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Abstract

In this thesis we investigate on the role that dualities play nowadays in our under-
standing of string and Quantum Field Theories.

The first part is devoted to holographic dualities, where the case of the string
dual of certain one-, two- and four dimensional field theories is explored in detail.
We begin in Chapter 1 by discussing the holographic dual of a broad class of four-
dimensional field theories. We specialise to the case of quiver field theories where a
number of formulas computing charges, number of branes and Linking Numbers are
given. We then introduce marginal deformations in the supergravity backgrounds to
uncover infinite new families of solutions to type II supergravity and M-theory. In
Chapter 2, we discuss spin 2 fluctuations around a class of warped AdS3 backgrounds.
We identify explicitly the dual operators of a given protected sector. Also, a formula
for the central charge of the dual two-dimensional field theories is derived. In Chapter
3, we introduce two new classes of geometries with an AdS2 factor. We outline the
importance to black hole physics and in one case give a prescription for the dual field
theories.

The second part is devoted to QFT/QFT dualities in Chern-Simons theories, and
how dualities between Chern-Simons theories in three dimensions can be motivated
in string theory. It is found that a known duality between three-dimensional Chern-
Simons theories with unitary gauge symmetry can be motivated by a brane setup in
Type 0B string theory with an orientifold. In particular, the phase diagram of unitary
QCD3 is inferred from a dual theory.
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Introduction and summary

One of the most fascinating tools to study interacting Quantum Field Theories

(QFTs) developed in the last years is provided by the concept of duality. By duality

it is usually meant some kind of relationship between two quantum theories that are

formulated in terms of di↵erent degrees of freedom but which describe the same physics.

Over the years, di↵erent kind of dualities have been spelled out, and they were often

crucial in mapping out problems in theoretical physics. In particular, dualities exist

between QFTs, between string theories or even between QFTs and string theories,

the most notable example being the Maldacena duality, often referred to as AdS/CFT

duality.

Examples of QFT/QFT dualities include the Ising model, bosonization, and free

electromagnetism, where the duality can be constructed explicitly. There are also

more convoluted examples, like supersymmetric Yang-Mills theories, where often the

duality can only be conjectured (and tested).

There are also remarkable examples of dualitites between string theories, like T -

or S-duality, and their generalisations, proving somehow that distinct string theories

are essentially di↵erent classical limits of a single quantum theory.

The holographic duality of Maldacena is somehow di↵erent from those just men-

tioned, as it o↵ers a crossover between QFTs and string theories. It is quite remarkable

because, among other things, string theory is considered a promising candidate for a

consistent theory of quantum gravity, whereas quantum field theory on flat space-

time does not seem to be describing any theory of gravity. Also, according to Malda-

cena, strongly interacting quantum field theories are mapped to classical supergravities

which, in some cases, might be tractable. Indeed, it is a general hope to be able to do

explicit computations in strongly interacting systems.

All the dualities mentioned so far will play a role in the present thesis. Even though

the first part – made of three chapters – strongly relies on the AdS/CFT duality –

we discuss the examples of certain one-, two- and four-dimensional supersymmetric

3



4 Introduction and summary

theories – other types of dualities, like T - or S-dualities, are crucial in some computa-

tions. The second part – made of one chapter – instead, is devoted to dualities between

quantum field theories, and we will discuss a particular example of a duality between

three-dimensional Chern-Simons theories with fundamental matter.

Dualities have played a prominent role in theoretical physics in the last (at least)

fifty years. Providing a precise hystorical reconstruction is nearly impossible. However,

there are nice reviews and books which aim at giving an account for the modern un-

derstanding of dualities in theoretical physics. See for instance [7, 8] for very insightful

reviews of dualities for fields and strings, or the books [9, 10] for recent developments

in the AdS/CFT correspondence. See also the comprehensive review on AdS/CFT

[11] and references therein.

We now outline the content of single chapters by summarising the main results

contained in them.

Part I

In the first part of the thesis, we deal with holographic dualities. We will be con-

cerned mainly with the weak form of the duality, namely that regime of parameters for

which the string theory is weakly coupled and formulated on a weakly curved space-

time. In this regime, string theory is well approximated by classical supergravity, the

dual field theory is instead strongly coupled and its number of degrees of freedom very

large1. The structure of Part I is as follows.

Chapter 1 In Chapter 1, after a brief account for the supersymmetry algebra

of four-dimensional field theories with 8 supercharges and their string theory origin,

we discuss their holographic dual. The problem of formulating the gravity dual of

N = 2 four-dimensional superconformal field theories was originally addressed in [12]

in M-theory, where the holographic description is based on AdS5 spaces preserving 16

supersymmetries. The general form of such solutions contains an S2 and an S1, which

realise geometrically the SU(2)R⇥U(1)r R-symmetry, in addition to the AdS5 factor,

which realises geometrically the conformal group in four dimensions, SO(4, 2). The

remaining three-dimensional space is not specified by symmetry and is parametrised

by three coordinates, (x1, x2, y). It was shown in [13] that it is within this class of

solutions that we can find the holographic duals of the class S theories found in [14].

1This statement is made more quantitative in the main text.
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It turns out that a generic solution is completely specified by a function D, which

satisfies the 3d Toda equation

(@2
x1 + @2

x2)D + @2
y
eD = 0 , (1)

and the boundary conditions imposed on it. Boundary conditions are needed in or-

der for the eleven dimensional background to be regular everywhere (with the sole

exception of the points where physical sources are localised).

Equation (1) is notoriously di�cult to solve, because of its non linearity. Assuming

an extra U(1) symmetry in the (x1, x2) plane, it turns out that the problem can be

reduced to type IIA and simplified considerably. After a change of variables, the Type

IIA solutions are given in terms of a solution V of the three-dimensional cylindrical

Laplace equation in �, ⌘
1

�
@��@�V + @2

⌘
V = 0 . (2)

Now, of course, boundary conditions must be imposed on V .

Such solutions to type IIA supergravity are found to be holographically dual to

four-dimensional field theories emerging from intersections of D4, D6 and NS5 branes

which preserve 8 Poincaré supersymmetries – the number of supersymmetries gets

enhanced to 16 in the near-horizon limit, when the Poincaré group is extended to the

conformal group.

The correspondence between the supergravity backgrounds and the dual field the-

ory is made precise once we consider the “line charge density” �(⌘) defined by

� = �@�V |�=0 . (3)

The interpretation of � as a line charge density for the potential V solving the equation

(1) is sharpened in the appendix of Chapter 1. In particular, � turns out to be piecewise

linear and continuous in order to have a well-defined quantisation of fluxes [13]. For

the dual field theory there is a gauge group U(�n) whenever � reaches an integer value

�n = �(n) for any n 2 Z>0, while there is a flavour symmetry with unitary flavour

group whenever � has a kink at some integer ⌘i. The rank of the flavour group is

determined, roughly speaking, by the change in the slope of � and is shown to be

always an integer.

There are interesting quantities characterising the quantum field theory which can
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be reproduced on the gravity side. Here we follow closely [1], work done in collabora-

tion with Prof. Carlos Nunez, Dr. Dibakar Roychowdhury and Dr. Salomon Zacarias.

In particular, there is a set of topological invariants – invariant under Hanany-Witten

moves – called “linking numbers”, associated with NS5 and D6 branes. For super-

conformal field theories the linking numbers are all equal, K1 = K2 = · · · = KN5 = K,

and it is proposed [1] that they can be obtained from the gravity dual by computing2

K = ⇡
4

4
�0(N5), which in turn implies that

PN5
i=1 Ki =

⇡
4

4
�0(N5)N5. After a simple alge-

bra, we also show that the sum of the NS5-Linking Numbers is given by integrating

a Page four-flux over a compact four-manifold at � = 0. In a similar fashion, we show

that the sum of the Linking numbers associated with the D6 branes is such that it

satisfies
PN5

i=1 Ki +
PN6

j=1 Lj = 0 [15].

One more thing that can be computed from the supergravity solution is the leading

order in N5 and N6, when both N5, N6 ! 1, of the central charge of the dual field

theory. This is shown to be given by

c =
⇡13

26

Z
N5

0

�2(⌘)d⌘ . (4)

All these formulas have been tested in di↵erent examples of quiver four-dimensional

SCFTs [1].

As a final application of holographic duality for four-dimensional quiver SCFTs,

we show how to compute some marginal deformations of the Gaiotto-Maldacena ge-

ometries following [1]. The deformations in question are usually referred to as TsT

deformations [16], and involve the introduction of a “marginal” parameter �. Roughly

speaking, when we have a background with two U(1) isometries, say parametrised

by two coordinates ⇠ and �, a TsT transformation consists in T-dualising the first

variable ⇠, shifting � ! � + �⇠, and T-dualising back along ⇠. We perform such an

operation on the Gaiotto-Maldacena N = 2 backgrounds in Type IIA and also on

their IIB counterpart, obtained after computing the T -dual along the U(1)r isometry.

The backgrounds obtained in this way – given in the main text – do not display an

SU(2)R⇥U(1)r R-symmetry anymore, and they are argued to be dual to some N = 1

SCFTs in four dimensions.

The parameter � introduces a marginal deformation, and thus no RG flow is sup-

2Here N5 corresponds to the number of NS5 branes, whereas N6 is the number of D6 branes
present in the Type IIA backgrounds.
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posed to take place. However, supersymmetry is argued to be broken, N = 2! N =

1. It was proposed in [1], following [16], that this happens because of interactions of

the form

W = ei⇡�RWN=2 , (5)

where WN=2 is the superpotential of N = 2 theories, WN=2 =
P

tr�QQ̃, and R a

combination of the U(1) ⇥ U(1) charges of the fields. When � = 0, i.e. no TsT

transformation, we recover the original N = 2 theories and dual backgrounds.

We conclude Chapter 1 with a summary of the main results found in [1]. Ap-

pendices at the end sharpen some of the computations both in supergravity and field

theory done in the main text.

Chapter 2 A large family of warped AdS3⇥S2
⇥CY2 solutions to type IIA super-

gravity was found in [17]. In [18, 19], a subsector of such a family of backgrounds was

argued to be dual to a special class of two-dimensional quiver SCFTs with 4 Poincaré

supercharges and small N = (0, 4) superconformal algebra.

In two dimensions, the two-dimensional conformal algebra splits into two copies

of the Virasoro algebra – the left-moving and right-moving sectors – and each copy

can be extended to include N supersymmetries. The resulting superconformal algebra

is referred to as the super Virasoro algebra and is usually given as an so(N ) Kac-

Moody algebra. Because of the splitting, we can study multiplets of individual sectors,

and then simply take the direct product of multiplets in each sector to form a full

superconformal multiplet.

The case relevant to us is that of small N = 4 global algebra (one su(2) R-symmetry

subalgebra as opposed to two su(2)’s R-symmetry subalgebras for large N = (0, 4)).

States (and operators) in the dual field theory are then classified according to this

algebra. Using the holographic dictionary, such operators are mapped to fluctuations

of the supergravity fields.

The aim of Chapter 2 is to study a portion of the spectrum of the fluctuations –

spin 2 fluctuations – around the background AdS3 ⇥ S2
⇥ CY2 mentioned above, and

classify them according to the maximal bosonic subalgebra realised by the background.

Following [3], we derive an equation for spin 2 fluctuations around the warped

AdS3 ⇥ S2
⇥ CY2 solutions mentioned above. These are of the form hµ⌫(x, z) =

h[tt]

µ⌫
(x) (z), with h[tt]

µ⌫
(x) a transverse-traceless mode on the AdS3 subspace and  (z)

an internal mode function of the internal coordinates, denoted collectively as z. h[tt]

µ⌫
(x)
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is found to solve a massive equation for rank-2 tensors in AdS3 spacetimes

⇤(2)

AdS3
h[tt]

µ⌫
(x) = (M2

� 2)h[tt]

µ⌫
(x) , (6)

with M the mass of the graviton, while  (z) factorises as3  =
P

lm ul�lm(⇢)Ylm(S2).

� solves an equation which reads

d

d⇢

Ç
u2(l+1)

d�lm

d⇢

å
= �(M2

� 4l(l + 1))bh4h8u
2l�lm , (7)

with u, bh4 and h8 warping factors characterising the warped AdS2⇥S3
⇥CY2 depending

on ⇢ only.

Such ordinary di↵erential equation admits a class of universal minimal solutions

which depends on the general structure of the backgrounds, but is otherwise insensitive

to specific data characterising the geometries. For such solutions, we have M2 =

4l(l + 1) which implies, via the holographic formula �(� � 2) = M2, that the dual

gauge-invariant operators have scaling dimension � = 2l + 2, with l = 0, 1, 2, . . . the

quantum number associated with the SU(2)R R-symmetry of the small N = (0, 4)

superconformal algebra.

When l = 0 (massless graviton), the dual operator has dimension 2 and is a singlet

under the R-symmetry. We associate it with the (anti-)holomorphic stress-energy

tensor of the dual SCFT.

It is likewise easy to show that operators with scaling dimension � = 2l+2 belong

to short multiplets of the small N = (0, 4) algebra also for l > 0.

As a final application, we show that fluctuating the IIA action, we get an action

for h[tt]

µ⌫
(x) which reads

S[h] =
X

lm

Clm

Z
d3x
»
�gAdS3 (h

[tt]

lm
)
µ⌫
n
⇤(2)

AdS3
+ 2�M2

o
(h[tt]

lm
)
µ⌫

, (8)

with Clm some coe�cients obtained after an integration over the internal space. For

the massless graviton l = m = 0, C0 is given by

C0 =
1

4210
volCY2

Z

I⇢

d⇢ bh4h8 , (9)

3In [3] the geometry of interest is that of a warped AdS2 ⇥ S3
⇥ T4 and the factorisation is

 =
P

lmn ul�lmn(⇢)Ylm(S2)ein·✓, with ✓i
⇠= ✓i + 2⇡ parametrising T4. Here, we consider a small

simplification which does not change the final outcome.
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which is shown in [19] to capture the leading order of the central charge of the dual

quiver field theories. This does not come as a surprise as the quadratic action for hµ⌫

computes the two-point function of the dual stress-energy tensor (Schwinger function)

whose coe�cient is known to be the central charge of the field theory.

In the appendix, we discuss in some detail one example on non-universal solutions

(M2 > 4l(l+1)). We also give details on representations of the small N = (0, 4) super-

conformal algebra and review basic facts of N = (0, 2) and N = (0, 4) supersymmetric

theories in two dimensions.

Chapter 3 In Chapter 3, we discuss two di↵erent classes of backgrounds with an

AdS2 factor. They are both obtained from the warped AdS3 ⇥ S2
⇥ CY2 solutions

to Type IIA briefly discussed in Chapter 2, after some manipulations in supergravity.

Being new entries in the classification of AdS2 spacetimes, we will give a thorough

analysis of both geometries. Here we draw on results from [4], [5] and [6], work done

in collaboration with Prof. Yolanda Lozano, Prof. Carlos Nunez and Anayeli Ramirez.

The two distinct classes of backgrounds will make up the two main sections of Chapter

3. Let us give a brief overview of both.

The first class of backgrounds is given in terms of a warped AdS2 ⇥ S2
⇥ CY2 in

Type IIB supergravity. Using local coordinates, it is in general possible to write AdS3

spacetime as a fibration over an AdS2 space with fibre an S1. We then T -dualise along

the fibre direction to get AdS2 ⇥ S2
⇥ CY2. In fact, the backgrounds inherits also an

S1 (the fibre). The S1 is shown to be broken by the presence of probe D1 and D5

branes. Schematically, the background metric reads

ds2 = f1ds
2

AdS2
+ f2ds

2

S2 + f3ds
2

CY2
+ f�1

1
(d⇢2 + d 2) , (10)

with the warping factors f1, f2 and f3 functions of ⇢ only and suitably given explicitly

in terms of three functions u, bh4 and h8.

Remarkably, we are able to define a suitable “central charge” that coincides with

that of the “parent” AdS3⇥S2
⇥CY2 and given by the very same formula (9). We argue

that, in Quantum Mechanics, such a formula captures the dynamics of the degenerate

ground states, i.e. counts their number. It allows us also to define a dual QM in

the form of a quiver Quantum Mechanics given by the dimensional reduction of the

two-dimensional quiver field theory dual to the original AdS3 ⇥ S2
⇥ CY2.

As last insight, we give a minimisation procedure in supergravity in order to com-
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pute the central charge. It turns out that a properly defined functional C, given in

terms of fields in the R-R sector, coincides with the central charge of the theory upon

extremisation. We o↵er also another point of view on the matter by showing that

the functional C is essentially captured by the product of suitably defined electric and

magnetic charges associated with D branes in the background.

The second class of backgrounds is given instead in terms of a warped AdS2 ⇥

S3
⇥CY2 in Type IIA supergravity. It is obtained from the class of AdS3 ⇥ S2

⇥CY2

backgrounds already mentioned after a Wick rotation. The Wick rotation is described

in great detail in the main text and essentially corresponds to performing the following

operation

AdS3 ! �S
3 , S2

! �AdS2 . (11)

In order to get a spacetime with the correct signature it is necessary to perform a fur-

ther analytic continuation on the warping factors and spacetime coordinates. Schemat-

ically, the metric of the spacetime after the Wick rotation reads

ds2 = g1ds
2

AdS2
+ g2ds

2

S3 + g3ds
2

CY2
+ g4d⇢

2 , (12)

with the warping factors g1, g2, g3 and g4 functions of ⇢ only and given explicitly again

in terms of three functions u, bh4 and h8.

Likewise, a suitable central charge is defined and shown to emerge from a minimi-

sation principle in supergravity.

The construction of the dual Quantum Mechanics turns out to be more subtle and

will be given in [6].

We conclude with a brief summary of the main results found in Chapter 3 and

possible future directions.

Part II

In the second part of the thesis, we deal with dualities between Quantum Field The-

ories. More specifically, we focus on three-dimensional gauge Chern-Simons theories

and Seiberg-like dualities. Part II is made of a single chapter whose structure is as

follows.
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Chapter 1 The main content of Part II, Chapter 1, is based on [2], work done

in collaboration with Mohammad Akhond and Prof. Adi Armoni. We begin with a

brief introduction to Chern-Simons theories in three dimensions. We introduce the

Chern-Simons functional and discuss its degrees of freedom. We argue that, roughly

speaking, a Chern-Simons theory is specified by a choice of a compact gauge group G,

a level k and data necessary to define topological invariants such as orientation and

framing.

When fermions are present, special care must be given to the fermion path integral.

The fermion path integral in general needs regularisation, and can be shown to be

given by4 Z = |Z | exp
Ä
�i⇡

2
⌘
ä
, with ⌘ the regularised Atiyah-Patodi-Singer (APS)

invariant. The APS theorem relates the ⌘ invariant to Chern-Simons actions. When

fermions are given a mass m, at low energies they can be integrated out and the Chern-

Simons level gets shifted. The combined e↵ect of regularising the fermion path integral

and integrating out massive fermions has the consequence of producing a shift of the

Chern-Simons level by some integer quantity. This will be important to understand

the IR regime of U(Nc) QCD3, our theory of interest, to be mentioned momentarily.

We then move on to adding some structure to Chern-Simons theories. In particular,

we give the theory a supersymmetric structure and discuss N = 2 supersymmetric

Chern-Simons theories. We discuss in some detail what supermultiplets we have at

disposal, and how such theories can be realised on intersections of D3, D5, NS5 and

bound states of NS5 and D5 branes, often denoted as (p, q) fivebranes – for p NS5

branes and q D5 branes – in Type IIB string theory.

Giveon and Kutasov [20] proposed a Seiberg-like duality for N = 2 Cherns-Simons

theory with level k and Nf flavours of fundamental quarks Qi and Q̃i, i = 1, . . . , Nf

starting from string theory. The dual theory – the magnetic theory – is realised on

an equivalent brane configuration after an “irrelevant” operation is performed on the

original brane web so as to “swap” the NS5 and (1, k) branes.

Following [20], we argue that also non-supersymmetric dualities for Chern-Simons

theories can be embedded into string theory settings. The Chern-Simons duality we

would like to realise in string theory is one of those proposed in [21],

U(Nc)K,K±Nc �Nf   ! U

Ç
K +

Nf

2

å

�Nc,�Nc⌥(K+Nf/2)

�Nf � (13)

4Strictly speaking this is true for fermions in complex representations. In the case of real repre-
sentations, the path integral gets regularised as Z = |Z | exp

�
�i⇡4 ⌘

�
.
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It turns out that [2] a suitable string theory embedding is that of Type 0B string

theory. After an overview of Type 0B string theory, in order to realise U(Nc) QCD3,

we embed the gauge theory in a Hanany-Witten brane configuration. The brane

configuration consists of Nc D3 branes suspended between an NS5 branes and a (1, k)

fivebrane. In addition, there exist Nf flavour branes and an O03 orientifold plane.

The low energy theory arising from fluctuations on such a brane setup has the

same “supermultiplet” structure of N = 2 Chern-Simons theory in three dimensions

with a major di↵erence. The gaugino � in the “vector multiplet” VN=2 = (Aµ, �,�) is

projected on to the two-index antisymmetric representation of the gauge group, thus

breaking supersymmetry completely.

The resulting theory is referred to as Orientifold QCD (OQCD). When supersym-

metry is broken, in general, there is no mechanism that prevents fields from getting a

mass at one (or higher) loop(s). It is argued in the main text that, as we flow to the

IR, some of the fields can be integrated out and the resulting electric theory is

electric IR: U(Nc)K,K�Nc �Nf fermions , (14)

with K = k � (Nc � 2)�Nf/2 the shifted level.

In order to get the magnetic dual, we swap the NS5 and (1, k) branes in the

original electric brane web. The magnetic theory is then read o↵ from the low energy

excitations on the branes. The resulting low energy spectrum is that of a “vector

multiplet” and a “matter multiplet” of quarks and squarks as before and a singlet

meson “chiral multiplet” M = (M,�) with the “mesino” � projected on to the the

two-index representation of the flavour symmetry SU(Nf ). The number of colours for

the dual theory is found to be Ñc = Nf + k + 2�Nc.

The claim of [2] is that, upon following the RG flow of the magnetic theory, we are

able to determine the IR phases of (O)QCD3.

The phases of QCD3 are then suitably described by a two-dimensional diagram,

where the vertical axis represents the number of quark flavours, while the horizontal

axis represents the combination  = k + 2 � Nc. Then, various phases of QCD3

corresponds to di↵erent regions of the phase diagram:

•  � Nf (bosonisation phase). Here it is where we recover the bosonisation duality

given in equation (13) and proposed in [21]. The low-energy Chern-Simons level

is K =  � Nf/2. Thus,  � Nf simply means K � Nf/2, consistent with the
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original proposal in [21]. We argue that such a phase is captured by studying

the dynamics of the magnetic theory after squark (�) condensation.

• �Nf <  < 0 (symmetring breaking phase I). In this region the number of

colours of the magnetic theory, Ñc, is smaller than the number of flavours, Ñc =

Nf +  < Nf . Therefore, upon condensation of the dual squark �, the theory

is fully higgsed in the IR and described a Grassmanian corresponding to the

following symmetry breaking pattern

SU(Nf )! S

ñ
U

Ç
Nf

2
+K

å
⇥ U

Ç
Nf

2
�K

åô
. (15)

This is reminiscent of the symmetry breaking pattern proposed by Komargodski

and Seiberg [22] in the case of QCD3 with SU(Nc) gauge symmetry.

• 0 <  < Nf (symmetry breaking phase II). This is the most subtle phase to

interpret. String theory seems to predict a new bosonisation phase. However,

Komargodski and Seiberg [22] argued that, for the case of SU(Nc) QCD3, there

are two ways of breaking the global symmetry as in formula (15), and that they

rely on two distinct bosonic duals. In fact, after properly tuning the mass of

the dual squarks, the dual magnetic theory in the regime 0 <  < Nf precisely

accounts for another way of breaking the flavour symmetry.

•  < �Nf (no Seiberg duality phase). This phase is trivial as there is no Seiberg

duality. This is similar to the case of Seiberg duality in four dimensions when

Nf < Nc + 2 where there is no Seiberg duality (the dual gauge group is trivial).

Appendices

Besides appendices for individual chapters, I have decided to set also an appendix

at the end of the thesis where basic facts about type II supergravities are reviewed.

In particular, the supergravity equations of motion and conventions which are used in

the main thesis, especially in Part I, are given. This should help the reader follow and

reproduce the main results of the various backgrounds spelled out along the thesis.

We begin with Type IIB and then move on to massive Type IIA supergravity.

Massless Type IIA, which is the relevant case for Chapter 1, is obtained by setting

F(0) = 0 in all formulas.
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Holographic dualities
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Chapter 1

Holography for four-dimensional N = 2 SCFTs

This chapter is made of three main sections. In the first section, we discuss a special

class of four-dimensional quiver gauge theories and their gravity duals. We begin with

a brief discussion of the four-dimensional N = 2 superconformal algebra and then

move on to introducing quiver gauge theories realised on four-, five-, and six-branes

in Type IIA string theory. We review material from [12] on the construction of the

gravity dual of a large class of four-dimensional N = 2 superconformal theories in M

and string theory. From Subsection 1.1.5 onwards we present material from [1], where

we give some details on how to make precise the correspondence between conformal

quiver gauge theories with N = 2 supersymmetries and their gravity duals.

In Section 1.2, following [1], we test in great detail the results found in the first

part of the chapter for the particular examples of two distinct superconformal quiver

field theories. In particular, we show how to reproduce holographically the central

charge and Linking Numbers of the special case of two di↵erent SCFTs.

In the third and last section (Section 1.3), we discuss a special class of marginal

deformations of the backgrounds discussed in the previous two sections. How such

marginal deformations are implemented on both the supergravity backgrounds and

the dual superconformal field theories is discussed in detail.

Appendices at the end of the chapter give further details on both the supergravity

backgrounds and quantum field theories discussed in the main text.

1.1 N = 2 SCFTs and their dual backgrounds

1.1.1 N = 2 superconformal symmetry in four dimension

The goal of this subsection is to give the reader some of the essential notions about

four-dimensional superconformal field theories with sixteen supercharges – eight or-

17
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dinary supersymmetries and eight superconformal symmetries. We mostly follow the

notational conventions of Wess and Bagger [23] for d = 4 , N = 1 supersymmetry. In

particular, tensors in irreducible representations of the four dimensional Lorentz alge-

bra, so(1, 3), will carry indices1 ↵, ↵̇ running over 1, 2. Moreover, SU(2) indices are

raised and lowered with ✏12 = ✏12 = 1. Complex conjugation implies that ( ↵)† =  ̄↵̇.

The four dimensional N = 2 supersymmetry algebra will be denoted by s. It has

even and odd parts

s = s0 � s1 , (1.1)

where the even subalgebra is2

s0 = so(1, 3)� su(2)R � u(1)r (1.2)

while the odd subalgebra, understood as a representation of s0, is

s1 = [(2,1;2)+1 � (1,2;2)�1] , (1.3)

where (2,1) and (1,2) are fundamental spinors of SO(1, 3) in conjugate representa-

tions, and ±1 refers to the charge with respect U(1)r. A common basis for the odd

subalgebra is given by Qi

↵
, Q̄i

↵̇
, where i is a fundamental index for SU(2)R. There is

a reality constraint between Q and Q̄,

(Qi

↵
)† = Q̄↵̇i ⌘ ✏ijQ̄

j

↵̇
. (1.4)

The commutators of the odd generators are3

{Qi

↵
, Q̄↵̇j} = 2�µ

↵↵̇
Pµ�

i

j
, {Qi

↵
, Q�j} = 0 , {Q̄i

↵̇
, Q̄

�̇j
} = 0 . (1.5)

The commutators of the even generators with the odd generators are fixed by symmetry

and (super) Jacobi identities. In particular, SU(2)R rotates the index i.

In supersymmetric theories, the U(1)r symmetry can be broken explicitly, sponta-

neously or it can be anomalous. It is not hard to argue that such a symmetry must

1This follows from the isomorphism SO(1, 3) ⇠= Sl(2, C)/Z2. ↵ is a fundamental index for Sl(2, C)
and complex conjugation defines an inequivalent representation. It is customary to use ↵̇, �̇... to label
indices in such conjugate representation.

2If we include translations, we should really consider the full Poincaré group in four dimensions
given by SO(1, 3) n T4, sometimes denoted ISO(1, 3).

3Here we neglect central extensions as they are unimportant in what follows.
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not be broken in conformal theories. Indeed, the conformal and R-symmetry anomaly

belong to the same supermultiplet.

We might wonder how the N = 2 supersymmetry algebra changes if we add also a

conformal structure. The Poincaré algebra gets extended to the full conformal algebra,

so(2, 4), which, along with the Poincaré Q supercharges, forms a larger superconformal

algebra, S. In order for S to close, we must include also the superconformal symme-

tries Si

↵
, S̄i

↵̇
, which arise from commutators of special conformal transformations with

Poincaré supersymmetries, [K,Q] ⇠ S. They are as many as the Q’s, doubling the

number of supersymmetries, and satisfy the algebra

{S̄i↵̇, S↵
j
} = 2(�̄µ)↵̇↵Kµ�

i

j
, {S↵

i
, S�

j
} = 0 , {S̄i↵̇, S̄j�̇

} = 0 . (1.6)

The anticommutators of the Q’s and the S’s are

{Qi

↵
, S̄j↵̇

} = 0 , {S↵
i
, Q̄j↵̇} = 0 , (1.7)

together with

{Qi

↵
, S�

j
} = 4(�ij(M↵

�
�

i

2
�↵

�D)� �↵
�Ri

j) ,

{S̄i↵̇, Q̄
j�̇

} = 4(�ij(M
↵̇

�̇
�

i

2
�↵̇

�̇
D)� �↵̇

�̇
Ri

j) ,
(1.8)

where

M↵

� = �
i

4
(�µ�̄⌫)↵

�Mµ⌫ , M
↵̇

�̇
= �

i

4
(�̄µ�⌫)↵̇

�̇
Mµ⌫ . (1.9)

The commutators for M↵

� and M
↵̇

�̇
can be deduced from those for Mµ⌫ . The

commutators between even and odd generators can be inferred again by symmetry.

The full superconformal algebra can be found for instance in [24] or in appendix A of

[25]. Ri
j are the generators for the U(2) R-symmetry and obey the standard u(2) Lie

algebra4

[Ri
j, R

k
l] = �kjR

i
l � �

i
lR

k
j . (1.10)

There are many known examples of four dimensional N = 2 theories, e.g. 4d

N = 2 gauge theories or the class S theories found by Gaiotto [14]. In the following

we will be mainly concerned with 4d N = 2 quiver gauge theories, for reasons that

4When N = 4, the R-symmetry group is actually SU(4), as the U(1) inside the U(4) is central
and decouples from the algebra. When N = 2, we can retain the full U(2) R-symmetry.
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will be clear in the coming sections. In the next subsection, we review some of the

connections between four-dimensional gauge theories and branes in string theory.

1.1.2 Four-dimensional N = 2 SCFTs from branes

We now review the four-dimensional N = 2 theories that emerge as the low energy

limit on D4 branes ending on NS5 branes and intersecting D6 branes. In particular,

these theories can be seen to emerge from the fluctuation of open strings stretched

between D branes and are represented by linear quivers. Standard references for the

material covered in this section are [26] and [27].

The starting point of our discussion will be the brane web of Table 1.1.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D4 � � � � �

D6 � � � � � � �

NS5 � � � � � �

Table 1.1: Brane setup, where � mark the spacetime directions spanned by the various
branes.

It is known that in string theory a Dp brane stretching along (x1, . . . , xp) preserves

supercharges of the form ✏LQL + ✏RQR with

✏L = �0 . . .�p✏R , (1.11)

while an NS5 brane in type IIA string theory5 stretched along (x1, . . . , x5) preserves

supercharges of the form ✏LQL + ✏RQR with6

✏L = �0 . . .�5✏L

✏R = �0 . . .�5✏R .
(1.12)

It is fairly easy to see that a solution to the equations (1.11), (1.12) for the system

in Table 1.1 leaves a total of eight supersymmetries undetermined, thus preserving

5In type IIB the equation for ✏R picks up a minus sign, ✏R = ��0 . . . �5✏R.
6Here ✏L and ✏R are ten dimensional Majorana-Weyl spinors with given chirality. Indeed, it is

only in 2 (mod 8) dimensions that we can impose a Weyl condition along with a reality condition.
Thus, we can think of ✏L and ✏R as objects with sixteen real and independent components.
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eight of the thirty two supersymmetries. This is the amount of supersymmetry of

four-dimensional N = 2 supersymmetric theories.

Notice that, for the brane web (1.1), the ten-dimensional Lorentz group is decom-

posed in the following fashion

SO(1, 9)! SO(1, 3)⇥ SO(2)⇥ SO(3) , (1.13)

where SO(1, 3) acts on (x0, . . . , x3), while SO(2) and SO(3) act on (x4, x5) and

(x7, x8, x9), respectively. We will interpret the SO(1, 3) as the Lorentz group in four

dimensions, while SO(2) and SO(3) are global symmetries. Decomposing the ten-

dimensional supersymmetries (spinors) as in (1.13), we find that they transform as

a doublet of SO(3) and carry charge under SO(2) = U(1). Therefore, we can inter-

pret SO(3) and SO(2) as R-symmetries. They are nothing but the SU(2)R ⇥ U(1)r

R-symmetry of four-dimensional N = 2 theories.

In the following, we will specialise to the case where the D4 branes have finite

extension in the x6 direction, as we are interested in macroscopic four-dimensional

theories, and are stretched between parallel NS5 branes. Moreover, all the D4 and

NS5 branes are at x7 = x8 = x9 = 0, while the D6 branes are at x4 = x5 = 0.

Let us now point out a nice phenomenon that takes place when moving branes first

noted by Hanany and Witten in type IIB string theory. They argued that, whenever

a D5 branes moves past an NS5 brane, a D3 brane between them is created (or

annihilated). The same applies to type IIA string theory: whenever a D6 brane moves

past an NS5 brane we have that a D4 brane is created (or annihilated) between them.

As a matter of fact, it turns out that brane webs with inequivalent low-energy physics

are characterised by a set of topological invariants, called Linking Numbers. There are

two natural definitions of Linking Numbers, Ki and Lj, for the i-th NS5 brane and

the j-th D6 brane, respectively. These are given by

Ki = N right

D4,i
�N left

D4,i
�N right

D6,i
,

Lj = N right

D4,j
�N left

D4,j
+N left

NS,j
,

(1.14)

where N right

D4
(N left

D4,i
) is the number of D4 branes ending on the i-th NS5 brane from

the right (left) and N right

D6,i
is the number of D6 branes placed on the right of the i-th

NS5 brane in a generic brane web. Likewise, N left

NS,j
is the number of NS5 branes

on the left of the j-th D6 brane. As shown in [28], they must satisfy the following
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conservation equation
N5X

i=1

Ki +
N6X

j=1

Lj = 0 . (1.15)

Later in this chapter, we will show how these Linking Numbers can be computed

holographically from the gravity solution given by the backreaction of generic D4, D6

and NS5 branes on to the geometry.

Since theD4 branes have finite extension in the x6 direction, the low-energy physics

will be e↵ectively four-dimensional. We will discuss the low-energy limit of brane

dynamics in a somewhat quantitative way in a moment. For now, let us spell out the

field content arising from the quantisation of open strings for the brane web in (1.1).

Open strings stretched between, say kn, coincident D4 branes give rise to an N = 2

super Yang-Mills theory with gauge group U(kn). Witten showed that the U(1) factor

inside each U(kn) decouples from the dynamics at low energies, leaving as a total gauge

group
Q
SU(kn) [26]. Strings stretched between adjacent D4 branes, say between

kn�1 and kn D4 branes, gives rise to N = 2 hypermultiplets in the bifundamental

representation (kn�1, k̄n) of adjacent gauge groups. Also, D4 � D6 strings stretched

between kn D4 branes and dn D6 branes give rise fundamental hypermultiplets in the

representation kn.

The field theory built in this way is then a quiver gauge field theory with N = 2

supersymmetry and is represented in Figure 1.1.

The one-loop beta function for each gauge group SU(kn) is given by

b0,n = �2kn + kn�1 + kn+1 + dn , (1.16)

and the N = 2 theory is conformal if the beta function vanishes7 for each n. This can

be seen as a condition on the number of flavours (dn)

dn = 2kn � kn�1 � kn+1 . (1.17)

The classical gauge coupling for each gauge node is read o↵ from the DBI action

for a D4 brane after reducing over the interval [x6

i
, x6

i+1
] and reads

1

g2
n

=
x6

i+1
� x6

i

gsls
, (1.18)

7
N = 2 supersymmetry forbids any further correction beyond one loop (and in fact even non-

perturbatively), as it happens instead in N = 1 theories.
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. . .

. . .

. . . . . .

1 2 3 p + 1pp � 1

x6

x4,5

x7,8,9

� � � �

d1 d2 dp�1 dp

k1 k2 kp�1 kp

k1 D4
k2 D4 kp�1 D4 kp D4

d1 D6
d2 D6 dp�1 D6 dp D6

Figure 1.1: The quiver and Hanany-Witten setup for a generic situation. The vertical
lines denote individual NS5 branes extended along the (x4, x5) space. The horizontal
lines denote D4 branes, extended along x6, in between fivebranes. The crossed-circles
represent D6 branes, that extend along the (x7, x8, x9) directions. All the branes share
the Minkowski directions. Such a brane configuration realises the isometry SO(1, 3)⇥
SO(3)⇥ SO(2).

where gs and ls are the string coupling and length, respectively. In order to have

a finite YM coupling in the low-energy limit (ls ! 0), adjacent NS5 branes must

be close to each other in string units. We have strong coupling when the distance

between NS5 branes goes to zero in units of the string length. This particular limit,

as we shall see later, is particularly useful when employing a holographic description

for the four-dimensional quiver field theories.

As we are studying four-dimensional field theories, we might wonder how the theta

angle for each gauge node ✓n is encoded in the brane description. It turns out that

it is not immediately visible in type IIA tring theory, but becomes apparent when we

uplift to M-theory. It is believed that M-theory on R1,9
⇥ S1 is equivalent to type IIA

string theory on R1,9. If we denote the eleventh coordinate by x10, and we take it to

have period of 2⇡R10, with R10 = gsls, the theta angle for each gauge group SU(kn)
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is given by the di↵erence between the position of the (n+ 1)th and nth M5 branes

✓n =
x10

n+1
� x10

n

gsls
. (1.19)

Let us make a few more remarks before ending this section. As the eleventh

dimension depends on the string coupling, it turns out that the strong coupling limit

of Type IIA string theory is better understood in M-theory, where one additional

dimension shows up. This is somehow di↵erent from Type IIB string theory, which

enjoys a strong/weak self-duality.

As we said before, M-theory on R1,9
⇥ S1 is equivalent to type IIA string theory

on R1,9. Thus, it should be possible to reinterpret every object in Type IIA string

theory in M-Theory. It turns out that, as showed by Witten in [26], reinterpreting

D4 and NS5 branes as M5 branes in M-theory (and D6 branes as KK-monopoles),

it is possible to find explicit “solutions” for a large family of four-dimensional N = 2

field theories with zero or negative beta function. In full generality, by “solving” a

theory we usually mean that we want to understand as many things as possible from

it. One large piece of information is to understand what the theory flows to in the IR.

As a matter of fact, it turns out that there is a one-to-one correspondence between the

quantum vacua of N = 2 SYM and supersymmetric configurations of an M5 brane

with worldvolume R1,3
⇥ ⌃, with ⌃ a (complex) curve in a (real) four-dimensional

space whose equation can be written down explicitly. This is quite a huge subject that

has had a prolific continuation both in mathematics and physics. Some of the most

significant follow-ups include [29, 30, 14, 31]. See also [32, 33] and references therein.

Let us now move on to the holographic description of the quantum field theories

just introduced.

1.1.3 LLM solutions in M-theory

The aim of this subsection is to briefly review the M-theory solutions found by

Lin, Lunin and Maldacena (LLM) [12] dual to some four-dimensional N = 2 theories

constructed in [14]. We will see later that assuming an extra U(1) symmetry in M-

theory allows us to find in Type IIA the holographic duals to the quiver gauge theories

discussed in the previous subsection.

In holography, global symmetries of a field theory are usually realised as isometries

of the dual background. The most general solution in eleven dimension realising the
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four-dimensional N = 2 superalgebra, su(2, 2|2), preserving sixteen supercharges was

found in [12]. In particular, in order to realise geometrically the so(2, 4)�su(2)R�u(1)r

subalgebra, the authors of [12] considered an eleven-dimensional spacetime with AdS5,

S2 and S1 subspaces. The remaining three-dimensional space is not determined by

symmetry and is parametrised by three coordinates, (x1, x2, y). In a convenient form,

the full background reads

ds2

2/3
= 4f1ds

2

AdS5
+ f2ds

2

S2 + f3(d� + Aidx
i)2 + f4dy

2 + f5�ijdxidxj

G(4) = dA(3) = F(2) ^
dvolS2 ,

(1.20)

where the warping factors are

f1 = e2�̃ , f2 = y2e�4�̃ , f3 = 4e2�̃(1� y2e�6�̃) ,

f4 =
e�4�̃

1� y2e�6�̃
, f5 = f4e

D , Ai =
1

2
✏ij@jD , (1.21)

whereas F(2) is given by

F(2) = 2

ñ
(d� + Aidx

i) ^ d(y3e�6�̃) + y(1� y2e�6�̃)dAi ^ dxi
�

1

2
@ye

Ddx1
^ dx2

ô
.

(1.22)

The function �̃ is given in terms of the function D through

e�6�̃ = �
@yD

y(1� y@yD)
. (1.23)

It was shown in [12] that, in order for the background to preserve sixteen real

supersymmetries and the equations of motion to be satisfied, the function D has to

satisfy the following Toda equation

(@2
x1

+ @2
x2
)D + @2

y
eD = 0 . (1.24)

Boundary conditions for the Toda equation

Solutions to the equation (1.24) must be supplemented with some boundary condi-

tions in order for the background in (1.20) to be regular everywhere. We discuss them

in turn.
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Regularity of the metric at y = 0, where the S2 collapses to zero size, requires that

@yD|y=0 = 0 , eD|y=0 = finite , (1.25)

in such a way @yD/y has smooth finite limit when y approaches zero. Moreover, we

should take into account that our theory is realised on D4 branes stretched between

NS5 branes. The latter, when uplifted to M-theory, become M5 branes and therefore

we need to have a non-trivial four-cycle that supports a non-trivial flux for G(4).

This is achieved by demanding that the S1 shrinks at some finite value y = yc. A

non-trivial four-cycle, call it M4, is then given by S2
⇥ S1 warped over the interval

Iy = {y|0  y  yc}. In other words, the fact that the S1 shrinks at y = yc makes the

spacetime terminate in the y direction at y = yc, and we can then define a compact

four-cycle as just stated. From the metric (1.20), this is achieved by demanding that

lim
y!yc

@yD =1 , (1.26)

which, in turn, implies that

lim
y!yc

e�6�̃ =
1

y2
c

. (1.27)

Then regularity of the metric (we want the f5 in (1.21) and the background with it to

be finite when y ⇠ yc) demands

eD|y⇠yc ⇠ y � yc . (1.28)

The four-form flux on M4 then reads

Z

M4

G(4) = 
Z

S2

dvolS2

Z

S1⇥Iy

F2|xi=const

= (4⇡)2
Z

yc

0

dy@y(y
3e�6�̃)

= (4⇡)2yc .

(1.29)

Notice that to get this result we used all the boundary conditions above. Setting

 = ⇡

2
l3
p
, we find that yc must be a positive integer number.

Finally, let us just mention that if we want to add explicit M5 brane sources to

the background we must modify the Toda equation (1.24) as to have singular sources
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located at x = x(i)

0 and extended along y in the following fashion

(@2
x1

+ @2
x2
)D + @2

y
eD = �2⇡�(2)(x� x(i))✓(2N5 � y) . (1.30)

1.1.4 Solution with an extra U(1) symmetry

The equation (1.24) is notoriously di�cult to solve and explicit eleven-dimensional

background are di�cult to find. Nonetheless, there is a way of simplifying the problem

by assuming that the background has an additional isometry generated by the Killing

vector @x1 . In this way, we can reduce the eleven-dimensional M-theory background

to the ten dimensions of type IIA supergravity. This is most conveniently (though not

easily) done by considering an implicit change of coordinates where the function D

and the coordinates (x2, y) are traded for a new function V and coordinates (�, ⌘) in

the following way

eD = �2 , y = �@�V x2 = @⌘V . (1.31)

It turns out that [13], with the change of variables (1.31), the Toda equation (1.24)

reduces to a linear partial di↵erential equation for V ,

V̈ + �2V 00 = 0 , V̇ ⌘ �@�V , V 0 = @⌘V . (1.32)

The string frame metric reads

ds2

↵0µ2
= 4f1ds

2

AdS5
+ f2(d�

2 + d⌘2) + f3ds
2

S2 + f4d�
2 , (1.33)

where, the quantity µ2 = L2/↵0 indicates the size of the spacetime in units of ↵0. The

remaining NS-NS fields read

e2� = f8 , B(2) = µ2↵0f5dvolS2 , (1.34)

while the R-R fields are

C(1) = µ4↵01/2f6d� , C(3) = µ6↵03/2f7d� ^dvolS2 . (1.35)
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The warping factors are given by8

f1 =

 
2V̇ � V̈

V 00

! 1
2

, f2 = f1
2V 00

V̇
, f3 = f1

2V 00V̇

�
, f4 = f1

4V 00

2V̇ � V̈
�2

f5 = 2

 
V̇ V̇ 0

�
� ⌘

!

, f6 =
2V̇ V̇ 0

2V̇ � V̈
, f7 = �

4V̇ 2V 00

�
, f8 =

 
4(2V̇ � V̈ )3

µ12V 00V̇ 2�2

! 1
2

,

(1.36)

while � is given by

� = (2V̇ � V̈ )V 00 + (V̇ 0)2 . (1.37)

For future purposes, it is useful to uplift the backgrounds (1.33), (1.34) and (1.35)

to M-theory. Such a procedure is explained in Appendix B and gives the result

ds2

2/3
= 4F1ds

2

AdS5
+ F2(d�

2 + d⌘2) + F3ds
2

S2 + F4d�
2 + F5(dy + Ãd�)2

A(3) = (F6d� + F7dy) ^dvolS2 ,
(1.38)

where the warping factors are

F1 =

 
V̇�

2V 00

!1/3

, F2 = F1

2V 00

V̇
, F3 = F1

2V 00V̇

�
, F4 = F1

4V 00

2V̇ � V̈
�2 ,

F5 = F1

2(2V̇ � V̈ )

V̇�
, F6 = �4

V̇ 2V 00

�
, F7 = 2

 
V̇ V̇ 0

�
� ⌘

!

, Ã =
2V̇ V̇ 0

2V̇ � V̈
,

(1.39)

where we have that 2/3 = µ4↵0.

Boundary conditions for the Laplace equation

Just as for the case of the Toda equation, the solution to the Laplace equation (1.32)

must be supplemented with boundary conditions in order for the background (1.33),

(1.34) and (1.35) to be regular everywhere (again, except at points where brane sources

are located). These can be found just by inspection of the ten dimensional background

or by translating the boundary condition for the Toda equation to the ten-dimensional

case. In either case we find that these are easily expressed in terms of V̇ by demanding

8We use the same symbols fi for the warping factors as in (1.21). Hopefully this will not cause
any confusion.
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that9

V̇ |⌘=0,⌘c = 0 . (1.40)

Moreover, it turns out to be useful to define the following quantity

� = V̇ |�=0 . (1.41)

Quantisation of fluxes imposes non-trivial conditions on what forms on �. In par-

ticular, it turns out that [13]

• � must be piecewise linear and continuous, made of segments of the form � =

ai⌘ + qi, with ai 2 Z

• �(0) = �(⌘c) = 0

• the change of the gradient of � at a kink must be a non-positive integer, i.e.

ai � ai�1 2 Z0

• The positions of the kinks along the ⌘ axis must appear at integer values for ⌘.

1.1.5 Generic solutions to the Laplace equation

In the following, we shall consider two di↵erent types of solutions to the Laplace

equation (1.32). The first type of solution, call it V1(�, ⌘), is well defined for the whole

range of the � coordinate, and was first discussed in [34, 35]. The second type of

solutions, call it V2(�, ⌘), should be thought of as series expansion close to � = 0, and

is a generalisation of a solution already presented in [36, 37]. The potentials in each

case read

V1(�, ⌘) = �
1X

n=1

cn
wn

K0(wn�) sin(wn⌘), wn =
n⇡

N5

. (1.42)

V2(�, ⌘) = F (⌘) +G(⌘) log � +
1X

k=1

�2k
Ä
hk(⌘) + bfk(⌘) log �

ä
. (1.43)

The coe�cients cn in equation (1.42) can be thought of as the Fourier coe�cients of

the odd-extended function �(⌘) – see equation (1.41) – in the interval [�N5, N5]. More

9⌘c determines the end of the space in the ⌘ direction. The fact that the space is compact in
the ⌘ direction comes about in a similar fashion to the compactness of y for the eleven-dimensional
spacetime. This will be further discussed later in this section.
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in detail

cn =
n⇡

N2
5

Z
N5

�N5

�(⌘) sin(wn⌘)d⌘ , wn =
n⇡

N5

. (1.44)

On the other hand, the functions hk, bfk in equation (1.43) can be given explicitly in

terms of the input functions F (⌘), G(⌘) according to the following recursive relations

h1(⌘) =
1

4
(G00(⌘)� F 00(⌘)) , bf1(⌘) = �

1

4
G00(⌘),

hk(⌘) = �
1

4k2

Ä
h00

k�1
(⌘)�

1

k
bf 00

k�1
(⌘)
ä
, bfk(⌘) = �

1

4k2

bf 00

k�1
(⌘) , (1.45)

with k = 2, 3, 4 . . .

Making use of the equation (1.42), we obtain the following nice expression for �(⌘)

�(⌘) = �@�V1(�, ⌘)|�=0 =
1X

n=1

cn
wn

sin(wn⌘) , (1.46)

whereas, from the equation (1.43), we find

�(⌘) = �@�V2(�, ⌘)|�=0 = G(⌘). (1.47)

Because of the asymptotic behaviour of the modified Bessel function K0(�) at

infinity10, we find that V1 is vanishingly small at infinity. Actually, the fact that V

vanishes su�ciently fast when � =1 is a necessary condition, as in the following we

will be computing integrals over the coordinates of the internal manifold (thus, over

�) in order to get the holographic central charge. Convergence of such integrals is in

general achieved if V goes to zero fast enough at � = 1. We will see that this is

always the case for the physical backgrounds we will consider.

Convergence properties of the solution V2 are less clear. For this reason, in the rest

of this chapter, we will be mainly concerned with solutions to the Laplace equation in

the form given in equation (1.42).

In Appendix C we quote the series expansions for all the warping factors appearing

in the background close to � = 0 and � =1, computed using the profiles for V given

in equations (1.42), (1.43).

Let us now move on to the discussion of the detailed correspondence between the

backgrounds in equations (1.33), (1.34) and (1.35) and the conformal field theories of

10K0(z) ⇠ e�z
p

z
close to z = 1. Asymptotic expansions of this kind will be reviewd in Appendix

C.
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interest.

1.1.6 Correspondence with a conformal quiver field theory

The quantum field theories we are interested in are N = 2 SCFTs with gauge

symmetry given as the product of many gauge groups, SU(k1)⇥SU(k2)⇥....⇥SU(kn).

Thus, the field theories possess n N = 2 vector multiplets, n � 1 hypermultiplets

transforming in the bifundamental of each pair of consecutive gauge groups and a set

of hypers (behaving as flavours) transforming in the fundamental of each gauge group.

The condition of zero beta function, namely that for each gauge factor the number of

colours equals twice the number of flavours, gets translated to

2ki = di + ki+1 + ki�1 , (1.48)

with i = 1, . . . , n. We denote by di the number of fundamental hypers for the i-th

group and with ki+1 and ki�1 the ranks of the two groups neighboring the i-th node.

Following [38], we can define the “forward and backwards lattice derivatives”

@+ki = ki+1 � ki , @�ki = ki � ki�1 . (1.49)

In terms of @±, the condition that all the beta functions vanish reads

di = 2ki � ki+1 � ki�1 = �@+ki + @�ki = �@+@�ki . (1.50)

Since the number of fundamental hypers di is non-negative, we find that @+@�ki  0,

for each i = 1, . . . , n. We will refer to this property as the “convexity” of the rank

function ki. Let us also define the “slope function”

si = ki � ki�1 = @�ki , (1.51)

from which we read o↵ that the number of flavours at each node is given by

di = �@+si . (1.52)

Again, given that di � 0, we find @+si  0. This simply means that the slope func-

tion, understood as a function of the discrete variable i, is monotonically decreasing.

It is in general possible to give a “continuum version” of the lattice derivatives and
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slope function just defined. Let us see how this works out. Define the “rank function”

R(⌘), where ⌘ parametrises the “field theory space”, i.e. the direction along which

gauge and flavour groups are distributed. The first derivative of R(⌘) gives us the

slope, R0 = s, while the second derivative the number of fundamentals, �R00 = d. Let

us clarify this with a generic example.

