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A novel approach for mode shape feature extraction and model updating of axisymmetric structures based on radial Tchebichef
moment (RTM) descriptors is proposed in this study. (e mode shape features extracted by RTM descriptors can effectively
compress the full-field modal vibration data and retain the most important information.(e reconstruction of mode shapes using
RTM descriptors can accurately describe the mode shapes, and the simulation shows that the RTM function is superior to Zernike
moment function in terms of its mathematical properties and its shape reconstruction ability. In addition, the proposed modal
correlation coefficient of the RTM amplitude can overcome the main disadvantage of using the modal assurance criterion (MAC),
which has difficulty in identifying double or close modes of symmetric structures. Furthermore, the model updating of axi-
symmetric structures based on RTM descriptors appears to be more efficient and effective than the normal model updating
method directly using modal vibration data, avoids manipulating large amounts of mode shape data, and speeds up the
convergence of updating parameters. (e RTM descriptors used in correlation analysis and model updating are demonstrated
with a cover of an aeroengine rig. (e frequency deviation between the test and the FE model was reduced from 17.13% to 1.23%
for the first 13 modes via the model updating process. It verified the potential to industrial application with the proposed method.

1. Introduction

An accurate and validated finite element (FE) model of a
structure is able to predict the dynamic characteristics of
structures, such as natural frequencies and mode shapes,
with high precision [1, 2]. (e modal assurance criterion
(MAC) [3], which is defined as the cosine of the angle
between the predicted and measured eigenvectors, is the
most commonly used method to evaluate discrepancies of
mode shapes between the analytical prediction and the
measured.(is is a valuable tool inmodematching and takes
a key step in model updating. However, using only the MAC
to represent the correlation of the FE model and the test has
a crucial limitation since its value will be affected by the
number and location of the comparative points. For large
and complex structures, it is difficult to use the MAC to
describe variations of mode shapes, either locally or globally.

Further difficulties occurred with the development of vi-
bration testing technology such as the laser Doppler vibr-
ometer (LDV) [4, 5], where the full-field vibrationmode data
can be obtained with a significantly increased number of
measured points. One of the main limitations of the MAC
for large vibration datasets is that it only reflects the simple
comparison between two arrays, which restricts the ex-
traction of features from vibration data and hence reduces
the significance of any comparison of these features. An-
other important limitation is that the MAC struggles to
identify double modes in symmetrical structures, where the
modes have close frequencies and similar mode shapes, but a
rotation angle exists between the mode shapes.

For model updating, the vibration data includes a wealth
of information on the vibration characteristics. Hence, by
applying model updating using the measured data, the
updated model will represent more closely to the actual
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structural dynamics. However, the mode shape data are
commonly used for correlation analysis and rarely used in
updating directly due to the size of the modal data and the
lack of sensitivity with respect to the updating parameters.

In recent years, image processing techniques have been
introduced into dynamics. Molina-Viedma [6] used high-
speed 3D digital image correlation for full-field modal
analysis. (e concept of the moment function from image
processing was put forward byHu [7] in 1962 who defined the
geometric moment in terms of translation, rotation, and
scaling invariants. Subsequently, rotational moments [8],
regular moments [9], and complex geometric moments [10]
were proposed. However, the kernel functions of these
moments are not orthogonal, and there were data redun-
dancies when using them to extract image features. Teague
[11] proposed Zernike moments that satisfy orthogonality in
1980 and used these Zernike moments to exact shape features
from an image, with benefits of properties of orthogonality,
rotation invariance, and low noise sensitivity. Teh and Chin
[12] compared geometric, Legendre, Zernike, pseudo-Zer-
nike, rotational, and complex moments in image expression
ability, noise sensitivity, and information redundancy and
showed that overall, the performance of Zernike moments
superseded the alternative five moments. Since then, Zernike
moments have been widely used in image recognition
technology [13], image digital watermarking technology [14],
structure modal analysis [15], and so on. However, Zernike
polynomials are continuous functions, whereas the image
domain is discrete, and so there will be discretization errors
that lead to inaccuracies. (us, Mukundan [16] proposed the
discrete orthogonal Tchebichef moments, which overcame
the numerical errors introduced by kernel discretization and
made the calculation more accurate. Later, other discrete
orthogonal moments were also proposed, such as Krawtch-
ouk [17], Racah [18], and Dual Hahn moments [19]. (ese
moments do not account for rotational invariance, which is a
major drawback, and so, they are unsuitable for pattern
recognition and identification. Mukundanet al. [20] proposed
the radial Tchebichef moments, constructed by Tchebichef
moments and trigonometric functions. Compared to other
moments, the radial Tchebichef moments have many ad-
vantages: (1) orthogonal kernel functions support minimal
information redundancy when extracting image features, (2)
discrete kernel functions prevents the discrete approximation
of continuous integrals of the moments, and (3) rotational
invariance allows circular structures to be processed.

