CANCELLATION THEOREM FOR FRAMED MOTIVES OF ALGEBRAIC VARIETIES

A. ANANYEVSKIY, G. GARKUSHA, AND I. PANIN

Abstract

The machinery of framed (pre)sheaves was developed by Voevodsky [V1]. Based on the theory, framed motives of algebraic varieties are introduced and studied in [GP1]. An analog of Voevodsky's Cancellation Theorem [V2] is proved in this paper for framed motives stating that a natural map of framed S^{1}-spectra

$$
M_{f r}(X)(n) \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{G}, M_{f r}(X)(n+1)\right), \quad n \geqslant 0
$$

is a schemewise stable equivalence, where $M_{f r}(X)(n)$ is the nth twisted framed motive of X. This result is also necessary for the proof of the main theorem of [GP1] computing fibrant resolutions of suspension \mathbb{P}^{1}-spectra $\Sigma_{\mathbb{P} 1}^{\infty} X_{+}$with X a smooth algebraic variety.

The Cancellation Theorem for framed motives is reduced to the Cancellation Theorem for linear framed motives stating that the natural map of complexes of abelian groups

$$
\mathbb{Z} \mathrm{F}\left(\Delta^{\bullet} \times X, Y\right) \rightarrow \mathbb{Z} \mathrm{F}\left(\left(\Delta^{\bullet} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right), \quad X, Y \in \operatorname{Sm} / k
$$

is a quasi-isomorphism, where $\mathbb{Z F}(X, Y)$ is the group of stable linear framed correspondences in the sense of [GP1].

1. Introduction

The main goal of the Voevodsky theory on framed correspondences (see [V1, Introduction]) is to suggest a new approach to the stable motivic homotopy theory $\operatorname{SH}(k)$ over a field k. This approach is more amenable to explicit calculations. Recall that Voevodsky [V1, Section 2] invented a category of framed correspondences $F r_{*}(k)$ whose objects are those of $S m / k$ and morphisms sets $F r_{*}(X, Y)=\sqcup_{n \geqslant 0} F r_{n}(X, Y)$ are defined by means of certain geometric data. The elements of $F r_{n}(X, Y)$ are called framed correspondences of level n. The definition of $F r_{*}(k)$ is recalled in Section 2 below. For every $Y \in S m / k$ there is a distinguished morphism $\sigma_{Y}=(Y \times 0, Y \times$ $\left.\mathbb{A}^{1}, t, p r_{Y}\right) \in F r_{1}(Y, Y)$. Following Voevodsky [V1], we denote by

$$
F r(X, Y):=\operatorname{colim}\left(F r_{0}(X, Y) \xrightarrow{\sigma_{Y}} F r_{1}(X, Y) \xrightarrow{\sigma_{Y}} \ldots \xrightarrow{\sigma_{Y}} F r_{n}(X, Y) \xrightarrow{\sigma_{Y}} \ldots\right)
$$

and refer to it as the set of stable framed correspondences. Replacing Y by a simplicial object Y^{\bullet} in $S m / k$, we get a simplicial set $\operatorname{Fr}\left(X, Y^{\bullet}\right)$. Finally, one can take the diagonal of the pointed bisimplicial set $\operatorname{Fr}\left(\Delta^{\bullet} \times X, Y^{\bullet}\right)$. Voevodsky conjectured that if the motivic space $\operatorname{Fr}\left(\Delta^{\bullet} \times-, Y^{\bullet}\right)$ is locally connected in the Nisnevich topology, then it is isomorphic in $H_{\mathbb{A}^{1}}(k)$ to the motivic space $\Omega_{\mathbb{P}^{1}}^{\infty} \Sigma_{\mathbb{P}^{1}}^{\infty}\left(Y_{+}^{\bullet}\right)$. In particular, the theory of framed correspondences gives a machinery for computing motivic infinite loop spaces.

Inspired by the Voevodsky theory [V1], the theory of framed motives of algebraic varieties is introduced and developed in [GP1]. As an application, the above Voevodsky conjecture is solved in [GP1, Section 10] in the affirmative. Moreover, under the above assumption on Y^{\bullet} the motivic space $\operatorname{Fr}\left(\Delta^{\bullet} \times-, Y^{\bullet}\right)$ is \mathbb{A}^{1}-local. This result can be regarded as a motivic counterpart of the Segal

[^0]theorem. Also, an alternative approach to the classical Morel-Voevodsky [MV] stable homotopy theory $S H(k)$ is suggested in [GP3], which is based on the machinery of framed bispectra. One of the key steps in the computations of [GP1, GP3] is Theorem A proved in this paper. Theorem A is the main result of the present paper. In order to state it, we have to recall some definitions and constructions from [GP1].

The framed motive of $X \in S m / k$ is an explicitly constructed S^{1}-spectrum $M_{f r}(X)$, which is connected and an Ω-spectrum in positive degrees (see [GP1] for details). Following the notation of [GP1, Section 8] let \mathbb{G} be the cone $\left(\mathbb{G}_{m}\right)_{+} / / p t_{+}$of the embedding $p t_{+} \stackrel{1}{\hookrightarrow}\left(\mathbb{G}_{m}\right)_{+}$in the category of pointed simplicial presheaves $\operatorname{sPre} \cdot(\operatorname{Sm} / k)$. Its sheafification is represented in the category $\Delta^{\mathrm{op}}\left(\operatorname{Fr}_{0}(k)\right)$ by the object $\mathbb{G}_{m}^{\wedge 1}$ (see [GP1, Notation 8.1]). For any integer $n \geqslant 1$ let $\mathbb{G}_{m}^{\wedge n}$ be the nth monoidal power of $\mathbb{G}_{m}^{\wedge 1}$ in the symmetric monoidal category $\Delta^{\mathrm{op}}\left(F_{0}(k)\right)$ (see [GP1, Notation 8.1]). For a variety $X \in S m / k$ let $M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge n}\right)$ be the framed motive of the simplicial object $X \times \mathbb{G}_{m}^{\wedge n} \in \Delta^{\mathrm{op}}\left(F r_{0}(k)\right)$. It is an explicitly constructed S^{1}-spectrum which is connected and an Ω spectrum in positive degrees (see [GP1, Sections 5 and 6] for details). For brevity we also write $M_{f r}(X)(n)$ to denote $M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge n}\right)$ and call $M_{f r}(X)(n)$ the n-twisted framed motive of X (see [GP1, Section 11]). The main object of [GP1] is the bispectrum

$$
M_{f r}^{\mathbb{G}}(X)=\left(M_{f r}(X), M_{f r}(X)(1), M_{f r}(X)(2), \ldots\right),
$$

each term of which is a twisted framed motive of X and structure maps of the bispectra

$$
M_{f r}(X)(n) \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{G}, M_{f r}(X)(n+1)\right),
$$

are defined in [GP1, Section 11] (we use [GP1, "General Framework" of Section 5]).
The major property of the bispectrum $M_{f r}^{\mathbb{G}}(X)$ is that its levelwise Nisnevich local stable replacement $M_{f r}^{\mathbb{G}}(X)_{f}$ is a fibrant replacement of the suspension bispectrum $\Sigma_{\mathbb{G}}^{\infty} \Sigma_{S_{1}}^{\infty} X_{+}$. This may also be viewed as a motivic version of the Barratt, Priddy, and Quillen theorem. The proof of this major property is given in [GP1] and is heavily based on the Cancellation Theorem.

The main purpose of the paper is to prove the following (cf. Voevodsky [V2])
Theorem A (Cancellation). Let k be an infinite perfect field, $X \in S m / k$ and $n \geqslant 0$. Then the following statements are true:
(1) the natural map of S^{1}-spectra

$$
M_{f r}(X)(n) \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{G}, M_{f r}(X)(n+1)\right)
$$

is a schemewise stable equivalence;
(2) the induced map of S^{1}-spectra

$$
M_{f r}(X)(n)_{f} \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{G}, M_{f r}(X)(n+1)_{f}\right)
$$

is a schemewise stable equivalence. Here $M_{f_{r}}(X)(n)_{f}$ and $M_{f r}(X)(n+1)_{f}$ are Nisnevich local stable fibrant replacements of $M_{f r}(X)(n)$ and $M_{f r}(X)(n+1)$ in the injective local stable model structure of S^{1}-spectra.

As an application of Theorem A we prove the following
Theorem B. Let k be an infinite perfect field, $X \in S m / k$ and $n \geqslant 0$. Then the bispectrum

$$
M_{f r}^{\mathbb{G}}(X)_{f}=\left(M_{f r}(X)_{f}, M_{f r}(X)(1)_{f}, M_{f r}(X)(2)_{f}, \ldots\right)
$$

obtained from $M_{f r}^{\mathbb{G}}(X)$ by taking levelwise Nisnevich local stable fibrant replacements with structure maps those of Theorem $A(2)$ is a motivically fibrant $\left(S^{1}, \mathbb{G}\right)$-bispectrum.

The main strategy of proving Theorem A is to reduce it to the "Linear Cancellation Theorem". In order to formulate it, recall from [GP1, Definition 8.3] that the category $\mathbb{Z} \mathrm{F}_{*}(k)$ is the additive category whose objects are those of $S m / k$ with Hom-groups described in Definition 2.4. Briefly speaking, for every $n \geqslant 0$ and $X, Y \in S m / k$ we set

$$
\mathbb{Z F}_{n}(X, Y):=\mathbb{Z} \operatorname{Fr}_{n}(X, Y) /\left\langle Z_{1} \sqcup Z_{2}-Z_{1}-Z_{2}\right\rangle,
$$

where Z_{1}, Z_{2} are supports of framed correspondences level n in the sense of Voevodsky [V1] (see Definition 2.4 as well). In other words, $\mathbb{Z} \mathrm{F}_{n}(X, Y)$ is the free abelian group generated by the framed correspondences of level n with connected supports. We then set

$$
\operatorname{Hom}_{\mathbb{Z} \mathrm{F}_{*}(k)}(X, Y):=\bigoplus_{n \geqslant 0} \mathbb{Z} \mathbb{F}_{n}(X, Y) .
$$

Given smooth varieties $X, Y \in S m / k$ and $n \geqslant 0$, there is a canonical suspension morphism $\Sigma: \mathbb{Z}_{n}(X, Y) \rightarrow \mathbb{Z}_{n+1}(X, Y)$. We can stabilise in the Σ-direction to get an abelian group (see Definition 2.6)

$$
\mathbb{Z} \mathrm{F}(X, Y):=\operatorname{colim}\left(\mathbb{Z} \mathrm{F}_{0}(X, Y) \xrightarrow{\Sigma} \mathbb{Z} \mathrm{F}_{1}(X, Y) \xrightarrow{\Sigma} \cdots\right) .
$$

The presheaf $\mathbb{Z F}(Y):=\mathbb{Z} \mathrm{F}(-, Y)$ has a canonical structure of a $\mathbb{Z} \mathrm{F}_{*}(k)$-presheaf. For each scheme $Y \in S m / k$ and each scheme $S \in S m / k$ pointed at a k-rational point $s \in S$, the natural functor

$$
\boxtimes: \operatorname{Pre}_{A b}\left(\mathbb{Z} \mathrm{~F}_{*}(k)\right) \times \operatorname{Pre}_{A b}\left(\mathbb{Z} \mathrm{~F}_{0}(k)\right) \rightarrow \operatorname{Pre}_{A b}\left(\mathbb{Z} \mathrm{~F}_{*}(k)\right)
$$

defined on p. 6 takes the pair $(\mathbb{Z} F(Y),(S, s))$ to the $\mathbb{Z} \mathrm{F}_{*}(k)$-presheaf $\mathbb{Z} \mathrm{F}(Y) \boxtimes(S, s)$ which we also denote by $\mathbb{Z} \mathcal{F}(Y \wedge(S, s))$. By the General Framework of [GP1, Section 5] (also see p. 6) one has a $\mathbb{Z} \mathrm{F}_{*}(k)$-presheaf $\underline{\operatorname{Hom}}((S, s), \mathbb{Z}(Y \wedge(S, s)))$ together with a morphism of $\mathbb{Z} \mathrm{F}_{*}(k)$-presheaves

$$
\mathbb{Z F}(Y) \xrightarrow{-\boxtimes(S, s)} \underline{\operatorname{Hom}((S, s), \mathbb{Z} \mathrm{F}(Y \wedge(S, s)) .}
$$

The Linear Cancellation Theorem is formulated as follows (see Section 2 for details).
Theorem C (Linear Cancellation). Let k be an infinite perfect field and let Y be a k-smooth scheme. Then

$$
-\boxtimes\left(\mathbb{G}_{m}, 1\right): \mathbb{Z F}\left(\Delta^{\bullet} \times-, Y\right) \rightarrow \underline{\operatorname{Hom}}\left(\left(\mathbb{G}_{m}, 1\right), \mathbb{Z F}\left(\Delta^{\bullet} \times-, Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)\right.
$$

is a quasi-isomorphism of complexes of $\mathbb{Z} \mathrm{F}_{*}(k)$-presheaves of abelian groups. Here Δ^{\bullet} is the standard cosimplicial object in Sm / k.

One of the main computational results of [GNP] says that schemewise homology of the complex $\mathbb{Z F}\left(\Delta^{\bullet} \times-, Y\right)$ computes homology of the framed motive $M_{f r}(Y)$ of $Y \in S m / k$. Moreover, the complex represents the "linear framed motive" of Y (see [GNP] for details).

Throughout the paper the base field k is supposed to be infinite. We also employ the following notation:

- all schemes are separated Noetherian k-schemes, all morphisms of schemes are k morphisms; write pt for the scheme $\operatorname{Spec}(k)$.
- Sm / k is the category of smooth k-schemes of finite type;
- we refer to the objects of $S m / k$ as k-smooth schemes or smooth k-schemes;
- Following [GrD], by an essentially smooth k-scheme we mean a Noetherian k-scheme X which is the inverse limit of a left filtering system $\left(X_{i}\right)_{i \in I}$ with each transition morphism $X_{i} \rightarrow X_{j}$ being an étale affine morphism between smooth k-schemes.

2. Preliminaries

In this section we collect basic facts for framed correspondences. We start with preparations.
Let V be a scheme and Z be a closed subscheme. Recall that an étale neighborhood of Z in V is a triple $\left(W^{\prime}, \pi^{\prime}: W^{\prime} \rightarrow V, s^{\prime}: Z \rightarrow W^{\prime}\right)$ satisfying the following conditions:
(i) π^{\prime} is an étale morphism;
(ii) $\pi^{\prime} \circ s^{\prime}$ coincides with the inclusion $Z \hookrightarrow V$ (thus s^{\prime} is a closed embedding);
(iii) $\left(\pi^{\prime}\right)^{-1}(Z)=s^{\prime}(Z)$.

A morphism between two étale neighborhoods $\left(W^{\prime}, \pi^{\prime}, s^{\prime}\right) \rightarrow\left(W^{\prime \prime}, \pi^{\prime \prime}, s^{\prime \prime}\right)$ of Z in V is a morphism $\rho: W^{\prime} \rightarrow W^{\prime \prime}$ such that $\pi^{\prime \prime} \circ \rho=\pi^{\prime}$ and $\rho \circ s^{\prime}=s^{\prime \prime}$. Note that such ρ is automatically étale by [EGA4, VI.4.7].
Definition 2.1 (Voevodsky [V1]). For k-smooth schemes X, Y and $n \geqslant 0$ an explicit framed correspondence Φ of level n consists of the following data:
(1) a closed subset Z in \mathbb{A}_{X}^{n} which is finite over X;
(2) an etale neighborhood $p: U \rightarrow \mathbb{A}_{X}^{n}$ of Z in \mathbb{A}_{X}^{n};
(3) a collection of regular functions $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$ on U such that $\cap_{i=1}^{n}\left\{\varphi_{i}=0\right\}=Z$;
(4) a morphism $g: U \rightarrow Y$.

The subset Z will be referred to as the support of the correspondence. We shall also write triples $\Phi=(U, \varphi, g)$ or quadruples $\Phi=(Z, U, \varphi, g)$ to denote explicit framed correspondences.

Two explicit framed correspondences Φ and Φ^{\prime} of level n are said to be equivalent if they have the same support and there exists an etale neighborhood V of Z in $U \times_{\mathbb{A}_{X}^{n}} U^{\prime}$ such that the morphism $g \circ p r$ agrees with $g^{\prime} \circ p r^{\prime}$ and $\varphi \circ p r$ agrees with $\varphi^{\prime} \circ p r^{\prime}$ on V. A framed correspondence of level n is an equivalence class of explicit framed correspondences of level n.

We let $\operatorname{Fr}_{n}(X, Y)$ denote the set of framed correspondences from X to Y. It is a pointed set with the distinguished point being the class 0_{n} of the explicit correspondence with $U=\emptyset$.

As an example, the set $\mathrm{Fr}_{0}(X, Y)$ coincides with the set of pointed morphisms $X_{+} \rightarrow Y_{+}$. In particular, for a connected scheme X one has

$$
\operatorname{Fr}_{0}(X, Y)=\operatorname{Hom}_{S m / k}(X, Y) \sqcup\left\{0_{0}\right\} .
$$

If $f: X^{\prime} \rightarrow X$ is a morphism of schemes and $\Phi=(U, \varphi, g)$ an explicit correspondence from X to Y then

$$
f^{*}(\Phi):=\left(U^{\prime}=U \times_{X} X^{\prime}, \varphi \circ p r, g \circ p r\right)
$$

is an explicit correspondence from X^{\prime} to Y.
The following definition is to describe compositions of framed correspondences.
Definition 2.2. Let X, Y and S be k-smooth schemes and let $a=\left(Z, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right), g\right)$ be an explicit correspondence of level n from X to Y and let $b=\left(Z^{\prime}, U^{\prime},\left(\psi_{1}, \psi_{2}, \ldots, \psi_{m}\right), g^{\prime}\right)$ be an explicit correspondence of level m from Y to S. We define their composition as an explicit correspondence of level $n+m$ from X to S by

$$
\left(Z \times_{Y} Z^{\prime}, U \times_{Y} U^{\prime},\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}, \psi_{1}, \psi_{2}, \ldots, \psi_{m}\right), g^{\prime}\right)
$$

Clearly, the composition of explicit correspondences respects the equivalence relation on them and defines associative pairings

$$
\operatorname{Fr}_{n}(X, Y) \times \operatorname{Fr}_{m}(Y, S) \rightarrow \operatorname{Fr}_{n+m}(X, S)
$$

Given $X, Y \in S m / k$, denote by $\operatorname{Fr}_{*}(X, Y)$ the set $\bigsqcup_{n} \operatorname{Fr}_{n}(X, Y)$. The composition of framed correspondences defined above gives a category $\mathrm{Fr}_{*}(k)$. Its objects are those of $S m / k$ and the morphisms
are given by the sets $\mathrm{Fr}_{*}(X, Y), X, Y \in S m / k$. Since the naive morphisms of schemes can be identified with certain framed correspondences of level zero, we get a canonical functor

$$
S m / k \rightarrow \mathrm{Fr}_{*}(k)
$$

One can easily see that for a framed correspondence $\Phi: X \rightarrow Y$ and a morphism $f: X^{\prime} \rightarrow X$, one has $f^{*}(\Phi)=\Phi \circ f$.
Definition 2.3. Let X, Y, S and T be smooth schemes. There is an external product

$$
\operatorname{Fr}_{n}(X, Y) \times \operatorname{Fr}_{m}(S, T) \xrightarrow{-\boxtimes-} \operatorname{Fr}_{n+m}(X \times S, Y \times T)
$$

given by

$$
\begin{gathered}
\left(Z, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right), g\right) \boxtimes\left(Z^{\prime}, U^{\prime},\left(\psi_{1}, \psi_{2}, \ldots, \psi_{m}\right), g^{\prime}\right)= \\
\left(Z \times Z^{\prime}, U \times U^{\prime},\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}, \psi_{1}, \psi_{2}, \ldots, \psi_{m}\right), g \times g^{\prime}\right)
\end{gathered}
$$

For the constant morphism $c: \mathbb{A}^{1} \rightarrow \mathrm{pt}$, we set (following Voevodsky [V1])

$$
\Sigma=-\boxtimes\left(t, c,\{0\}, \mathbb{A}^{1}, t, c\right): \operatorname{Fr}_{n}(X, Y) \rightarrow \operatorname{Fr}_{n+1}(X, Y)
$$

and refer to it as the suspension. If there is no likelihood of confusion, we shall also write Σ to denote the element $1 \cdot\left(t, c,\{0\}, \mathbb{A}^{1}, t, c\right)$ in $\mathbb{Z} \mathrm{F}_{1}(\mathrm{pt}, \mathrm{pt})$ and Σ^{n} for $\Sigma \boxtimes \ldots \boxtimes \Sigma$ in $\mathbb{Z} \mathrm{F}_{n}(\mathrm{pt}, \mathrm{pt})$. It will always be clear from the context which of the meanings for Σ is used (either as the suspension or as the element in $\left.\mathbb{Z} \mathrm{F}_{1}(\mathrm{pt}, \mathrm{pt})\right)$.