Consider the quiver of Figure 1.2. For this quiver to represent an N = 2 SCFT,

k1 k2 k3 k4

d1 d2 d3 d4

Figure 1.2: A generic quiver. The squares indicate flavour groups and the circles gauge
groups.

the following conditions must be satisfied

d1 = 2k1 � k2 , d2 = 2k2 � k1 � k3 ,

d3 = 2k3 � k2 � k4 , d4 = 2k4 � k3 . (1.53)

We then construct the rank function

R(⌘) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

k1⌘ 0  ⌘ < 1

(k2 � k1)(⌘ � 1) + k1 1  ⌘ < 2

(k3 � k2)(⌘ � 2) + k2 2  ⌘ < 3

(k4 � k3)(⌘ � 3) + k3 3  ⌘ < 4

�k4(⌘ � 4) + k4 4  ⌘  5.
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Computing R0(⌘) we find the piecewise discontinuous function

R0(⌘) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

k1 0  ⌘ < 1

(k2 � k1) 1  ⌘ < 2

(k3 � k2) 2  ⌘ < 3

(k4 � k3) 3  ⌘ < 4

�k4 4  ⌘  5.

Each entry in R0(⌘), (k1, k2 � k1, . . . ), is nothing but the di↵erence between the rank

of two adjacent gauge groups, what we called “slope function” in (1.51). Moreover,

if we calculate �R00(⌘) we find precisely the function that gives us the number of

fundamental hypermultiplets at each gauge group

d(⌘) = �R00(⌘) =(2k1 � k2)�(⌘ � 1) + (2k2 � k1 � k3)�(⌘ � 2)

+ (2k3 � k2 � k4)�(⌘ � 3) + (2k4 � k3)�(⌘ � 4) .
(1.54)

Indeed, according to equation (1.53), (1.54) simply tells us that we have d1 = 2k1� k2

fundamental hypers connected to the first gauge group SU(k1), d2 = 2k2 � k1 � k3

connected to the second, and so on.

The connection between the gravitational picture and the field theory comes from

the identification of the functions

�(⌘) = R(⌘). (1.55)

This is a non-trivial step as it relates the “field theory space” with the space coordinate

⌘ in IIA or M-theory background [13].

The logic to follow is then clear. First choose a conformal quiver field theory. Then

write the rank function R(⌘) and use this function as the boundary condition for the

Laplace-like problem in equation (1.32) setting �(⌘) = R(⌘).

Trustability of the holographic description

The validity of the supergravity solutions in (1.33), (1.34) and (1.35) was carefully

analysed in [35]. Such backgrounds have physical D6 and NS5 branes, and close to

these branes both scalar curvature invariants (in units of ↵0) and the string coupling

become large. In general, we cannot trust holographic calculations in regions of the
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spacetime where gs = e� and/or ↵
0

Reff
are arbitrary large.

Another way to look at this is to consider our backgrounds as defining a two-

dimensional manifold V = V (�, ⌘) in a three-dimensional space parametrised by three

coordinates (�, ⌘, V ). The points in the �, ⌘ space at which the D6 and NS5 branes

are located are singular points on this manifold. The information obtained after holo-

graphic calculations close to those points is not reliable.

The idea then would be to “localise” the singluar regions in small patches on the

manifold defined by V = V (�, ⌘) close to the singular points. In order to do this, it

was suggested in [35] that one has to take N5 (the range of the ⌘-coordinate) to be

very large, hence dealing with long-linear quivers. We could also scale the function

�(⌘) ! Nc�(⌘). In this way we are changing the number of D4 and D6 branes

(but keeping the number of NS5 branes fixed) having good control over string loop

corrections (in a ’t Hooft limit, with gsN4 fixed). Similarly, rescaling of the ⌘ coordinate

increases the number of fivebranes reducing curvature divergences.

To sum up, we shall consider in all our comparisons between SCFTs and holo-

graphic results the range of the ⌘ coordinate N5 to be very large. Also the function

�(⌘) is considered to be scaled up by a large factor Nc. Nc will turn to be proportional

to the number of D4 and D6 branes as we explain below.

1.1.7 Page Charges

In this section we work out the Page charges associated with the background above.

As it is well known [39], it is this kind of charges that is conserved, localised and

quantised, even though they are not invariant under (large) gauge transformations.

As we will see in the coming sections, they imply the quantisation of some constants

directly related to the number branes present in the supergravity background.

Let us briefly revisit the idea behind the Page charges. First of all, we aim at

writing the modified Bianchi identities as the exterior derivative of some di↵erential

forms. When external sources are present, it is this exterior derivative that identifies

a current and the corresponding charge. Let us see how this works for the case of D4

branes. The modified Bianchi identity for F(4) is11

dF(4) �H(3) ^ F(2) = 0 . (1.56)

11See Appendix IV at the end of the thesis where equations and conventions of Type IIA super-
gravity are reviewed.
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An easy computation reveals that such an equation can be re-written as

d
Ä
F(4) � F(2) ^B(2) +

F(0)

2!
B(2) ^B(2)

ä
= 0 , (1.57)

The term in parenthesis is the closed di↵erential form we are looking for and, in

presence of sources, this equation would read

d
Ä
F(4) � F(2) ^ B(2) +

F(0)

2!
B(2) ^B(2)

ä
= ?jPage

D4
. (1.58)

This equation gives us the definition of Page form “F(4) as the term in parenthesis,

together with Page current ?jPage
D4

. Given such a definition, the Page current is auto-

matically conserved and localised. The corresponding charge is given by

QD4 =
1

(2⇡)3

Z

M5

d“F(4) =
1

(2⇡)3

Z

@M5

“F(4) , (1.59)

for some compact five-manifold M5.

“F(4) has a nice expression as a rank-four form in the polyform “F(k) = (F ^e�B(2))(k).

It turns out that the fluxes “F(k) are closed and provide a good definition of quantised

charges associated with all the fluxes. They are usually referred to as Page fluxes or

Page di↵erential forms. The general expression for the Page charge of a Dp brane is

therefore given by12

(2⇡)7�pgs↵
0
7�p
2 QDp =

Z

M8�p

“F(8�p) , (1.60)

where M8�p is any (8� p)-dimensional compact manifold.

Let us now move on to computing the Page charges associated with a generic

Gaiotto-Maldacena background. These charges are identified with the number of

branes in the associated Hanany-Witten set-up.

Using the expressions for the fields in equation (1.34) and (1.35), we find for the

NS-NS H(3) field

H(3) = dB(2) = µ2↵0 (@�f5d� + @⌘f5d⌘) ^dvolS2 , (1.61)

12The ten-dimensional gravitational constant and the brane tension are related to the string cou-
pling and length by 22

10TDp = (2⇡)7�pgs↵0 7�p
2 .
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while for the R-R sector

“F(2) = µ4↵0
1
2 (@�f6d� + @⌘f6d⌘) ^ d� ,

“F(4) = µ6↵0
3
2 [(@�f7 � f5@�f6)d� + (@⌘f7 � f5@⌘f6)d⌘]dvolS2 ^ d�

(1.62)

Let us specify the non-trivial cycles over which we are going to integrate the Page

fluxes

⌃2 =(�, ⌘)|�=0 , ⌃3 = (⌘,�, ⇠)|�=0 , ⌃̃3 = (⌘,�, ⇠)|�=1, ⌃4 = (�, ⌘,�, ⇠)|�=0.

(1.63)

We then find for the NS5 branes

QNS =
1

(2⇡)2g2
s
↵0
µ2↵0

Z
dvolS2

Z
⌘f

0

d⌘ @⌘f5(�, ⌘)|�=0 =
µ2

g2
s
⇡
[f5(0, ⌘f )� f5(0, 0)] ,

Q̃NS =
1

(2⇡)2g2
s
↵0
µ2↵0

Z
dvolS2

Z
⌘f

0

d⌘ @⌘f5(�, ⌘)|�=1 =
µ2

g2
s
⇡
[f5(1, ⌘f )� f5(1, 0)] ,

(1.64)

while for D6 branes

QD6 =
1

2⇡gs↵0
1
2

µ4↵0
1
2

Z
2⇡

0

d�
Z
⌘f

0

d⌘ @⌘f6(�, ⌘)|�=0 =
µ4

gs
[f6(0, ⌘f )� f6(0, 0)] . (1.65)

In what follows, we will set gs = 1 and use the expansion for the functions f5, f6, f7

quoted in Appendix C. It is then easy to see that the number of NS5 branes is given

by

QNS5 = Q̃NS5 =
2µ2

⇡
⌘f , (1.66)

while the number of D6 reads

QD6 = µ4(�0(0)� �0(⌘f )) . (1.67)

If we choose µ2 = ⇡

2
, we find that ⌘f is quantised to be an integer. Thus, from now

on we set ⌘f = N5 with N5 2 Z�0. Of course, for physically sensible solutions N5 � 2.

What about the quantisation of D6 branes? Let us again consider the example of

Figure 1.2. The quantity �0(0)� �0(⌘f ) is easily computed to be k1 + k4 (of course an

integer number). In order to get a well-quantised number of D6 branes let us rescale �

such as �! Nc�, with Nc any number. This is of course always possible as the Toda
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equation (1.24) is a linear equation. Defining N6 = ⇡
2

4
Nc, an integer, it is a trivial

matter to see that, for the example in Figure 1.2,

QD6 =
Å⇡
2

ã2
Nc(k1 + k4) =

4X

i=1

di . (1.68)

So not only QD6 is a well-quantised integer, but it also reproduces the correct number

of flavours in our theory. We will see in this chapter more examples of these formulas

at work.

The calculation of the D4 brane charge is more subtle. Let us compute the Page

charge associated with D4 branes

q4 =
1

(2⇡)3↵0
3
2

Z

⌃4

“F4

=
1

(2⇡)2
4⇡µ6

ï
f7(0, ⌘f )� f7(0, 0))�

Z
⌘f

0

f5(0, ⌘)@⌘f6(0, ⌘)d⌘
ò

=
2

⇡
µ6⌘f�

0(⌘f ) .

(1.69)

Again, referring to the example of Figure 1.2, it is fairly easy to see that q4 does not

reproduce the charge of D4 brane. The reason relies on the fact that upon Hanany-

Witten transition the number of D4’s is not conserved in each interval. We will next

what is the physical meaning of equation (1.69).

It is then necessary to find a new formula that counts the number of D4 branes

properly. Fortunately, this is possible and the correct formula for counting D4 brane

charge is given by

QD4 =
2

⇡
µ6

Z
⌘f

0

�(⌘)d⌘. (1.70)

The proof of such a formula is given in Appendix D. In this section we limit ourselves

to see that it works well in some interesting examples.

Making use of the fact that µ2 = ⇡

2
and N6 = ⇡

2

4
Nc, it is not di�cult to see that

(1.70) reproduces the correct number of colour branes for the example of Figure 1.2.

In Section 1.2 we shall test equations (1.66), (1.67) and (1.70) in di↵erent examples.

Now, let us move on to deriving some general expressions for the linking numbers.
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1.1.8 Linking numbers

The linking numbers for general brane webs in string theory were defined by Hanany

and Witten in [28]. In this work, we are dealing with brane webs constructed from

the intersection of D4 and NS5 branes, together with transverse D6 branes. For the

sake of readability, we present again the definition of the linking numbers for the ith

fivebrane (Ki) and for the jth D6 brane (Lj)

Ki = N right

D4
�N left

D4
�N right

D6
,

Lj = N right

D4
�N left

D4
+N left

NS

(1.71)

As shown in [28], they must satisfy the following conservation equation

N5X

i=1

Ki +
N6X

j=1

Lj = 0 . (1.72)

The linking numbers are topological invariants and they do not change under Hanany-

Witten moves. They can be easily computed by simple counting of branes in a brane

web. The goal of this subsection is to use the dual supergravity background to compute

these invariants.

As a matter of fact, for the case of the NS5 branes, we find that in our generic

conformal backgrounds the linking numbers are all equal K1 = K2 = · · · = KN5. This

is easily seen by using the formula (1.71) applied to any NS5 brane in a generic brane

web of the kind studied in this chapter. A simple proposal that can be pushed for-

ward for the holographic computation of the linking numbers is given by the following

formula

Ki =
2

⇡
µ6�0(⌘f ) . (1.73)

The sum of all the linking numbers simply gives

N5X

i=1

Ki =
2

⇡
µ6�0(⌘f )⌘f . (1.74)

where we used that ⌘f = N5. Going back to the equation (1.69), we see that
PN5

i=1 Ki

is given by
N5X

i=1

Ki =
1

2210TD4

Z

⌃4

“F4 . (1.75)

where, again, we take ⌃4 = (⌘,�, ⇠, �)|�=0, as specified in equation (1.63).
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It is possible to obtain also a nice expression for the linking number of theD6 branes

using the supergravity background. In a general Hanany-Witten setup, stacks of D6

branes are placed at di↵erent points ⌘1, ⌘2, ....⌘l along the ⌘ direction. As explained

previously in this chapter, the number of D6 branes for each stack, say the jth, is in

general given by �0(⌘j � ✏)� �0(⌘j + ✏). Also, all the branes in the j-th stack have the

same linking number13 Lj = ⌘j. If we sum over all the D6 branes (the total number

of D6 branes is N6) we get

X

j

Lj = �
2µ6

⇡

N6X

j=1

�0(⌘j)⌘j = �
2µ6

⇡
�0(⌘f )⌘f . (1.76)

To calculate this explicitly in supergravity, we perform a large gauge transformation

on the field C(1) at each point ⌘i where the stacks of D6 branes are placed,

C(1) ! C(1) + µ4↵0
1
2 (�0(⌘j � ✏)� �

0(⌘j + ✏)) d�. (1.77)

We equate the D6 linking numbers with the flux that we calculate on the four manifold

⌃̃4 = (⌘,�, ⇠, �)|�=1. We propose the formula

N6X

i=1

Li =
1

2210TD4

Z

⌃̃4

F(4) + C(1) ^H(3) = �
2

⇡
µ6�0(⌘f )⌘f . (1.78)

In Section 1.2 and in Appendix E, we evaluate the expressions of equations (1.75),

(1.78) in various examples and check them against the expressions derived from the

Hanany-Witten set-up, finding a precise match.

Let us now discuss another observable characterising the CFT that has a nice

holographic description, the central charge.

1.1.9 Central charge for Gaiotto-Maldacena backgrounds

The aim of this subsection is to find an holographic expression for the central charge

of a generic N = 2 SCFT of the type we are describing in this chaper by using the

solutions of (1.33), and (1.34) and (1.35). In order to achieve this goal we are going

to make use of the formalism developed in [40, 41, 42].

13Remember that for us ⌘j = 1, 2, 3, . . . , N5, where N5 is the number of NS5 branes. Applying the
formula (1.71) to any of the D6 branes of the j-th stack simply amounts to computing Lj = 0�0+⌘j .
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Consider the background metric given in equation (1.33) and rewrite it in the

following fashion

ds2 = a(R, y)(dx2

1,3
+ b(R)dR2) + gij(R, y)dyidyj , (1.79)

where R stands for the AdS5 radius while yi denote collectively the coordinates of

the internal space. dx2

1,3
is simply the metric of four-dimensional Minkowski space,

whereas gij is the metric of the internal space.

Using Poincaré coordinates for the AdS part of the ten-dimensional metric and

comparing with equations (1.33), we identify

a(R, yi) = 4µ2↵0R2f1 , b(R) = 1/R4 . (1.80)

Following [40], we can define the quantities

Vint =
Z

dy
»
e�4� det(gij)a(r, ✓)d , cH = V

2

int
(1.81)

The holographic central charge, when the dual CFT is (d + 1)-dimensional, is then

defined as

cholo =
dd

GN

b(R)d/2
cH

2d+1
2

(cH 0)d
. (1.82)

Note that in our case we have

»
e�4� det gija(R, yi)3 = 25↵04µ14R3� sin�V 00V̇ . (1.83)

Thus, the “internal volume” Vint reduces to

Vint = 25↵04µ14R3

Z
⇡

0

sin�d�
Z

2⇡

0

d�
Z

2⇡

0

d⇠
Z

1

0

Z
⌘f

0

�V̇ V 00d�d⌘

= NR3 ,
(1.84)

where we have defined the quantity

N = 27⇡2↵04µ14

Z
⌘f

0

�2(⌘)d⌘. (1.85)

To get to the last expression we have used equation (1.32), the fact that V̇ (�, ⌘)|�=1 =

0 and the definition of �(⌘) given in equation (1.41). The integral in (1.85) can be
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explicitly evaluated for the generic solution in equation (1.42) as

Z
⌘f

0

d⌘V̇ 2
|�=0 =

1X

m=1

1X

l=1

cmcl
ml

N2

5

⇡2

Z
⌘f

0

sin!m⌘ sin!l⌘d⌘ . (1.86)

We finally obtain for Vint

Vint = 27⇡2↵04µ14R3

Z
⌘f

0

�2(⌘)d⌘

= 26N3

5
R3↵04µ14

1X

m=1

c2
m

m2
.

(1.87)

Now, coming back to our original goal, we find for the central charge

c =
2µ14

⇡4

Z
N5

0

�2(⌘)d⌘ =
N3

5
µ14

⇡6

1X

m=1

c2
m

m2
. (1.88)

The last expression tells us that the central charge is proportional to the area

subtended by the function �2(⌘). These formulas are similar to those derived in dual

to six dimensional SCFTs with N = (1, 0) SUSY, see equation (2.14) of the paper

[43].

On the CFT side, it was shown by the authors of [44] that an expression for the

two central charges14 a and c characterising a four-dimensional superconformal N = 2

theory can be written in terms of the number of N = 2 vector multiplets (nv) and

hypermultiplets (nh) in the quiver. The expressions read

a =
5nv + nh

24⇡
, c =

2nv + nh

12⇡
. (1.89)

The comparison with the holographic result in equation (1.88) holds only when the

IIA/M-theory background is trustable, that is when N5 !1 and Nc !1, in which

case we also have a = c. In Section 1.2 and in Appendix E, we shall compare the result

of equation (1.88) with the explicit field theoretical counting of degrees of freedom in

equation (1.89), for various examples.

To summarise, in this section we discussed some observables of generic N = 2

SCFTs (brane charges, Linking Numbers, central charges) and presented some expres-

14In d = 4 the trace of the energy momentum tensor on a curved background is given by Tµ
µ =

�aE4 � cI4, where E4 is the four-dimensional Euler density while I4 is a conformal invariant built
from the Weyl tensor. Thus, in 4d it is possible to define two conformal charges. In d = 2 there is no
conformal invariant of the right dimension and we have only the Euler density.
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sions computed using generic holographic dual backgrounds. In the next section, we

will study some particular CFTs and check the matching of physical observables using

the holographic and field theoretical description.

1.2 Examples of N = 2 SCFTs

In this section we work out two particularly simple and interesting examples for the

potential function V in the form given in equation (1.42). We will explicitly check

that the field theory and the holographic calculation match in the limit in which the

supergravity description is trustable. In Appendix E we will discuss more elaborated

CFTs, again obtaining a precise matching.

Let us first present the two basic examples that we will consider in this section.

1.2.1 Two interesting solutions of the Laplace equation

The first solution we deal with was already considered in [45] in the study of the

non-Abelian T-dual of AdS5 ⇥ S5. The charge density, or �-profile, reads15

�(⌘) = Nc

8
<

:
⌘ 0  ⌘  N5 � 1

(N5 � 1)(N5 � ⌘) N5 � 1 < ⌘  N5.
(1.90)

In this case, the Fourier coe�cients in equations (1.42) and (1.44) are computed to be

cm =
2NcN5

m⇡
sin

Ç
m⇡(N5 � 1)

N5

å
. (1.91)

The associated quiver and Hanany-Witten set-up are shown in Figure 1.3.

The second solution has a �-profile given by

�(⌘) = Nc

8
>>><

>>>:

⌘ 0  ⌘  1

1 1 < ⌘  N5 � 1

N5 � ⌘, N5 � 1 < ⌘  N5

(1.92)

The Fourier coe�cients are

cn =
2Nc

n⇡

ñ
sin

Ç
n⇡

N5

å
+ sin

Ç
n⇡(N5 � 1)

N5

åô
. (1.93)

15Here and in the rest of the chapter ⇡2

4 Nc = N6.
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. . . . . .N6 2N6 3N6 (N5 � 1)N6 N5N6

N6 D4

1 2 3 N5N5 � 1

. . . . . .

4

2N6 D4 3N6 D4

(N5 � 1)N6 D4
N5N6 D6

�

Figure 1.3: The quiver and Hanany-Witten set-up for the profile in equation (1.90).
The vertical lines denote individual NS5 branes. The horizontal lines denote D4
branes and the crossed circles D6 branes.

The quiver and Hanany-Witten set up are shown in Figure 1.4.

. . .

| {z }
N5 � 1

N6 N6 N6 N6

. . .
N6 D6

N6 D4

N6 D6

1 2 3 N5N5 � 1N5 � 2

�
�

N6 D4 N6 D4
N6 D4

Figure 1.4: The quiver and Hanany-Witten set-up for the profile in equation (1.92).

For both examples, we will proceed as described above: given the function �(⌘),

and the Fourier expansion of its odd-extension, we construct the potential in equation

(1.42). We then construct the full background given in the equations (1.33), (1.34)
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and (1.35). In the following, we will show the details of the precise matching between

field theoretical and holographic calculations of the observables in Section 1.1 for these

cases.

1.2.2 Page charges and linking numbers

Let us start o↵ by computing the expressions for QNS5, QD6, QD4 in equations (1.66),

(1.67) and (1.70) for the two backgrounds obtained using the equations (1.90), (1.92).

For the function �(⌘) in equation (1.90) we have that �0(⌘f ) = Nc(1�N5), �0(0) =

Nc. This implies that

QNS5 = N5 ,

QD6 = µ4NcN5 =

Ç
⇡2Nc

4

å
N5 = N6N5 .

(1.94)

Finally, for the charge of D4 branes we find, using equation (1.70),

QD4 =
1

2
N6N5(N5 � 1). (1.95)

These numbers coincide precisely with those we would obtain by simple inspection of

Figure 1.3:

NNS5 = N5 , ND6 = N6N5 ,

ND4 = N6

N5�1X

r=1

r =
N6

2
N5(N5 � 1) .

(1.96)

Along the same lines, we find for the profile in equation (1.92)

QNS5 = N5 QD6 = 2
⇡2Nc

4
= 2N6 ,

QD4 = N6(N5 � 1) .
(1.97)

This results coincide with what we would obtain by simple inspection of the quiver

and Hanany-Witten set-up displayed in Figure 1.4.

Concerning the linking numbers, we use the holographic expressions given in equa-

tions (1.75), (1.78). We find that the computation from the gravity side for the �-profile
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given in equation (1.90) gives

�
X

i

Ki =
X

j

Lj =
2

⇡
µ6N5(N5 � 1)Nc = N6N5(N5 � 1) . (1.98)

This result is easily confirmed by studying the Hanany-Witten set-up in Figure 1.3.

We find

Ki = N6(1�N5) )
X

i

Ki = N6N5(1�N5),

Li = N5 � 1 )
X

j

Lj = N5N6(N5 � 1) , (1.99)

which coincides exactly with (1.98).

The same matching is found for the quiver associated with the � function given in

equations (1.92) and Figure 1.4. Using equations (1.75) and (1.78), we find

X

i

Ki = �
X

j

Lj = �
2

⇡
µ6NcN5 = �N5N6 . (1.100)

A simple inspection of the Hanany-Witten set-up of Figure 1.4, and using the equation

(1.71), we find for the Linking Numbers of the D6 branes

L1 = · · · = LN6 = 1 , L̃1 = · · · = L̃N6 = N5 � 1

)
X

j

Lj = N6 +N6(N5 � 1) = N6N5

(1.101)

while for NS5 branes

K1 = · · · = KN5 = �N6 )
X

i

Ki = �N5N6 , (1.102)

where have denoted by Lj (L̃j) the D6 branes to the left (right) of the Hanany-Witten

set-up of Figure 1.4, finding exact agreement.

Let us now move on to the computation of the central charges for the two basic

examples considered in this section, showing precise agreement between holographic

and field theory calculation in the limit where the supergravity description is realiable.
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1.2.3 Central charge

Using the holographic expression given in the equation (1.88), we compare the holo-

graphic central charge for each examples considered in this section (in the large Nc, N5

limit) with its quantum field theory analogue, given in equations (1.89).

We start with the supergravity background obtained using the �-profile in equation

(1.90). Using the equations (1.90), (1.91) and (1.88), we find

c =
2µ14

⇡4

Z
N5

0

�2d⌘ =
2µ14

3⇡4
N2

c
N3

5

Ç
1�

1

N5

å2

'
2µ14

3⇡4
N2

c
N3

5
, (1.103)

where we only kept the leading orderes as N5 ! 1 and Nc ! 1. As discussed

previously, this is necessary in order to have a trustable holographic description. In

a completely equivalent way, we could also work using the Fourier expansion of the �

function, employing equation (1.88), which implies

c =
4N5

5
N2

c
µ14

⇡8

1X

m=1

1

m4

ñ
sin

Ç
m⇡(N5 � 1)

N5

åô2

=
4N5

5
N2

c
µ14

⇡8

ñ
⇡4

180
� 45(Polylog[4, ei2⇡/N5 ] + Polylog[4, e�i2⇡/N5 ])

ô

'
2µ14

3⇡4
N2

c
N3

5
.

(1.104)

Using that µ2 = ⇡

2
and N6 =

⇡
2

4
Nc, we find the holographic result

c =
N3

5
N2

6

12⇡
. (1.105)

This is precisely the central charge we would obtain by means of a CFT calculation.

Indeed, computing the number of vector multiplets and hypermultiplets for the quiver

of Figure 1.3 as

nv =
N5�1X

r=1

r2N2

6
� 1 =

(N5 � 1)

6
(2N2

5
N6 �N5N

2

6
� 6)

nh =
N5�1X

r=1

r(r + 1)N2

6
=

N2

6

3
N5(N

2

5
� 1)

(1.106)
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and using the expression in equation (1.89), we obtain

c =
(N5 � 1)(N2

5
N2

6
� 2)

12⇡
'

N2

6
N3

5

12⇡
, (1.107)

finding, in the large N5 and large N6 limit, a precise matching with the holographic

calculation of equation (1.105).

It is easy to check also that equation (1.88) applied to the equations (1.92), (1.93)

– our second example – for large Nc and N5 leads to

c =
2µ14

⇡4
N2

c
N5 =

N2

6
N5

4⇡
. (1.108)

This expression is matched in the appropriate limit of the CFT calculation. For the

quiver associated with the profile in equation (1.92), we have

nv = (N2

6
� 1)(N5 � 1) ,

nh = (N5 � 1)N2

6
,

(1.109)

and

c =
N2

6
N5

4⇡

Ç
1�

2

3N2
6

�
1

3N5

+
2

N5N2
6

å
'

N2

6
N5

4⇡
. (1.110)

The reader can verify that the same expressions are obtained for the a central

charge in the holographic limit (since a = c in this case).

In Appendix E, we extend the precise matching of the Page charges, linking num-

bers and central charge to more general and elaborated SCFTs.

Let us now move on to the study of two solutions to the Laplace equation (1.32)

that are qualitatively di↵erent from those discussed above in a way that will be soon

clear.

1.2.4 The Sfetsos-Thompson solution

Let us discuss a particular solution obtained by Sfetsos and Thompson in [46], that

received attention in the last few years. The potential V and the charge line density

� for the Sfetsos-Thompson solution are given by

VST = Nc

Ç
⌘ log � �

⌘�2

2
+
⌘3

3

å
, �(⌘) = Nc⌘ , (1.111)
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respectively. In the language of equations (1.43) - (1.45) the defining functions are

F (⌘) = Nc

⌘3

3
, G(⌘) = Nc⌘ , h1 = �Nc

⌘

2
, fk = hk+1 = 0 , (1.112)

with k > 1. Notice that, in this particular solution, � does not close o↵ at some

finite value ⌘f . Thus, the ⌘-coordinate is not bounded from above. In other words,

⌘f ! 1. This has unpleasant consequences. For example the associated quiver has

gauge symmetry given as an infinite product of gauge groups, ⇧1

k=1
SU(kN6). As

there are no kinks for the � function (� is only linear continuous and not piecewise

linear continuous), there are no D6 brane sources. Similarly, the equations (1.66),

(1.70) indicate the presence of an infinite number of five- and four-branes. The linking

numbers do not satisfy equation (1.72) and the central charge in equation (1.88),

diverges as ⌘f !1. The bad behaviour of the field theory observables is mirrored by

a singularity in the background at � = 1. Still, some quantities may have an acceptable

behaviour16.

These deficiencies might suggest that we should ignore the Sfetsos-Thompson so-

lution as unphysical. However, the background generated by VST in equation (1.111)

has a very interesting property: the string theory sigma model is integrable on this

background, as was shown in [48]. In particular, it was shown in [37] that any other

generic Gaiotto-Maldacena background as in equation (1.33) leads to a non-integrable

(and chaotic) sigma model for the string theory.

These ideas were exploited in [49, 50] to show that the Sfetsos-Thompson solution

is a member of a family of integrable backgrounds. Interestingly, the geometry and

fluxes produced by the potential VST , together with the definitions in equation (1.33),

were obtained in [46] by using non-Abelian T-duality. There are presently many new

backgrounds that have been obtained using this powerful technique [51, 52, 53, 54, 55,

56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68].

It is in this sense that the Sfetsos-Thompson solution stands out as a paradigmatic

example of non-Abelian T-duality as generating technique. While the conformal field

16We could regulate physical quantities, like the central charges, using the Riemann ⇣-function
⇣(s) =

P1
k=1

1
ks : for a strictly infinite conformal quiver with gauge group ⇧1

k=1SU(kN6) joined by
bifundamental hypers, we have that nv =

P1
k=1(k

2N2
6 � 1) and nh =

P1
k=1(k

2 + k)N2
6 . We obtain

that
a

c
=

5nv + nh

4nv + 2nh
=

P1
k=1 6k2N2

6 + kN2
6 � 5P1

k=1 6k2N2
6 + 2kN2

6 � 4
.

Using that ⇣(�2) = 0, ⇣(�1) = � 1
12 and ⇣(0)!1, we find a

c = 5
4 , satisfying the Hofman-Maldacena

bound [47].
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theory obtained by following the prescription described in Section 1.1 is not well defined
17, it was proposed in [45] that the Sfetsos-Thompson solution should be embedded

inside a “complete” Gaiotto-Maldacena geometry, that regulates the background and

solves the above mentioned problems of the CFT. The authors of [45] suggested to

consider the charge density in equation (1.90) as a regulator for �ST . Indeed, the

solution in equation (1.42) with Fourier coe�cients given in equation (1.91) is proposed

to be the potential from which to obtain the “completed” background. This logic

extended successfully [69, 70, 71, 72, 73] to other backgrounds generated by non-

Abelian T-duality. Below we comment on other ways to think about the Sfetsos-

Thompson background and its associated CFT.

A field theory view of the Sfetsos-Thompson background

Let us add a few comments about the field theoretical interpretation of the Sfetsos-

Thompson background and non-Abelian T-duality (an operation on the string sigma

model that generates a new background).

Consider N = 4 Super-Yang-Mills. The bosonic part of the global symmetries is

SO(2, 4)⇥ SO(6). These symmetries are realised as isometries of the dual AdS5 ⇥ S5

background. Let us consider an SO(4) ⇥ SO(2) inside the SO(6). The non-Abelian

T-dual transformation proposed by Sfetsos and Thompson in [46] picks up an SU(2)

inside the SO(6), say SU(2)L if18 SO(4) = SU(2)L⇥SU(2)R, and operates on it. This

operation preserves the SO(2, 4) isometry, as the AdS5 part of the space is inert. The

same happens to the SU(2)R ⇥ SO(2). Schematically the non-Abelian T-duality acts

as

ds2
AdS5

+ d↵2 + sin2 ↵d�2 + cos2 ↵ds2
S3 !

ds2
AdS5

+ d↵2 + sin2 ↵d�2 +
d⇢2

cos2 ↵
+

⇢2 cos2 ↵

⇢2 + cos4 ↵
ds2

S2 !

ds2
AdS5

+
1

1� �2
(d�2 + d⌘2) + ⌘2d�2 +

⌘2(1� �2)

4⌘2 + (1� �2)2
ds2

S2 . (1.113)

In the last line we have changed variables � = sin↵ and ⇢ = ⌘ in order to put the

geometry in the “Gaiotto-Maldacena notation”. The background is complemented by

Ramond and Neveu-Scharz fields. For details see, for example, [45].

17In [36] the authors suggest that the system should be thought as a higher dimensional field
theory with a conformal four-dimensional defect.

18We ignore the global Z2 in the isomorphism between SO(4) and SU(2)L ⇥ SU(2)R.
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The result of the operation (1.113) is a background dual to an N = 2 SCFT, with

bosonic isometries SO(2, 4)⇥ SU(2)R ⇥U(1)r. From a field theory point of view, one

can point out two distinct operations on N = 4 SYM that, acting on SU(2)L, produce

two di↵erent N = 2 SCFTs. The first one is a modding of the internal space by a

Zk and is represented at the top of Figure 1.5. The second is a higssing operation

represented in the lower part of Figure 1.5.

. . .

kN

kN k 2k 3k . . .pk

N

N

N
N

N

N
N

N
Zk

k times

Figure 1.5: The two operations preserving conformality and SU(2)R ⇥ U(1)r as dis-
cussed in the text.

The ranks of the gauge groups are determined by conformality (Nc = 2Nf at each

node for N = 2 SCFTs). While the option at the top of Figure 1.5 is well defined,

the one at the bottom runs into a problem as the quiver should extend indefinetely.

A way out in order to avoid an infinitely long quiver is to end such a linear quiver

by the addition of a flavour group. This option is not available to the non-Abelian

T-duality, as it would imply the creation of an isometry, an SU(kp + k), and the

presence of D6 sources to realise it. Also, if we do not end the quiver, we eventually

“run-out” of degrees of freedom to create a new gauge group and conformality would be

compromised. The Sfetsos-Thompson solution reflects this by generating a singularity.

Let us finally discuss a geometric aspect of the Sfetsos-Thompson background.

Considering the �-derivative of the generic potential V , V̇ (�, ⌘) = �@�V . Using the
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equation (1.42), we have

V̇ (�, ⌘) = �@�V (�, ⌘) =
1X

k=1

ck�K1

Ç
n⇡

N5

å
sin

Ç
n⇡

N5

⌘

å
. (1.114)

By Poisson summation, we rewrite this as [34]

V̇ (�, ⌘) =
Nc

2

PX

l=1

1X

m=�1

Z
d��

2

4 1»
�2 + (⌘ � ⌫l �m)2

�
1»

�2 + (⌘ + ⌫l �m)2

3

5 .

(1.115)

The values of the constants ⌫l depend on the Fourier coe�cients and can be found in

[34]. Of all the terms in the sum of equation (1.115), we shall only keep for now the

term m = 0. We also consider the function V̇ close to � = ⌘ = 0. To leading order in

both � and ⌘ we find

V̇ (�, ⌘) ' V̇app(�, ⌘) = ⌘(c1 � c2�
2) = V̇ST . (1.116)

This is somewhat reminiscent of what occurs when lifting D2 branes to eleven di-

mensions [74]. In that case, the correct solution is the one that contains the infinite

number of “images” just like equation (1.114) does. The naive lifting of the D2 brane

solution does not capture the full IR dynamics of D2 branes. By analogy this suggests

that omitting the summation over the images in equation (1.115) misses the correct

dynamics of the dual CFT, that the completion in [45] provides.

1.2.5 An interesting particular solution

As extensively discussed, the general solution to (1.32) with boundary conditions as

in (1.40) and (1.41), can be cast in the form given in (1.42). This solution is the infinite

superposition of functions of the type V ⇠ K0(
n⇡�

N5
) sin n⇡⌘

N5
, with suitable coe�cients.

A natural question is what is the physical content of each term in this superposition.

To answer this question, we shall consider a solution to (1.32) that is simply given by

V (�, ⌘) = �K0(�) sin ⌘ , (1.117)
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and study the background that this solution generates. Putting (1.117) into (1.33),

(1.34) and (1.35) we find for the N-S sector

ds2
10

L2
= 4�

Ã
K2 (�)

K0 (�)
ds2

AdS5
+ 2

»
K0 (�)K2 (�)

K1 (�)
(d�2 + d⌘2)

+ 2
K1 (�)

»
K0 (�)K2 (�) sin

2 ⌘

K0 (�)K2 (�) sin
2 ⌘ +K2

1 (�) cos2 ⌘
ds2

S2(�, ⇠) + 4�

Ã
K0 (�)

K2 (�)
d�2 ,

B(2) = 2↵0µ2

ñ
�⌘ +

K2

1
(�) sin ⌘ cos ⌘

K2
1 (�) cos2 ⌘ +K0 (�)K2 (�) sin

2 ⌘

ô
sin� d⇠ ^ d� ,

e�2� =
1

2
µ6

Ã
K0 (�)

K3
2 (�)

K1 (�)
î
K2

1
(�) cos2 ⌘ +K0 (�)K2 (�) sin

2 ⌘
ó
,

(1.118)

while for the R-R sector

C(1) = 2µ4↵0
1
2
K2

1
(�) cos ⌘

K2 (�)
d� ,

C(3) = �4↵
0
3
2µ6

K0 (�)K2

1
(�) sin3 ⌘

K0 (�)K2 (�) sin
2 ⌘ +K2

1 (�) cos2 ⌘
sin� d⇠ ^ d� ^ d� .

(1.119)

To get some intuition about the physical meaning of this solution, we compare

it with the background obtained in equations (2.44) - (2.47) of the paper [75] where

Lin and Maldacena give the configuration corresponding to type IIA Neveu-Schwarz

fivebranes on some R⇥ S5, with R discribing the time-direction. The solution to the

equation (1.118) di↵ers from the one in [75] by an “analytic continuation” (that as

explained in Section 3.1 of [12] changes ds2
S5 ! �ds2AdS5

and �dt2 ! d�2). Such

analytic continuation should also be understood as exchanging the modified Bessel

functions of the second kind, K0(�), K1(�), K2(�), for modified Bessel functions of the

first kind, I0(�), I1(�), I2(�). See the equations (2.44) - (2.47) in [75].

This suggest that the solution in equation (1.118) represents NS fivebranes extended

along AdS5 ⇥ S1

�
. The function �(⌘) = sin ⌘ associated with the potential in (1.117)

does not have the property of being a piecewise linear and continuous function, as

it is the case of our examples in equations (1.90), (1.92). We may think about the

background in equation (1.118) as one where the position of the D6 branes has been

smeared, and they are distributed along the whole ⌘-direction.

Analysing the asymptotic behaviour close to the position of the fivebranes, we find
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that the metric, dilaton and B-field read as � goes o↵ to infinity

ds2 ' 4�(ds2
AdS5

+ d�2) + d�2 + d⌘2 + sin2 ⌘ds2
S2 ,

e4� ' e4��2 , B(2) ' (⌘ � cos ⌘ sin ⌘)d⌦2 .
(1.120)

We see that the integral
R
H3 = N5 and that the dilaton diverges close to the five

branes.

Interestingly, these solutions can o↵er a connection with the proposal of the paper

[76], according to which (see page 33 in [76]) any four-dimensional CFT of the type

we are studying contains, in a suitable limit of parameters, a decoupled sector that is

dual to the 6d (0,2) theory on AdS5 ⇥ S1.

Let us study some of the observables previously calculated. We use the solution

corresponding to the first harmonic V (�, ⌘) = �NcK0(
⇡�

N5
) sin( ⇡⌘

N5
). Using the equations

(1.66), (1.67),(1.70) and (1.88) we find for the number of NS5, D6 and D4 branes

QNS = N5 ,

QD4 =
2N5N6

⇡
,

QD6 =
2⇡N6

N5

,

(1.121)

while for the central charge

c =
N2

6
N5

8⇡
. (1.122)

The particular solution studied here should be thought of as representing a situation

where the D4 and D6 branes are smeared over the Hanany-Witten set up. We cannot

identify a localised gauge or flavour group.

Just like the solution of equation (1.117) could be thought of as a “smeared version”

of the usual Gaiotto-Maldacena solutions with piecewise continuous �(⌘), it would also

be interesting to study the potential and associated charge density,

V (�, ⌘) = e�⌘
ï
c1J0(�)�

⇡

2
Y0(�)

ò
+ log �, �(⌘) = 1� e�⌘.

as an approximation to the piecewise continuous solution of [77].

To complement this study, in Appendix F we present a new solution represent-

ing a black hole in a generic Gaiotto-Maldacena background and briefly discuss its

thermodynamics.
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Let us now move to the second part of this work, where we study holographically

the marginal deformation of these N = 2 SCFTs.

1.3 Marginal deformations of SCFTs and

holography

The aim of this section is to discuss a particular marginal deformation of the N = 2

SCFTs studied above. The method used to find the holographic dual to these marginal

deformations are those developed by Lunin and Maldacena [16]. See also [78, 79]. We

begin with a discussion of marginally deformed N = 2 SCFTs using N = 1 language.

1.3.1 Details about the deformation of the CFT

Consider a gauge field theory like the one represented as a quiver in Figure 1.6.

Again, the gauge symmetry is given by a product of gauge groups, SU(N1)⇥SU(N2)⇥

· · ·⇥ SU(NP ). We have chiral fields transforming in the bifundamental of gauge and

flavour groups. The flavour symmetry is indeed given by the finite product U(F1) ⇥

... ⇥ U(FP ). We are using N = 1 language, indicating an N = 2 hypermultiplet as

two arrows (two N = 1 chiral multiplets). There are also N = 1 adjoint chiral fields

associated with each gauge group. Formulating a generic N = 2 SCFT in terms of

N = 1 multiplets will turn out to be useful when studying marginal deformations.

. . .N1 N2 N3 Np

F1 F2 F3 Fp

QQ̃

Q

Q̃

Figure 1.6: A generic N = 1 CFT.

Following ideas spelled out in [80, 81], we use the fact that the R-symmetry can

mix with flavour symmetries. In particular, associating a “flavour” charge to all the
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multiplets present in our theory in the following fashion19

F [Q] = F [Q̃] = 1 , F [�] = �2 , F [W ] = 0 , (1.123)

we propose the following R-charge assignments

RN=1 = R0 +
✏

2
F , (1.124)

which, in turn, imply

RN=1[Q] = RN=1[Q̃] =
1

2
+
✏

2
, RN=1[�] = 1� ✏ , RN=1[W↵] = 1 . (1.125)

This is in line with the fact that marginal deformations do not change the number

of degrees of freedom, but only the way in which the di↵erent fields interact.

To determine what value we should assign to ✏, we use a-maximisation [82]. The a

and c “central charges” in theories with at least N = 1 supersymmetry are given by

a(✏) =
3

32⇡

î
3TrR3

N=1
� TrRN=1

ó
, c(✏) =

1

32⇡

î
9TrR3

N=1
� 5TrRN=1

ó
. (1.126)

For the quiver of Figure 1.6, we find that the contribution from the hypermultiplets,

H = (Q, Q̃), and vectormultiplets V = (W↵,�) to the central charges a and c can be

obtained by computing first the following quantities20

TrRH = 2⇥
✏� 1

2

Ñ
PX

j=1

NjFj +
P�1X

j=1

NjNj+1

é
= nH(✏� 1) ,

TrR3

H
= 2⇥

(✏� 1)3

8

Ñ
PX

j=1

NjFj +
P�1X

j=1

NjNj+1

é
= nH

(✏� 1)3

4
,

TrRV =
PX

j=1

(N2

j
� 1)(1� ✏) = nV (1� ✏) ,

TrR3

V
=

PX

j=1

(N2

j
� 1)(1� ✏3) = nV (1� ✏

3)

(1.127)

19Here Q and Q̃ stand for chiral and antichiral fields, respectively, while � and W represent the
adjoint chiral field and vector multiplet associated with a generic gauge group.

20Here it should be remembered that only fermions contribute the computation. In particular, in
superspace we have that the field strength W expands out as W = � + ✓F + . . . , with � the gluino
field, whereas for chiral fields we have Q = q+✓ + . . . . Therefore, we find that RN=1[W] = RN=1[�]
and RN=1[Q] = RN=1[ ] + 1.
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where nH , nV is the total number of N = 2 hypermultiplets and vector multiplets in

the quiver.

Using the equation (1.126), we find

a(✏) =
3

32⇡

ñ
nV

Ä
3� 3✏3 + ✏� 1

ä
+ nH

Ç
3(✏� 1)3

4
+ 1� ✏

åô
,

c(✏) =
1

32⇡

ï
9
Å
nV (1� ✏

3) +
nH

4
(✏� 1)3

ã
� 5
Å
nV (1� ✏) + nH(✏� 1)

ãò
.

(1.128)

It is quite easy to see that a(✏) is maximised when ✏ = 1

3
. Putting ✏ = 1

3
into

(1.128), we find

a =
5nV + nH

24⇡
, c =

2nV + nH

12⇡
. (1.129)

the very the same values as for the N = 2 central charges.

Thus, using equation (1.125), the R-charges are given by

RN=1[Q] = RN=1[Q̃] = RN=1[�] =
2

3
, RN=1[W↵] = 1 . (1.130)

Note that a superpotential term of the form

W = h
PX

j=1

Tr
î
�jQjQ̃j

ó
, (1.131)

has the correct R-charge, R[W ] = 2, and the correct mass dimension (h is dimension-

less, i.e. marginal), satisfying dim[W ] = 3 = 3

2
R[W ]. Other possible gauge invariant

operators, like O1 = TrQjQ̃j or O2 = Tr�2

j
satisfy the unitarity bound 1  dim O.

In a generic N = 1 SCFT the dimension of a chiral operator O is given in terms

of its R-charge as

dimO =
3

2
RO . (1.132)

Also, quantum mechanically, we have

dimO = [O] +
1

2
b�O , (1.133)

with [O] the classical dimension of O and b�O its anomalous dimension. It is then easy

to see that b�Q = b�
Q̃
= b�� = 0. This, in turn, implies that all the beta functions for

the gauge couplings vanish �g ⇠ 2Nc �Nf (1� b�) = 0, �h = 0� b��/2� b�Q = 0.

We can check that the SCFTs we are dealing with, do satisfy the bound 1

2


a

c


3

2
,
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in agreement with [47].

A marginal deformation changes the superpotential by means of powers of eiR (with

R a combination of the R-charges of the fields participating to the interaction). There

is not an RG-flow taking place, yet we are breaking SUSY N = 2 ! N = 1 via

interaction terms. No degree of freedom is lost, as shown already by the calculation

of the central charge, coincident with the N = 2 values. We just have di↵erent

interactions between fields, and di↵erent global symmetries.

Let us now discuss the holographic viewpoint of the above. We shall construct

two di↵erent deformations of Gaiotto-Maldacena SCFTs. They will be described by

a parameter � (the marginal parameter of the deformation). We shall then calculate

the central charge in each geometry, finding the same result as in the parent N = 2

background. We will also compute the associated Page charges.

1.3.2 Backgrounds dual to marginal deformations

We now explore some backgrounds obtained as a result of duality transformations

(T -duality, TsT and dimensional reduction from eleven dimensions) applied to the

Gaiotto-Maldacena background in (1.33), (1.34) and (1.35). These backgrounds are

proposed to be dual to some N = 1 SCFTs, along the lines of what we have discussed

in the previous subsection. To make this part more readable, we shall postpone the

details of the computations in the appendix at the end of this chapter.

First, we present a new class of backgrounds in eleven dimensional supergravity and

in Type IIA obtained using an Sl(3,R) transformation, understood as a generalisation

of the Lunin-Maldacena TsT [16]. Then, we present a di↵erent solution obtained first

by moving a generic Gaiotto-Maldacena background to Type IIB (via T -duality) and

then performing a TsT transformation.

The outcome is that of two new families of solutions, one in M-theory/IIA, the

other in Type IIB. All of them will be described in terms of a potential function,

V (�, ⌘), which still satisfies the Laplace equation (1.32). Thus, for any solution to

the Laplace equation with certain boundary conditions, we generate a new solution in

IIA/M-theory or in Type IIB.

The �-deformed backgrounds in eleven-dimensions and Type IIA

We shall now present one possible �-deformation of the Gaiotto-Maldacena back-

grounds. We follow the formalism of [79].
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Consider the eleven dimensional background in (1.38) and (1.39) written in the

following form

ds2 = µ4↵0
Ä“��1/6gµ⌫dx

µdx⌫ + “�1/3MabD�
a
D�b

ä
,

�1A(3) = C(0)D�
1
^D�2

^D�3 +
1

2
C(1)ab ^D�a

^D�b + C(2)a ^D�a + C(3) ,

(1.134)

where D�a = d�a + Aa

µ
dxµ. Here, a, b = 1, 2, 3 and �1,2,3 = (⇠, �, y). We have chosen

units such that all coordinates are dimensionless21. We have also made the following

identifications

Aa

µ
=0, Mab = “��1/3

á
F3 sin

2 � 0 0

0 F4 + F5Ã2 ÃF5

0 ÃF5 F5

ë

, “� = F3F4F5 sin
2 �

(1.135)

as well as

C(1)⇠� = F6 sin�d� , C(1)⇠y = F7 sin�d� , C(0) = C(2) = C(3) = 0 , (1.136)

and

µ4↵0“��1/6gµ⌫dx
µdx⌫ = 2/3

î
4F1ds

2

AdS5
+ F2(d�

2 + d⌘2) + F3d�
2
ó
. (1.137)

The functions Fi and Ã have been defined in (1.39).

The background obtained after an Sl(3,R) transformation, with parameter of the

transformation �, is constructed following the rules of [79].

We give the details of the construction applied to this particular case in Appendix

G. The resulting eleven dimensional solution is given by

ds2

2/3
= (1 + �2“�)1/3

Ä
4F1ds

2

AdS5
+ F2(d�

2 + d⌘2) + F3d�
2
ä

+ (1 + �2“�)�2/3
Ä
F3 sin

2 �d⇠2 + F4D̃�
2 + F5(D̃y + ÃD̃�)2

ä
,

�1A(3) = (F6D̃� + F7D̃y) ^dvolS2 �
�“�

1 + �2“�
d⇠ ^ D̃� ^ D̃y ,

(1.138)

21Here 2/3 = µ4↵0. See Appendix B for details on the connection between eleven- and ten-
dimensional backgrounds.
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where

D̃� = d� � �F7 sin�d� , D̃y = dy + �F6 sin�d� . (1.139)

This is a solution of eleven-dimensional supergravity for any function V (�, ⌘) solv-

ing the equation (1.32). Obviously, when � = 0, this background reduces back to the

one in (1.38) and (1.39).

We can bring this family of solutions down to Type IIA supergravity performing a

reduction along the direction y – the details of this reduction are discussed in Appendix

B – and write all the functions in terms of those defined in (1.36). The N-S sector in

Type IIA reads

ds2
10

↵0µ2
= 4f1ds

2

AdS5
+ f2(d�

2 + d⌘2) + f3d�
2 +

f3 sin
2 �

(1 + �2f3f4 sin
2 �)

d⇠2

+
f4

(1 + �2f3f4 sin
2 �)

(d� � �f5 sin�d�)
2

e2� =
f8

(1 + �2f3f4 sin
2 �)

,

B(2) =
µ2↵0

(1 + �2f3f4 sin
2 �)

⇣
f5dvolS2 � �f3f4 sin

2 �d⇠ ^ d�
⌘
,

(1.140)

while the R-R sector is

C(1) = µ4↵0
1
2 (f6d� + �(f7 � f5f6) sin�d�) ,

C(3) =
µ6↵03/2

(1 + �2f3f4 sin
2 �)

f7d� ^dvolS2 .
(1.141)

As expected, when � = 0, we are back to the Gaiotto-Maldacena backgrounds in

(1.33), (1.34) and (1.35).

To sum up, we have constructed a new family of backgrounds with SO(2, 4) ⇥

U(1)� ⇥ U(1)⇠ bosonic isometries. For any solution to the Laplace equation (1.32),

we have valid new backgrounds. The isometries of the background suggest that the it

preserves N = 1 supersymmetry instead of N = 2 (which would need an SU(2) R-

symmetry). One possible strategy to prove SUSY would be to put this background to

the coordinates of [83, 84], but finding such a change of coordinates is not immediate.

Nevertheless, given the arguments explained in [85], it seems likely that some amount

of supersymmetry is preserved.

We suggest that the integrability of the N = 2 Sfetsos-Thompson solution [46]

should translate into the integrability of the string sigma model in the background of
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equation (1.140) for the case in which the functions fi are derived from the Sfetsos-

Thompson potential in (1.111). It would be interesting to find the Lax pair along the

lines of [48].

The gamma-deformed Type IIB backgrounds

The goal now is to write down the backgrounds obtained by moving the Gaiotto-

Maldacena solutions to Type IIB supergravity via a T -duality and then performing a

Lunin-Maldacena TsT transformation.

Let us apply a T -duality along the � direction of the background in (1.33), (1.34)

and (1.35). Using the usual Buscher rules we find the following T -dual N-S sector

ds2

↵0µ2
= 4f1ds

2

AdS5
+ f2(d�

2 + d⌘2) + f3ds
2

S2 + f�1

4

d�2

µ4
,

B(2) = ↵0µ2f5dvolS2 , e2� =
f8
µ2f4

,

(1.142)

whilst the R-R potentials and corresponding field strengths are

C(0) = µ4f6 C(2) = ↵0µ6f7dvolS2 ,

F(1) = dC(0) F(3) = dC(2) �H(3)C(0) , (1.143)

Let us apply now the TsT transformation to this solution. Following the rules of

the papers [16, 78] (the details are given in Appendix G.2) we find the TsT transformed

background

ds2

↵0µ2
= 4f1ds

2

AdS5
+ f2(d�

2 + d⌘2) + f3d�
2

+
1

f4 + �2f3 sin
2 �

Ä
f3f4 sin

2 �d⇠2 + (d� � �f5 sin�d�)
2
ä
,

e2� =
f8

µ2(f4 + �2f3 sin
2 �)

,

B(2) = ↵0µ2

 
�f3 sin

2 �

f4 + �2f3 sin
2 �

(d� � �f5 sin�d�) ^ d⇠ + f5dvolS2

!