Given the aforementioned advantages, Wang et al.
[21, 22] were the first to successfully apply Tchebichef and
Zernike moments in structural dynamics to extract features
of the mode shapes. (e Zernike moments were used to
analyze three different structures: a disk, rectangular plate,
and a disk with added mass, where the mode shapes were
extracted and used for correlation analysis. (e Tchebichef
moments were used to extract shape features and perform
correlation analysis and model updating for a composite
sandwich panel. Zang et al. [23, 24] also conducted research
on Zernike and Tchebichef moments and successfully ap-
plied Zernike moments to the model updating of an aero-
engine disk.

(is study introduces a novel radial Tchebichef moment
into the field of structural dynamics for model correlation
analysis and updating. Section 2 introduces the basic concept
and computing method of radial Tchebichef moments to
extract features of mode shapes images and the model
correlation and updating methods based on the RTMs. (e
further correlation analysis of a simulated disk using RTMs
is introduced in Section 3.Model updating based on RTMs is
demonstrated with a practical structure of an aeroengine test
rig cover in Section 4. Finally, the conclusion is discussed in
Section 5.

2. Shape Descriptors for Correlation and
Model Updating

2.1. Radial Tchebichef Moment Descriptors. For an image of
size N × N, the radial Tchebichef moment descriptors of
order p with repetition q for a given mode shape ψ(r, ϑ)

expressed in polar coordinates is defined as [25]
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1
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In equation (1), ρ(p, (N/2)) is defined as

ρ p,
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According to equation (1), the radial Tchebichef moment
descriptors can be extracted from a mode shape image, and
the radial Tchebichef moments is represented as a vector:
RT � R00, R01, R02, . . . , R10, R11, R12, . . . , Rp,q􏽮 􏽯,
wherep � 0, 1, 2, . . . , (N/2) − 1; q � 0, 1, 2, . . . , m.

(e radial Tchebichef moments Rpq in equation (1) are
complex numbers. If we use R(re)

pq to represent the real part
and R(im)

pq to represent the imaginary part of Rpq, then R(re)
pq

and R(im)
pq can be expressed as
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(5)

Assuming that the mode shape image rotates at an angle
α around the image center, the rotated mode shape becomes
another image ψ′(r, ϑ), where relationship between ψ(r, ϑ)

and ψ′(r, ϑ) may be expressed as
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ψ′(r, ϑ) � ψ(r, ϑ − α). (6)

Hence, the relation between radial Tchebichef moments
ψ′(r, ϑ) and ψ(r, ϑ) is expressed as

Rpq
′ � Rpqe

− jqα
. (7)

Equation (7) indicates that the rotated image has the
same amplitude of the radial Tchebichef moment as the
original image, that is,|Rpq

′| � |Rpq|, and so, the amplitude of
the radial Tchebichef moment is rotational invariant. In
addition, the phase of the RTM can be used to compute the
rotational angle of double modes expressed as

α �
arg Rpq􏼐 􏼑 − arg Rpq

′􏼐 􏼑

q
. (8)

Equation (8) is an important property for the use of RTM
descriptors in modal analysis of double modes.

Since the RTMs have been calculated, the original image
can be reconstructed with a truncated expansion of the
RTMs as

ψ(r, ϑ) � 􏽘
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where pmax denotes the maximum order of the recon-
structedmoments, and Rre

pq andRim
pq are given by equation (4)

and equation (5), respectively.

2.2. Correlation Analysis. (e modal assurance criterion
(MAC) descriptor, also called the modal correlation coef-
ficient, is the most common correlation method in modal
analysis. (e MAC is defined as

MAC (i, j) �
ϕe
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where the superscript T represents the matrix transpose,
ϕe

i􏼈 􏼉is the ith mode shape from the test, and ϕa
j􏽮 􏽯 is the jth

mode shape from the FE model.
Following a similar definition to the MAC, the corre-

lation coefficient of the radial Tchebichef moment amplitude
is defined as
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where H represents the conjugate transpose, and Re
i􏼈 􏼉 and

Ra
j􏽮 􏽯denote the vector of the ith radial Tchebichef moment of

the test data and the vector of the jth radial Tchebichef
moment of the FE model data, respectively.