Also, following Voevodsky [V1], one puts

$$
\operatorname{Fr}(X, Y)=\operatorname{colim}\left(\operatorname{Fr}_{0}(X, Y) \xrightarrow{\Sigma} \operatorname{Fr}_{1}(X, Y) \xrightarrow{\Sigma} \ldots \xrightarrow{\Sigma} \operatorname{Fr}_{n}(X, Y) \xrightarrow{\Sigma} \ldots\right)
$$

and refer to it as the set of stable framed correspondences. The above external product induces external products

$$
\begin{aligned}
& \operatorname{Fr}_{n}(X, Y) \times \operatorname{Fr}(S, T) \xrightarrow{-\boxtimes-} \operatorname{Fr}(X \times S, Y \times T), \\
& \operatorname{Fr}(X, Y) \times \operatorname{Fr}_{0}(S, T) \xrightarrow{-\boxtimes-} \operatorname{Fr}(X \times S, Y \times T) .
\end{aligned}
$$

Recall now the definition of the category of linear framed correspondences $\mathbb{Z F}_{*}(k)$.
Definition 2.4. (see [GP1]) Let X and Y be smooth schemes. Denote by
$\diamond \mathbb{Z F r}_{n}(X, Y):=\widetilde{\mathbb{Z}}\left[\operatorname{Fr}_{n}(X, Y)\right]=\mathbb{Z}\left[\operatorname{Fr}_{n}(X, Y)\right] / \mathbb{Z} \cdot 0_{n}$, i.e the free abelian group generated by the set $\mathrm{Fr}_{n}(X, Y)$ modulo $\mathbb{Z} \cdot 0_{n}$;
$\diamond \mathbb{Z F}_{n}(X, Y):=\mathbb{Z} \operatorname{Fr}_{n}(X, Y) / A$, where A is a subgroup generated by the elementts

$$
\begin{aligned}
& \left(Z \sqcup Z^{\prime}, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right), g\right)- \\
& \quad \quad-\left(Z, U \backslash Z^{\prime},\left.\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right)\right|_{U \backslash Z^{\prime}},\left.g\right|_{U \backslash Z^{\prime}}\right)-\left(Z^{\prime}, U \backslash Z,\left.\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right)\right|_{U \backslash Z},\left.g\right|_{U \backslash Z}\right) .
\end{aligned}
$$

We shall also refer to the latter relation as the additivity property for supports. In other words, it says that a framed correspondence in $\mathbb{Z F}_{n}(X, Y)$ whose support is a disjoint union $Z \sqcup Z^{\prime}$ equals the sum of the framed correspondences with supports Z and Z^{\prime} respectively. Note that $\mathbb{Z} \mathrm{F}_{n}(X, Y)$ is $\mathbb{Z}\left[\operatorname{Fr}_{n}(X, Y)\right]$ modulo the subgroup generated by the elements as above, because $0_{n}=0_{n}+0_{n}$ in this quotient group, hence 0_{n} equals zero. Indeed, it is enough to observe that the support of 0_{n} equals $\emptyset \sqcup \emptyset$ and then apply the above relation to this support.

The elements of $\mathbb{Z} \mathrm{F}_{n}(X, Y)$ are called linear framed correspondences of level n or just linear framed correspondences.

Denote by $\mathbb{Z F}_{*}(k)$ the additive category whose objects are those of $S m / k$ with Hom-groups defined as

$$
\operatorname{Hom}_{\mathbb{Z} \mathbf{F}_{*}(k)}(X, Y)=\bigoplus_{n \geqslant 0} \mathbb{Z} \mathbf{F}_{n}(X, Y)
$$

The composition is induced by the composition in the category $\operatorname{Fr}_{*}(k)$. Denote by $\operatorname{Pre}_{A b}\left(\mathbb{Z} \mathrm{~F}_{*}(k)\right)$ the Grothendieck category of additive presheaves of abelian groups on the additive category $\mathbb{Z} \mathrm{F}_{*}(k)$.

Denote by $\mathbb{Z F}_{0}(k)$ the additive category whose objects are those of Sm / k with Hom-groups defined as $\operatorname{Hom}_{\mathbb{Z} \mathrm{F}_{0}(k)}(X, Y)=\mathbb{Z F}_{0}(X, Y)$. Clearly, $\mathbb{Z F}_{0}(k)$ is an additive subcategory of the additive category $\mathbb{Z F}_{*}(k)$. Finally, denote by $\operatorname{Pre}_{A b}\left(\mathbb{Z F}_{0}(k)\right)$ the category of additive presheaves of abelian groups on the additive category $\mathbb{Z F}_{0}(k)$.

There is a natural functor from Sm / k to $\mathbb{Z} \mathrm{F}_{0}(k)$. It is the identity on objects and takes a regular morphism $f: X \rightarrow Y$ to the linear framed correspondence $1 \cdot\left(X, X \times \mathbb{A}^{0}, p r_{\mathbb{A}^{0}}, f \circ p r_{X}\right) \in \mathbb{Z} \mathrm{F}_{0}(k)$.

Definition 2.5. Let X, Y, S and T be schemes. The external product from Definition 2.3 induces a unique external product

$$
\mathbb{Z F}_{n}(X, Y) \times \mathbb{Z}_{m}(S, T) \xrightarrow{-\boxtimes-} \mathbb{Z F}_{n+m}(X \times S, Y \times T)
$$

such that for any elements $a \in \operatorname{Fr}_{n}(X, Y)$ and $b \in \operatorname{Fr}_{m}(S, T)$ one has $1 \cdot a \boxtimes 1 \cdot b=1 \cdot(a \boxtimes b) \in$ $\mathbb{Z F}_{n+m}(X \times S, Y \times T)$.

Definition 2.6. For any k-smooth variety Y, the presheaf represented by Y is denoted by $\mathbb{Z} \mathrm{F}_{*}(-, Y)$. One of the main $\mathbb{Z} F_{*}(k)$-presheaves of this paper is defined as

$$
\mathbb{Z} \mathrm{F}(-, Y)=\operatorname{colim}\left(\mathbb{Z} \mathrm{F}_{0}(-, Y) \xrightarrow{\Sigma} \mathbb{Z} \mathrm{F}_{1}(-, Y) \xrightarrow{\Sigma} \ldots \xrightarrow{\Sigma} \mathbb{Z}_{n}(-, Y) \xrightarrow{\Sigma} \ldots\right)
$$

For a k-smooth variety X, the elements of $\mathbb{Z} F(X, Y)$ are also called stable linear framed correspondences. Notice that stable linear framed correspondences do not form morphisms of a category.

General Framework. The pairing \boxtimes of Definition 2.5 gives rise to a functor

$$
\mathbb{Z} \mathrm{F}_{*}(k) \times \mathbb{Z} \mathrm{F}_{0}(k) \xrightarrow{\boxtimes} \mathbb{Z} \mathrm{F}_{*}(k)
$$

taking a pair of schemes (X, S) to $X \times S$ and taking a pair of morphisms (a, b) to the morphism $a \boxtimes b$. It is naturally extended to a functor

$$
\operatorname{Pre}_{A b}\left(\mathbb{Z}_{*}(k)\right) \times \operatorname{Pre}_{A b}\left(\mathbb{Z} \mathrm{~F}_{0}(k)\right) \xrightarrow{\boxtimes} \operatorname{Pre}_{A b}\left(\mathbb{Z} \mathrm{~F}_{*}(k)\right) .
$$

Given schemes $Y, S \in \mathbb{Z} \mathrm{~F}_{0}(k)$, consider the presheaf $\mathbb{Z} \mathrm{F}(S)$ in $\operatorname{Pre}_{A b}\left(\mathbb{Z F}_{0}(k)\right)$ and the presheaf $\mathbb{Z} \mathrm{F}(Y)$ in $\operatorname{Pre}_{A b}\left(\mathbb{Z F}_{*}(k)\right)$. Similarly to [GP1, General Framework, Section 5] there are defined $\mathbb{Z} \mathrm{F}_{*}(k)$-presheaves $\mathbb{Z} \mathrm{F}(Y) \boxtimes S$ and $\operatorname{Hom}(S, \mathbb{Z} \mathrm{~F}(Y) \boxtimes S)$ as well as a natural $\mathbb{Z} \mathrm{F}_{*}(k)$-morphism $\mathbb{Z F}(Y) \xrightarrow{-\boxtimes S} \underline{\operatorname{Hom}}(S, \mathbb{Z F}(Y) \boxtimes S) . \quad$ By construction, $\mathbb{Z F}(Y) \boxtimes S=\mathbb{Z} \mathrm{F}(Y \times S)$. Thus one has the following morphism of $\mathbb{Z} \mathrm{F}_{*}(k)$-presheaves

$$
-\boxtimes i d_{S}: \mathbb{Z} \mathrm{F}(Y) \rightarrow \underline{\operatorname{Hom}}(S, \mathbb{Z} \mathrm{~F}(Y \times S))
$$

taking $a \in \mathbb{Z} \mathrm{~F}(X, Y)$ to $a \boxtimes i d_{S} \in \mathbb{Z F}(X \times S, Y \times S)$.
Definition 2.7. Let (S, s) be a k-smooth pointed scheme. Then the morphism $e_{s}: S \rightarrow \mathrm{pt} \stackrel{s}{\rightarrow} S$ defines an idempotent $\underline{\operatorname{Hom}}\left(S, e_{s}\right): \underline{\operatorname{Hom}}(S, \mathbb{Z F}(Y \times S)) \rightarrow \underline{\operatorname{Hom}}(S, \mathbb{Z F}(Y \times S))$ in the category of $\mathbb{Z F}_{*}$-presheaves. Set,

$$
\underline{\operatorname{Hom}}(S, \mathbb{Z F}(Y \wedge(S, s))):=\operatorname{Ker}\left[\underline{\operatorname{Hom}}\left(S, e_{s}\right)\right]
$$

Consider the idempotent $\underline{\operatorname{Hom}}\left(e_{s}, \underline{\operatorname{Hom}}(S, \mathbb{Z F}(Y \wedge(S, s)))\right)$ of $\underline{\operatorname{Hom}}(S, \mathbb{Z}(Y \wedge(S, s)))$ in the category of $\mathbb{Z F}_{*}(k)$-presheaves. Set,

$$
\underline{\operatorname{Hom}}((S, s), \mathbb{Z} \mathrm{F}(Y \wedge(S, s))):=\operatorname{Ker}\left[\underline{\operatorname{Hom}}\left(e_{s}, \underline{\operatorname{Hom}}(S, \mathbb{Z} \mathrm{~F}(Y \wedge(S, s)))\right)\right] .
$$

For any $X \in S m / k$ denote by $\mathbb{Z F}(X \wedge(S, s), Y \wedge(S, s))$ the value of $\underline{\operatorname{Hom}}((S, s), \mathbb{Z} \mathrm{F}(Y \wedge(S, s)))$ on X. There is a natural morphism of $\mathbb{Z} F_{*}(k)$-presheaves

$$
-\boxtimes i d_{(S, s)}: \mathbb{Z} \mathrm{F}(Y) \rightarrow \underline{\operatorname{Hom}}((S, s), \mathbb{Z} \mathrm{F}(Y \wedge(S, s))) .
$$

Definition 2.8. Let X and Y be k-smooth schemes and let (S, s) be a k-smooth pointed scheme.
\diamond Denote by $e_{s}: S \rightarrow \mathrm{pt} \xrightarrow{s} S$ the idempotent in $\operatorname{End}_{\mathbb{Z F}_{0}(k)}(S)=\mathbb{Z F}_{0}(S, S)$ given by the composition of the constant map and the embedding of s into S.
\diamond For each integer $m \geqslant 0$ define $\mathbb{Z F}_{m}(X \wedge(S, s), Y \wedge(S, s))$ as a subgroup of the group $\mathbb{Z} \mathrm{F}_{m}(X \times S, Y \times S)$ consisting of all a such that $a \circ\left(\mathrm{id}_{X} \boxtimes e_{S}\right)=\left(\mathrm{id}_{Y} \boxtimes e_{s}\right) \circ a=0$. Note that the suspension map $\Sigma: \mathbb{Z F}_{m}(X \times S, Y \times S) \rightarrow \mathbb{Z F}_{m+1}(X \times S, Y \times S)$ takes the subgroup $\left.\mathbb{Z} \mathrm{F}_{m}(X \wedge(S, s), Y \wedge(S, s))\right)$ to the subgroup $\mathbb{Z} \mathrm{F}_{m+1}(X \wedge(S, s), Y \wedge(S, s))$. Set,

$$
\mathbb{Z} \mathrm{F}(X \wedge(S, s), Y \wedge(S, s)):=\operatorname{colim}\left[\mathbb{Z}_{0}(X \wedge(S, s), Y \wedge(S, s)) \stackrel{\Sigma}{\rightarrow} \mathbb{Z F}_{1}(X \wedge(S, s), Y \wedge(S, s)) \stackrel{\Sigma}{\rightarrow} \ldots\right]
$$

It is easy to see that the morphisms $i d_{X} \boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{s}\right): \mathbb{Z} \mathrm{F}_{m}(X, Y) \rightarrow \mathbb{Z F}_{m}(X \times S, Y \times S)$ take values in $\mathbb{Z F}_{m}(X \wedge(S, s), Y \wedge(S, s))$. They are compatible with the suspension Σ and we define a morphism

$$
i d_{X} \boxtimes \mathrm{id}_{(S, s)}: \mathbb{Z} \mathrm{F}(X, Y) \rightarrow \mathbb{Z} \mathrm{F}(X \wedge(S, s), Y \wedge(S, s))
$$

Lemma 2.9. Let Y be k-smooth scheme and let (S, s) be a k-smooth pointed scheme. Then one has a commutative diagram of $\mathbb{Z} \mathrm{F}_{*}(k)$-presheaves

where can is the canonical isomorphism.
Theorem C. Let X and Y be k-smooth schemes and let $\left(\mathbb{G}_{m}, 1\right)$ be the scheme \mathbb{G}_{m} pointed by the point 1. Then the morphisms

$$
\begin{align*}
& -\boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{1}\right): \mathbb{Z F}\left(\Delta^{\bullet} \times-, Y\right) \rightarrow \mathbb{Z} \mathrm{F}\left(\left(\Delta^{\bullet} \times-\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right) \tag{1}\\
& -\boxtimes \operatorname{id}_{\left(\mathbb{G}_{m}, 1\right)}: \mathbb{Z F}\left(\Delta^{\bullet} \times-, Y\right) \rightarrow \underline{\operatorname{Hom}}\left(\left(\mathbb{G}_{m}, 1\right), \mathbb{Z} \mathrm{F}\left(\Delta^{\bullet} \times-, Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)\right) \tag{2}
\end{align*}
$$

are sectionwise quasi-isomorphisms of complexes of $\mathbb{Z F}_{*}(k)$-presheaves of abelian groups.
Remark 2.10. By Lemma 2.9 the morphism (1) is a quasi-isomorphism if and only if the morphism (2) is a quasi-isomorphism. Sometimes it is convenient to work with the morphism (1) and sometimes it is convenient to work with the morphism (2).

Theorem C will be proved at the end of the paper.

3. Theorem A and Theorem B

Before proving Theorem A we recall some definitions and constructions for framed motives for the convenience of the reader. We adhere to [GP1]. Let $\operatorname{Fr}_{0}(k)$ be the category whose objects are those of $S m / k$ and whose morphism set between X and Y is given by the set of framed correspondences of level zero [V1, Example 2.1], [GP1, Definition 2.1]. As it is shown in [GP1, Section 5], the category of framed correspondences of level zero $\mathrm{Fr}_{0}(k)$ has an action by finite pointed sets $Y \otimes K:=\bigsqcup_{K \backslash *} Y$ with $Y \in S m / k$ and K a finite pointed set. Let $U, X \in \operatorname{Fr}_{0}(k)$. By the Additivity Theorem of [GP1] the Γ-space in the sense of Segal [Seg]

$$
K \in \Gamma^{\mathrm{op}} \mapsto C_{*} \operatorname{Fr}(U, X \otimes K):=\operatorname{Fr}\left(U \times \Delta^{\bullet}, X \otimes K\right)
$$

is special.
Definition 3.1 (see [GP1]). The framed motive $M_{f r}(X)$ of a smooth algebraic variety $X \in \operatorname{Fr}_{0}(k)$ is the Segal S^{1}-spectrum $\left(C_{*} \operatorname{Fr}(-, X), C_{*} \operatorname{Fr}\left(-, X \otimes S^{1}\right), C_{*} \operatorname{Fr}\left(-, X \otimes S^{2}\right), \ldots\right)$ associated with the special Γ-space $K \in \Gamma^{\mathrm{op}} \mapsto C_{*} \operatorname{Fr}(-, X \otimes K)$. The framed motive $M_{f r}(X) \in S p_{S^{1}}(k)$ is covariantly functorial in framed correspondences of level zero.

Let $\operatorname{Fr}_{0}(k)$ be the category whose objects are those of $S m / k$ and whose morphism set between X and Y is given by the set of framed correspondences of level zero [V1, Example 2.1], [GP1, Definition 2.1]. As it is shown in [GP1, Section 5], the category of framed correspondences of level zero $\operatorname{Fr}_{0}(k)$ has an action by finite pointed sets $Y \otimes K:=\bigsqcup_{K \backslash *} Y$ with $Y \in S m / k$ and K a finite pointed set. The cone of Y is the simplicial object $Y \otimes I$ in $\operatorname{Fr}_{0}(k)$, where $(I, 1)$ is the pointed simplicial set $\Delta[1]$ with basepoint 1 . There is a natural morphism $i_{0}: Y \rightarrow Y \otimes I$ in $\Delta^{\mathrm{op}} \operatorname{Fr}_{0}(k)$. Given a closed inclusion of smooth schemes $j: Y \hookrightarrow X$, denote by $X / / Y$ a simplicial object in $\operatorname{Fr}_{0}(k)$ which is obtained by taking the pushout of the diagram $X \hookleftarrow Y \stackrel{i_{0}}{\hookrightarrow} Y \otimes I$ in $\Delta^{\mathrm{op}} \operatorname{Fr}_{0}(k)$. The simplicial object $X / / Y$ termwise equals $X, X \sqcup Y, X \sqcup Y \sqcup Y, \ldots$ By $\mathbb{G}_{m}^{\wedge 1}$ we mean the simplicial object $\mathbb{G}_{m} / /\{1\}$ in $\operatorname{Fr}_{0}(k)$. It looks termwise as

$$
\mathbb{G}_{m}, \mathbb{G}_{m} \sqcup p t, \mathbb{G}_{m} \sqcup p t \sqcup p t, \ldots
$$

Applying $M_{f r}(X \times-)$ to $\mathbb{G}_{m}^{\wedge 1}$ and realizing by taking diagonals, one gets a framed S^{1}-spectrum $M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge 1}\right)$. We shall also denote it by $M_{f r}(X)(1)$. The nth iteration gives the spectrum $M_{f r}(X \times$ $\left.\mathbb{G}_{m}^{\wedge n}\right)$, also denoted by $M_{f r}(X)(n)$.

Similarly to the General Framework on p. 6 there is a natural pairing

$$
\boxtimes: s \operatorname{Pr}_{\bullet}^{f r}(k) \times s \operatorname{Pr}_{\bullet}\left(\operatorname{Fr}_{0}(k)\right) \rightarrow s \operatorname{Pr}_{\bullet}^{f r}(k)
$$

where $s \operatorname{Pr} e_{\bullet}^{f r}(k)$ (respectively $s \operatorname{Pr} e_{\bullet}\left(\operatorname{Fr}_{0}(k)\right)$) is the category of pointed simplicial presheaves with framed correspondences (respectivley the category of pointed simplicial presheaves on $\mathrm{Fr}_{0}(k)$). It is extended from the pairing $\operatorname{Fr}_{*}(k) \times \operatorname{Fr}_{0}(k) \xrightarrow{\boxtimes} \operatorname{Fr}_{*}(k)$ that takes (X, Y) to $X \times Y$ and $a \in \operatorname{Fr}_{m}\left(X, X^{\prime}\right)$, $b \in \operatorname{Fr}_{0}\left(Y, Y^{\prime}\right)$ to $a \boxtimes b \in \operatorname{Fr}_{m}\left(X \times X^{\prime}, Y \times Y^{\prime}\right)$.

