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Abstract

A generic analytical framework is proposed to obtain the dynamic elastic moduli of lattice
materials under steady-state vibration conditions. The dynamic deformation behaviour
of the individual beam elements of a lattice is distinct from the behaviour under a static
condition. This leads to a completely different global deformation pattern of the lattice
material and subsequently opens up a tremendous opportunity to modulate amplitude
and phase of the elastic properties of lattices as a function of the ambient vibration. The
dynamic stiffness approach proposed in this article precisely captures the sub-wavelength
scale dynamics of the periodic network of beams in a lattice material using a single beam-
like member. Here the dynamic stiffness matrix of a damped beam element based on the
Timoshenko beam theory along with axial stretching is coupled with the unit cell-based
approach to derive the most general closed-form analytical formulae for the elastic moduli
of lattice materials across the whole frequency range. It is systematically shown how the
general expressions of dynamic elastic moduli can be reduced to different special cases by
neglecting axial and shear deformations under dynamic as well as classical static condi-
tions. The significance of developing the dynamic stiffness approach compared to conven-
tional dynamic finite element approach is highlighted by presenting detailed analytical
derivations and representative numerical results. Further, it is shown how the analytical
framework can be readily extended to lattices with non-prismatic beam elements with any
spatial variation in geometry and intrinsic material properties. In general, research ac-
tivities in the field of lattice metamaterials dealing with elastic properties revolve around
intuitively designing the microstructural geometry of the lattice structure. Here we pro-
pose to couple the physics of deformation as a function of vibrating frequency along with
the conventional approach of designing microstructural geometry to expand the effective
design space significantly. The stretching-enriched physics of deformation in the lattice
materials in addition to the bending and shear deformations under dynamic conditions
lead to complex-valued elastic moduli due to the presence of damping in the constituent
material. The amplitude, as well as the phase of effective elastic properties of lattice ma-
terials, can be quantified using the proposed approach. The dependence of Poisson’s ratio
on the intrinsic material physics in case of a geometrically regular lattice is found to be in
contrary to the common notion that Poisson’s ratios of perfectly periodic lattices are only
the function of microstructural geometry. The generic analytical approach for analysing
the elastic moduli is applicable to any form of two- or three-dimensional lattices, and any
profile of the constituent beam-like elements (different cross-sections as well as spatially
varying geometry and intrinsic material properties) through a wide range of frequency



band. The closed-form expressions of elastic moduli derived in this article can be viewed
as the broadband dynamic generalisation of the well-established classical expressions of
elastic moduli under static loading, essentially adding a new exploitable dimension in the
metamaterials research in terms of dynamics of the intrinsic material.
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1. Introduction

Lattice-based materials are a class of mechanical metamaterials which are typically
characterised by the periodicity of a unit cell. An interesting aspect of such metamaterials
is that the overall property is largely dependent on the geometric features of the periodic
unit cells besides the intrinsic property of the constituent material. Intense research in
recent years show exciting and unprecedented developments such as ultralight metamate-
rials [1] approaching theoretical strength limit [2], pentamode materials [3] with cloaking
mode [4], negative refraction elastic waves [5], far-field actuation dependent local shape
and stiffness modulation [6, 7], elastic cloaking [8, 9], hyperbolic elastic metamaterials
[10], negative Poisson’s ratio (auxetic) materials [11, 12], materials with negative effec-
tive elastic modulus [13], negative mass density [14], multi-physical and multi-material
property modulation [15-17] and nano-scale multi-functional properties [18-22]. Such ad-
vanced materials are often used in vibrating systems such as aerospace structures, wind
turbine and a plenty of electro-mechanical devices. In a vibrating condition, deformation
behaviour of the individual beam elements of a lattice material becomes significantly dif-
ferent from the behaviour under a static condition. This leads to a completely different
global deformation behaviour of the lattice material and subsequently the effective elastic
properties such as Young’s moduli, shear modulus and Poisson’s ratios become dependent
on the vibration parameters. Focus of this article is to investigate the effective elastic
properties of lattice materials as a function of vibrating frequencies covering a broad
brand.

A unit cell (or representative volume element) based approach to obtain effective prop-
erties (also know as homogenisation methods) of periodic elastic materials can be traced
back to the classical work by Hashin and Shtrikman [23]. Exploiting periodic bound-
ary conditions and mechanics of a unit cell, equivalent mechanical properties for cellu-
lar materials have been investigated in [24-31]. Homogenisation of metamaterials with
sub-wavelength dynamics needs to differ from the classical homogenisation approaches
due to the fact that there are local resonators embedded in metamaterials. This has
led to the development of dynamic homogenisation approaches [32-35]. The dynamic
homogenisation can be viewed as a higher-order method [36] compared to the classical
static homogenisation approaches. The unit cell based homogenisation approaches are
strictly not applicable when the lattices are not perfectly periodic, as will be the case
when random inhomogeneities are present in the metamaterial. To address this issue, the
idea of ‘representative unit cell element (RUCE) was introduced [37, 38] in the context
of static homogenisation of cellular metamaterials. This approach is a step-change in the
field as it provides the analytical basis for considering inhomogeneities in cellular metama-
terials and develops closed-form physics-based expressions for equivalent (static) elastic
properties. The effective out-of-plane elastic properties of randomly disordered lattices
are shown in [39]. Homogenisation of continuum systems with random circular inclusions
have been discussed recently [40, 41] for static problems.