(e values of the MAC and the correlation coefficient for
the RTMs are within the range from zero to one.(e closer is
the coefficient to one, the higher the correlation of the two
modes. If the value is zero, the two modes are uncorrelated.
(e two models in the correlation analysis can be from
various model combinations, such as FEM/test, FEM/FEM,
or both from tests (test/test). From the definition of the
MAC, its value reflects a simple comparison of two vectors in
a discrete space. However, the correlation analysis using
RTMs contains the main information of the mode shape and
the rotational invariance, meaning that it is not affected by
rotation of the mode shape.

2.3. Model Updating Based on RTMs. In the rectangular
coordinate system, equation (1) can be expressed as
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where θ is an updating parameter.(e sensitivity of the RTM
with respect to θ can be written as
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For general vibration problems, the vibration displace-
ment of the structure w(x, y, t) can be represented by the
Rayleigh Ritz method as

w(x, y, θ) � 􏽘
n

i

πi(x, y)qi(t), (14)

where the variable πi(x, y) is the ith shape function and only
depends on the structural coordinates x and y, and n is the
number of degrees of freedom. If a single modal response is
excited, then qi(t) can be expressed as

qi􏼈 􏼉 � ϕi􏼈 􏼉sin ωt, (15)

where ϕi􏼈 􏼉 is the eigenvector. (e vibration displacement is
rewritten by substituting equation (15) into equation (14) to
give

w(x, y, θ) � πT
(x, y)ϕ(θ)sin ωt. (16)

(erefore, the continuous mode shape ψ(x, y, θ) can be
expressed as a linear combination of the discrete eigen-
vectors ϕ(θ) and πT(x, y), which is a matrix of prescribed
linear-independent trial functions in terms of x and y. (us,

ψ(x, y, θ) � πT(x, y)ϕ(θ). (17)
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Substituting equation (20) into equation (13) gives
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Equation (21) indicates that the sensitivity of RTM with
respect to the updating parameter θ can be obtained by
RTMs of π(x, y) and the sensitivity of the discrete eigen-
vector with respect to the updating parameterθ.

Without considering the weight matrix, the improved
parameter estimate is given as

δθ � S
T
R,jSR,j􏽨 􏽩

− 1
S

T
R,jδR. (19)

So that the updated parameter can be expressed as

θj+1 � θj + S
T
R,jSR,j􏽨 􏽩

− 1
S

T
R,j Rm − Rj􏼐 􏼑, (20)

where θj and θj+1 represent the updating parameters of the
current and subsequent steps, SR,j is the current sensitivity
matrix, Rm is the result of test, and Rj is the current
computed result.

3. Case Study I: Correlation Analysis of a
Simulated Disk Using RTMs

3.1. Finite Element Model of the Disk. In this section, a
symmetrical structure of the disk, with diameter 200mm
and thickness 4mm, is used for simulation analysis based on
the RTMs to extract features of mode shapes and recon-
struction of mode shapes with selected RTMs. A finite
element model of the disk is built in PATRAN and shown in
Figure 1. (e disk is divided into 2521 four-node quadri-
lateral plate elements, and the boundary conditions are set to
free-free. (e material properties of the disk are given in
Table 1.

(e natural frequencies of the first 16 modes were
calculated and are listed in Table 2. Figure 2 shows the
corresponding mode shapes. From Table 2 and Figure 2,
both clearly show several double modes in this perfectly
symmetrical structure, giving mode pairs (1, 2), (4, 5), (6, 7),
(8, 9), (10, 11), (12, 13), and (15, 16).

From these mode shapes, the z-axis can be identified as
the main vibration direction. Hence, mapping the contours
of vibration amplitude in the z-direction to colors gives the
images as shown in Figure 3. Considering computational
efficiency and the requirements of the mode shape recon-
struction, the mode shapes are reconstructed using radial
Tchebichef moments up to order 15 (p � 15), and the results
are shown in Figure 4. Comparing Figure 4 with Figure 3, it
indicates that an accurate reconstruction of mode shapes can
be obtained using the first 15 orders of RTMs.