We will also write \wedge for the monoidal product in $\operatorname{Fr}_{0}(k)$ and in $\Delta^{\mathrm{op}} \mathrm{Fr}_{0}(k)$. The Yoneda embedding identifies $\Delta^{\mathrm{op}} \mathrm{Fr}_{0}(k)$ with a full subcategory of $s \operatorname{Pre}_{\bullet}\left(\operatorname{Fr}_{0}(k)\right)$. For each integer $n \geqslant 0$ there is a natural map of spectra

$$
a_{n}: M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge n}\right) \xrightarrow{-\boxtimes \mathbb{G}_{m}^{\wedge 1}} \underline{\operatorname{Hom}}\left(\mathbb{G}_{m}^{\wedge 1}, M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge n+1}\right)\right) \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{G}, M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge n+1}\right)\right)
$$

where the right arrow is induced by the adjunction unit adj: $\mathbb{G} \rightarrow\left(\left.\mathbb{G}_{m}^{\wedge 1}\right|_{S m / k}\right)$. Note that a_{n} respects framed correspondences of level zero and coincides with the morphism described in [GP1, p. 297]).

Definition 3.2. The $\left(S^{1}, \mathbb{G}\right)$-bispectrum $M_{f_{r}}^{\mathbb{G}}(X)$ is defined as

$$
\left(M_{f r}(X), M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge 1}\right), M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge 2}\right), \ldots\right)
$$

together with the structure morphisms $a_{n}-\mathrm{s}$.
We shall prove below (see the proof of Theorem A) that each a_{n} is a schemewise stable equivalence of spectra, but first let us discuss further useful spectra. Denote by $\mathbb{Z} M_{f r}(X), X \in \operatorname{Sm} / k$, the Segal S^{1}-spectrum $\left(\mathbb{Z} \operatorname{Fr}\left(\Delta^{\bullet} \times-, X\right), \mathbb{Z F r}\left(\Delta^{\bullet} \times-, X \otimes S^{1}\right), \ldots\right)$. Denote by $L M_{f r}(X)$ the Segal S^{1}-spectrum $E M\left(\mathbb{Z F}\left(\Delta^{\bullet} \times-, X\right)\right)=\left(\mathbb{Z F}\left(\Delta^{\bullet} \times-, X\right), \mathbb{Z F}\left(\Delta^{\bullet} \times-, X \otimes S^{1}\right), \ldots\right)$.

The equalities $\mathbb{Z} \mathrm{F}\left(-, X \sqcup X^{\prime}\right)=\mathbb{Z} \mathrm{F}(-, X) \oplus \mathbb{Z} \mathrm{F}\left(-, X^{\prime}\right)$ show that the Γ-space $(K, *) \mapsto \mathbb{Z} \mathrm{F}\left(\Delta^{\bullet} \times\right.$ $U, X \otimes K)$ corresponds to the complex of abelian groups $\mathbb{Z F}\left(\Delta^{\bullet} \times U, X\right)$. Hence $L M_{f r}(X)$ is the Eilenberg-Mac Lane spectrum for the complex $\mathbb{Z F}\left(\Delta^{\bullet} \times-, X\right)$. The Γ-space morphism

$$
\left[(K, *) \mapsto \mathbb{Z} \operatorname{Fr}\left(\Delta^{\bullet} \times-, X \otimes K\right)\right] \rightarrow\left[(K, *) \mapsto \mathbb{Z} \mathbf{F}\left(\Delta^{\bullet} \times-, X \otimes K\right)\right]
$$

induces a morphism of S^{1}-spectra $l_{X}: \mathbb{Z} M_{f r}(X) \rightarrow E M(\mathbb{Z F}(-, X))$.
Note that homotopy groups of $L M_{f r}(X)=E M\left(\mathbb{Z F}\left(\Delta^{\bullet} \times-, X\right)\right)$ are equal to homology groups of the complex $\mathbb{Z F}\left(\Delta^{\bullet} \times-, X\right)$. By [Sch, \S II.6.2] the homotopy groups $\pi_{*}\left(\mathbb{Z} M_{f r}(X)(U)\right)$ of $\mathbb{Z} M_{f r}(X)$ evaluated at $U \in S m / k$ are the homology groups $H_{*}\left(M_{f r}(X)(U)\right)$ of $M_{f r}(X)(U)$.

The following result, referred to as the Linearisation Theorem in [GNP, Theorem 1.2], is true:
Theorem 3.3 (see [GNP]). The morphism of S^{1}-spectra

$$
l_{X}: \mathbb{Z} M_{f r}(X) \rightarrow L M_{f r}(X)
$$

is a schemewise stable equivalence. In particular, if U is smooth, then

$$
H_{*}\left(M_{f r}(X)(U)\right)=\pi_{*}\left(\mathbb{Z} M_{f r}(X)(U)\right)=\pi_{*}\left(L M_{f r}(X)(U)\right)=H_{*}\left(\mathbb{Z} \mathbf{F}\left(\Delta^{\bullet} \times U, X\right)\right)
$$

Replacing simplicial framed sheaves $C_{*} F r$ in Definition 3.2 by simplicial abelian framed presheaves $C_{*} \mathbb{Z} \mathrm{~F}$, we define Segal S^{1}-spectra $L M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge n}\right)$-s. Following the General Framework on p. 6, there is a natural morphism of S^{1}-spectra for each integer $n \geqslant 0$

$$
\begin{equation*}
c_{n}: L M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge n}\right) \xrightarrow{-\boxtimes \mathbb{G}_{m}^{\wedge 1}} \underline{\operatorname{Hom}}\left(\mathbb{G}_{m}^{\wedge 1}, M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge n+1}\right)\right) \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{G}, L M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge n+1}\right)\right) \tag{3}
\end{equation*}
$$

where the right arrow is induced by the adjunction unit adj : $\mathbb{G} \rightarrow\left(\left.\mathbb{G}_{m}^{\wedge 1}\right|_{S m / k}\right)$.
Definition 3.4. The $\left(S^{1}, \mathbb{G}\right)$-bispectrum $L M_{f r}^{\mathbb{G}}(X)$ is defined as

$$
\left(L M_{f r}(X), L M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge 1}\right), L M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge 2}\right), \ldots\right)
$$

together with the structure morphisms c_{n}-s.
We are now in a position to prove Theorem A.
Proof of Theorem A. (1). We claim that for every $n>0$ the sequence

$$
M_{f r}(X)(n-1) \rightarrow M_{f r}\left(X \times \mathbb{G}_{m}\right)(n-1) \rightarrow M_{f r}(X)(n)
$$

is a homotopy cofiber sequence of S^{1}-spectra. Since all spectra are connected, it is enough to show that

$$
\mathbb{Z} M_{f r}(X)(n-1) \rightarrow \mathbb{Z} M_{f r}\left(X \times \mathbb{G}_{m}\right)(n-1) \rightarrow \mathbb{Z} M_{f r}(X)(n)
$$

is a homotopy cofiber sequence of S^{1}-spectra. By Theorem 3.3 the latter is equivalent to showing that

$$
L M_{f r}(X)(n-1) \rightarrow L M_{f r}\left(X \times \mathbb{G}_{m}\right)(n-1) \rightarrow L M_{f r}(X)(n)
$$

is a homotopy cofiber sequence of S^{1}-spectra. This sequence is a homotopy cofiber sequence if and only if

$$
\mathbb{Z} F\left(\Delta^{\bullet} \times-, X \times \mathbb{G}_{m}^{\wedge(n-1)}\right) \rightarrow \mathbb{Z} F\left(\Delta^{\bullet} \times-, X \times \mathbb{G}_{m}^{\wedge(n-1)} \times \mathbb{G}_{m}\right) \rightarrow \mathbb{Z} F\left(\Delta^{\bullet} \times-, X \times \mathbb{G}_{m}^{\wedge n}\right)
$$

is a homotopy cofiber sequence of complexes of abelian presheaves. But this is obvious because $\mathbb{Z} F\left(\Delta^{\bullet} \times-, X \times \mathbb{G}_{m}^{\wedge n}\right)$ is the mapping cone of the left arrow, and hence the desired claim follows. We have used here the fact that $\mathbb{Z} F(-, X \sqcup Y)=\mathbb{Z} F(-, X) \oplus \mathbb{Z} F(-, Y)$.

Next, it is enough to prove that

$$
a_{0}: M_{f r}(X) \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{G}, M_{f r}(X)(1)\right)
$$

is a schemewise equivalence of spectra. Indeed, consider a commutative diagram of homotopy cofiber sequences in $S p_{S^{1}}(k)$

with $n \geqslant 1$. If a_{n-1} is a schemewise equivalence of spectra, then so is a_{n} by [Hir, 13.5.10]. Thus using induction in n, it suffices to verify that a_{0} is a schemewise equivalence of spectra.

By the stable Whitehead theorem [Sch, II.6.30] a_{0} is a stable equivalence if and only if so is

$$
a_{0}: \mathbb{Z} M_{f r}(X) \rightarrow \mathbb{Z}\left[\underline{\operatorname{Hom}}\left(\mathbb{G}, M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge 1}\right)\right)\right] .
$$

Consider a commutative diagram of homotopy fiber sequences in $S p_{S^{1}}(k)$

The arrow l_{X} and the middle lower arrow are a stable weak equivalences of spectra by Theorem 3.3. It follows that ℓ_{X} is a stable weak equivalence. Consider a commutative diagram

Since l_{X}, ℓ_{X} are stable weak equivalences, it follows that a_{0} is a stable local equivalence if and only if so is c_{0}. By Theorem D from Appendix A the morphism c_{0} is a sectionwise stable weak equivalence. The proof of the first part of the theorem is completed.
(2). Since each spectrum $M_{f r}(X)(n)_{f}$ is fibrant in the injective local stable model structure of S^{1}-spectra, it is enough to show that each map

$$
b_{n}: M_{f r}(X)(n)_{f} \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{G}, M_{f r}(X)(n+1)_{f}\right), \quad n \geqslant 0,
$$

is a Nisnevich local stable equivalence of spectra. Using the same argument as in the proof of the first statement, it suffices to verify that b_{0} is a local stable equivalence.

There is a commutative diagram

in which the left vertical arrow is a local stable equivalence and a_{0} is a schemewise stable equivalence by the first statement. It follows that b_{0} is a local stable equivalence if and only if so is $d_{1}=\underline{\operatorname{Hom}}(\mathbb{G}, \alpha)$.

The presheaves of stable homotopy groups of $\underline{\operatorname{Hom}}\left(\mathbb{G}, M_{f r}(X)(1)\right)$ equal $\left(\pi_{n}\left(M_{f r}(X)(1)\right)\right)_{-1}$. These presheaves are \mathbb{A}^{1}-invariant quasi-stable radditive with framed correspondences (see [GP2, Introduction] for the definition of such presheaves). It follows from [GP2, Theorem 1.1] (complemented by [DP] in characteristic 2) that each Nisnevich sheaf $\left(\left(\pi_{n}\left(M_{f r}(X)(1)\right)\right)_{-1}\right)^{\text {nis }}$ is strictly \mathbb{A}^{1}-invariant quasi-stable radditive with framed correspondences.

Each spectrum $M_{f r}(X)(n)$ has homotopy invariant, quasi-stable radditive presheaves with framed correspondences of stable homotopy groups $\pi_{*}\left(M_{f r}(X)(n)\right)$. By [GP2, Theorem 1.1] (complemented by [DP] in characteristic 2) the Nisnevich sheaves $\pi_{*}^{\text {nis }}\left(M_{f r}(X)(n)\right)$ are strictly homotopy invariant. It follows from [GP1, Proposition 7.1] that $M_{f r}(X)(n)_{f}$ is motivically fibrant in the injective stable motivic model structure of S^{1}-spectra.

In order to compute the Nisnevich sheaf $\pi_{n}^{\text {nis }}\left(\underline{\operatorname{Hom}}\left(\mathbb{G}, M_{f r}(X)(1)_{f}\right)\right)$, consider the BrownGersten convergent spectral sequence

$$
H_{\mathrm{nis}}^{p}\left(V \times \mathbb{G}_{m}, \pi_{q}^{\mathrm{nis}}\left(M_{f r}(X)(1)\right)\right) \Rightarrow \pi_{q-p}\left(M_{f r}(X)(1)_{f}\left(V \times \mathbb{G}_{m}\right)\right), \quad V \in S m / k
$$

It follows from [GP2, Corollary 16.8, Theorems 17.15-16] that each presheaf

$$
V \mapsto H_{\mathrm{nis}}^{p}\left(V \times \mathbb{G}_{m}, \pi_{q}^{\mathrm{nis}}\left(M_{f r}(X)(1)\right)\right)
$$

is \mathbb{A}^{1}-invariant quasi-stable radditive with framed correspondences.
Let $V \in S m / k$ be irreducible, $u \in V$ be a point, $U=\operatorname{Spec}\left(\mathscr{O}_{V, u}\right)$. Let U_{u}^{h} be the henselization of U at u and let $k\left(U_{u}^{h}\right)$ be the function field on U_{u}^{h}. Consider the above spectral sequence and replace V by U_{u}^{h} in it. We claim that in this case the spectral sequence degenerates and $H_{\text {nis }}^{0}\left(U_{u}^{h} \times \mathbb{G}_{m}, \pi_{n}^{\text {nis }}\left(M_{f r}(X)(1)\right)\right)=\pi_{n}\left(M_{f r}(X)(1)_{f}\left(U_{u}^{h} \times \mathbb{G}_{m}\right)\right)$. For this notice that by [GP2, 3.15(3')] the map $H_{\text {nis }}^{p}\left(\mathbb{G}_{m} \times U, \pi_{q}^{\text {nis }}\left(M_{f r}(X)(1)\right)\right) \hookrightarrow H_{\text {nis }}^{p}\left(\mathbb{G}_{m, k\left(U_{u}^{h}\right)}, \pi_{q}^{\text {nis }}\left(M_{f r}(X)(1)\right)\right)$ is injective, where $\eta_{h}: \operatorname{Spec}\left(k\left(U_{u}^{h}\right)\right) \rightarrow U_{u}^{h}$ is the canonical morphism. In turn, by [GP2, 3.15(1)] the canonical homomorphism

$$
H_{\mathrm{nis}}^{p}\left(\mathbb{G}_{m, k\left(U_{u}^{h}\right)}, \pi_{q}^{\mathrm{nis}}\left(M_{f r}(X)(1)\right)\right) \hookrightarrow H_{\mathrm{nis}}^{p}\left(\operatorname{Spec}\left(k\left(U_{u}^{h}\right)(t)\right), \pi_{q}^{\mathrm{nis}}\left(M_{f r}(X)(1)\right)\right)
$$

is injective. Since $0=H_{\text {nis }}^{p}\left(\operatorname{Spec}\left(k\left(U_{u}^{h}\right)(t)\right), \pi_{q}^{\mathrm{nis}}\left(M_{f r}(X)(1)\right)\right)$ for $p>0$, the group $H_{\text {nis }}^{p}\left(U_{u}^{h} \times\right.$ $\left.\mathbb{G}_{m}, \pi_{q}^{\text {nis }}\left(M_{f r}(X)(1)\right)\right)$ vanishes for $p>0$. Thus we have checked the equality

$$
H_{\mathrm{nis}}^{0}\left(U_{u}^{h} \times \mathbb{G}_{m}, \pi_{n}^{\mathrm{nis}}\left(M_{f r}(X)(1)\right)\right)=\pi_{n}\left(M_{f r}(X)(1)_{f}\left(U_{u}^{h} \times \mathbb{G}_{m}\right)\right)
$$

We can conclude that $\pi_{n}^{\mathrm{nis}}\left(\underline{\operatorname{Hom}}\left(\mathbb{G}_{m}, M_{f r}(X)(1)_{f}\right)\right)=\pi_{n}^{\mathrm{nis}}\left(M_{f r}(X)(1)_{f}\right)\left(\mathbb{G}_{m} \times-\right)$. It follows that

$$
\pi_{n}^{\mathrm{nis}}\left(\underline{\operatorname{Hom}}\left(\mathbb{G}, M_{f r}(X)(1)_{f}\right)\right)=\left(\pi_{n}^{\mathrm{nis}}\left(M_{f r}(X)(1)_{f}\right)\right)_{-1}=\left(\pi_{n}^{\mathrm{nis}}\left(M_{f r}(X)(1)\right)\right)_{-1}
$$

It remains to show that the morphism of \mathbb{A}^{1}-invariant radditive quasi-stable framed sheaves

$$
\left(\left(\pi_{n}\left(M_{f r}(X)(1)\right)\right)_{-1}\right)^{\mathrm{nis}} \rightarrow\left(\pi_{n}^{\mathrm{nis}}\left(M_{f r}(X)(1)\right)\right)_{-1}
$$

is an isomorphism. Using [GP2, 3.15(3')] it suffices to check that it is an isomorphism for every field extension K / k. The homomorphism of abelian groups

$$
\left(\left(\pi_{n}\left(M_{f r}(X)(1)\right)\right)_{-1}\right)^{\mathrm{nis}}(K)=\left(\pi_{n}\left(M_{f r}(X)(1)\right)\right)_{-1}(K) \rightarrow\left(\pi_{n}^{\mathrm{nis}}\left(M_{f r}(X)(1)\right)\right)_{-1}(K)
$$

is an isomorphism, because for every homotopy invariant radditive quasi-stable framed presheaf of abelian groups \mathscr{F} and every open $V \subset \mathbb{A}_{K}^{1}$, one has $\mathscr{F}(V)=\mathscr{F}$ nis (V) (see the proof of [GP2, 3.1]). This completes the proof of Theorem A.
Proof of Theorem B. The proof of Theorem A(2) shows that $M_{f r}(X)(n)_{f}$ is motivically fibrant in the injective stable motivic model structure of S^{1}-spectra. By Theorem A each structure map b_{n} is a schemewise equivalence. We conclude that the bispectrum $M_{f r}^{\mathbb{G}}(X)_{f}$ is a motivically fibrant ($\left.S^{1}, \mathbb{G}\right)$-bispectrum in the sense of Jardine [Jar].

4. Useful lemmas

In this section we discuss several useful \mathbb{A}^{1}-homotopies and collect a number of facts used in the following sections. We start with some definitions and notation.

Definition 4.1. Let $\mathscr{F}: S m / k \rightarrow$ Sets be a presheaf of sets. Let $X \in S m / k$ be a smooth variety and $a, b \in \mathscr{F}(X)$ be two sections. We write $a \sim b$ if a and b are in the same connected component of the simplicial set $\mathscr{F}\left(\Delta^{\bullet} \times X\right)$. If $h \in \mathscr{F}\left(\Delta^{1} \times X\right)$ is such that $\partial_{0}(h)=a$ and $\partial_{1}(h)=b$, then we will write $a^{\underline{h}} b$. In this case $a \sim b$.

Let $\mathscr{A}: S m / k \rightarrow A b$ be a presheaf of abelian groups. Let $X \in S m / k$ be a smooth variety and $a, b \in \mathscr{A}(X)$ be two sections. We will write $a \sim b$ if the classes of a and b in $H_{0}\left(\mathscr{A}\left(\Delta^{\bullet} \times X\right)\right)$ coincide. This is equivalent to saying that there is $h \in \mathscr{A}\left(\Delta^{1} \times X\right)$ such that $\partial_{0}(h)=a$ and $\partial_{1}(h)=b$. For such an h we will write $a^{\underline{h}} b$.

Definition 4.2. Let \mathscr{F} and \mathscr{G} be two presheaves of sets on the category of k-smooth schemes and let $\varphi_{0}, \varphi_{1}: \mathscr{F} \rightrightarrows \mathscr{G}$ be two morphisms. An \mathbb{A}^{1}-homotopy between φ_{0} and φ_{1} is a morphism $H: \mathscr{F} \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{A}^{1}, \mathscr{G}\right)$ such that $H_{0}=\varphi_{0}$ and $H_{1}=\varphi_{1}$. We will write $\varphi_{0} \sim \varphi_{1}$ if there is an \mathbb{A}^{1} homotopy between φ_{0} and φ_{1}.

Let \mathscr{A} and \mathscr{B} be two presheaves of abelian groups on the category of k-smooth schemes and let $\varphi_{0}, \varphi_{1}: \mathscr{A} \rightrightarrows \mathscr{B}$ be two morphisms. An \mathbb{A}^{1}-homotopy between φ_{0} and φ_{1} is a morphism H : $\mathscr{A} \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{A}^{1}, \mathscr{B}\right)$ of presheaves of abelian groups such that $H_{0}=\varphi_{0}$ and $H_{1}=\varphi_{1}$. If H is an \mathbb{A}^{1}-homotopy between φ_{0} and φ_{1}, then we will write $\varphi_{0} \underline{H} \varphi_{1}$. If we do not specify an \mathbb{A}^{1}-homotopy between φ_{0} and φ_{1}, then we will write $\varphi_{0} \sim \varphi_{1}$.

If $\varphi: \mathscr{A} \rightarrow \mathscr{B}$ is a morphism of presheaves of abelian groups, then there is a constant \mathbb{A}^{1} homotopy H_{φ} between φ and φ defined as follows. Given $a \in \mathscr{A}(X)$ set $H_{\varphi}(a)=\operatorname{pr}_{X}^{*}(\varphi(a)) \in$ $\mathscr{B}\left(X \times \mathbb{A}^{1}\right)$.

