divisions along both θ and φ directions to form a regular triangular mesh. This
is the most common approach that has been used in the previous work related to discrete
element modelling of star-shaped particles [11, 12].

Despite its simplicity, the scheme has an obvious drawback. Figure 2(a) shows such an equal
angle triangular mesh from a 26×26 grid in the parametric domain when mapped on the unit
sphere S2. Although the mesh is evenly distributed in the parametric domain, the mapped
vertices on the unit sphere are far from an even distribution as the mapping is not distance-
preserved. Severe distortion occurs near the two poles where too many vertices are located,
resulting in a less efficient mesh representation.

The basic idea to overcome this uneven point distribution issue is to directly use the trian-
gulation of points which are evenly distributed on S2. Research on distributing points evenly
on a sphere has a long history in spherical geometry, but except for a few special cases based
on platonic solids, it is generally impossible to precisely distribute equally-spaced points on
a sphere, and therefore sub-optimal solutions have to be sought.

The second scheme to be presented is an optimal solution based on the recursive refinement
of the initial triangulation provided by one platonic solid, icosahedron, and thus can achieve
a perfectly even point distribution on S2. The third scheme is a sub-optimal solution which
uses the Fibonacci or golden spiral lattice on the parametric domain and the convex hull of
these lattice vertices mapped on S2 as the triangular mesh for spherical harmonic surface
reconstruction.

2). The icosahedral subdivision on the unit sphere S2. The surface triangles of
the icosahedron generates a perfect triangular mesh on S2. To introduce more vertices but
maintain the perfectly even distribution property, each triangle is split into four equal sub-
triangles by introducing a vertex at the middle point of each edge, then projecting these
newly introduced vertices radially onto S2 to attain a refined triangular mesh. The same
procedure can be repeated recursively, resulting in more refined but still evenly distributed
triangular meshes until a desired mesh is obtained.

Table 1 lists the numbers of vertices (v) and triangles (f) of the icosahedral triangular meshes
at different subdivision levels. The original icosahedral mesh is denoted as level 0. Note that
based on Euler’s formula, v and f satisfy the relation of v = f/2 + 2.

Although a perfectly even point distribution is always created, the main problem with this
scheme is that the numbers of vertices/triangles at a particular level are fixed and quadrupled
by each subdivision, resulting in increasing number gaps between different levels. Thus
the size of the mesh generated cannot be arbitrarily chosen to meet the needs of practical
problems.
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3). The Fibonacci or golden spiral lattice

The problem with the first equal angle division scheme is that multiple points have the same
θ or φ value, while the second recursive subdivision scheme cannot generate a mesh with
a required number of vertices/triangles. This third scheme attempts to address these two
issues but with a slightly less perfect point distribution on S2. However, this imperfection is
not an issue as will be further discussed in the next section.

This scheme uses the Fibonacci lattice in the parametric domain where the parametric coor-
dinates of the lattice nodes are determined by [22, 23]

(θ, φ)i = (arccos(1 − 2i

F2
) , 2πF1

F2
i) , (0 ≤ i < F2) (15)

in which F1 and F2 (with F1 < F2) are two consecutive Fibonacci numbers, and F2 is also
the total number of the lattice nodes. One notable difference from the first scheme is that
the lattice has the equal height partition along the z-direction, instead of equal angle in θ.
Although this lattice achieves a near even point distribution on S2, it suffers from the same
problem as the second scheme: the number of vertices (and triangles) is fixed as one of the
Fibonacci numbers.

By recognising the important role that the ratio F2/F1 plays in the scheme and the fact that
the ratio tends to the golden ratio when F1 and F2 increase, a generalised scheme is used
instead, in which the lattice coordinates are determined by

(θ, φ)i = (arccos(1 − 2(i + ε)
M − 1 + 2ε

) , 2π

λ
i) , (0 ≤ i <M) (16)

where λ = (1 +
√

5)/2 ≈ 1.618 is the golden ratio; ε = 0.36 is an empirically determined
parameter to improve the point distribution around the two pole areas [24]; and M is the
number of lattice nodes that can be freely set. The resulting lattice is termed the golden
spiral.

The triangular mesh of the mapped points on S2 from the Fibonacci or any golden spiral
lattice is generated from the convex hull of these points. Compared to the Fibonacci lattice,
the golden spiral lattice can have any number of vertices/triangles and therefore is a preferred
choice.

(a) (b) (c)

Figure 2: Triangular meshes on the unit sphere S2 generated by: (a) a 26×26 equal-angle grid
in the parametric (θ, φ) domain; (b) the level 3 icosahedral subdivision; and (c) the golden
spiral lattice. The number of vertices in (b) and (c) is 642.
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Figure 2(b) and (c) respectively show two triangular meshes on S2, one from the level 3
icosahedral subdivision and the other from the golden spiral lattice, with the same number of
vertices M = 642. Clearly, a much better point distribution than the first scheme is achieved
by both schemes, and between them there is no visually significant difference in the point
distribution quality, although the element connectivities are different. However, due to the
flexibility in the selection of the number of vertices/triangles, the golden spiral lattice is used
to represent a triangulated spherical harmonic shape in this work.