In order to show the advantage of mode shape recon-
struction using radial Tchebichef moments, the Zernike
polynomials used in reference [14] are considered here to
reconstruct the mode shapes of the disk. (e reconstructed

mode shapes using radial Tchebichef moments and Zernike
Moments (ZMs), respectively, with different orders (p � 5,
10, 20, 40) are compared and plotted in Figure 5. It can be
seen that using RTMs to reconstruct mode shapes has ob-
vious advantages. With only a low order of RTMs (p � 5),
the mode shape images can be reconstructed with a good
quality. With the increase of the moment order p, the quality
of reconstruction gradually increases not only for the low
vibration modes but also for the higher modes with more
complex shapes. (e radial Tchebichef moment functions
are shown to have high stability in image reconstruction. On
the contrary, the reconstructed mode shape images using
first 5 orders of Zernike moment functions in the initial stage
show a relatively good match with the originals, except for
modes 15 and 16. (e reconstructed shapes reach the best
match with the original shapes for all considered modes
when the order of ZMs is taken as 10. Afterwards, the
reconstructed images for all mode shapes become worse
with the increase of the order, and they reach the poorest
when the order of ZMs equals 40. (us, the reconstruction
effect using Zernike moment functions is unstable and very

Figure 1: Finite element mesh of the disk.

Table 1: Material properties of the disk.

Mass density Poisson’s ratio Elasticity modulus
7850 kg/m3 0.24 199 Gpa

Table 2: Natural frequencies of the finite element model of the disk.

Mode Natural frequencies
(Hz) Mode Natural frequencies

(Hz)
1 131.72 9 530.46
2 131.72 10 810.15
3 210.49 11 810.15
4 303.75 12 833.36
5 303.75 13 833.36
6 483.47 14 903.91
7 483.47 15 1141.41
8 530.46 16 1141.41
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poor for the more complex mode shapes considered. (e
radial Tchebichef moment function is superior to Zernike
moment function in terms of its mathematical properties
and its shape reconstruction ability.

3.2. Correlation Analysis Using RTMs. Correlation analysis
is an important tool for model matching, and the MAC is a
conventional and most commonly used method. Figure 6
shows the result of autocorrelation or the AutoMAC, where
the FE modes are correlated with themselves. (e MAC
values along the diagonal are close to 1, and the off-diagonal
terms are close to zero. However, each of the pair of a double
mode has distinct mode shapes, and hence, the MAC values
between them are very close to zero. In fact, the shapes of the
double modes are very similar to each other, and the dif-
ference is only due to small rotations with respect to z-axis,
for example, a 45∘ rotation between modes 1 and 2 and a 30∘
rotation between modes 4 and 5.

(e RTM descriptors can overcome the disadvantage of
the MAC in the autocorrelation analysis because of the

rotation invariance of the radial Tchebichef moment. Fig-
ure 7 shows the correlation coefficients using the radial
Tchebichef moment amplitudes. (e superiority of the
correlation analysis by RTMs is obvious after comparing
with the MAC analysis, and the presence of the double
modes is clearly visibly as shown in Figure 7. Furthermore,
the angle between double modes can be calculated by RTMs.
Figure 8 shows the maximum RTM in polar coordinates.
Taking modes 4 and 5 as an example, the maximum RTM of
the two modes is R13, meaning the repetition is 3 and the
angle of the maximum RTM is 90∘. (e angle between the
two modes can be computed by equation (8), and hence,

α �
arg R13( 􏼁 − arg R13′( 􏼁

3
�
90∘

3
� 30∘. (21)

Using the same method, the angles of all of the double
modes are given in Table 3.

In Table 3, only the maximum RTM is used to compute
rotation angles. However, different principal RTMs can also
be used. Table 4 shows that by using the maximum RTM, the
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Figure 2: (e first 16 vibration mode shapes of the disk.

Shock and Vibration 5



1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 3: Mode shape contour maps from the FE model.
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Figure 4: (e reconstructed mode shapes of the disk with p � 15.

6 Shock and Vibration



Order (p) Reconstruction with RTMs Reconstruction with ZMs

5

10

20

40

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 5: Comparison of the reconstruction of disc mode shapes for different orders.
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2nd RTM and the 3nd RTM to compute rotation angles,
consistency can be achieved, thus demonstrating the ap-
propriateness of this method.