Lemma 4.3. Let \mathscr{A} and \mathscr{B} be two presheaves of abelian groups on the category of k-smooth schemes and let $\varphi_{0}, \varphi_{1}: \mathscr{A} \rightrightarrows \mathscr{B}$ be two morphisms such that $\varphi_{0} \sim \varphi_{1}$. Then the induced morphisms

$$
\varphi_{0}, \varphi_{1}: \mathscr{A}\left(\Delta^{\bullet}\right) \rightrightarrows \mathscr{B}\left(\Delta^{\bullet}\right)
$$

between two simplicial abelian groups give the same morphisms on the homology of the associated Moore complexes.

Lemma 4.4. Let $\varphi_{0}, \varphi_{1}, \varphi_{2}: \mathscr{A} \rightarrow \mathscr{B}$ be morphisms of presheaves of abelian groups and let $\varphi_{0} \stackrel{H^{\prime}}{\varphi_{1}}$ and $\varphi_{1} \xrightarrow{H^{\prime \prime}} \varphi_{2}$. Then

$$
\varphi_{0} \xrightarrow{H^{\prime}+H^{\prime \prime}-H_{\varphi_{1}}} \varphi_{2}
$$

Lemma 4.5. Let \mathscr{A} and \mathscr{B} be two presheaves of abelian groups on the category of k-smooth schemes and let $\varphi_{0} \underline{H} \varphi_{1}$. Let $\rho: \mathscr{A}^{\prime} \rightarrow \mathscr{A}$ be a morphism. Then $\varphi_{0} \circ \rho \frac{H \circ \rho}{} \varphi_{1} \circ \rho$. Moreover, let $\eta: \mathscr{B} \rightarrow \mathscr{B}^{\prime}$ be a morphism, then $\psi \circ \varphi_{0} \underline{\psi \circ H} \psi \circ \varphi_{1}$ with $\psi=\underline{\operatorname{Hom}}\left(\mathbb{A}^{1}, \eta\right): \underline{\operatorname{Hom}}\left(\mathbb{A}^{1}, \mathscr{B}\right) \rightarrow$ $\underline{\operatorname{Hom}}\left(\mathbb{A}^{1}, \mathscr{B}^{\prime}\right)$.

We now want to discuss actions of matrices on framed correspondences and associated homotopies. Let X and Y be k-smooth schemes and $A \in G L_{n}(k)$ be a matrix. Then A defines an automorphism

$$
\varphi_{A}: \operatorname{Fr}_{n}(-\times X, Y) \rightarrow \operatorname{Fr}_{n}(-\times X, Y)
$$

of the presheaf $\operatorname{Fr}_{n}(-\times X, Y)$ in the following way. Given $W \in S m / k$ and $a=$ $\left(Z, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right), g\right) \in \operatorname{Fr}_{n}(W \times X, Y)$, set

$$
\left.\varphi_{A}\left(Z, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right), g\right)\right):=\left(Z, U, A \circ\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right), g\right),
$$

where A is regarded as a linear automorphism of \mathbb{A}_{k}^{n}.
The automorphism φ_{A} of the presheaf $\operatorname{Fr}_{n}(-\times X, Y)$ induces an automorphism of the free abelian presheaf $\mathbb{Z}\left[\operatorname{Fr}_{n}(-\times X, Y)\right]$ and an automorphism φ_{A} of the presheaf of abelian groups $\mathbb{Z} \mathrm{F}_{n}(-\times$ $X, Y)$.

Definition 4.6. Let $A \in S L_{n}(k)$. Choose a matrix $A_{s} \in S L_{n}(k[s])$ such that $A_{0}=i d$ and $A_{1}=A$. The matrix A_{s}, regarded as a morphism $\mathbb{A}^{n} \times \mathbb{A}^{1} \rightarrow \mathbb{A}^{n}$, gives rise to an \mathbb{A}^{1}-homotopy h between $i d$ and φ_{A} as follows. Given $\left.a=(\alpha, f, Z, U, \varphi, g)\right)=\left(\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), f, Z, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n}\right), g\right) \in$ $\operatorname{Fr}_{n}(W \times X, Y)$, one sets

$$
h(a)=\left(\alpha, f \times i d_{\mathbb{A}^{1}}, Z \times \mathbb{A}^{1}, U \times \mathbb{A}^{1}, A_{s} \circ\left(\varphi \times i d_{\mathbb{A}^{1}}\right), g \circ p r_{U}\right) \in \operatorname{Fr}_{n}\left(W \times X \times \mathbb{A}^{1}, Y\right)
$$

Clearly, $h_{0}(a)=a$ and $h_{1}(a)=\varphi_{A}(a)$. By linearity the homotopy h induces an \mathbb{A}^{1}-homotopy $H_{A_{s}}$

$$
i d \stackrel{H_{A_{s}}}{ } \varphi_{A}: \mathbb{Z} \mathrm{F}_{n}(-\times X, Y) \rightrightarrows \mathbb{Z} \mathrm{F}_{n}(-\times X, Y)
$$

between the identity $i d$ and the morphism φ_{A}.
Lemma 4.7. Let $\rho: \mathbb{Z F}_{m}(-\times X, Y) \rightarrow \mathbb{Z F}_{n}(-\times X, Y)$ be a presheaf morphism. Let $A \in S L_{n}(k)$, $A_{s} \in S L_{n}(k[s])$ and $H_{A_{s}}$ be as in Definition 4.6. Then one has

$$
\rho \stackrel{H_{A_{s}} \circ \rho}{ } \varphi_{A} \circ \rho: \mathbb{Z} \mathrm{F}_{m}(-\times X, Y) \rightrightarrows \mathbb{Z F}_{n}(-\times X, Y)
$$

For $b \in \mathbb{Z} \mathrm{~F}_{m}(Y, S)$ define a presheaf morphism

$$
\varphi_{b}: \mathbb{Z F}_{n}(-\times X, Y) \rightarrow \mathbb{Z F}_{n+m}(-\times X, S)
$$

sending $a \in \mathbb{Z F}_{n}(W \times X, Y)$ to $b \circ a \in \mathbb{Z} \mathrm{~F}_{n+m}(W \times X, S)$. Also, any $b \in \mathbb{Z F}_{m}(p t, p t)$ defines a morphism of presheaves

$$
-\boxtimes b: \mathbb{Z F}_{n}(-\times X, Y) \rightarrow \mathbb{Z F}_{n+m}(-\times X, Y)
$$

sending $a \in \mathbb{Z F}_{n}(W \times X, Y)$ to $a \boxtimes b \in \mathbb{Z} \mathrm{~F}_{n+m}(W \times X, Y)$.
The next three lemmas are straightforward.

Lemma 4.8. Let $b_{1}, b_{2} \in \mathbb{Z F}_{m}(Y, S)$ be such that $b_{1} \sim b_{2}$, then

$$
\varphi_{b_{1}} \sim \varphi_{b_{2}}: \mathbb{Z} \mathrm{F}_{n}(-\times X, Y) \rightrightarrows \mathbb{Z F}_{n+m}(-\times X, S)
$$

Lemma 4.9. Let $b_{1}, b_{2} \in \mathbb{Z} \mathrm{~F}_{m}(p t, p t)$ and $h \in \mathbb{Z} \mathrm{~F}_{m}\left(\mathbb{A}^{1}, p t\right)$ be such that $b_{1} \underline{h} b_{2}$, then

$$
\left(-\boxtimes b_{1}\right) \underline{-\boxtimes h}\left(-\boxtimes b_{2}\right): \mathbb{Z} \mathrm{F}_{n}(-\times X, Y) \rightrightarrows \mathbb{Z}_{n+m}(-\times X, Y)
$$

The following lemma is proved in Appendix B.
Lemma 4.10. Let $z \in \mathbb{A}^{m}$ be a k-rational point. Set $U^{\prime}=\left(\mathbb{A}^{m}\right)_{z}^{h}$ to be the henzelization of \mathbb{A}^{m} at the point z. Let $i_{z}: \mathrm{pt} \hookrightarrow U^{\prime}$ be the closed point of U^{\prime}. Let $U_{s}^{\prime}:=\left(\mathbb{A}^{1} \times \mathbb{A}^{m}\right)_{\mathbb{A}^{1} \times z}^{h}$ be the henzelization of $\mathbb{A}^{1} \times \mathbb{A}^{m}$ at $\mathbb{A}^{1} \times z$. Then the morphism $f_{s}: \mathbb{A}^{1} \times \mathbb{A}^{m} \rightarrow \mathbb{A}^{m}$ mapping (s, y) to $s \cdot(y-x)+x$ induces a morphism $H_{s}:=f_{s}^{h}: U_{s}^{\prime} \rightarrow U^{\prime}$ such that:
(a) $H_{1}:=\left.\left(f_{s}^{h}\right)\right|_{(1 \times X)_{(1, x)}^{h}}: U^{\prime} \rightarrow U^{\prime}$ is the identity morphism;
(b) $H_{0}:=\left.\left(f_{s}^{h}\right)\right|_{(0 \times X)_{(0, x)}^{h}}: U^{\prime} \rightarrow U^{\prime}$ coincides with the composite morphism $U^{\prime} \xrightarrow{p^{h}} \mathrm{pt} \xrightarrow{s_{z}} U^{\prime}$, where $p^{h}: U^{\prime} \rightarrow \mathrm{pt}=\operatorname{Spec}(k)$ is the structure morphism and $s_{z}: \mathrm{pt} \hookrightarrow U^{\prime}$ is the closed point of U^{\prime}.

Let $z \in \mathbb{A}^{m}$ be a k-rational point. The projection $p r: \mathbb{A}^{1} \times \mathbb{A}^{m} \rightarrow \mathbb{A}^{m}$ induces a morphism can $_{s}:=$ $p r^{h}: U_{s}^{\prime} \rightarrow U^{\prime}$ such that $c a n_{0}=c a n_{1}=\mathrm{id}_{U^{\prime}}$ (see Appendix B). The preceding lemma gives the following

Corollary 4.11. Let $z \in \mathbb{A}^{m}$ be a k-rational point and let $\left(z, U^{\prime}, \psi ; \operatorname{id}_{U^{\prime}}\right) \in \operatorname{Fr}_{m}\left(\mathrm{pt}, U^{\prime}\right)$ with U^{\prime} as in Lemma 4.10. Suppose U_{s}^{\prime} is as in Lemma 4.10 and let $h_{s}=\left(\mathbb{A}^{1} \times z, U_{s}^{\prime}, \operatorname{can}_{s}^{*}(\psi) ; H_{s}\right) \in \operatorname{Fr}_{m}\left(\mathbb{A}^{1}, U^{\prime}\right)$. Then one has:
(a) $h_{1}=\left(z, U^{\prime}, \psi ; \operatorname{id}_{U^{\prime}}\right) \in \operatorname{Fr}_{m}\left(\mathrm{pt}, U^{\prime}\right)$;
(b) $h_{0}=\left(z, U^{\prime}, \psi ; s_{z} \circ p^{h}\right)=s_{z} \circ\left(\{z\}, U^{\prime}, \psi ; p^{h}\right) \in \operatorname{Fr}_{m}\left(\mathrm{pt}, U^{\prime}\right)$, where $p^{h}: U^{\prime} \rightarrow \mathrm{pt}=\operatorname{Spec}(k)$ is the structure morphism and $s_{z}: \mathrm{pt} \hookrightarrow U^{\prime}$ is the closed point of U^{\prime}.
Lemma 4.12. Let $z \in \mathbb{A}^{m}$ be a k-rational point. Let Y be $a k$-smooth scheme and let $\left(z, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), g\right) \in \operatorname{Fr}_{m}(\mathrm{pt}, Y)$ be a framed correspondence. Then

$$
\left(z, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), g\right) \sim\left(z, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), c_{g(z)}\right)
$$

where $c_{g(z)}=g(z) \circ p: U \xrightarrow{p} \mathrm{pt} \xrightarrow{g(z)} Y$.
Proof. Let $U^{\prime}, U_{s}^{\prime}, i_{z}$ and h_{s} be as in Corollary 4.11. Let $\pi: U^{\prime} \rightarrow U$ be the canonical morphism. Set $h_{s}^{\prime}=g \circ \pi \circ h_{s} \in \operatorname{Fr}_{m}(\mathrm{pt}, Y)$. We want to check that $h_{1}^{\prime}=(z, U, \varphi, g)$ and $h_{0}^{\prime}=\left(z, U, \varphi, c_{g(z)}\right)$. This will prove our statement. One has,

$$
\begin{aligned}
h_{1}^{\prime}=(g \circ \pi) \circ h_{1}= & (g \circ \pi) \circ\left(z, U^{\prime}, \varphi \circ \pi ; i d_{U^{\prime}}\right)=\left(z, U^{\prime}, \varphi \circ \pi ; g \circ \pi\right)=(z, U, \varphi ; g), \\
h_{0}^{\prime}=(g \circ \pi) \circ h_{0}= & (g \circ \pi) \circ\left(z, U^{\prime}, \varphi \circ \pi ; s_{z} \circ p^{h}\right)=\left(z, U^{\prime}, \varphi \circ \pi ; g \circ \pi \circ s_{z} \circ p^{h}\right)= \\
& =\left(z, U^{\prime}, \varphi \circ \pi ; c_{g(z)} \circ \pi\right)=\left(z, U, \varphi ; c_{g(z)}\right)
\end{aligned}
$$

as required.
Lemma 4.13. Let Y be a k-smooth scheme and let $(Z, U, \varphi, g) \in \operatorname{Fr}_{1}(\mathrm{pt}, Y)$ be a framed correspondence. Suppose that $U \subset \mathbb{A}^{1}$ and $\varphi=p(t) \in k[t]$ is a polynomial, where t is the coordinate function on \mathbb{A}^{1}. Let $g: U \rightarrow Y$ be a morphism.
(1) Then for every $a \in k$ we have

$$
(Z, U, p(t), g(t)) \sim\left(m_{a}^{-1}(Z), m_{a}^{-1}(U), p(t-a), g(t-a)\right) \in \operatorname{Fr}_{1}(\mathrm{pt}, Y)
$$

where $m_{a}: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ is given by $m_{a}(t)=t-a$.
(2) If $Z=\left\{x_{0}\right\}$ for some $x_{0} \in k$ and $p(t)=\left(t-x_{0}\right)^{n} r(t)$ with $r(t)$ invertible on U, then

$$
(Z, U, p(t), g) \sim\left(\{0\}, \mathbb{A}^{1}, r\left(x_{0}\right) t^{n}, c_{g\left(x_{0}\right)}\right) \in \operatorname{Fr}_{1}(\mathrm{pt}, Y)
$$

where $c_{g\left(x_{0}\right)}: \mathbb{A}^{1} \rightarrow \mathrm{pt} \xrightarrow{g\left(x_{0}\right)} Y$ is the constant map taking \mathbb{A}^{1} to the point $g\left(x_{0}\right) \in Y$.
Proof. (1) The homotopy is given by

$$
\left(m_{s a}^{-1}(Z), m_{s a}^{-1}(U), p(t-s a), g(t-s a)\right) \in \operatorname{Fr}_{1}\left(\mathbb{A}^{1}, Y\right)
$$

where s is the homotopy parameter and $m_{s a}: \mathbb{A}^{1} \times \mathbb{A}^{1} \rightarrow \mathbb{A}^{1}$ is the morphism $m_{s a}(t)=t-s a$.
(2) Using the preceding statement, we may assume that $x_{0}=0$. Consider a polynomial

$$
h(s, t)=s r(t) t^{n}+(1-s) r(0) t^{n} \in k[s, t] .
$$

If $r_{1}(t)$ is such that $r(t)=r(0)+t \cdot r_{1}(t)$, then one has $h(s, t)=t^{n} \cdot\left(r(0)+t \cdot r_{1}(t) \cdot s\right)$. If S is the vanishing locus of $r(0)+t \cdot r_{1}(t) \cdot s$, then $S \cap \mathbb{A}^{1} \times 0=\emptyset$. Hence for the zero locus $Z(h)$ of h one has $Z(h)=\left(\mathbb{A}^{1} \times 0\right) \sqcup S$. The framed correspondence

$$
\left(\mathbb{A}^{1} \times\{0\},\left(\mathbb{A}^{1} \times U\right) \backslash S, s r(t) t^{n}+(1-s) r(0) t^{n}, g \circ p r_{U}\right) \in \operatorname{Fr}_{1}\left(\mathbb{A}^{1}, Y\right)
$$

yields the relation $\left(\{0\}, U, r(t) t^{n}, g\right) \sim\left(\{0\}, U, r(0) t^{n}, g\right)$ in $\operatorname{Fr}_{1}(\mathrm{pt}, Y)$. Lemma 4.12 shows that

$$
\left(\{0\}, U, r(0) t^{n}, g\right) \sim\left(\{0\}, U, r(0) t^{n}, g(0)\right)=\left(\{0\}, \mathbb{A}^{1}, r(0) t^{n}, g(0)\right) \in \operatorname{Fr}_{1}(\mathrm{pt}, Y)
$$

and our lemma follows.
Lemma 4.14. Let $a \in k^{\times}$. Let $p(t), q(t) \in k[t]$ be two polynomials of degree n with the leading coefficient a. Let $\left(Z(p), \mathbb{A}^{1}, p(t), c\right) \in \operatorname{Fr}_{1}(\mathrm{pt}, \mathrm{pt}),\left(Z(q), \mathbb{A}^{1}, q(t), c\right) \in \operatorname{Fr}_{1}(\mathrm{pt}, \mathrm{pt})$ be two framed correspondences. Here $c: \mathbb{A}^{1} \rightarrow \mathrm{pt}$ is the structure morphism. Then

$$
\left(Z(p), \mathbb{A}^{1}, p(t), c\right) \sim\left(Z(q), \mathbb{A}^{1}, q(t), c\right) \in \operatorname{Fr}_{1}(\mathrm{pt}, \mathrm{pt})
$$

Proof. As a polinomial in t the leading coefficient of the polinomial $p(t)+s(q(t)-p(t))$ is $a \in k^{\times}$. Hence the $k[s]$-module $k[s, t] /(p(t)+s(q(t)-p(t)))$ is a free module rank n. Let $Z_{s} \subset \mathbb{A}^{1} \times \mathbb{A}^{1}$ be the vanishing locus of $p(t)+s(q(t)-p(t))$. The desired homotopy is given by the framed correspondence

$$
\left(Z_{s}, \mathbb{A}^{1} \times \mathbb{A}^{1}, p(t)+s(q(t)-p(t)), c^{\prime}\right)
$$

where s is the homotopy parameter and $c^{\prime}: \mathbb{A}^{1} \times \mathbb{A}^{1} \rightarrow \mathrm{pt}$ is the canonical projection.

5. HOMOTOPIES FOR SWAPPING COORDINATES OF $\mathbb{G}_{m} \times \mathbb{G}_{m}$

In this section we follow notation of Section 2. Denote by $\varepsilon=\left(\{0\}, \mathbb{A}^{1},-t, c\right) \in \operatorname{Fr}_{1}(\mathrm{pt}, \mathrm{pt})$, where $c: \mathbb{A}^{1} \rightarrow \mathrm{pt}$ is the canonical projection. We work in this Section with the elements $\Sigma^{n} \in$ $\mathbb{Z} \mathrm{F}_{n}(\mathrm{pt}, \mathrm{pt})$ as in Definitition 2.3.

Proposition 5.1. Let Y be a k-smooth scheme. Then the canonical homomorphism

$$
H_{0}\left(\mathbb{Z F}\left(\Delta^{\bullet} \times \mathbb{G}_{m} \times \mathbb{G}_{m}, Y\right)\right) \rightarrow H_{0}\left(\mathbb{Z F}\left(\Delta_{\operatorname{Spec} k(t, u)}^{\bullet}, Y\right)\right)
$$

is injective.