Even though a desirable triangular mesh scheme for S2 has been found, our goal is to use
the mesh to reconstruct a triangulated approximate to a spherical harmonic shape. The
performance of the golden spiral lattice and the other two schemes are tested for representing a
spherical harmonic shape. This shape has the coefficients an,m up to the maximum degree N =
30. The three mesh representations are displayed in Figures 3(a), (b) and (c), respectively.

As expected, vertices in the equal angle mesh in (a) are clustered around the areas corre-
sponding to the mappings of the two poles of S2. However, vertices are also closely located in
the central area in all the three meshes, even the underlying parametric meshes in (b) and (c)
are evenly distributed on S2. The reason that such vertex clusters occur is that the mapping
(6) from S2 to the actual surface is not distance-preserving, but multiplied by the radial
distance r(θ, φ). As a result, vertices in the region with smaller r, i.e. closer to the origin
of the local coordinate system, will appear with shorter vertex distances. Consequently, a
better solution should be sought if the goal is to achieve a more even vertex distribution for
any spherical harmonic surface triangulation.

(a) (b) (c)

Figure 3: Three triangular meshes of a star-shaped surface, generated by (a) the equal-angle
grid; (b) the icosahedral subdivision; and (c) the golden spiral lattice. The number of vertices
in each mesh is around 10240.

3 Triangular Mesh Simplification and Optimisation

As illustrated in Figure 3, using a fairly evenly-distributed mesh on the unit sphere can-
not guarantee a high quality representation of a complex 3D shape described by spherical
harmonics. The uneven distribution of vertices on the surface reduces the representation
accuracy with a fixed number of vertices/triangles. In other words, a triangular mesh with
an uneven vertex distribution is not ideal. A desirable approach is to utilise more effective
meshing technology to achieve an optimal triangulation for any surface. Hence, curvature-
based adaptive meshing would be an ideal option, whereby more points are generated in the
areas of a high curvature.



10

Curvature-based adaptive meshing approaches [25] have found applications in many fields,
including solid mesh generation, computer graphics and numerical simulations (finite ele-
ment modelling in particular). Although different meshing schemes have been proposed and
curvature-based meshing is widely available in commercial CAD/CAE software, this is not
the preferred meshing approach for spherical harmonic represented surfaces.

In the curvature-based meshing approach, the curvature of a surface point needs to be com-
puted, which is an expensive operation for spherical harmonic represented surfaces - much
more costly than a computationally intensive point sampling operation as shown in (6). Also
a maximum allowed geometric discretisation error often needs to be specified. However, be-
cause the relationship between this error and the size of the resulting mesh is unknown in a
priori, there is no easy way to control the size of the generated triangular mesh. In addition,
no simple meshing algorithm is available.

As mentioned in the introduction, other surface triangulated 3D shapes used in the DEM
may be digitally acquired by laser or CT scans [14, 15], and the resulting mesh size may be
too large to be effectively modelled. Thus it is also desirable to apply mesh simplification to
these meshes. In this case no original underlying surface information is available except for
the mesh itself. Thus the curvature-based meshing adaptivity may not be applicable unless
some discrete curvature estimation based mesh is used. This would makes the method more
tedious.

Hence, an ideal mesh simplification approach in the context of the discrete element mod-
elling should possess the following features: 1) applicable to any surface triangular mesh; 2)
using the triangular mesh as the sole input, and no additional information about the under-
lying surface is required; 3) algorithmically simple to implement in existing discrete element
modelling systems to act as a mesh pre-processor; and 4) highly effective and robust.

Fortunately, there exists such an approach that meets all these rather stringent requirements:
this is a well established edge contraction (or collapse) based mesh simplification approach,
proposed in [26] and extensively used in many applications. In the following subsections,
the main aspects of this approach, including quadric error metric, edge contraction, mesh
consistency check and iterative edge contraction algorithm, will be briefly presented. The
details and further extension of the approach can be found in [26, 27, 28].

3.1 Quadric Error Metric

Consider a plane described by the equation

nTx + d = 0 (17)

where n is the unit normal, and d is a constant. Then the squared distance of any point v
to the plane equals to

D2 = (nTv + d)2 = (nTv + d)T (nTv + d) = vT (nnT )v + 2dnTv + d2 (18)

which is a quadratic function of v. Define the quadric of the plane, Q, to be

Q = (A,b, c) = (nnT , dn, d2) (19)

Note that A = nnT is symmetric, and therefore it requires 10 coefficients to store Q. Then
D2 is defined as the quadric error of v associated with Q

Q(v) = vTAv + 2bTv + c (20)
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For a triangle with the outer unit normal n, its support plane is defined as the one on which
the triangle resides. Thus, the quadric Q of the triangle is defined to be the same as (19).
Every vertex v in a triangular mesh has a set of adjacent triangles, denoted as F .

The quadric of vertex v is defined as the weighted summation of the quadrics from all its
adjacent triangles

Qv = ∑
i∈F

wiQi (21)

where Qi = (Ai,bi, ci) is the quadric of the i-th adjacent triangle in F ; and wi is the associated
weighting. Possible choices of the weighting include: 1) wi = 1; 2) wi = ai where ai is the area
of the i-th triangle; and 3) wi = a2

i . The first two options are used in [26, 28], while the third
one is proposed in [29] and used in [30].