,

C(0) = µ4f6 ,

C(2) = ↵0µ6

 
�f6f3 sin

2 �

f4 + �2f3 sin
2 �

(d� � �f5 sin�d�) ^ d⇠ + f7dvolS2

!

,

(1.144)

where � is the deformation parameter. In addition, it is easily seen that after turning
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o↵ the deformation parameter � the above background reduces to that in equations

(1.142) and (1.143).

The same comments as those written below equation (1.140) apply here. For any

potential function satisfying (1.32), the background of equation (1.144) is a solution

to the Type IIB equations of motion. The SO(2, 4)⇥U(1)⇠⇥U(1)� isometries suggest

that some SUSY is preserved. The construction of a Lax pair for the string sigma

model on equation (1.144), for the fi evaluated with the potential VST in equation

(1.111) should be related to that in [48] via dualities.

Let us now compute some observables of these backgrounds.

Page charges and central charge

We follow Subsection 1.1.7 and compute the Page charges of the backgrounds in

equations (1.140), (1.141) and (1.142) - (1.144). For the Type IIA solutions in (1.140),

(1.141) let us define the following cycles

⌃2 = (⌘, �)|�=0 , “⌃2 = (⌘,�)|�=0 , ⌃3 = (⌘,�, ⇠)|�=1 , “⌃3 = (�, �, ⇠) . (1.145)

For the NS5 and D6 branes we find the following associated Page charges

QNS5 =
1

2210TNS5

Z

⌃3

H(3) , “QNS5 =
1

2210TNS5

Z

b⌃3

H(3) ,

QD6 =
1

2210TD6

Z

⌃2

F(2) , “QD6 =
1

2210TD6

Z

b⌃2

F(2) . (1.146)

For QNS5 and QD6 we find same results as in Subsection 1.1.7, namely

QNS5 = �
2

⇡
µ2N5 , QD6 = µ4(�0(⌘f )� �

0(0)). (1.147)

As before, in order to have a well-quantised number of branes, this implies that µ2 = ⇡

2
.

Hence QNS5 = N5 and, as before the definition N6 =
⇡
2

4
Nc should be used.

The integral defining “QNS5 can be performed to give

“QNS5 =
1

4⇡2↵0
µ2↵0�

Z
d⇠d�

Z
1

0

d�@�

 
f3f4 sin

2 �

1 + �2f3f4 sin
2 �

!

= �
µ2

�
= cN5 .

(1.148)
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The last equation implies a new quantisation condition, 2�cN5 = ⇡. In particular, this

should be thought of as a condition on the parameter �.

It may be confusing that in the limit of � ! 0 the new charge of five branes

diverges. However, it should be observed that “QNS5 vanishes in the first place when

� ! 0 from its very definition.

Similarly, one can compute “QD6 to get

“QD6 =
1

2⇡↵0
1
2

�µ4↵0
1
2

Z
⇡

0

d� sin�
Z
⌘f

0

d⌘@⌘[f7(0, ⌘)� f5(0, ⌘)f6(0, ⌘)]

= �
�µ4

⇡
[f7(0, ⌘)� f5f6(0, ⌘)]

⌘f
0

= �
⇡

2
N5�

0(N5).

(1.149)

For the solutions of Type IIB in equation (1.142) - (1.144), we define the cycles

⌃1 = (⌘)|�=0 , ⌃3 = (⌘,�, ⇠)|�=1 , “⌃3 = (�, �, ⇠)|⌘=⌘0 . (1.150)

Using this, we compute the following NS5 brane charges

QNS5 =
1

2210TNS5

Z

⌃3

H(3) =
µ2↵0

4⇡2↵0

Z
dvolS2

Z
N5

0

d⌘ @⌘
f5f4

f4 + �2f3 sin
2 �

=
2µ2

⇡2
N5 ,

“QNS5 =
1

2210TNS5

Z

b⌃3

H(3) =
µ2

4⇡2

Z
d⇠d�

Z
1

0

d� @�
�f3 sin

2 �

f4 + �2f3 sin
2 �

=
µ2

�
= cN5

(1.151)

and D7 brane charges

QD7 =
1

2210TD7

Z

⌃1

F(1) = µ4(�0(N5)� �
0(0)) . (1.152)

As in the Type IIA case, we see that a new set of NS5 branes appear and we need to

impose that � = ⇡

2 bN5
in order to have a well-defined number of them.

Let us now study the central charges for the type IIA solution above. We follow

the procedure outlined in Subsection 1.1.9. For the Type IIA solutions, we identify,
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from the equation (1.140),

det(gint) = (↵0µ2)5
f 2

2
f 2

3
f4 sin

2 �

(1 + �2f3f4 sin
2 �)2

, a(R) = 4↵0µ2f1R
2 ,

e�4� =
(1 + �2f3f4 sin

2 �)2

f 2
8

.

(1.153)

A straightforward computation shows that the internal volume Vint is

Vint =
Z

d⌘d�d�d⇠d�
»
e�4� det[gint]a(R)3

= 64⇡2↵04µ8

Z
⌘f

0

d⌘
Z

1

0

d�
f 3/2

1 f 1/2

4 f2f3
f8

.
(1.154)

Using, as above, that lim�!1 V̇ (�, ⌘) = 0, after some straightforward algebra we find

that the internal volume in equation (1.154) is precisely equal to that in (1.84). This

implies, following the steps outlined in equations (1.84) – (1.88), that the central charge

for the �-deformed background in (1.140) and (1.141) is equal to the central charge

of the original Gaiotto-Maldacena background given in (1.33), (1.34) and (1.35), and

given by equation (1.88). The same happens in Type IIB. This is in line with the

fact that these solutions represent SCFTs which have the same number of degrees of

freedom, with only di↵erent interaction potentials.

These solutions, to be compared with those found in [86, 87, 88], are realising

what we explained in Subsection 1.3.1, namely they behave as N = 1 SCFTs with

vanishing anomalous dimensions. They have the same number of degrees of freedom

of the parent N = 2 SCFTs.

1.4 Summary

In this chapter, after a detailed introduction to four-dimensional N = 2 SCFTs and

their gravity duals, we have presented several formulas for the dictionary between the

SCFTs and the dual supergravity backgrounds. Formulas calculating charges, number

of branes and Linking Number associated with Hanany-Witten setups were spelled out.

All these were given in terms of �, the function defining boundary conditions for the

Laplace-like equation that encodes all the information of the supergravity background.

We have tested these expressions in various examples of increasing level of complexity

and presented a proof for them, when available.
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We have built the holographic description of marginal deformations of some N = 2

four-dimensional SCFTs. Some infinite families of solutions were constructed, again

with all the information being encoded by a Laplace equation and its boundary con-

ditions. New solutions were explored, observables calculated and CFT interpretation

presented.

A Physical Interpretation of �(⌘)

The equation (1.32) does not look like a typical Laplace problem in two dimensions,

but in fact like a Laplace problem in three dimensions, with a cyclic coordinate22. Be-

low, we show that the interpretation of the quantity �(⌘) in equation (1.46) is precisely

that of a line charge density. In order to prove this, we consider the solutions for the

potential V in the form given in equation(1.42) and use an integral representation for

the Bessel function K0(wn�),

K0(wn�) =
Z

1

0

cos(wn�t)
p
t2 + 1

dt . (1.155)

Using that 2 cos x sin y = sin(x+y)�sin(x�y), the potential in (1.42) can be rewritten

as

V (�, ⌘) = �
1X

n=1

cn
2wn

ñZ
1

0

sin (wn(⌘ + �t))
p
t2 + 1

dt�
Z

1

0

sin (wn(�⌘ + �t))
p
t2 + 1

dt

ô

= �
1X

n=1

cn
2wn

2

4
Z

1

�1

sin (wnu)»
(u� ⌘)2 + �2

du

3

5 .

(1.156)

Now, swapping the sum and the integral, and using equation (1.46), we find

V (�, ⌘) = �
Z

1

�1

�(u)

2
»
(u� ⌘)2 + �2

du

= �
Z

1

0

�(u)»
(u� ⌘)2 + �2

du .

(1.157)

This precisely the electric potential produced by an odd-extended density of charge �

22The Laplace equation in a three-dimensional space, with metric given in cylindrical coordinates
as ds2 = d�2 + �2d'2 + d⌘2, where � represents the radial distance, ' the azimuth angle and ⌘
the height, is simply 1

�
@
@�

�
� @V
@�

�
+ @2V

@'2 + @2V
@⌘2 = 0. If we take V to be independent of ', the

three-dimensional Laplace equation reduces to the (1.32)
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along the ⌘-axis, at some generic point (�, ⌘). This makes clear the interpretation as

an electrostatic problem.

B The 11d Supergravity-Type IIA connection

In this appendix we give some detail on the uplift of the ten-dimensional back-

ground in equations (1.33), (1.34) and (1.35). We will pay special attention to how

the ten-dimensional constants, µ and ↵0, g are related to , the sole eleven-dimensional

parameter that appears in M-theory.

Consider the usual Ansatz for the uplift to eleven dimensions

ds2
11

= e�
2
3�ds2

10
+ e

4
3�(dx10 + C(1))

2 ,

A(3) = C(3) +B(2) ^ dx10 ,
(1.158)

where A(3) the three-form in eleven dimensions and x10 the eleventh coordinate, x10 ⇠=

x10 + 2⇡gsls. Using that

e�
2
3� = f�1/3

8 = µ2

 
4(2V̇ � V̈ )3

V 00V̇ 2�2

!�1/6

, (1.159)

we find that the eleven dimensional metric is given by

ds2
11

=↵0µ4

 
4(2V̇ � V̈ )3

V 00V̇ 2�2

!�1/6 ï
4f1ds

2

AdS5
+ f2(d�

2 + d⌘2) + f3ds
2

S2(�, ⇠) + f4d�
2

ò

+
1

µ4

 
4(2V̇ � V̈ )3

V 00V̇ 2�2

!1/3

(dx10 + µ4
p

↵0f6d�)
2.

(1.160)

Notice that we are using conventions where coordinates are dimensionless, with

the sole exception of x10, which has dimensions of length. Let us then rescale x10 as

x10 = ↵0
1
2µ4y. We find

ds2
11

=↵0µ4

 
4(2V̇ � V̈ )3

V 00V̇ 2�2

!�1/6 ï
4f1ds

2

AdS5
+ f2(d�

2 + d⌘2) + f3ds
2

S2(�, ⇠) + f4d�
2

ò

+ ↵0µ4

 
4(2V̇ � V̈ )3

V 00V̇ 2�2

!1/3

(dy + f6d�)
2 .

(1.161)
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Identifying µ4↵0 = 2/3, and after a simple algebra, we find the background metric

given in (1.38), (1.39).

We can proceed in a similar way to find the eleven-dimensional three-form

A(3) = µ6↵03/2f7d� ^dvolS2 + µ2↵0f5dvolS2 ^ dx10

=  (f7d� + f5dy) ^dvolS2 ,
(1.162)

upon using x10 = ↵0
1
2µ4y and µ4↵0 = 2/3.

Following a similar procedure, we can connect the eleven dimensional background

in equation (1.138) with the corresponing background in type IIA given in equation

(1.140).

C Expansion of the various background functions

In this appendix we quote some of the asymptotic expansions for the warping factors

appearing in the background close to � = 0 and � =1. When studying the behaviour

of the brackground close to � = 0, we will use the expressions for the potential V given

in (1.42) and (1.43), while when studying the asymptotic behaviour at infinity we will

use (1.42) only.

C.1 Expansion of the various background functions using

the solution in equation (1.42)

Consider first the expression given in (1.42)

V̇ (�, ⌘) =
1X

n=1

cn
wn

(wn�)K1(wn�) sin(wn⌘) ,

V̇ 0(�, ⌘) =
1X

n=1

cn(wn�)K1(wn�) cos(wn⌘) ,

V̈ (�, ⌘) = �
1X

n=1

cn
wn

(wn�)
2K0(wn�) sin(wn⌘) ,

V 00(�, ⌘) =
1X

n=1

cnwn(wn)K0(wn�) sin(wn⌘) .

(1.163)
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Now, take V̇ , V̇ 0, V̈ , V 00 as just given to compute

2V̇ � V̈ =
1X

n=1

cn
wn

(wn�)
2K2(wn�) sin(wn⌘) ,

2V̇ V̇ 0 =
1X

n=1

1X

k=1

cn
wn

ck(wn�)(wk�)K1(wn�)K1(wk�) sin(wn⌘) cos(wk⌘)

� =
1X

n=1

cn
wn

(wn�)
2K2(wn�) sin(wn⌘)

1X

k=1

ck(wk)K0(wk�) sin(wk⌘)

+

"
1X

n=1

cn(wn�)K1(wn�) cos(wn⌘)

#2
.

(1.164)

To discuss the behaviour close to � = 0, we use that

K0(z) ' log 2� � � log z +
z2

4
(1 + log 2� � � log z) ,

zK1(z) ' 1 +
z2

4
(2� � 1� log 4 + 2 log z) ,

z2K2(z) ' 2�
z2

2
(3� 4� + log 16� 4 log z) ,

(1.165)

as z ' 0. It is then easy to see that

2V̇ � V̈ ' 2
1X

n=1

cn
wn

sin(wn⌘) = 2�(⌘) ,

2V̇ V̇ 0
' 2

1X

n=1

1X

k=1

cn
wn

ck sin(wn⌘) cos(wk⌘) = 2�(⌘)�0(⌘) ,

� ' log � ,

(1.166)

as � ' 0.

Consider also the following combinations and their asymptotic behaviour close to

� = 0

g1 =
2V̇ V̇ 0

2V̇ � V̈
' �0(⌘) ,

g2 = 2

 
V̇ V̇ 0

�
� ⌘

!

' �2⌘ ,

g3 = �4
V̇ 2V 00

�
' �2�(⌘) .

(1.167)

Finally, turning to the asymptotic region at � =1, we quote the following asymp-
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totic expansion

K0(z) ' e�z

 
⇡

2z
, z2K0(z) ' e�z

s
⇡z3

2
,

zK1(z) ' e�z

 
⇡z

2
, z2@zK1(z) ' e�z

s
⇡z3

2
,

z2K2(z)' e�z

s
⇡z3

2
, (1.168)

from which we find

2V̇ � V̈ ' c1e
�w1�

s
⇡w1�3

2
sin(w1⌘) ,

2V̇ V̇ 0
'
⇡c2

1

2w1

sin(w1⌘) cos(w1⌘)e
�2w1�(w1�) ,

� ' c2
1
⇡2w1�e

�2w1� .

(1.169)

D How to count D4 branes

In equation (1.70), we gave a formula that counts the number of D4 branes in

di↵erent Hanany-Witten setups. This expression works nicely in the examples of the

equations (1.90), (1.92) and in the more elaborated examples that we will study in

Appendix E.

Here, we give a reasoning of why the equation (1.70) works for the generic profile

�(⌘) given by

�(⌘) = Nc

8
>>>>>>>>><

>>>>>>>>>:

�1
⌘1
⌘ 0  ⌘  ⌘1

�1 +
⇣
�2��1
⌘2�⌘1

⌘
(⌘ � ⌘1) ⌘1 < ⌘  ⌘2

�2 ⌘2 < ⌘  ⌘3

�2 +
⇣
�3��2
⌘4�⌘3

⌘
(⌘ � ⌘3) ⌘3 < ⌘  ⌘4

�3 �
⇣

�3
N5�⌘4

⌘
(⌘ � ⌘4) ⌘4 < ⌘  N5 ,

(1.170)

postponing the actual proof for any profile � to the next subsection in this appendix.

As explained in the main text, we set N6 = ⇡
2

4
Nc. The charge profile is drawn in

Figure 1.7.

We shall count explicitly the number of D4 branes present in each interval [⌘i, ⌘i+1]

and check that this is coincident with the result of equation (1.70).
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�

⌘N5⌘1 ⌘2 ⌘3 ⌘4

�1

�2

�3

Figure 1.7: The charge density �(⌘) for the profile in equation (1.170).

Consider the portion of the Hanany-Witten setup shown23 in Figure 1.8. This

corresponds to the first interval (⌘ 2 [0, ⌘1]) for the piecewise continuous function �(⌘)

in equation (1.170). We see that the number of D4 branes is

ND4 = N6

�1
⌘1

(1 + 2 + 3 + 4 + ....+ ⌘1)

=
�1N6

2
(⌘1 + 1) .

(1.171)

. . .

1 2 3 4 ⌘1 � 1 ⌘1 ⌘1 + 1

�1

⌘1
2
�1

⌘1
3
�1

⌘1
(⌘1 � 1)

�1

⌘1

�1

Figure 1.8: The Hanany-Witten set-up for the first interval [0, ⌘1] of the profile in
equation (1.170). The number of branes should be multiplied by N6.

23In what follows, we will not draw the D6-flavour branes, to avoid clutter figures.
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Let us now move on to studying the second interval, ⌘1 < ⌘  ⌘2. In this case,

the relevant part of the quiver and Hanany-Witten setup are shown in Figure 1.9. We

count explicitly the number of D4 branes to find

ND4 = N6

⌘2�⌘1�1X

r=1

ñ
�1 +

�2 � �1
⌘2 � ⌘1

r

ô
+N6�2

= N6

(⌘2 � ⌘1)(�1 + �2)

2
+N6

�2 � �1
2

.

(1.172)

. . .

⌘1 ⌘1 + 1 ⌘1 + 2 ⌘1 + 3 ⌘1 + 4 ⌘2 � 1 ⌘2 ⌘2 + 1

. . .. . .
�1

�1 +
�2 � �1

⌘2 � ⌘1

�1 + 2
�2 � �1

⌘2 � ⌘1

�1 + 3
�2 � �1

⌘2 � ⌘1

�1 + (⌘2 � ⌘1 � 1)
�2 � �1

⌘2 � ⌘1

�2

Figure 1.9: The Hanany-Witten set up corresponding to the second interval for the
profile in equation (1.170). The number of branes should be multiplied by N6.

In the [⌘2, ⌘3] interval, whose Hanany-Witten setup is drawn in Figure 1.10, we find

ND4 = N6�2
⌘3�⌘2X

r=1

1 = N6�2(⌘3 � ⌘2). (1.173)

The rest of the intervals will work similarly. Indeed, in the interval [⌘3, ⌘4], whose

brane setup is depicted in Figure 1.11, we find

ND4 = N6

⌘4�⌘3�1X

r=1

ñ
�2 + r

(�3 � �2)

(⌘4 � ⌘3)

ô
+N6�3

= N6

(�2 + �3)(⌘4 � ⌘3)

2
+

(�3 � �2)

2
N6 .

(1.174)
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. . .

⌘2 ⌘2 + 1 ⌘2 + 2 ⌘2 + 3 ⌘2 + 4 ⌘3 � 1 ⌘3 ⌘3 + 1

�2 �2 �2 �2 �2 �2

Figure 1.10: The Hanany-Witten set up corresponding to the third interval for the
profile in equation (1.170). The number of branes should be multiplied by N6.

. . .�2

�2 +
�3 � �2

⌘4 � ⌘3

�2 + (⌘4 � ⌘3 � 1)
�3 � �2

⌘4 � ⌘3

�3

⌘3 ⌘3 + 1 ⌘3 + 2 ⌘4 � 1 ⌘4 ⌘4 + 1

Figure 1.11: The Hanany-Witten set up corresponding to the fourth interval for the
profile in equation (1.170). The number of branes should be multiplied by N6.

For the [⌘4, N5] interval, corresponding to the brane set-up of Figure 1.12, we have

ND4 = N6

N5�⌘4�1X

r=1

ñ
�3 �

�3
N5 � ⌘4

r

ô

=
N6�3
2

(N5 � ⌘4)�
N6�3
2

.

(1.175)

Summing the results for the five intervals in equations (1.171) - (1.175), we find

ND4 =
N6

2
[�1⌘1 + (�2 + �1)(⌘2 � ⌘1) + 2�2(⌘3 � ⌘2) + (�2 + �3)(⌘4 � ⌘3) + �3(N5 � ⌘4)]

=
2µ6

⇡

Z
N5

0

�(⌘)d⌘ ,

(1.176)
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. . .

⌘4 ⌘4 + 1 N5 � 1 N5

�3

�3 �
�3

N5 � ⌘4
�3 � (N5 � ⌘4 � 1)

�3

N5 � ⌘4

⌘4 + 2

Figure 1.12: The Hanany-Witten set up corresponding to the last interval for the
profile in equation (1.170). The number of branes should be multiplied by N6.

where the last equality can be seen by direct integration of �. Even though this result

is obtained for a (generic) Gaiotto-Maldacena charge profile with four kinks only, it

should be clear that (1.70) will work for any (acceptable) � profile. Let us prove it.

D.1 A derivation for the formula (1.70)

In this section we will provide a derivation for the formula counting the number

of D4 branes, see equation (1.70). To this end consider a non-trivial profile for the

function �(⌘) respecting the boundary conditions stated around (1.41)

�(⌘) = N6

8
>>>>>><

>>>>>>:

�1
⌘1
⌘ 0  ⌘  ⌘1

�1 +
⇣
�2��1
⌘2�⌘1

⌘
(⌘ � ⌘1) ⌘1 < ⌘  ⌘2

...

�n�1 �

⇣
�n��n�1

⌘n�⌘n�1

⌘
(⌘ � ⌘n�1) ⌘n�1 < ⌘  ⌘n.

(1.177)

Notice that in order to satisfy the boundary conditions in equation (1.40) we must

choose �n = �0 = 0. Following the previous section, it is not di�cult to see that the

counting of D4 branes of the Hanany-Witten set up can be done in the following way24

QD4 = N6

nX

s=1

⌘s�⌘s�1X

r=1

Ç
�s�1 +

�s � �s�1

⌘s � ⌘s�1

r

å
. (1.178)

Performing the inner sum (sum over r) explicitly leads to the following result

QD4 = N6

nX

s=1

Ç
�s�1 � �s

2

å
+N6

nX

s=1

�s + �s�1

2
(⌘s � ⌘s�1) . (1.179)

24Notice that this formula acquires a precise meaning only after the sum over r is carried out.
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It is easy to see that the first of the two sums vanishes identically. Thus, we end up

with the following result

QD4 = N6

nX

s=1

�s + �s�1

2
(⌘s � ⌘s�1) . (1.180)

Taking the continuous limit (i.e. sending n to infinity and taking infinitesimal the

distance ⌘s�⌘s�1) the approximation becomes exact and we get the formula in equation

(1.70),

QD4 = N6

Z
N5

0

�(⌘)d⌘ , (1.181)

where we have made the identification ⌘n ⌘ N5.

D.2 Counting D6 branes

D6 branes appear every time � has a kink, i.e. every time the derivative �0(⌘) shows

a discontinuity. The number of D6 branes at each kink is precisely that needed to

have conformality at each gauge node, i.e. every gauge group SU(�i) has 2�i flavours.

We can compute the change in slope in each interval for the profile given in equation

(1.170). We find in each interval

Q(1)

D6
= N6

Ç
�2 � �1
⌘2 � ⌘1

�
�1
⌘1

å
, Q(2)

D6
= N6

Ç
0�

�2 � �1
⌘2 � ⌘1

å
,

Q(3)

D6
= N6

Ç
�3 � �2
⌘4 � ⌘3

� 0

å
, Q(4)

D6
= N6

Ç
�

�3
N5 � ⌘4

�
�3 � �2
⌘4 � ⌘3

å
,

(1.182)

This, in turn, implies that

Qtotal

D6
=
X

i

Q(i)

D6
= N6

ñ
�3

n5 � ⌘4
+
�1
⌘1

ô
= �µ4Nc(�

0(N5)� �
0(0)) . (1.183)

This is again consistent with (1.67).
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E General N = 2 quivers and matching of

observables

In this appendix we consider three di↵erent examples of Gaiotto-Maldacena back-

grounds for N = 2 SCFTs. We show that the holographic formulas we have found in

the main text for the number of D4 and D6 branes and the central charge precisely

match with their field theory analogues.

E.1 First example

Let us begin with a �-profile of the following form

�(⌘) = Nc

8
<

:
⌘ 0  ⌘  N5

2

(N5 � ⌘)
N5
2

< ⌘  N5

(1.184)

The associated quiver and the Hanany-Witten setup are depicted in Figure 1.13. Sim-

. . . . . .N6 2N6
N5

2
N6

2N6

2N6 N6

N6 D4

1 2

. . . . . .

2N6 D4 N5

2
N6 D4

N6 D42N6 D4

2N6 D6

N5

2

N5

2
+ 1

N5 � 2 N5 � 1 N5

�

Figure 1.13: The quiver and Hanany-Witten set-up for the profile in equation (1.184).

ply by inspection of Figure 1.13, it is easy to see that the number of D4 and D6 branes
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is given by

ND4 =

N5
2X

r=1

rN6 +

N5
2 �1X

r=1

N6

Ç
N5

2
� r

å
=

N6N2

5

4
,

ND6 = 2N6 .

(1.185)

Let us count the number of vectormultiplets and hypermultiplets for the quiver of

Figure 1.13,

nv =

N5
2X

r=1

r2N2

6
� 1 +

N5
2 �1X

r=1

N2

6

Ç
N5

2
� r

å2

� 1 =
N2

6
N3

5

12
+

N5

6
(N2

6
� 6) + 1

nh =

N5
2 �1X

r=1

r(r + 1)N2

6
+N5N

2

6
+

N5
2 �1X

r=0

N2

6

Ç
N5

2
� r

åÇ
N5

2
� r � 1

å
=
N2

6
N5

12
(N2

5
+ 8) .

(1.186)

The associated central charge is then given by

c =
1

48⇡
(N2

6
N3

5
+ 4N5(N

2

6
� 2) + 8) . (1.187)

which at leading order leads to

c =
N2

6
N3

5

48⇡
. (1.188)

We can check that all these quantities are reproduced holographically by employing

the equations (1.67), (1.70), and (1.88). We find for the number of D4 and D6 branes

ND4 =
2

⇡
µ6

Z
⌘f

0

�(⌘)d⌘ =
N6N2

5

4
,

ND6 = �µ
4(�0(⌘f )� �

0(0)) = 2N6 ,
(1.189)

while for the central charge

c =
2

⇡4
µ14

Z
⌘f

0

�2(⌘)d⌘ =
N2

6
N3

5

48⇡
, (1.190)

in agreement with the CFT computation.

Let us now compute the linking numbers for the Hanany-Witten setup in Figure
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1.13. Using the definition already given in (1.71), we find

Ki = �N6 , Lj =
N5

2
. (1.191)

where i = 1, . . . N5 and j = 1, . . . , 2N6. We can easily see that the equation (1.72) is

satisfied. On the supergravity side, we can compute the linking numbers for the NS5

and D6 branes using the equations (1.75) and (1.78) and the � profile in (1.184). We

find
N5X

i=1

Ki =
2

⇡
µ6�0(⌘f )⌘f = �

2

⇡
µ6NcN5 ⌘ �N6N5 = �

2N6X

i=1

Li , (1.192)

finding complete agreement between sugra and CFT.

E.2 Second example

As a second example, let us consider the �-profile given by

�(⌘) = Nc

8
<

:
⌘ 0  ⌘  k

k(N5�⌘)

(N5�k)
k < ⌘  N5 .

(1.193)

The associated quiver and the Hanany-Witten setup are depicted in Figure 1.14. The

number of D4 and D6 branes for the SCFTs of Figure 1.14 is given by

ND4 =
kX

r=1

N6r +
N5�k�1X

r=1

kN6(N5 � k � r)

N5 � k
=

N6N5k

2
,

ND6 =
N5N6

(N5 � k)
.

(1.194)

Again, we can easily count how many vectormultiplets and hypermultiplets we
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. . . . . .N6 2N6 kN6

N5N6

N5 � k

kN6

N5 � k

N6 D4

1 2

. . . . . .
2N6 D4

3 k � 1 k k + 1 k + 2 N5 � 1 N5

(k � 1)N6 D4
kN6 (N5 � k � 1)

N5 � k
D4

kN6 D4
kN6

N5 � k
D4

�

x =
kN6(N5 � k � 1)

N5 � k

x

Figure 1.14: The quiver and Hanany-Witten set-up for the profile in equation (1.193).

have. These are given by

nv =
kX

r=1

r2N2

6
� 1 +

N5�k�1X

r=1

k2N2

6

(N5 � k)2
(N5 � k � r)2 � 1

=
1

6(N5 � k)

î
2k2N2

5
N2

6
+ kN5(N

2

6
+ 6)� 2k3N5N

2

6
� 6N5(N5 � 1)� 6k

ó

nh =
kX

r=1

r(r + 1)N2

6
+

Ç
kN2

6
N5

N5 � k
+

k2N2

6

N5 � k
(N5 � k � 1)

å

+
N5�k�2X

r=1

k2N2

6

(N5 � k)2
(N5 � k � r)(N5 � k � r � 1)

=
N2

6
k

3(N5 � k)

î
5N5 � k2(N5 + 3) + k(N2

5
+ 3N5 � 3)

ó
,

(1.195)

which lead to the following central charge

c =
1

12(N5 �K)

î
k2N2

6
(N2

5
+N5 � 1) + 2k(N2

6
N5 +N5 � 1)� k3N2

6
(N5 + 1) + 2N5(N5 � 1)

ó
.

(1.196)
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Sending both N5 !1 and N6 !1 we find, at leading order,

c =
k2N2

6
N5

12⇡
. (1.197)

We can check these values by performing the corresponding holographic calcula-

tions from the equations (1.67), (1.70) and (1.88). We find for the D4 and D6 branes

ND4 =
2µ2

⇡
µ4

Z
⌘f

0

�(⌘)d⌘ =
N6N5k

2
,

ND6 =
N6N5

N5 � k

(1.198)

while for the central charge

c =
2µ14

⇡4

Z
⌘f

0

�2(⌘)d⌘ =
k2N2

6
N5

12⇡
. (1.199)

The associated linking numbers for the Hanany-Witten set up in Figure 1.14 are

given by

Ki = �
kN6

N5 � k
, Lj = k , (1.200)

where i = 1, . . . , N5 and j = 1, . . . , N5N6
N5�k

. We can easily see that the condition (1.72)

is satisfied. Using the � profile in equation (1.193), and the expressions in (1.75) and

(1.78), the linking numbers of the NS5 and D6 branes are given by

N5X

i=1

ki =
2

⇡
µ6�0(⌘f )⌘f =

2

⇡
µ6

kNcN5

k �N5

= �
N5N6/N5�kX

i=1

Li , (1.201)

finding again perfect agreement between sugra and CFT.

E.3 Third example

In our third example we consider the �-profile given by

�(⌘) = Nc

8
>>><

>>>:

⌘ 0  ⌘  k

k k < ⌘  k + q

k (N5�⌘)

N5�k�q
k + q < ⌘  N5

(1.202)

The associated quiver and the Hanany-Witten setup can be seen in Figure 1.15.
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x

Figure 1.15: The quiver and Hanany-Witten set-up for the profile in equation (1.202).

The number of D4 and D6 branes is

ND4 =
kX

r=1

N6r + kqN6 +
N5�k�q�1X

r=1

N6k

N5 � k � q
(N5 � k � q � r)

=
kN6

2
(N5 + q) ,

ND6 =
(N5 � q)N6

N5 � k � q
,

(1.203)
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Again, we count the number of vectors and hypers to find

nv =
kX

r=1

r2N2

6
� 1 + q(k2N2

6
� 1) +

N5�k�q�1X

r=1

k2N2

6
(N5 � k � q � r)2

(N5 � k � q)2

=
1

6

Ç
6 + 2N5(k

2N2

6
� 3) + kN2

6
(1 + 4q +

k

N5 � k � q
)

å
,

nh =
kX

r=1

r(r + 1)N2

6
+

Ç
k2N2

6
q + kN2

6
+

k2N2

6

N5 � k � q

å

+
N5�k�q�1X

r=1

k2N2

6

(N5 � k � q)2
(N5 � k � q � r)(N5 � k � q � r � 1)

=
k2N6

3

Ç
5 + k(N5 + 2q +

5

N5 � k � q
)

å
,

(1.204)

which lead to a central charge

c =
1

12⇡

ñ
2 + 2kN2

6
+N5(k

2N2

6
� 2) + 2k2N2

6
(q +

1

N5 � k � q
)

ô
. (1.205)

At leading order, when N5 !1 and N6 !1, we have

c =
k2N2

6
N5

12⇡
(1.206)

We can check all this by performing holographic computations using again the

equations (1.67), (1.70) and (1.88). We find

ND4 =
kN6

2
(N5 + q) ,

ND6 =
N6(N5 � q)

N5 � k � q
,

(1.207)

for the number of D4 and D6 branes, while for the central charge

c =
k2N2

6
N5

12⇡
. (1.208)

The linking numbers for the Hanany-Witten set up in Figure 1.15 are easily seen

to be

Ki = �
kN6

N5 � k � q
, Lj = k Ln = k + q , (1.209)

where i = 1, . . . , N5, j = 1, . . . , N6 and n = 1, . . . , kN6/(N5 �K � q).
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Again, we can easily see that the condition (1.72) is satisfied. The holographic

linking numbers for the NS5 and D6 branes are determined using (1.75) and (1.78).

With the help of the � profile in equation (1.202) we find

N5X

i=1

Ki =
2

⇡
µ6�0(⌘f )⌘f =

2

⇡
µ6

KNcN5

K + q �N5

= �
N6X

j=1

Lj �

N5N6/N5�K�qX

n=1

Ln . (1.210)

F Black Holes in Gaiotto Maldacena Backgrounds

In this appendix we will consider the generic Gaiotto-Maldacena class of geometries

given in (1.33) with a Schwarzschild black hole profile solution in the AdS sector. In

particular, the background metric reads

ds2
10

↵0µ2
= 4f1

Ç
�r2g(r)dt2 +

dr2

r2g(r)
+ r2d~x2

å
+

ds2
int

↵0µ2
, (1.211)

where ds2
int

is given by

ds2
int

↵0µ2
= f2(d�

2 + d⌘2) + f3ds
2

S2(�, ⇠) + f4d�
2 , (1.212)

while g(r) is the blackening factor whose precise form is determined by the equations

of motion. The functions fi(i = 1 . . . 4) are still given in equation (1.36), while ~x is a

vector in R3.

The dilaton equation of motion gives a simple equation for the function g(r),

r2g00(r) + 10rg0(r) + 20g(r)� 20 = 0 . (1.213)

The general solution for the equation (1.213) is

g(r) = 1�
c1
r4

+
c2
r5

. (1.214)

The Einstein equations for the background metric (1.211) force c2 to be zero, leaving

c1 undetermined. As usual, the potential V (�, ⌘) appearing in the various functions fi

still satisfies the same Laplace-like equation (1.32). In order to have a sensible black

hole profile for the generic class of geometries we are considering, we will set c1 to be

r4
h
, with rh being the size of the horizon. The blackening factor g(r) then takes the
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standard form

g(r) = 1�
r4
h

r4
. (1.215)

It is now straightforward to compute the temperature of such a black hole. This is

given by the general formula

T =
1

2⇡

 
�
1

4
gttgrr(@rgtt)2 . (1.216)

Evaluating (1.216) on the background (1.211) we get

T =
rh
⇡

. (1.217)

Let us now compute the entropy S for this back hole solution. This is given by the

standard BH relation

S =
A

4
, (1.218)

where A is the area of the black hole horizon. This reads

A =
Z
d8x
»
g̃8 , (1.219)

where d8x = d3~xd�d⌘d�d⇠d� and g̃8 is the determinant of the eight-dimensional sub-

space in Einstein frame. It is easy to see that S is given by

S = 16⇡2vol(R3)r3
h

Z
d�d⌘

»
e�4�f 3

1 det gint , (1.220)

where det gint = f 2

2
f 2

3
f4. The integral in equation (1.220) reduces to that in equation

(1.88): Being both the entropy and the central charge extensive quantities counting

the degrees of freedom of the theory, they must be proportional to each other.

G Detailed construction of the deformed

backgrounds

In this appendix, we give details about the construction of our new backgrounds in

Section 1.3.
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G.1 The construction in eleven dimensions

Here, we will derive the gamma-deformed background of Subsection 1.3.2 following

the rules discussed in [79]. Let us define the doublet

Ba =

Ñ
Aa

�
1

2
✏abcC(1)bc

é
, (1.221)

where Aa and C(1)bc are defined in equation (1.135) and (1.136). For this particular

background C(2) and gµ⌫dxµdx⌫ are invariant under gamma-deformation, while C(3) is

identically vanishing and therefore not subjected to any transformation. A non trivial

transformation can possibly a↵ect Aa, C(0) and C(1)ab as we discuss below.

According to the rules of [79], the doublet Ba defined above transforms under

gamma deformation in the following way

Ba
! ⇤�TBa , (1.222)

where ⇤ 2 Sl(2,R) is given by

⇤ =

Ñ
1 0

� 1

é
. (1.223)

Here � is the parameter of the deformation. It is not di�cult to see that the only

(eight-dimensional) vector transforming is Aa. It transforms in the following way

Aa
! Aa =

1

2
�✏abcC(1)bc (1.224)

and, in particular, we have for the transformed Aa

A1 = 0 , A2 = ��C(1)⇠y ⌘ ��F7 sin�d� , A3 = �C(1)⇠� ⌘ �F6 sin�d� . (1.225)

Moreover the ⌧ parameter, defined as ⌧ ⌘ �C(0) + i“�1/2, undergoes a non trivial

transformation given by ⌧ ! ⌧/(1 + �⌧). This in turn implies25

“�!
“�

(1 + �2“�)2
, C(0) ! �

�“�
1 + �2“�

. (1.226)

Inserting these new definitions for the fields into the general equation (1.134) the

25In order to get (1.226), we have taken into account that C(0) is equal to zero before the trans-
formation, see (1.136).
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background metric and the three-form A(3) take the form

ds2

2/3
= (1 + �2“�)1/3

Ä
4F1ds

2

AdS5
+ F2(d�

2 + d⌘2) + F3d�
2
ä

+ (1 + �2“�)�2/3
Ä
F3 sin

2 �d⇠2 + F4D̃�
2 + F5(D̃y + ÃD̃�)2

ä
,

A(3) = (F6D̃� + F7D̃y) ^dvolS2 �
�“�

1 + �2“�
d⇠ ^ D̃� ^ D̃y ,

(1.227)

consistent with equation (1.138).

G.2 The TsT transformation of the Gaiotto-Maldacena

solution in type IIB

The purpose of this appendix is to provide the details of the construction of the TsT

transformed GM solution studied in Subsection 1.3.2, following [16]. The starting point

is the type IIB solution in equation (1.142) obtained by performing a T-duality on the

GM solution of equation (1.33), (1.34) and (1.35) along the isometric � direction,

ds2

↵0µ2
= 4f1ds

2

AdS5
+ f2(d�

2 + d⌘2) + f3(d�
2 + sin2 �d⇠2) + f�1

4
d�2 ,

B(2) = µ2↵0f5dvolS2 , e2� =
f8
µ2f4

,

C(2) = µ6↵0f7dvolS2 , C(0) = µ4f6 .

(1.228)

Moreover, following [16], any configuration in IIB supergravity with U(1) ⇥ U(1)
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isometry can be conveniently written in the form

ds2
IIB

↵0µ2
=

F
p
�
(D'1

� CD'2)2 + F
p

�(D'2)2 +

 
e2�/3

F 1/3
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µdX⌫ ,
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= B12D'
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B1µ(D'

1) + B2µ(D'
2)
ó
^ dXµ

�
1

2
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µ
Bm⌫dx

µ
^ dx⌫

+
1

2
b̃µ⌫dx

µ
^ dx⌫ , e2�B = e2�
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↵0µ6
= C12D'

1
^D'2 +

Ä
C1µD'

1 + C2µD'
2
ä
^ dXµ

�
1

2
Am

µ
Cm⌫dx

µ
^ dx⌫ +

1

2
c̃µ⌫dx

µ
^ dx⌫ , C(0) = µ4A0 ,

C(4)

↵02µ8
= �

1

2
(d̃µ⌫ +B12c̃µ⌫ � ✏

mnBmµCµ⌫ � B12A
m

µ
Cm⌫)dx

µ
^ dx⌫ ^D'1

^D'2

+
1

6
(Cµ⌫� + 3(b̃µ⌫ + A1

µ
B1⌫ � A2

µ
B2⌫)C1�)dx

µ
^ dx⌫ ^ dx� ^D'1

+ dµ1µ2µ3µ4dx
µ1 ^ dxµ2 ^ dxµ3 ^ dxµ4 + bdµ1µ2µ3dx

µ1 ^ dxµ2 ^ dxµ3 ^D'2,

(1.229)

where the indices m,n = 1, 2 and all the quantities above defining the fields in the

solution are dimensionless quantities. The coordinates '1,2 are the two isometric co-

ordinates associated with the two-torus and

D'1 = d'1 + A
(1)

µ
dxµ, D'2 = d'2 + A

(2)

µ
dxµ. (1.230)

For the solution in equation (1.228) we identify '1 = � and '2 = ⇠. A direct

comparison between (1.228) and (1.229) leads to the following identifications

Gµ⌫dX
µdX⌫ = e�2�/3F 1/3

Ä
4f1ds

2

AdS5
+ f2(d�

2 + d⌘2) + f3d�
2
ä
,

F =

s
f3
f4

sin�,
p

� =
»
f3f4 sin�, e2�B = e2� =

f8
µ2f4

,

B2� = �f5 sin� , C2� = �f7 sin� , C0 = A0 = f6 ,

(1.231)

with the remaining quantities in the solution set to zero. We are now in a position to

apply the standard TsT transformation rules [16] to the type IIB background expressed
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above in equation (1.228). The Sl(3,R) transformation is applied with

⇤ =

á
1 � 0

0 1 0

0 0 1

ë

We then group the di↵erent components of the fields in the solution of equation (1.229)

according to their transformation under Sl(3,R). For the scalar sector, the transformed

fields are given in terms of the following matrix elements [78],

gT
11

=
e��/3

F 1/3

»
1 + �2F 2 , gT

12
=
�e��/3F 5/3

p
1 + �2F 2

, gT
22

=
e��/3F 2/3

p
1 + �2F 2

,

gT
31

=
e2�/3A0

F 1/3
, gT

32
= 0 , gT

33
=

e2�/3

F 1/3
,

(1.232)

In particular, the metric components and the dilaton transform according to

F 0 =
gT
22

gT11
=

F

1 + �2F 2
=

p
f3f4 sin�

f4 + �2f3 sin
2 �

, �(TsT ) = � = f3f4 sin
2 � ,

e2�
0
=

Ç
gT
33

gT11

å2

=
e2�

1 + �2F 2
=

f8
µ2(f4 + �2f3 sin

2 �)
.

(1.233)

Moreover, the non-zero components of the NS two-form,

B0(2) = B0

12
(D'1)0 ^ (D'2)0 +B0

2�
(D'2)0 ^ d�, (1.234)

have the following transformation rules

B0

12
=

gT
12

gT11
=

�F 2

1 + �2F 2
=

�f3 sin
2 �

f4 + �2f3 sin
2 �

, B0

2�
= B2� = �f5 sin� , (1.235)

whilst

(D'1)0 = d� + (A1

�
)0d� = d� � �f5 sin�d�, (D'2)0 = d⇠ . (1.236)

The RR potentials, on the other hand, could be formally expressed as

A0

0
=

Ç
gT
22
gT
11

gT33

å1/2

gT
31

= A0 = f6 ,

C 0

2
= C 0

12
(D'1)0 ^ (D'2)0 + C 0

2�
(D'2)0 ^ d� ,

(1.237)
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where the components of the 2-form RR potential transform as

C 0

12
= A0

0
B0

12
� gT

32
gT
22
gT
11

=
�f3f6 sin

2 �

f4 + �2f3 sin
2 �

,

C 0

2�
= C2� = �f7 sin� .

(1.238)

The TsT transformed solution is given by equation (1.229) by replacing the original

fields by the transformed ones. The final result is the one given in equation (1.144) in

the main text.



Chapter 2

Spin 2 fluctuations in
1

4
BPS AdS3/CFT2

In this chapter we study spin 2 fluctuations around a class of gravity backgrounds

with an AdS3 factor first introduced in [17]. General fluctuations of the supergravity

fields are usually classified according to the maximal bosonic subalgebra realised by

the background. Because of the holographic duality, such fluctuations are mapped to

operators in the dual Quantum Field Theory. The idea is then to classify a (small)

part of the spectrum of the operators in the two-dimensional dual Field Theory via

holography.

1 Introduction

Superconformal Field Theories (SCFTs) in diverse dimensions, and with di↵erent

number of supersymmetries, have been object of intense study in the past years and

still constitute a rich and fruitful subject. Aside from being interesting in their own

right, they play a crucial role in the AdS/CFT duality. In 1997, Maldacena [89]

conjectured that d-dimensional SCFTs are dual to AdSd+1 backgrounds and since

then the AdS/CFT duality has provided a powerful tool to make strongly coupled

CFTs more tractable. We have seen an example of holographic duality at work in

Chapter 1.

Over the years, very useful has proved to be the correspondence between SCFTs

in d > 2 with 8 Poincare supercharges and their holographic duals. For instance, the

N = 4 three-dimensional field theories studied in [90, 91] have been explored from

a holographic perspective in e.g. [92, 93, 94, 72]. In four dimensions, the A-type of

quivers of [14] corresponding to N = 2 supersymmetry, already solved in [26], found a

holographic realisation in [13]. Further holographic studies were given in e.g. [34, 35, 1]

(this was amply discussed in the previous chapter). Also five dimensional SCFTs with

89
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8 supercharges have found a holographic realisation, see for instance [95, 96, 97, 98]

while in six dimensions N = (0, 1) SCFTs were addressed from a QFT and holographic

point of view in many papers, see for instance [99, 100, 38].

The case of two-dimensional SCFTs is particularly interesting, as they are intrin-

sically di↵erent from SCFTs in d > 2. First of all, their (superconformal) algebra is

infinite-dimensional [101]. This makes them much more easy to analyse and, some-

times, they can even be solved exactly [102]. Secondly, they find many applications in

string and quantum field theory, e.g. two-dimensional SCFTs make their appearance

when quantising the super-Polyakov action, but they also o↵er a description of several

critical phenomena.

In the present chapter we focus on two-dimensional SCFTs with N = (0, 4) su-

persymmetry. Their (infinite-dimensional) superconformal algebra was constructed in

[103], and studied further in the subsequent papers [104, 105]. By virtue of AdS/CFT,

N = (0, 4) two-dimensional SCFTs are supposed to be dual to type II supergravity

backgrounds with an AdS3 factor. In fact, an infinite family of new solutions in type

IIA supergravity with an AdS3⇥S2 factor, preserving N = (0, 4) supersymmetry, was

recently built in [18, 19] and further explored in [106]. All these solutions relied on the

local construction given in [17] which classify local solutions in massive IIA with an

AdS3 ⇥ S2 factor and an SU(2) structure. The authors of [18, 19, 106, 17] identified

the backgrounds that are dual to the IR limit of a special class of long quivers. These

quivers are, in turn, made of two families of N = (4, 4) linear quivers coupled by

matter fields. We will introduce such quantum field theories and review their main

features in Section 2 and Appendix J.

An important part of the study of a class of SCFTs is the spectrum of operators,

and understanding how they fit into representations of the superalgebra is a challenging

and stimulating problem. In a recent work [107], multiplets for the two-dimensional

N = 4 superconformal algebra have been built. These multiplets fall into short and

long multiplets. The authors of [107] were mainly interested in applications of two-

dimensional N = 4 superconfomal algebra to a numerical bootstrap study. Here,

we will rely on their results concerning representations of the N = 4 superconfomal

algebra to study holographically the spectrum of operators.

In AdS/CFT, the linearised fluctuations of the supergravity background capture

the spectrum of the dual gauge-invariant superconformal operators. Therefore, the

main motivation of the present work is to study (some) fluctuations around the

backgrounds first presented in [18], in order to holographically reproduce (some of)
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the spectrum of operators already found in [107]. Constructing linearised fluctua-

tions for the full supergravity background is not an easy task1. However, as no-

ticed in [110], for the case of sole spin 2 fluctuations the problem simplifies consid-

erably. It turns out that spin 2 fluctuations, which are given in terms of pertur-

bations of the backgroud metric, solve an equation that depends only on the un-

derlying geometry of the background. This strategy has been applied succesfully in

e.g. [111, 112, 113, 114, 115, 116, 117, 118, 119] for the case of four-, five- and six-

dimensional SCFTs. We will follow a similar path for the case of a warped AdS3.

This chapter is organised as follows. In Section 2 we briefly review the background

presented in [18] along with the dual CFT interpretation further explored in [19, 106].

In Section 3 we derive an equation for spin 2 fluctuations of the metric background.

These are transverse and traceless fluctuations along the AdS3 part of the geometry

and correspond to massive rank-2 tensors. In Section 4 we identify a particular class

of solutions. These are the universal type of solutions, as they are independent of the

background data. As we will see, they are also minimal solutions as they correspond to

spin 2 fluctuations for which the mass of the graviton is the minimum possible in terms

of the angular momentum on the S2. In Section 5 we discuss the implications for the

dual field theory. In particular, we will see that the universal solution corresponding

to massless gravitons is dual to the energy momentum tensor operator of the dual

field theory. Finally, in Section 6, we will see how to compute the central charge for

the N = (0, 4) long quiver of [19] from the action of the spin 2 fluctuations. We give

our conclusions in Section 7. In the Appendices, we give an example of non universal

solution (dependent on the background data) and spell out the algebra and superfield

construction of N = (0, 4) two-dimensional superconformal field theories.

2 The gravity backgrounds and dual field theories

In this section we review the global class of solutions first presented in [18] as well

as the proposed dual field theories. These new backgrounds are solutions to massive

IIA supergravity and have the structure of a warped AdS3 ⇥ S2
⇥ CY2 ⇥ I⇢, with I⇢

an interval parametrised by a coordinate labelled ⇢.

1See the seminal papers [108, 109] where the full Kaluza-Klein spectrum was obtained for the
non-warped cases of AdS5 ⇥ S5 and AdS3 ⇥ S3.
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The holographic backgrounds

The N-S sector of the global class of solutions of [18] reads

ds2 =
u»
bh4h8

 

ds2
AdS3

+
bh4h8

4bh4h8 + (u0)2
ds2

S2

!

+

Ã
bh4

h8

ds2
CY2

+

»
bh4h8

u
d⇢2 ,

e�� =
h3/4

8

2bh1/4

4

p
u

q
4bh4h8 + (u0)2 , H(3) =

1

2
d

 

�⇢+
uu0

4bh4h8 + (u0)2

!

^dvolS2 +
1

h8

d⇢ ^H2 .

(2.1)

Here � is the dilaton, H(3) the N-S three-form and the metric is given in string frame.

H2 is a two form whose explicit form was given in [17]. The functions u, bh4, h8 are

functions only of the ⇢ coordinate.2 A prime denotes a derivative with respect to ⇢.

The R-R sector reads

F(0) = h0

8
, F(2) = �H2 �

1

2

Ç
h8 �

h0

8
u0u

4h8
bh4 + u02

å
dvolS2 ,

F(4) =

Ç
d

Ç
u0u

2bh4

å
+ 2h8d⇢

å
^dvolAdS3 � @⇢

bh4
dvolCY2 �

u0u

2(4bh4h8 + (u0)2)
H2 ^

dvolS2 .

(2.2)

Higher R-R fluxes are related to F(0), F(2) and F(4) as usual as F(6) = � ? F(4), F(8) =

?F(2), F(10) = � ? F(0), where ? is the ten-dimensional Hodge-dual operator.

It was shown in [17] that supersymmetry is mantained when

u00 = 0 , H2 + ?4H2 = 0 , (2.3)

where ?4 is the Hodge-dual on the CY2. In the following we will consider only that

class of geometries with H2 = 0. Away from brane sources, the Bianchi identities

imply

h00

8
= 0 , bh00

4
= 0 . (2.4)

Thus the three functions u, bh4 and h8 that appear as warping factors are at most linear

in ⇢3. This will lead to considerable simplifications in the following sections.

2A complication of this system is when bh4 has support on (⇢, CY2). The more general backgrounds
deriving from this assumption are discussed in the original paper [17].

3Again, this is true away from brane sources. In the presence of branes, the rhs’ of the two
equations in (2.4) receive infinite contributions in the form of delta functions. This causes bh4 and h8

to be piecewise linear functions.