Proof. By [GP2, 3.15(1)] the canonical homomorhisms

$$
H_{0}\left(\mathbb{Z} \mathrm{~F}\left(\Delta^{\bullet} \times \mathbb{G}_{m} \times \mathbb{G}_{m}, Y\right)\right) \rightarrow H_{0}\left(\mathbb{Z} \mathrm{~F}\left(\Delta^{\bullet} \times \mathbb{G}_{m, k(u)}, Y\right)\right)
$$

and

$$
H_{0}\left(\mathbb{Z} \mathrm{~F}\left(\Delta^{\bullet} \times \mathbb{G}_{m, k(u)}, Y\right)\right) \rightarrow H_{0}\left(\mathbb{Z}\left(\Delta_{\operatorname{Spec} k(t, u)}^{\bullet}, Y\right)\right)
$$

are injective, hence the lemma.
Let Y be a k-smooth variety and F / k be a field extension. There is a map of pointed sets

$$
\text { adj }: \operatorname{Fr}_{n}(\operatorname{Spec}(F), Y) \rightarrow \operatorname{Fr}_{n}^{F}\left(\operatorname{Spec}(F), Y_{F}\right)
$$

given by the assignment $(Z, W, \varphi, g) \mapsto\left(Z, W, \varphi^{F}, g^{F}\right)$. Here for a k-morphism $g: W \rightarrow Y$ we write g^{F} to denote the F-morphism $\left(g, p r_{\operatorname{Spec}(F)}\right): W \rightarrow Y_{F}$ and $p r_{\operatorname{Spec}(F)}: W \rightarrow \operatorname{Spec}(F)$ is the structure morphism. In particular, for $Y=\mathbb{A}^{n}$ and $\varphi: W \rightarrow \mathbb{A}_{k}^{n}$ we write φ^{F} for $\left(\varphi, p r_{\operatorname{Spec}(F)}\right): W \rightarrow \mathbb{A}_{F}^{n}$. It is easy to see that the map ad j is a bijection. Moreover, it induces bijections

$$
\operatorname{adj}: \mathbb{Z}_{n}(\operatorname{Spec}(F), Y) \rightarrow \mathbb{Z}_{n}^{F}\left(\operatorname{Spec}(F), Y_{F}\right) \text { and } \mathbb{Z} \mathrm{F}(\operatorname{Spec}(F), Y) \rightarrow \mathbb{Z F}^{F}\left(\operatorname{Spec}(F), Y_{F}\right)
$$

Lemma 5.2. Let F / k be a field extension, choose $x, y \in F^{\times}$such that $x \neq y^{ \pm 1}$ and let u_{1}, u_{2} be coordinates on $\mathbb{G}_{m} \times \mathbb{G}_{m}$. Consider morphisms $f, g: \operatorname{Spec} F \rightarrow \mathbb{G}_{m} \times \mathbb{G}_{m}$ given by $u_{1} \mapsto x, u_{2} \mapsto y$ and $u_{1} \mapsto y, u_{2} \mapsto x$ respectively. Then for $p=\left(\mathrm{id}-e_{1}\right) \boxtimes\left(\mathrm{id}-e_{1}\right)$ we have

$$
p \circ(f \boxtimes \Sigma) \sim p \circ(g \boxtimes(-\varepsilon))
$$

in $\mathbb{Z} \mathbf{F}\left(\operatorname{Spec} F, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$.
Proof. The above adjunction isomorphism

$$
\operatorname{adj}: \mathbb{Z} \mathrm{F}\left(\operatorname{Spec} F, \mathbb{G}_{m} \times \mathbb{G}_{m}\right) \cong \mathbb{Z F}^{F}\left(\operatorname{Spec} F, \mathbb{G}_{m, F} \times \mathbb{G}_{m, F}\right)
$$

implies it is sufficient to verify the case $F=k$. So we have morphisms $f, g: \mathrm{pt} \rightarrow \mathbb{G}_{m} \times \mathbb{G}_{m}$, $\mathrm{pt} \mapsto(x, y)$ and $\mathrm{pt} \mapsto(y, x)$ respectively. Taking suspensions, we obtain framed correspondences

$$
\left(\{0\}, \mathbb{A}^{1}, t, c_{(x, y)}\right),\left(\{0\}, \mathbb{A}^{1}, t, c_{(y, x)}\right) \in \operatorname{Fr}_{1}\left(\mathrm{pt}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right),
$$

where $c_{(x, y)}$ and $c_{(y, x)}$ are morphisms on \mathbb{A}^{1} sending it to the points (x, y) and (y, x) respectively.
Consider $h(s, t)=\frac{1}{x-y}\left(t^{2}-(s(x+y)+(1-s)(x y+1)) t+x y\right) \in k\left[s, t, t^{-1}\right]=k\left[\mathbb{A}^{1} \times \mathbb{G}_{m}\right]$ and a framed correspondence

$$
\begin{equation*}
H_{s}:=\left(Z(h), \mathbb{A}^{1} \times \mathbb{G}_{m}, h(s, t),\left(t, x y t^{-1}\right) \circ p r_{\mathbb{G}_{m}}\right) \in \operatorname{Fr}_{1}\left(\mathbb{A}^{1}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right) . \tag{4}
\end{equation*}
$$

We have $h(0, t)=\frac{1}{x-y}(t-x y)(t-1)$ and $h(1, t)=\frac{1}{x-y}(t-x)(t-y)$. Using the additivity property for supports in $\mathbb{Z F}_{1}\left(\mathrm{pt}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$ (see Definition 2.4) and Lemma 4.13 we will check below that

$$
\begin{equation*}
\left(\{0\}, \mathbb{A}^{1}, t, c_{(x, y)}\right)+\left(\{0\}, \mathbb{A}^{1},-t, c_{(y, x)}\right) \sim\left(\{0\}, \mathbb{A}^{1}, \frac{1-x y}{x-y} t, c_{(1, x y)}\right)+\left(\{0\}, \mathbb{A}^{1}, \frac{x y-1}{x-y} t, c_{(x y, 1)}\right) \tag{5}
\end{equation*}
$$

in $\mathbb{Z} \mathrm{F}_{1}\left(\mathrm{pt}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$. The composition with the idempotent p annihilates all extra summands and proves the lemma.

In order to prove the relation (5), consider the framed correspondence (4) in $\mathbb{Z F}_{1}\left(\mathbb{A}^{1}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$. Observe that in $\mathbb{Z} \mathrm{F}_{1}\left(\mathrm{pt}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$

$$
\begin{aligned}
& H_{1}=\left(Z\left(h(t, 1), \mathbb{G}_{m}, h(1, t),\left(t, x y t^{-1}\right)\right)=\right. \\
= & \left(\{x\}, \mathbb{G}_{m}-\{y\}, \frac{1}{x-y}(t-x)(t-y),\left(t, x y t^{-1}\right)\right)+\left(\{y\}, \mathbb{G}_{m}-\{x\}, \frac{1}{x-y}(t-x)(t-y),\left(t, x y t^{-1}\right)\right) .
\end{aligned}
$$

By Lemma 4.13 one has in $\mathbb{Z} \mathrm{F}_{1}\left(\mathrm{pt}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$

$$
\begin{aligned}
& \left(\{x\}, \mathbb{G}_{m}-\{y\}, \frac{1}{x-y}(t-x)(t-y),\left(t, x y t^{-1}\right)\right) \sim\left(\{0\}, \mathbb{A}^{1}, \frac{x-y}{x-y} t, c_{(x, y)}\right)=\left(\{0\}, \mathbb{A}^{1}, t, c_{(x, y)}\right) \\
& \left(\{y\}, \mathbb{G}_{m}-\{x\}, \frac{1}{x-y}(t-x)(t-y),\left(t, x y t^{-1}\right)\right) \sim\left(\{0\}, \mathbb{A}^{1}, \frac{y-x}{x-y} t, c_{(x, y)}\right)=\left(\{0\}, \mathbb{A}^{1},-t, c_{(x, y)}\right)
\end{aligned}
$$

Thus $H_{1} \sim\left(\{0\}, \mathbb{A}^{1}, t, c_{(x, y)}\right)+\left(\{0\}, \mathbb{A}^{1},-t, c_{(y, x)}\right)$ in $\mathbb{Z} \mathrm{F}_{1}\left(\mathrm{pt}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$. Similar computations show that $H_{0} \sim\left(\{0\}, \mathbb{A}^{1}, \frac{1-x y}{x-y} t, c_{(1, x y)}\right)+\left(\{0\}, \mathbb{A}^{1}, \frac{x y-1}{x-y} t, c_{(x y, 1)}\right)$ in $\mathbb{Z} \mathrm{F}_{1}\left(\mathrm{pt}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$. The equality (5) is proved. Since the right hand side of the equality (5) is annihilated by the idempotent p, our lemma follows.

Proposition 5.3. Let τ : $\mathbb{G}_{m} \times \mathbb{G}_{m} \rightarrow \mathbb{G}_{m} \times \mathbb{G}_{m}$ be the permutation of coordinates morphism. Denote $p=\left(\mathrm{id}-e_{1}\right) \boxtimes\left(\mathrm{id}-e_{1}\right)$. Then $p \circ\left(\mathrm{id}_{\mathbb{G}_{m} \times \mathbb{G}_{m}} \boxtimes(-\varepsilon)\right) \sim p \circ(\tau \boxtimes \Sigma)$ in $\mathbb{Z} \mathbf{F}\left(\mathbb{G}_{m} \times \mathbb{G}_{m}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$.

Proof. Note that $\tau \boxtimes(-\varepsilon)=\left(\mathrm{id}_{\mathbb{G}_{m} \times \mathbb{G}_{m}} \boxtimes(-\varepsilon)\right) \circ \tau$. Hence

$$
\left.p \circ(\tau \boxtimes(-\varepsilon)) \circ \tau=p \circ\left(\operatorname{id}_{\mathbb{G}_{m} \times \mathbb{G}_{m}} \boxtimes(-\boldsymbol{\varepsilon})\right) \in \mathbb{Z} \mathrm{F}_{1}\left(\mathbb{G}_{m} \times \mathbb{G}_{m}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)\right)
$$

Similarly, $p \circ\left(\mathrm{id}_{\mathbb{G}_{m} \times \mathbb{G}_{m}} \boxtimes \Sigma\right) \circ \tau=p \circ(\tau \boxtimes \Sigma)$ in $\left.\mathbb{Z} \mathrm{F}_{1}\left(\mathbb{G}_{m} \times \mathbb{G}_{m}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)\right)$. It remains to check that

$$
\begin{equation*}
p \circ\left(\mathrm{id}_{\mathbb{G}_{m} \times \mathbb{G}_{m}} \boxtimes \Sigma\right)=p \circ(\tau \boxtimes(-\varepsilon)) \tag{6}
\end{equation*}
$$

in $H_{0}\left(\mathbb{Z} \mathrm{~F}\left(\Delta^{\bullet} \times \mathbb{G}_{m} \times \mathbb{G}_{m}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)\right)$.
Let u_{1} and u_{2} be coordinate functions on $\mathbb{G}_{m} \times \mathbb{G}_{m}$. Let $f: \operatorname{Spec} k\left(u_{1}, u_{2}\right) \rightarrow \operatorname{Spec} k\left[u_{1}, u_{2}\right]$ be the canonical embedding and $g: \operatorname{Spec} k\left(u_{1}, u_{2}\right) \rightarrow \operatorname{Spec} k\left[u_{1}, u_{2}\right]$ be given by $g^{*}\left(u_{1}\right)=u_{2}, g^{*}\left(u_{2}\right)=$ u_{1}. By Proposition 5.2 we know that $p \circ(f \boxtimes \Sigma) \sim p \circ(g \boxtimes(-\varepsilon))$ in $H_{0}\left(\mathbb{Z} F\left(\Delta_{k\left(u_{1}, u_{2}\right)}^{\bullet}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)\right)$. Proposition 5.1 yields the desired equality (6) in $H_{0}\left(\mathbb{Z F}\left(\Delta^{\bullet} \times \mathbb{G}_{m} \times \mathbb{G}_{m}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)\right)$.

Recall that $\Sigma=\left(\{0\}, \mathbb{A}^{1}, t\right) \in \mathbb{Z} \mathrm{F}_{1}(\mathrm{pt}, \mathrm{pt})$. For every $k>0$ we write Σ^{k} to denote $\Sigma \boxtimes \cdots{ }^{k} \boxtimes \Sigma \in$ $\mathbb{Z F}_{k}(\mathrm{pt}, \mathrm{pt})$.

Let $\tau: \mathbb{G}_{m} \times \mathbb{G}_{m} \rightarrow \mathbb{G}_{m} \times \mathbb{G}_{m}$ be the permutation of coordinates morphism. For each even integer $m \geqslant 0$ and each integer $n \geqslant 0$ consider two presheaf morphisms
$\left(-\boxtimes \Sigma^{2 n}\right): \mathbb{Z F}_{m}\left(-\times X \times \mathbb{G}_{m} \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right) \rightarrow \mathbb{Z F}_{m+2 n}\left(-\times X \times \mathbb{G}_{m} \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$,
$\left(-\boxtimes \Sigma^{2 n}\right) \circ s w: \mathbb{Z} \mathrm{F}_{m}\left(-\times X \times \mathbb{G}_{m} \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right) \rightarrow \mathbb{Z} \mathrm{F}_{m+2 n}\left(-\times X \times \mathbb{G}_{m} \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$, where $s w(a)=\left(\mathrm{id}_{Y} \times \tau\right) \circ a \circ\left(\mathrm{id}_{X} \times \tau\right)$.

Lemma 5.4. Let X, Y be k-smooth schemes. Given an even integer $m \geqslant 0$, there exists a large enough n and a homotopy

$$
H: \mathbb{Z} \mathrm{F}_{m}\left(-\times X \times \mathbb{G}_{m} \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right) \rightarrow \mathbb{Z} \mathrm{F}_{m+2 n}\left(-\times X \times \mathbb{G}_{m} \times \mathbb{G}_{m} \times \mathbb{A}^{1}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right)
$$

such that for any $a \in \mathbb{Z} \mathrm{~F}_{m}\left(W \times X \wedge\left(\mathbb{G}_{m}, 1\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right) \wedge\left(\mathbb{G}_{m}, 1\right)\right)$ one has

$$
a \boxtimes \Sigma^{2 n}=H_{0}(a) \text { and } H_{1}(a)=\Sigma^{2 n}\left(\left[\left(\operatorname{id}_{Y} \times \tau\right) \circ a \circ\left(\operatorname{id}_{X} \times \tau\right)\right]\right)
$$

And both $H_{0}(a)$ and $H_{1}(a)$ are in $\mathbb{Z} \mathrm{F}_{m+2 n}\left(W \times X \wedge\left(\mathbb{G}_{m}, 1\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right) \wedge\left(\mathbb{G}_{m}, 1\right)\right)$.
Proof. It follows from Proposition 5.3 that there exists a large enough integer n and a homotopy $\Psi \in \mathbb{Z F}_{n}\left(\mathbb{G}_{m} \times \mathbb{G}_{m} \times \mathbb{A}^{1}, \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$ such that $i_{0}^{*}(\Psi)=p \circ\left(-\varepsilon \boxtimes\left(\Sigma^{n-1} \operatorname{id}_{\mathbb{G}_{m} \times \mathbb{G}_{m}}\right)\right)$ and $i_{1}^{*}(\Psi)=$ $p \circ \Sigma^{n} \tau$, where $p=\left(\mathrm{id}-e_{1}\right) \boxtimes\left(\mathrm{id}-e_{1}\right)$.

Given any element $a \in \mathbb{Z F}_{m}\left(W \times X \times \mathbb{G}_{m} \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$, set

$$
\begin{aligned}
& H^{\prime}(a)=\left(i d_{Y} \times \Psi\right) \circ\left(a \times i d_{\mathbb{A}^{1}}\right) \circ\left(i d_{W \times X} \times \Psi \times i d_{\mathbb{A}^{1}}\right) \circ\left(i d_{\left.W \times X \times \mathbb{G}_{m} \times \mathbb{G}_{m} \times \Delta\right)}\right) \\
& \in \mathbb{Z} \mathrm{F}_{m+2 n}\left(W \times X \times \mathbb{G}_{m} \times \mathbb{G}_{m} \times \mathbb{A}^{1}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right),
\end{aligned}
$$

where $\Delta: \mathbb{A}^{1} \rightarrow \mathbb{A}^{1} \times \mathbb{A}^{1}$ is the diagonal morphism. Then for any element $a \in \mathbb{Z F}_{m}(W \times X \wedge$ $\left.\left(\mathbb{G}_{m}, 1\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right) \wedge\left(\mathbb{G}_{m}, 1\right)\right)$ one has

$$
H^{\prime}(a)_{0}=\left[i d_{Y} \times \Sigma^{n-1}(-\varepsilon)\right] \circ a \circ\left[i d_{X} \times \Sigma^{n-1}(-\varepsilon)\right] \text { and } H^{\prime}(a)_{1}=\left[\mathrm{id}_{Y} \times \Sigma^{n}(\tau)\right] \circ a \circ\left[\operatorname{id}_{X} \times \Sigma^{n}(\tau)\right]
$$

It is easy to see that there are matrices $A, B \in S L_{m+2 n}(k)$ such that for any element a in $\mathbb{Z} \mathrm{F}_{m}(W \times$ $\left.X \wedge\left(\mathbb{G}_{m}, 1\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right) \wedge\left(\mathbb{G}_{m}, 1\right)\right)$ one has

$$
\begin{aligned}
& \varphi_{A}\left(\left[i d_{Y} \times \Sigma^{n-1}(-\varepsilon)\right] \circ a \circ\left[i d_{X} \times \Sigma^{n-1}(-\varepsilon)\right]\right)=a \boxtimes \Sigma^{2 n}=\Sigma^{2 n}(a), \\
& \varphi_{B}\left(\left[\mathrm{id}_{Y} \times \Sigma^{n}(\tau)\right] \circ a \circ\left[\mathrm{id}_{X} \times \Sigma^{n}(\tau)\right]\right)=\left(\left[\mathrm{id}_{Y} \times \tau\right] \circ a \circ\left[\mathrm{id}_{X} \times \tau\right)\right) \boxtimes \Sigma^{2 n}=\Sigma^{2 n}\left(\left[\mathrm{id}_{Y} \times \tau\right] \circ a \circ\left[\mathrm{id}_{X} \times \tau\right]\right) .
\end{aligned}
$$

Choose matrices $A_{s}, B_{s} \in S L_{m+2 n}(k[s])$ such that $A_{0}=i d, A_{1}=A, B_{0}=i d, B_{1}=B$. Then for the matrix $C_{s}=B_{s} \circ A_{1-s} \in S L_{m+2 n}(k[s])$ one has $C_{0}=A, C_{1}=B$. Set $H=\varphi_{C_{s}} \circ H^{\prime}$. Then for the chosen element $a \in \mathbb{Z F}_{m}\left(W \times X \wedge\left(\mathbb{G}_{m}, 1\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right) \wedge\left(\mathbb{G}_{m}, 1\right)\right)$, one has

$$
H_{0}(a)=\varphi_{A}\left(H^{\prime}(a)_{0}\right)=\Sigma^{2 n}(a) \text { and } H_{1}(a)=\varphi_{B}\left(H^{\prime}(a)_{1}\right)=\Sigma^{2 n}\left(\left[\operatorname{id}_{Y} \times \tau\right] \circ a \circ\left[\mathrm{id}_{X} \times \tau\right)\right)
$$

as was to be proved.

6. THE INVERSE MORPHISM

The main aim of this section is to define for any integers $n, m \geqslant 0$ a subpresheaf $\mathbb{Z} \mathrm{F}_{m}^{(n)}(-\times$ $\left.\mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ of the presheaf $\mathbb{Z F}_{m}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ and define a morphism of abelian presheaves

$$
\rho_{n}: \mathbb{Z}_{m}^{(n)}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right) \rightarrow \mathbb{Z F}_{m}(-, Y)
$$

We also prove certain properties of morphisms ρ_{n} and of presheaves $\mathbb{Z} \mathrm{F}_{m}^{(n)}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ which are used in the proof of the Linear Cancelation Theorem (Theorem C).

We begin with some general remarks. Let X and Y be k-smooth schemes. Consider a framed correspondence

$$
a=\left(Z, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), g\right) \in \operatorname{Fr}_{m}\left(X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)
$$

Let $\left(U, p: U \rightarrow \mathbb{A}^{m} \times\left(X \times \mathbb{G}_{m}\right), s: Z \rightarrow U\right)$ be the étale neighborhood of Z in $\mathbb{A}^{m} \times\left(X \times \mathbb{G}_{m}\right)$ from the definition of the framed correspondence a. Let t be the invertible function on $X \times \mathbb{G}_{m}$ corresponding to the projection on \mathbb{G}_{m} and u be invertible function on $Y \times \mathbb{G}_{m}$ corresponding to the projection on \mathbb{G}_{m}. Let $f_{2}=g^{*}(u)$ and $f_{1}=p_{X \times \mathbb{G}_{m}}^{*}(t)$ be two invertible functions on U, where $p_{X \times \mathbb{G}_{m}}=p r_{X \times \mathbb{G}_{m}} \circ p: U \rightarrow X \times \mathbb{G}_{m}$. Set $g=\left(g_{1}, g_{2}\right)$, where $g_{1}=p r_{Y} \circ g$ and $g_{2}=p r_{\mathbb{G}_{m}} \circ g$.

Since Z is finite over $X \times \mathbb{G}_{m}$, the $\mathscr{O}_{X \times \mathbb{G}_{m} \times Y \times \mathbb{G}_{m}}$-sheaf $P_{a}:=\mathscr{O}_{U} /\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right)$ is finite over $X \times \mathbb{G}_{m}$. Since the sheaf P_{a} is finite over $X \times \mathbb{G}_{m}$, it is flat over $X \times \mathbb{G}_{m}$ by [OP, Lemma 7.3].