4. Case 2: Model Updating Using RTMs

Model updating based on RTMs is now demonstrated on
the cover of an aeroengine test rig. A finite element model
was developed, a modal test was performed, RTMs were
used for correlation, and the model was updated.

4.1. ?e Modal Test and FE Model of an Aeroengine Test Rig
Cover. Figure 9 illustrates the physical shell structure used
for this example. Figure 10 shows the FEmodel in PATRAN,
divided into 11093 Tet10 elements, where the boundary
conditions are free-free. (e material properties of the cover
are given in Table 5.(e natural frequencies predicted by the
FE model of the cover are given in Table 6. As the main

vibrations of the cover are in the body, the measuring points
are laid on its surface as shown in Figure 11. Figure 12 shows
the test model with 49 measurement points. (e cover was
supported by a compliant sponge mat to simulate the free-
free condition, and hammer excitation was used.(e natural
frequencies of the first 13 modes obtained from the test are
shown in Table 7.

Figure 13 shows the vibration mode shape predicted by the
FE model, and Figure 14 shows the mode shapes measured by
the test. As the main vibration direction is the x-axis (defined in
Figure 10), the vibration amplitude of x-axis can be used to
specify color contours levels. (ese contour plots for the FE
model and the test are shown in Figures 15 and 16, respectively.
(e natural frequency predictions show a large difference to the
experiments, particularly for modes 6–9.

(e RTMs are extracted, and for the first eight modes,
the RTM amplitudes are shown in Figures 17 and 18. (e
results show that only a minority of 500 RTMs are
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Figure 6: AutoMAC.
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Figure 7: Autocorrelation analysis by RTMs.
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Figure 8: Maximum RTMs.

Table 3: Angles between the double modes.

Double modes Maximum RTM Maximum RTM angle Maximum RTM repetition Angle of double modes
(1, 2) R12 89.94 2 44.97
(4, 5) R13 −90.00 3 −30.00
(6, 7) R21 89.99 1 89.99
(8, 9) R14 −90.65 4 −22.66
(10, 11) R15 89.99 5 18.00
(12, 13) R22 −89.94 2 −44.97
(15, 16) R16 89.49 6 14.91
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Table 4: Rotation angles using different RTMs.

Double modes (e maximal RTM (e 2nd RTM (e 3rd RTM
(1, 2) 44.97 45.00 45.27
(4, 5) −30.00 −30.00 −29.99
(6, 7) 89.99 89.98 90.00
(8, 9) −22.66 −23.17 −20.60
(10, 11) 18.00 17.99 18.03
(12, 13) −44.97 −45.01 −45.16
(15, 16) 14.91 14.74 16.02

Figure 9: Cover structure.

x

y

z

Figure 10: FE mesh of the cover.

Table 5: Material properties of the aeroengine test rig cover.

Density Poisson’s ratio Elasticity modulus
7900 kg/m3 0.24 184 GPa

Table 6: Natural frequencies predicted by the FE model of the
cover.

Mode Natural frequency (Hz) Mode Natural frequency (Hz)
1 714.40 9 2258.94
2 714.66 10 2780.27
3 787.41 11 3265.81
4 1471.24 12 3266.38
5 1473.49 13 4065.59
6 2251.54 14 4074.88
7 2253.15 15 4299.76
8 2258.86 16 4325.20

Figure 11: Test configuration of the cover.

Figure 12: Test model of the cover.
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significant. For each mode, using just a small number of
RTMs, the mode shape can be described with precision,
and hence, the data are compressed. In addition, there are
many RTMs whose amplitudes are smaller in the test than
in the prediction and have little effect on the whole shape
because the modal test is influenced by noise. Some re-
searchers have shown that choosing suitable RTMs to
reconstruct the vibration mode shapes can reduce the
influence of noise.

4.2.CorrelationAnalysis. To analyze the correlation between
the prediction and the test, the MAC-based and RTM-based
correlation were computed and compared. Figures 19(a) and
19(b) show the autocorrelation of the prediction of the FE
model using the MAC and RTM, respectively. Similarly,
Figures 20(a) and 20(b) show the autocorrelation of the test
using the MAC and RTM, respectively. For the AutoMAC,
the value on the diagonal is 1, whereas the other values are
closer to zero, meaning the degrees of freedom of this cover

Table 7: Natural frequencies of cover obtained from the experiment.