2. The gravity backgrounds and dual field theories 93

Following [19], we will be interested in the case of a finite interval I⇢ where both
bh4 and h8 vanish at both ends of the interval. So, to start fixing conventions, let us

set I⇢ = [0, ⇢⇤] and bh4(⇢̄) = h8(⇢̄) = 0, when ⇢̄ is equal to 0 and ⇢⇤. It is convenient

[19] to set ⇢⇤ = 2⇡(P +1), with P a large integer. On the other hand, u vanishes only

at ⇢ = 0. The general form for bh4, h8 and u is then found to be

bh4(⇢) = ⌥

8
>>>><

>>>>:

�0

2⇡
⇢ 0  ⇢  2⇡

�0 + · · · + �k�1 +
�k
2⇡
(⇢� 2⇡k) 2⇡k < ⇢  2⇡(k + 1)

↵P �
↵P
2⇡
(⇢� 2⇡P ) 2⇡P < ⇢  2⇡(P + 1) ,

(2.5)

h8(⇢) =

8
>>>><

>>>>:

⌫0
2⇡
⇢ 0  ⇢  2⇡

⌫0 + · · · + ⌫k�1 +
⌫k
2⇡
(⇢� 2⇡k) 2⇡k < ⇢  2⇡(k + 1)

µP �
µP
2⇡
(⇢� 2⇡P ) 2⇡P < ⇢  2⇡(P + 1) ,

(2.6)

where k = 1, · · · , P � 1, and

u =
b0
2⇡
⇢ . (2.7)

Here ↵P =
P
�k and µP =

P
⌫k by continuity of bh4 and h8.

The dual field theories

The background given in (2.1), (2.2) with bh4, h8 and u as in (2.5), (2.6) and (2.7)

was found [19] to be dual to the IR limit of the quiver in Figure 2.1. More precisely,

the quiver in Figure 2.1 is supposed to flow in the IR to a fixed point whose dynamics

is captured by the background above with the warping functions just described4.

Let us spell out what the building blocks of such a quiver are.5 An U(N) gauge

node of the quiver is denoted by (N): (�0) stands for an U(�0) gauge node, (�0 + �1)

for an U(�0 + �1) gauge node, and so on. There are two rows of gauge groups for

the quiver in Figure 2.1. Associated with each gauge node there is a (4, 4) vector

multiplet. SU(F ) flavour groups are denoted by [F ]. Black lines represent (4, 4)

4Originally, in [19] and [3], (4, 4) hypermultiplets between colour and flavour groups (curved
black lines in Figure 2.1) were not contemplated. However, open string quantisation suggests that
they should be part of the spectrum of massless fields. Further arguments in favour of the possibility
of adding such hypermultiplets were given in [120].

5Basics of N = (0, 2) and N = (0, 4) superconformal field theories in 2 dimensions are reviewed
in Appendix B. For a complete treatment see [121]. Very useful are also [122, 123, 124, 125].
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[F0] [F1] [F2] [Fk�1]

(�0) (�0 + �1) (�0 + �1 + �2) (↵k)

(⌫0) (⌫0 + ⌫1) (⌫0 + ⌫1 + ⌫2) (µk)

[F̃0] [F̃1] [F̃2] [F̃k�1]

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 2.1: The generic quiver whose IR is captured by the background in (2.1) and
(2.2). Each gauge node is associated with a (4, 4) vector multiplet. Black lines rep-
resent (4, 4) hypermultiplets. Red lines represent instead (0, 4) hypermultiplets and
dashed lines (0, 2) Fermi multiplets.

hypermultiplets. They transform in the bifundamental representation of the groups

they are attached to. Red lines represent (0, 4) hypermultiplets, while dashed lines are

(0, 2) Fermi multiplets. They also carry one fundamental and one anti-fundamental

index of the groups they are attached to. The F ’s and F̃ ’s are not independent of the

other numbers of the quiver: as noticed in [19] the theory is chiral and might su↵er

from gauge anomalies. The F ’s and F̃ ’s can be chosen in such a way gauge anomalies

cancel out at each gauge node of the quiver. A straightforward calculation (see [19])

leads to

Fk�1 = ⌫k�1 � ⌫k , F̃k�1 = �k�1 � �k . (2.8)

3 Spin 2 fluctuations on AdS3 ⇥ S2
⇥CY2 ⇥ I⇢

In this section we aim at studying massive spin 2 fluctuations of the AdS3 metric in

(2.1). As we will see, they are composed of a transverse, traceless part along the AdS3

direction and a scalar mode along the internal manifold. The goal of this section is to

find the equation that such a metric fluctuation should solve. Explicit solutions will

be given in the following sections.

As mentioned in the introduction, the study of the full KK-spectrum of the warped

AdS3 background in (2.1) and (2.2) is not an easy task. However, in [110] it has been

shown that, in the case of a warped AdS4, the equations for the fluctuation of the
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metric decouple from all other fluctuations. Moreover, they solve a ten dimensional

Laplace equation which depends only on the background metric (such equation will be

given later in this section). The analysis done in [110] can be extended to any warped

background with an AdS factor, and it is straightforward to apply it to the case we

are interested in, namely spin 2 fluctuations of the warped AdS3 ⇥ S2
⇥ CY2 ⇥ I⇢.

Equation for spin 2 fluctuations

To begin with, let us consider the background metric of (2.1) in the Einstein frame.

This is achieved, as usual, by multiplying the “string frame” metric of (2.1) by e��/2,

being � the dilaton. A useful and compact form for it is

ds2 = f1e
��/2ds2

AdS3
+ bgabdzadzb , (2.9)

where the warping factor f1 and the “internal” metric are given by the following

expressions

f1 =
u

p
h4h8

, bgabdzadzb = e��/2

Ç
u
p
h4h8

4h4h8 + (u0)2
ds2

S2 +

s
h4

h8

ds2
CY2

+

p
h4h8

u
d⇢2
å
.

(2.10)

In the following we will take the CY to be a four-torus T4 parametrised by 4 angles

✓i, (i = 1, . . . , 4). Here, of course, ✓i ⇠= ✓i + 2⇡. Let us then consider a symmetric

fluctuation h along the AdS3 part of the ten-dimensional metric

ds2 = f1e
��/2(ds2

AdS3
+ hµ⌫dx

µdx⌫) + bgabdzadzb . (2.11)

h can be decomposed into a transverse traceless fluctuation on AdS3 and a mode on

the internal manifold in the following manner

hµ⌫(x, z) = h[tt]

µ⌫
(x) (z). (2.12)

Following [110], the transverse traceless fluctuation h[tt]

µ⌫
(x) satisfies the following equa-

tion of motion on AdS3

⇤(2)

AdS3
h[tt]

µ⌫
(x) = (M2

� 2)h[tt]

µ⌫
(x) , (2.13)
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where ⇤(2)

AdS3
is the Laplace operator acting on massive rank-two tensors in AdS3, see

e.g. [126]. The authors of [110] have shown that the linearised Einstein equations

reduce to the ten dimensional Laplace equation

1
p
�g

@M
p
�ggMN@Nhµ⌫ = 0 . (2.14)

For the background metric in (2.1), and with h[tt]

µ⌫
satisfying the equation (2.13), we

get the following equation for the “internal mode”  (z)

(f1e��/2)�1/2

bg1/2
@a
h
(f1e

��/2)3/2
»
bgbgab@b

i
 (z) = �M2 (z) . (2.15)

Expanding out equation (2.15) we find

ñÇ
4 +

(u0)2

bh4h8

å
r

2

S2 +
u
bh4

(@2
✓1
+ @2

✓
2
2
+ @2

✓3
+ @2

✓4
) +

1
bh4h8

d

d⇢

Ä
u2

d

d⇢

ä
+M2

ô
 (z) = 0 .

(2.16)

The function  can be conveniently decomposed into spherical harmonics on the S2

and into plane waves on the T4 in the following fashion

 =
X

l,m,n

 lmnYl,me
in·✓ . (2.17)

Here n is a shorthand notation for (n1, n2, n3, n4) and n ·✓ = n1✓1+n2✓2+n3✓3+n4✓4.

The ni’s are of course integers, in order for  to be single valued. Substituting (2.17)

into (2.16) we get an equation for  lmn which reads

1
bh4h8

d

d⇢

Ç
u2

d lmn

d⇢

å
�

ñÇ
4 +

(u0)2

bh4h8

å
l(l + 1) +

u
bh4

n2
�M2

ô
 lmn = 0 . (2.18)

It turns out to be useful to redefine  lmn = ul�lmn. In this way, equation (2.18)

becomes an equation for �lmn, which reads6

d

d⇢

Ç
u2(l+1)

d�lmn

d⇢

å
� n2bh4h8u

2l

Ç
u
bh4

å
�lmn = �(M2

� 4l(l + 1))bh4h8u
2l�lmn , (2.19)

or, in a more compact form,

S�lmn + q(⇢)�lmn = ��w(⇢)�lmn , (2.20)

6To get the equation (2.19), we need to use u00 = 0, which is globally true.
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with the di↵erential operator S and the functions q and w given by

S =
d

d⇢

Ç
p(⇢)

d

d⇢

å
, p(⇢) = u2(l+1) , q(⇢) = �n2bh4h8u

2l

Ç
u
bh4

å
, w(⇢) = bh4h8u

2l ,

(2.21)

while the “eingenvalue” � is

� = M2
� 4l(l + 1) . (2.22)

The equation (2.20), together with the definitions (2.21), defines a Sturm-Liouville

problem7. As we discussed in Section 2, the variable ⇢ takes values in the finite interval

I⇢ = [0, 2⇡(P +1)] and the function u vanishes only at ⇢ = 0. Therefore we have what

in the mathematical literature is known as a singular Sturm-Liouville problem.

Notice also that with the substitution d⇢/dt = u2(l+1), with t a new variable, the

equation (2.19) reduces to a Schrödinger-like equation. We will not be studying (2.19)

in its Schrödinger form. Our starting point will be equation (2.19) and, as we will see

in coming sections, solutions to that equation can be found.

4 Unitarity and a special class of solutions

In this section we will show how a bound for M2 emerges from equation (2.19). For

this bound, we find a particular class of solutions which will be dubbed “universal”.

Regularity conditions for the mode  will also be discussed.

A bound for M 2

To begin with, let us multiply (2.19) by �lmn and then integrate over ⇢. The equation

we get is

Z

I⇢

d⇢ �
d

d⇢

Ç
u2(l+1)

d�

d⇢

å
�n2bh4h8u

2l

Ç
u
bh4

å
�2+(M2

� 4l(l+1))bh4h8u
2l�2 = 0 , (2.23)

where � stands for �lmn. Now, if we integrate by parts the first term we get

Z

I⇢

d⇢
Ä
��02u2(l+1)

� n2h8u
2l+1�2 + (M2

� 4l(l + 1))bh4h8u
2l�2
ä
= ���0u2(l+1)

����
⇢
⇤

0

.

(2.24)

7The three functions u, bh4 and h8 are, of course, always positive definite, in order for the back-
ground metric in (2.1) to have the correct signature. Therefore w(⇢) is always positive definite. This
condition is necessary to have a well defined Sturm-Liouville problem.



98 Chapter 2. Spin 2 fluctuations in 1

4
BPS AdS3/CFT2

Notice that ��0u2(l+1) vanishes when evaluated at ⇢ = 0 (as u does vanish at ⇢ = 0)

as long as � and �0 are regular there, while it doesn’t when evaluated at ⇢ = ⇢⇤. In

the following, we will focus on the Hilbert space of functions � for which ��0u2(l+1)

vanishes also at ⇢ = ⇢⇤. Thus, the equation (2.24) reduces to

Z

I⇢

d⇢
Ä
�02u2(l+1) + n2h8u

2l+1�2
ä
= (M2

� 4l(l + 1))
Z

I⇢

d⇢ bh4h8u
2l�2 , (2.25)

Given that u, bh4 and h8 are non-negative, and the integrals finite, we find the following

lower bound for M2

M2
� 4l(l + 1) . (2.26)

Universal minimal solution

Let us consider the case where M2 = 4l(l + 1) and n = 0. Then, equation (2.19)

simply reduces to
d

d⇢

Å
u2(l+1)

d�lm

d⇢

ã
= 0 , (2.27)

which can be integrated to give �0

lm
= constant/u2(l+1). However, for the class of

geometries discussed in Section 2, u vanishes at ⇢ = 0 (it is in fact linear in ⇢) and

therefore �0

lm
is not finite at ⇢ = 0. This, in turn, implies that both �lm and  lm = ul�lm

are not finite at ⇢ = 0 for any l. As we are looking for fluctuations that remain finite

everywhere, the only acceptable solution to (2.27) is �lm = constant. This in turn

implies that

�lm = constant ,  lm = constant⇥ ul , M2 = 4l(l + 1) . (2.28)

This class of solutions is independent of the form of u, bh4 and h8 and in this sense

they are “universal”. Moreover, they are the solutions with minimal M for a given l,

saturating the bound (2.26), and therefore correspond to “minimal” solutions.

The bound (2.26) for the mass of spin 2 excitations will prove to be very important

when discussing quantum field theory implications. In particular, anticipating the

discussion in Section 5, the spin 2 fluctuations considered are dual to operators in the

field theory with dimension � given by the usual AdS/CFT formula, M2 = �(�� 2).

The inequality (2.26) implies for the conformal dimension the following lower bound

� � �min , �min = 2l + 2 . (2.29)
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We leave a further discussion of the bound (2.29) for later.

For the case of non universal solutions, i.e. solutions for which M2 > 4l(l + 1), it

is necessary to specify what the three functions u, bh4 and h8 are. The general form of

these functions has been given in Section 2. An example of non universal solution to

(2.19) will be discussed in the Appendix H.

5 Implications for the dual field theory

In this section we identify the operators dual to the spin 2 fluctuations that we

have studied in the previous sections. Crucial for this would be the comparison of the

spectrum of fluctuations with the spectrum of multiplets built in [107]. The analysis

of [107] uses insights developed in [127, 128] for the construction of supermultiplets in

d � 3 and is sketched in Appendix I.

Superconformal multiplets

For each fluctuation of the metric introduced above there is an operator in the

dual SCFT. Therefore, we should aim at understanding what kind of operators these

metric fluctuations correspond to. As already mentioned, the representations of N = 4

superconformal algebra in two dimensions were worked out in [107] and briefly sketched

in Appendix I. These representations are labelled by the conformal weight h and h̃

of the SL(2,R) ⇥ SL(2,R) conformal algebra and the Dynkin index r of the SU(2)R

R-symmetry. In particular, the scaling dimension � of any operator is usually given as

the sum of its conformal weights, � = h+ h̃. The spin of such operators is determined

as the di↵erence between their conformal weights, s = h � h̃. Thus, a state in the

superconformal algebra can be represented schematically as

[h, h̃](r)
�=h+h̃

. (2.30)

The SU(2)R is realised on the supergravity side as the isometries of S2. Thus, the

quantum number on the S2, l and m, are related to the R-charges of the corresponding

dual operators. In particular, the Dynkin r, which is always an integer, is related to l

by r = 2l. Therefore, in our construction r will always be a positive, even-integer.

As noted earlier, the mass of a spin 2 bulk field and the scaling dimension of the

dual operator are related by the formula M2 = �(�� 2). Thus, the minimal solution
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(2.28), for which M2 = 4l(l + 1), corresponds to operators with scaling dimension

� = 2l + 2. Finally, we should stress that, for the type of fluctuations that we are

studying, h and h̃ are not really independent. The SL(2,R) ⇥ SL(2,R) isometry of

AdS3 (plus gauge invariance) classifies hµ⌫ to have h� h̃ = ±2.

Having identified all the quantum numbers using the standard holographic map,

the (complex) spin 2 fluctuations correspond to operators labelled as

[h, h ± 2](2l)
�=2h±2=2l+2

. (2.31)

For h = 2, (2.31) comprises of [2, 0](0)
�=h=2

. These are the quantum numbers of the

holomorphic stress energy tensor. As explained in [107] and in Appendix I, such

a state arises as top component descendant in the short multiplet whose conformal

primary has r = 2l = 2 and h = r/2 = 1. Notice also that choosing h = 0, (2.31) leads

to [0, 2](0)
�=h̃=2

, the quantum numbers of the anti-holomorphic stress energy tensor.

For massive solutions with l > 0 the spin 2 universal fluctuations (2.28) either

correspond to operators which sit as top components in a multiplet whose primary

field has dimension � = 2l+1, very much as explained in [107] and in Appendix I, or

to operators obtained by tensoring chiral primaries in short multiplets with the anti-

holomorphic sector of the algebra, just like the anti-holomorphic energy momentum

tensor above.

It would be nice to understand how this operators are built from the fields of the

SCFT at hand (the SCFTs represented by the quiver in Figure 2.1). More in particular,

we expect the operators dual to (2.28) to be given by single traces of products of

elementary fields in our SCFT. A step forward for this would be to identify the scalar

primary T in the stress-energy tensor multiplet. This, in turn, can be “dressed” by

other fields in order to get an operator whose scaling dimension � is equal to 2l+1 and

whose R-charge under the SU(2)R symmetry is 2l + 2. However, we should also take

into account that the SCFTs at hand are inherently strongly coupled and a Lagrangian

description for them might not be suitable.

6 Central charge from the spin 2 fluctuations

In this section we will briefly show a possible way to compute the central charge

for the theories in (2.1), (2.2). To this end, we should compute the normalisation

of the two-point function of the operators dual to the graviton fluctuations studied



6. Central charge from the spin 2 fluctuations 101

in Section 4. We have seen in Section 4 that the universal, minimal solution with

l = m = n = 0 corresponds to a massless graviton and, therefore, the dual operator

is the energy momentum tensor. The normalisation of the two-point function for the

energy momentum tensor is read o↵ from the e↵ective action for the three-dimensional

graviton.

Let us start from the type IIA action written schematically in the Einstein frame

as

SIIA =
1

2210

Z
d10x
p
�gR + · · · . (2.32)

Expanded to second order, and following [117], it leads to an action for hµ⌫ which

reads

S[h] =
1

210

Z
d10x
p
�g hµ⌫

1
p
�g

@M
p
�ggMN@Nhµ⌫ + boundary term . (2.33)

Expanding out (2.33) and dropping the boundary term which is not necessary in what

follows, we get

S[h] =
1

210

Z
d10x(�gAdS3)

1
2 (bg)

1
2 (f1e

�
�
2 )

1
2 hµ⌫

n
⇤(2)

AdS3
+ 2 + “⇤

o
hµ⌫ , (2.34)

where “⇤ is the operator on the left-hand side of (2.15). Using the Ansatz8 hµ⌫ =

(h[tt]

lmn
)µ⌫Ylm lmnein·✓ we find

S[h] =
X

lmn

Clmn

Z
d3x
»
�gAdS3 (h

[tt]

lmn
)
µ⌫
n
⇤(2)

AdS3
+ 2�M2

o
(h[tt]

lmn
)
µ⌫

(2.35)

where the coe�cients Clmn are given by9

Clmn =
16⇡4

10

Z

I⇢

d⇢
»
bg (f1e�

�
2 )

1
2 | lmn|

2 . (2.36)

The integral in (2.36) is finite for the class of solutions discussed in this paper,

namely those fluctuations that are finite everywhere. In particular, if we specialise

to the universal, minimal solution (2.28) with l = m = n = 0, i.e.  lmn = 1, (2.36)

8Notice that we are using the subscripts l, m and n under h. This is because in some solutions
(like the “universal” solution above) M2 depends on those quantum numbers and so does h[tt] through
equation (2.13).

9Using the standard normalisation
R

YlmYl0m0 = �ll0�mm0 .
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evaluated on (2.1) gives10

C0 =
1

4210
volCY2

Z

I⇢

d⇢ bh4h8 . (2.37)

The e↵ective three-dimensional gravitational coupling 3 is related to C0 by C0 = 1/2
3
.

The quadratic action for hµ⌫ computes the two point function of the dual stress tensor,

whose coe�cient is well known to be proportional to the central charge of the 2d CFT.

In fact, (2.37) is equal, modulo an irrelevant numerical factor, to the central charge

computed on pag. 12 of [19].

7 Conclusions

In this chapter we have investigated aspects of spin 2 fluctuations around the back-

ground AdS3 ⇥ S2
⇥ CY2 ⇥ I⇢ of [17]. An equation for these spin 2 fluctuations has

been derived in Section 4, following the general analysis of [110], and we have seen

that they fall into two classes, universal and non universal solutions.

The universal solutions, discussed in Section 4, turned out to be particularly in-

teresting, as they are independent of the background data. These fluctuations, and

therefore the dual operators, are expected to be present for any of the backgrounds

given in (2.1) and (2.2). As we have seen in the main text, they are dual to operators

with scaling dimension � = 2l + 2, where l is the angular-momentum-charge on the

S2 which realises holographically the SU(2)R symmetry of the dual field theory.

The non universal solutions are more di�cult to analyse as they depend on back-

ground data, namely on a specific choice of the functions u, bh4 and h8 given in (2.5),

(2.6), (2.7). An example of these is worked out in Appendix H.

Finally, we have seen in Section 6 that the central charge c for the 2d dual quiver

field theory can be read o↵ from the normalisation of the action for the spin 2 fluc-

tuations, hµ⌫ . The central charge c is essentially determined from the 3-dimensional

gravitational coupling constant 3, c / �2

3 . The quadratic actions for l > 0 modes

compute the two point functions for the corresponding dual operators and, more in

particular, the holographic normalisations of these operators. Moreover, computing

10Even though, in general AdS backgrounds, gravitons should be treated separately from massive
spin 2 fields (see for instance [129]), the normalisation for the three dimensional massless graviton
can still be obtained by taking l = m = n = 0
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higher order interaction terms, one can then compute three point and higher point

functions of these operators.

H Example of non universal solution

In this appendix we consider a particular solution to (2.19) which is not universal,

namely a solution that does not saturate the bound M2 = 4l(l + 1), still with n = 0.

In order to solve (2.19), we will have to choose some particular u, bh4 and h8 which, in

turn, correspond to a particular background. Let us start o↵ by considering the case

of11

bh4(⇢) = �0

8
><

>:

⇢/2⇡ 0  ⇢  ⇡P

P � ⇢/2⇡ ⇡P < ⇢  2⇡P
, h8 = bh4 , u =

�0
2⇡
⇢ .

A solution to (2.19) must be split into two solutions in the two intervals II = [0, ⇡P ]

and III = (⇡P, 2⇡P ], as both bh4 and h8 are only piecewise continuous. Moreover, in

order to get a smooth solution for the fluctuations, we need to impose continuity of

the solution and of its derivative at ⇢ = ⇡P .

Equation (2.19) for u, bh4, h8 as before looks like

�00(⇢) +
2l + 2

⇢
�0(⇢) + ��(⇢) = 0 in II ,

�00(⇢) +
2l + 2

⇢
�0(⇢) + �

(P � ⇢/2⇡)2

⇢2
�(⇢) = 0 in III ,

(2.38)

where again � = M2
� 4l(l + 1). The general solution of (2.38) in II reads � =

c1�1(⇢) + c2�2(⇢), with

�1 = ⇢�
2l+1
2 J 2l+1

2

Äp
�⇢
ä

and �2 = ⇢�
2l+1
2 Y 2l+1

2

Äp
�⇢
ä
. (2.39)

J and Y are Bessel functions of the first and second kind, respectively and c1 and c2

are integration constants. In order for the solution (and its derivative) to be regular

at ⇢ = 0 we must set c2 = 0. On the other hand, the general solution to (2.38) in III

can be given in terms of the complex function � = c̃3�̃3 + c̃4�̃4, with

�̃3 = e�i

p
�
⇢
2⇡ ⇢�(l+1/2�i

�
2 )U
Ä
↵, �, i

p

�⇢/⇡
ä

�̃4 = e�i

p
�
⇢
2⇡ ⇢�(l+1/2�i

�
2 )M

Ä
↵, �, i

p

�⇢/⇡
ä
,

(2.40)

11This is of course a particular example of equations (2.5), (2.6), (2.7).



104 Chapter 2. Spin 2 fluctuations in 1

4
BPS AdS3/CFT2

where U and M are the Kummer’s hypergeometric functions, respectively, and ↵ and

� are two complex numbers given by12

↵ =
�

2
� i
p

� , � = 1 + i{4M2P 2
� 4l(l + 1)(1 + 4P 2)� 1}1/2 . (2.41)

The functions �̃3 and �̃4 are always well defined in III . Therefore neither c̃3 nor

c̃4 must be set to zero. Moreover, we can always consider two independent real com-

binations of �̃3 and �̃4. Let us call them �3 and �4. Thus, in III the general solution

reads � = c3�3 + c4�4, with �3 and �4 two real linearly independent functions built

from �̃3 and �̃4 above.

We should now match the solution � = c1�1 with � = c3�3 + c4�4 at ⇢ = ⇡P . This

leads to two conditions

�
���
⇡P� = �

���
⇡P+

, �0
���
⇡P� = �0

���
⇡P+

(2.42)

As a further condition, we would like to impose that either � or �0 vanishes at ⇢ = 2⇡P .

This is nothing but the condition discussed around (2.24). Say, for instance, that is �

that vanishes at ⇢ = 2⇡P

�
���
2⇡P

= 0 . (2.43)

We therefore get a system of three equations, (2.42) and (2.43), for three integration

constants, c1, c3 and c4. A straightforward calculation shows that such a system has

a non trivial solution if and only if the following equation is satisfied

detM = 0 with M =

á
�1

���
⇡P
��3

���
⇡P
��4

���
⇡P

�0

1

���
⇡P
��0

3

���
⇡P
��0

4

���
⇡P

0 �3

���
2⇡P

�4

���
2⇡P

ë

. (2.44)

Such an equation could be solved numerically forM2. Even though we will not attempt

at solving it, the expectation is to find a solution of the form

M2 = 4l(l + 1) + jf(j, l) , j 2 Z�0 , (2.45)

where f is a generic positive function of j and l such that f(0, l) is regular.

12The argument of the square root appearing in the definition of � is positive in the limit of very
large P . This is the regime well described by supergravity. Moreover, for generic M and l with
M2 > 4l(l + 1), � is never a negative integer. Thus the Kummer’s functions are always well defined.
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I N = 4 superconformal algebra

In this appendix we review the small N = 4 superconformal algebra that was first

derived in [103]. We will follow Section 2 of [107].

The algebra we are considering is a graded Lie algebra with an internal SU(2)R

symmetry and reads

[Ln, Lm] = (n�m)Ln+m +
1

2
kn(n2

� 1)�n,�m ,

{Ga

r
, Gb

s
} = {Ḡa

r
, Ḡb

s
} = 0 ,

{Ga

r
, Ḡb

s
} = 2�abLr+s � 2(r � s)�ab

i
J i

r+s
+

1

2
k(4r2 � 1)�r,�s�

ab ,

[Ln, J
i

m
] = �mJn+m ,

[Ln, G
a

r
] = �

Å1
2
n� r

ã
Ga

n+r
,

[J i

n
, Ga

r
] =

1

2
�i

ab
Gb

n+r
,

[J i

n
, J j

n
] = i✏ijkJk

n+m
+

1

2
kn�n,�m .

(2.46)

Here Ln and Ga

r
are the generators of superconformal symmetry. Ga

r
’s carry an SU(2)R

fundamental index, a, and therefore they form an SU(2) complex doublet. J i

n
(i =

1, 2, 3) are the SU(2)R Kac-Moody currents generating the corresponding Kac-Moody

loop algebra. �ab

i
are Pauli matrices. Indices n and m run over integer numbers while r

belongs to Z+1/2: only for the NS-sector there exists a finite dimensional subalgebra

generated by L0, L±1, Ga

±1/2
and J i

0
(see below).

In the following we will mainly be interested in the global part of the superconformal
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algebra. This reads

[L+1, L�1] = 2L0 , [L±1, L0] = ±L± ,

{Ga

±
1
2
, Gb

±
1
2
} = {Ḡa

±
1
2
, Ḡb

±
1
2
} = 0 ,

{Ga

+
1
2
, Ḡb

�
1
2
} = 2�abL0 � 2�ab

i
J i

0
, {Ga

±
1
2
, Ḡb

±
1
2
} = 2�abL±1

{Ga

�
1
2
, Ḡb

+
1
2
} = 2�abL0 + 2�ab

i
J i

0
,

[L0, G
a

±
1
2
] = ⌥

1

2
Ga

±
1
2
,

[L±1, G
a

⌥
1
2
] = ±Ga

±
1
2
,

[J i

0
, Ga

±
1
2
] = �

1

2
�i

ab
Gb

±
1
2
,

[J i

0
, J j

0 ] = i✏ijkJk

0
.

(2.47)

A highest weight state of the superconformal algebra can be specified by the eigen-

values of the mutually commuting operators L0, ~J2

0
and J3

0
, |Oh,li, satisfying

L0|Oh,ji = h|Oh,ji , ~J2

0
|Oh,ji = j(j + 1)|Oh,ji J3

0
|Oh,ji = j|Oh,ji , (2.48)

as well as

Ln|Oh,ji = Ga

r
|Oh,ji = Ḡa

r
|Oh,ji = J i

n
|Oh,ji = 0 , n, r > 0 . (2.49)

The correspondence between the heighest weight state |Oh,ji and the corresponding

operator of conformal weight h and SU(2)R spin j is made as usual |Oh,ji = Oh,j|0i,

where |0i is the conformal vacuum. In the following, it will make no di↵erence the use

of Oh,j or |Oh,ji.

The operators Ga
1
2
and Ḡa

�
1
2
can be used to derive the full module Lr from a su-

perconformal primary state |Oh,ji. Being fermionic operators, they can act on a state

|Oh,ji until they annihilate. Thus the length of a module is finite and determined by

Fermi statistics. In deriving the full modules, we should also make sure that the vari-

ous representations are unitary. This will lead to shortening conditions and constraints

on the allowed values of h and j, as we now shall see.
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Singular vectors, short and long multiplets

The superconformal algebra constrains the values the conformal weight h can as-

sume. In particular, in (super)conformal theories unitarity implies a lower bound for

the scaling dimension of operators as a function of the other quantum numbers in

the algebra. The details of the bound depend of course on the particular theory and

corresponding algebra. Let us see how this works in our case13.

Consider a superconformal primary state of conformal weight h and SU(2)R spin

j and the fact that14

0  |Ḡa

�
1
2
|Oh,ji|

2 + |Ga
1
2
|Oh,ji|

2 = hOh,j|{G
a
1
2
, Ḡa

�
1
2
}|Oh,ji , no sum over a . (2.50)

The superconformal algebra implies

0  hOh,j|{G
a
1
2
, Ḡb

�
1
2
}|Oh,ji = hOh,j|2L0 � 2�ab

i
J i

0
|Oh,ji = 2(h� j)�abhOh,j|Oh,ji .

(2.51)

To have a unitary theory we should then impose h � j. Sometimes it is customary to

use the Dynkin index (r say) of the representation of the internal group SU(2)R. In

our case it is related to the spin j by r = 2j. In particular r is always an integer. This

is the convention that has been used in [107].

Thus, the algebra implies a lower bound for the conformal weight h in terms of

the other quantum number j. When h = j, the module gets shortened as there are

null-states that need to be modded out. In particular, when the bound is satisfied

there are two states that satisfy

Ḡ1

�
1
2
|Oh,ji = G2

�
1
2
|Oh,ji = 0 . (2.52)

Therefore, only Ḡ2

�
1
2
and G1

�
1
2
will produce new states. Multiplets of this kind are

short.

Following [107], we just state the result of considering h = j when j = 1 (or

equivalently r = 2). This is the case of most relevance for our purposes as it will lead

us to identify the supermultiplet to which the holomorphic energy momentum tensor

belongs. A state with h = j = 1 can be labelled as [h](j) = [1](1). The structure of the

13Unitarity for N = 2 and N = 4 algebras in two dimensions were also discussed in [130, 131, 132].
14Notice that the same conclusion can be reached by sandwiching {Ga

� 1
2
, Ḡa

1
2
}.
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resulting short multiplet is

[1](1)

î
3

2

ó( 1
2)

î
3

2

ó( 1
2)

[2](0)

where % stands for the action of G
�

1
2
, while & stands for the action of Ḡ

�
1
2
.

As noticed in [107], the top component [2](0) corresponds to the holomorphic energy

momentum tensor.

Let us conclude by briefly mentioning the case where h > j. In this case there

are no null-states and the supermultiplets do not get shortened. All the G’s and Ḡ’s

contribute to produce new states from the corresponding conformal primary. Such

multiplets are therefore long. We will not discuss long multiplets any further. A

careful analysis can be found in [107].

J N = (0, 2) and N = (0, 4) theories

In this appendix we review some basic facts about N = (0, 4) gauge theories. N =

(0, 4) superfields are made from N = (0, 2) superfields, therefore we start by reviewing

N = (0, 2) gauge theories. For a complete discussion see [121].

N = (0, 2) multiplets Let us list the field components of three types of N = (0, 2)

multiplets, namely the vector U , chiral � and the Fermi  multiplets

U : (uµ, ⇣�, D) , � : (�, +) ,  : ( �, G) . (2.53)

The subscript on the fermions refers to their chiralities under SO(1, 1) Lorentz group.

D is a real and G a complex auxiliary field.

A vector U has the following expansion in superspace15

U = u0 � u1 � 2i✓+⇣̄� � 2i✓̄+⇣� + 2✓+✓̄+D . (2.54)

15
N = (0, 2) superspace is parametrised by two real spacetime coordinates, x± = x0

±x1, and two

complex Grassmann variables ✓+ and ✓
+

subject to a reality constraint.
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The corresponding field strength is obtained by means of

⌥ = [D+,D�] = �⇣� � i✓+(D � iu01)� i✓+✓̄+(D0 + D1)⇣� , (2.55)

where D+ and D� are the supercovariant gauge derivatives [121]. It turns out that ⌥

is a Fermi multiplet – it satisfies D+⌥ = 0. We shall give a more precise definition of

a Fermi multiplet momentarily.

Mass units for the N = (0, 2) vector multiplet are as follows

[uµ] = m [⇣�] = m3/2 , [D] = m2 , (2.56)

while we have [✓+] = m�1/2 and therefore [d✓+] = m1/2. The 1d gauge coupling g has

unit mass dimension, [g] = m. The action for the gauge multiplet reads

S =
1

8g2
tr
Z

d2xd2✓⌥⌥

=
1

g2
tr
Z

d2x

Ç
1

2
u2

01
+ i⇣

�
(D0 + D1)⇣� +D2

å
.

(2.57)

A chiral field � is a superfield that satisfies the following equation

D+� = 0 , (2.58)

and therefore expands out in components as

� = �+
p
2✓+ + � i✓+✓̄+(D0 +D1)� , (2.59)

where D0 and D1 stand for the time- and space-components of the usual covariant

derivative. Mass units for a chiral multiplet are as follows

[�] = m0 , [ +] = m1/2 , (2.60)

while a kinetic term for it reads

S = �
i

2

Z
d2xd2✓�(D0 �D1)�

=
Z

d2x
Ä
�|Dµ�|

2 + i 
+
(D0 �D1) + � i

p
2�⇣� + + i

p
2 

+
⇣
�
�+ �D�

ä
.
(2.61)
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A Fermi superfield instead satisfies the following equation

D+ = E(�i) , (2.62)

where E(�i) is a holomorphic function of the chiral superfields �i. E should be chosen

in such a way it transforms as  under all symmetries. Solving (2.62) leads to the

following expansion for  

 =  � � ✓
+G� i✓+✓̄+(D0 +D1) � � ✓̄

+E(�i)� ✓
+✓̄+

@E

@�i
 +i , (2.63)

where G is an auxiliary complex field. The holomorphic function E can be shown to

appear in the Lagrangian as a potential term.

Mass units for a Fermi superfield are as follows

[ �] = m1/2 , [G] = m, (2.64)

while a kinetic term for it is given by

S = �
1

2

Z
d2xd2✓  

=
Z

d2x

 

i 
�
(D0 +D1) � + |G2

|� |E(�i)|
2
�  

�

@E

@�i
 +i �  +i

@E

@�
i

 �

!

.
(2.65)

There is also another type of superpontential we can consider for N = (0, 2) the-

ories. For each Fermi multiplet  a we can introduce a holomorphic function Ja(�i)

such that

SJ =
Z

d2xd✓+
X

a

Ja(�i) a + h.c.

=
X

a

Z
d2xGaJ

a(�i) +
X

i

 �a

@Ja

@�i

 +i + h.c.
(2.66)

We see that, in analogy to N = 1, d = 4, W = J · is integrated over half superspace.

It must be stressed that the superpotentials E and J cannot be introduced inde-

pendently. It turns out that, in order for supersymmetry to be preserved, they have

to satisfy the following constraint

E · J =
X

a

EaJ
a = 0 . (2.67)
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Let us now move on to listing N = (0, 4) supermultiplets. They are built from

N = (0, 2) supermultiplets.

N = (0, 4) multiplets N = (0, 4) supermultiplets are usually given in terms of

N = (0, 2) supermultiplets, pretty much as in 4 dimensions N = 2 superfields are

built from N = 1 superfields. Again, let us list them first.

Multiplets N = (0, 2) building blocks component fields SU(2)L ⇥ SU(2)R

Vector Vector + Fermi (U,⇥) (uµ, ⇣a�, G
A) (1, 1), (2, 2), (3, 1)

Hyper Chiral + Chiral (�, �̃) (�a, b

+
) (2, 1), (1, 2)

Twisted hyper Chiral + Chiral (�0, �̃0) (�0a, 0b

+
) (1, 2), (2, 1)

Fermi Fermi + Fermi (�, �̃) ( 0a

�
, Gb) (1, 1), (2, 2)

The N = (0, 4) vector multiplet is made of an N = (0, 2) vector multiplet and an

adjoint N = (0, 2) Fermi multiplet ⇥. The field content is that of a gauge field uµ

and two left-handed fermions ⇣a
�
, a = 1, 2, in addition to a triplet of auxiliary fields

GA, A = 1, 2, 3. The gauge field is a singlet under the SU(2)L ⇥ SU(2)R R-symmetry

while the two fermions transform as (2,2). The triplet of auxiliary fields transforms

as (3,1) under the R-symmetry. The action for a generic N = (0, 4) vector multiplet

is given by the sum of (2.57) with (2.65).

There are two di↵erent types of hypermultiplets, the hypermultiplet and the twisted

hypermultiplet. Both of them are formed by two N = (0, 2) chiral multiplets, therefore

they both contain two complex scalars (�a) and two right-handed fermions ( b

+
). They

di↵er from each other because of the di↵erent representations under the R-symmetry

group, as we can see from the table above. The kinetic term for the chiral multiplets

making up the (twisted) hypermultiplet is again given by (2.61).

If we want to couple the hypermultiplet to the vector multiplet, we should consider

the following coupling between the hyper (�, �̃) and the adjoint Fermi field ⇥

J⇥ = ��̃)W = �̃⇥� . (2.68)

This looks very much like the coupling between the hypermultiplet and the chiral

adjoint for four dimensional N = 2 theories. On the other hand, coupling a twisted

hypermultiplet to the gauge sector requires an E-type of superpotential

E⇥ = �0�̃0 , (2.69)

with indices in �0�̃0 set to have E⇥ transforming in the adjoint of the gauge group.
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Finally, we can have an N = (0, 4) Fermi multiplet, which is made of two N =

(0, 2) Fermi multiplets. It contains two left-handed fermions which are singlets of

SU(2)L ⇥ SU(2)R R-symmetry. The kinetic term for all the fermions is again given

by (2.65). No further coupling between �, �̃ and ⇥ is possible.

As in the quiver of Figure 2.1 there appear also N = (4, 4) vector and chiral

multiplets, it is worth mentioning how N = (4, 4) superfields decompose in N = (0, 4)

language.

N = (4, 4) multiplets There are two types of N = (4, 4) superfields, the vector

and the hypermultiplet.

Multiplets N = (0, 4) building blocks N = (0, 2) building blocks

Vector Vector + Twisted Hyper (U,⇥), (⌃, ⌃̃)

Hyper Hyper + Fermi (�, �̃), (�, �̃)

The N = (4, 4) vector multipled is comprised of an N = (0, 4) vector multiplet and a

N = (0, 4) twisted hypermultiplet. The twisted hypermultiplet is usually denoted as

(⌃, ⌃̃). They are coupled to the gauge sector via the E-type potential

E⇥ = [⌃, ⌃̃] . (2.70)

N = (4, 4) hypermultiplets are made of an N = (0, 4) hypermultiplet and an N =

(4, 4) Fermi multiplet, all in all (�, �̃), (�, �̃). As before, � and �̃ are coupled to the

gauge sector via

W = �̃⇥� . (2.71)

We conclude this part by saying that there are couplings between N = (0, 4) Fermi

multiplets �, �̃, hypermultiplets �, �̃ and twisted hypers ⌃, ⌃̃. They involve both

superpotential and E-terms

W = �̃⌃̃�+ �̃⌃̃� , (2.72)

and

E� = ⌃� , E
�̃
= ��̃⌃ . (2.73)

It is easy to see that

E · J = �̃[⌃, ⌃̃]�+ �̃⌃̃⌃�� �̃⌃⌃̃� = 0 . (2.74)



Chapter 3

Warped AdS2 backgrounds and conformal QM

In this chapter, we introduce two new classes of backgrounds with an AdS2 factor.

The first class has the structure of a warped AdS2 ⇥ S2
⇥ CY2 background while

the second has the structure AdS2 ⇥ S3
⇥ CY2. They are both derived from the

AdS3 ⇥ S2
⇥ CY2 solutions reviewed at the beginning of the previous chapter after

some manipulations in supergravity. We give a thorough study of the underlying

geometries. A prescription for the dual QMs of the AdS2 ⇥ S2
⇥ CY2 solutions is

given. The dual Quantum Mechanics of the AdS2 ⇥ S3
⇥ CY2 backgrounds will be

presented in [6]. Remarkably, the superalgebra central extension is found in close

correspondence with that of the two-dimensional case of AdS3 ⇥ S2
⇥ CY2.

1 Overview

A major line of research motivated by the Maldacena’s conjecture [89] is the study

of supersymmetric and conformal field theories in diverse dimensions. However, since

the early 2000’s a huge e↵ort has also been devoted to the classification of Type II

or M-theory backgrounds with AdSd+1 factors, see for example [133, 134], which are

conjectured to be dual to SCFTs in d dimensions. Since the original formulation

of AdS/CFT [89], the Maldacena’s conjecture has been explored for theories of any

dimensions1. We have seen in the previous chapters two examples of SCFTs with dual

supergravity solutions in two and four dimensions.

Besides examples in d � 2, it is also of interest the study of backgrounds with

an AdS2 factor dual to one-dimensional quantum mechanical problems. One of the

obvious reasons to study AdS2 backgrounds is that in the proximity of their horizons,

1Here it is meant up to six dimensions, as there are no “accidental isomorphisms” for d > 6,
which makes it di�cult to construct spinorial representations of the conformal algebra.

113
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extremal black holes in diverse dimensions, both in flat and AdS spaces, contain an

AdS2 component with an electric field2.

When introducing AdS2 backgrounds, it is also worth mentioning that a conformal

quantum mechanical theory needs an Sl(2,R) global symmetry only – aside from possi-

ble supersymmetry and associated R-symmetry – which can be realised holographically

as the group of isometries of the dual AdS2 factor, Spin(1, 2) = Sl(2,R). Remarkably,

the analysis of [137, 138, 139] implies that, whilst the isometry of AdS2 is Sl(2,R),

asymptotically the group of symmetry is enlarged to an infinite dimensional Virasoro

algebra, and the central extension is proportional to the inverse Newton constant in

two dimensions. This is very much similar to the case of AdS3 holography where the

full Virasoro algebra of the dual 2d CFT is realised asymptotically [140].

Similarities between known superconformal algebras in one and two dimensions or

the geometric relation between AdS2 and AdS3 spacetimes suggest that the study of

AdS3 backgrounds might shed some light on the AdS2 case. For some recent significant

developments involving AdS2 geometries, see e.g. [141, 142, 143, 144, 145, 146, 147,

148, 149].

Even though many aspects of AdS2 holography are still being explored, it seems

natural to exploit our knowledge about two-dimensional SCFTs dual to warped AdS3

solutions to tackle somewhat the problem of AdS2 holography for warped backgrounds.

This is essentially the main motivation of the pages that will follow.

In this chapter, we discuss two interesting classes of AdS2 backgrounds. These –

one in the form of a warped AdS2 ⇥ S2
⇥ CY2 and the other in the form of a warped

AdS2⇥S3
⇥CY2 – make up the two main sections discussed here. Given that they are

both new entries in the classification of AdS2 spacetimes, we give a thorough study of

both following a similar pattern. Some of the material in this chapter will be presented

in [5, 6].

2 Warped AdS2 ⇥ S2
⇥CY2 backgrounds and dual

QM

In this section, we deal with warped AdS2⇥ S2
⇥CY2 solutions to Type IIB super-

gravity obtained from the AdS3 ⇥ S2
⇥ CY2 backgrounds discussed at the beginning

2For a review on superconformal quantum mechanics and their connection to black hole physics
see [135, 136] and references therein.
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of the previous chapter after a T -duality transformation.

For the sake of readability, we write once again the AdS3 backgrounds of [17, 18, 19]

discussed in the previous chapter. We have

ds2 =
u»
bh4h8

 

ds2
AdS3

+
bh4h8

4bh4h8 + (u0)2
ds2

S2

!

+

Ã
bh4

h8

ds2
CY2

+

»
bh4h8

u
d⇢2 ,

e�� =
h3/4

8

2bh1/4

4

p
u

q
4bh4h8 + (u0)2 , H(3) =

1

2
d

 

�⇢+
uu0

4bh4h8 + (u0)2

!

^dvolS2 +
1

h8

d⇢ ^H2

(3.1)

for the N-S sector, while the R-R sector reads

F(0) = h0

8
, F(2) = �H2 �

1

2

 

h8 �
h0

8
u0u

4h8
bh4 + (u0)2

!
dvolS2 ,

F(4) =

Ç
d

Ç
u0u

2bh4

å
+ 2h8d⇢

å
^dvolAdS3 � @⇢

bh4
dvolCY2 �

u0u

2(4bh4h8 + (u0)2)
H2 ^

dvolS2 .

(3.2)

We have already argued, following [19], that such backgrounds lead to interesting

dual SCFTs when H2 = 0 and the functions h4, h8 are given by the general expressions

h4(⇢) =

8
>>><

>>>:

�0

2⇡
⇢ ⇢ 2 [0, 2⇡]

↵k +
�k
2⇡
(⇢� 2⇡k) ⇢ 2 [2⇡k, 2⇡(k + 1)]

↵P �
↵P
2⇡
(⇢� 2⇡P ) ⇢ 2 [2⇡P, 2⇡(P + 1)] ,

(3.3)

h8(⇢) =

8
>>><

>>>:

⌫0
2⇡
⇢ ⇢ 2 [0, 2⇡]

µk +
⌫k
2⇡
(⇢� 2⇡k) ⇢ 2 [2⇡k, 2⇡(k + 1)]

µP �
µP
2⇡
(⇢� 2⇡P ) ⇢ 2 [2⇡P, 2⇡(P + 1)] .

(3.4)

where bh4 = ⌥h4. Here k = 1, . . . , P � 1 with P some, possibly large, integer and the

constants ↵k, �k, µk, ⌫k related to the number of D branes in the background – see

[19] for details. In order to ensure continuity of the N-S sector (gµ⌫ , Bµ⌫ and �) it is

just enough to require continuity of bh4 and h8 [19]. This, in turn, implies that

↵k =
k�1X

j=0

�j , µk =
k�1X

j=0

⌫j . (3.5)

The associated dual SCFT was briefly sketched in Section 2 of the previous chapter,
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and is depicted in Figure 2.1. As it will be crucial in the following, we remind the

reader that the central charge of the dual 2d SCFT is given by

c = 6(nhyp � nvec) , (3.6)

where nhyp is the total number of N = (0, 4) hypermultiplets, while nvec is the total

number of N = (0, 4) vector multiplets in the SCFT. It was shown in [19] that the

central charge c is captured holographically3 by

cholo =
3⇡

2GN

volCY2

Z
2⇡(P+1)

0

bh4h8 d⇢ , (3.7)

with GN = 8⇡6 in units where the string length and coupling constant are set to one.

Let us now give the details on the construction of the new AdS2 ⇥ S2
⇥ CY2

backgrounds in Type IIB supergravity which will take up the first part of this chapter.

2.1 AdS2 ⇥ S2
⇥CY2 backgrounds in Type IIB

We now introduce a new class of AdS2 backgrounds in Type IIB supergravity by

applying a T -duality transformation on the AdS3 subspace of the backgrounds reviewed

around (3.1) and (3.2).

Using local coordinates, let us write the AdS3 subspace in (3.1) and (3.2) as an S1

fibration over AdS2. We have

ds2
AdS3

=
1

4

î
(d + ⌘)2 + ds2

AdS2

ó
, (3.8)

where

d⌘ = dvolAdS2 , ds2
AdS2

= �dt2 cosh2(r) + dr2 . (3.9)

Let us perform a T -duality transformation to the S1 fibre direction  to obtain a

new class of solutions. These have the structure of warped AdS2 ⇥ S2
⇥ S1

⇥ CY2

backgrounds. Upon using the standard Buscher-Rules – see for instance Appendix A

3Here, by “holographically” it is meant in the large P limit and large ranks of the gauge and
flavour groups. Thus, formula (3.7) captures the central charge of the dual field theory only at
leading order.
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of [150] – we find that the N-S sector reads

ds2 =
u»
bh4h8

 
1

4
ds2

AdS2
+

bh4h8

4bh4h8 + (u0)2
ds2

S2

!

+

Ã
bh4

h8

ds2
CY2

+

»
bh4h8

u
(d⇢2 + 4d 2) ,

e�2� =
1

16

h8

bh4

Ä
4bh4h8 + (u0)2

ä
, H(3) =

1

2
d

Ç
� ⇢+

uu0

4bh4h8 + (u0)2

å
^dvolS2 +dvolAdS2 ^ d .

(3.10)

The R-R sector, instead, is given by

F(1) = h0

8
d ,

F(3) = �
1

2

Å
h8 �

h0

8
u0u

4h8
bh4 + (u0)2

ã
dvolS2 ^ d +

1

8

Ç
d

Ç
u0u

2bh4

å
+ 2h8d⇢

å
^dvolAdS2 ,

F(5) = �bh0

4
dvolCY2 ^ d +

bh0

4
h8u2

8bh4(4bh4h8 + (u0)2)
dvolAdS2 ^

dvolS2 ^ d⇢ ,

F(7) =
4bh2

4
h8 � uu0bh0

4
+ bh4(u0)2

8bh4h8 + 2(u0)2
dvolCY2 ^

dvolS2 ^ d �

 bh4

4
+ @⇢

uu0

16h2
8

!
dvolAdS2 ^

dvolCY2 ^ d⇢ ,

F(9) = �
bh4h0

8
u2

8bh8(4bh4h8 + (u0)2)
dvolAdS2 ^

dvolCY2 ^
dvolS2 ^ d⇢ .

(3.11)

where F(7) = � ? F(3) = and F(9) = ?F(1), in accord with the fact that higher form

fluxes are just given by F(p) = (�1)[p/2] ? F(10�p), with [p/2] the integer part of p/2.

The equations of motion of Type IIB supergravity can be checked to be satisfied –

see Appendix IV for equations of motion and conventions of Type IIB – whenever we

impose the BPS equations and Bianchi identities, u00 = 0 and bh00

4
= h00

8
= 0. A violation

of the Bianchi identities is admissible at points where source branes are located. This

feature is, of course, inherited from the AdS3 ⇥ S2
⇥ CY2 parent theory. Likewise, in

the following, we will be concerned with profiles for bh4, h8 like those in equations (3.3)

and (3.4).

Remark

An interesting relation between the class of AdS2 solutions just described and the

classification of the AdS2 backgrounds in Type IIB given in [149, 151] will be discussed

in [152].
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Behaviour of the background near special points

Let us give some details on the asymptotic behaviour of the background (3.10) for

the functions bh4, h8 given as in the equations (3.3) and (3.4). We distinguish two

cases:

• u is a linear function of ⇢, u = u0
2⇡
⇢.

Close to ⇢ = 0, where bh4 and h8 are given by

bh4 = ⌥
�0
2⇡
⇢ , h8 =

⌫0
2⇡
⇢ . (3.12)

we find a regular background. This reads

ds2 =
u0

p
⌥�0⌫0

Ç
1

4
ds2

AdS2
+

⌥�0⌫0⇢2

4⌥�0⌫0⇢2 + u2
0

ds2
S2

å
+

s
⌥�0
⌫0

ds2
CY2

+

p
⌥�0⌫0
u0

(d⇢2 + 4d 2) ,

e�� =
1

16

⌥�0
⌫0

Ç
⌥�0⌫0
⇡2

⇢2 +
u2

0

4⇡2

å
.

(3.13)

Notice that the metric of the two-sphere together with the “radial” direction ⇢

defines a ball of finite radius in three dimensions. The two-sphere S2 shrinks to

zero at ⇢ = 0. Thus, we find a regular geometry which “ends” at ⇢ = 0.

Close to ⇢ = 2⇡(P +1), the the end of space in the ⇢ direction, where bh4 and h8

are given by

bh4 = ⌥
Å
↵P �

↵P

2⇡
(⇢� 2⇡P )

ã
, h8 =

Å
µP �

µP

2⇡
(⇢� 2⇡P )

ã
, (3.14)

we find that the metric and dilaton behave as

ds2 =
2⇡(P + 1)u0

4
p
⌥↵PµP

1

x
ds2

AdS2
+

s
⌥↵P

µP

ds2
CY2

+
»
⌥↵PµP

2⇡(P + 1)

u0

x

Ç
ds2

S2 +
1

2⇡(P + 1)2u0

(dx2 + 4d 2)

å
,

e�2� =
1

16

⌥↵P

µP

u2

0

4⇡2
.