If all triangles have similar areas, the above three weighting options give similar results.
Otherwise, the second and third options will produce better results. Because the quadric
error of a triangle describes the squared distance of a point to the triangle (or its support
plane), when the quadric is weighted by the squared area of the triangle, the resulting error
will be the squared tetrahedral volume formed by the triangle and the point (multiplied by a
constant factor of 36). Thus, the third weighting method has a clear geometric interpretation.
In particular, when this weighted quadric error is used in the subsequent edge contraction
based mesh simplification, a better volume preservation can be achieved than the second
area weighted method. This observation, which is highlighted in [29, 30], is also numerically
confirmed in our experiments. However, if the volume preservation has to be ensured, another
vertex replacing scheme can be derived [29], by imposing this condition as a constraint to the
third weighting method, the position of the replaced vertex can be determined.

The addition of two quadrics Q1 and Q2 is performed component-wise:

Q1 +Q2 = (A1,b1, c1) + (A2,b2, c2) = (A1 +A2,b1 + b2, c1 + c2) (22)

Thus the addition of two quadric errors of a point v is equal to the quadric error of the added
quadric:

Q1(v) +Q2(v) = (Q1 +Q2)(v) (23)

Note that the quadric error of each vertex of a triangular mesh is zero. The vertex quadrics
of a given triangular mesh can be conveniently constructed by processing all the triangles of
the mesh.

3.2 Edge contraction

An edge of a triangular mesh is incident to two vertices. Let e = (i, j) denote an edge e with
two vertices i and j, and their coordinates vi and vj , respectively. The quadric of an edge e
is defined as the summation of the quadrics of its two vertices i and j:

Qe = Qi +Qj = (Ae,be, ce) (24)

An edge contraction is to replace its two end vertices (vi,vj) by another vertex v̄. The
associated cost is the edge quadric error of v̄

Qe(v̄) = Qi(v̄) +Qj(v̄) (25)

The replacing vertex v̄ can be obtained in different ways, depending on the replacing criterion
used. Three criteria are given below.
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Figure 4: Edge contraction: (a) edge e with vertices vi and vj is to be contracted; (b) e is
replaced by v̄ and all adjacent triangles are updated

Criterion 1: v̄ is chosen as either vi or vj depending on which one has a smaller quadric
error. So

v̄ = argmin
v∈{vi,vj}

Qe(v) (26)

Criterion 2: v̄ is a vertex located on the edge (i, j) that has the minimum quadric error. A
vertex v on the edge can be expressed as a function of parameter t ∈ [0,1]

v(t) = tvi + (1 − t)vj , 0 ≤ t ≤ 1 (27)

Its quadric error can be expressed as a quadric function of t:

Qe(v(t)) = t2vTi Aevi + (1 − t)2vTj Aevj + 2t(1 − t)vTi Aevj + 2tbTe (vi − vj) + 2bTe vj + ce (28)

from which the t that minimises the error can be obtained as

t̄ = (bTe (vj − vi) − vTi Aevj) / (vTi Aevi + vTj Aevj − 2vTi Aevj) (29)

When t̄ ∉ [0,1], it is set to be the nearest end point 0 or 1. Then the replacing vertex is
obtained as

v̄ = t̄vi + (1 − t̄)vj (30)

Criterion 3: v̄ minimises the quadric error Qe(v) with the following value [26]

v̄ = −A−1
e be (31)

and the corresponding quadric error can be attained by

Qe(v̄) = bTe v̄ + ce (32)

For the above three replacing criteria, the last one provides the smallest quadric error. The
second criterion restricts the minimisation on the edge and therefore gives a larger error.
The first criterion produces the largest error, but because one of the vertices is retained, the
edge contraction with this criterion may be equivalent to a simple vertex decimation scheme
without local re-triangulation [31]. Our experiments show that Criterion 3 will generally lead
to a better simplified mesh, and thus will be used in this work.

For an edge e = (i, j) to be contracted, a number of operations are performed to update the
geometry and topology of the mesh. Figure 4 illustrates an edge contraction operation, where
the highlighted edge in (a) is contracted or collapsed into a single point v̄ shown in (b), while
the two shaded triangles are removed. Only the remaining vertices, edges and triangles in
(b) are affected by the contraction and their quadrics need to be updated.

The procedure is summarised in Algorithm 1. The updates involved can be done efficiently.
The effect of an edge contraction is therefore small and highly localised.
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Algorithm 1: Edge Contraction Operations

1. Given edge e = (i, j) and replacing vertex v̄

2. Set vi = v̄; Delete vj

3. Remove the two adjacent triangles of e

4. Merge the adjacent triangles of vertices i and j to form a new adjacent triangle
set: Fi = {fi1 , fi2 , ..., fik}

5. Update edge connectivities of the adjacent triangles in Fi

6. Recalculate triangle quadrics in Fi and update the relevant vertex quadrics

3.3 Mesh Consistency Check

An edge contraction will alter the adjacent triangles of the two vertices of the edge, and also
change their normals. When the change to a triangle is too large, the triangle may fold over
on some neighbouring triangles, resulting in an unacceptable mesh configuration [26].