Mode Natural frequency (Hz) Mode Natural frequency (Hz)
1 634.67 8 2452.27
2 642.16 9 2464.95
3 864.28 10 3019.31
4 1617.86 11 3521.61
5 1620.11 12 3526.16
6 1928.52 13 3912.75
7 1953.65
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Figure 13: Vibration mode shape predictions from the FE model of the cover.
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structure can be confidently replicated. Figures 19(b) and
20(b) show that the mode shapes with similar characteristics
due to double modes are clearly visible using the method
based on RTMs.

Figures 21(a) and Figure 21(b) show the correlation
between the prediction of the FE model and the test data
using the MAC and RTM, respectively. (ere are now larger
values in the off-diagonal terms because of the mismatch
between the model and the physical structure. Table 8 shows
the detailed numerical results of the correlation analysis,
indicating a large frequency deviation between the FE model
and the test, with a maximum of 17.13% and a minimum of
−7.25%. Due to the interaction of double modes, the highest
values of the MAC are smaller than those for the RTMs,
which has rotation invariance to overcome the effect of
rotational angles in the correlation analysis. For instance, the
correlation coefficient values of the RTMs of modes 1 and 2
are significantly larger than those of the MAC.

4.3. Model Updating. Model updating is often necessary
because of the differences between the test results and the
prediction. After comparing the results of the prediction and
the test further, two main causes of the discrepancies can be
identified: (i) discretisation errors introduced by finite ele-
ment modeling and (ii) structure deviation in manufacturing.
Figures 22 and 23 show themagnified images of the cover and
the FEmodel.(e location of the hole on the side of the cover
is significantly different from the location in the design. (is
problem is compounded by the fact that all of the other holes
also have the same error. To resolve this error in themodeling,
the FE model of the shell is divided into 4 groups (red, green,
blue, and yellow) as shown in Figure 24.

(e elastic modulus of the four groups of the material
was chosen as the updating parameters, along with the
reference data given by the natural frequencies and RTMs
from the test. Figure 25 shows the change in frequency
deviation and updating parameters over various iterations.

1 2 3 4

5 6 7 8

9 10 11 12

13

Figure 14: Vibration mode shapes from the test.
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After 18 iterations, the updating process converges. Fig-
ure 26 shows that the correlation analysis of the FE model
after model updating matches the result of the test modes

using RTMs. Table 9 shows the comparison of the frequency,
MAC, and RTMAC before and after model updating.(e data
show that after model updating, the frequency deviation is

1 2 3 4

5 6 7 8

9 10 11 12

13

Figure 16: Contour plots of the mode shapes from the test.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 15: Contour plots of the mode shapes from the FE model of the cover.
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Figure 18: RTMs of the first 8 modes of the test.
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Figure 19: Autocorrelation of the FE model. (a) AutoMAC of the FE model. (b) Autocorrelation analysis by RTMs of the FE model.

14 Shock and Vibration



significantly reduced, and the maximum has decreased to
1.23%. Furthermore, the majority of the frequency devia-
tions are smaller than 1%. (ere is a small increase in the
MAC values of the lower modes because the model updating
used the RTM data as reference and did not consider the
MAC.

After model updating, the changes in the updating
parameters are shown in Table 10, where E1–E4 represent
the elastic modulus of material groups 1–4. After updating,
there was a substantial change in E1 and E3, indicating that
the model errors from the holes had significantly influenced
these two groups. (e changes in E2 and E4 are smaller, and
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Figure 20: Autocorrelation based on the test data. (a) AutoMAC of the test. (b) Autocorrelation analysis by RTMs of the test.
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Figure 21: Correlation between the FE model and test. (a) MAC values between the FE model and test. (b) Correlation analysis by RTMs
between the FE model and test.
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Table 8: Correlation coefficient and frequency deviation between the FE model and test.