(3.15)

where we have set ⇢ = 2⇡(P + 1) � x, for small positive x. We find that the

N-S sector asymptotes to the superposition of O1 and O5 planes, stretched along
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AdS2 and AdS2 ⇥CY2, respectively4.

• u is constant everywhere, u = u0
2⇡
.

Close to ⇢ = 0 we find that the N-S sector behaves as

ds2 =
u0

4
p
⌥�0⌫0

1

⇢
(ds2

AdS2
+ ds2

S2) +

s
⌥�0
⌫0

ds2
CY2

+

p
⌥�0⌫0
u0

⇢(d⇢2 + 4d 2) ,

e�2� =
1

4

⌫2
0

4⇡2
⇢2 .

(3.16)

Close to ⇢ = 2⇡(P + 1) we find precisely the same kind of behaviour: Just set

⇢ = 2⇡(P + 1)� x, for small positive x, and replace (modulo some unimportant

constants) ⇢ with x in (3.16).

We find that the N-S sector asymptotes to the superposition of O3 and O7 planes,

extended on AdS2 ⇥ S2 and AdS2 ⇥ S2
⇥ CY2, respectively.

In both cases we find that, approaching the boundaries of the interval I⇢, the S1

parametrised by  becomes of vanishing size. We may T -dualise back along this

S1 to recover the seed backgrounds discussed in (3.1) and (3.2).

From the analysis above, it appears that backgrounds with a linear function u are

“less singular” – they are in fact regular at ⇢ = 0. However, in the following, we will

often need to rely on an everywhere constant u.

2.2 Fluxes and brane charges

Let us continue the study of the background given in (3.10) and (3.11) by working

out its associated Page charges. As already stressed in Chapter 1, it is this kind of

charges that is conserved, localised and quantised, even though they are not invariant

under (large) gauge transformations. Once again, they will imply the quantisation of

(some) constants directly related to the number of branes present in the supergravity

background.

Page fluxes

We remind the reader that the k-th Page flux is defined by the polyform “F(k) =

(F ^ e�B(2))(k), where e�B(2) is understood through its series expansion. The general
4For a detailed account of orientifold planes backreacted on the geometry, see pag. 23↵ of [17].
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expression for the Page charge of a Dp brane is therefore given by

QDp =
1

2210TDp

Z

M8�p

“F8�p =
1

(2⇡)7�pgs↵0
7�p
2

Z

M8�p

“F8�p (3.17)

where, 2
10

and TDp are given by5

TDp =
1

(2⇡)pgs↵0
p+1
2

, 22
10

= (2⇡)7g2
s
↵04 , (3.18)

As in the rest of this chapter, we will set ↵0 = gs = 1. Here, M8�p is any (8 � p)-

dimensional compact manifold transverse to the branes.

Let us give all the Page fluxes in our background

“F(1) = h0

8
d ,

“F(3) =
1

2
(⇢h0

8
� h8)dvolS2 ^ d +

1

8

Ç
2h8 + @⇢

uu0

bh4

å
dvolAdS2 ^ d⇢ ,

“F(5) =
1

32

Ç
4⇢h8 + @⇢

⇢uu0
� u2

bh4

å
dvolAdS2 ^

dvolS2 ^ d⇢� bh0

4
dvolCY2 ^ d ,

“F(7) =
1

2
(bh4 � ⇢bh0

4
)dvolS2 ^dvolCY2 ^ d �

 bh4

4
+ @⇢

uu0

16h8

!
dvolAdS2 ^

dvolCY2 ^ d⇢ ,

“F9 = �

 
⇢bh4

8
+ @⇢

⇢uu0
� u2

32h8

!
dvolAdS2 ^

dvolS2 ^
dvolCY2 ^ d⇢.

(3.19)

In order to fully describe the brane setup corresponding to the backgrounds in

(3.10) and (3.11), it is useful to compute the following quantities (that we might refer

to as the Bianchi identities for the Page fluxes)

d“F(1) = h00

8
d⇢ ^ d ,

d“F(3) = �
1

2
h00

8
⇥ (⇢� 2⇡k) d⇢ ^dvolS2 ^ d ,

d“F(5) = �bh00

4
d⇢ ^dvolCY2 ^ d ,

d“F(7) = �
1

2
bh00

4
⇥ (⇢� 2⇡k) d⇢ ^dvolS2 ^

dvolCY2 ^ d ,

d“F(9) = 0 ,

(3.20)

5The tension of NS5 branes is given by TNS5 = 1
(2⇡)5g2

s↵
03 . It di↵ers from the tension of a D5

brane by a power of the string coupling.
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where we have allowed for large gauge transformations of the B(2) field as B(2) ! B(2)+

⇡kdvolS2 in each interval [2⇡k, 2⇡(k+1)]. The need for a large gauge transformation on

the B(2) field whenever we cross an integer multiple of ⇢ = 2⇡ was carefully explained

in [17, 19]. It is needed in order to keep the quantity b0 = � 1

(2⇡)2

R
S2 B(2) into the

fundamental domain [0, 1). In particular, the condition b0 2 [0, 1) partitions the real

line spanned by ⇢ into segments of length 2⇡. As we shall see momentarily, such

large gauge transformations are actually crucial in the construction of the brane web

associated with the background (3.10), (3.11).

Let us now make use of the fact that bh4 and h8 are both piecewise linear and

continuous functions – see equations (3.3) and (3.4). We find

h00

4
=

1

2⇡

PX

k=1

(�k�1 � �k)�(⇢� 2⇡k) ,

h00

8
=

1

2⇡

PX

k=1

(⌫k�1 � ⌫k)�(⇢� 2⇡k) .

(3.21)

This is nothing but the violation of the Bianchi identities quoted above at isolated

points. The right hand side of both equations (3.21) tells us that we have (�k�1 �

�k) and (⌫k�1 � ⌫k) localised branes at ⇢ = 2⇡k (k = 1, . . . , P ) in the supergravity

background, respectively. Let us find out what type of localised branes we are talking

about. We will make extensive use of the formula (3.17).

• Let us begin with the case of D1 branes. It is fairly easy to see that they behave

as colour branes – they are dissolved into fluxes – as dF(7) in equation (3.20)

vanishes identically by virtue of the identity (⇢� 2⇡k)�(⇢� 2⇡k) = 0 for any k.

Their charge, in the interval I
k

⇢
= [2⇡(k � 1), 2⇡k], is given by6

Q(k)

D1
=

1

(2⇡)6

Z

M7

“F7 =
⌥volCY2

16⇡4

volS2

4⇡
(h4 � h0

4
(⇢� 2⇡k))|⇢=2⇡k

= ↵k .

(3.22)

where M7 = CY2 ⇥ S2
⇥ S1

 
. We have chosen ⌥ such that ⌥volCY2 = (2⇡)4. In

particular, this implies quantisation of the ↵’s. Positivity of the charges allows

us to consider the ↵’s as integer positive quantities.

6Notice that, in the definition of “F(7), we have bh4 � ⇢bh0
4 !

bh4 �
bh0

4(⇢ � 2⇡k) as the e↵ect of a
large gauge transformation of the B(2) field as explained above. Of course, the same holds for the
other fluxes to be shown next.
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• In our setup there are also D3 branes. They behave as physical sources and

therefore give rise to a flavour symmetry for the dual CFT. They are stretched

along (AdS2, S2) and otherwise localised in (CY2, ⇢, ). Their charge is given by

Q(k)

D3
=

1

16⇡4

Z

Ik
⇢⇥M5

d“F5 =
⌥volCY2

16⇡4
2⇡
Z

2⇡k

2⇡(k�1)

d⇢h00

4

= �k�1 � �k

(3.23)

where M5 = CY2 ⇥ S1

 
. Quantisation of D3 brane charges for any k implies

that the �’s are quantised as well. Positivity of the brane charges implies in turn

�k�1 � �k � 0.

• D5 branes are also dissolved into fluxes (dF(3), just as dF(7), vanishes identically),

and they provide another source of gauge symmetry for the dual CFT. Their

charge in the interval [2⇡(k � 1), 2⇡k] is given by

Q(k)

D5
=

1

4⇡2

Z

M3

“F3 =
volS2

4⇡
(h8 � h0

8
(⇢� 2⇡k))|⇢=2⇡k

= µk .
(3.24)

Here M3 = S2
⇥ S1

 
. Again, µk 2 Z>0.

• D7 branes are stretched along (AdS2,CY2, S2) and localised in ⇢ and  . Just

like D3 branes, they appear in the background as physical sources. Their charge

in the interval [2⇡(k � 1), 2⇡k] is computed by means of the formula

Q(k)

D7
=
Z

Ik
⇢⇥S

1
 

dF(1) = 2⇡
Z

2⇡k

2⇡(k�1)

h00

8
d⇢

= ⌫k�1 � ⌫k .

(3.25)

which forces us to consider quantised ⌫’s with ⌫k�1 � ⌫k � 0.

• Finally, in analogy with [19], we have NS5 branes7. We find one of them when-

7Notice that in our background, di↵erently from [19], we have also fundamental F1 strings whose
(Maxwell) charge is defined by

Q(M)
F1 =

1

(2⇡)5

Z
e�2� ?H(3) . (3.26)

The definition of the associated Page flux is a little more tricky, but we will not need it here.
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ever we cross an integer multiple of ⇢ = 2⇡. Their total number is given by

QNS5 =
1

4⇡2

Z

I⇢⇥S2
H(3) = P + 1 . (3.27)

We list the brane content of our background in Table 3.1.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D1 � �

D3 � � � �

D5 � � � � � �

D7 � � � � � � � �

NS5 � � � � � �

F1 � �

Table 3.1: Brane setup, where � mark the spacetime directions spanned by the var-
ious branes. x0 corresponds to the time direction of the ten dimensional spacetime,
x1, . . . , x4 are the coordinates spanned by the CY2. x5 is the field theory space, while
x6, x7 and x8 are the coordinates realising an SO(3) rotation symmetry. x9 realises
an R translation symmetry that, upon compactification, reduces to a U(1).

To sum up, we have µk =
Pk�1

j=0 ⌫j D5 and ↵k =
Pk�1

j=0 �j D1 colour branes, stretched

between adjacent NS5 branes, as well as F̃k�1 = (�k�1��k) D7 and Fk�1 = (⌫k�1�⌫k)

D3 flavour branes in the interval [2⇡(k � 1), 2⇡k]. See Figure 3.1.

F0D7 F1D7

F̃0D3

�0D1

⌫0D5 (⌫0 + ⌫1)D5

(�0 + �1)D1

F̃1D3

NS NS NS

Figure 3.1: The brane web for the background (3.10), (3.11).

In order to give a more refined account of the geometries discussed in this section,

we now probe the background (3.10), (3.11) by means of probe D1 and D5 probe

branes, i.e. branes which do not backreact on the geometry, but that allow us to

explore it.
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2.3 Chern-Simons coupling constants

In this subsection we probe the background given in (3.10) and (3.11) by introducing

probe D branes. The action describing the coupling between generic Dp branes and

the N-S and R-R closed string fields is the usual DBI + WZ term

SDp = SDBI + SWZ ,

SDBI = �TDp

Z
dp+1⇠

ß
e�� [� det(gab +Bab + 2⇡↵0

Fab)]
1
2

™

SWZ = TDp

Z

p+1

exp(2⇡↵0
F(2) +B(2)) ^

X

q

C(q) ,

(3.28)

where F is the gauge field living on the brane. F = dA for abelian gauge fields.

• Let us compute the action for a probe D1 brane8

SD1 = SDBI + SWZ

SDBI = �TD1

Z
dtd⇢ e��

»
� det(gind) ,

SWZ = TD1

Z
C(2) + 2⇡C(0)F(2) .

(3.29)

The induced metric on the D1 brane is given by

ds2
ind

= �
u

4
»
bh4h8

cosh2(r⇤)dt
2 +

»
bh4h8

u
d⇢2 , (3.30)

while the pullback of the gauge potential C(2) on the worldvolume of the D1

brane is given by

C(2) =
sinh(r⇤)

8

ñ
@⇢

Ç
uu0

2bh4

å
+ 2h8

ô
d⇢ ^ dt , (3.31)

where r⇤ just means that we are sitting at a particular value of the radial coor-

dinate r.

8Notice that in the DBI action we are not including the F field nor the pullback of the B(2) as
we will not need it in what follows.
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We find that the Dirac-Born-Infeld and Wess-Zumino actions read

SDBI = �TD1

Z
2⇡(k+1)

2⇡k

s
h8

bh4

(4bh4h8 + u02)d⇢
Z

R
dt
cosh(r⇤)

8
,

SWZ = TD1

Z
2⇡(k+1)

2⇡k

d⇢

ñ
@⇢

Ç
uu0

bh4

å
+ 2h8

ô Z

R
dt
sinh(r⇤)

8
+ 2⇡TD1

Z

Ik
⇢⇥R

C(0)F(2) .

(3.32)

Notice that such a probe D1 brane becomes extremal (tension equal charge)

when u0 = 0 and the brane is located at the boundary of AdS2, i.e. r⇤ !1.

Let us focus on the second term of the Wess-Zumino in (3.32). On the worldvol-

ume of the D1 brane, we have that

C(0)F(2) = d(C(0)A(1)) , (3.33)

just because F(1), as defined in (3.19), has zero pull-back. Therefore, taking A(1)

as a one-dimensional gauge connection, we find that

2⇡TD1

Z
C(0)F(2) =

 ⇤

2⇡
(⌫k � ⌫k+1)

Z

R
A(1) . (3.34)

Such an action describes a Chern-Simons term in one dimension. Invariance

under large gauge transformations in homotopically non trivially situations (for

instance if we try to formulate the theory on a time-circle S1) requires the Chern-

Simons coe�cient  ⇤
2⇡
(⌫k � ⌫k+1) to be an integer. Given that (⌫k � ⌫k+1) is a

positive integer number and  is 2⇡-periodic, we demand that

 ⇤ =
2⇡n

⌫k � ⌫k+1

, (3.35)

with n = 0, . . . , ⌫k � ⌫k+1. Therefore, when probe D brane are included in the

supergravity backgrounds, the U(1) symmetry parametrised by  is broken down

at best to Z⌫k�⌫k+1
.

• Let us repeat the same steps for the case of a probe colour D5 brane stretched

along (t,CY2, ⇢) and otherwise located at some fixed values of all the other

coordinates.
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The action for a probe D5 brane is given by

SD5 = SDBI + SWZ

SDBI = �TD5

Z
e��
»
� det(gind) ,

SWZ = TD5

Z
C(6) + 2⇡C(4) ^ F(2) + . . . ,

(3.36)

where the terms summarised as “. . . ” in the Wess-Zumino action vanish when

reducing down to one dimension and therefore need not be displayed explicitly.

The induced metric on the D5 brane is

ds2
ind

= �
u

4
»
bh4h8

cosh2(r⇤)dt
2 +

»
bh4h8

u
d⇢2 +

Ã
bh4

h8

ds2
CY2

, (3.37)

while the pull-back of the gauge potential C(6) onto the brane is

C(6) =

 bh4

4
+ @⇢

uu0

h8

!

sinh(r⇤)d⇢ ^ dt ^dvolCY2 . (3.38)

Thus, for a probe D5 brane, we get the Dirac-Born-Infeld and Wess-Zumino

actions given by

SDBI = �TD5volCY2

Z
2⇡(k+1)

2⇡k

d⇢

Ã
bh4

h8

(4bh4h8 + u02)
Z

R
dt

cosh(r⇤)

8
,

SWZ = TD5volCY2

Z
2⇡(k+1)

2⇡k

d⇢

 bh4

4
+ @⇢

uu0

h8

!Z

R
dt sinh(r⇤)

+ 2⇡TD5

Z
C(4) ^ F(2) .

(3.39)

Again, we assume u0 = 0 and r? =1. Let us then focus on the last term of the

Wess-Zumino action for the D5 brane, which is the most relevant for us. On the

D5 brane we have

2⇡TD5

Z
C(4) ^ F(2) = 2⇡TD5

Z
d(C(4) ^A(1))

=
⌥volCY2

(2⇡)4
 ⇤

2⇡
(�k � �k+1)

Z

R
A(1) ,

(3.40)

where we have used C(4)|D5 = bh0

4
 dvolCY2 . Choosing again⌥ such that⌥volCY2 =
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(2⇡)4, we find a Chern-Simons term of the form

SCS =
 ⇤

2⇡
(�k � �k+1)

Z

R
A(1) . (3.41)

Invariance under large gauge transformations of the A(1) connection implies once

again that U(1) ! Z�k��k+1
. If (�k��k+1) and (⌫k�⌫k+1) are not proportional

to each other or have common divisors, it is reasonable to think that the U(1)

symmetry parametrised by  is broken completely in supergravity.

Let us now move on to a definition of central charge for our backgrounds.

2.4 Holographic central charge

The definition of “central charge” in conformal quantum mechanics is not free of

subtleties. In a one-dimensional theory, there is only one component of the energy-

momentum tensor, Tµ⌫ . Naively, if the theory is conformal, the trace of this quantity

is supposed to vanish, which implies Ttt = H = 0. The system is in its ground state.

A proposal pushed forward in [5] is that the one-dimensional central charge we are

going to compute describes the “dynamics of the ground states”: It essentially counts

the number of degenerate ground states in a quantum-mechanical system. We then

may associate this quantity with the “central extension” of the Virasoro algebra that

appears asymptotically in the two-dimensional dual gravity, as discussed in [137, 138,

139].

In this subsection we compute the holographic central charge for the class of back-

grounds discussed in (3.10) and (3.11) using the rationale of [40, 41]. Being the field

theory zero-dimensional, some of the steps in the calculation need some care. The

relevant quantity in this case is the volume of the “internal” space (that part of the

spacetime “external” to the AdS2). As we will see in a moment, what we are really

computing is the Newton constant in an e↵ective two-dimensional gravity theory,

1

GN,2

=
Vint

GN,10

. (3.42)

The volume of the internal space reads

Vint =
Z

d8x
»
e�4� det g8,ind

=
2⇡ volCY2volS2

8

Z
2⇡(P+1)

0

bh4h8d⇢ .
(3.43)
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If we compare equation (3.43) with (3.7), we see that, under a suitable rescaling, this

observable is related to the central charge of the seed CFT. In other words, we can

think of Vint, as defined in (3.43), as the holographic central charge for the class of

backgrounds discussed in this section – equations (3.10) and (3.11).

This seems to be compatible also with the results of the paper [153], where it was

suggested that the chiral sector remaining when DLCQ is applied to a 2d CFT has

the same central extension in the Virasoro algebra.

On purely field theoretical terms, this result tells us that the number of vacua of

the N = 4 SCQM corresponds to the expression obtained in [124], namely

cqm = 6(nhyp � nvec) . (3.44)

In particular, this is a first hint at defining the dual Quantum Mechanics just as the

dimensional reduction from two dimensions of the parent two-dimensional field theory

dual to the AdS3⇥S2
⇥CY2 solutions mentioned above. The number of N = 4 hyper

and vector multiplets in the one dimensional theory are inherited from those in the

two dimensional “parent theory”. We will have more to say about the dual Quantum

Mechanics at the end of this section.

To get the numbers right, we define the central charge of the dual conformal quan-

tum mechanics to be

c1d =
3

2⇡

1

G2

=
3

2⇡

Vint

GN

. (3.45)

Explicitly, using that GN = 8⇡6, c1d is given by

c1d =
3

⇡

Z
2⇡(P+1)

0

h4h8d⇢ , (3.46)

in agreement with equation (2.37).

An action functional for the central charge

We now present a “minimisation procedure” in supergravity that leads to the holo-

graphic central charge as just discussed around (3.46). The computation is done along

the lines of [154]. Later in this section, we will motivate such an extremisation proce-

dure by a more physical point of view.

To give some context, the authors of [154], considered a family of backgrounds in

eleven-dimensional supergravity of the form AdS2 ⇥ Y9, with Y9 a closed manifold.
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Such backgrounds are shown to preserve N = 2 supersymmetry. Aside from the

AdS2 factor, they are rather di↵erent from those discussed in this chapter, the main

di↵erence being the the amount of supersymmetry (N = 2 as opposed to N = 4)

and the absence of a boundary for the internal manifold Y9. Nevertheless, it is argued

in [154] that an “holographic central charge” can be obtained from an extremisation

procedure. We now show that the intuition about the central charge developed in [154]

coincides with ours.

Following [154], and splitting our background (3.10) and (3.11) as AdS2⇥X8, with

X8 a manifold with boundary @X8 = ({0}, {2⇡(P +1)}), we define the following forms

living on the internal manifold X8

J1 = j1d , F1 = f1d⇢ , (3.47)

J3 = j3dvolS2 ^ d , F3 = f3dvolS2 ^ d⇢ , (3.48)

J5 = j5dvolCY2 ^ d , F5 = f5dvolCY2 ^ d⇢ , (3.49)

J7 = j7dvolCY2 ^
dvolS2 ^ d , F7 = f7dvolCY2 ^

dvolS2 ^ d⇢ , (3.50)

obtained from (3.19) just by omitting the AdS2 volume form, dvolAdS2 . For instance,

F(1) gives rise to a one-form J1 = h0

8
d (no AdS2 factor in the definition of F(1)), F(3)

gives rise to another one-form, F(1), after omitting the AdS2 volume factor as well as

a three form J3 and so on. Just by comparison with (3.19), the functions ji and fi are

defined in the following manner

j1 = h0

8
, f1 =

h8

4
+ @⇢

uu0

16bh4

, (3.51)

j3 = �
1

2
(h8 � h0

8
(⇢� 2⇡k)) , f3 =

4⇢h8

8
+ @⇢

⇢uu0
� u2

32bh4

, (3.52)

j5 = �bh0

4
, f5 = �

bh4

4
� @⇢

uu0

16h8

, (3.53)

j7 =
1

2
(bh4 �

bh0

4
(⇢� 2⇡k)) , f7 = �

⇢bh4

8
� @⇢

⇢uu0
� u2

32h8

, (3.54)

We define also

G2i+1 = J2i+1 + iF2i+1 , (3.55)

with i = 1, 2, 3. Notice that the forms G3 and G7 satisfy the following Bianchi identities

dG1 = h00

8
d⇢ ^ d , dG5 = �bh00

4
dvolCY2 ^ d⇢ ^ d . (3.56)
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As a final step, we now define also the functional9

C =
i

2

Z

X8

G3 ^ G5 � G1 ^ G7

=
1

2

Z

X8

 bh4h8

4
+ u2

 bh02

4

bh2
4

+
h02

8

h2
8

!

� 2uu0

 bh0

4

bh4

+
h0

8

h8

!

+ 2u02

!
dvolCY2 ^ d⇢ ^dvolS2 ^ d 

(3.57)

Following [154], we minimise the functional C imposing the Euler-Lagrange equa-

tion for u, which can be shown to be solved if

u00 = 0 , h00

8
= 0 , bh00

4
= 0 . (3.58)

As we know already, the first is a BPS equation, the last two are Bianchi identities for

the backgrounds given in equations (3.10) and (3.11).

Imposing (3.58) on (3.57), we are allowed to write C as

C|on�shell =
⇡volCY2volS2

4

Z
2⇡(P+1)

0

Äbh4h8 + @⇢M
ä
d⇢ , (3.59)

where

32M = 2uu0
� u2

 bh0

4

bh4

+
h0

8

h8

!

(3.60)

Up to a boundary term (and irrelevant proportionality constants), we recover the

expression (3.46) for the holographic central charge. Remarkably, our central charge,

as defined in (3.45), was given in terms of N-S fields only, while we recovered the same

result with a di↵erent procedure involving just R-R fields.

We might wonder what is the physical meaning of such an extremisation procedure.

Hopefully the argument given next will help shed some light.

A relation between the central charge and Page fluxes

We now point out a nice link between the holographic central charge given in (3.46)

and a particular functional of some suitably defined electric and magnetic fluxes for

the ten-dimensional space.

Consider a Dp brane as the electric source for “F(p+2) and magnetic source for “F(8�p)

Page field strengths. We will define “electric” and “magnetic charges” of a Dp brane

9Here, C is viewed as “functional” of the variable u.
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qe
Dp

and qm
Dp

as10

qe
Dp

=
1

(2⇡)p

Z
“F(p+2) , qm

Dp
=

1

(2⇡)7�p

Z
“F(8�p) . (3.61)

Some charges will turn out to be infinite as a consequence of the integration over

the non-compact AdS spacetime. Thus, in the following a regularisation procedure is

understood.

Consider the product of electric and magnetic charges, as given in equation (3.61),

for each of the D branes in our background.

Define11

C =
3X

k=0

(�1)kqe
D(2k+1)

qm
D(2k+1)

. (3.62)

Using the Page fluxes given in (3.19) and (3.132) we find for D1 branes12

1

(2⇡)7

Z
“F e

(3)
^ “Fm

(7)
=

1

(2⇡)7

Z 1

2

Äbh4 �
bh0

4
⇢
äÇh8

4
+ @⇢

Ç
uu0

16bh4

åå
dvol10 . (3.63)

For D3 and D5 branes we have instead

1

(2⇡)7

Z
“F e

(5)
^ “Fm

(5)
= �

1

(2⇡)7

Z
bh0

4

ñ
⇢h8

8
+ @⇢

Ç
⇢uu0

� u2

32bh4

åô
dvol10 , (3.64)

and

1

(2⇡)7

Z
“F e

(7)
^ “Fm

(3)
=

1

(2⇡)7

Z 1

2
(h8 � h0

8
⇢)

 bh4

4
+ @⇢

Ç
uu0

16h8

å!
dvol10 , (3.65)

respectively. Finally, for the case of D7 branes we find

1

(2⇡)7

Z
“F e

9
^ “Fm

1
= �

1

(2⇡)7

Z
h0

8

"
⇢bh4

8
+ @⇢

Ç
⇢uu0

� u2

32h8

å#
dvol10 , (3.66)

10Notice that the definition of the “magnetic charges” qm
Dp coincides with the definition of the Page

charges given in (3.17), so they have a direct physical interpretation. On the other hand, the “electric
charges” to be associated with a Dp brane represent a sort of electro-magnetic dual.

11When computing the product for D3 branes,
R “F5 ^

“F5 is identically zero, due to the self-duality
of the five form field. We then retain in the computation only one of the two components of this
product.

12Here and in the following, integration is understood over the ten-dimensional spacetime and, as
before, it is fully justified when BPS and Bianchi identities hold globally.
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Summing up, we find for C the following final result

C = volAdS2

volCY2

16⇡4

Z
2⇡(P+1)

0

d⇢

"bh4h8

4
+

1

32
@⇢

 

2uu0
� u2

(bh4h8)0

bh4h8

!#

. (3.67)

Up to a boundary term, this is proportional to the central charge given in equation

(3.46). We then see that the holographic central charge is proportional to the (reg-

ularised) product of suitably defined electric and magnetic charges associated to the

Dp branes.

In [137], Hartman and Strominger argued that, in a two-dimensional Maxwell-

dilaton quantum gravity on AdS2 and a constant electric field, the central charge of

the dual CFT is a quadratic form of the electric field. It seems tantalising to think

that the functional C, defined as a quadratic form of the electro-magnetic Page charges,

provides a string theory realisation of the same idea.

2.5 The dual QM

We now aim at defining the CFT dual to the backgrounds found in (3.10) and

(3.11). Given that the AdS2 ⇥ S2
⇥ CY2 backgrounds were obtained by T -dualising

the fibre direction of the (warped) AdS3 ⇥ S2
⇥ CY2 parent theory, and also looking

at the brane web in Table (3.1) as compared to the brane web on page 11 of [19], it

is natural to conjecture that the one-dimensional superconformal quantum mechanics

we are looking for is just given by dimensionally reducing the parent two-dimensional

theory down to one time dimension.

We remind the reader that the parent two-dimensional theory is the one depicted in

Figure 2.1, in the previous chapter, and is made of N = (0, 2), N = (0, 4), N = (4, 4)

supermultiplets. The dual quantum mechanical quiver is then of the same form and

is given below.

We give a general discussion on compactification of 2d N = (0, 4) and N = (4, 4)

theories in Appendix K.

In two-dimensional language, we have that nodes in the quiver are associated with

(4, 4) vector multiplets. Black lines denote (4, 4) hypermultiplets and they are always

found to some bifundamental representation. Likewise, we have red line for (0, 4)

hypers and dashed lines for (0, 2) Fermi’s. It is by now clear that ranks of colour and

flavour groups are determined by the Page fluxes studied around (3.17). In particular,

we have U(↵k) and U(µk) colour groups for each k as well as SU(Fk) and SU(F̃k)
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[F0] [F1] [F2] [Fk�1]

(�0) (�0 + �1) (�0 + �1 + �2) (↵k)

(⌫0) (⌫0 + ⌫1) (⌫0 + ⌫1 + ⌫2) (µk)

[F̃0] [F̃1] [F̃2] [F̃k�1]

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 3.2: Generic quantum mechanical quivers.

flavour groups with Fk�1 = ⌫k�1 � ⌫k and F̃k�1 = �k�1 � �k.

One – perhaps obvious – test for our conjecture is given by computing the central

charge as given by the formula (3.44). This feature is of course inherited from the

parent two-dimensional theory and, as explained in [19], formula (3.44) is reproduced

holographically by equation (3.46) in the limit of very long quivers (very large P ) and

large ranks for the gauge and flavour groups. This has been tested in a substantial

number of examples in [19].

Intuitively, large P is needed in order to have weak curvature (almost) everywhere,

whereas large ranks for the gauge group just reduce string loop e↵ects.

As a last comment, we say a few words on what should be the correct IR R-

symmetry realised by our conformal quantum mechanics. This is sharpened further in

Appendix K. A quantum mechanical N = 4 theory has in general SO(4) R-symmetry.

However, it is consistent to have a conformal quantum mechanics with an SU(2) R-

symmetry only. As a matter of fact, our backgrounds realise an SU(2) R-symmetry

geometrically on the S2, as supercharges in supergravity transform as a doublet under

it. The correct (global) superalgebra with an sl(2,R) � su(2)R is su(1, 1|2). We are

then led to identify this as the algebra realised by our quantum mechanical quivers.

We now proceed to introducing the second class of AdS2 backgrounds considered

in this chapter. Besides being solutions to Type IIA massive supergravity, we will see

that they will bring along some nice features: The backgrounds realise in supergravity

the backreaction of the well-known D0�D4�D40�D8�F1 systems preserving eight

superconformal symmetries.
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3 Warped AdS2 ⇥ S3
⇥CY2 backgrounds in Type

IIA

In this section we introduce a new family of backgrounds with an AdS2 factor. These

are obtained through a double analytic continuation of the backgrounds already given

in (2.1) and (2.2) and reviewed in the previous section around (3.1) and (3.2). We give

a thorough study of the underlying geometry in Appendix L. The geometries discussed

in this section were given in [4]. More details about the CFT will be given in [6].

3.1 A new family of backgrounds

Let us start o↵ this section by discussing a double analytic continuation of the back-

ground just given in (3.1) and (3.2). We can indeed perform an analytic continuation

from AdS3 ⇥ S2 to AdS2 ⇥ S3 as

AdS3 ! �S
3 , S2

! �AdS2 , . (3.68)

The reason for the minus sign is the following. Starting from AdS3 in global coordi-

nates13, after a standard Wick rotation,

r ! �i⌘ , �! ⇠1 , ⌧ ! ⇠2 , (3.69)

one gets, from the AdS3 metric, minus the metric of a three-sphere

� cosh2(r)d⌧ 2 + dr2 + sinh2(r)d�2
! �(d⌘2 + sin2(⌘)d⇠2

1
+ cos2(⌘)d⇠2

2
) . (3.70)

Notice that ⌘ and ⇠2 are to be taken compact after Wick rotating. Here ⌘ runs over

the range 0 to ⇡/2, and ⇠1 and ⇠2 can take any values between 0 and 2⇡. A similar

story pans out for S2
! �AdS2. Using local coordinates, say �1 and �2, for S2, the

Wick rotation

�1 ! ir̃ , �2 ! t , (3.71)

leads to

d�2

1
+ cos2(�1)d�

2

2
! �(� cosh2(r̃)dt2 + dr̃2) , (3.72)

13Here r is the AdS radius in global coordinates, while ⌧ is the global AdS time and � an angular
variable with values in the range [0, 2⇡).
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where now r̃ and t are to be decompactified after the Wick rotation. As it will be useful

in the following, we also notice the following analytic continuation for the volume forms

sinh(r) cosh(r)d⌧ ^ dr ^ d�! � sin(⌘) cos(⌘)d⌘ ^ d⇠1 ^ d⇠2 ,

cos(�1)d�1 ^ d�2 ! �i cosh(r̃)dt ^ dr̃ .
(3.73)

We summarize them as dvolAdS3 ! �
dvolS3 and dvolS2 ! �idvolAdS2 . In order to get a

spacetime with the correct signature, we consider also the following analytic continu-

ation for the functions u, bh4, h8

u! �iu , bh4 ! ibh4 , bh8 ! ibh8 . (3.74)

It should be probably stated that, throughout this chapter, analytic continuation is

performed by extending the domain of the real numbers to the domain of the complex

numbers through the upper half of the complex plane.

All in all, we are then considering the following analytic continuation

AdS3 ! �S
3 , S2

! �AdS2 , dvolAdS3 ! �
dvolS3 , dvolS2 ! �idvolAdS2

u! �iu , bh4 ! ibh4 , bh8 ! ibh8 ,
(3.75)

together with ⇢! i⇢, being ⇢ the coordinate parametrising R in (2.1).

Performing (3.75) on (3.1) and (3.2), we get

ds2 =
u»
bh4h8

 bh4h8

4bh4h8 � (u0)2
ds2

AdS2
+ ds2

S3

!

+

Ã
bh4

h8

ds2
CY2

+

»
bh4h8

u
d⇢2 ,

e�� =
h3/4

8

2bh1/4

4

p
u

q
4bh4h8 � (u0)2 , H(3) = �

1

2
d

Ç
⇢+

uu0

4bh4h8 � (u0)2

å
^dvolAdS2 +

1

h8

d⇢ ^H2 .

(3.76)

The R-R sector reads

F(0) = h0

8
, F(2) = �H2 �

1

2

Å
h8 +

h0

8
u0u

4h8
bh4 � (u0)2

ã
dvolAdS2 ,

F(4) =

Ç
�d

Ç
u0u

2bh4

å
+ 2h8d⇢

å
^dvolS3 �

h8

u
b?4d4h4 ^ d⇢� @⇢bh4

dvolCY2 +
u0u

2(4bh4h8 � (u0)2)
H2 ^

dvolAdS2 .

(3.77)
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The backgrounds (3.76) and (3.77) solve the massive IIA supergravity equation of

motion provided that u00 = 0 globally, and bh00

4
= h00

8
= 0 away from localised brane

sources. The last two conditions come from the Bianchi identities for the RR sector.

As discussed in the previous section, violating bh00

4
= h00

8
= 0 at points means that we

can e↵ectively consider piecewise linear and continuous functions bh4 and h8. We will

discuss this in much detail later.

Note that it must be that 4bh4h8 � (u0)2 > 0, in order for the metric to be of

the correct signature and the dilaton to be real. As in the case of the AdS2 ⇥ S2

backgrounds, in the following, we will be mainly concerned with the case of H2 = 0

and bh4 = bh4(⇢).

3.2 Fluxes and branes

Let us continue the study of the background given in (3.76) and (3.77) by working

out its associated Page charges. Once again, quantisation of brane charges will imply

the quantisation of some constants appearing in the definition of bh4 and h8.

Page fluxes

The definition of Page fluxes and associated charges was given around equation

(3.17). Thus, we go straight to listing all the Page fluxes in our background

“F(0) = h0

8
,

“F(2) = �
1

2
(h8 � ⇢h

0

8
)dvolAdS2 ,

“F(4) = �bh0

4
dvolCY2 �

Ç
2h8 � @⇢

uu0

2bh4

å
dvolS3 ^ d⇢ ,

“F(6) =
1

2
(bh4 � ⇢bh0

4
)dvolAdS2 ^

dvolCY2 +

Ç
�⇢h8 + @⇢

⇢uu0
� u2

4bh4

å
dvolAdS2 ^

dvolS3 ^ d⇢ ,

“F(8) =

Ç
2bh4 � @⇢

uu0

2h8

å
dvolCY2 ^

dvolS3 ^ d⇢ ,

“F(10) =

Ç
⇢bh4 � @⇢

⇢uu0
� u2

4h8

å
dvolAdS2 ^

dvolS3 ^dvolCY2 ^ d⇢ .

(3.78)

Given these fluxes, we can now aim at studying what kind of branes are present in

our supergravity background and how their charge is computed.
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• Let us begin with the case of D0 branes. These are electric sources for a two

form, “F(2) say, which, as a matter of fact, has electric nature (“F(2) has a “leg”

along the time direction t, see (3.78)). On the other hand, they can also be

thought of as magnetic sources for “F8 as given in (3.78). From the fact that

d“F8 vanishes identically, the D0 branes are dissolved into fluxes and are to be

thought of as “colour” branes. Their charge is given by

QD0 =
1

(2⇡)7
volCY2volS3

Z
2⇡(P+1)

0

d⇢

Ç
2bh4 � @⇢

uu0

2h8

å
(3.79)

• Consider now the case of D2 branes. They are supposed to source magnetically
“F(6). However, “F(6) has a purely electric nature. We conclude that there are no

D2 branes.

• Let us move on to the case of D4 branes.

From the definition of “F(4) given in (3.78) we identify two four-manifolds sup-

porting fluxes of “F(4). These are M
0

4
=CY2 and M4 = S3

⇥ I⇢. We find

QD40 =
volCY2

(2⇡)3

Z

I⇢

d⇢ bh00

4
,

QD4 =
volS3

(2⇡)3

Z
2⇡(P+1)

0

d⇢

Ç
2h8 � @⇢

uu0

2bh4

å
.

(3.80)

Note that

d“F(4) = bh00

4
d⇢ ^dvolCY2 . (3.81)

Thus, the D4 branes counted by QD40 provide localised sources if we allow the

“Bianchi identity” bh00

4
= 0 to be violated at points. They are localised somewhere

in the ⇢ direction. We refer to them as “flavour” D4 branes, and denote them

as D40. Being localised in ⇢ and transverse to the CY, they are naturally seen

to warp AdS2 ⇥ S3.

The branes whose charge is given by QD4 are instead dissolved into fluxes and

therefore do not provide additional physical sources. They must be thought of

as “colour” D4 branes.

• The fact that “F8 has no electric components tells us that there are no D6 branes.
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• Let us considerD8 branes. They are electric sources for “F(10), which is necessarily

of electric nature. Note also that d“F(0) 6= 0 if h00

8
6= 0. According to (3.82), we

have a natural definition of D8 branes as objects localised somewhere in the

⇢ direction. This, in turn, leads to the fact that D8 branes are not dissolved

into fluxes, and e↵ectively behave as flavour branes. They are stretched along

AdS2 ⇥ S3
⇥ CY2 and their charges is given by

QD8 = 2⇡
Z

I⇢

d“F(0) , d“F(0) = h00

8
d⇢ , (3.82)

• The electric nature of H(3) tells us that there are fundamental strings but not

NS5 branes. Fundamental strings are stretched in the (t, r) directions and the

fact that d(e�2�?H(3)) is non-vanishing tells us that these F1 are physical objects

in the background.

The brane web characterising our background is given in Table 3.2.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D0 �

D4 � � � � �

D40 � � � � �

D8 � � � � � � � � �

F1 � �

Table 3.2: Brane setup, where � mark the spacetime directions spanned by the var-
ious branes. x0 corresponds to the time direction of the ten dimensional spacetime,
x1, . . . , x4 are the coordinates spanned by the CY2, x5 is the field theory space. The
coordinates x6, . . . , x9 are the coordinates realising an SO(4) rotational symmetry.

We now argue that the quantisation of brane charges comes naturally when u0 = 0.

Let us see how this plays out.

Charge quantisation

In order to discuss charge quantisation in more detail, it turns out to be useful to

consider again the profiles (3.3) and (3.4) for bh4 and h8. We report them here for the
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sake of readibility14.

h4(⇢) =

8
>>><

>>>:

�0

2⇡
⇢ ⇢ 2 [0, 2⇡]

↵k +
�k
2⇡
(⇢� 2⇡k) ⇢ 2 [2⇡k, 2⇡(k + 1)]

↵P �
↵P
2⇡
(⇢� 2⇡P ) ⇢ 2 [2⇡P, 2⇡(P + 1)] ,

(3.83)

h8(⇢) =

8
>>><

>>>:

⌫0
2⇡
⇢ ⇢ 2 [0, 2⇡]

µk +
⌫k
2⇡
(⇢� 2⇡k) ⇢ 2 [2⇡k, 2⇡(k + 1)]

µP �
µP
2⇡
(⇢� 2⇡P ) ⇢ 2 [2⇡P, 2⇡(P + 1)] ,

(3.84)

We consider an everywhere constat u, u = u0. Here k = 1, . . . , P � 1 with P some,

possibly large, integer. When u0 = 0, the second equation in (3.80) and equation (3.79)

reduce to

QD4 =

Ç
2
volS3

8⇡3

å Z
2⇡(P+1)

0

d⇢h8 , QD0 =

Ç
2
volS3

8⇡3

åÇ
⌥volCY2

16⇡4

å Z
2⇡(P+1)

0

d⇢h4 .

(3.85)

Using volS3 = 2⇡2 and choosing ⌥ such that ⌥volCY2 = 16⇡4, we get for the total

number of colour D4 and D0 branes

QD4 =
1

2⇡

Z
2⇡(P+1)

0

d⇢h8 , QD0 =
1

2⇡

Z
2⇡(P+1)

0

d⇢h4 . (3.86)

We can find similar formulas for flavour branes. Computing d“F(4), with “F(4) defined

as in (3.78), we find

d“F(4) = bh00

4
d⇢ ^dvolCY2 . (3.87)

For the class of solutions defined in (3.83) and (3.84) we get

d“F(4) = ⌥
PX

k=1

Ç
�k�1 � �k

2⇡

å
�(⇢� 2⇡k)d⇢ ^ volCY2 . (3.88)

Using again ⌥volCY2 = 16⇡4, (3.88) tells us that there are semi-localised flavour D4

branes at ⇢ = 2⇡k. Their number is counted by

Q(k)

D4
= �k�1 � �k . (3.89)

14Why this is at all possible, also for the case of AdS2 ⇥ S3
⇥ CY2 backgrounds, is explained

carefully in Appendix L.
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Thus, if there is a change in the slope of bh4 at ⇢ = 2⇡k, so that �k�1� �k 6= 0, we will

have D4 flavour branes. In particular, we see also that it must be �k�1 > �k, in order

to have positive charge.

A similar analysis goes through for the D8 flavour branes. We find at ⇢ = 2⇡k

Q(k)

D8
= ⌫k�1 � ⌫k . (3.90)

The total number of flavour D4 and D8 can be found either by summing (3.89)

and (3.90) over all k = 1, . . . , P or by using (3.80) and (3.82). In any case the result is

QD40 = 2⇡
Ä
h0

4
(0)� h0

4
(2⇡(P + 1))

ä
,

QD8 = 2⇡
Ä
h0

8
(0)� h0

8
(2⇡(P + 1))

ä
.

(3.91)

3.3 Holographic central charge

In this section we discuss the holographic central charge associated with the back-

ground (3.76) and (3.77). This section is very similar in spirit to the corresponding

section for the AdS2 ⇥ S2 backgrounds. We just give a few more details on why it is

di�cult at first to define a holographic central charge in one dimension. The reader

might feel free to skip to the main results. Also this time it is possible to “derive” the

central charge from an action functional. This is reviewed in Appendix L.

Let us recast the metric in (3.76) in the following fashion

ds2 = a(r, ✓)
Ä
� dt2 + b(r)dr2

ä
+ gij(r, ✓)d✓

id✓j , (3.92)

with ✓ denoting collectively the coordinates parametrising the internal manifold and

a(r, ✓) =
u
»
bh4h8

4bh4h8 � (u0)2
r2 , b(r) =

1

r4
. (3.93)

Following [41], we can define the quantities

Vint =
Z
d✓
»
e�4� det(gij)a(r, ✓)d , cH = V

2

int
(3.94)

The holographic central charge, when the dual CFT is (d + 1)-dimensional, is then

defined as

cholo =
dd

GN

b(r)d/2
cH

2d+1
2

(cH 0)d
. (3.95)
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We note that, in our case,

det(gij) =
u2bh4

h3
8

, e�4� =
h3

8

16bh4u2

Ä
4bh4h8 � (u0)2

ä2
, (3.96)

while d = 0. Thus we find for Vint

Vint =
volCY2volS3

4

Z
2⇡(P+1)

0

d⇢
Ä
4bh4h8 � (u0)2

ä
. (3.97)

Note that Vint, and hence cH, is r-independent. Because of cH 0 = 0 and d = 0, the

formula (3.95) is not immediately meaningful. The only quantity that seems to make

sense is therefore Vint, just as discussed previously. In particular, for the class of

solutions for which u = constant everywhere, we find

Vint = volCY2volS3

Z
2⇡(P+1)

0

d⇢ bh4h8 . (3.98)

This coincides, modulo unimportant constant factors, to the 2d central charge derived

in (2.37) and in the previous section. We are then led to interpret (3.98) as the

quantity to be matched with the central charge for the field theories dual to the family

of backgrounds in (3.76) and (3.77).

Closing remarks

We finish o↵ this section by giving a couple of important remarks about the AdS2 ⇥

S3
⇥ CY2 and its dual field theories.

The quantum-mechanical dual theory will be presented in [6]. The construction of

the dual UV QM can be easily carried out by employing open string quantisation for

the system D0�D4�D40�D8�F1 discussed previously. The latter is readily done

by following the rules of e.g. [155, 156]. Similar systems, discussing webs of D0-D4-F1

were discussed, for instance, in [157, 158, 159].

It is remarkable to have a fully backreacted geometry involving D0 and D4 branes.

In particular, in the case where the Bianchi identities are taken to hold globally and

the geometries are then smooth everywhere – see Appendix L for details on this point –

we have a fully backreacted solution of an instantonic configuration with fundamental

strings [158].

The AdS2 ⇥ S3
⇥ CY2 backgrounds discussed in this section were obtained from

an analytical continuation of the AdS3⇥S2
⇥CY2 solutions of [17]. There, the super-
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charges were given to belong to the (1,2;2) of Sl(2,R) ⇥ Sl(2,R) ⇥ SU(2)R, realised

geometrically on the AdS3 and S2 factors. Thus, it seems natural to postulate that the

supersymmetry generators are singlets of one of the SU(2) of SO(4) = SU(2)⇥SU(2)

after the analytical continuation. We then make the assertion that the dual CFT just

provides another realisation of the su(1, 1|2) superalgebra in one dimension, and that

the second SU(2) gives a flavour non R-symmetry.

4 Conclusions

In this chapter we have introduced two new families of AdS2 backgrounds. The

first family has the structure of a warped AdS2 ⇥ S2
⇥ CY2 background while the

second has the structure AdS2 ⇥ S3
⇥ CY2 and they are both obtained after some

manipulation of the AdS3 ⇥ S2
⇥ CY2 system proposed in [17]. They are argued to

realise an su(1, 1|2) superconformal algebra for a one-dimensional quantum-mechanical

problem. A prescription for the dual CFT of the AdS2 ⇥ S2
⇥ CY2 backgrounds is

readily given as dimensional reduction of the “parent” two-dimensional CFT dual to

the AdS3 ⇥ S2
⇥ CY2 background of [19]. The definition of the dual QM for the

AdS2 ⇥ S3
⇥ CY2 system is more subtle and will be given in [6]. In both cases, we

gave a prescription for computing the central charge. Remarkably, it follows from a

minimisation principle which involves a functional given by the product of suitably

defined “electric” and “magnetic” charges.

Many questions remain unanswered. It would be nice to test our conjectures in a

number of di↵erent ways. It is believed that an index might capture the holographic

central charge as defined in this chapter. Papers which compute superconformal in-

dices for quantum mechanical problems comprise of e.g. [160, 161, 157]. Also, it would

be interesting to consider the limit of everywhere smooth geometries and explore com-

pactification down to AdS2 spacetime. Fluctuations – spin 2 in the case of warped

spacetime – of the backgrounds could be studied and dual operators might be con-

structed explicitly. Finally, it would be nice to understand what black holes have a

near-horizon geometry in the class described in this section, and what the freedom of

choosing our backgrounds implies for black-hole physics.
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K Dimensional reduction to Quantum Mechanical

systems

Here, we discuss in some detail how to dimensionally reduce N = (0, 2) and N = (0, 4)

systems down to one dimension. This appendix is mostly relevant for the AdS2⇥S2
⇥

CY2 solutions to Type IIB supergravity discussed in the main text.

K.1 Reduction of N = (0, 2) supersymmetry multiplets to

one dimension

In N = 2 Quantum Mechanics we have two real supercharges with an SO(2) R-

symmetry. Equivalently, they can be rearranged as two complex supercharges Q and

Q with a reality constraint, and U(1) R-symmetry. They satisfy the algebra

Q2 = Q
2
= 0 , {Q,Q} = H , (3.99)

with H the hamiltonian. Moreover, if we denote by J the R-symmetry generator we

have

[J,Q] = �Q , [J,Q] = Q , [J,H] = 0 . (3.100)

Let us see what N = 2 supermultiplets in quantum mechanics are relevant to us.

Much of the construction is obtained from the dimensional reduction of 2d N = (0, 2)

supersymmetric systems.

As discussed already in Appendix J of the previous chapter, the 2d N = (0, 2)

vector multiplet consists of a two-dimensional gauge field vµ, a left-handed (complex)

fermionic field ⇣� and a real auxiliary field D. They are all valued in the adjoint

representation of the corresponding gauge group G. In the following we will just set

⇣� ⌘ ⇣, as there is no chirality in 1d. After reduction, we have vµ = (vt, �), where vt is

the one dimensional gauge field and � a real scalar. The supersymmetric kinetic term

for an N = 2 vector multiplet in quantum mechanics is

Lvector =
1

2g2
tr
h
(Dt�)

2 + i⇣̄D(+)

t ⇣ +D2
i
. (3.101)

where D(±)

t = Dt ± i� and Dt is the usual covariant derivative Dt = @t + ivt for

fields in generic representation of the gauge group. Notice that this is nothing but the
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dimensional reduction to one dimension of the lagrangian (2.57) given in the previous

chapter.

A 2d N = (0, 2) chiral multiplet consists of a complex scalar boson and a right-

handed (complex) fermionic field  + in some unitary representation of the gauge group.

As before, we will only be concerned with the fundamental and adjoint representations.

Again, in going down to 1d we will drop the sub-index. The supersymmetric kinetic

term for an N = 2 chiral multiplet in quantum mechanics reads

Lchiral = Dt�̄Dt�+ i ̄D(�)

t  + �̄(D � �2)�� i
p
2�̄� � i

p
2 ̄�̄� . (3.102)

Again, this is just the dimensional reduction of the action (2.61).

A 2d N = (0, 2) fermi multiplet consists of a left-handed (complex) fermion  �

and an auxiliary field G. In the following, we will make the identification  � ⌘ ⌘

and  +,i ⌘  i if (�i, +,i) is a chiral multiplet. The lagrangian for a generic Fermi

multiplet reads

Lfermi = i⌘̄D(+)

t ⌘ + |G2
|� |E(�i)|

2
� ⌘̄

@E

@�i

 i �  ̄i

@E

@�̄i

⌘ , (3.103)

to be compared with (2.65) in the previous chapter.

In addition to the E-term potentials it is possible, for each Fermi multiplet  a, to

introduce a holomorphic function Ja(�i) which gives rise to a interactions of the form

LJ = GaJa(�i) +
X

i

⌘a
@Ja

@�i
 i + h.c. . (3.104)

As remarked already in Appendix J, the superpotentials E and J cannot be intro-

duced independently. In order for supersymmetry to be preserved, they must satisfy
P

a EaJa = 0.

K.2 N = 4 supersymmetric systems

The N = 4 supermultiplets that are relevant to our construction are given just by

dimensional reduction of N = (0, 4) and N = (4, 4) supermultiplets. Two-dimensional

N = (0, 4) supermultiplets are given in terms of N = (0, 2) multiplets as follows15.

15See also Appendix J for further details.
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Multiplets N = (0, 2) building blocks component fields SU(2)L ⇥ SU(2)R

Vector: Vector + Fermi (U,⇥) (uµ, ⇣a�, G
A) (1,1), (2,2), (3,1)

Hyper: Chiral + Chiral (�, �̃) (�a, b

+
) (2,1), (1,2)

Twisted hyper: Chiral + Chiral (�0, �̃0) (�0a, 0b

+
) (1,2), (2,1)

Fermi Fermi: + Fermi (�, �̃) ( 0a

�
, G̃b) (1,1), (2,2)

An N = (0, 4) supersymmetric system enjoys an SO(4) R-symmetry. Thus, su-

persymmetries can be given in terms of a vector Qi
2 4 of SO(4). Of course, we can

exploit the isomorphism SO(4) = SU(2)L ⇥ SU(2)R for which the 4 decomposes as

4 = (2,2). The supercharges are given by a matrix Qij with a reality constraint

Qij = ✏ik✏jlQ†

jl
, (3.105)

with i, j, k, l = 1, 2. Of course, as it is clear from above, all fields in each supermultiplet

are organised under representation of SU(2)L ⇥ SU(2)R.