To avoid such an event, a mesh consistency check will be performed before the edge contrac-
tion is permitted to take place.

Let Fe be a set of triangles that will be affected by the candidate edge to be contracted;
and n0

i and ni be the normals of the i-triangle in Fe before and after the contraction. If the
following condition is not met for a triangle in Fe

nTi n0
i > τ (33)

where τ is a prescribed tolerance, then the mesh consistency check fails and the proposed
edge contraction is rejected. In addition, the cost of this edge is heavily penalised to prevent
the edge from being selected again in the same iterative cycle, or the edge is disallowed for
further contraction.

This simple pre-edge contraction check is applied in [26] where τ = 0 is used. To ensure that
no mesh alteration will compromise the subsequent discrete element simulation, a fairly large
value τ = 0.75 is chosen in this work.

3.4 Iterative Edge Contraction Algorithm

For a given triangular mesh, mesh simplification can now be performed by iteratively following
the steps outlined in the previous two subsections. The procedure is summarised in Algorithm
2. Because each edge contraction removes one vertex and two triangles, the exact size of the
final mesh produced by the simplification procedure can be fully controlled.

Note that the quadrics of the affected triangles, vertices and edges are re-calculated after
an edge contraction operation. Thus this procedure is the same as the so-called memoryless
simplification used in [29, 30]. Their tests show that this procedure performs better than the
original version [26].

Also note that no special treatments are considered for possible degenerated cases that may
occur in the evaluation of the replacing vertex using (31), where matrix A may be (near)
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singular. A possible solution is to use the pseudo-inverse of A from its singular value decom-
position but ignore the smallest singular value.

Algirithm 2: Iterative Edge Contractions

1. Input: a triangular mesh and the targeted number of vertices.

2. Initialisation

a. Compute quadrics of all triangles and accumulate vertex quadrics by (21);

b. Compute all edge costs and replacing vertices by (30) or (31).

3. Iteration

a. Find the edge with the least contraction cost: e ∶ (vi,v) with replacing
vertex v̄.

b. Check the mesh consistency condition (33); If not met, penalise the edge
contraction cost by adding a large value, and go back to 2.a

c. Locally update mesh geometry, topology and quadrics (Algorithm 1).

d. If the number of remaining vertices/triangles is equal to the required value,
exit.

e. Update affected edge costs and replacing vertices.

3.5 Illustrative Example

The performance of the edge contraction based mesh simplification scheme has been ex-
tensively tested [26, 30]. This subsection employs the same star-shaped spherical harmonic
representation as used in Figure 3 to further demonstrate the high quality of simplified meshes
that the algorithm can produce. To quantitatively measure the accuracy of different levels of
simplification, the relative errors of the total volume and three principal moments of inertia
(MOI) of a simplified mesh are compared with the original mesh represented shape. The
volume and MOI are chosen because they play an important role in the discrete element
modelling. The performance of the simplified meshes will be further assessed in the particle
simulations in Section 5.

The original meshed surface is generated by the golden spiral lattice algorithm and has 20,000
vertices and 39,996 triangles. This mesh is progressively simplified down to the final mesh
with 100 vertices and 196 triangles, which is only 0.5% of the original mesh. Table 2 lists the
relative errors of the total volume and MOIs of the intermediately simplified meshes. The
volume and MOIs of the original shape serve as the exact values for the error calculations.
Clearly, excellent approximations have been achieved by the edge contraction operation: even
for the mesh with 100 vertices, the errors are only around 1%.

Figures 5(b)-(d) show three simplified meshes with the number of vertices being 10,000, 1,000,
and 100 respectively. It can be seen from (b) that the first 10,000 edge contractions, which
remove 10,000 vertices, mainly take place around the central region where the vertices are
clustered in the original mesh. It indicates that the edge contraction can indeed act as a mesh
optimiser that removes/redistributes vertices to achieve a more effective mesh representation.
The mesh in (c) has 1000 vertices (which is only 5% of the initial number), but it still captures
well the main features of the original surface. Even with 0.5% of the original vertices, the
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Table 2: Approximation errors of volume and principal moments of inertia (MOI) for meshes
simplified by edge contraction and without simplification (marked by ∗ in the first column)

No. Volume MOI
vertices value error value error

20,000 647.300 - (25.3128, 8.91566, 20.1384) -
10,000 647.294 1.00e-05 (25.3129, 8.91557, 20.1384) (4.27, 9.69, 3.93)e-06
5,000 647.251 7.60e-05 (25.3123, 8.91526, 20.1378) (2.02, 4.49, 2.97)e-05
2,000 647.029 4.19e-04 (25.3079, 8.91344, 20.1343) (1.94, 2.49, 2.04)e-04
1,000 646.616 1.06e-03 (25.2990, 8.90916, 20.1287) (5.45, 7.29, 4.78)e-04
200 643.113 6.46e-03 (25.2756, 8.86869, 20.1267) (1.47, 5.26, 0.57)e-03
100 638.392 1.37e-02 (25.3230, 8.81467, 20.1943) (0.04, 1.13, 0.27)e-02

10,000∗ 646.399 1.39e-03 (25.2696, 8.89849, 20.1094) (1.71, 1.93, 1.44)e-03
1,000∗ 632.473 2.29e-02 (24.6172, 8.66333, 19.6447) (2.75, 2.83, 2.45)e-02
100∗ 551.426 1.48e-01 (20.8757, 7.84251, 16.6276) (1.75, 1.20, 1.74)e-01

coarsest mesh shown in (d) can still reasonably represent the original surface.