Let Z_{n}^{+}be the closed subset of Z defined by the equation $\left.\left(f_{1}^{n+1}-1\right)\right|_{Z}=0$. Let Z_{n}^{-}be the closed subset of Z defined by the equation $\left.\left(f_{1}^{n+1}-f_{2}\right)\right|_{Z}=0$. Note that Z_{n}^{+}is finite over X if and only if $\mathscr{O}_{U} /\left(f_{1}^{n+1}-1, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right)$ is finite over X. By [S, 4.1] the latter \mathscr{O}_{X}-module is always finite and even flat. Note that Z_{n}^{-}is finite over X if and only if $\mathscr{O}_{U} /\left(f_{1}^{n+1}-f_{2}, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right)$ is finite over X. We have mentioned above that the $\mathscr{O}_{X \times \mathbb{G}_{m}}$-module $P_{a}=\mathscr{O}_{U} /\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right)$ is finite and flat over $\mathscr{O}_{X \times \mathbb{G}_{m}}$. Thus by [S, 4.1.b] there exists an integer N such that for any $n \geqslant N$ the \mathscr{O}_{X}-module $\mathscr{O}_{U} /\left(f_{1}^{n+1}-f_{2}, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right)$ is finite and even flat over X. In particular, Z_{n}^{-}is finite over X for any $n \geqslant N$.

The following definition is inspired by [S , Section 4].
Definition 6.1. Let X and Y be k-smooth schemes. Consider a framed correspondence $a=$ $\left(Z, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), g\right) \in \operatorname{Fr}_{m}\left(X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$. Set

$$
\rho_{n, f r}^{+}(a):=\left(Z_{n}^{+}, U,\left(f_{1}^{n+1}-1, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), g_{1}\right)
$$

and

$$
\rho_{n, f r}^{-}(a):=\left(Z_{n}^{-}, U,\left(f_{1}^{n+1}-f_{2}, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), g_{1}\right)
$$

As we have mentioned above, Z_{n}^{+}is finite over X for all $n \geqslant 0$, hence $\rho_{n, f r}^{+}(a) \in \mathbb{Z F}_{m+1}(X, Y)$. We say that $\rho_{n, f r}^{-}(a)$ is defined if Z_{n}^{-}is finite over X, which is equivalent to saying that the \mathscr{O}_{X}-module $P_{a} /\left(f_{1}^{n+1}-f_{2}\right) P_{a}$ is finite and flat over X. If $\rho_{n, f r}^{-}(a)$ is defined, then we set

$$
\rho_{n, f r}(a)=\rho_{n, f r}^{+}(a)-\rho_{n, f r}^{-}(a) \in \mathbb{Z} \mathrm{F}_{m+1}(X, Y)
$$

and say that $\rho_{n, f r}(a)$ is defined.
Given integers $m, n \geqslant 0$, denote by $\operatorname{Fr}_{m}^{(n)}\left(X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ the subset of those framed correspondences $a \in \operatorname{Fr}_{m}\left(X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ for which the \mathscr{O}_{X}-module $P_{a} /\left(f_{1}^{n+1}-f_{2}\right) P_{a}$ is finite over X (that is $\rho_{n, f r}(a)$ is defined). It follows from [S, 4.4] that the assignment $X^{\prime} \mapsto \operatorname{Fr}_{m}^{(n)}\left(X^{\prime} \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ is a subpresheaf of $\operatorname{Fr}_{m}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$.
Definition 6.2. Define a presheaf of abelian groups $\mathbb{Z} \mathrm{F}_{m}^{(n)}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ as follows. Its sections on X is the abelian group $\mathbb{Z}\left[\mathrm{Fr}_{m}^{(n)}\left(X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)\right]$ modulo a subgroup generated by all elements of the form

$$
\left(Z_{1} \sqcup Z_{2}, U_{1} \sqcup U_{2}, \varphi_{1} \sqcup \varphi_{2}, g_{1} \sqcup g_{2}\right)-\left(Z_{1}, U_{1}, \varphi_{1}, g_{1}\right)-\left(Z_{2}, U_{2}, \varphi_{2}, g_{2}\right) .
$$

It is straightforward to check that $\mathbb{Z F}_{m}^{(n)}\left(X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ is a free abelian group with a free basis consisting of the elements of the form $a=(Z, U, \varphi, g)$, where Z is connected and the \mathscr{O}_{X}-module $P_{a} /\left(f_{1}^{n+1}-f_{2}\right) P_{a}$ is finite and flat over X. Moreover, the group $\mathbb{Z} \mathbf{F}_{m}^{(n)}\left(X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ is a subgroup of the group $\mathbb{Z} \mathrm{F}_{m}\left(X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$, and $\mathbb{Z}_{m}^{(n)}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ is a subpresheaf of the presheaf $\mathbb{Z F}_{m}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$.

It follows from [S, 4.4] that for any morphism $f: X^{\prime} \rightarrow X$ of smooth varieties the following diagram is commutative

We see that $\rho_{n, f r}: \operatorname{Fr}_{m}^{(n)}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right) \rightarrow \mathbb{Z F}_{m+1}(-, Y)$ is a morphism of pointed presheaves. We can extend it to get a morphism of presheaves of abelian groups $\mathbb{Z}\left[\operatorname{Fr}_{m}^{(n)}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)\right] \rightarrow$ $\mathbb{Z} \mathrm{F}_{m+1}(-, Y)$. This morphism annihilates the elements of the form

$$
\left(Z_{1} \sqcup Z_{2}, U_{1} \sqcup U_{2}, \varphi_{1} \sqcup \varphi_{2}, g_{1} \sqcup g_{2}\right)-\left(Z_{1}, U_{1}, \varphi_{1}, g_{1}\right)-\left(Z_{2}, U_{2}, \varphi_{2}, g_{2}\right) .
$$

Definition 6.3. The above arguments show that the presheaf morphism $\rho_{n, f r}$ induces a unique presheaf of abelian groups morphism

$$
\rho_{n}: \mathbb{Z} \mathrm{F}_{m}^{(n)}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right) \rightarrow \mathbb{Z F}_{m+1}(-, Y)
$$

such that for any $a \in F r_{m}^{(n)}\left(X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ one has $\rho_{n}(a)=\rho_{n, f r}(a)$. We also call ρ_{n} the inverse morphism.

Lemma 6.4. The following relations are true:

$$
\begin{aligned}
\operatorname{Fr}_{m}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right) & =\operatorname{colim}_{n} \operatorname{Fr}_{m}^{(n)}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right) \\
\mathbb{Z} \mathrm{F}_{m}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right) & =\operatorname{colim}_{n} \mathbb{Z}_{m}^{(n)}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)
\end{aligned}
$$

This lemma follows from the following
Proposition 6.5. ([S, 4.1]) For any framed correspondence $a \in \operatorname{Fr}_{m}\left(X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ one has:
(a) for any $n \geqslant 0$, the sheaf $P_{a} /\left(f_{1}^{n+1}-1\right) P_{a}$ is finite and flat over X;
(b) there exists an integer N such that, for any $n \geqslant N$, the sheaf $P_{a} /\left(f_{1}^{n+1}-f_{2}\right) P_{a}$ is finite and flat over X.

We shall need the following obvious property of ρ_{n}.
Lemma 6.6. For any integers $m, n, r \geqslant 0$, the following diagram commutes

Lemma 6.7. Let X and Y be k-smooth schemes. Then for any integers m and n and any $a \in$ $\mathbb{Z F}_{m}(X, Y)$, one has $a \boxtimes\left(\mathrm{id}-e_{1}\right) \in \mathbb{Z F}_{m}^{(n)}\left(X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$. In particular, for any integers m and n there is a well defined composite morphism

$$
\rho_{n} \circ\left(-\boxtimes\left(\mathrm{id}-e_{1}\right)\right): \mathbb{Z} \mathrm{F}_{m}(-\times X, Y) \rightarrow \mathbb{Z F}_{m}^{(n)}\left(-\times X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right) \rightarrow \mathbb{Z} \mathrm{F}_{m+1}(-\times X, Y)
$$

Moreover, for an element $a \in \mathbb{Z F}_{m}(W \times X, Y)$ of the form $\left(Z, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), g\right)$ one has

$$
\begin{aligned}
\rho_{n}\left(a \boxtimes\left(\mathrm{id}-e_{1}\right)\right) & =-\left(Z \times Z\left(t^{n+1}-t\right), U \times \mathbb{G}_{m},\left(t^{n+1}-t, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), g\right)+ \\
& +\left(Z \times Z\left(t^{n+1}-1\right), U \times \mathbb{G}_{m},\left(t^{n+1}-1, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), g\right) \in \mathbb{Z}_{m+1}(W \times X, Y)
\end{aligned}
$$

Proof. Let $a \in \mathbb{Z F}_{m}(W \times X, Y)$ be the image of $\left(Z, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), g\right) \in \operatorname{Fr}_{m}(W \times X, Y)$. Then

$$
\begin{aligned}
a \boxtimes\left(\mathrm{id}-e_{1}\right)=(& \left(Z \times \mathbb{G}_{m}, U \times \mathbb{G}_{m},\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right),(g, t)\right)- \\
& -\left(Z \times \mathbb{G}_{m}, U \times \mathbb{G}_{m},\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right),\left(g, e_{1}\right)\right) \in \mathbb{Z F}_{m}\left(W \times X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right),
\end{aligned}
$$

where t is the coordinate function on \mathbb{G}_{m}. Clearly, $Z_{n}^{+}=Z \times Z\left(t^{n+1}-1\right) \subset Z \times \mathbb{G}_{m}$ and $Z_{n}^{-}=$ $Z \times Z\left(t^{n+1}-t\right) \subset Z \times \mathbb{G}_{m}$. Both sets are finite over X. Hence $a \boxtimes\left(\mathrm{id}-e_{1}\right) \in \mathbb{Z}_{m}^{(n)}\left(X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ in this case. Any element of $\mathbb{Z} \mathrm{F}_{m}(W \times X, Y)$ is a linear combination of elements of the form $\left(Z, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), g\right)$. This proves the first assertion of the lemma.

Computing $\rho_{n}\left(a \boxtimes\left(\mathrm{id}-e_{1}\right)\right)$ for $a=\left(Z, U,\left(\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), g\right)$ we obtain

$$
\begin{aligned}
\rho_{n}\left(a \boxtimes\left(\mathrm{id}-e_{1}\right)\right) & =-\left(Z \times Z\left(t^{n+1}-t\right), U \times \mathbb{G}_{m},\left(t^{n+1}-t, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), g\right)+ \\
+ & \left(Z \times Z\left(t^{n+1}-1\right), U \times \mathbb{G}_{m},\left(t^{n+1}-1, \varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right), g\right) \in \mathbb{Z F}_{m+1}(W \times X, Y),
\end{aligned}
$$

as was to be shown.

Lemma 6.8. Let X and Y be k-smooth schemes. Then for every even integer m and any n one has

$$
\rho_{n} \circ\left(-\boxtimes\left(\mathrm{id}-e_{1}\right)\right) \sim(-\boxtimes \varepsilon): \mathbb{Z} \mathrm{F}_{m}(-\times X, Y) \rightrightarrows \mathbb{Z} \mathrm{F}_{m+1}(-\times X, Y)
$$

where $\varepsilon=\left(\{0\}, \mathbb{A}^{1},-t, c^{\prime}\right) \in \mathbb{Z} \mathrm{F}_{1}(\mathrm{pt}, \mathrm{pt})$.
Proof. Set $\eta_{n}=\rho_{n} \circ\left(-\boxtimes\left(\mathrm{id}-e_{1}\right)\right)$. Take the matrix

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
1 & 0 & 0 & \ldots & 0 & 0
\end{array}\right) \in S L_{m+1}(k)
$$

and let $A_{s} \in S L_{m+1}(k[s])$ be such that $A_{0}=i d, A_{1}=A$. Let $H_{A_{s}}$ be the \mathbb{A}^{1}-homotopy from Definition 4.6 between the identity and φ_{A}. By Definition 4.6 one has

$$
\eta_{n}=\rho_{n} \circ\left(-\boxtimes\left(\mathrm{id}-e_{1}\right)\right) \frac{H_{A_{s}} \circ \eta_{n}}{\varphi_{A} \circ \rho_{n} \circ\left(-\boxtimes\left(\mathrm{id}-e_{1}\right)\right)=\varphi_{A} \circ \eta_{n}}
$$

Set $H^{\prime}=H_{A_{s}} \circ \eta_{n}$. By Lemma 4.4 it remains to find an $H^{\prime \prime}$ such that $\varphi_{A} \circ \eta_{n} \underline{H^{\prime \prime}}(-\boxtimes \varepsilon)$ and set $H=H^{\prime}+H^{\prime \prime}-H_{\varphi_{A} \circ \eta_{n}}$. In this case by Lemma 4.4 one gets $\rho_{n} \circ\left(-\boxtimes\left(\mathrm{id}-e_{1}\right)\right)=\eta_{n} \underline{H}(-\boxtimes \varepsilon)$.

To construct $H^{\prime \prime}$, note that by the last statement of Lemma 6.7 one has

$$
\varphi_{A} \circ \eta_{n}=-\boxtimes\left[\left(Z\left(t^{n+1}-1\right), \mathbb{G}_{m}, t^{n+1}-1, c\right)-\left(Z\left(t^{n+1}-t\right), \mathbb{G}_{m}, t^{n+1}-t, c\right)\right]
$$

and $(-\boxtimes \varepsilon)=-\boxtimes\left(\{0\}, \mathbb{A}^{1},-t, c^{\prime}\right)$, where $c: \mathbb{G}_{m} \rightarrow \mathrm{pt}$ is the canonical projection. By Lemma 4.9 one can take $H^{\prime \prime}$ to be an \mathbb{A}^{1}-homotopy of the form $H^{\prime \prime}=\left(-\boxtimes h^{\prime \prime}\right)$, where $h^{\prime \prime} \in \mathbb{Z} \mathrm{F}_{1}\left(\mathbb{A}^{1}, p t\right)$ is such that

$$
\left(Z\left(t^{n+1}-1\right), \mathbb{G}_{m}, t^{n+1}-1, c\right)-\left(Z\left(t^{n+1}-t\right), \mathbb{G}_{m}, t^{n+1}-t, c\right)=h_{0}^{\prime \prime}
$$

and

$$
h_{1}^{\prime \prime}=\left(\{0\}, \mathbb{A}^{1},-t, c^{\prime}\right) \in \mathbb{Z} \mathrm{F}_{1}(\mathrm{pt}, \mathrm{pt}),
$$

where $c^{\prime}: \mathbb{A}^{1} \rightarrow \mathrm{pt}$ is the canonical projection. Now let us find the desired element $h^{\prime \prime}$. Since $t^{n+1}-1$ does not vanish at $t=0$, we can extend the neighborhood from \mathbb{G}_{m} to \mathbb{A}^{1} to get an equality,

$$
\left.\left(Z\left(t^{n+1}-1\right), \mathbb{G}_{m}, t^{n+1}-1, c\right)=\left(Z\left(t^{n+1}-1\right), \mathbb{A}^{1}, t^{n+1}-1\right), c^{\prime}\right) \in \mathbb{Z F}_{1}(p t, p t)
$$

By Lemma 4.14 there is $h^{\prime \prime \prime} \in \mathbb{Z} \mathrm{F}_{1}\left(\mathbb{A}^{1}, p t\right)$ such that

$$
\left(Z\left(t^{n+1}-1\right), \mathbb{A}^{1}, t^{n+1}-1, c^{\prime}\right)=h_{0}^{\prime \prime \prime} \text { and } h_{1}^{\prime \prime \prime}=\left(Z\left(t^{n+1}-t\right), \mathbb{A}^{1}, t^{n+1}-t, c^{\prime}\right) \in \mathbb{Z} \mathrm{F}_{1}(p t, p t)
$$

because polynomials $t^{n+1}-t$ and $t^{n+1}-1$ have the same degree and the same leading coefficient. Using the additivity property for supports in $\mathbb{Z} \mathrm{F}_{1}(p t, p t)$ and the second statement of Lemma 4.13, we can find an element $h^{i v} \in \mathbb{Z} \mathrm{~F}_{1}\left(\mathbb{A}^{1}, p t\right)$ such that
$\left(Z\left(t^{n+1}-t\right), \mathbb{G}_{m}, t^{n+1}-t, c\right)=h_{0}^{i v}$ and $h_{1}^{i v}=\left(Z\left(t^{n+1}-t\right), \mathbb{A}^{1}, t^{n+1}-t, c^{\prime}\right)-\left(\{0\}, \mathbb{A}^{1},-t, c^{\prime}\right) \in \mathbb{Z} \mathrm{F}_{1}(p t, p t)$
Set $h^{\prime \prime}:=h^{\prime \prime \prime}-h^{i v} \in \mathbb{Z} \mathrm{~F}_{1}\left(\mathbb{A}^{1}, p t\right)$. Then $h^{\prime \prime}$ is the desired element.
Set $H^{\prime \prime}=\left(-\boxtimes h^{\prime \prime}\right)$ and $H=H^{\prime}+H^{\prime \prime}-H_{\varphi_{A} \circ \eta_{n}}$. Then H is the desired \mathbb{A}^{1}-homotopy. That is

$$
\rho_{n} \circ\left(-\boxtimes\left(\mathrm{id}-e_{1}\right)\right) \underline{H}(-\boxtimes \varepsilon)
$$

and our statement follows.

7. Theorem C

The main purpose of this section is to prove Theorem C. We sometimes identify simplicial abelian groups with chain complexes concentrated in non-negative degrees by using the Dold-Kan correspondence.
Lemma 7.1. Let X and Y be k-smooth schemes and $m, r, N \geqslant 0$ be integers. Then for any Moore cycle $a \in \mathbb{Z F}_{m}\left(\Delta^{r} \times X, Y\right)$ of the simplicial abelian group $\mathbb{Z F}_{m}\left(\Delta^{\bullet} \times X, Y\right)$, one has $a \boxtimes\left(\right.$ id $\left.-e_{1}\right) \in$ $\mathbb{Z F}_{m}^{(N)}\left(\Delta^{r} \times X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$. Moreover, $\rho_{N}\left(a \boxtimes\left(i d-e_{1}\right)\right)$ is a Moore cycle. The homology classes of Moore cycles

$$
a \boxtimes \varepsilon \text { and } \rho_{N}\left(a \boxtimes\left(i d-e_{1}\right)\right)
$$

coincide in $\mathbb{Z F}_{m+1}\left(\Delta^{\bullet} \times X, Y\right)$.
Proof. The element $a \boxtimes\left(i d-e_{1}\right)$ is in $\mathbb{Z F}_{m}^{(N)}\left(\Delta^{r} \times X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ by Lemma 6.7. Since $\left.\mathbb{Z F}_{m}^{(N)}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)\right)$ is a presheaf, then $\partial_{i}\left(a \boxtimes\left(i d-e_{1}\right)\right) \in \mathbb{Z}_{m}^{(N)}\left(\Delta^{r} \times X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$. Since the morphism ρ_{N} is a morphism of presheaves, then

$$
\partial_{i}\left(\rho_{N}\left(a \boxtimes\left(i d-e_{1}\right)\right)\right)=\rho_{N}\left(\partial_{i}\left(a \boxtimes\left(i d-e_{1}\right)\right)=\rho_{N}\left(\partial_{i}(a) \boxtimes\left(i d-e_{1}\right)\right)=0 .\right.
$$

This proves the first assertion of the lemma.
By Lemma 6.8 the morphism

$$
a^{\prime} \mapsto \rho_{N}\left(a^{\prime} \boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{1}\right)\right): \mathbb{Z} \mathrm{F}_{m}(-\times X, Y) \rightarrow \mathbb{Z}_{m}^{(N)}(-\times X, Y) \rightarrow \mathbb{Z F}_{m+1}(-\times X, Y)
$$

is \mathbb{A}^{1}-homotopic to the morphism $a^{\prime} \mapsto a^{\prime} \boxtimes \varepsilon$. Thus the corresponding morphisms of the simplicial abelian groups $\mathbb{Z F}_{m}\left(\Delta^{\bullet} \times X, Y\right) \rightrightarrows \mathbb{Z F}_{m+1}\left(\Delta^{\bullet} \times X, Y\right)$ induce the same morphisms on homology. Hence the homology class of the Moore cycle $\rho_{N}\left(a \boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{1}\right)\right)$ coincides with the homology class of the Moore cycle $a \boxtimes \varepsilon$.
Lemma 7.2. One has $\varepsilon \boxtimes \varepsilon \sim \Sigma^{2}$ in $\mathbb{Z F}_{2}$ (pt, pt). Moreover, for any integer $r \geqslant 0$ one has $\varepsilon \boxtimes \varepsilon \boxtimes \Sigma^{r} \sim$ Σ^{2+r} in $\mathbb{Z F}_{2+r}(\mathrm{pt}, \mathrm{pt})$.
Proof. Let $c: \mathbb{A}^{1} \times \mathbb{A}^{2} \rightarrow \mathrm{pt}$ be the structure morphism. Take the matrix

$$
A=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \in S L_{2}(k)
$$

There is an $A_{s} \in S L_{2}(k[s])$ such that $A_{0}=i d, A_{1}=A$. Take

$$
h_{s}=\left(\mathbb{A}^{1} \times 0, \mathbb{A}^{1} \times \mathbb{A}^{2}, A_{s} \circ\left(t_{1}, t_{2}\right), c\right) \in \mathbb{Z} \mathrm{F}_{2}\left(\mathbb{A}^{1}, \mathrm{pt}\right)
$$