Also, N = (4, 4) supermultiplets decompose in terms of N = (0, 4) supermultiplets

in the following fashion

Multiplets N = (0, 4) building blocks N = (0, 2) building blocks

Vector Vector + Twisted Hyper (U,⇥), (⌃, ⌃̃)

Hyper Hyper + Fermi (�, �̃), (�, �̃)

The dimensional reduction of the 2d theory depicted in Figure 2.1 is then readily

done according to the rules above. In particular, a two-dimensional gauge field always

reduces to one-component gauge field plus a scalar in one dimension. Scalars and

fermions remain untouched. In the case of the fermions, this is due to the fact that in

both one and two dimensions the minimal spinor representation is one-dimensional.

Before ending this section, let us give one remark about the R-symmetry of the IR

theory.
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K.3 R-symmetry

The R-symmetry group of supersymmetric N = 4 quantum mechanics is SO(4) =

SU(2)L ⇥ SU(2)R. As we flow to the IR and hit a fixed point, given that it exists,

we should find that our quantum mechanics realises some classified superconformal

algebra. When N = 4, we have essentially two possibilities. See Table 3.3.

supersymmetry superalgebra R-symmetry
N = 1 osp(1|2) 1
N = 2 su(1, 1|1) U(1)
N = 3 osp(3|2) SU(2)

N = 4
su(1, 1|2)
d(2, 1;↵)

SU(2)
SU(2)⇥ SU(2)

N = 5 osp(5|2) SO(5)

N = 6
su(1, 1|3)
osp(6|2)

SU(3)⇥ U(1)
SO(6)

N = 7
osp(7|2)
g(3)

SO(7)
G(2)

N = 8

osp(8|2)
su(1, 1|4)
osp(4⇤|4)

f(4)

SO(8)
SU(4)⇥ U(1)
SU(2)⇥ SO(5)

SO(7)

Table 3.3: Simple superalgebras that contain an sl(2,R).

The d(2, 1;↵) global algebra is often referred to as large superconformal algebra,

and ↵ is a parameter which parametrises the relative strength of the two Kac-Moody

levels, k� and k+ of the SU(2) R-symmetries. In the AdS2 ⇥ S2
⇥ CY2 we have only

one SU(2) (realised geometrically on the S2). Given that in the parent AdS3 ⇥ S2

supersymmetries were in the (1,2;2) of Sl(2,R)⇥Sl(2,R)⇥SU(2)R, we are naturally

led to the conclusion that the superalgebra realised by our IIB backgrounds and the

dual field theories is the su(1, 1|2) superalgebra16.

Also, superalgebras in one and two dimensions are closely related – each chiral

sector of a 2d SCFT provides a superalgebra and its realisation for a 1d superconformal

QM – and this makes it possible to identify central charges in 1d and 2d [153].

16The su(1, 1|2) is also realised by taking the limit ↵!1 in the d(2, 1;↵) algebra.
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L Further aspects of the AdS2 ⇥ S3
⇥CY2 solutions

In this appendix, we give further details on the AdS2 ⇥ S3
⇥ CY2 backgrounds.

In particular, we give a careful study of the geometry near special points. Also, we

compute Chern-Simons coupling constants from probe branes. Finally, we give an

expression for the holographic central charge in terms of R-R fluxes.

L.1 Behaviour of the background near special points

Let us begin our study of the behaviour of the background (3.76), (3.77) close to

particular points. As we are concerned with spacetimes with finite extention in the ⇢

direction (⇢ belongs to a compact interval, call it I⇢), either or both bh4 and h8 vanish

at both ends of I⇢. We then have three possibilities for each endpoint. We discuss

them in turn17.

Asymptotic region ⇢! 0

Let us begin by focussing on the region close to ⇢ = 0, where the space begins in the

⇢ direction. In the following we will assume that u is a constant function everywhere18,

u = u0.

• bh4(0) = 0 , h8(0) 6= 0 . Let us set, close to ⇢ = 0,

bh4 = ⌥
�0
2⇡
⇢ , h8 = µ0 +

⌫0
2⇡
⇢ . (3.106)

The background metric and the dilaton given in (3.76) have the asymptotic form

as ⇢! 0

ds2 =

Ã
⇡u2

0

8⌥�0µ0

⇢�1/2
Ä
ds2

AdS2
+ 4ds2

S3

ä
+

s
⌥�0
2⇡µ0

⇢1/2(ds2
CY2

+ µ0d⇢
2) ,

e�4� = µ5

0

�0
2⇡
⇢ .

(3.107)

This is nothing but the background around an O4 plane located at ⇢ = 0 and

stretched along AdS2 ⇥ S3.

17Here, and just for the analysis given here for the background geometry, we allow either bh4 or h8

to be non-vanishing at ⇢ = 0 and ⇢ = 2⇡(P + 1), but not simultaneously. This kind of behaviour was
also considered in detail in [120].

18This was motivated by the requirement of flux quantisation.
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• bh4(0) 6= 0 , h8(0) = 0 . Let us consider, still close to ⇢ = 0,

bh4 = ⌥

Ç
↵0 +

�0
2⇡
⇢

å
, h8 =

⌫0
2⇡
⇢ . (3.108)

The metric and the dilaton, close to ⇢ = 0, read

ds2 =

s
⇡u2

0

8⌥↵0⌫0

1

⇢1/2
Ä
ds2

AdS2
+ 4ds2

S3

ä
+

s
⌥↵0⌫0
2⇡u2

0

1

⇢1/2
ds2

CY2
+

s
⌥↵0⌫0
2⇡u2

0

⇢1/2d⇢2 ,

e�4� =
Å ⌫0
2⇡

ã5 ⌥↵0

u2
0

⇢5 .

(3.109)

We recognise the background of an O8 plane at ⇢ = 0 and stretched along

AdS2 ⇥ S3
⇥ CY2.

• bh4(0) = 0 , h8(0) = 0 . Now, bh4 and h8 are given, as ⇢ approaches zero, by

bh4 = ⌥
�0
2⇡
⇢ , h8 =

⌫0
2⇡
⇢ . (3.110)

For very small values of ⇢, the metric and the dilaton are given by the following

expressions

ds2 =
⇡u0
p
⌥�0⌫0

1

⇢

Ä
ds2

AdS2
+ 4ds2

S3

ä
+

s
⌥�0
⌫0

ds2
CY2

+

p
⌥�0⌫0
2⇡

⇢ d⇢2 ,

e�4� =
Å ⌫0
2⇡

ã5 ⌥�0
2⇡u2

0

⇢6 .

(3.111)

We recognise here a superposition of O4 and O8 planes.

Asymptotic region ⇢! 2⇡(P + 1)

In order for the space to close o↵ at some value ⇢ = ⇢̄, we need either or both bh4

and h8 to vanish at ⇢̄. Again we have three cases. From charge quantisation (to be

discussed later) it is also useful to set once again ⇢̄ = 2⇡(P + 1), with P an integer.

Again, we assume u = u0.

• bh4(⇢̄) = 0 , h8(⇢̄) 6= 0 . Now bh4 and h8 are given by

bh4 = ⌥
Å
↵P �

↵P

2⇡
(⇢� 2⇡P )

ã
, h8 = µP +

⌫P
2⇡

(⇢� 2⇡P ) . (3.112)
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Let us define x = 2⇡(P + 1)� ⇢ and expand for small positive x

ds2 =

Ã
⇡u2

0

8⌥↵P (µP + ⌫P )
x�1/2

Ä
ds2

AdS2
+ 4ds2

S3

ä
+

s
⌥↵P

2⇡(µP + ⌫P )
x1/2

Ç
ds2

CY2
+

µP + ⌫P
a0

dx2

å
,

e�4� =
(µP + ⌫P )5

u2
0

⌥↵P

2⇡
x .

(3.113)

Again, we identify the metric of an O4 plane stretched along AdS2 ⇥ S3.

• bh4(⇢̄) 6= 0 , h8(⇢̄) = 0 . In this case we have

bh4 = ⌥

Ç
↵P +

�P
2⇡

(⇢� 2⇡P )

å
, h8 = µP �

µP

2⇡
(⇢� 2⇡P ) . (3.114)

Expanding again for small and positive x = 2⇡(P + 1)� ⇢ we find

ds2 =

Ã
⇡u2

0

8⌥µP (↵P + �P )
x�1/2

Ç
ds2

AdS2
+ 4ds2

S3 + 4
⌥(↵P + �P )

a0
ds2

CY2

å

+

Ã
⌥µP (↵P + �P )

2⇡a20
x1/2dx2 ,

e�4� =
ÅµP

2⇡

ã5 ⌥(↵P + �P )

u2
0

x5 .

(3.115)

Again, we recognise the metric of an O8 plane located at ⇢ = 2⇡(P + 1) and

stretched along AdS2 ⇥ S3
⇥ CY2.

• bh4(⇢̄) = 0 , h8(⇢̄) = 0 . In this case we have

bh4 = ⌥
Å
↵P �

↵P

2⇡
(⇢� 2⇡P )

ã
, h8 = µP �

µP

2⇡
(⇢� 2⇡P ) . (3.116)

Expanding again for small x as before we find

ds2 '

Ã
⇡2a20

4⌥↵PµP

x�1
Ä
ds2

AdS2
+ 4ds2

S3

ä
+

s
⌥↵P

µP

ds2
CY2

+

s
⌥↵PµP

4⇡2a20
xdx2 ,

e�4�
'

ÅµP

2⇡

ã5 ⌥↵P

2⇡a20
x6 .

(3.117)
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This time we recognise the background generated by the superposition of an O4

and an O8 plane at ⇢ = 2⇡(P + 1).

L.2 Chern-Simons coupling constants

We now probe the background in (3.76) and (3.77) by introducing probe D branes.

The action describing the coupling of a generic Dp brane to the N-S and R-R closed

string fields is the DBI + WZ term given already in (3.28).

• Let us begin by considering probe D0 branes. The field theory living on a

D0 brane is (0 + 1)�dimensional. We can define a metric for such a (0 +

1)�dimensional field theory from the pullback of (3.76),

ds2
ind

= �
u
»
bh4h8

4bh4h8 � (u0)2
dt2 . (3.118)

Note that the pullback of B(2) and the field strength Fab on the D0 brane are

automatically zero, due to their (anti)symmetric properties. Given that

e��
»
det gind =

h8(⇢⇤)

2
cosh(r⇤) , (3.119)

where the “⇤” simply refers to the fact that we are keeping r and ⇢ fixed at some

values, for a probe D0 brane we find the following action

SD0 = �TD0

Z

R
dte��

»
det gind + TD0

Z
C(1) , (3.120)

which leads to

SD0 = �TD0

h8(⇢⇤)

2
cosh(r?)

Z

R
dt+ TD0

µk

2
sinh(r?)

Z

R
dt , (3.121)

If we choose ⇢⇤ = 2⇡k, we find

SD0 = TD0

µk

2
(sinh(r⇤)� cosh(r⇤))

Z

R
dt . (3.122)

We find that the brane is “calibrated” only when r⇤ = 1, for which, however,

we have a vanishing action.

Consider instead the coupling of a D0 brane to a one form, call it A(1). An
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action describing such a coupling is

S = 2⇡TD0

Z
F(0)A(1) . (3.123)

If, as in (3.77), F(0) = h0

8
, and using (3.84), we get

S = 2⇡TD0

⌫k
2⇡

Z

R
A(t)dt . (3.124)

Given that TD0 = 1, we find that the action (3.124) describes a Chern-Simons

term with kCS = ⌫k. If we were to make sense of the action (3.124) also on a

topologically non-trivial one-dimensional manifold, say on a circle S1, we would

find that it describes a gauge invariant action if and only if ⌫k is an integer.

Moreover, if parity is to be a symmetry of our system we can take, without loss

of generality, ⌫k to be positive as well.

• Let us move on to the case of a probe D4 branes stretched along (t,CY2). The

induced metric on the worldvolume of such a D4 brane, from the pullback of

(3.76), reads

ds2
ind

= �
ubh4h8

4bh4h8 � (u0)2
dt2 +

Ã
bh4

h8

ds2
CY2

. (3.125)

The pullback of B(2) vanishes, whereas we will ignore for now the field strength

Fab along the brane19. Given that

e��
»
det gind =

bh4(⇢⇤)

2
cosh(r⇤) , (3.126)

for a probe colour D4 brane the DBI action reads

SDBI = �TD4volCY2

bh4(⇢⇤)

2
cosh(r⇤)

Z

R
dt . (3.127)

Using that TD4 = 1/(2⇡)4 and bh4 = ⌥h4 we find

SDBI = �
⌥volCY2

(2⇡)4
h4(⇢⇤)

2
cosh(r⇤)

Z

R
dt . (3.128)

19An ↵0 expansion of the DBI action would produce a Maxwell kinetic term for F . Eventually we
will be interested in the dimensional reduction to 1 dimension where such a kinetic term would be
absent.
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Let us consider now the WZ part of the D4 brane action

SWZ = TD4

Z
C(5) + 2⇡C(3) ^ F(2) + 4⇡2C(1) ^ F(2) ^ F(2) . (3.129)

From (3.19), C(5)|D4 = �
1

2
(bh4�

bh0

4
(⇢�2⇡k)) sinh rdt^dvolCY2 , where dC(5) = “F(6).

The second term in the action, 2⇡C(3) ^F(2), understood as 2⇡“F4 ^A(1) after an

integration by parts, will contribute as a Chern-Simons term, as we will see in a

moment. Moreover, on the brane, we have “F4 = bh0

4
dvolCY2 .

Therefore, if we place the D4 brane at ⇢ = 2⇡k, its action reads

S = SDBI + TD4

Z
C(5) + 2⇡TD4

Z
“F(4) ^A(1) ,

= TD4⌥volCY2

↵k

2
(sinh(r⇤)� cosh(r⇤))

Z

R
dt+ 2⇡TD4

Z
“F(4) ^A(1) .

(3.130)

The Chern-Simons action reads explicitly

2⇡TD4

Z

CY2⇥R

“F(4) ^A(1) = 2⇡TD4
bh0

4
volCY2

Z

R
A(1) . (3.131)

Using that bh4 = ⌥h4 and choosing ⌥, as usual, such that ⌥TD4volCY2 = 1

we find a CS action with level kCS = �k. Again, invariance under large gauge

transformations implies that �k has to be an integer. Parity allows us to take it

to be positive.

L.3 Central charge from “electric-magnetic” charges

We mimic what we have done in Subsection 2.4 in order to obtain the holographic

central charge of the AdS2⇥ S3
⇥CY2 backgrounds from fluxes or, equivalently, from

an extremisation procedure.

Again, consider a Dp brane as the electric source for “F(p+2) and magnetic source

for “F(8�p) Page field strengths and define

qe
Dp

=
1

(2⇡)p

Z
“F(p+2) , qm

Dp
=

1

(2⇡)7�p

Z
“F(8�p) . (3.132)

When integrating over the non-compact AdS spacetime a regularisation procedure is

understood.

Let us split each and every Page flux in (3.78) into their electric magnetic compo-



L. Further aspects of the AdS2 ⇥ S3
⇥ CY2 solutions 153

nents as
“F(k) = “F e

(k)
+ “Fm

(k)
, (3.133)

where the electric component of a Page flux has a leg along the time direction. Let us

define the quantity Q
(p), for a Dp brane, as

Q
(p) =

1

(2⇡)7

Z
“F e

(p+2)
^ “Fm

(8�p)
. (3.134)

We find that, for D0 branes, (2⇡)7Q(0) is given by

Z
“F e

(2)
^ “Fm

(8)
= �

Z
(h8 � ⇢h

0

8
)

Ç
h4 �

1

4
@⇢

Ç
uu0

h8

åå
dvol10 , (3.135)

while, for D8 branes, (2⇡)7Q(8) reads

Z
“F e

(10)
^ “Fm

(0)
=
Z

h0

8

Ç
⇢bh4 �

1

4
@⇢
⇢uu0

� u2

h8

å
dvol10 (3.136)

In our setup, we have both colour and flavour branes, so two terms contribute to

(2⇡)7Q(4). These are given by

Z
“F e

(6)
^ “Fm

(4)
= �

Z
(bh4 � ⇢bh0

4
)

Ç
h8 �

1

4
@⇢

Ç
uu0

bh4

åå
+
Z
bh0

4

Ç
⇢h8 �

1

4
@⇢

Ç
⇢uu0

� u2

bh4

åå
,

(3.137)

Computing C =
P

Q
(p) we get

volCY2

(2⇡)4
volS3

(2⇡)3
volAdS2

Z
2⇡(P+1)

0

d⇢

"

�4bh4h8 + u02 + @⇢

 

2⇢bh4h8 �
uu0

2
+

u2
� 2⇢uu0

4

(bh4h8)0

bh4h8

!#

,

(3.138)

which, up to a boundary term, is proportional to (3.97).

It is straightforward to show that the very same quantity, C, can be obtained by a

minimisation procedure in supergravity [6].
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Chapter 1

Phases of U(Nc) QCD3 from type 0 strings

We now abandon the realm of SCFTs to land on three dimensional Chern-Simons

theories. We also abandon holography to discuss a special class of dualities in Quantum

Field Theory. More in particular, in this chapter, we deal with a Seiberg-like duality

for three-dimensional non-supersymmetric Chern-Simons theories.

The outline of the chapter is as follows. In Section 1, we give a brief overview

of Chern-Simons theories in three dimensions. First, we introduce the Chern-Simons

functional and discuss its gauge invariance. We then move on to discussing the fermion

path integral. We will see that integrating-out massive fermions in three dimensions

produces a shift in the Chern-Simons level. We conclude Section 1 with a brief account

of IR dualities in Chern-Simons theories.

In Section 2 we add supersymmetry to the game and discuss N = 2 Chern-Simons

theories. A nice duality between two N = 2 Chern-Simons theories, first discussed

by Giveon and Kutasov in [20], has a natural “stringy” origin and it will be reviewed

at the end of Section 2. The Giveon-Kutasov-Chern-Simons duality will o↵er a nice

guiding principle in order to embed non-supersymmetric Chern-Simons dualities into

string theory. We will treat the case of pure Chern-Simons theories with unitary

gauge groups coupled to fundamental matter and this is, in essence, the main goal of

this chapter. The reader that has already some knowledge of generic supersymmetric

Chern-Simons theories might feel free to skip directly to Section 3.

Starting with Section 3, we present material from [2]. We give a broad introduction

and summary on how U(Nc) QCD3 emerges at low energies from the theory living on

a particular brane configuration in Type 0B string theory, which we call OQCD3. We

also give a general overview on how the di↵erent phases of QCD3 are captured in such

a string theory setting. In Section 4 we review the essential properties of type 0B

string theory and its brane configurations. In Section 5 we discuss in detail the brane

configuration that leads to OQCD3 and propose a Seiberg duality. In Section 6 we

157
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show how the phase diagram of the electric theory manifest itself in the magnetic, and

in Section 7 we focus on QED3. Section 8 is devoted to conclusions.

Seiberg duality and its “origin” in string theory is reviewed in Appendix M.

1 A bird’s eye view on Chern-Simons theories

The aim of this section is to review a few basic facts about Chern-Simons theories in

three dimensions. The literature about Chern-Simons theories is huge. Here we follow

the 2019 TASI lectures by Moore1 and the first part of the paper by Witten [162]. A

nice older review is [163], while a modern review comprehensive also of all the modern

development in Chern-Simons dualities is [164].

Chern-Simons theories are quantum gauge theories involving a particular and sub-

tle action principle. Remarkably, they lead to quantum field theories where many

questions can be answered explicitly.

Consider a gauge theory for a Lie group G on a manifold M . A connection on a

G-bundle is denoted by A, and transforms under gauge transformations as

A! g�1(d+ A)g , (1.1)

while the curvature F = dA+ A2 transforms as F ! g�1Fg.

Let us define P , an invariant polynomial of order two on the Lie algebra g,

P = trF 2 . (1.2)

It is easy to see that P is gauge invariant and globally defined. Moreover, it can be

written as a total derivative in the following manner

trF 2 = d tr

Ç
AdA+

2

3
A3

å
. (1.3)

The term in parenthesis is known as Chern-Simons form in three dimensions2 and is

the starting point for Chern-Simons theories. Consider a three-dimensional manifold

1Available at: Introduction To Chern-Simons Theories.
2Chern-Simons forms exist in any odd dimension. See e.g. [165] pag. 444.

http://www.physics.rutgers.edu/~gmoore/TASI-ChernSimons-StudentNotes.pdf
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M3 with an orientation3 o(M3). We can define a quantum field theory with action

SCS =
k

4⇡

Z

M3

tr

Ç
AdA+

2

3
A3

å
(1.4)

and path integral4 Z

A/G

eiSCS . (1.5)

Here the path integration is made over all inequivalent gauge configurations A/G,

where G is the space of gauge transformations – not to be confused with G which is

finite dimensional instead.

Note that if we choose an abelian gauge group G, say U(1) or R, the Chern-Simons

action reduces to

SCS =
k

4⇡

Z

M3

AdA , (1.6)

as the term A ^ A ^ A vanishes identically.

Along with (1.4), we can of course also consider the Yang-Mills action in three

dimensions

SYM =
1

2e2

Z
trF ^ ?F . (1.7)

In three dimensions, e2 has dimension of mass and, therefore, the Yang-Mills action

behaves as an irrelevant term for the Chern-Simons theory. The variation of the

Chern-Simons action gives

�SCS =
k

2⇡

Z
tr�AF , (1.8)

and the equations of motion for the full Chern-Simons-Yang-Mills theory read

1

e2
DA ? F +

k

2⇡
F = 0 , (1.9)

where DA = d + A is the covariant derivative. Applying DA? from the left and using

3The request that M3 has an orientation is often stated as taking a manifold with trivial first
Stiefel-Whitney class, w1(TM3) = 0, with TM3 the tangent bundle over M3.

4Strictly speaking, the path integral in (1.5) is not quite correct. Gauge fixing is needed and
even though the action (1.4) is topological – the metric of the three-manifold M3 never appears in
the definition – the Fadeev-Popov determinant is not. This leads to the frame anomaly for the path
integral [166]. We will not address this issue here. See for instance the lecture notes Introduction To
Chern-Simons Theories.

http://www.physics.rutgers.edu/~gmoore/TASI-ChernSimons-StudentNotes.pdf
http://www.physics.rutgers.edu/~gmoore/TASI-ChernSimons-StudentNotes.pdf
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again the equation of motion and the Bianchi identity DAF = 0, we get

⇤AF =

Ç
ke2

2⇡

å2

F , (1.10)

where ⇤A = {DA, ?DA?} is the covariant Laplacian. The quantity ke
2

2⇡
behaves like a

mass for the gauge field A, mCS = ke
2

2⇡
. Solutions to the linearised (1.9) can be found

explicitly in the form of plane waves for A,

Ai ⇠ ✏ie
ip·x + c.c. . (1.11)

and they define the degrees of freedom of our theory. Solutions for A are of two types:

either plane waves with energy ! =
p
~p2 +m2, or modes with zero energy and, by the

equations of motion, flat connection F = 0. The zero modes are not local degrees of

freedom, thus a Chern-Simons theory appears to be gapped.

We have already stressed that the gauge coupling e2 has dimensions of mass and

therefore the Yang-Mills term of the Lagrangian is irrelevant in the IR. Let us motivate

this a bit more. Under a conformal rescaling of the metric gµ⌫ ! ⇤2(x)gµ⌫ , the Yang-

Mills Lagrangian scales as LYM ! ⇤(x)�1
LYM , while the Chern-Simons term is left

invariant (the Chern-Simons term is topological, the metric gµ⌫ never appears in the

definition). The long distance limit is achieved by keeping the metric gµ⌫ fixed while

sending ⇤ ! 1. In this limit, the Yang-Mills action formally vanishes, while the

Chern-Simons term remains. Note that the scaling gµ⌫ ! ⇤2(x)gµ⌫ is equivalent to

e2 ! ⇤(x)e2. Thus, taking long distances is equivalent to considering strong coupling.

The Chern-Simons mass mCS has been defined as mCS = ke2/2⇡. Thus, in the

strong coupling limit, e2 ! 1, also m ! 1 and the propagator in Chern-Simons

theories goes to zero at low energies, forcing all Feynman diagrams and local corre-

lators to vanish. Thus, it seems that Chern-Simons theories have no gauge invariant

observables and the theory is trivial. This is no quite true, as we can form observables

from Wilson line operators along a closed loop �

W (R, �) = trRP exp

Ç
i
I

�

A

å
. (1.12)

We can then compute correlation functions of these operators to get topological in-
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variants56.

1.1 Chern-Simons action and quantisation of the level

We address now an issue that has been ignored so far: the gauge invariance of the

Chern-Simons term. In the action (1.4), the gauge connection A appears explicitly

and we may wonder if such an action is gauge invariant. It turns out that, as we shall

see, that the action can be rendered gauge invariant, but a few subtleties must be

taken care of.

On a closed three-dimensional Euclidean manifold, the action (1.4) makes sense

only if the gauge G bundle is trivial (A is globally defined). However, even in that

case, a gauge transformation

A! Ag = g�1(A+ d)g , (1.13)

with g(x) 2 G a local gauge transformation, the Chern-Simons action (1.4) transforms

as

S[A]! S[A] + 2⇡kN [g] , (1.14)

where N [g] is given by

N [g] =
1

24⇡2

Z
tr(g�1dg)3 , (1.15)

and is the winding number of the gauge transformation. When the gauge group G

is compact and simple (e.g. SU(n) with n � 2), N [g] 2 Z (it corresponds to the

homotopy classification ⇡3(G) = Z). In quantum mechanics we do not need the action

S to be single-valued, but rather eiS, which is the right factor that appears in the

path integral. Thus, choosing the Chern-Simons coe�cient k 2 Z, we find that eiS is

single-valued even under large gauge transformations (k 6= 0).

In topologically non-trivial situations, like for instance the case of G = U(1), it is

di�cult to interpret the Chern-Simons functional as the gauge connection A may have

string singularities (Dirac string) and is not globally defined. A procedure that avoids

this problem is as follows.

Given a three-dimensional manifold M3 and a gauge G-bundle E, we can always

5There is a subtlety concerning correlation functions of Wilson loops which relies on the choice
of a frame. We will not addredd this issue here. See Introduction To Chern-Simons Theories.

6The most celebrated is probably the Jones polynomial found by Witten [166] when the gauge
group G = SU(2) and the trace is taken over the defining representation of G.

http://www.physics.rutgers.edu/~gmoore/TASI-ChernSimons-StudentNotes.pdf
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construct a four-manifold Y4 and a gauge bundle on it Ẽ such that @Y4 = M3 and the

bundle Ẽ restricts to E on M3. Then, we can define the Chern-Simons action as

SCS ⌘
k

4⇡

Z

Y4

trF ^ F , (1.16)

which is manifestly gauge-invariant, as only F appears in the definition. The problem

we run into by defining the Chern-Simons action in this way, is that the definition (1.16)

seems to depend on the extension (M3, E) ! (Y4, Ẽ). A di↵erent choice would seem

to produce a di↵erent result. But this is not quite true. Consider a di↵erent extension,

(Y 0

4
, Ẽ 0). We can glue together the first extension and the orientation-reversal of the

second extension (this is needed in order for the glueing to work). We obtain a closed

four-dimensional manifold Y4 + Y 0

4
and the di↵erence between the two Chern-Simons

actions is

SCS[A]� S 0

CS
[A] = 2⇡k ·

1

2

Z

Y4+Y
0
4

tr

Ç
F

2⇡
^

F

2⇡

å
. (1.17)

On a closed spin four-manifold 1

2

R
Y4+Y

0
4
tr
Ä
F

2⇡
^

F

2⇡

ä
is always an integer and, thus,

di↵erent extensions produce the same result for the Chern-Simons functional modulo

an integer multiple of 2⇡.

Implicit in the last formula is the choice of a spin-structure for M3 that extends to

Y4 (and Y 0

4
). It is always possible for an oriented three-dimensional manifold M3 to

choose a spin structure and the Chern-Simons functional (1.16) will depend on such

spin structure. If M3 is not necessarily spin,
R
F ^F/(2⇡)2 is not an integer in general,

and a finer quantisation of k is required. For instance, if we consider an SO(3) bundle

over CP 2 it is possible to show that k must be divisible by four (in units in which an

arbitrary integer is allowed for SU(2)).

1.2 Fermion path integral

One question we might naturally pose is what happens if we choose the Chern-

Simons level k to be equal to zero. In that case we do not have a Chern-Simons

term and our theory simply reduces to Yang-Mills theory in three dimensions, which

is trivial in the IR. The aim of this section is to show that this is not quite correct

if there are fermions coupled to the gauge field A. As a matter of fact, integrating

out massive fermions produces a shift of the Chern-Simons level and such a shift can

be computed exactly. Thus, in a theory with massive interacting fermions, even if no

Chern-Simons term is present in the original Lagrangian, it will be generated in the



1. A bird’s eye view on Chern-Simons theories 163

IR. Loosely speaking, Chern-Simons terms are unavoidable in three dimensions. Here

we follow closely [162].

Consider a massless Dirac fermion in 2+1 dimensions7

S =
Z

Y

d3x ̄i /D . (1.18)

Here /D =
P

3

µ=0
�µDµ is the Dirac operator and  couples to the electromagnetic

potential A. Upon a choice of a frame bundle on Y , in local Lorentz coordinates, it

is possible to pick three real gamma matrices satisfying the algebra {�a, �b} = 2⌘ab,

with ⌘ab = diag(�1,+1,+1). Then, the “curved” gamma matrices �µ are related to

the “flat” �a as usual by �µ = ea
µ
�a.

To discuss fermion path integrals and anomalies, it is convenient to consider the

theory on a Euclidean manifold. Thus, let us Wick rotate8 the action (1.18). The

operator D = i /D is hermitian in Euclidean signature and the partition function for  

reads

Z = detD =
Y

i

�i , (1.19)

where �i are eigenvalues for D and are all real. The fact that the partition function

is real has a nice interpretation. The theory of a massless Dirac fermion is invariant

under time reversal symmetry. Reversing the orientation of the (Euclidean) spacetime

gives the complex conjugate partition function. Therefore, a T -invariant theory has

real Z.

Even if we are able to claim that Z is a real partion function, there is no way

to establish its sign. This follows from the fact that the number of eigenvalues �i is

infinite, and there are potentially infinite positive as well infinite negative eigenvalues.

In fact, it turns out that, if we try to formally define9 Z to be positive, there is a

clash with gauge invariance. The reason for this can be traced back to a beautiful

theorem in mathematics, the Atiyah-Patodi-Singer (APS) theorem. Let us see briefly

why this is to be the case.

7To physically motivate the action (1.18), we might consider the case of a topological insulator
on a (3 + 1)-dimensional manifold X with spatial boundary Y . Y is (2 + 1)-dimensional and  is a
boundary mode living on Y .

8For what matters, just send t ! �it, �0
! �i�0 and At ! iAt. We find in this way the Dirac

algebra {�a, �b} = 2�ab. The action (1.18) is formally unchanged.
9Witten points out [162] another problem related to picking a sign for the path integral. A well-

defined theory should determine the sign of the path integral for any Y . This issue is resolved by
regularising the path integral as we now show.
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Let us pick up a metric and a gauge field, (g0, A0), and define Z to be positive at

g = g0 and A = A0. Define g
�

0 and A�

0 the di↵eo/gauge transformed metric and gauge

field (� can be understood as the set of parameters that defines the transformation).

Because of di↵eo/gauge invariance, the partition function Z should be left invariant

by the transformation. Let us interpolate between (g0, A0) and (g�0 , A
�

0 as

gs = (1� s)g0 + sg�0 , As = (1� s)A0 + sA�

0 , (1.20)

with 0  s  1. Notice that gs is an acceptable metric for our spacetime Y , as from

its very definition it is positive definite if g0 (and then g�0 ) is. Of course, gs and As are

gauge transformed versions of (g0, A0) only for s = 1. In other words, (1.20) is not a

gauge transformation, in general.

Let us now evolve (gs, As) from s = 0 to s = 1. Gauge invariance implies that the

partition function Z should have the same sign at s = 1 and s = 0. Moreover, the

spectrum at s = 0 and s = 1 should be the same. However, between s = 0 and s = 1

there might be a “spectral flow” for which, even though the spectrum is unchanged,

one negative (or positive) eigenvalue crosses zero and the partition function changes

sign. Of course, this is only possible because the eigenvalues are infinitely many. The

APS theorem serves to precisely count the number of eigenvalues that cross zero and,

when this number is odd, the partition function changes sign. In this situation we

would have

Z[g0, A0] = �Z[g
�

0 , A
�

0 ] , (1.21)

and gauge invariance is lost. For the situation at hand (topological insulator) a negative

number of eigenvalues crosses zero and gauge invariance is spoiled.

As we would like to preserve gauge invariance, we need to find a way out. The

solution to this problem boils down to giving up a real partition function. As a matter

of fact, quantising the theory not in a T -invariant way is perfectly reasonable: even

the addition of a mass term for the fermions would spoil T -invariance. Moreover, as

it stands, the partition function Z needs some regularisation, as it is given by an

infinite product. This can be achieved by introducing Pauli-Villars fields �. We can

think of them as fermions – satisfying the massive Dirac equation (i /D + iM)� = 0 –

with bosonic statistics. Z then reads

Z =
Y

i

�i
�i + iM

. (1.22)
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Notice that parity sends �i ! ��i and, therefore, Z ! (Z )⇤, consistently with what

we discussed before.

For large positive10 M , the partition function Z can be written as

Z = |Z | exp

 

�i
⇡

2

X

i

sign(�i)

!

, (1.23)

or

Z = |Z | exp
Å
�i
⇡

2
⌘
ã
, (1.24)

where ⌘ is the regularised APS invariant

⌘ = lim
✏!0+

X

i

sign(�i)e
�✏�

2
i . (1.25)

Notice that, since the spectrum is gauge invariant, also ⌘ is gauge invariant. Therefore,

if a spectral flow is to take place as before, we would find this time a gauge invari-

ant partition function for  . Also, the partition function is supposed to change sign

whenever an eigenvalues changes sign. This is indeed the case as if we send one of the

eigenvalues �i ! ��i, ⌘ jumps by a factor 2.

Had we chosen large negative M we would find

Z = |Z | exp
Å
+i
⇡

2
⌘
ã
. (1.26)

This is also perfectly allowed and consistent with gauge and Poincaré – in fact con-

formal – invariance, and the plus or minus sign is a convention here. Of course T -

invariance is by now lost as Z is no longer real: the Pauli-Villars regulator was not

T -invariant in the first place.

The APS theorem says also that ⌘ can be rewritten as

exp (�i⇡⌘) = exp (�iSCS[A]� 2iCSgrav[g]) , (1.27)

where CSgrav is defined as CSgrav = 2⇡ bA
2
, being “A the Dirac genus defined as

“A = �
1

48

Z

X

trR ^R

(2⇡)2
, (1.28)

with X, as before, a four manifold such that @X = Y .

10We discuss what changes if we take large negative M in a moment.
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We might be tempted to say that the regularisation of the fermion path integral

has produced a Chern-Simons term at level �1/2. However, this is not correct as

fractional Chern-Simons terms are not gauge invariant whereas ⌘ is perfectly well

defined and invariant under gauge transformations. Yet, we will use the notation

U(1)
�

1
2
to indicate the theory of a massless fermion coupled to a U(1) gauge field.

The “�1/2” refers to the regularisation scheme adopted to regularise the fermion path

integral. This is particularly enlightening when we give a mass m to the fermion  . As

is well known, integrating out  at low energies produces a shift in the Chern-Simons

level by sign(m)/2 [167, 168]. Therefore, integrating out  at low energies we find

Z =

8
><

>:

1 if m� 0

e�i⇡⌘ if m⌧ 0
(1.29)

The last equation is always well defined in terms of Chern-Simons terms and implies

that the e↵ective action at low energies reads

�S = �
1

4⇡

Z
d3xAdA� 2CSgrav , (1.30)

when m⌧ 0.

So far we have assumed the gauge group G to be U(1). In general, we can have

also other gauge groups and fermions transforming under arbitrary representations.

How does the shift of Chern-Simons level work in such more general situations? An

explicit computation reveals that the fermion determinant for a fermion that belongs

to a representation R of the gauge group G is given by

detD = |detD| exp(�i
⇡

2
⌘) , R complex representation , (1.31)

if the representation R is complex, or

detD = |detD| exp(�i
⇡

4
⌘) , R real representation , (1.32)

if the representation R is real. The APS theorem says that

⇡⌘ = 2xRSCS + 2dimRCSgrav , (1.33)

where xR is the Dinkin index of the representation R, normalised such that trR(taRt
b

R
) =
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�2xR�ab.

Thus, integrating out a single fermion of mass m shifts the Chern-Simons level by

sign(m)xR for complex representations or sign(m)xR/2 for real representations. This

will be important later for our study of OQCD3, where we will have to integrate out

fermions in the two-index antisymmetric representation of the gauge group.

Remarks

• The Chern-Simons theories we will consider in the following all arise from fluc-

tuations of threebranes in flat spacetime. Therefore, the three manifold M3 for

us will be simply R1,2 (or R3 upon continuation to Euclidean signature) and no

gravitational Chern-Simons term appears in the Lagrangian.

• When we consider systems of fermions  �  ̃, with  ̃ transforming under any

symmetries as the complex conjugate of  , and with an action which is the

complex conjugate of that of  , the partition function is Z Z = |Z |2 and there

is no anomaly. This will be relevant later when considering fermions �� �̃ in the

� representation of U(Nc).

1.3 Physical implications: IR dualities

As we already outlined at the beginning of this chapter, over the last few years

Chern-Simons theories have received one more push forward as new kind of dualities

between Chern-Simons-like theories in three dimensions have been uncovered, the most

famous example being probably level rank duality, see [169] which can be proved

exactly. Coupling matter with non-abelian gauge fields, Aharony proposed [21] the

following dualities

SU(Nc)K �Nf scalars ! U (K)
�Nc+Nf/2

�Nf fermions

U(Nc)K �Nf scalars ! SU (K)
�Nc+Nf/2

�Nf fermions

U(Nc)K,K+Nc �Nf scalars ! U (K)
�Nc+Nf/2,�Nc+Nf/2�K

�Nf fermions

(1.34)

which are believed to hold whenever

Nf  Nc . (1.35)
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In all these dualities, the scalars have quartic interactions and, as we flow to the IR,

we allow to tune the fermion and boson masses to reach a critical point, if it exists.

Such dualities cannot be established rigorously, except for some special cases.

All these correspondences are similar in spirit to Seiberg duality [170], which is

conjectured to hold in the deep IR after reaching an interacting fixed point. However,

this time the dualities are formulated between non-supersymmetric theories and this

makes them somewhat special.

The dualities above have been generalised to gauge groups di↵erent from SU or U

(like SO or Sp) and with matter in representations di↵erent from the fundamental.

For a comprehensive review on the existing cases, see [164].

One of the main goals of this chapter is to embed the unitary duality between

Chern-Simons theories (third line in (1.34)) into string theory. Before diving into that,

let us give some details about supersymmetric Chern-Simons theory and how they are

realised on branes in string theory. This will help us formulate our cojectures.

2 Additional structure: Supersymmetry

An additional structure that can be added to Chern-Simons theories is supersym-

metry. In the following, we will be concerned mainly with N = 2 supersymmetry.

Remember that a minimal spinor in three dimensions is an object with half the de-

grees of freedom of a minimal spinor in four dimensions. Thus, N = 2 in three

dimensions simply means that we are dealing with a theory with four supercharges,

and it is very much related to N = 1 supersymmetry in four dimensions. In fact,

N = 2 supersymmetric theories in three dimensions can very often be understood as

dimensional reduction from four dimensions.

A good reference – and perhaps the first paper dealing with supersymmetric Chern-

Simons theories systematically – is that of Schwarz [171]. We will draw results from

there.

N = 2 gauge multiplet

Let us begin by considering the gauge multiplet for N = 2 supersymmetric theories.

As outlined before, it is readily obtained by dimensionally reducing the N = 1 gauge

multiplet in four dimensions. The latter contains a gauge field Aµ, a real Majorana

fermion � and a real scalar D. Upon reduction to three dimensions, the gauge field Aµ
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gives rise to a 3d gauge field, that we still call Aµ, and a real scalar � from the fourth

component of the 4d gauge field, A3. The real Majorana fermion � can be recast as

a two component (complex) Dirac fermion in three dimensions, and we still have the

real scalar D. Notice that o↵-shell we have four bosonic and four fermionic degrees of

freedom. This was expected as we are describing a theory with four supercharges. If

we go on-shell we find two bosonic and two fermionic degrees of freedom.

The Chern-Simons lagrangian made out of a vector multiplet reads

L = tr

Ç
AdA+

2

3
A3
� �̄�+ 2D�

å
. (1.36)

Notice that both the gauge field Aµ and the scalar � have dimension 1, while the

fermion � has dimension 3/2 and the scalar D has dimension 2. So each term in the

lagrangian has dimension 3, as it should be. All the fields, being part of the same

supermultiplet, belong to the same representation of the gauge group G, the adjoint.

N = 2 matter multiplet

As it will be useful in applications to OQCD3, it is appropriate to discuss also how

matter can be coupled to the N = 2 gauge multiplet. In particular, we would like

to add to the game the N = 2 matter multiplet. Again, this is readily obtained

by dimensional reduction of an N = 1 chiral multiplet of four dimensional theories

which, in turn, contains a complex scalar �a of dimension 1/2 a complex Dirac two-

component fermion  a and an auxiliary scalar F a of dimension 3/2. The index a labels

the representation R of the gauge group G the fields �,  and F belong to, and runs

from 1 to dim(R), the dimension of the representation. In more mathematical terms,

the fields of the matter multiplets can be understood as sections of the associated

vector bundles in the appropriate representation. So for instance, if S(M) is the

spin bundle over the three-dimensional manifold M3,  is a section of the product

bundle S(M) ⌦ E, with E the bundle associated to the principal G-bundle by the

representation R. For the scalars we replace the spin bundle by complex or real line

bundles. Of course, the same was true for the gauge multiplet, where the relevant

representation was the adjoint.

The lagrangian for the matter multiplet reads

L = @µ�a@
µ�a + i ̄a

/@ a + FaF
a + WF + W

⇤

F
, (1.37)
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where WF is the superpotential that gives rise to interaction terms like �2 2 or �3F .

When the representation R is complex, it is customary to set (�a)⇤ = �a (same for the

other fields), and therefore all the terms in the lagrangian above are gauge singlets.

When the matter multiplet is coupled to the gauge multiplet ordinary derivatives

are replaced by covariant derivatives and Yukawa terms coupling fermions and bosons

of gauge and matter multiplets need to be added in order for the lagrangian to be

N = 2 supersymmetric [171]

L = Dµ�aD
µ�a + i ̄a

/D a + FaF
a + WF + W

⇤

F

� �a�
2�a + �aD�

a
�  ̄a� 

a + i�a�̄�
a
� i ̄a��

a .
(1.38)

2.1 String theory embedding and duality

The N = 2 Chern-Simons theory discussed above can be embedded into string

theory. We will now spend a few words on what is the correct brane setup that gives

rise to N = 2 Chern-Simons theory and how to “derive” a dual theory for it, known

also as Giveon-Kutasov duality [20].

Consider the brane web given in Table 1.1 in Type IIB String Theory. Such a brane

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 � � � � � �

NS50 � � � � � �

D3 � � � �

D5 � � � � � �

Table 1.1: Brane web electric theory, before recombination of fivebranes.

web preserves N = 2 supersymmetry in three dimensions (four supersymmetries).

When anNS50 brane intersects k D5 branes in the (3, 7) plane, they locally combine

into a (1, k) fivebrane at an angle ✓ with respect to the NS5 brane, see Figure 1.1. ✓ is

related to k via the relation tan ✓ = gsk, with gs the string coupling. Supersymmetry is

mantained for any length of (1, k) fivebrane segment. When the length of the segment

goes to infinity we are left with a (1, k) bound state of fivebranes at an angle ✓ in the

(3, 7) plane.

We consider a system with Nf + k D5 branes, see the left of Figure 1.2. The low

energy theory is that of U(Nc) gauge theory with Nf + k flavours of chiral fields Qi,

Q̃i in the fundamental representation of the gauge group. We then move k D5 branes
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NS0

k D5

NS0

k D5

(1, k) NS0

k D5

Figure 1.1: Recombination for fivebranes.

towards the NS50 brane in order to have a (1, k) bound state. The final brane setup

is given by the Figure 1.2, to the right. The operation for which we can replace an

NS50 and k D5 branes with a (1, k) fivebrane corresponds to giving mass to k chiral

fields and sending the mass to infinity, i.e. integrating out k flavours of chiral fields.

As we have seen in Section 1.2 integrating out a fermion charged under the underlying

gauge symmetry produces a shift of the Chern-Simons level. It is not di�cult to see,

using formula (1.33) with xR = 1

2
and CSgrav = 0 for each fermions that we integrate

out, that the shift is given precisely by k. Thus, what we get after integrating out

k flavours of chiral fields is a U(Nc) Chern-Simons theory with Nf flavours Qi, Q̃i

(i = 1, . . . , Nf ) and Chern-Simons level k.

NS5

NS50Nc D3

Nf + k D5

NS5

(1, k)Nc D3

Nf D5

Figure 1.2: Electric brane configuration.

The global symmetry of the gauge Chern-Simons theory is SU(Nf ) ⇥ SU(Nf ) ⇥

U(1)a ⇥ U(1)R. The first three factors are realised on the brane web starting with
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the configuration of right Figure 1.2, moving all Nf D5 branes to the (1, k)-brane,

and performing separate U(Nf ) rotations on the D5 branes with x7 > 0 and x7 < 0.

The U(1)R is a subgroup of the ten-dimensional Lorentz group preserved by the brane

system.

Duality: the magnetic theory

Following [27], we swap the NS5 and (1, k) branes to get the brane setup in Figure

1.3.

NS5

Nf D5 Nf + k �Nc D3

(1, k)

Figure 1.3: Magnetic brane configuration.

As a consequence of the Hanany-Witten transition [28], we have Nf + k � Nc

threebranes between the NS5 and (1, k) fivebranes. The low energy theory is that

of a Chern-Simons theory with gauge group U(Nf + k � Nc) and Nf flavours qi and

q̃i. The Nf D3 branes, which give rise to the flavour symmetry, are free to slide the

in the (x8, x9) direction. Therefore, we have in the magnetic theory also Nf ⇥ Nf

gauge-singlet massless scalars. Because of supersymmetry, what we actually have is

Nf ⇥Nf chiral singlets M i

j
.

Giveon and Kutasov [27] proposed such a theory as the magnetic dual of the electric

theory described above upon identifying

M i

j
= QiQ̃j . (1.39)

The duality just proposed can be checked by studying the structure of the moduli

spaces of both theories and/or by adding deformations, like masses for the quarks, on

both sides. For further details see [27].
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We are now ready to start studying how non-supersymmetric Chern-Simons dual-

ities can be embedded in string theory. We begin now by giving a broad overview on

how QCD3 emerges from particular brane configuration in Type 0B string theory and

how the di↵erent phases of QCD3 are captured by string theory. Details are spelled

out in later sections.

3 Introduction and summary of OQCD3

String theory has long been a source of insight for investigations in strong coupling

dynamics of quantum field theory. In particular, dualities in field theories often follow

from properties of the corresponding brane configuration in string theory, as we have

seen in the previous section. Having independent evidence from field theory and

string theory is a step in verifying dualities. Most of the e↵ort so far has been largely

focused on supersymmetric theories in various dimensions, owing to the fact that non-

perturbative phenomena in both string theory and field theory are better understood

in that setting.

One may naturally ponder the ubiquity of dualities in generic QFTs, and their

relationship to string theory. Indeed, recent years have seen progress made on the

field theory front for non-supersymmetric gauge theories in three dimensions. There

has been significant progress in the understanding of the phase diagram of QCD3 with

a Chern-Simons term.

Consider a U(Nc) theory with Nf massless Dirac fermions and a level K Chern-

Simons term. As we have outlined in Subsection 1.3, it was argued in [21](see also

[172, 173, 169, 174, 175]) that for Nf/2  K the theory admits a dual description in

terms of a gauge theory coupled to scalars as follows11

U(Nc)K,K±Nc�Nf fermions ! U

Ç
K +

Nf

2

å

�Nc,�Nc⌥(K+Nf/2)

�Nf scalars . (1.40)

However, one may wonder whether something changes for Nf/2 > K. In the case

of SU(Nc) gauge symmetry, it was conjectured in [22] that when N? > Nf/2 > K the

theory admits a flavour symmetry breaking phase where

U(Nf )! U(Nf/2�K)⇥ U(Nf/2 +K) . (1.41)

11We have switched the role of Nf and K relative to the previous sections.
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A similar picture was developed in [22] also for SO(N) and Sp(N) gauge theories. For

Nf � N? the theory is expected to flow to a CFT12.

Following [177], which concerned the symplectic gauge group, it is proposed [2] that

the infrared phase diagram of U(Nc) QCD3 can be understood in terms of a non-SUSY

Seiberg duality. Our proposal involves a modification of the UV theory, i.e. we start

with a UV theory, which we refer to as the electric theory, whose Lagrangian is more

complicated than QCD3. This theory flows in the IR to QCD3. The electric theory

also admits a Seiberg dual description, which we refer to as the magnetic theory. The

various IR phases of the electric theory (and so of QCD3) can then be identified with

the phases of the magnetic dual. In particular both the bosonized phase and the

symmetry breaking phase, which will be our main focus, can be understood in terms

of the condensation of a scalar field, namely the dual “squark”, in the magnetic theory.

Our proposal of Seiberg duality is motivated by string theory13. In order to realise

U(Nc) QCD3 we embed the gauge theory in a Hanany-Witten brane configuration of

type 0B string theory. The brane configuration consists of Nc D3 branes suspended

between an NS5 branes and a (1, k) fivebrane. In addition, there exits Nf flavour

branes and an O03 orientifold plane. It is similar to the corresponding supersymmetric

brane configuration of Giveon and Kutasov in type IIB [20], reviewed in the previous

section.

By swapping the fivebranes we obtain the brane configuration that realises the

magnetic Seiberg dual. The relation between field theory and string theory phenomena

teaches us about non-supersymmetric brane dynamics. The aforementioned squark

condensation translate into a reconnection of colour and flavour branes.

Our Seiberg duality proposal is supported by planar equivalence [182, 183]: when

Nc, Nf , k are taken to infinity the electric theory becomes equivalent to a supersym-

metric theory and the magnetic theory becomes equivalent to a supersymmetric theory.

The electric and magnetic theories form an N = 2 supersymmetric Giveon-Kutasov

dual pair. Therefore, there exists a limit in which our non-supersymmetric dual pair

becomes a known supersymmetric dual pair.

In the following we will always denote the bare CS level by k. In addition, we

12In the ’t Hooft limit, when Nc ! 1 and K, Nf are kept fixed, the theory exhibits rich vacua
[176]. The discussion of this limit is beyond the scope of this paper.

13Other approaches to obtain 3d duality with relation to string theory are given in [178, 179], while
the possibility of relating these dualities to supersymmetric dualities were explored in [180, 181].
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define the frequently occurring combination

 ⌘ k �Nc + 2 , K ⌘ �
Nf

2
(1.42)

4 Overview of type 0B

In this section we review aspects of D3 branes and O03 planes in type 0 string theory.

For the relevant background we refer the reader to [184].

Type 0B string theory can be obtained by a Z2 orbifold of type IIB, with the

Z2 action generated by (�1)Fs , the mod 2 spacetime fermion number operator. The

untwisted sector is therefore identical to the bosonic sector of the parent type IIB

theory. The twisted sector is composed of a tachyon in the NS-NS sector as well as

a new full set of R-R fields. The tachyon will eventually be projected out by the

orientifold action. The doubled set of R-R fields lead in e↵ect to a doubling of the

D-brane spectrum. In particular there are now two types of threebranes which we

denote by D3 and D30 respectively.

The worldvolume theory on a stack of n D3 and m D30 branes was worked out in

[185, 186]. It is a U(n) ⇥ U(m) gauge theory with 3 complex scalars in the adjoint

representation, and a pair of bifundamental Weyl fermions.

In order to project out the closed string tachyon we make use of the ⌦(�1)fR

projection [187, 188]. Here, ⌦ is worldsheet parity and (�1)fR is the operator that

counts the number of right moving worldsheet fermions mod 2. Combining this with

reflection in 6 spatial directions I6 we get an O03± orientifold, the (3+1) dimensional

fixed hyperplane with respect to the ⌦(�1)fRI6 action. The existence of two types

of orientifold planes follows from the fact that the NS-NS two form can have a non-

trivial Wilson line exp (i
R
B) and the signs are chosen to reflect the R-R charge of

the orientifold plane. Note that unlike the O3-planes of type IIB we do not have the

additional possibilities associated with the R-R discrete torsion. Under the action of

⌦, D3 turns into D30, thus requiring an equal number of each type of brane. In fact

⌦ projects out half of the doubled set of R-R fields in the closed string sector.