To further highlight the benefit that edge contraction offers, three triangular meshes with
the number of vertices 10,000, 10000 and 100, directly generated based on the golden spiral
lattice without simplification, are also showed in Figures 5 (f)-(h), respectively. Their visually
inferior approximation compared to the counterparts with mesh simplification in (b)-(d) is
clearly demonstrated, and this is quantitatively assessed by the relative errors of the total
volumes and MOIs shown in Table 2. It is evident that the mesh simplified from an initial
fine mesh exhibits a much higher approximation accuracy than the one with the same size
but directly generated by the golden spiral lattice.

In summary, the edge contraction based mesh simplification method is highly effective, robust
and simple to implement. It can be readily incorporated into an existing discrete element
modelling framework to serve as a mesh optimiser. As will be demonstrated in later exam-
ples in Section 5, particle simulations using simplified meshes can attain as good modelling
accuracy as using fine meshes, but with much reduced computational costs. An additional
benefit of using a simplified mesh is that the actual volume and MOIs can be taken from the
initial mesh to further reduce the simulation error.

4 Contact Detection and Energy-Conserving Normal Contact
Model for Surface Triangulated 3D Shapes

Consider a general discrete element system with particles of any shape (convex or concave)
and represented by surface triangular meshes. In a standard discrete element modelling
procedure, as outlined in [32], contact detection plays the most important role. Broadly
speaking, contact detection takes three steps: 1) global search - using bounding boxes of
particles to establish a potential contact list for each particle; 2) local contact resolution - for
any pair of particles in the contact list, using their actual geometric shapes to check if they
are in real contact. Contact geometric features are then computed for the pair in contact; and
3) contact force computation - for each pair of particles in contact, apply contact interaction
laws to evaluate the contact forces based on the contact geometric features.

The surface triangular mesh of a particle can have a large number of vertices/triangles, while
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(a) v = 20,000

(original)

(b) v = 10,000

(simplified)

(c) v = 1000

(simplified)

(d) v = 100

(simplified)

(e) v = 20,000

(same as (a))

(f) v = 10,000

(no simplification)

(g) v = 1000

(no simplification)

(h) v = 100

(no simplification)

Figure 5: (a, e) Original mesh generated from the golden spiral lattice; (b)-(d) simplified
meshes with different numbers of vertices; and (f)-(g) different meshes generated from the
golden spiral lattice without simplification

the computational cost associated with the local resolution for two such particles is at least
proportional to the number of vertices involved. In order to improve the overall efficiency
of the contact detection, strategies to balance the computational cost of the global search
against the local resolution have been proposed in [18].

The next subsection will address the evaluation of the contact geometric features. The normal
contact model that is essential to evaluate the contact forces will be discussed in Section 4.2.

4.1 Contact Geometry

Consider a general contact between two arbitrary 3D shapes represented by surface trian-
gulated meshes T1 and T2 respectively. For most contact models employed by the discrete
element method, the contact overlap is the most important contact geometric feature. How-
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ever, in the energy-conserving contact modelling framework established in [20], the contact
volume plays a paramount role. To explicitly compute the contact volume is computationally
intensive, and thus makes this special energy-conserving contact model practically less appeal-
ing than contact-overlap-based contact models, despite the fact that this energy-conserving
contact model offers superior numerical accuracy and stability, and is also applicable to both
convex and concave shapes.

This computationally intensive issue has been resolved in [18] with an alternative scheme
to evaluate the contact geometric features. Instead of computing the contact volume, only
the intersection boundary of two contacting particles needs to be computed. As a result,
the computational cost associated with this energy-conserving contact model is significantly
reduced.

In the energy-conserving contact model with the new approach, the major computations
involve the construction of the intersection boundary Γ = T1 ∩ T2 and two associated line
(vector) integrals Sn and Gn over Γ,

Sn =
1

2
∮

Γ
x × dΓ (34)

Gn = −
1

3
∮

Γ
x ⋅ xdΓ (35)

The computational issues are briefly discussed below. Full details can be found in [18].

4.1.1 Construction of Intersection Line Segments

As T1 and T2 are triangular meshes, their intersection boundary Γ is a closed 3D polyline for
a single contact, or multiple closed polylines for multiple contacts. A single contact case will
be considered next, while multiple contacts can be treated as individual polylines in a similar
fashion.

Since Γ is a polyline, its segments are formed by the intersections of the individual triangles
from the two surfaces. The basic numerical procedure is to determine the line segment of the
intersection (if exists) between two given triangles from each surface. This operation can be
performed in a straightforward manner. There are two intersection points if two triangles are
in contact. If the two triangles lie on the same plane, it is treated as no contact. The start
and end points of the segment should be properly ordered to ensure a correct orientation of
Γ. The positive direction τ of the segment is determined by

τ = n1 × n2 (36)

where n1 and n2 are respectively the outer normal directions of the two triangles.