Clearly, $h_{0}=\Sigma^{2}$ and $h_{1}=\varepsilon \boxtimes \varepsilon$. The first assertion is proved. To prove the second one take the element $h_{s} \boxtimes \Sigma^{r} \in \mathbb{Z} \mathrm{~F}_{2+r}\left(\mathbb{A}^{1}, \mathrm{pt}\right)$. Then $h_{0} \boxtimes \Sigma^{r}=\Sigma^{2+r}$ and $h_{1} \boxtimes \Sigma^{r}=\varepsilon \boxtimes \varepsilon \boxtimes \Sigma^{r}$.
Corollary 7.3. Let X and Y be k-smooth schemes and $m \geqslant 0$ be an integer. Then,

$$
\left(-\boxtimes \varepsilon^{2}\right) \sim\left(-\boxtimes \Sigma^{2}\right): \mathbb{Z} \mathrm{F}_{m}(-\times X, Y) \rightrightarrows \mathbb{Z} \mathrm{F}_{m+2}(-\times X, Y)
$$

and

$$
\left(-\boxtimes \varepsilon^{2} \boxtimes \Sigma^{r}\right) \sim\left(-\boxtimes \Sigma^{2+r}\right): \mathbb{Z} \mathrm{F}_{m}(-\times X, Y) \rightrightarrows \mathbb{Z} \mathrm{F}_{m+2+r}(-\times X, Y)
$$

Therefore the first pair of maps produces the same maps on homology

$$
H_{*}\left(\mathbb{Z} \mathrm{~F}_{m}\left(\Delta^{\bullet} \times X, Y\right)\right) \rightrightarrows H_{*}\left(\mathbb{Z} \mathrm{~F}_{m+2}\left(\Delta^{\bullet} \times X, Y\right)\right)
$$

Similarly, the second pair of maps gives the same maps on homology

$$
H_{*}\left(\mathbb{Z F}_{m}\left(\Delta^{\bullet} \times X, Y\right)\right) \rightrightarrows H_{*}\left(\mathbb{Z} \mathrm{~F}_{m+2+r}\left(\Delta^{\bullet} \times X, Y\right)\right)
$$

Lemma 7.4. Let X and Y be k-smooth schemes and $m \geqslant 0$ be an integer. Then for any integer $r \geqslant 0$ one has

$$
\begin{aligned}
\operatorname{Ker}\left[-\boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{1}\right): H_{r}\left(\mathbb{Z}_{m}\left(\Delta^{\bullet} \times X, Y\right)\right) \rightarrow H_{r}\left(\mathbb{Z}_{m}\left(\left(\Delta^{\bullet} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)\right)\right] \subseteq \\
\subseteq \operatorname{Ker}\left[\left(-\boxtimes \Sigma^{2}\right): H_{r}\left(\mathbb{Z} \mathrm{~F}_{m}\left(\Delta^{\bullet} \times X, Y\right)\right) \rightarrow H_{r}\left(\mathbb{Z F}_{m+2}\left(\Delta^{\bullet} \times X, Y\right)\right)\right]
\end{aligned}
$$

Proof. Consider the associated Moore complexes. Assume that

$$
a \in \mathbb{Z F}_{m}\left(\Delta^{r} \times X, Y\right)
$$

is a Moore cycle for which $a \boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{1}\right)$ is a boundary, i.e., there exists $b \in \mathbb{Z} \mathrm{~F}_{m}\left(\left(\Delta^{r+1} \times X\right) \times\right.$ $\left.\mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$) such that $\partial_{i}(b)=0$ for $i=0,1, \ldots, r$ and $\partial_{r+1}(b)=a \boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{1}\right)$. By Lemma 6.4 there exists an N such that $b \in \mathbb{Z}_{m}^{(N)}\left(\Delta^{r+1} \times X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$. Since $\mathbb{Z F}_{m}^{(N)}\left(-\times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ is a presheaf, then $\partial_{i}(b) \in \mathbb{Z} \mathrm{F}_{m}^{(N)}\left(\Delta^{r} \times X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$. Since ρ_{N} is a presheaf morphism $\mathbb{Z} \mathrm{F}_{m}^{(N)}(-\times$ $\left.X \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right) \rightarrow \mathbb{Z F}_{m+1}(-\times X, Y)$, one has $\partial_{i}\left(\rho_{N}(b)\right)=\rho_{N}\left(\partial_{i}(b)\right)$. Thus,

$$
\begin{aligned}
& \partial_{i}\left(\rho_{N}(b)\right)=\rho_{N}\left(\partial_{i}(b)\right)=0 \text { for } 0 \leqslant i \leqslant r, \\
& \partial_{r+1}\left(\rho_{N}(b)\right)=\rho_{N}\left(\partial_{n+1}(b)\right)=\rho_{N}\left(a \boxtimes\left(\operatorname{id}_{\mathbb{G}_{m}}-e_{1}\right)\right) .
\end{aligned}
$$

We see that the homology class of the Moore cycle $\rho_{N}\left(a \boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{1}\right)\right)$ vanishes. By Lemma 7.1 the homology class of the Moore cycle $a \boxtimes \varepsilon$ vanishes in $H_{r}\left(\mathbb{Z F}_{m+1}\left(\Delta^{\bullet} \times X, Y\right)\right)$. Thus the homology class of the Moore cycle $a \boxtimes \varepsilon \boxtimes \varepsilon$ vanishes in $H_{r}\left(\mathbb{Z F}_{m+2}\left(\Delta^{\bullet} \times X, Y\right)\right)$. By Corollary 7.3 the homology class of $a \boxtimes \Sigma^{2}$ vanishes in $H_{r}\left(\mathbb{Z} \mathrm{~F}_{m+2}\left(\Delta^{\bullet} \times X, Y\right)\right)$, too.

Lemma 7.5. Let X and Y be k-smooth schemes and $m, r \geqslant 0$ be integers. Let n be the integer from Lemma 5.4. Then for any Moore cycle $a \in \mathbb{Z} \mathrm{~F}_{m}\left(\left(\Delta^{r} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)$ there exists an integer N such that the element $\rho_{N}(a)$ is defined and the homology class of the Moore cycle

$$
\Sigma^{2 n}\left(\rho_{N}(a)\right) \boxtimes\left(i d-e_{1}\right) \in \mathbb{Z} \mathrm{F}_{m+2 n+1}\left(\left(\Delta^{r} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)
$$

coincides with the homology class of the Moore cycle $\Sigma^{2 n}(a \boxtimes \varepsilon)$.
Proof. Set $a^{\prime}=a \boxtimes\left(i d-e_{1}\right)$. Let H be the \mathbb{A}^{1}-homotopy from Lemma 5.4. Consider the element

$$
H\left(a^{\prime}\right) \in \mathbb{Z} \mathbf{F}_{m+2 n}\left(\left(\Delta^{r} \times X\right) \times \mathbb{G}_{m} \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right)
$$

By Lemma 6.4 there is an integer N such that

$$
a \in \mathbb{Z} \mathbb{F}_{m}^{(N)}\left(\left(\Delta^{r} \times X\right) \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)
$$

and

$$
H\left(a^{\prime}\right) \in \mathbb{Z}_{m+2 n}^{(N)}\left(\left(\Delta^{r} \times X\right) \times \mathbb{G}_{m} \times \mathbb{G}_{m} \times \mathbb{A}^{1}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right)
$$

Since a^{\prime} is a Moore cycle and H is a presheaf morphism, the element $H\left(a^{\prime}\right)$ is a Moore cycle in $\mathbb{Z F}_{m+2 n}\left(\left(\Delta^{\bullet} \times X\right) \times \mathbb{G}_{m} \times \mathbb{G}_{m} \times \mathbb{A}^{1}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$. Since

$$
\mathbb{Z} \mathbf{F}_{m+2 n}^{(N)}\left((-\times X) \times \mathbb{G}_{m} \times \mathbb{G}_{m} \times \mathbb{A}^{1}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right)
$$

is a subpresheaf of $\mathbb{Z F}_{m}\left((-\times X) \times \mathbb{G}_{m} \times \mathbb{G}_{m} \times \mathbb{A}^{1}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$, it follows that $H\left(a^{\prime}\right)$ is a Moore cycle in $\mathbb{Z F}_{m+2 n}^{(N)}\left(\left(\Delta^{\bullet} \times X\right) \times \mathbb{G}_{m} \times \mathbb{G}_{m} \times \mathbb{A}^{1}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right)$.

Applying the presheaf morphism
$\rho_{N}: \mathbb{Z F}_{m+2 n}^{(N)}\left((-\times X) \times \mathbb{G}_{m} \times \mathbb{G}_{m} \times \mathbb{A}^{1}, Y \times \mathbb{G}_{m} \times \mathbb{G}_{m}\right) \rightarrow \mathbb{Z F}_{m+2 n+1}\left((-\times X) \times \mathbb{G}_{m} \times \mathbb{A}^{1}, Y \times \mathbb{G}_{m}\right)$ to the Moore cycle $H\left(a^{\prime}\right)$, we get a Moore cycle

$$
\rho_{N}\left(H\left(a^{\prime}\right)\right) \in \mathbb{Z F}_{m+2 n+1}\left(\left(\Delta^{r} \times X\right) \times \mathbb{G}_{m} \times \mathbb{A}^{1}, Y \times \mathbb{G}_{m}\right)
$$

Hence $i_{0}^{*}\left(\rho_{N}\left(H\left(a^{\prime}\right)\right)\right) \in \mathbb{Z}_{\mathrm{F}_{m+2 n+1}}\left(\left(\Delta^{r} \times X\right) \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ and $i_{1}^{*}\left(\rho_{N}\left(H\left(a^{\prime}\right)\right)\right) \in \mathbb{Z}_{m+2 n+1}\left(\left(\Delta^{r} \times\right.\right.$ $\left.X) \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ are Moore cycles, too. Furthermore,

$$
i_{0}^{*}\left(\rho_{N}\left(H\left(a^{\prime}\right)\right)\right)=\rho_{N}\left(i_{0}^{*}\left(H\left(a^{\prime}\right)\right)\right)=\rho_{N}\left(\Sigma^{2 n}\left(a^{\prime}\right)\right)=\Sigma^{2 n}\left(\rho_{N}\left(a^{\prime}\right)\right)
$$

and

$$
i_{1}^{*}\left(\rho_{N}\left(H\left(a^{\prime}\right)\right)\right)=\rho_{N}\left(i_{1}^{*}\left(H\left(a^{\prime}\right)\right)\right)=\rho_{N}\left(\Sigma^{2 n}\left[\left(\operatorname{id}_{Y} \times \tau\right) \circ a^{\prime} \circ\left(\operatorname{id}_{X} \times \tau\right)\right]\right) .
$$

The two morphisms

$$
\left.\left.i_{0}^{*}, i_{1}^{*}: \mathbb{Z}_{n+2 m+1}\left(\left(\Delta^{\bullet} \times X\right) \times \mathbb{G}_{m} \times \mathbb{A}^{1}, Y \times \mathbb{G}_{m}\right)\right) \rightrightarrows \mathbb{Z}_{n+2 m+1}\left(\left(\Delta^{\bullet} \times X\right) \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)\right)
$$

of simplicial abelian groups induce the same morphisms on homology. The element $\rho_{N}\left(\left(H\left(a^{\prime}\right)\right)\right.$ is a Moore cycle. Thus the homological classes of the Moore cycles $i_{0}^{*}\left(\rho_{N}\left(H\left(a^{\prime}\right)\right)\right)$ and $i_{1}^{*}\left(\rho_{N}\left(H\left(a^{\prime}\right)\right)\right)$ coincide in $\left.H_{r}\left(\mathbb{Z F}_{n+2 m+1}\left(\left(\Delta^{\bullet} \times X\right) \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)\right)\right)$.

By Lemma 6.6 one has $\rho_{N}\left(\Sigma^{2 n}\left(a^{\prime}\right)\right)=\Sigma^{2 n}\left(\rho_{N}\left(a^{\prime}\right)\right)$. Thus the first homological class is the class of $\Sigma^{2 n}\left(\rho_{N}\left(a^{\prime}\right)\right)=\Sigma^{2 n}\left(\rho_{N}\left(a \boxtimes\left(i d-e_{1}\right)\right)\right)$. By Lemma 7.1 the latter homological class coincides with the class of the element $\Sigma^{2 n}(a \boxtimes \varepsilon)$.

The element $i_{1}^{*}\left(\rho_{N}\left(H\left(a^{\prime}\right)\right)\right)$ coincides with $\rho_{N}\left(\Sigma^{2 n}\left[\left(\operatorname{id}_{Y} \times \tau\right) \circ\left(a \boxtimes\left(i d-e_{1}\right)\right) \circ\left(\mathrm{id}_{X} \times \tau\right)\right]\right)$. By Lemma 6.6 the latter element coincides with

$$
\Sigma^{2 n}\left(\rho_{N}\left[\left(\operatorname{id}_{Y} \times \tau\right) \circ\left(a \boxtimes\left(i d-e_{1}\right)\right) \circ\left(\operatorname{id}_{X} \times \tau\right)\right]\right)=\Sigma^{2 n}\left[\rho_{N}(a) \boxtimes\left(i d-e_{1}\right)\right] .
$$

Hence the homological classes $\Sigma^{2 n}(a \boxtimes \varepsilon)$ and $\left[\Sigma^{2 n}\left[\rho_{N}(a) \boxtimes\left(i d-e_{1}\right)\right]\right]$ coincide in $H_{r}\left(\mathbb{Z}_{n+2 m+1}\left(\left(\Delta^{\bullet} \times X\right) \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)\right)$. Finally, the complex $\mathbb{Z} \mathrm{F}_{n+2 m+1}\left(\left(\Delta^{\bullet} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\right.$ $\left.\left(\mathbb{G}_{m}, 1\right)\right)$ is a direct summand in $\mathbb{Z} \mathrm{F}_{n+2 m+1}\left(\left(\Delta^{\bullet} \times X\right) \times \mathbb{G}_{m}, Y \times \mathbb{G}_{m}\right)$ and the elements $\Sigma^{2 n}(a \boxtimes$ $\varepsilon), \Sigma^{2 n}\left(\rho_{N}(a) \boxtimes\left(i d-e_{1}\right)\right)$ are in $\mathbb{Z} \mathrm{F}_{n+2 m+1}\left(\left(\Delta^{r} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)$. Hence the homological classes $\left[\Sigma^{2 n}\left[\rho_{N}(a) \boxtimes\left(i d-e_{1}\right)\right]\right]$ and $\left[\Sigma^{2 n}(a \boxtimes \varepsilon)\right]$ coincide in $H_{r}\left(\mathbb{Z} \mathrm{~F}_{n+2 m+1}\left(\left(\Delta^{\bullet} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\right.\right.$ $\left.\left(\mathbb{G}_{m}, 1\right)\right)$).

Lemma 7.6. Let X and Y be k-smooth schemes and $m, r \geqslant 0$ be integers. Let n be the integer from Lemma 5.4. Then

$$
\begin{aligned}
\operatorname{Im}\left[\left(-\boxtimes \Sigma^{2 n+2}\right):\right. & H_{r}\left(\mathbb{Z}_{m}\left(\left(\Delta^{\bullet} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)\right) \rightarrow \\
& \left.\rightarrow H_{r}\left(\mathbb{Z}_{m+2 n+2}\left(\left(\Delta^{\bullet} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)\right)\right] \subseteq \\
\operatorname{Im}\left[\left(-\boxtimes\left(\operatorname{id}_{\mathbb{G}_{m}}-e_{1}\right)\right):\right. & \left.H_{r}\left(\mathbb{Z}_{m+2 n+2}\left(\Delta^{\bullet} \times X, Y\right)\right) \rightarrow H_{r}\left(\mathbb{Z}_{m+2 n+2}\left(\left(\Delta^{\bullet} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)\right)\right] .
\end{aligned}
$$

Proof. Take a Moore cycle $a^{\prime} \in \mathbb{Z} \mathrm{F}_{m}\left(\left(\Delta^{r} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)$. Then the element $a:=a^{\prime} \boxtimes \varepsilon$ is a Moore cycle in $\mathbb{Z} \mathrm{F}_{m+1}\left(\left(\Delta^{r} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)$. By Lemma 7.5 the homology classes of $\Sigma^{2 n}(a \boxtimes \varepsilon)$ and $\Sigma^{2 n}\left(\rho_{N}(a)\right) \boxtimes\left(i d-e_{1}\right)$ coincide in

$$
H_{r}\left(\mathbb{Z}_{m+2+2 n}\left(\left(\Delta^{\bullet} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)\right) .
$$

By Corollary 7.3 the homology classes of $\Sigma^{2 n}(a \boxtimes \varepsilon)=\Sigma^{2 n}\left(a^{\prime} \boxtimes \varepsilon \boxtimes \varepsilon\right)$ and $\Sigma^{2 n+2}\left(a^{\prime}\right)$ coincide. Hence the homology classes of $\Sigma^{2 n+2}\left(a^{\prime}\right)$ and $\Sigma^{2 n}\left(\rho_{N}\left(a^{\prime} \boxtimes \varepsilon\right)\right) \boxtimes\left(i d-e_{1}\right)$ coincide in $H_{r}\left(\mathbb{Z}_{m+2+2 n}\left(\left(\Delta^{\bullet} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)\right)$.

We are now in a position to prove Theorem C.
Theorem C. Let X and Y be k-smooth schemes. Then

$$
-\boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{1}\right): \mathbb{Z} \mathrm{F}\left(\Delta^{\bullet} \times X, Y\right) \rightarrow \mathbb{Z}\left(\left(\Delta^{\bullet} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)
$$

is a quasi-isomorphism of complexes of abelian groups.

Proof. The theorem follows from Lemmas 7.4 and 7.6.
In more detail, first prove that the morphism $-\boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{1}\right)$ induces an epimophism on homology groups. For this take an integer $r \geqslant 0$ and an element $a \in H_{r}\left(\mathbb{Z} F\left(\left(\Delta^{\bullet} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\right.\right.$ $\left.\left(\mathbb{G}_{m}, 1\right)\right)$. We will find an element $b \in H_{r}\left(\mathbb{Z} \mathrm{~F}\left(\Delta^{\bullet} \times X, Y\right)\right)$ such that $b \boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{1}\right)=a$. Note that there exist an integer $m \geqslant 0$ and an element $a_{m} \in H_{r}\left(\mathbb{Z F}_{m}\left(\left(\Delta^{\bullet} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)\right)$ which is a lift of the element a. Let n be the integer from Lemma 5.4. By Lemma 7.6 there exists an element $b_{m+2 n+2} \in H_{r}\left(\mathbb{Z}_{m+2 n+2}\left(\Delta^{\bullet} \times X, Y\right)\right)$ such that

$$
b_{m+2 n+2} \boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{1}\right)=a_{m} \boxtimes \Sigma^{2 n+2} \in H_{r}\left(\mathbb{Z} \mathrm{~F}_{m+2 n+2}\left(\left(\Delta^{\bullet} \times X\right) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)\right)
$$

Let b be the image of $b_{m+2 n+2}$ in $H_{r}\left(\mathbb{Z F}\left(\Delta^{\bullet} \times X, Y\right)\right)$. Clearly, $b \boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{1}\right)=a$ in $H_{r}\left(\mathbb{Z} \mathrm{~F}\left(\left(\Delta^{\bullet} \times\right.\right.\right.$ $\left.\left.X) \wedge\left(\mathbb{G}_{m}, 1\right), Y \wedge\left(\mathbb{G}_{m}, 1\right)\right)\right)$. Thus the morphism $-\boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{1}\right)$ induces an epimophism on homology. The fact that the morphism $-\boxtimes\left(\mathrm{id}_{\mathbb{G}_{m}}-e_{1}\right)$ induces a monomophism on homology is proved in a similar fashion. Theorem C is proved.

Appendix A.