We are interested in stacks of N D3 branes (together with their image N D30s) on

top of O03±, with the worldvolume directions ofD3 andD30 parallel to that of the O03±-

plane (see Table 4.2). The worldvolume theory of such a configuration was worked out

in [186]. In both cases one has a U(N) gauge field and 6 adjoint scalars parameterising

the directions transverse to the worldvolume. There are also a pair of Weyl fermions
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which transform in the 2-index symmetric or antisymmetric representation of U(N)

in the configuration with O03+ and O03� respectively. We will denote these theories

by Y
+ ( ), Y

� ( ) respectively, highlighting the orientifold type on which they live as

well as the representation of the worldvolume fermions (the two features relevant for

our purposes). We summarise this in Table 1.2. The Lagrangian for these theories can

be obtained by subjecting the component fields of N = 4 SYM, collectively denoted

by ', to the constraints

J'JT = (�1)F' , (1.43)

where (�1)F is the mod 2 fermion number operator and J is the symplectic form

J =

Ñ
0 1N

�1N 0

é
. (1.44)

The choice of gauge group for the N = 4 theory descends to the choice of fermion

representation (Figure 1.4); starting from the parent theory with SO(2N) gauge group

one lands on Y
� ( ), and the supersymmetric Sp(N) theory leads to Y

+ ( )[189].

SO(2N) N = 4 SYM

J(�1)F

Y
� ( )

Sp(N) N = 4 SYM

J(�1)F

Y
+ ( )

Figure 1.4: The “orientifold” daughters of N = 4 SYM.

Y
� ( ) U(N) SO(6)
B�

µ
adj ·

X� adj 6v

⇠� � 4s � 4c

Y
+ ( ) U(N) SO(6)
B+

µ
adj ·

X+ adj 6v

⇠+ � 4s � 4c

Table 1.2: The field content of the world volume theory of N D3 branes on top of an
O03± plane.

The Möbius amplitude for a single D3 and its image D30 separated by a distance
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2|X±| across the O03± is [186]

AM = ±
V4

(8⇡2↵0)2

Z
1

0

dt

2t3
f 8

2
(iq)

f 8

1
(iq)

exp

 
�2tX2

±

⇡↵0

!

, (1.45)

where q = e�⇡t and the fi(q) are defined as in [190]. We would like to extract the

charge of the orientifold plane as well as the brane-orientifold potential. We note that

the integrand in (1.45) is, up to a sign, identical to the case analysed in [191]. We will

state the relevant results in the following. For large separation X±, the leading order

term as t �! 0 is given by

AM ⇠ ±⇡V4G6(X
2

±
) , (1.46)

where G6(X2

±
) = (4⇡3)�1

|X±|
�4�(2) is the 6d scalar propagator. We see that the long

range potential between the branes and O03� (O03+) is attractive (repulsive). For small

X±, (1.46) is no longer a valid approximation, instead one can expand the exponential

in (1.45) around X± = 0

AM = ±
î
⇤�MX2

±
+ O

Ä
X4

±

äó
, (1.47)

where the coe�cients ⇤, M are both positive, with the explicit form given in [191].

From this, it follows that there is a short range attractive (repulsive) force between

the branes and O03� (O03+) plane. The nature of the interaction at short and long

distances from the orientifold is similar. Therefore, the theory with fermions in the

antisymmetric (symmetric) representation is perturbatively stable (unstable). Note

that instabilities of non-perturbative nature may still arise, but are less straightforward

to detect in string theory. Instead, we may rely on the field theory analysis and try to

revert some lessons back to the brane setup (as in Section 6.2).

Notice that the (in)stability of the brane configuration translates in the worldvol-

ume field theory to statements about the vev of the scalars X±. This is obvious from

the second term in (1.47), where the sign of the mass term for the scalars is posi-

tive (negative) for the theory with anti-symmetric (symmetric) fermions. In the Field

Theory, this is encoded in the 1-loop Coleman-Weinberg potential, which gets unequal

contributions from the bosons and fermions in each theory.

As observed in [192], the threebranes in type 0 carry the following charge and

tension

QD3 =
p
⇡, TD3 =

p
⇡

p
210

. (1.48)
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It is then a matter of comparing (1.46) with 4V4G6(X2

±
)T

O
0
3
±TD3210 to see that the

orientifold charge and tension are

Q
O

0
3
± = ±

QD3

2
, T

O
0
3
± = ±

TD3

2
. (1.49)

This is clearly di↵erent from the situation in type II theories where an Op± plane

carries ±2p�5 units of Dp brane charge. The charges (1.49) of the O03± relative to the

D3 will be crucial in constructing seiberg dual pairs in the next section.

4.1 A pseudo-moduli space

The discussion in the previous section shows that the Y
+ ( ) theory is unstable,

namely the D3s are repelled away from the orientifold. But the analysis tells us

nothing about where the stable vacuum of the theory lies. In a non-SUSY setup, the

scalar vevs, or correspondingly the coordinates of the branes are not to be viewed as

moduli but are rather dictated by the dynamics of the theory. Generically one expects

a scalar potential V (X+) to be induced via loop corrections. It is however useful to

have a completely kinematical discussion of the possible pseudo-moduli of the brane

system before imposing the dynamical constraints. We will examine the situation both

in string theory and field theory.

Using the U(N) matrices, the most generic vev for the scalarsX+ takes the diagonal

form

hX+i = diag (a1, a2, · · · , aN) ; ai 2 R . (1.50)

From a field theoretic point of view, depending on the specific values of the eigenvalues

ai we encounter 3 possibilities:

(i) The ai are all distinct. In this case the gauge group is broken to its U(1)N

maximal torus and the worldvolume fermions all become massive. There are

also adjoint (charge 0) scalars for each U(1) factor in U(1)N

(ii) When n of the N eigenvalues become exactly degenerate there is an enhanced

U(n) symmetry. The breaking pattern in this case takes the form

U(N)! U(n)⇥ U(1)N�n . (1.51)

All worldvolume fermions are massive but there are scalars in the adjoint of the



4. Overview of type 0B 179

unbroken gauge group. A special case of this type is when all the eigenvalues

coincide and the entire gauge symmetry is unbroken.

(iii) There is a more exotic possibility. Consider the situation where n eigenvalues

take the opposite sign of an exactly degenerate set of m eigenvalues, i.e.

hX+i = diag
Å nz }| {
v, · · · , v,

mz }| {
�v, · · · ,�v, a1, · · · , aN�(n+m)

ã
. (1.52)

The unbroken gauge symmetry is now U(n) ⇥ U(m) ⇥ U(1)N�(n+m). As in the

cases (i), (ii) above there are scalars transforming in the adjoint of the unbro-

ken gauge symmetry. Unlike those cases, there are now also massless fermions

thanks to the cancellation between the positive and negative eigenvalues of equal

magnitude. These fermions transform in the bi-fundamental of the non-abelian

U(n)⇥ U(m) factor of the unbroken gauge group.

From the string theory perspective, case (i) corresponds to a configuration where

all branes are at distinct points away from the orientifold, that is, none of the D3s

coincide. Case (ii) corresponds to n D3 branes coinciding in the bulk (away from

the orientifold). Case (iii) is more interesting. Suppose that v > 0, then in the brane

picture v denotes the coordinates of n D3 branes in the transverse space. On the other

hand giving negative vevs to m of the scalars corresponds to separating m D3s from

the orientifold in the negative direction. But only the quotient space, i.e. the positive

direction is physical. When we send m D3s to a negative point in the transverse space,

their image D3’s are given positive coordinates and appear in the physical space. So

we see that case (iii) corresponds to n D3s and m D3’s coinciding at coordinate v in

the bulk. The worldvolume theory of this configuration beautifully matches what one

would expect from field theory discussed in (iii).

4.2 Hanany-Witten setup

We are interested in Hanany-Witten setups to study 3d theories, which requires the

introduction of NS5 branes. Our construction is the non-SUSY analogue of the 3d

N = 2 setup in type IIB (see e.g. [27]). In particular, we have NS5 branes which are

non-parallel in two of their spatial coordinates as in Table 4.2, we distinguish them

by referring to one as an NS50. The orientifold charge is switched from O03+ to O03�

and vice versa on either side of an NS5 or NS50 which intersects the orientifold. We
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NS5 3 4 5
NS50 3 8 9
D3 |6|
O03 6
D5 7 8 9

(1, k)
h
3

7

i

✓

8 9

Table 1.3: The various extended objects and their orientation in R1,9. All objects
extend along the shared x0,1,2 directions as well as those indicated above.

NS5

NS50
O03+

NS5

NS50

(a) (b)

O03+

Figure 1.5: The Hanany-Witten e↵ect. In passing from the configuration (a) to (b) a
pair of D3s are created between the non-parallel NS5s.

will only consider configurations where the orientifold is asymptotically O03+ and label

only the asymptotic charge of the orientifold plane in our diagrams (see Figure 1.5).

Seiberg duality has a standard string theory derivation [193] which follows from a

rearrangement of non-parallel NS5 branes in the Hanany-Witten setup. In construc-

tions without an orientifold, it is possible to achieve this rearrangement without the

need for the NS5 branes to intersect. This is done by using the freedom to separate

them in a direction mutually transverse to the NS5 and NS50. In the presence of an

orientifold, the NS5s are bound to the orientifold plane and this is no longer possible.

The NS5 branes will inevitably intersect as we try to move them past one another

[194].

The result of moving non-parallel fivebranes through one another in the presence of

an orientifold is well understood. This is the so called Hanany-Witten transition [15].
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In type IIB constructions with an orientifold this amounts to the creation/annihilation

of a D3 between the NS5 and NS50 depending on the orientifold type, a fact that

follows from imposing the conservation of linking number. In the absence of D5 branes

the linking number of an NS5 is proportional to the di↵erence of the net D3 brane

charges ending on it from the left and right respectively. Following the discussion

around (1.49) it is easy to see that for the type 0 configuration of Figure 1.5 the

linking number of the NS5 and NS50 are conserved provided a pair of D3s are created

in between them as we go from (a) to (b). This is twice the corresponding situation

in type IIB as one would expect from the fact that the charge of O03± relative to the

type 0 D3 is a factor of two greater than the type IIB analogue.

In the next section we discuss the Hanany-Witten setup that leads to the non-SUSY

gauge theories of interest with and without flavours.

5 3d dualities from non-supersymmetric brane

configurations

In this section we consider Hanany-Witten setups that lead to three-dimensional

CS theories. See Figure 1.6 and 1.7. The construction is analogous to [27]. The

di↵erence here, besides being in type 0B, is the presence of the O03 orientifold discussed

previously.

In Section 5.1 we consider the setup of Figure 1.6. The low-energy theory of such a

configuration is that of non-SUSY analogue of N = 2 CS theories without flavours of

(s)quarks. Such a setup turns out to be meaningful for the discussion of 3d dualities

without matter. These dualities are also known in the literature as level-rank dualities.

In Section 5.2 we consider the addition of Nf flavour D5-branes, see Figure 1.7.

The low-energy theory emerging from such a brane configuration includes quarks and

squarks in the fundamental representation of the gauge group.

5.1 Level-rank duality

We begin by discussing how level-rank duality is realised in our setup. The discussion

follows that of [195], and we provide a more refined account. In particular, we will be

more careful about the CS level of the U(1) factor of the gauge group.

The starting point is the brane configuration (a) of Figure 1.6 with Nc D3 branes

stretched between an NS5 brane and a (1, k) 5-brane. We will refer to this as the
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NS5

(1, k)

Nc D3O03+

NS5

 D3

(1, k)

O03+

(a) (b)

Figure 1.6: The brane setup for the (a) electric and (b) magnetic theory which give
rise to level-rank duality.

electric theory. The worldvolume theory is the dimensional reduction of the Y
� ( )

subject to suitable boundary conditions. There is a U(Nc) gauge field Aµ with a YM

term and level k CS interactions, as well as a real scalar � in the adjoint of U(Nc) and

two antisymmetric (complex) Dirac fermions in the and the ¯ of U(Nc), respectively.

The Lagrangian takes the following form1415

L
(E)

Nf=0
=

1

g2e
tr

ñ
�
1

2
(Fµ⌫)

2 + |Dµ�|
2 + i�̄ /D�+ i¯̃� /D�̃� i�̄��� i¯̃���̃+D2

ô

+
k

4⇡
tr

ñ
✏µ⌫⇢

Ç
Aµ@⌫A⇢ +

2i

3
AµA⌫A⇢

å
+ 2D� � �̄�� ¯̃��̃

ô
.

(1.53)

Here Fµ⌫ is the gauge field strength and Dµ ⌘ @µ � i[Aµ, ·] is the covariant derivative.

The covariant derivative is understood to act on the various fields in the representations

of U(Nc) they belong to. D is the auxiliary field of the vector multiplet borrowed from

the supersymmetric parent theory. It belongs to the adjoint representation of the

gauge group just like the gauge field and scalar gaugino. This Lagrangian can be

thought of as the 3d N = 2 SO(2Nc)k supersymmetric YM-CS theory where the fields

have been subjected to the J(�1)F projection.

14Such a Lagrangian is understood as descending from its parent N = 2 counterpart. In the large
N limit we expect to recover a supersymmetric CS theory. The following rule is expected to hold:

� ! adj.
15With respect to the previous sections, we have slightly changed conventions, choosing hermitian

generators for the (sub)algebra su(Nc). That explains the factor i =
p
�1 that appears in the

Chern-Simons term.
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U(Nc)k
Aµ adj
� adj

�

�̃

U()�k

aµ adj
s adj

l

l̃

Table 1.4: The field content of the worldvolume theories of the brane constructions in
Figure 1.6.

It is straightforward to obtain the Seiberg dual of this theory following e.g. [194, 27]

with a slight modification that takes into account the e↵ect discussed in Figure 1.5.

After reshu✏ing the NS5 and (1, k) fivebrane we arrive at the configuration (b) in

Figure 1.6, where the number of colour D3s is now  ⌘ k�Nc+2. We refer to this as

the magnetic theory. The worldvolume theory is now that of a gauge field aµ with YM

term and level �k CS interactions as well as a real adjoint scalar s and antisymmetric

Dirac fermions l and l̃. The Lagrangian is

L
(M)

Nf=0
=

1

g2m
tr

ñ
�
1

2
(fµ⌫)

2 + |Dµs|
2 + il̄ /Dl + i¯̃l /Dl̃ � il̄sl � i¯̃lsl̃ +D2

ô

+
k

4⇡
tr

ñ
✏µ⌫⇢

Ç
aµ@⌫a⇢ +

2i

3
aµa⌫a⇢

å
+ 2Ds� l̄l � ¯̃ll̃

ô
.

(1.54)

We are interested in the IR dynamics of these theories. In the absence of super-

symmetry, the scalars on the two sides are expected to acquire a 1-loop mass of the

order of the cuto↵ [195]

m2

�
⇠ g2

e
⇤, m2

s
⇠ g2

m
⇤ . (1.55)

As in the discussion following (1.47) this translates to an attractive force between

the branes and the orientifolds, signalling perturbative stability of the configuration.

At energies well below the cuto↵ scales, the scalars are decoupled and do not play a

role. Note that the scalars also have tree level CS masses, but we expect them to be

subleading due to the stringy nature of the masses in (1.55). After integrating out

the scalars we are left with gauge fields and antisymmetric fermions, both of which

have tree-level CS masses MCS = ±g2k where the sign of the mass follows from the

sign of the bare CS levels in (1.53) and (1.54). Due to the lack of supersymmetry,

also the gauginos (the antisymmetric fermions) get a mass at one-loop and can be

integrated out. Integrating out the antisymmetric fermions shift the levels of the U(1)
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and SU(Nc) (resp. SU()) factors of the gauge group by disproportionate amounts.

As a result the IR of the electric theory is a U(Nc)K1,K2 CS TQFT where

K1 = k �Nc + 2 ⌘ , K2 = k � 2Nc + 2 ⌘ �Nc . (1.56)

Here, the Dynkin index of the antisymmetric representation is (Nc� 2)/2, whereas its

dimension is Nc(Nc � 1)/2. In order to get the result (1.56), we have also taken into

account that the gauginos have charge 2 under the U(1) inside the U(Nc).

The IR of the magnetic theory is described by a U()L1,L2 CS TQFT with

L1 = �k + � 2 = �Nc , L2 = �k + 2� 2 = �Nc +  . (1.57)

Putting everything together we end up with the TQFTs U(Nc),�Nc and U()�Nc,�Nc+,

In fact, these theories are dual to each other. Therefore, in the IR, we recover the fol-

lowing level-rank duality

U(Nc),�Nc  ! U()�Nc,�Nc+ . (1.58)

5.2 Including flavours

We can include flavours in the discussion by adding D5 branes to the setup, the

worldvolume directions spanned by the flavour D5 branes are as in Table 4.2. The IR

phases of the electric theory turn out to be richer than the cases studied above and

are nicely encoded in terms of the dual magnetic theory. We begin by analysing each

theory separately semi-classically before mapping out the phase diagram.

Electric theory

The flavoured electric theory is realised on the brane configuration (a) of Figure 1.7.

The worldvolume theory on the D3 branes now includes Nf complex scalars � and

Nf Dirac fermions  . The relevant flavour symmetry emerging from the branes is an

SU(Nf ) group. The representations of the scalars and fermions with respect to the

gauge and flavour groups are listed in Table 1.5. These are essentially determined by

their coupling to the antisymmetric gauginos, see later (1.60).

The tree level Lagrangian is given by

L
(E) = L

(E)

Nf=0
+ Lmatter , (1.59)
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NS5

(1, k)Nc D3

Nf D5

O03+

NS5

Nf D5 Ñc D3

(1, k)

O03+

(a) (b)

Figure 1.7: The brane setup for the (a) electric and (b) magnetic theory of our proposal.
Here Ñc = Nf + k + 2�Nc.

Electric Theory

U(Nc)k SU(Nf )
Aµ adj ·

� adj ·

� ·

�̃ ·

�
 

Magnetic Theory

U(Ñc)�k SU(Nf )
aµ adj ·

s adj ·

l ·

l̃ ·

�
 
M · adj
� ·

�̃ ·

Table 1.5: The field content of the electric and magnetic theory.

where L
(E)

Nf=0
is, as before, given by (1.53). The additional flavour terms are described

by

Lmatter =|Dµ�
a

i
|
2 + i ̄ai( /D )ai � �̄

i

a
(�2)

a

b
�b

i
+ �̄i

a
(D2)

a

b
�b

i

� ai�
a

b
 ̄bi
� (i�[ab]�

a

i
 ̄bi + i�̃[ab]�̄i

a
 bi + h.c.) .

(1.60)

Here a, b = 1, · · · , Nc are colour indices and i, j = 1, · · · , Nf are flavour indices. The

interactions with the gauginos fix the representations of the (s)quark fields to be as in

Table 1.5.



186 Chapter 1. Phases of U(Nc) QCD3 from type 0 strings

The fate of the scalar � of the gauge multiplet of the electric theory is similar to

the flavourless case. The one-loop corrections to the scalar propagator get positive

contributions from its coupling to itself and to the gauge field and negative contribu-

tions from its coupling to the gaugino �. Since there are more bosonic than fermionic

degrees of freedom, the vacuum h�i = 0 is stable; � does not play a role in the IR

dynamics of the theory and can be integrated out.

A similar story pans out for the squark �. Indeed, the squark couples to the gauge

field Aµ, the scalar � and the gaugino �. Since there are more bosonic than fermionic

degrees of freedom, one expects the squark to acquire a positive mass M2

�
> 0 and

decouple from the IR physics.

For a non-zero level k 6= 0, the gauge field and the gaugino acquire a Chern-

Simons mass MCS = g2k. We therefore expect the IR physics to be dominated by the

topological CS theory coupled to Nf fundamental quarks, i.e. QCD3 with Nf quark

flavours.16 The IR levels of the electric theory are shifted by the gaugino as in (1.56),

as well as the fundamental quarks. In summary, using the dictionary (1.42) we have

electric IR: U(Nc)K,K�Nc �Nf fermions , (1.61)

which is nothing but the left hand side of (1.40).

On the other hand, when k = 0, the IR theory is that of YM theory coupled to

the gaugino and the fundamental quarks. It is less straightforward to say anything

concrete about the IR dynamics of this theory.

Magnetic theory

The flavoured magnetic theory lives on the configuration (b) of Figure 1.7. It is

obtained from the flavoured electric theory by the standard Giveon-Kutasov move

[27, 194] modified so as to account for the brane creation described in Figure 1.5. One

can easily verify that the resulting number of colour branes between the NS5 and the

(1, k) fivebrane is

Ñc = Nf + k �Nc + 2 ⌘ Nf +  . (1.62)

The magnetic field content is given in Table 1.5. This can be obtained in a similar

fashion to the electric theory, i.e. by subjecting the theory on the D3 branes in Table

1.2 to the appropriate boundary conditions. We have a gauge multiplet identical to the

16Integrating out the gauge sector is somewhat more natural in the semiclassical regime k � 1.
We expect this to remain true also at finite k, unless something drastic happens.
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magnetic theory of the Nf = 0 case. The matter multiplet consists of a complex scalar

� and a Dirac fermion  . Their representations with respect to the gauge and flavour

groups are given in Table 1.5. There are in addition new degrees of freedom, which

have no analogue on the electric side, corresponding to the motion of the flavour D3

branes along the x8,9 directions. These give rise to two gauge singlets; the meson M

which is an SU(Nf ) adjoint and its fermionic partners, the “mesinos” � transforming

as of SU(Nf ) and �̃ transforming as of SU(Nf ).

The tree level Lagrangian for this theory is

L
(M) = L

(M)

Nf=0
+ Lmatter , (1.63)

where L
(M)

Nf=0
is as in (1.54). The matter Lagrangian is

Lmatter =|Dµ�
i

a
|
2 + i ̄( /D )ai � �̄a

i
(s2)b

a
�i

b
+ �̄a

i
Db

a
�bi �  

ai(s)b
a
 ̄bi

�
Ä
il̃[ab]�i

a
 ̄bi + il[ab]�̄

a

i
 bi + h.c.

ä
+ |@µM

i

j
|
2 + i�̄{ij}/@�{ij}

� y2�̄a

i
�i

a
�̄b

j
�j

b
� y2�i

a
M̄ j

i
Mk

j
�̄a

k
� y
Å
�{ij}�

i

a
 aj + �̃{ij}�̄a

i
 ̄aj + h.c.

ã

� y
Ä
 aiM j

i
 ̄aj + h.c.

ä
.

(1.64)

Note that in addition to the magnetic gauge coupling gm, we now have another coupling

constant y which controls interactions between the (s)quarks and the meson multiplet.

The scalar s of the magnetic gauge multiplet gets a positive mass and decouples,

just as it did in the flavourless case. This signals the stability of the colour branes

near the orientifold.

The squark � couples to the gauge multiplet as well as the meson multiplet. There

are more bosonic than fermionic degrees of freedom in the gauge multiplet, and more

fermionic than bosonic degrees of freedom in the meson multiplet. Therefore, the

squark aquires a 1-loop mass of the form

M2

�
⇠ (�y2 + g2

m
)⇤ . (1.65)

The two e↵ects compete and the squark may become massive or tachyonic. Since at

large k the gauge field becomes heavy and decouples we operate under the assumption

that in this limit the squark is tachyonic.

The matter Lagrangian (1.64) for the magnetic theory includes a coupling between
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the meson field and the scalar quarks

y2�i

a
M̄ j

i
Mk

j
�̄a

k
. (1.66)

If the meson acquires a vev of the form hM̄ j

i
Mk

j
i = u2�k

i
the squark � becomes massive.

If the squark acquires a vev h�i

a
i = v�i

a
, and flavour symmetry is unbroken, the mesons

become massive. Therefore, the most likely scenario is that in all phases [177]

M2

�
M2

M
< 0 . (1.67)

In the following we will always work with this assumption in mind. This will be crucial

in obtaining the phase diagram of QCD3.

6 Phase diagram

As we saw in (1.61), the IR theory on the electric brane configuration is precisely

QCD3. In this section we argue that the conjectured phase diagram of QCD3 can be

understood in terms of the dual magnetic description. Many of the features are similar

to the symplectic case analysed in [177]. For this reason we will be somewhat brief

and focus only on the details which are new to the unitary theory.

6.1 Region I: Bosonization

We start with the region of the parameter space where  ⌘ k + 2 � Nc � Nf .

This corresponds to region I in the phase diagram of Figure 1.8. In this region the

rank of the magnetic gauge group Ñc = Nf +  is automatically positive. Following

the discussion around (1.65), the Nf squarks are assumed to be tachyonic throughout

this region. This is reasonable as one can go to arbitrarily large values of k while

keeping Nf fixed. In this regime the gauge sector becomes heavy and decouples from

the dynamics. The main contribution to the mass of the squark (�) comes from the

meson multiplet, which is indeed negative. Thus, our main assumption is that this

remains true as we move to finite k.

Let us then assume that the magnetic squarks condense. In the brane configuration,

this corresponds to Higgsing Nf colour D3 branes via reconnection to Nf flavour D3

branes. This is the Higgs mechanism in the string theory language. The world-volume

of the Nf Higgsed D3 branes no longer supports a gauge multiplet as they end on D5s
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

Nf

Nf = ||

N⇤

I

IIII0

No seiberg duality

IIIIII0

Figure 1.8: Phase diagram of QCD
3
.

from one side and end on the NS5 brane from the other. However, we still have 

colour D3 branes which support a U()�k gauge theory with massive gauge field and

massive gauginos. The CS mass is still proportional to k, and we can integrate out

the gauge field and gauginos at energies below g2k. The reconnection preserves the

original SU(Nf ) global symmetry. We will shortly argue, from the field theory side,

that there are Nf scalars in the fundamental after the Higgsing. In the brane set-up

these can only come from open strings stretched between the colour branes and Nf

Higgsed D3 branes.

Let us try to understand the phenomenon described in the last paragraph in terms

of the field theory description of the magnetic theory. Indeed, the Higgsing corresponds

to giving a colour-flavour locking vev to the magnetic squark without breaking the

global U(Nf ). The gauge symmetry breaking pattern is given by

U(+Nf )! U() , (1.68)

leaving the gauginos in the and of the Higgsed gauge group as well as Nf funda-

mental squarks. The Nf magnetic quarks become massive due to Yukawa terms. In

addition, the meson and the mesino all become massive due to interactions like (1.66)

and can be integrated out.

The IR levels get shifted after integrating out the gaugino according to (1.57) so

that, using the dictionary (1.42), the IR of the magnetic theory in this region of the
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parameter space is described by

magnetic IR: U

Ç
K +

Nf

2

å

�Nc,�Nc+K+
Nf
2

�Nf scalars . (1.69)

Such a bosonic dual is described in the IR by a Lagrangian that contains, in addition

to a CS term with appropriate levels and coupling between the scalars and gauge

field, also self-interactions for the squarks. These correspond to mass terms of the

form �̄a

i
�i

a
as well as quartic interaction of the form (single-trace) (�̄a

i
�j

a)(�̄
b

j
�k

b
) and

(double-trace) (�̄a

i
�i

a
)2. These terms can be generated, if not already present, by the

RG flow consistently with global symmetries.

As a final step, tuning the mass terms both in the electric IR theory in (1.61) and

in the magnetic IR theory in (1.69), we recover a well-established duality. This is

nothing but the duality (1.40).

6.2 Symmetry breaking

When N? > Nf > , which corresponds to region II and II0 in the phase diagram

of Figure 1.8, we expect rather di↵erent dynamics for the system and we anticipate

breaking of the flavour symmetry. As we shall see, the physics in these regions is still

captured by a tachyonic squark, colour-flavour locking and brane reconnection, but

the implications and the resulting physics will be di↵erent with respect to region I.

Region II0

Let us begin with region II’ in the phase diagram of Figure 1.8. In this region

 < 0. Therefore, on the magnetic side, there are less colour D3 branes than flavour

D3 branes: Ñc = Nf +  < Nf . We will assume that the squarks condense also in

this case. Nonetheless, squark condensation leads in this case to a fully Higgsed gauge

group. Once again this is realised in string theory by reconnecting Nf +  colour and

flavour D3 branes (we stress that  < 0 here). After the Higgsing, we are left with ||

flavour D3 branes stretched between the D5 brane and the (1, k) fivebrane, as well as

the Nf +  connected D3 branes. The latter no longer support a gauge multiplet and

therefore gauge symmetry is fully broken.

The global symmetry now consists of a U(Nf + ) factor corresponding to the

symmetry on the Nf+ reconnected branes as well as a U() factor from the remaining

flavour D3 branes. Using the dictionary (1.42) we have that in this region the global



6. Phase diagram 191

symmetry breaking pattern is

SU(Nf )! S

ñ
U

Ç
Nf

2
+K

å
⇥ U

Ç
Nf

2
�K

åô
. (1.70)

This symmetry breaking pattern is the one anticipated in [22]. As a consequence, the

IR physics of this phase is described in terms of the Grassmannian

M

Ç
K +

Nf

2
, Nf

å
=

SU(Nf )

S
h
U
⇣
Nf

2
+K

⌘
⇥ U

⇣
Nf

2
�K

⌘i (1.71)

corresponding to the symmetry breaking pattern given in (1.70). Such a Grassmannian

will be essentially parametrised by17

N2

f
� 1�

î
(Nf + )2 + 2 � 1

ó
= 2||(Nf � ||) = 2

Ç
Nf

2
+K

åÇ
Nf

2
�K

å
(1.72)

massless Nambu-Goldstone bosons. We identify the Nambu-Goldstone bosons as the

massless modes of open strings stretched between the two stacks of flavour branes.

Region II

When 0 <  < Nf < N? (or 0 < K+
Nf

2
< Nf < N?), after reconnection the theory

in the IR is

U

Ç
K +

Nf

2

å

�Nc,�Nc+K+
Nf
2

�Nf � . (1.73)

Naively, we seem to have a puzzle: instead of obtaining a theory of massless Nambu-

Goldstone bosons we obtain bosonization. The NG theory we are seeking is nothing but

the e↵ective description of (1.73) for large negative masses of the squarks �. According

to the field theory analysis of Komargodski and Seiberg [22] upon condensation of the

squarks we land on the symmetry breaking phase.

Indeed, after reconnection, the scalars in the bosonic dual (1.73) correspond to

scalar modes of the open strings in the brane configuration. Therefore our proposal

is that these scalars are tachyonic and are to be stabilised via open string tachyon

condensation. We do not know whether a nice geometric picture emerges after this

condensation. Regardless, in the field theory limit one eventually lands on the Grass-

17In order to be consistent with the UV symmetries one must also include CS terms in the e↵ective
description. The required modification is discussed in detail in [22].
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mannian M(Nf ,). This picture is consistent with the mass deformations of the brane

setup, already discussed in [177].

7 Comments about QED3

The discussion of the phase diagram in the preceding sections holds for a general

number of colours Nc. However, “accidents” happen when Nc = 1, 2 that modify parts

of the discussion. In the case of Nc = 2 the electric gaugino is a singlet of the SU(2)

factor of the gauge group, but it carries charge 2 under the abelian factor. Because of

this, some intermediate steps taken to arrive at the general phase diagram in Figure

1.8 are slightly modified, the end result is however una↵ected and the phase diagram

of Figure 1.8 is the correct picture for Nc � 2.

On the other hand, we start to see deviations from the general picture of Figure

1.8 for Nc = 1 i.e. QED3. In particular, as we shall see momentarily, when k = 0 there

is no symmetry breaking phase. This in turn suggests that no symmetry breaking can

occur for non-zero k since the window for which a Grassmannian phase exists in the

IR is maximised for k = 0 [22].

7.1 QED3 with vanishing CS-term

When the electric gauge group is U(1), there is no electric gaugino. Therefore, the

IR of the electric theory is U(1)0 theory coupled to Nf fermions. The magnetic dual

has a gauge group U(Nf +1) with vanishing CS level at tree-level. Previously, squark

condensation led to masses being generated for the quarks, meson and the mesino,

due to the presence of Yukawa interactions. However, in this case after reconnection

we have a U(1) gauge theory with no CS term and Nf massless Dirac fermions. The

reason that in this specific case the fermions do not acquire a mass is that there is

no gluino when the gauge group is U(1) and no Yukawa term. In the absence of

supersymmetry and without fine-tuning the squarks acquire a mass. So, we end up

with a magnetic theory that admits the same matter content as the electric theory.

The brane setup is such that the flavour branes coincide and hence flavour symme-

try remains unbroken. Thus, our magnetic theory predicts no spontaneous breaking of

U(Nf ). This is consistent with existing conjectures about the IR behaviour of QED3

[196].
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8 Conclusions

In this chapter, we discussed QCD3 based on a unitary group and its embedding in

string theory. The UV field theory on the brane configuration consists of fields that

acquire a mass and decouple as the theory flows to the IR. The advantage of having

such a UV theory is that it admits a Seiberg duality. The magnetic Seiberg dual

leads to new insights about QCD3. In particular the bosonized theory admits a simple

realisation as a magnetic dual of the electric fermionic theory. While in the electric

side scalar quarks acquire a mass and decouple, in the magnetic side the fermionic

quarks acquire a mass due to Yukawa coupling and decouple.

The Seiberg dual also enables us to gain a better understanding of the symmetry

breaking phase. Triggered by condensation of the dual squark the magnetic gauge

theory is completely Higgsed and flavour symmetry gets broken.

In addition, we learned about the abelian theory, with or without a Chern-Simons

term. The level k (with k � 0) U(1) theory with Nf flavours admits a magnetic

dual that upon Higgsing flows to another U(1) theory with k0 = �k and Nf flavours.

Flavour symmetry is not broken, as expected from field theory analysis. For k = 0 the

theory looks self-dual. While for Nf = 2 the self duality is well understood [22], for

Nf 6= 2 the naive self-duality deserves further investigation.

We haven’t discussed the regime of Nf > N?. This regime is hard to analyse both

in field theory and in string theory. As in the symplectic case [177] we anticipate that

it is described by meson condensation.

M Basics of Seiberg duality

In this appendix we review some basic facts about Seiberg duality [170] and its

stringy origin [193]. Before getting started, let us just say that there is a vast literature

on N = 1 supersymmetric gauge theories and Seiberg duality. We point out [197, 198,

199, 200, 201, 202]. See also the last chapter of the second volume of [33]. Here, we

will only present a few basic facts without claiming to give a complete treatment. The

reader who is interested in these topics might wish to consult the references.

Concretely, we consider four-dimensional N = 1 gauge theory with gauge group18

G coupled to N = 1 matter (SQCD). Recall that in N = 1 supersymmetric theories

18In the following, we will be concerned only with G = SU(Nc), even though other choices for
compact Lie groups are possible.
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we have a principal G-bundle19 P ! R1,3|4. SQCD is then identified by the gauge

group G, a (generically complex) representation R of G and a classical superpotential

W , which is G-invariant. Quarks Q are Nf copies (flavours) of chiral sections of the

associated bundle P ⇥G R! R1,3|4.

In this appendix we consider (anti-)fundamental representations only. Thus, quarks

Q are just Nf copies of fundamental fields, Qi

a
, with a a fundamental index of G and

i = 1, . . . , Nf , while antiquarks belong to the conjugate representation, Q̃a

i
.

The global symmetry of the theory is U(Nf )L ⇥ U(Nf )R ⇥ U(1)X , where the two

U(Nf )’s are di↵erent rotations of the Q’s and Q̃’s, while U(1)X is the U(1) that acts on

the fermionic coordinates ✓ and ✓̄. Writing U(Nf )L⇥U(Nf )R as SU(Nf )L⇥SU(Nf )R⇥

U(1)A ⇥ U(1)B, with U(1)A and U(1)B the anti-diagonally and diagonally embedded

U(1) subgroups of U(Nf )L ⇥ U(Nf )R, we find that U(1)A is quantum mechanically

anomalous – it is an axial symmetry – while U(1)B is quantum-mechanically exact

– it is usually called “baryon number”. Also U(1)X is anomalous. It is possible to

combine U(1)A and U(1)X into a non-anomalous U(1)R. We will refer to U(1)R as the

R-symmetry of SQCD. It is an exact symmetry and the quarks Q and Q̃ have charge

1�Nc/Nf under it. See Table 1.6.

SU(Nf )L SU(Nf )R U(1)B U(1)R

Q Nf 1 �1
Nf�Nc

Nf

Q̃ 1 Nf 1
Nf�Nc

Nf

Table 1.6: Anomaly free global symmetry for SU(Nc) SQCD.

The fermions  Q,  Q̃
and � transform as in Table 1.7. It is easy to see that the

path integral measure D QD Q̃
D� is invariant under the full global symmetry.

19Working in superspace, we have four “bosonic” Minkowski coordinates xµ (µ = 0, 1, 2, 3, 4) –
with Minkowski metric ds2 = �dt2+dx2+dy2+dz2 – and “fermionic” coordinates ✓↵, ✓̄↵̇, ↵, ↵̇ = 1, 2.
The “4” in R1,3|4 simply stands for the number of fermionic coordinates. A superfield Q has a natural
expansion in superspace given by Q = �+

p
2✓ + ✓2F .
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SU(Nf )L SU(Nf )R U(1)B U(1)R

 Q Nf 1 �1 �
Nc

Nf

 
Q̃

1 Nf 1 �
Nc

Nf

� 1 1 0 1

Table 1.7: Transformation laws for the fermions under the quantum global symmetry
of SU(Nc) SQCD.

M.1 The conformal window, non-trivial IR fixed points

SQCD with gauge group G = SU(Nc) and Nf fundamental flavours has a � function

which at two loops reads

�(g) = �
g3

16⇡2
(3Nc �Nf ) +

g5

128⇡4

Ç
2NcNf � 3N2

c
�

Nf

Nc

å
+ O(g7) . (1.74)

We see that the two-loops contribution is positive at Nf = 3Nc. Consider the limit

where both Nc, Nf !1, together with 3Nc�Nf = ✏ fixed for some small ✏ > 0. The

� function has a zero at

g2
⇤
Nc =

8⇡2

3

✏

Nc

. (1.75)

The reason for considering g2
⇤
Nc instead of g⇤ is that, as ’t Hooft proved a long time

ago, when Nc is large enough the actual coupling is � = g2Nc, rather than g2, and

that perturbation theory breaks down when � is not small, even though g ⌧ 1.

Therefore, what we have found is a perturbative IR fixed point, and the use of

formula (1.74) is indeed justified. Such IR fixed point is usually referred to as Banks-

Zacks fixed point.

Seiberg made concrete the idea that such a fixed point persists even for other values

of Nf , and in particular that it is possible to reach an IR strongly coupled fixed point

in the “conformal window” 3Nc

2
< Nf < 3Nc. We have already argued that when

Nf � 3Nc the theory becomes IR free. We will see in a moment that there cannot be

any fixed points for Nf 
3

2
Nc.

Let us recall a few facts about the superconformal algebra in four dimensions. The

Lie algebra of the conformal group in d � 3 is generated by the translations Pµ = @µ,

Lorentz generators Mµ⌫ = xµ@⌫ � x⌫@µ, dilatation D = �xµ@µ and special conformal

transformations Kµ = 2xµx⌫@⌫ � x2@µ. The commutation relations for the generators
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are

[D,Pµ] = Pµ , [D,Kµ] = �Kµ , [Kµ, P⌫ ] = 2(⌘µ⌫D �Mµ⌫) , (1.76)

besides the usual Lorentz algebra for Pµ and Mµ⌫ .

We will work in a basis where Pµ and Kµ are the adjoint of each other20, P †

µ = Kµ.

We can define a vacuum (or heighest weight state) |Oi which is an eigenstate of D

(whose eigenavalue we also denote D) and Kµ|Oi = 0. If O is a scalar we have that

Mµ⌫ |Oi = 0. The norm of Pµ|Oi is easily computed by using the algebra (1.76) to

give

hO|KµPµ|Oi = 2dD . (1.77)

Unitarity implies D � 0. The equality is saturated if and only if Pµ|Oi = 0, i.e. if

O is a constant operator (the identity or a multiple of it). If we compute instead the

norm of the state PµP µ
|Oi using the algebra (1.76) we get

hO|K⌫K⌫P
µPµ|Oi = 8dD(D �

d� 2

2
) . (1.78)

For d = 4 unitary requires D � 1. The equality is saturated if and only if P 2
|Oi = 0,

i.e. O is a free operator satisfying the Klein-Gordon equation.

As we already discussed in Chapter 1, when we add supersymmetry in four di-

mensions the algebra has extra (odd) generators Q↵, Q̄↵̇ and S↵, S̄↵̇. The Q’s have

dimension 1

2
while the S’s have dimension �1

2
and the algebra gets extended as to

include the following commutation relations

[Q↵, K
µ] = �µ

↵↵̇
S̄↵̇ , [Q̄↵̇, K

µ] = �̄µ

↵̇↵
S↵ ,

{Q↵, S
�
} = (�µ⌫)↵

�Mµ⌫ + 2��↵

Ç
D �

3

2
R

å
.

(1.79)

The operators Q and S are conjugate to each other in radial quantisation, Q† = S, in

a similar manner as P and K are conjugate to each other. An operator O is said to

be chiral if it satisfies Q̄↵̇|Oi = 0.

Consider now a scalar operator which is also an heighest weight state, Kµ|Oi =

20This can be motivated by considering radial quantisation, after analytical continuation to Eu-
clidean signature. In a Euclidean space there is no preferred direction for time. Thus, we can identify
⌧ = log r, with ⌧ the Euclidean time and r radial distance from the origin. Since time is imag-
inary, complex conjugation just sends ⌧ ! �⌧ , which correspond to an inversion r ! 1

r . Thus,

loosely speaking, P †
µ = Inversion · Pµ · Inversion, which is known to generate a special conformal

transformation.
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S↵|Oi = S̄↵̇|Oi = 0. Then the norm of Q↵|Oi is computed using the superconformal

algebra to be

hO|S↵Q↵|Oi = 4

Ç
D �

3

2
R

å
. (1.80)

Unitary implies that D � 3

2
R and the equality is saturated for scalar chiral operators.

As we shall see momentarily, this has important consequences. Consider for instance

the meson operator M i

j
= Qi

a
Q̃a

j
. It has classical dimension 2 (because Q and Q̃ have

classical dimension 1). Using that R(Q) = R(Q̃) = 1�Nc/Nf , the quantum dimension

of M at the IR fixed point is given by

D(M) =
3

2
R(M) = 3

Ç
1�

Nc

Nf

å
. (1.81)

The di↵erence between the classical dimension of M and its quantum dimension is

called “anomalous dimension” �, D(M) = 2 + �. Perturbatively, �(g) is given by

�(g) = �
g2

8⇡2

N2

c
� 1

Nc

+ O(g4) . (1.82)

At the IR fixed point (1.75), we have that D(M) = 2� ✏

3Nc
. This is consistent with

D(M) = 3

Ç
1�

Nc

Nf

å
= 2�

✏

3Nc

, (1.83)

when 3Nc �Nf = ✏ as before.

In fact, we can do even better than just perturbative considerations. It turns out

that for N = 1 SQCD there exists an exact formula for the gauge coupling � function.

This is the NSVZ formula [203, 204, 205], and in the case of Nf fundamental quarks

it is given by

�(g) = �
g3

16⇡2

3Nc �Nf (1� �)

1� Ncg
2

8⇡2

. (1.84)

At second order in the gauge coupling, (1.84) is consistent with (1.74). A zero of (1.84)

implies that � is given by

� = 1�
3Nc

Nf

, (1.85)

and the quantum dimension of M is given by

D(M) = 2 + � = 3�
3Nc

Nf

, (1.86)
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consistent with (1.81), that was derived from the superconformal algebra as a condition

on chiral operators. Notice that � = 1 � 3Nc/Nf in the range 3Nc

2
< Nf < 3Nc is in

general an arbitrary number, not necessarily small. We are not in the perturbative

regime anymore.

We are now ready to motivate the lower bound for the conformal window 3Nc

2
<

Nf < 3Nc. Unitarity implies D(M) � 1 and, because of (1.86), Nf �
3

2
Nc. Thus,

D(M) > 1 in the range 3Nc

2
< Nf < 3Nc, and the IR fixed point of SQCD is non-

trivial. When Nf = 3

2
Nc, D(M) = 1 and M (as maybe the whole low energy theory)

is free. When Nf < 3

2
Nc, D(M) < 1 and there cannot be any fixed point.

M.2 The magnetic theory

Seiberg proposed that associated with the electric theory there should be a dual

magnetic theory in the regime Nc + 2  Nf 
3

2
Nc which describes the same physics

at long distances. In particular, the magnetic theory is an N = 1 SQCD theory with

gauge group SU(Nf �Nc) and Nf flavours of quarks qi, q̃i and a magnetic meson M i

j

which is a singlet under the gauge symmetry and couples to the quarks through the

superpotential

W = M i

j
qiq̃

j . (1.87)

The meson M i

j
is identified with the operator QiQ̃j of the electric theory. while the

magnetic qiq̃j vanishes by the equation of motion of M i

j
. Also the baryons of the

electric and magnetic theory are mapped to each other

bj1...jNc = ✏i1...iNf�Ncj1...jNcBi1...iNf�Nc
, (1.88)

where Bi1...iNf�Nc
are the baryons of the electric theory

Bi1...iNf�Nc
= ✏i1...iNf�Ncj1...jNc

✏a1...aNcQj1
a1
. . . Q

jNc
aNc

. (1.89)

Antibaryons are constructed from Q̃ and matched with the antibaryons of the magnetic

theory in a similar way.

The exact quantum global symmetry is still SU(Nf )⇥ SU(Nf )⇥ U(1)B ⇥ U(1)R,

where the quarks and meson transform according to Table 1.8.

The fact that the electric and magnetic theory do not have the same gauge sym-

metry is not a problem, as gauge symmetries are not really physical symmetries of a
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SU(Nf )L SU(Nf )R U(1)B U(1)R

q Nf 1 �
Nc

Nf�Nc

Nc

Nf

q̃ 1 Nf

Nc

Nf�Nc

Nc

Nf

M Nf Nf 0 2
Nf�Nc

Nf

Table 1.8: Quantum global symmetry of SU(Nf �Nc) MSQCD.

theory but just redundancies in its description.

The fermions  q,  q̃,  �̃ and  M transform according to the following table.

SU(Nf )L SU(Nf )R U(1)B U(1)R

 q Nf 1 �
Nc

Nf�Nc

Nc

Nf
� 1

 q̃ 1 Nf

Nc

Nf�Nc

Nc

Nf
� 1

 M Nf Nf 0 1� 2Nc

Nf

 
�̃

1 1 0 1

Table 1.9: Transformation laws for the fermions under the quantum global symmetry
of SU(Nf �Nc) MSQCD.

It is easy to see that the path integral measureD qD q̃D �̃ of the fermions charged

under the gauge symmetry is invariant under the full quantum global symmetry.

Seiberg duality allows us to study SU(Nc) SQCD in the regime Nc+2  Nf 
3

2
Nc

by switching to the magnetic description. The magnetic SU(Nf �Nc) is IR free when

Nf < 3

2
Nc. Thus, the strongly coupled SU(Nc) SQCD is in fact free in the dual

magnetic variables.

Several checks for Seiberg duality have been given [170]. Among these we have

• ’t Hooft anomaly matching for the global symmetries

• the duality is preserved upon giving masses to the quarks

• the duality is an involution: applying the duality twice we get back to the original

SU(Nc) SQCD

• the two theories have the same moduli spaces of vacua
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• the superconformal index of the two theories match [206].

M.3 String theory embedding of Seiberg duality

Elitzur, Giveon and Kutasov found in [193] a string theory embedding for Seiberg

duality. It is very much similar in spirit to the Giveon-Kutasov duality discussed in

[20], thus we will brief and just sketch the dual brane configurations.

We start in Type IIA string theory with the brane web on the left of Figure 1.9.

NS5

NS50Nc D4

Nf D6

NS5

Nf D6 Ñc D4

NS50

(a) (b)

Figure 1.9: The brane setup for the (a) electric and (b) magnetic Seiberg dual theories.
Here Ñc = Nf �Nc.

Both brane setups in Figure 1.9 are easily shown to preserve 4 supercharges, or

N = 1 supersymmetry in four dimensions. The low energy theory for the brane system

on the left is that of an U(Nc) SQCD with Nf flavours of quarks arising from strings

stretched between the Nc colour branes and the Nf flavour D6 branes. Exchanging

the NS5 and the D6 branes we get the configuration on the right in Figure 1.9, where

the low energy theory is that of U(Nf � Nc) SQCD with Nf flavours of quarks and

a gauge singlet M i

j
which correspond to the motion of the D4 flavour branes along

(x8, x9).

Field theory results, like the study of the moduli spaces of vacua of both theories

or deformations on both sides of the duality, can be performed on the brane systems

and shown to reproduce the field theory analysis [193].
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Epilogue

We have finally come to the end of our long journey through dualities in Quantum

Field Theories and string theories.

We started o↵ in Part I, Chapter 1 by discussing the general holographic duals to a

broad class of four-dimensional superconformal theories. We have seen that, in order

to find gravity solutions in M-theory that capture the physics of four-dimensional field

theories – not only gauge theories – we should solve a complicated non-linear Toda

equation and impose boundary conditions on its solutions. We have also seen that

the problem simplifies considerably if we assume an extra U(1) isometry of the eleven-

dimensional background. This allows us to reduce the problem to Type IIA string

theory. The equation to be solved in Type IIA to find gravity backgrounds is linear,

and often referred to as Laplace equation. The class of dual field theories is then seen

to emerge from fluctuations on systems of intersecting D4, D6 and NS5 branes. We

gave a number of formulas in supergravity that give the number of branes as well as

the Linking Numbers and the central charges of the dual field theories. These were

also tested in many examples of increasing level of complexity. As a final application

of holography for four-dimensional field theories, we introduced marginal deformation

that are supposed to break half of the supersymmetry. It would be nice in the future

to find general solutions of the eleven-dimensional Toda equation that allow us to

tackle the problem in M-theory, where more general classes of field theories can be

studied. It would be also of interest to introduce in the gravity backgrounds relevant

deformations and study the corresponding RG flow. The IR physics is expected to be

very rich – depending on the deformation – and this would provide a more dynamical

way of breakig supersymmetry.

In Part I, Chapter 2, we studied spin 2 fluctuations around a broad class of back-

grounds with an AdS3 factors preserving 8 superconformal symmetries. We have seen

that spin 2 fluctuations are rather special, as they decouple from other fluctuations

allowing us to study a protected sector of excitations without solving complicated non-

203
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linear partial di↵erential equations in supergravity. We identified a class of solutions

which are not sensitive to the details of the geometry. This is remarkable because,

via the holographic duality, we were able to identify a class of operators in the dual

field theory for any geometry in the class of warped AdS3 backgrounds. Among these

operators, we found the holomorphic and anti-holomorphic energy momentum tensor,

which indeed are supposed to exist in any CFT. From the quadratic action of massless

spin 2 fluctuations we were able also to reproduce the holographic central charge. We

know indeed that the quadratic action of the massless graviton computes the two-point

function of the energy momentum tensor. It would be nice in the future to construct

the dual operators in the gauge theory explicitly. The generality of the formalism

suggests that all we have done in this chapter can be reproduced in many other cases

of holographic dualities.

In Part I, Chapter 3, we introduced two new classes of warped backgrounds in

Type IIA and IIB supergravity with an AdS2 factor: AdS2 holography stands out

as a paradigmatic example of duality as it is intimately connected with black hole

physics in flat or anti de-Sitter spacetimes. We gave a careful study of the underlying

geometries. These appear to be regular everywhere except at points where physical

sources or orientifold planes are located. Physical branes provide flavour symmetry

for the dual field theory and, therefore, they are needed in order to describe the most

general dual Quantum Mechanics. Interestingly, we were able to give a prescription for

the central charge in terms of the NS-NS supergravity fields. We proposed that such

a central charge counts the number of degenerate ground states of the system. Also,

we proposed a minimisation principle, when a suitable functional is given, that leads

to the same result for the central charge entirely formulated in terms of fields in the

R-R sector. Such a functional is shown to emerge from the product of some electric

and magnetic charges associated with all branes in the supergravity background. In

the case of the gravity solutions in Type IIB, we were able also to identify the dual

QuantumMechanics, which we discussed in some detail. It is suspected that the central

charge defined here could be related to some superconformal indices computable by

means of localisation techniques. Also, given that we have explicit AdS2 solutions in

string theory, it would be interesting to connect them with black hole physics.

In Part II, Chapter 1 we moved on to dualities between three-dimensional Quantum

Field Theories. In particular, we focussed on the intriguing example of Chern-Simons

theories. After a general introduction to Chern-Simons theories in three-dimensions,

we discussed in detail the case of duality between Chern Simons theories with unitary
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gauge symmetry. The main goal was to motivate such a duality from string theory

and see what we could learn from it. We saw that a suitable string theory embedding

exists in Type 0B string theory. In particular, a brane web made of intersections of

D3, D5 and NS5 branes, along with an orientifold threeplane, is shown to lead in the

IR to QCD in three dimensions. The dual theory, obtained after rearranging branes in

the original setup, provides us with the bosonic dual theory that captures the infrared

physics of QCD3. The phase diagram of QCD3 is then sectioned in four di↵erent parts.

We showed how to reproduce bosonisation in the classical picture as well as the flavour

symmetry breaking phases in the quantum regime. Our results are consistent with the

existing literature.

It should be clear that duality is a powerful tool to map out problems in physics.

For one thing, they allow us – in certain cases – to study problems that we would not

know how to tackle, even though it is not clear – at least to the author – why dualities

exist at all. For another thing, dualities pinpoint our ignorance in describing certain

physical systems. Perhaps, pointing out our deficiencies in the description of the real

world is the best teaching dualities could give us.
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Type II supergravities

In this appendix we review some basic facts about type II supergravities. In particu-

lar, we spell out what the bosonic actions are, and write down explicitly the equations

of motion for the various fields. All supergravity backgrounds discussed in the main

text are solutions to the equations of motions quoted in the following. Standard ref-

erences are the books of Polchinski [155, 156].