4.1.2 Computations of Sn and Gn

Assume that xi, (i = 1, ...,m+ 1) with x1 = xm+1 are m vertices that form m line segments of
Γ. Denote the i-th segment as ∆Γi = [xi,xi+1], and ∆xi = xi+1 − xi.

In order to compute Sn and Gn, each intersection segment can be locally parameterised.
By introducing a local coordinate system on the i-th segment with parameter t ∈ [0,1], the
parametric equation and the infinitesimal increment of the segment are

x(t) = xi + t∆xi; dΓ = ∆xi dt (37)
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Then the integral of Sn reduces to a simple summation over the line segments

Sn =
1

2

m

∑
i=1

xi × xi+1 (38)

and Gn becomes

Gn = −
1

3

m

∑
i=1

(xi ⋅ xi+1 +
1

3
∆xi ⋅∆xi)∆xi (39)

Both Sn and Gn are additive as explained in [18]. Due to this property, their computations
can be undertaken in a segment by segment fashion and in any order. Thus the procedures
outlined above, including the local contact search, the triangle-triangle intersection check
and computation, can be fully parallelised using multiple CPU, GPU or GPGPU computing.
As only a minimal level of communication overhead is incurred, a high parallel efficiency is
expected.

4.1.3 Contact normal and contact point/line

Once Sn and Gn are evaluated, two contact geometric features, i.e. the contact normal n
and contact point xc, can be determined by

n = −Sn/Sn; Sn = ∣Sn∣ (40)

and
xc = n ×Gn/Sn + λn (41)

where λ is a free parameter, meaning that it can take any value in principle. In other words,
the contact point is not unique. When λ takes different values, the point forms a line, and it is
called the contact line. This non-uniqueness does not cause any issue for the normal contact,
but the location of the point on the contact line will have an impact on the tangential force.
By introducing the minimal contact surface, a simple formula has been derived in [18] to
determine the unique contact point. Alternatively, as the contact normal line will normally
intersection a point on each surface and the middle point of these two pints can be taken as
the contact point.

4.2 The Energy-Conserving Linear Normal Contact Model

The contact-volume-based energy-conserving linear normal contact model, or the linear con-
tact model for short, is developed in [17, 18, 20] based on the assumption that the normal
contact energy w can be expressed as a linear function of the contact volume Vc = ∣T1 ∩ T2∣
between two contacting particles

w = knVc (42)

and the normal contact force Fn is the negative gradient of this energy function

Fn = −∇xw = knSn = knSnn (43)

where x is taken as the coordinates of a reference point on the first particle. Further deriva-
tions lead to a liner expression for the contact force in terms of Sn

Fn = knSn = Fnn (44)
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where Fn = knSn is the magnitude of the force. The condition that no contact moment exists
at the contact point leads to the formula (41), where Gn is introduced.

Geometrically, Sn is a signed area of the contact surface of the two particles, and Gn can
be interpreted as the ”moment” of the contact surface. Sn, instead of the contact overlap,
plays the leading role in the current contact-volume-based linear contact model, which is
summarised in Algorithm 3.

Algorithm 3: Normal Contact Model between Two Surface Triangulated Shapes

1. Input: two triangular meshes T1 and T2; contact stiffness kn

2. Compute contact geometry

a. Construct the intersection polyline Γ = T1 ∩ T2. If Γ = ∅, exit (NO CON-
TACT);

b. Compute Sn and Gn using (30) and (31).

3. Compute contact features

a. Contact normal: n = Sn/Sn, Sn = ∣Sn∣.
b. Contact force magnitude: Fn = knSn
c. Contact point/line: xc = n ×Gn/Sn + λn

This linear normal contact model has the following distinct properties [18]: 1) energy con-
servation guaranteed for any elastic impact; 2) applicable to any shape, 2D or 3D, convex
or concave; 3) capable of handling both single or multiple contact scenarios; and 4) highly
parallelizable.

5 Discrete Element Validation of Particles with Simplified
Meshes

Two examples will be presented in this section. The first example will quantitatively assess
the performance of simplified meshes in the context of the discrete element modelling where
pair-wise particles represented by such meshes are subject to elastic and inelastic impacts. It
will also demonstrate the energy-conserving nature of the linear contact model for the elastic
impact case. The second example attempts to further quantify the mechanical behaviour of
simplified meshes in a more complex setting.

The classic central difference scheme is employed as the time integrator to solve the transla-
tional motion of the particles, while the rotational motion is resolved by a symplectic time
integration scheme [33] in conjunction with the quaternion representation of the particle ori-
entation. The time step is chosen such that both numerical stability and accuracy can be
achieved following an empirical formula proposed in [34].