Test FE model
Frequency deviation (%) MAC (%) RTMAC (%)

Mode Natural frequency (Hz) Mode Natural frequency (Hz)
1 634.67 2 714.66 12.60 53.57 91.74
2 642.16 1 714.40 11.25 49.73 91.74
3 864.28 3 787.41 −8.89 98.78 96.81
4 1617.86 4 1471.24 −9.06 68.15 83.74
5 1620.11 5 1473.49 −9.05 57.89 81.92
6 1928.52 9 2258.94 17.13 78.73 84.68
7 1953.65 8 2258.86 15.62 79.88 86.85
8 2452.27 7 2253.15 −8.12 93.83 86.02
9 2464.95 6 2251.54 −8.66 93.00 86.99
10 3019.31 10 2780.27 −7.92 89.98 87.02
11 3521.61 12 3266.38 −7.25 77.84 75.46
12 3526.16 11 3265.81 −7.38 80.84 79.19
13 3912.75 16 4325.20 10.54 16.45 72.05

Figure 22: Zoomed image of the flange of the cover.

Figure 23: Zoomed image of the FE model.

E1
E2

E3
E4

Figure 24: Groups of updating areas of the cover structure.
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Figure 25: Updating process using RTM and frequency data.

FE
M

0

0.2

0.4

0.6

0.8

2

4

6

8

10

12

14

16

4 6 8 10 122
Test

Figure 26: Correlation analysis using RTMs between the test and the FE model after updating.

Table 9: Frequency deviation and RTM correlation values before and after model updating.

Test
FEM Frequency

deviation (%) MAC (%) RTMAC (%)
Initial FEM Updated FEM

Initial Updated
Mode Natural frequency Mode Natural frequency Mode Natural frequency Initial Updated Initial Updated
1 634.67 2 714.66 1 642.48 12.60 1.23 53.57 78.68 91.74 92.02
2 642.16 1 714.40 2 643.48 11.25 0.21 49.73 76.46 91.74 93.50
3 864.28 3 787.41 3 853.85 −8.89 −1.21 98.78 98.79 96.81 96.91
4 1617.86 4 1471.24 4 1598.17 −9.06 −1.22 68.15 68.48 83.74 84.12
5 1620.11 5 1473.49 5 1600.44 −9.05 −1.21 57.89 58.65 81.92 82.56
6 1928.52 9 2258.94 6 1935.65 17.13 0.37 78.73 55.17 84.68 83.66
7 1953.65 8 2258.86 7 1943.67 15.62 −0.51 79.88 61.24 86.85 85.78
8 2452.27 7 2253.15 9 2445.97 −8.12 −0.26 93.83 94.30 86.02 86.40
9 2464.95 6 2251.54 8 2444.09 −8.66 −0.85 93.00 92.86 86.99 87.43
10 3019.31 10 2780.27 10 3017.49 −7.92 −0.06 89.98 89.94 87.02 86.99
11 3521.61 12 3266.38 13 3544.50 −7.25 0.65 77.84 76.61 75.46 76.85
12 3526.16 11 3265.81 12 3543.99 −7.38 0.51 80.84 82.86 79.19 80.61
13 3912.75 16 4325.20 14 3912.86 10.54 0.00 16.45 80.70 72.05 74.44
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hence these may be considered as the discretization errors of
the two groups that is equivalent to a change in the elastic
modulus. Above all, the example of the cover structure
demonstrates the feasibility of using RTMs in correlation
analysis and model updating.

5. Conclusion

(e implementation of radial Tchebichef moment de-
scriptors can effectively extract features of vibration mode
shapes of symmetric structures and is able to compress the
full-field modal vibration data. (e most important infor-
mation of the mode shapes is retained in the form of radial
Tchebichef moment descriptors. (e rotational angle of the
double/close modes of symmetric structures can be iden-
tified as well with RTMs.(e simulation analysis to deal with
the images of mode shapes from a disk structure shows that
mode shape reconstruction using the radial Tchebichef
moments has more advantage than that using the Zernike
moments. With the increase of the moment order, recon-
struction using RTMs shows the better quality and higher
stability, compared to the reconstruction using Zernike
moments. In addition, the proposed modal correlation
coefficient of RTM amplitude can overcome the main dis-
advantage of using the modal assurance criterion (MAC),
which has difficulty in identifying double or close modes of
symmetric structures. (e model updating of axisymmetric
structures based on RTM descriptors can speed up the
convergence of updating parameters without dealing with
large amounts of mode shape data. (e RTM descriptors
used in correlation analysis and model updating are dem-
onstrated with a cover of an aeroengine test rig. A modal test
was performed, and an FE model was built. (e results
showed that the frequency deviation between the test and the
FE model reduced from 17.13% to 1.23% after model
updating for the first 13 modes. It demonstrates the effec-
tiveness and efficiency of the proposed method.
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