Perturbative superstring theory requires the spacetime to be ten-dimensional, in

order to be consistent at the quantum level, and it turns out that R1,9 defines an

acceptable vacuum. Also, the spectrum of closed string theory around R1,9 comprises

of the graviton plus other fields with spin less than 2, besides an infinite tower of

massive modes with masses

m2

n
⇠

n

↵0
. (1)

There are two known consistent superstring theories with 32 supercharges. They

are called type IIA and IIB superstring theories. Type IIA string theory has N = (1, 1)

supersymmetry and therefore is non-chiral, whereas Type IIB has N = (2, 0) and is

therefore chiral1.

The supergravity approximation to string theory is generally true at low energies

and weak string coupling. More in detail, we are allowed to approximate string theory

with classical supergravity whenever

R⌧
1

↵0
, E ⌧

1
p
↵0

, gs ⌧ 1 , (2)

where R is the scalar curvature of the ten-dimensional spacetime and gs the string

coupling. Such regime of coupling is usually referred to as the ↵0
! 0 weak coupling

1Remember that, in Minkowski signature, we can impose both Majorana and Weyl conditions
only in dimension 2 mod 8. Therefore, a minimal spinor in 10 dimensions has 16 real independent
components.
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limit of string theory. Intuitively sending ↵0 = l2
s
! 0 simply means taking the “point-

particle limit” of string theory. Also, in this limit all massive modes in (1) decouple

from the dynamics and we are left with only massless modes.

Let us now discuss the field content of the two supergravities.

A Type IIB supergravity

The massless content of type IIB supergravity is organised in the graviton multiplet

G = (gµ⌫ ,�, Bµ⌫ , C, Cµ⌫ , Cµ⌫⇢�, 
a

µ
, a) , (3)

where

• gµ⌫ is the graviton

• � is the dilaton

• B(2) is the N-S two-form

• C(0) = C is a R-R zero-form, that is an axion with C(0)
⇠= C(0) + 2⇡

• C(2) is a R-R two-form

• C(4) is a R-R four-form

•  a

µ
, a, with a = 1, 2, are two gravitinos and two chiral fermions2.

Notice that the spin bundle over M10 has real structure and decomposes as S+(M10)�

S�(M10). Thus,  a can be thought of as a section of S+(M10) ⌦ T ⇤(M10), with

T ⇤(M10) the cotangent bundle, and  a a section of S+(M10).

The bosonic action of type IIB supergravity in string frame is given by3

SIIB =
1

22
10

Z

M10

d10x
»
�g

2

4e�2�

Ç
R + 4|@�|

2
�

1

12
|H|

2

å
�

1

2

Ñ
F 2

(1)
+

F 2

(3)

3!
+

1

2

F 2

(5)

5!

é3
5

�
1

42
10

Z
C(4) ^H(3) ^ dC(2) ,

(4)

2Fermionic indices are not shown explicitly.
3As in the main text, we have 22

10
= (2⇡)7g2

s↵
04.
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where the field strengths are given by

H(3) = dB(2) , F(1) = dC(0) , F(3) = dC(2) � C(0)H(3) , F(5) = dC(4) �H(3) ^ C(2) .

(5)

Moreover, F(5) must be supplemented with a self-duality condition (not derived from

the action)

F(5) = ?F(5) . (6)

The Bianchi identities for the field strengths are

dH(3) = 0 , dF(1) = 0 , dF(3) = H(3) ^ F(1) , dF(5) = H(3) ^ F(3) . (7)

The Einstein’s equations coming from the action above read

Rµ⌫ + 2rµr⌫��
1

4
H2

µ⌫

= e2�
ñ
1

2
(F 2

(1)
)µ⌫ +

1

4
(F 2

(3)
)µ⌫ +

1

96
(F 2

(5)
)µ⌫ �

1

4
gµ⌫

Ç
F 2

(1)
+

1

6
F 2

(3)

åô
,

(8)

where H2

µ⌫
= Hµ⇢�H

⇢�

⌫ and so on. Notice also that F 2

(5)
= 0 because of the self-duality

condition F(5) = ?F(5).

The dilaton equation reads

R + 4r2�� 4(@�)2 �
1

12
H2

(3)
= 0 . (9)

Finally, we give the equations of motion for the field strengths

d
Ä
e�2� ?H(3)

ä
� F(1) ^ ?F(3) � F(3) ^ ?F(5) = 0 ,

d ? F(1) +H(3) ^ ?F(3) = 0 ,

d ? F(3) +H(3) ^ ?F(5) = 0 ,

d ? F(5) �H(3) ^ ?F(3) = 0 .

(10)

B Massive type IIA supergravity

The N-S sector of massive type IIA supergravity is the same as that of type IIB

supergravity, while the R-R sector is made of odd-form potentials. They altogether

are given by

G = (gµ⌫ ,�, Bµ⌫ , Cµ, Cµ⌫⇢, 
a

µ
, a) , (11)
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where

• C(1) is a R-R one-form

• C(3) is a R-R three-form

•  a

µ
, a, with a = ±, are two gravitinos and two chiral fermions.

 ± can be thought of as a section of S±(M10)⌦T ⇤(M10), with T ⇤(M10) the cotangent

bundle, and  ± is a section of S±(M10).

In addition to this, there is also a zero-form field strength F(0) = ?F(10). Its equation

of motion is

d ? F(10) = 0 , (12)

and, being a scalar, it is just a constant ?F(10) = constant. Thus, there are no propa-

gating degrees of freedom. F(0) appears in the action – see below – only quadratically

and with no derivatives. It can in principle be integrated out, at the cost of introducing

a nonlinear dependence on B(2) . When F(0) 6= 0 we have what is known as “massive

type IIA supergravity”. If, instead, F(0) = 0 we have massless type IIA supergrav-

ity. We remind the reader that ony massless type IIA supergravity can be uplifted to

eleven-dimensional supergravity.

The bosonic action of type IIA supergravity in string frame is given by

SIIA =
1

22

Z

M10

d10x
»
�g

2

4e�2�

Ç
R + 4|@�|

2
�

1

12
|H|

2

å
�

1

2

Ñ
F 2

(0)
+

F 2

(2)

2!
+

F 2

(4)

4!

é3
5

�
1

42

Z
dC(3) ^ dC(3) ^B(2) +

F(0)

3
dC(3) ^ B3

(2)
+

F 2

(0)

20
B5

(2)
,

(13)

where the field strengths are given by

H(3) = dB(2) , F(2) = dC(1) + F(0)B(2) , F(4) = dC(3) �H(3) ^C(1) +
F(0)

2
B(2) ^B(2) .

(14)

The coe�cients have been set as to realise the gauge transformations

B(2) ! B(2) + d⇤ , C(1) ! C(1) � F(0)⇤ , C(3) ! C(3) � F(0)⇤ ^B(2) , (15)
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with ⇤ a one-form. The Bianchi identities for the field strengths are

dH(3) = 0 , dF(2) = F(0)H(3) , dF(4) = H(3) ^ F(2) . (16)

The Einstein’s equations coming from the action above read

Rµ⌫ + 2rµr⌫��
1

4
H2

µ⌫

= e2�
ñ
1

2
(F 2

(2)
)µ⌫ +

1

12
(F 2

(4)
)µ⌫ �

1

4
gµ⌫

Ç
1

2
F 2

(2)
+

1

24
F 2

(4)
+ F 2

(0)

åô
,

(17)

where, again, H2

µ⌫
= Hµ⇢�H

⇢�

⌫ and so on.

The dilaton equation is the same as in the type IIB case

R + 4r2�� 4(@�)2 �
1

12
H2

(3)
= 0 . (18)

Finally, the equations of motion for the field strengths read

d
Ä
e�2� ?H(3)

ä
� F(2) ^ ?F(4) �

1

2
F(4) ^ F(4) � F(0) ^ ?F(2) = 0 ,

d ? F(2) +H(3) ^ ?F(4) = 0 ,

d ? F(4) +H(3) ^ F(4) = 0 .

(19)

All Bianchi identities above (for both Type IIA and IIB) are given when there

are no sources. It turns out to be consistent with supersymmetry to violate Bianchi

identities by means of localised brane sources, as discussed in the main text.

Higher rank forms, like F(6), F(8) and F(10) for Type IIA or F(7) and F(9) for Type

IIB supergravity, do not appear explicitly in (4) or (13). They are related to lower

rank forms via

F(p) = (�1)[p/2] ? F(10�p) , (20)

in Minkowski signature. The constraint (20) is solved by giving the supergravity

actions in terms of low rank R-R forms.



Bibliography

[1] C. Nunez, D. Roychowdhury, S. Speziali, and S. Zacarias, “Holographic

Aspects of Four Dimensional N = 2 SCFTs and their Marginal Deformations,”

Nucl. Phys. B943 (2019) 114617, arXiv:1901.02888 [hep-th].

[2] M. Akhond, A. Armoni, and S. Speziali, “Phases of U(Nc) QCD3 from Type 0

Strings and Seiberg Duality,” JHEP 09 (2019) 111, arXiv:1908.04324

[hep-th].

[3] S. Speziali, “Spin 2 fluctuations in 1/4 BPS AdS3/CFT2,” JHEP 03 (2020)

079, arXiv:1910.14390 [hep-th].

[4] Y. Lozano, C. Nunez, A. Ramirez, and S. Speziali, “M -strings and AdS3

solutions to M-theory with small N = (0, 4) supersymmetry,”

arXiv:2005.06561 [hep-th].

[5] Y. Lozano, C. Nunez, A. Ramirez, and S. Speziali, “New AdS2 backgrounds

and N = 4 Conformal Quantum Mechanics,” arXiv:2011.00005 [hep-th].

[6] Y. Lozano, C. Nunez, A. Ramirez, and S. Speziali, “AdS2 duals to ADHM

quivers with Wilson lines,” arXiv:2011.13932 [hep-th].

[7] J. Polchinski, “Dualities of Fields and Strings,” Stud. Hist. Phil. Sci. B 59

(2017) 6–20, arXiv:1412.5704 [hep-th].

[8] F. Quevedo, “Duality and global symmetries,” Nucl. Phys. B Proc. Suppl. 61

(1998) 23–41, arXiv:hep-th/9706210.

[9] M. Ammon and J. Erdmenger, Gauge/gravity duality: Foundations and

applications. Cambridge University Press, Cambridge, 4, 2015.

215

http://dx.doi.org/10.1016/j.nuclphysb.2019.114617
http://arxiv.org/abs/1901.02888
http://dx.doi.org/10.1007/JHEP09(2019)111
http://arxiv.org/abs/1908.04324
http://arxiv.org/abs/1908.04324
http://dx.doi.org/10.1007/JHEP03(2020)079
http://dx.doi.org/10.1007/JHEP03(2020)079
http://arxiv.org/abs/1910.14390
http://arxiv.org/abs/2005.06561
http://arxiv.org/abs/2011.00005
http://arxiv.org/abs/2011.13932
http://dx.doi.org/10.1016/j.shpsb.2015.08.011
http://dx.doi.org/10.1016/j.shpsb.2015.08.011
http://arxiv.org/abs/1412.5704
http://dx.doi.org/10.1016/S0920-5632(97)00517-3
http://dx.doi.org/10.1016/S0920-5632(97)00517-3
http://arxiv.org/abs/hep-th/9706210


216 Bibliography

[10] H. Nastase, Introduction to the ADS/CFT Correspondence. Cambridge

University Press, 9, 2015.

[11] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N

field theories, string theory and gravity,” Phys. Rept. 323 (2000) 183–386,

arXiv:hep-th/9905111.

[12] H. Lin, O. Lunin, and J. M. Maldacena, “Bubbling AdS space and 1/2 BPS

geometries,” JHEP 10 (2004) 025, arXiv:hep-th/0409174.

[13] D. Gaiotto and J. Maldacena, “The Gravity duals of N=2 superconformal field

theories,” JHEP 10 (2012) 189, arXiv:0904.4466 [hep-th].

[14] D. Gaiotto, “N=2 dualities,” JHEP 08 (2012) 034, arXiv:0904.2715

[hep-th].

[15] A. Hanany and E. Witten, “Type IIB superstrings, BPS monopoles, and

three-dimensional gauge dynamics,” Nucl. Phys. B492 (1997) 152–190,

arXiv:hep-th/9611230 [hep-th].

[16] O. Lunin and J. M. Maldacena, “Deforming field theories with U(1) x U(1)

global symmetry and their gravity duals,” JHEP 05 (2005) 033,

arXiv:hep-th/0502086.

[17] Y. Lozano, N. T. Macpherson, C. Nunez, and A. Ramirez, “AdS3 solutions in

Massive IIA with small N = (4, 0) supersymmetry,” arXiv:1908.09851

[hep-th].

[18] Y. Lozano, N. T. Macpherson, C. Nunez, and A. Ramirez, “1/4 BPS

AdS3/CFT2,” arXiv:1909.09636 [hep-th].

[19] Y. Lozano, N. T. Macpherson, C. Nunez, and A. Ramirez, “Two dimensional

N = (0, 4) quivers dual to AdS3 solutions in massive IIA,” arXiv:1909.10510

[hep-th].

[20] A. Giveon and D. Kutasov, “Seiberg Duality in Chern-Simons Theory,” Nucl.

Phys. B812 (2009) 1–11, arXiv:0808.0360 [hep-th].

[21] O. Aharony, “Baryons, monopoles and dualities in Chern-Simons-matter

theories,” JHEP 02 (2016) 093, arXiv:1512.00161 [hep-th].

http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://dx.doi.org/10.1088/1126-6708/2004/10/025
http://arxiv.org/abs/hep-th/0409174
http://dx.doi.org/10.1007/JHEP10(2012)189
http://arxiv.org/abs/0904.4466
http://dx.doi.org/10.1007/JHEP08(2012)034
http://arxiv.org/abs/0904.2715
http://arxiv.org/abs/0904.2715
http://dx.doi.org/10.1016/S0550-3213(97)00157-0,%2010.1016/S0550-3213(97)80030-2
http://arxiv.org/abs/hep-th/9611230
http://dx.doi.org/10.1088/1126-6708/2005/05/033
http://arxiv.org/abs/hep-th/0502086
http://arxiv.org/abs/1908.09851
http://arxiv.org/abs/1908.09851
http://arxiv.org/abs/1909.09636
http://arxiv.org/abs/1909.10510
http://arxiv.org/abs/1909.10510
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.045
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.045
http://arxiv.org/abs/0808.0360
http://dx.doi.org/10.1007/JHEP02(2016)093
http://arxiv.org/abs/1512.00161


Bibliography 217

[22] Z. Komargodski and N. Seiberg, “A symmetry breaking scenario for QCD3,”

JHEP 01 (2018) 109, arXiv:1706.08755 [hep-th].

[23] J. Wess and J. Bagger, Supersymmetry and supergravity. Princeton University

Press, Princeton, NJ, USA, 1992.

[24] F. Dolan and H. Osborn, “On short and semi-short representations for

four-dimensional superconformal symmetry,” Annals Phys. 307 (2003) 41–89,

arXiv:hep-th/0209056.

[25] L. Bianchi and M. Lemos, “Superconformal surfaces in four dimensions,” JHEP

06 (2020) 056, arXiv:1911.05082 [hep-th].

[26] E. Witten, “Solutions of four-dimensional field theories via M theory,” Nucl.

Phys. B500 (1997) 3–42, arXiv:hep-th/9703166 [hep-th]. [,452(1997)].

[27] A. Giveon and D. Kutasov, “Brane dynamics and gauge theory,” Rev. Mod.

Phys. 71 (1999) 983–1084, arXiv:hep-th/9802067 [hep-th].

[28] A. Hanany and E. Witten, “Type IIB superstrings, BPS monopoles, and

three-dimensional gauge dynamics,” Nucl. Phys. B 492 (1997) 152–190,

arXiv:hep-th/9611230.

[29] N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry breaking

in N=2 supersymmetric QCD,” Nucl. Phys. B 431 (1994) 484–550,

arXiv:hep-th/9408099.

[30] E. Witten, “Monopoles and four manifolds,” Math. Res. Lett. 1 (1994)

769–796, arXiv:hep-th/9411102.

[31] L. F. Alday, D. Gaiotto, and Y. Tachikawa, “Liouville Correlation Functions

from Four-dimensional Gauge Theories,” Lett. Math. Phys. 91 (2010) 167–197,

arXiv:0906.3219 [hep-th].

[32] J. D. Moore, “Lecture notes on seiberg-witten invariants (revised second

edition),”.

[33] P. Deligne, P. Etingof, D. Freed, L. Je↵rey, D. Kazhdan, J. Morgan,

D. Morrison, and E. Witten, eds., Quantum fields and strings: A course for

mathematicians. Vol. 1, 2. 10, 1999.

http://dx.doi.org/10.1007/JHEP01(2018)109
http://arxiv.org/abs/1706.08755
http://dx.doi.org/10.1016/S0003-4916(03)00074-5
http://arxiv.org/abs/hep-th/0209056
http://dx.doi.org/10.1007/JHEP06(2020)056
http://dx.doi.org/10.1007/JHEP06(2020)056
http://arxiv.org/abs/1911.05082
http://dx.doi.org/10.1016/S0550-3213(97)00416-1
http://dx.doi.org/10.1016/S0550-3213(97)00416-1
http://arxiv.org/abs/hep-th/9703166
http://dx.doi.org/10.1103/RevModPhys.71.983
http://dx.doi.org/10.1103/RevModPhys.71.983
http://arxiv.org/abs/hep-th/9802067
http://dx.doi.org/10.1016/S0550-3213(97)00157-0
http://arxiv.org/abs/hep-th/9611230
http://dx.doi.org/10.1016/0550-3213(94)90214-3
http://arxiv.org/abs/hep-th/9408099
http://dx.doi.org/10.4310/MRL.1994.v1.n6.a13
http://dx.doi.org/10.4310/MRL.1994.v1.n6.a13
http://arxiv.org/abs/hep-th/9411102
http://dx.doi.org/10.1007/s11005-010-0369-5
http://arxiv.org/abs/0906.3219


218 Bibliography

[34] R. A. Reid-Edwards and j. Stefanski, B., “On Type IIA geometries dual to N =

2 SCFTs,” Nucl. Phys. B849 (2011) 549–572, arXiv:1011.0216 [hep-th].

[35] O. Aharony, L. Berdichevsky, and M. Berkooz, “4d N=2 superconformal linear

quivers with type IIA duals,” JHEP 08 (2012) 131, arXiv:1206.5916

[hep-th].

[36] G. Itsios, H. Nastase, C. Nunez, K. Sfetsos, and S. Zacarias, “Penrose limits of

Abelian and non-Abelian T-duals of AdS5 ⇥ S5 and their field theory duals,”

JHEP 01 (2018) 071, arXiv:1711.09911 [hep-th].

[37] C. Nunez, D. Roychowdhury, and D. C. Thompson, “Integrability and

non-integrability in N = 2 SCFTs and their holographic backgrounds,” JHEP

07 (2018) 044, arXiv:1804.08621 [hep-th].

[38] S. Cremonesi and A. Tomasiello, “6d holographic anomaly match as a

continuum limit,” JHEP 05 (2016) 031, arXiv:1512.02225 [hep-th].

[39] D. Marolf, “Chern-Simons terms and the three notions of charge,” in

International Conference on Quantization, Gauge Theory, and Strings:

Conference Dedicated to the Memory of Professor Efim Fradkin, pp. 312–320.

6, 2000. arXiv:hep-th/0006117.

[40] I. R. Klebanov, D. Kutasov, and A. Murugan, “Entanglement as a probe of

confinement,” Nucl. Phys. B 796 (2008) 274–293, arXiv:0709.2140 [hep-th].

[41] N. T. Macpherson, C. Nunez, L. A. Pando Zayas, V. G. J. Rodgers, and C. A.

Whiting, “Type IIB supergravity solutions with AdS5 from Abelian and

non-Abelian T dualities,” JHEP 02 (2015) 040, arXiv:1410.2650 [hep-th].

[42] Y. Bea, J. D. Edelstein, G. Itsios, K. S. Kooner, C. Nunez, D. Schofield, and

J. A. Sierra-Garcia, “Compactifications of the Klebanov-Witten CFT and new

AdS3 backgrounds,” JHEP 05 (2015) 062, arXiv:1503.07527 [hep-th].

[43] C. Nunez, J. M. Penin, D. Roychowdhury, and J. Van Gorsel, “The

non-Integrability of Strings in Massive Type IIA and their Holographic duals,”

JHEP 06 (2018) 078, arXiv:1802.04269 [hep-th].

http://dx.doi.org/10.1016/j.nuclphysb.2011.04.002
http://arxiv.org/abs/1011.0216
http://dx.doi.org/10.1007/JHEP08(2012)131
http://arxiv.org/abs/1206.5916
http://arxiv.org/abs/1206.5916
http://dx.doi.org/10.1007/JHEP01(2018)071
http://arxiv.org/abs/1711.09911
http://dx.doi.org/10.1007/JHEP07(2018)044
http://dx.doi.org/10.1007/JHEP07(2018)044
http://arxiv.org/abs/1804.08621
http://dx.doi.org/10.1007/JHEP05(2016)031
http://arxiv.org/abs/1512.02225
http://arxiv.org/abs/hep-th/0006117
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.017
http://arxiv.org/abs/0709.2140
http://dx.doi.org/10.1007/JHEP02(2015)040
http://arxiv.org/abs/1410.2650
http://dx.doi.org/10.1007/JHEP05(2015)062
http://arxiv.org/abs/1503.07527
http://dx.doi.org/10.1007/JHEP06(2018)078
http://arxiv.org/abs/1802.04269


Bibliography 219

[44] A. D. Shapere and Y. Tachikawa, “Central charges of N=2 superconformal field

theories in four dimensions,” JHEP 09 (2008) 109, arXiv:0804.1957

[hep-th].

[45] Y. Lozano and C. Nunez, “Field theory aspects of non-Abelian T-duality and

N = 2 linear quivers,” JHEP 05 (2016) 107, arXiv:1603.04440 [hep-th].

[46] K. Sfetsos and D. C. Thompson, “On non-abelian T-dual geometries with

Ramond fluxes,” Nucl. Phys. B 846 (2011) 21–42, arXiv:1012.1320

[hep-th].

[47] D. M. Hofman and J. Maldacena, “Conformal collider physics: Energy and

charge correlations,” JHEP 05 (2008) 012, arXiv:0803.1467 [hep-th].

[48] R. Borsato and L. Wul↵, “On non-abelian T-duality and deformations of

supercoset string sigma-models,” JHEP 10 (2017) 024, arXiv:1706.10169

[hep-th].

[49] K. Sfetsos and D. C. Thompson, “Spacetimes for �-deformations,” JHEP 12

(2014) 164, arXiv:1410.1886 [hep-th].

[50] S. Demulder, K. Sfetsos, and D. C. Thompson, “Integrable �-deformations:

Squashing Coset CFTs and AdS5 ⇥ S5,” JHEP 07 (2015) 019,

arXiv:1504.02781 [hep-th].

[51] Y. Lozano, E. O Colgain, D. Rodriguez-Gomez, and K. Sfetsos,

“Supersymmetric AdS6 via T Duality,” Phys. Rev. Lett. 110 no. 23, (2013)

231601, arXiv:1212.1043 [hep-th].

[52] G. Itsios, C. Nunez, K. Sfetsos, and D. C. Thompson, “On Non-Abelian

T-Duality and new N=1 backgrounds,” Phys. Lett. B 721 (2013) 342–346,

arXiv:1212.4840 [hep-th].

[53] A. Barranco, J. Gaillard, N. T. Macpherson, C. Nunez, and D. C. Thompson,

“G-structures and Flavouring non-Abelian T-duality,” JHEP 08 (2013) 018,

arXiv:1305.7229 [hep-th].

[54] N. T. Macpherson, “Non-Abelian T-duality, G2-structure rotation and

holographic duals of N = 1 Chern-Simons theories,” JHEP 11 (2013) 137,

arXiv:1310.1609 [hep-th].

http://dx.doi.org/10.1088/1126-6708/2008/09/109
http://arxiv.org/abs/0804.1957
http://arxiv.org/abs/0804.1957
http://dx.doi.org/10.1007/JHEP05(2016)107
http://arxiv.org/abs/1603.04440
http://dx.doi.org/10.1016/j.nuclphysb.2010.12.013
http://arxiv.org/abs/1012.1320
http://arxiv.org/abs/1012.1320
http://dx.doi.org/10.1088/1126-6708/2008/05/012
http://arxiv.org/abs/0803.1467
http://dx.doi.org/10.1007/JHEP10(2017)024
http://arxiv.org/abs/1706.10169
http://arxiv.org/abs/1706.10169
http://dx.doi.org/10.1007/JHEP12(2014)164
http://dx.doi.org/10.1007/JHEP12(2014)164
http://arxiv.org/abs/1410.1886
http://dx.doi.org/10.1007/JHEP07(2015)019
http://arxiv.org/abs/1504.02781
http://dx.doi.org/10.1103/PhysRevLett.110.231601
http://dx.doi.org/10.1103/PhysRevLett.110.231601
http://arxiv.org/abs/1212.1043
http://dx.doi.org/10.1016/j.physletb.2013.03.033
http://arxiv.org/abs/1212.4840
http://dx.doi.org/10.1007/JHEP08(2013)018
http://arxiv.org/abs/1305.7229
http://dx.doi.org/10.1007/JHEP11(2013)137
http://arxiv.org/abs/1310.1609


220 Bibliography

[55] Y. Lozano, E. O Colgain, and D. Rodriguez-Gomez, “Hints of 5d Fixed Point

Theories from Non-Abelian T-duality,” JHEP 05 (2014) 009,

arXiv:1311.4842 [hep-th].

[56] J. Gaillard, N. T. Macpherson, C. Nunez, and D. C. Thompson, “Dualising the

Baryonic Branch: Dynamic SU(2) and confining backgrounds in IIA,” Nucl.

Phys. B 884 (2014) 696–740, arXiv:1312.4945 [hep-th].

[57] E. Caceres, N. T. Macpherson, and C. Nunez, “New Type IIB Backgrounds

and Aspects of Their Field Theory Duals,” JHEP 08 (2014) 107,

arXiv:1402.3294 [hep-th].

[58] Y. Lozano and N. T. Macpherson, “A new AdS4/CFT3 dual with extended

SUSY and a spectral flow,” JHEP 11 (2014) 115, arXiv:1408.0912 [hep-th].

[59] K. Sfetsos and D. C. Thompson, “New N = 1 supersymmetric AdS5

backgrounds in Type IIA supergravity,” JHEP 11 (2014) 006,

arXiv:1408.6545 [hep-th].

[60] K. Kooner and S. Zacarias, “Non-Abelian T-Dualizing the Resolved Conifold

with Regular and Fractional D3-Branes,” JHEP 08 (2015) 143,

arXiv:1411.7433 [hep-th].

[61] T. R. Araujo and H. Nastase, “N = 1 SUSY backgrounds with an AdS factor

from non-Abelian T duality,” Phys. Rev. D 91 no. 12, (2015) 126015,

arXiv:1503.00553 [hep-th].

[62] Y. Lozano, N. T. Macpherson, J. Montero, and E. O. Colgain, “New AdS3 ⇥ S2

T-duals with N = (0, 4) supersymmetry,” JHEP 08 (2015) 121,

arXiv:1507.02659 [hep-th].

[63] Y. Lozano, N. T. Macpherson, and J. Montero, “A N = 2 supersymmetric

AdS4 solution in M-theory with purely magnetic flux,” JHEP 10 (2015) 004,

arXiv:1507.02660 [hep-th].

[64] N. T. Macpherson, C. Nunez, D. C. Thompson, and S. Zacarias, “Holographic

Flows in non-Abelian T-dual Geometries,” JHEP 11 (2015) 212,

arXiv:1509.04286 [hep-th].

http://dx.doi.org/10.1007/JHEP05(2014)009
http://arxiv.org/abs/1311.4842
http://dx.doi.org/10.1016/j.nuclphysb.2014.05.004
http://dx.doi.org/10.1016/j.nuclphysb.2014.05.004
http://arxiv.org/abs/1312.4945
http://dx.doi.org/10.1007/JHEP08(2014)107
http://arxiv.org/abs/1402.3294
http://dx.doi.org/10.1007/JHEP11(2014)115
http://arxiv.org/abs/1408.0912
http://dx.doi.org/10.1007/JHEP11(2014)006
http://arxiv.org/abs/1408.6545
http://dx.doi.org/10.1007/JHEP08(2015)143
http://arxiv.org/abs/1411.7433
http://dx.doi.org/10.1103/PhysRevD.91.126015
http://arxiv.org/abs/1503.00553
http://dx.doi.org/10.1007/JHEP08(2015)121
http://arxiv.org/abs/1507.02659
http://dx.doi.org/10.1007/JHEP10(2015)004
http://arxiv.org/abs/1507.02660
http://dx.doi.org/10.1007/JHEP11(2015)212
http://arxiv.org/abs/1509.04286


Bibliography 221

[65] L. A. Pando Zayas, V. G. Rodgers, and C. A. Whiting, “Supergravity solutions

with AdS4 from non-Abelian T-dualities,” JHEP 02 (2016) 061,

arXiv:1511.05991 [hep-th].

[66] H. Dimov, S. Mladenov, R. C. Rashkov, and T. Vetsov, “Non-abelian T-duality

of Pilch-Warner background,” Fortsch. Phys. 64 (2016) 657–673,

arXiv:1511.00269 [hep-th].

[67] Y. Lozano, N. T. Macpherson, and J. Montero, “AdS6 T-duals and type IIB

AdS6⇥ S2 geometries with 7-branes,” JHEP 01 (2019) 116, arXiv:1810.08093

[hep-th].

[68] R. Terrisse, D. Tsimpis, and C. A. Whiting, “D-branes and non-Abelian

T-duality,” Nucl. Phys. B 947 (2019) 114733, arXiv:1811.05800 [hep-th].

[69] G. Itsios, C. Nunez, and D. Zoakos, “Mesons from (non) Abelian T-dual

backgrounds,” JHEP 01 (2017) 011, arXiv:1611.03490 [hep-th].

[70] Y. Lozano, C. Nunez, and S. Zacarias, “BMN Vacua, Superstars and

Non-Abelian T-duality,” JHEP 09 (2017) 008, arXiv:1703.00417 [hep-th].

[71] G. Itsios, Y. Lozano, J. Montero, and C. Nunez, “The AdS5 non-Abelian

T-dual of Klebanov-Witten as a N = 1 linear quiver from M5-branes,” JHEP

09 (2017) 038, arXiv:1705.09661 [hep-th].

[72] Y. Lozano, N. T. Macpherson, J. Montero, and C. Nunez, “Three-dimensional

N = 4 linear quivers and non-Abelian T-duals,” JHEP 11 (2016) 133,

arXiv:1609.09061 [hep-th].

[73] J. van Gorsel and S. Zacarias, “A Type IIB Matrix Model via non-Abelian

T-dualities,” JHEP 12 (2017) 101, arXiv:1711.03419 [hep-th].

[74] N. Itzhaki, J. M. Maldacena, J. Sonnenschein, and S. Yankielowicz,

“Supergravity and the large N limit of theories with sixteen supercharges,”

Phys. Rev. D 58 (1998) 046004, arXiv:hep-th/9802042.

[75] H. Lin and J. M. Maldacena, “Fivebranes from gauge theory,” Phys. Rev. D 74

(2006) 084014, arXiv:hep-th/0509235.

http://dx.doi.org/10.1007/JHEP02(2016)061
http://arxiv.org/abs/1511.05991
http://dx.doi.org/10.1002/prop.201600032
http://arxiv.org/abs/1511.00269
http://dx.doi.org/10.1007/JHEP01(2019)116
http://arxiv.org/abs/1810.08093
http://arxiv.org/abs/1810.08093
http://dx.doi.org/10.1016/j.nuclphysb.2019.114733
http://arxiv.org/abs/1811.05800
http://dx.doi.org/10.1007/JHEP01(2017)011
http://arxiv.org/abs/1611.03490
http://dx.doi.org/10.1007/JHEP09(2017)008
http://arxiv.org/abs/1703.00417
http://dx.doi.org/10.1007/JHEP09(2017)038
http://dx.doi.org/10.1007/JHEP09(2017)038
http://arxiv.org/abs/1705.09661
http://dx.doi.org/10.1007/JHEP11(2016)133
http://arxiv.org/abs/1609.09061
http://dx.doi.org/10.1007/JHEP12(2017)101
http://arxiv.org/abs/1711.03419
http://dx.doi.org/10.1103/PhysRevD.58.046004
http://arxiv.org/abs/hep-th/9802042
http://dx.doi.org/10.1103/PhysRevD.74.084014
http://dx.doi.org/10.1103/PhysRevD.74.084014
http://arxiv.org/abs/hep-th/0509235


222 Bibliography

[76] O. Aharony, M. Berkooz, and S.-J. Rey, “Rigid holography and six-dimensional

N = (2, 0) theories on AdS5 ⇥ S1,” JHEP 03 (2015) 121, arXiv:1501.02904

[hep-th].

[77] J. M. Maldacena and C. Nunez, “Supergravity description of field theories on

curved manifolds and a no go theorem,” Int. J. Mod. Phys. A 16 (2001)

822–855, arXiv:hep-th/0007018.

[78] U. Gursoy and C. Nunez, “Dipole deformations of N=1 SYM and supergravity

backgrounds with U(1) x U(1) global symmetry,” Nucl. Phys. B 725 (2005)

45–92, arXiv:hep-th/0505100.

[79] J. P. Gauntlett, S. Lee, T. Mateos, and D. Waldram, “Marginal deformations

of field theories with AdS(4) duals,” JHEP 08 (2005) 030,

arXiv:hep-th/0505207.

[80] I. Bah, C. Beem, N. Bobev, and B. Wecht, “Four-Dimensional SCFTs from

M5-Branes,” JHEP 06 (2012) 005, arXiv:1203.0303 [hep-th].

[81] I. Bah and N. Bobev, “Linear quivers and N = 1 SCFTs from M5-branes,”

JHEP 08 (2014) 121, arXiv:1307.7104 [hep-th].

[82] K. A. Intriligator and B. Wecht, “The Exact superconformal R symmetry

maximizes a,” Nucl. Phys. B 667 (2003) 183–200, arXiv:hep-th/0304128.

[83] I. Bah, “AdS5 solutions from M5-branes on Riemann surface and D6-branes

sources,” JHEP 09 (2015) 163, arXiv:1501.06072 [hep-th].

[84] I. Bah, “Quarter-BPS AdS5 solutions in M-theory with a T 2 bundle over a

Riemann surface,” JHEP 08 (2013) 137, arXiv:1304.4954 [hep-th].

[85] V. Bashmakov, M. Bertolini, and H. Raj, “On non-supersymmetric conformal

manifolds: field theory and holography,” JHEP 11 (2017) 167,

arXiv:1709.01749 [hep-th].

[86] A. Hanany, M. J. Strassler, and A. M. Uranga, “Finite theories and marginal

operators on the brane,” JHEP 06 (1998) 011, arXiv:hep-th/9803086.

[87] A. Hanany and A. M. Uranga, “Brane boxes and branes on singularities,”

JHEP 05 (1998) 013, arXiv:hep-th/9805139.

http://dx.doi.org/10.1007/JHEP03(2015)121
http://arxiv.org/abs/1501.02904
http://arxiv.org/abs/1501.02904
http://dx.doi.org/10.1142/S0217751X01003937
http://dx.doi.org/10.1142/S0217751X01003937
http://arxiv.org/abs/hep-th/0007018
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.023
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.023
http://arxiv.org/abs/hep-th/0505100
http://dx.doi.org/10.1088/1126-6708/2005/08/030
http://arxiv.org/abs/hep-th/0505207
http://dx.doi.org/10.1007/JHEP06(2012)005
http://arxiv.org/abs/1203.0303
http://dx.doi.org/10.1007/JHEP08(2014)121
http://arxiv.org/abs/1307.7104
http://dx.doi.org/10.1016/S0550-3213(03)00459-0
http://arxiv.org/abs/hep-th/0304128
http://dx.doi.org/10.1007/JHEP09(2015)163
http://arxiv.org/abs/1501.06072
http://dx.doi.org/10.1007/JHEP08(2013)137
http://arxiv.org/abs/1304.4954
http://dx.doi.org/10.1007/JHEP11(2017)167
http://arxiv.org/abs/1709.01749
http://dx.doi.org/10.1088/1126-6708/1998/06/011
http://arxiv.org/abs/hep-th/9803086
http://dx.doi.org/10.1088/1126-6708/1998/05/013
http://arxiv.org/abs/hep-th/9805139


Bibliography 223

[88] A. Karch, D. Lust, and A. Miemiec, “N=1 supersymmetric gauge theories and

supersymmetric three cycles,” Nucl. Phys. B 553 (1999) 483–510,

arXiv:hep-th/9810254.

[89] J. M. Maldacena, “The Large N limit of superconformal field theories and

supergravity,” Int. J. Theor. Phys. 38 (1999) 1113–1133,

arXiv:hep-th/9711200 [hep-th]. [Adv. Theor. Math. Phys.2,231(1998)].

[90] D. Gaiotto and E. Witten, “Supersymmetric Boundary Conditions in N=4

Super Yang-Mills Theory,” J. Statist. Phys. 135 (2009) 789–855,

arXiv:0804.2902 [hep-th].

[91] D. Gaiotto and E. Witten, “S-Duality of Boundary Conditions In N=4 Super

Yang-Mills Theory,” Adv. Theor. Math. Phys. 13 no. 3, (2009) 721–896,

arXiv:0807.3720 [hep-th].

[92] E. D’Hoker, J. Estes, M. Gutperle, and D. Krym, “Exact Half-BPS Flux

Solutions in M-theory. I: Local Solutions,” JHEP 08 (2008) 028,

arXiv:0806.0605 [hep-th].

[93] E. D’Hoker, J. Estes, and M. Gutperle, “Exact half-BPS Type IIB interface

solutions. I. Local solution and supersymmetric Janus,” JHEP 06 (2007) 021,

arXiv:0705.0022 [hep-th].

[94] B. Assel, C. Bachas, J. Estes, and J. Gomis, “Holographic Duals of D=3 N=4

Superconformal Field Theories,” JHEP 08 (2011) 087, arXiv:1106.4253

[hep-th].

[95] E. D’Hoker, M. Gutperle, A. Karch, and C. F. Uhlemann, “Warped AdS6 ⇥ S2

in Type IIB supergravity I: Local solutions,” JHEP 08 (2016) 046,

arXiv:1606.01254 [hep-th].

[96] E. D’Hoker, M. Gutperle, and C. F. Uhlemann, “Holographic duals for

five-dimensional superconformal quantum field theories,” Phys. Rev. Lett. 118

no. 10, (2017) 101601, arXiv:1611.09411 [hep-th].

[97] E. D’Hoker, M. Gutperle, and C. F. Uhlemann, “Warped AdS6 ⇥ S2 in Type

IIB supergravity II: Global solutions and five-brane webs,” JHEP 05 (2017)

131, arXiv:1703.08186 [hep-th].

http://dx.doi.org/10.1016/S0550-3213(99)00260-6
http://arxiv.org/abs/hep-th/9810254
http://dx.doi.org/10.1023/A:1026654312961,%2010.4310/ATMP.1998.v2.n2.a1
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1007/s10955-009-9687-3
http://arxiv.org/abs/0804.2902
http://dx.doi.org/10.4310/ATMP.2009.v13.n3.a5
http://arxiv.org/abs/0807.3720
http://dx.doi.org/10.1088/1126-6708/2008/08/028
http://arxiv.org/abs/0806.0605
http://dx.doi.org/10.1088/1126-6708/2007/06/021
http://arxiv.org/abs/0705.0022
http://dx.doi.org/10.1007/JHEP08(2011)087
http://arxiv.org/abs/1106.4253
http://arxiv.org/abs/1106.4253
http://dx.doi.org/10.1007/JHEP08(2016)046
http://arxiv.org/abs/1606.01254
http://dx.doi.org/10.1103/PhysRevLett.118.101601
http://dx.doi.org/10.1103/PhysRevLett.118.101601
http://arxiv.org/abs/1611.09411
http://dx.doi.org/10.1007/JHEP05(2017)131
http://dx.doi.org/10.1007/JHEP05(2017)131
http://arxiv.org/abs/1703.08186


224 Bibliography

[98] O. Bergman, D. Rodriguez-Gomez, and C. F. Uhlemann, “Testing AdS6/CFT5

in Type IIB with stringy operators,” JHEP 08 (2018) 127, arXiv:1806.07898

[hep-th].

[99] F. Apruzzi, M. Fazzi, A. Passias, A. Rota, and A. Tomasiello,

“Six-Dimensional Superconformal Theories and their Compactifications from

Type IIA Supergravity,” Phys. Rev. Lett. 115 no. 6, (2015) 061601,

arXiv:1502.06616 [hep-th].

[100] D. Gaiotto and A. Tomasiello, “Holography for (1,0) theories in six

dimensions,” JHEP 12 (2014) 003, arXiv:1404.0711 [hep-th].

[101] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, “Infinite Conformal

Symmetry in Two-Dimensional Quantum Field Theory,” Nucl. Phys. B241

(1984) 333–380. [,605(1984)].

[102] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory.

Graduate Texts in Contemporary Physics. Springer-Verlag, New York, 1997.

http://www-spires.fnal.gov/spires/find/books/www?cl=QC174.52.

C66D5::1997.

[103] M. Ademollo et al., “Supersymmetric Strings and Color Confinement,” Phys.

Lett. 62B (1976) 105–110.

[104] M. Ademollo et al., “Dual String with U(1) Color Symmetry,” Nucl. Phys.

B111 (1976) 77–110.

[105] M. Ademollo et al., “Dual String Models with Nonabelian Color and Flavor

Symmetries,” Nucl. Phys. B114 (1976) 297–316.

[106] Y. Lozano, N. T. Macpherson, C. Nunez, and A. Ramirez, “AdS3 solutions in

massive IIA, defect CFTs and T-duality,” arXiv:1909.11669 [hep-th].

[107] F. Kos and J. Oh, “2d small N=4 Long-multiplet superconformal block,”

JHEP 02 (2019) 001, arXiv:1810.10029 [hep-th].

[108] H. J. Kim, L. J. Romans, and P. van Nieuwenhuizen, “Mass spectrum of chiral

ten-dimensional n=2 supergravity on S5,” Phys. Rev. D 32 (Jul, 1985)

389–399. https://link.aps.org/doi/10.1103/PhysRevD.32.389.

http://dx.doi.org/10.1007/JHEP08(2018)127
http://arxiv.org/abs/1806.07898
http://arxiv.org/abs/1806.07898
http://dx.doi.org/10.1103/PhysRevLett.115.061601
http://arxiv.org/abs/1502.06616
http://dx.doi.org/10.1007/JHEP12(2014)003
http://arxiv.org/abs/1404.0711
http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://dx.doi.org/10.1007/978-1-4612-2256-9
http://www-spires.fnal.gov/spires/find/books/www?cl=QC174.52.C66D5::1997
http://www-spires.fnal.gov/spires/find/books/www?cl=QC174.52.C66D5::1997
http://dx.doi.org/10.1016/0370-2693(76)90061-7
http://dx.doi.org/10.1016/0370-2693(76)90061-7
http://dx.doi.org/10.1016/0550-3213(76)90483-1
http://dx.doi.org/10.1016/0550-3213(76)90483-1
http://dx.doi.org/10.1016/0550-3213(76)90590-3
http://arxiv.org/abs/1909.11669
http://dx.doi.org/10.1007/JHEP02(2019)001
http://arxiv.org/abs/1810.10029
http://dx.doi.org/10.1103/PhysRevD.32.389
http://dx.doi.org/10.1103/PhysRevD.32.389
https://link.aps.org/doi/10.1103/PhysRevD.32.389


Bibliography 225

[109] S. Deger, A. Kaya, E. Sezgin, and P. Sundell, “Spectrum of D = 6, N=4b

supergravity on AdS in three-dimensions x S**3,” Nucl. Phys. B536 (1998)

110–140, arXiv:hep-th/9804166 [hep-th].

[110] C. Bachas and J. Estes, “Spin-2 spectrum of defect theories,” JHEP 06 (2011)

005, arXiv:1103.2800 [hep-th].

[111] I. R. Klebanov, S. S. Pufu, and F. D. Rocha, “The Squashed, Stretched, and

Warped Gets Perturbed,” JHEP 06 (2009) 019, arXiv:0904.1009 [hep-th].

[112] J. Schmude and O. Vasilakis, “Superconformal Symmetry in the Kaluza-Klein

Spectrum of Warped AdS(3),” JHEP 10 (2016) 096, arXiv:1605.00636

[hep-th].

[113] Y. Pang, J. Rong, and O. Varela, “Spectrum universality properties of

holographic Chern-Simons theories,” JHEP 01 (2018) 061, arXiv:1711.07781

[hep-th].

[114] J.-M. Richard, R. Terrisse, and D. Tsimpis, “On the spin-2 Kaluza-Klein

spectrum of AdS4 ⇥ S2 (B4),” JHEP 12 (2014) 144, arXiv:1410.4669

[hep-th].

[115] K. Chen, M. Gutperle, and C. F. Uhlemann, “Spin 2 operators in holographic

4d N = 2 SCFTs,” JHEP 06 (2019) 139, arXiv:1903.07109 [hep-th].

[116] G. Itsios, J. M. Penin, and S. Zacarias, “Spin-2 excitations in

Gaiotto-Maldacena solutions,” arXiv:1903.11613 [hep-th].

[117] M. Gutperle, C. F. Uhlemann, and O. Varela, “Massive spin 2 excitations in

AdS6 ⇥ S2 warped spacetimes,” JHEP 07 (2018) 091, arXiv:1805.11914

[hep-th].

[118] A. Passias and P. Richmond, “Perturbing AdS6⇥wS4: linearised equations and

spin-2 spectrum,” JHEP 07 (2018) 058, arXiv:1804.09728 [hep-th].

[119] A. Passias and A. Tomasiello, “Spin-2 spectrum of six-dimensional field

theories,” JHEP 12 (2016) 050, arXiv:1604.04286 [hep-th].

[120] K. Filippas, “Holography for 2d N = (0, 4) quantum field theory,”

arXiv:2008.00314 [hep-th].

http://dx.doi.org/10.1016/S0550-3213(98)00555-0
http://dx.doi.org/10.1016/S0550-3213(98)00555-0
http://arxiv.org/abs/hep-th/9804166
http://dx.doi.org/10.1007/JHEP06(2011)005
http://dx.doi.org/10.1007/JHEP06(2011)005
http://arxiv.org/abs/1103.2800
http://dx.doi.org/10.1088/1126-6708/2009/06/019
http://arxiv.org/abs/0904.1009
http://dx.doi.org/10.1007/JHEP10(2016)096
http://arxiv.org/abs/1605.00636
http://arxiv.org/abs/1605.00636
http://dx.doi.org/10.1007/JHEP01(2018)061
http://arxiv.org/abs/1711.07781
http://arxiv.org/abs/1711.07781
http://dx.doi.org/10.1007/JHEP12(2014)144
http://arxiv.org/abs/1410.4669
http://arxiv.org/abs/1410.4669
http://dx.doi.org/10.1007/JHEP06(2019)139
http://arxiv.org/abs/1903.07109
http://arxiv.org/abs/1903.11613
http://dx.doi.org/10.1007/JHEP07(2018)091
http://arxiv.org/abs/1805.11914
http://arxiv.org/abs/1805.11914
http://dx.doi.org/10.1007/JHEP07(2018)058
http://arxiv.org/abs/1804.09728
http://dx.doi.org/10.1007/JHEP12(2016)050
http://arxiv.org/abs/1604.04286
http://arxiv.org/abs/2008.00314


226 Bibliography

[121] E. Witten, “Phases of N=2 theories in two-dimensions,” Nucl. Phys. B403

(1993) 159–222, arXiv:hep-th/9301042 [hep-th]. [AMS/IP Stud. Adv.

Math.1,143(1996)].

[122] E. Witten, “Sigma models and the ADHM construction of instantons,” J.

Geom. Phys. 15 (1995) 215–226, arXiv:hep-th/9410052 [hep-th].

[123] D. Tong, “The holographic dual of AdS3 ⇥ S3
⇥ S3

⇥ S1,” JHEP 04 (2014)

193, arXiv:1402.5135 [hep-th].

[124] P. Putrov, J. Song, and W. Yan, “(0,4) dualities,” JHEP 03 (2016) 185,

arXiv:1505.07110 [hep-th].

[125] S. Franco, D. Ghim, S. Lee, R.-K. Seong, and D. Yokoyama, “2d (0,2) Quiver

Gauge Theories and D-Branes,” JHEP 09 (2015) 072, arXiv:1506.03818

[hep-th].

[126] A. Polishchuk, “Massive symmetric tensor field on AdS,” JHEP 07 (1999) 007,

arXiv:hep-th/9905048 [hep-th].

[127] C. Cordova, T. T. Dumitrescu, and K. Intriligator, “Multiplets of

Superconformal Symmetry in Diverse Dimensions,” JHEP 03 (2019) 163,

arXiv:1612.00809 [hep-th].

[128] C. Cordova, T. T. Dumitrescu, and K. Intriligator, “Deformations of

Superconformal Theories,” JHEP 11 (2016) 135, arXiv:1602.01217

[hep-th].

[129] G. E. Arutyunov and S. A. Frolov, “Quadratic action for Type IIB supergravity

on AdS(5) x S**5,” JHEP 08 (1999) 024, arXiv:hep-th/9811106 [hep-th].

[130] T. Eguchi and A. Taormina, “Unitary Representations of N = 4

Superconformal Algebra,” Phys. Lett. B196 (1987) 75.

[131] T. Eguchi and A. Taormina, “Character Formulas for the N = 4

Superconformal Algebra,” Phys. Lett. B200 (1988) 315.

[132] T. Eguchi and A. Taormina, “On the Unitary Representations of N = 2 and

N = 4 Superconformal Algebras,” Phys. Lett. B210 (1988) 125–132.

http://dx.doi.org/10.1016/0550-3213(93)90033-L
http://dx.doi.org/10.1016/0550-3213(93)90033-L
http://arxiv.org/abs/hep-th/9301042
http://dx.doi.org/10.1016/0393-0440(94)00047-8
http://dx.doi.org/10.1016/0393-0440(94)00047-8
http://arxiv.org/abs/hep-th/9410052
http://dx.doi.org/10.1007/JHEP04(2014)193
http://dx.doi.org/10.1007/JHEP04(2014)193
http://arxiv.org/abs/1402.5135
http://dx.doi.org/10.1007/JHEP03(2016)185
http://arxiv.org/abs/1505.07110
http://dx.doi.org/10.1007/JHEP09(2015)072
http://arxiv.org/abs/1506.03818
http://arxiv.org/abs/1506.03818
http://dx.doi.org/10.1088/1126-6708/1999/07/007
http://arxiv.org/abs/hep-th/9905048
http://dx.doi.org/10.1007/JHEP03(2019)163
http://arxiv.org/abs/1612.00809
http://dx.doi.org/10.1007/JHEP11(2016)135
http://arxiv.org/abs/1602.01217
http://arxiv.org/abs/1602.01217
http://dx.doi.org/10.1088/1126-6708/1999/08/024
http://arxiv.org/abs/hep-th/9811106
http://dx.doi.org/10.1016/0370-2693(87)91679-0
http://dx.doi.org/10.1016/0370-2693(88)90778-2
http://dx.doi.org/10.1016/0370-2693(88)90360-7


Bibliography 227

[133] J. P. Gauntlett, D. Martelli, J. Sparks, and D. Waldram, “Supersymmetric

AdS(5) solutions of M theory,” Class. Quant. Grav. 21 (2004) 4335–4366,

arXiv:hep-th/0402153.

[134] J. Gutowski and G. Papadopoulos, “Supersymmetry of AdS and flat

backgrounds in M-theory,” JHEP 02 (2015) 145, arXiv:1407.5652 [hep-th].

[135] R. Britto-Pacumio, J. Michelson, A. Strominger, and A. Volovich, “Lectures on

Superconformal Quantum Mechanics and Multi-Black Hole Moduli Spaces,”

NATO Sci. Ser. C 556 (2000) 255–284, arXiv:hep-th/9911066.

[136] J. Michelson and A. Strominger, “The Geometry of (super)conformal quantum

mechanics,” Commun. Math. Phys. 213 (2000) 1–17, arXiv:hep-th/9907191.

[137] T. Hartman and A. Strominger, “Central Charge for AdS(2) Quantum

Gravity,” JHEP 04 (2009) 026, arXiv:0803.3621 [hep-th].

[138] M. Cadoni and S. Mignemi, “Asymptotic symmetries of AdS(2) and conformal

group in d = 1,” Nucl. Phys. B 557 (1999) 165–180, arXiv:hep-th/9902040.

[139] M. Alishahiha and F. Ardalan, “Central Charge for 2D Gravity on AdS(2) and

AdS(2)/CFT(1) Correspondence,” JHEP 08 (2008) 079, arXiv:0805.1861

[hep-th].

[140] J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization

of Asymptotic Symmetries: An Example from Three-Dimensional Gravity,”

Commun. Math. Phys. 104 (1986) 207–226.

[141] M. van Beest, S. Cizel, S. Schafer-Nameki, and J. Sparks, “I/c-Extremization

in M/F-Duality,” SciPost Phys. 9 (2020) 029, arXiv:2004.04020 [hep-th].
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