5.1 Pair-wise Impact of Star-Shaped Particles

A star-shaped particle is represented by a triangular mesh with 10,000 vertices as the initial
input mesh. Then it is simplified to two meshes with 1,000 and 100 vertices, respectively.
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(a) v = 10,000

(original)

(b) v = 1000

(simplified)

(c) v = 100

(simplified)

(d) v = 100

(original)

Figure 6: Four triangular meshes of a star-shaped surface: from the original mesh with
vertices v = 10,000 (a); simplified to v = 1000 (b), and further down to v = 100 (c); another
original mesh with v = 100

The fourth mesh is directly generated from the shape with 100 vertices. The four meshes,
denoted as 1,2,3 and 4, are shown in Figure 6. Similar to the assessment made in Section 3.5,
the relative errors of the total volume and MOIs are computed and given in Table 3, where
the values of the original mesh with 10,000 vertices are used as the reference values. Again,
the two simplified meshes 2 and 3, with only 10% and 1% vertices of the original mesh 1
respectively, have a high approximation accuracy, while Mesh 4 has much larger approximate
errors.

As mentioned in Section 3.5, the volume and MOIs (and their directions) of any simplified
mesh can be set to be those of the initial mesh to further reduce the geometric errors.
However, this cannot be done for Mesh 4 as the mesh is directly imported and no properties
of the original shape is supposed to be available. Since the total volume and MOIs directly
affect the motion of a particle, Mesh 4 is expected to have a large modelling error.

To quantitatively assess the impact of mesh simplification on the mechanical behaviour of
particles, two identical particles with the same mesh representation in each mesh case are
subject to impact, leading to four pair-wise test cases with identical initial conditions. In
each case, the two particles have the same initial velocity but in the opposite direction. They
are initially separated, then bought into contact as a result of the specified initial velocities
([1, 0, 1] and [-1, 0, -1]). After bouncing off, they become separated again.

Table 3: Relative rrors of volume and principal moments of inertia (MOIs) for meshes sim-
plified by edge contraction and without simplification (mesh 4)

Mesh No.: Volume MOIs
No. vertices value error value error

1: 10,000 1876.64 - (34.3312 36.0142 18.3829) -
2: 1,000 1875.63 5.40e-04 (34.3184 35.9992 18.3748) (3.74 4.16 4.42)e-04
3: 100 1869.03 4.06e-03 (34.2184 35.8656 18.3498) (3.28 4.12 1.80)e-03

4: 100∗ 1686.92 1.01e-01 (29.8903 31.0186 16.9758) (1.29 1.39 0.76)e-01
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A small value of the contact stiffness kn is used in order to induce a large contact overlap for
a more complex impact process. Another reason of using a small stiffness is to prolong the
impact duration so that the rotational motion of particles can be fully developed to make the
contact more sophisticated.

For each test case, three impact scenarios are considered: 1) elastic impact; 2) inelastic impact
with friction; and 3) inelastic impact with friction and damping. The coefficient of friction
is 0.5 for the 2nd and 3rd cases. The viscous damping ratio ξ, equivalent to a restitution of
0.1, is applied to both normal and tangential directions in case 3. Gravity is ignored. The
other settings are the same in all the four cases.

1) Elastic impact. Time evolutions of translational, rotational and total energy for the
frictionless contact are compared in Figures 7(a), (b) and (c). As the same volume and MOIs
are used in the first three cases, their initial energy is the same, but this is not the case for
the fourth case. It can be seen that the first three cases exhibit almost identical evolutions,
while the fourth case has a significantly different behaviour. The difference is particularly
pronounced in the rotational motion as shown in Figure 7(b)
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Figure 7: Time evolutions of translational (a), rotational (b) and total (c) kinetic energies of
the four pair-wise elastic impact cases without friction

As expected, energy conservation of the elastic impact without friction is achieved in all cases
as shown in Figure 7(c), where the total energy for each case remains unchanged before and
after the impact.

Th snap shots of the frictionless contact at four different time instants for each case are
depicted in Figure 8. The four rows from the top correspond to four impact stages: 1) initial
contact; 2) advanced stage; 3) maximum penetration; and 4) bouncing off. The contact
profiles of the first three cases are similar, but the fourth one is significantly different.

2). Inelastic impact with friction µ = 0.5.

For the frictional contact, the system energy is expected to lose during the impact. Due
to the surface irregularity, multiple contacts occur particularly in the initial and near end
contact, as can be seen from the configurations in Figure 8. The classic Coulomb friction
model is applied to each independent contact. Details can be found in [18, 34].

The simulation results are plotted in Figures 9(a), (b) and (c) respectively. Again the first
three cases exhibit almost identical energy evolutions, while the fourth case behaves differ-
ently.

3). Inelastic impact with friction µ = 0.5 and damping ratio ξ = 0.1.