The main goal of this section is to prove Theorem D .
Let (\mathscr{V}, \otimes) be a closed symmetric monoidal category and \mathscr{C} is a bicomplete category which is tensored and cotensored over \mathscr{V}. Then for every $V \in \mathscr{V}$ and $C \in \mathscr{C}$ there are defined objects $V \otimes C, C \otimes V, \underline{\operatorname{Hom}}(V, C)$ of \mathscr{C}. They are all functorial in V and C. Moreover, for every morphism $r: V \rightarrow V^{\prime}$ in \mathscr{V} the square in \mathscr{C}

is commutative.
As an important example, \mathscr{V} is the category of simplicial objects $s \operatorname{Pre}\left(\mathbb{Z F}_{0}(k)\right)$ in the category $\operatorname{Pre}\left(\mathbb{Z F}_{0}(k)\right)$ and \mathscr{C} is the category $s \operatorname{Pre}_{A b}\left(\mathbb{Z}_{*}(k)\right)$ of simplicial objects in $\operatorname{Pre}_{A b}\left(\mathbb{Z F}_{*}(k)\right)$. The General Framework of p. 6 is then immediately extended to this couple $(\mathscr{V}, \mathscr{C})$. Recall that the functor $\mathbb{Z} \mathrm{F}_{*}(k) \times \mathbb{Z} \mathrm{F}_{0}(k) \xrightarrow{\boxtimes} \mathbb{Z} \mathrm{F}_{*}(k)$ takes (X, Y) to $X \times Y$. As usual, the Yoneda embedding identifies the category simplicial objects in $\mathbb{Z} \mathrm{F}_{0}(k)$ with a full subcategory of $\operatorname{sPr} e_{A b}\left(\mathbb{Z F}_{0}(k)\right)$.

The following lemma is obvious.
Lemma A.1. Suppose in the diagram (7) the morphisms r_{*}, r^{*} and $-\otimes V^{\prime}$ are sectionwise weak equivalences, then the morphism $-\otimes V$ is a sectionwise weak equivalence.

As it is shown in [GP1, Section 5], the category of framed correspondences of level zero $\mathrm{Fr}_{0}(k)$ has an action by finite pointed sets $S \otimes K:=\bigsqcup_{K \backslash *} S$ with $S \in S m / k$ and K a finite pointed set. The cone of S is the simplicial object $S \otimes I$ in $\operatorname{Fr}_{0}(k)$, where $(I, 1)$ is the pointed simplicial set $\Delta[1]$ with basepoint 1 . There is a natural morphism $i_{0}: S \rightarrow S \otimes I$ in $\Delta^{\mathrm{op}} \mathrm{Fr}_{0}(k)$. Let pt $\xrightarrow{e_{1}} \mathbb{G}_{m}$ be the point 1 in $\mathbb{G}_{m}(k)$. Then $\mathbb{G}_{m}^{\wedge 1}$ is the simplicial object in $\operatorname{Fr}_{0}(k)$ which is obtained by taking the pushout of the diagram $\mathbb{G}_{m} \stackrel{e_{1}}{\longleftrightarrow} \mathrm{pt} \stackrel{i_{0}}{\hookrightarrow} \mathrm{pt} \otimes I$ in $\Delta^{\mathrm{op}} \mathrm{Fr}_{0}(k)$.

Let $L: \mathrm{Fr}_{0} \rightarrow \mathbb{Z F}_{0}$ be the canonical functor which is the identity on objects and which takes a morphism $\varphi \in \operatorname{Fr}_{0}(Y, X)$ to the class $1 \cdot \varphi \in \mathbb{Z} \mathrm{~F}_{0}(Y, X)$. If we apply the functor L to $\mathbb{G}_{m}^{\wedge 1}$, we get an object in $s \operatorname{Pre}_{A b}\left(\mathbb{Z}_{0}(k)\right)$ denoted by $\mathbb{Z} \mathrm{F}_{0}\left(\mathbb{G}_{m}^{\wedge 1}\right)$.

Put $\mathbb{Z F}_{0}\left(\mathbb{G}_{m}, 1\right)=\mathbb{Z F}_{0}\left(\mathbb{G}_{m}\right) / \operatorname{Im}\left(e_{1, *}\right)=\operatorname{Ker}\left(e_{1}^{*}\right)$. There is a unique morphism $r: \mathbb{Z F}_{0}\left(\mathbb{G}_{m}^{\wedge 1}\right) \rightarrow$ $\mathbb{Z} \mathrm{F}_{0}\left(\mathbb{G}_{m}, 1\right)$ which restricts to the quotient map $q: \mathbb{Z F}_{0}\left(\mathbb{G}_{m}\right) \rightarrow \mathbb{Z F}_{0}\left(\mathbb{G}_{m}\right) / \operatorname{Im}\left(e_{1, *}\right)$ on $\mathbb{Z} \mathrm{F}_{0}\left(\mathbb{G}_{m}\right)$ and which restricts to the zero map on $\mathrm{pt} \otimes I$.

The following lemma is straightforward and left to the reader.
Lemma A.2. $\mathbb{Z F}(X) \boxtimes \mathbb{Z F}_{0}\left(\mathbb{G}_{m}, 1\right)=\mathbb{Z} \mathrm{F}\left(X \wedge\left(\mathbb{G}_{m}, 1\right)\right), \mathbb{Z} \mathrm{F}(X) \boxtimes \mathbb{Z F}_{0}\left(\mathbb{G}_{m}^{\wedge 1}\right)=\mathbb{Z} \mathrm{F}\left(X \times \mathbb{G}_{m}^{\wedge 1}\right)$.
Lemma A.3. The morphisms

$$
\begin{gathered}
\left.r_{*}: \underline{\operatorname{Hom}}\left(\mathbb{Z} \mathrm{F}_{0}\left(\mathbb{G}_{m}^{\wedge 1}\right), C_{*}\left(\mathbb{Z F}(X) \boxtimes \mathbb{Z F}_{0}\left(\mathbb{G}_{m}^{\wedge 1}\right)\right)\right) \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{Z} \mathrm{F}_{0}\left(\mathbb{G}_{m}^{\wedge 1}\right), C_{*}\left(\mathbb{Z F}(X) \boxtimes \mathbb{Z F}_{0}\left(\mathbb{G}_{m}, 1\right)\right)\right)\right) \\
\left.r^{*}: \underline{\operatorname{Hom}}\left(\mathbb{Z} \mathrm{F}_{0}\left(\mathbb{G}_{m}, 1\right), C_{*}\left(\mathbb{Z F}(X) \boxtimes \mathbb{Z F}_{0}\left(\mathbb{G}_{m}, 1\right)\right)\right) \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{Z F}_{0}\left(\mathbb{G}_{m}^{\wedge 1}\right), C_{*}\left(\mathbb{Z} \mathrm{~F}(X) \boxtimes \mathbb{Z F}_{0}\left(\mathbb{G}_{m}, 1\right)\right)\right)\right)
\end{gathered}
$$ are sectionwise weak equivalences.

Proof. It is easy to see that the morphisms

$$
\begin{gathered}
r: \mathbb{Z} \mathrm{F}_{0}\left(\mathbb{G}_{m}^{\wedge 1}\right) \rightarrow \mathbb{Z F}_{0}\left(\mathbb{G}_{m}, 1\right), \\
i d \boxtimes r: \mathbb{Z} \mathrm{F}(X) \boxtimes \mathbb{Z F}_{0}\left(\mathbb{G}_{m}^{\wedge 1}\right) \rightarrow \mathbb{Z} \mathrm{F}(X) \boxtimes \mathbb{Z} \mathrm{F}_{0}\left(\mathbb{G}_{m}, 1\right), \\
i d \boxtimes r: C_{*}\left(\mathbb{Z} \mathrm{~F}(X) \boxtimes \mathbb{Z F}_{0}\left(\mathbb{G}_{m}^{\wedge 1}\right)\right) \rightarrow C_{*}\left(\mathbb{Z} \mathrm{~F}(X) \boxtimes \mathbb{Z F}_{0}\left(\mathbb{G}_{m}, 1\right)\right)
\end{gathered}
$$

are sectionwise weak equivalences. The lemma now follows.
Theorem C, Lemma A. 1 and Lemma A. 3 imply the following
Corollary A.4. The morphism

$$
-\boxtimes \mathbb{G}_{m}^{\wedge 1}: C_{*} \mathbb{Z} \mathrm{~F}(X) \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{G}_{m}^{\wedge 1}, C_{*} \mathbb{Z} \mathrm{~F}\left(X \times \mathbb{G}_{m}^{\wedge 1}\right)\right)
$$

is a sectionwise weak equivalence in $\operatorname{sPre}_{A b}\left(\mathbb{Z F}_{*}(k)\right)$.
We are now in a position to prove the following
Theorem D. The morphism $c_{0}: L M_{f r}(X) \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{G}, L M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge 1}\right)\right)$ is a sectionwise stable weak equivalence of presheaves of S^{1}-spectra.
Proof. First, the adjunction unit $\mathbb{G} \xrightarrow{\text { adj }}\left(\left.\mathbb{G}_{m}^{\wedge 1}\right|_{S m / k}\right)$ in $\operatorname{sPre} \bullet(S m / k)$ induces an isomorphism $\underline{\operatorname{Hom}}\left(\mathbb{G}_{m}^{\wedge 1}, L M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge 1}\right)\right) \xrightarrow{\text { adj }^{*}} \underline{\operatorname{Hom}}\left(\mathbb{G}, L M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge 1}\right)\right)$ of S^{1}-spectra. Second, the morphism $\mathrm{adj}^{*} \circ\left(-\boxtimes \mathbb{G}_{m}^{\wedge 1}\right)$ coincides with the morphism

$$
c_{0}: L M_{f r}(X) \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{G}, L M_{f r}\left(X \times \mathbb{G}_{m}^{\wedge 1}\right)\right)
$$

It is the morphism (3). The theorem now follows from Corollary A.4.

Appendix B. Some facts on henzelization

We refer the reader to [Gab] or [FP] for the definition of henzelization of an affine scheme along a closed subscheme.

Let X, X_{1} be k-smooth affine varieties, $Z \subset X, Z_{1} \subset X_{1}$ be closed subsets. Let $f: X_{1} \rightarrow X$ be a k-morphism such that $Z_{1} \subset f^{-1}(Z)$. For an étale neighborhood $(W, \pi: W \rightarrow X, s: Z \rightarrow W)$ of Z in X set $W_{1}=X_{1} \times_{X} W$. Let $\pi_{1}: W_{1} \rightarrow X_{1}$ be the projection and let $s_{1}=\left(i_{1},\left.f\right|_{\left.Z_{1}\right)}: Z_{1} \rightarrow W_{1}\right.$, where $i_{1}: Z_{1} \hookrightarrow X_{1}$ be the inclusion. Then $\left(W_{1}, \pi_{1}, s_{1}\right)$ is an étale neighborhood of Z_{1} in X_{1}. Denote by $f_{W}: W_{1} \rightarrow W$ the projection. Then one has a morphism $\lim \left(f_{W}\right): \lim _{(W, \pi, s)} W_{1} \rightarrow \lim _{(W, \pi, s)} W=X_{Z}^{h}$. Set,

$$
\begin{equation*}
f^{h}=\lim \left(f_{W}\right) \circ \operatorname{can}_{f}:\left(X_{1}\right)_{Z_{1}}^{h} \rightarrow X_{Z}^{h} \tag{8}
\end{equation*}
$$

where $\operatorname{can}_{f}:\left(X_{1}\right)_{Z_{1}}^{h} \rightarrow \lim _{(W, \pi, s)} W_{1}$ is the canonical morphism. Clearly, $\rho \circ f^{h}=f \circ \rho_{1}$, where $\rho: X_{Z}^{h} \rightarrow X$ and $\rho_{1}:\left(X_{1}\right)_{Z_{1}}^{h} \rightarrow X_{1}$ are the canonical morphisms.

The following properties of the morphism f^{h} are straightforward:
(1) For any affine k-smooth variety X one has $\mathrm{id}_{X}^{h}=\mathrm{id}_{X_{Z}^{h}}$. If $p: X \rightarrow \mathrm{pt}$ is the structure map, then for any closed Z in X the morphism $p^{h}: X_{Z}^{h} \rightarrow(\mathrm{pt})_{\mathrm{pt}}^{h}=\mathrm{pt}$ is the structure morphism.
(2) Given a k-morphism $f_{1}: X_{2} \rightarrow X_{1}$ of affine k-smooth varieties and a closed subset $Z_{2} \subset X_{2}$ with $Z_{2} \subset f_{1}^{-1}\left(Z_{1}\right)$ one has $\left(f \circ f_{1}\right)^{h}=f^{h} \circ f_{1}^{h}$.
(3) If $i: Z \hookrightarrow X$ is the closed inclusion, $Z_{1}=Z$, then $Z_{Z}^{h}=Z$ and $i^{h}: Z=Z_{Z}^{h} \rightarrow X_{Z}^{h}$ coincides with the canonical closed inclusion $s: Z \rightarrow X_{Z}^{h}$.
The last two properties imply the following property. Let X be an affine k-smooth variety and $x \in X$ be a k-rational point. Suppose $s: \mathrm{pt} \rightarrow X_{x}^{h}$ is the closed point of X_{x}^{h} and $i_{x}: \mathrm{pt} \rightarrow X$ is the point x. Let $p: X \rightarrow \mathrm{pt}$ be the structure map. Then one has equalities

$$
\left(i_{x} \circ p\right)^{h}=i_{x}^{h} \circ p^{h}=s \circ p^{h}: X_{x}^{h} \rightarrow X_{x}^{h} .
$$

These observations imply the following
Lemma B.1. Let X be an affine k-smooth variety and $x \in X$ be its k-rational point. Let $f_{s}: \mathbb{A}^{1} \times X \rightarrow$ X be a morphism such that $f_{1}: X \rightarrow X$ is the identity, $f_{0}: X \rightarrow X$ coincides with the morphism $X \xrightarrow{p} \mathrm{pt} \xrightarrow{i_{x}} X$ and $f_{s}\left(\mathbb{A}^{1} \times\{x\}\right)=\{x\}$. Then the morphism $f_{s}^{h}:\left(\mathbb{A}^{1} \times X\right)_{\mathbb{A}^{1} \times x}^{h} \rightarrow X_{x}^{h}$ defined by (8) has the following properties:
(1) $\left.\left(f_{s}^{h}\right)\right|_{(1 \times X)_{(1, x)}^{h}}: X_{x}^{h} \rightarrow X_{x}^{h}$ is the identity;
(2) $\left.\left(f_{s}^{h}\right)\right|_{(0 \times X)_{(0, x)}^{h}}: X_{x}^{h} \rightarrow X_{x}^{h}$ coincides with the morphism $X_{x}^{h} \xrightarrow{p^{h}} \mathrm{pt} \xrightarrow{s_{x}} X_{x}^{h}$, where $s_{x}: \mathrm{pt} \hookrightarrow X_{x}^{h}$ is the closed point of X_{x}^{h}.

Proof. The first assertion follows from the equalities

$$
\operatorname{id}_{X_{Z}^{h}}=\operatorname{id}_{X}^{h}=\left(f_{1}\right)^{h}=\left(f_{s} \circ i_{1}\right)^{h}=f_{s}^{h} \circ i_{1}^{h}=\left.\left(f_{s}^{h}\right)\right|_{(1 \times X)_{(1, x)}^{h}} .
$$

Let $s_{x}: \mathrm{pt} \hookrightarrow X_{x}^{h}$ be the closed point of X_{x}^{h}. As mentioned above, $s_{x}=i_{x}^{h}$, where $i_{x}: \mathrm{pt} \rightarrow X$ is the closed point x of X. The equalities

$$
s_{x} \circ p^{h}=i_{x}^{h} \circ p^{h}=\left(i_{x} \circ p\right)^{h}=f_{0}^{h}=\left(f_{s} \circ i_{0}\right)^{h}=f_{s}^{h} \circ i_{0}^{h}=\left.\left(f_{s}^{h}\right)\right|_{(0 \times X)_{(0, x)}^{h}}
$$

imply the second assertion.
If we take $X=\mathbb{A}^{m}$, a k-rational point $x \in \mathbb{A}^{m}$ and the morphism $f_{s}: \mathbb{A}^{1} \times \mathbb{A}^{m} \rightarrow \mathbb{A}^{m}$ mapping (s, y) to $s \cdot(y-x)+x$, then $f_{s}: \mathbb{A}^{1} \times X \rightarrow X$ satisfies the hypotheses of Lemma B.1. Thus Lemma B. 1 implies the following statement, which is in fact Lemma 4.10.

Corollary B.2. The morphism $H_{s}:=f_{s}^{h}: U_{s}^{\prime} \rightarrow U^{\prime}$ has the following properties:
(a) $H_{1}:=\left.\left(f_{s}^{h}\right)\right|_{(1 \times X)_{(1, x)}^{h}}: U^{\prime} \rightarrow U^{\prime}$ is the identity morphism;
(b) $H_{0}:=\left.\left(f_{s}^{h}\right)\right|_{(0 \times X)_{(0, x)}^{h}}: U^{\prime} \rightarrow U^{\prime}$ coincides with the composite morphism $U^{\prime} \xrightarrow{p^{h}} p t \xrightarrow{s_{x}} U^{\prime}$, where $p^{h}: U^{\prime} \rightarrow p t=\operatorname{Spec}(k)$ is the structure morphism and $s_{x}: \mathrm{pt} \hookrightarrow X_{x}^{h}$ is the closed point of X_{x}^{h}.

AcKNOWLEDGEMENTS

This paper was partly written during the visit of the authors in summer 2014 to the University of Duisburg-Essen (Marc Levine's Arbeitsgruppe). They would like to thank the University for its kind hospitality and support. The first author and the third author were supported by a grant from the Government of the Russian Federation (agreement 075-15-2019-1620). The first author was also supported by the Young Russian Mathematics award.

References

[DP] A. Druzhinin, I. Panin, Surjectivity of the etale excision map for homotopy invariant framed presheaves, preprint arXiv:1808.07765.
[FP] R. Fedorov, I. Panin, A proof of the Grothendieck-Serre conjecture on principal bundles over regular local rings containing infinite fields, Publ. Math. IHES 122(1) (2015), 169-193.
[Gab] O. Gabber, Affine analog of the proper base change theorem, Israel J. Math., 87 (1994), 325-335.
[GNP] G. Garkusha, A. Neshitov, I. Panin, Framed motives of relative motivic spheres, Trans. Amer. Math. Soc., to appear. DOI https://doi.org/10.1090/tran/8386.
[GP1] G. Garkusha, I. Panin, Framed motives of algebraic varieties (after V. Voevodsky), J. Amer. Math. Soc. 34(1) (2021), 261-313.
[GP2] G. Garkusha, I. Panin, Homotopy invariant presheaves with framed transfers, Cambridge J. Math. 8(1) (2020), 1-94.
[GP3] G. Garkusha, I. Panin, The triangulated categories of framed bispectra and framed motives, preprint arXiv:1809.08006.
[EGA4] A. Grothendieck, Éléments de géométrie algébrique. IV, Étude locale des schemas et des morphismes de schemas, Quatrième partie, Publ. Math. IHES 32 (1967), 5-361.
[GrD] A. Grothendieck, J. Dieudonné, Éléments de Géométrie Algébrique IV. Étude locale des schémas et des morphismes de schémas (Troisième Partie), Publ. Math. IHÉS 28 (1966), 5-255.
[Jar] J. F. Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000), 445-552.
[Hir] Ph. S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs 99, 2003.
[MV] F. Morel, V. Voevodsky, \mathbb{A}^{1}-homotopy theory of schemes, Publ. Math. IHES 90 (1999), 45-143.
[OP] M.Ojanguren, I.Panin, Rationally trivial hermitian spaces are locally trivial, Math. Z. 237(1) (2001), 181-198.
[Sch] S. Schwede, An untitled book project about symmetric spectra, available at www.math.uni-bonn.de/people/schwede/SymSpec-v3.pdf (version April 2012).
[Seg] G. Segal, Categories and cohomology theories, Topology 13 (1974), 293-312.
[S] A. Suslin, On the Grayson spectral sequence, Proc. Steklov Inst. Math. 241 (2003), 202-237.
[V1] V. Voevodsky, Notes on framed correspondences, unpublished, 2001. Also available at https://www.math.ias.edu/vladimir/publications
[V2] V. Voevodsky, Cancellation theorem, Doc. Math. Extra Volume in honor of A. Suslin (2010), 671-685.
St. Petersburg Branch of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, RUSSIA

E-mail address: alseang@gmail.com
Department of Mathematics, Swansea University, Fabian Way, Swansea SA1 8EN, United KingDOM

E-mail address: g.garkusha@swansea. ac.uk
St. Petersburg Branch of Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191023, RUSSIA

E-mail address: paniniv@gmail.com

[^0]: 2010 Mathematics Subject Classification. 14F42, 14F05.
 Key words and phrases. Motivic homotopy theory, framed motives, cancellation theorem.