In addition to the friction effect, the damping effect is also considered in both normal and



22

Figure 8: Particle configurations of the four cases at different time instants. Each row
represents the four cases. Columns (from top to bottom) correspond to four impact stages:
initial contact, advanced contact, maximum penetration, and bouncing off
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Figure 9: Time evolutions of translational (a), rotational (b) and total (c) kinetic energies of
the four pair-wise inelastic impact cases with friction µ = 0.5

tangential contacts. However, the damping treatment for multiple contacts is different from
that of the friction. Instead of applying a viscous damping term to each contact, it is weighted
by the ratio of the Sn for this contact to the total Sn summed up from all the contacts [34].
The simulated results are plotted in Figures 10(a), (b) and (c). The first three cases still show
very good agreement in the translational and total energy curves, while the rotational energy
of the third case is diverted in the middle of the impact from the other two more noticeably,
but the exit value is almost the same as the second case. The second case also shows some
small discrepancy from the first case at a later stage of the simulation. This indicates that
damping has a larger effect than friction on the mechanical response of a simplified mesh. In
comparison, the fourth case shows the largest error.
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Figure 10: Time evolutions of translational (a), rotational (b) and total (c) kinetic energies
of the four pair-wise inelastic impact cases with friction µ = 0.5 and damping ratio ξ = 0.1 for
both normal and tangential contacts

The results from the three impact scenarios demonstrate that the edge contraction based
mesh simplification generates a very small geometric approximation error, and the discrete
element modelling with the simplified meshes can achieve a very similar mechanical response
as using the original fine mesh.

5.2 Random Deposition of Star Shaped Particles in a Container

The previous example confirms that the mesh simplification by edge contraction generates
a much smaller sized mesh but maintain small geometric and mechanical errors for a pair-
wise impact under various conditions. One more example will be presented to examine the
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Figure 11: Triangular meshes of four star-shaped surfaces (from left to right) simplified from
the original meshes with vertices v = 10,000 to v = 1000 (first row) and further down to v
= 100 (second row)

bahaviour of the simplified meshes under more realistic modelling conditions.

This example considers settling four different types of star-shaped particles into a container.
Each particle type is represented by two levels of simplified meshes as shown in Figure 11,
where each mesh is simplified from an original mesh with 10,000 vertices.

Two simulations, each consisting of these four types of star-shaped particles but one simu-
lation using 1000 vertices for every mesh while the other using 100 vertices, are conducted.
Particles are randomly generated in six time instants and fall under gravity towards a con-
tainer which is also surface triangulated. A coefficient of friction µ = 0.5 is applied. The
damping ratio ξ equivalent to a restitution coefficient of 0.1 is also applied to both normal
and tangential contacts. The time step is calculated as 3.41 × 10−4s, and 15,000 steps are
performed, which covers a total physical time of 5.115s.

In each simulation, 300 particles for each shape are generated, giving 1200 particles in total.
Due to the randomness involved in the particle generation stage, the two simulations cannot
have identical conditions, which makes a quantitative comparison between the two results
difficult. Nevertheless, the evolutions of the three energies of the particle system in the two
simulations are given in Figure 12. Note that the particle injection takes place in the time
interval t ∈ [0,1]s, and each injection causes an increase in the total energy as shown in
Figure 12(c). After the injection is complete, both translational and rotational energies start
to decrease due to the dissipative effect of friction and damping, and are eventually fully
dissipated. The steady convergence of the energy curves also indicates the robustness and
stability of the energy-conserving normal contact model used. The packing configurations at
three time instants are illustrated in Figure 13.

The evolution curves of the three energies in Figure 12 clearly show good agreement between
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Figure 12: Time evolutions of translational (a), rotational (b) and total (c) kinetic energies
of the two systems with friction µ = 0.5 and damping ratio ξ = 0.1 for both normal and
tangential contacts

the two simulations with different levels of mesh simplification. A small difference in the final
total energy in Figure 12(c) exists, indicating that the two final packing configurations are
slightly different, which can also be observed in Figure 13. This, however, should be expected
and acceptable since the contact modelling of irregular particles is highly nonlinear and the
numerical randomness plays a significant part. The general behaviour of the two systems are
similar though.

More importantly, the CPU speed-up of using the mesh of 100 vertices over using that of
1000 vertices is around 6.75. The main reason for achieving a speed-up less than 10 is
that the computational complexity of some procedures involved in the DEM is not linearly
proportional to the number of triangles, and some is only related to the number of particles
which is the same in the two simulations.

6 Concluding Remarks

An effective contact modelling strategy for triangular mesh represented spherical harmonic
particles has been proposed. This strategy features: 1) using a golden spiral lattice on the
unit sphere to generate an initial triangular mesh with any number of vertices/triangles for
a star-shaped surface; 2) applying the edge contraction based mesh simplification algorithm
to reduce the mesh size to any desired level; and 3) adopting an energy-conserving linear
normal contact model to compute the contact geometric and force features of two triangular
mesh represented particles. In particular, the edge contraction algorithm is applicable to
any triangular mesh. It is algorithmically very simple and highly effective, and can be easily
implemented and incorporated into an existing discrete element software. The numerical
experiments conducted in the DEM simulations for pair-wise impacts and a more realistic
problem have quantitatively assessed the mechanical response error from simplified meshes,
and have convincingly demonstrated that these meshes can not only have a very low geometric
approximation error but also achieve a high mechanical modelling accuracy. Consequently,
the edge contraction based mesh simplification approach can serve as an ideal pre-processor
to optimise large triangular meshes for complex shaped particles in order to significantly
reduce the computational cost in discrete element simulations.
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(a) v = 1000

(b) v = 100

Figure 13: Settling 1,200 star-shaped particles into a container at three stages with two
different simplified triangular meshes: (a) v = 1000; and (b) v = 100
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