Vibration and wave propagation in periodic structures [42] plays a crucial role in the
analysis and design of metamaterials. Extensive works have been undertaken since the
mid 60’s on dynamics of periodic structures [43]. The main motivation was to efficiently
analyse large aerospace structures made of periodic units such as periodically stiffened
shell in an aircraft fuselage. One of the most popular computational methods for analysing
wave propagation in metamaterials rely on the Floquet-Bloch theorem [44], which is es-
sentially based on periodic boundary condition for a unit cell. Overall wave propagation
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Fig. 1: Generic lattice metamaterials under vibrating condition. (a) Typical representation of a generic
lattice metamaterial under dynamic loading (such as the honeycomb core as a part of sandwich structures
used in aircraft components). Here we show a multi-scale framework starting from the macro-structure
level of an aircraft to the microstructure level of the honeycomb. (b) Hexagonal unit cell under vibration,
where the deformation mechanism of each constituent beam elements are different from their static
counterpart (¢) A Timoshenko beam element with two nodes and six degrees of freedom consisting of
the axial deformation, transverse deformation and rotation at the two nodes. Here the displacement field
in between the two nodes is expressed using complex frequency-dependent shape functions. (d) Typical
representation of different beam shapes which could potentially be used as constituent beams in proposed
analytical framework (e - i) Different types of lattices where the proposed analytical approach could be
readily applicable (the respective unit cells are highlighted).

behaviour depends on the dynamic characteristics of a unit cell and can be understood
in terms of the band-gaps [42, 45]. Consequently, efficient analytical methods [46] and
numerical methods for the computation of bandgaps of metamaterials have taken centre
stage in most current research [47-49]. Classical wave propagation approaches were devel-
oped for undamped metamaterials. Few authors have considered damped metamaterials
[50] where internal damping within a unit cell is considered explicitly [51, 52].

Dynamic elastic moduli of metamaterials differ from the effective elastic moduli under
a static condition [53]. Such dynamic elastic moduli are a function of the forcing frequency
of vibration. The difference is due to the fact that deformation behaviour of the consti-
tuting members (such as the beam indicated in Fig. 1) is different in static and dynamic
environments. This essentially leads to a significant deviation (/enhancement) in elastic
moduli of lattice materials, which is actually a network of such constituent members.
The enhanced elastic moduli has been proposed to be exploited in the optimum design
of various structural systems (such as aircraft wings and turbine blades), which are sub-



jected to vibration during the operational condition [53]. It can be shown that the elastic
moduli could become negative at certain frequencies depending on the microstructural
configuration. In a recent paper, the sub-wavelength scale dynamics in the deformation
of a constituent beam element has been captured based on dynamic stiffness approach
considering only bending deformation. This has led to the derivation of closed-form an-
alytical limits of negative elastic moduli [54, 55]. In this context, it is important to note
that three contributing mechanisms in the effective deformation of lattice materials are
bending, shear and axial, among which bending deformation is normally predominant in
the static elastic moduli for thin cell-walled hexagonal lattices. Such lattices can effec-
tively be analysed using the Euler-Bernoulli beam theorem. However, even in case of thin
cell-walled lattices, the shear and axial deformation can assume significant role in case of
higher frequencies. Thus the previous analytical framework [53] is essentially restricted
to the low frequency range and thin cell walls.

In this paper we aim to develop a generic analytical framework applicable to a broad
band of frequency based on Timoshenko beam formulation [57, 58] coupled with the
dynamic stiffness approach, wherein all the three deformation mechanisms (bending, axial
and shear) can be accounted. Thus the proposed formulation will be applicable to static
as well as higher frequencies of vibration without any restriction of cell wall thickness.
First, the dynamic stiffness of a single beam element is developed based on Timoshenko
beam theory and thereafter, the dynamic stiffness matrix of a single beam element will be
utilized to obtain the effective elastic properties of the entire periodic lattice on the basis
of unit cell approach (refer to Fig. 1(a-c)). Most of the research activities in the field of
lattice metamaterials dealing with elastic properties revolve around intuitively designing
the microstructural geometry of the lattice structure. Here we essentially propose to
couple the physics of deformation as a function of vibrating broad band frequency along
with the conventional approach of designing microstructural geometry to expand the
effective design space significantly. In the following sections, first a detailed derivation
of the effective frequency-dependent elastic properties of lattice materials (including the
derivation of static and dynamic stiffness matrices for a single beam element and the
effective elastic properties of the entire lattice there after) is presented along with insightful
numerical results, followed by discussions on several special cases and generality of the
proposed framework, and concluding remarks.

2. Overview of the unit cell approach for equivalent elastic moduli

2.1. Equivalent in-plane elastic moduli

The effective elastic properties of a lattice material is important for global stress-
strain analysis. When in-plane elasticity of orthotropic 2D materials are considered, the
constitutive relationship can be expressed as [56]

€11 1/E1 —V21/E2 0 011
€99 = —1/12/E1 1/E2 0 0929 (].)
2812 0 0 1/CTY12 012

Here £(,) and o(,) represent strain and stress within the 2D material. In the above equation
E is the longitudinal Young’s modulus, FEs is the transverse Young’s modulus, G, is the
shear modulus, 15 and 15 are the Poisson’s ratios. These five quantities explicitly define
stress-strain relationship. This can be illustrated by inverting the coefficient matrix in
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We consider the case when external stress or strain applied to the material is dynamic
in nature. Without any loss of generality, the steady-state condition is assumed along
with the fact that the applied excitation is harmonic in nature. Considering the linear
material behaviour, we can deduce that both stress and strain will be functions of a same
frequency value. From Eq. (2) we can therefore obtain
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In this expression, all the five elasticity constants (three elastic moduli and two Poisson’s
ratios) are frequency dependent. The aim of this paper is to derive analytical expressions
of these quantities. The frequency depended elasticity constants have some advantages
over the classical ‘static’ elastic constants for 2D lattices:

e Physical insights: The frequency depended elasticity constants give a more com-
prehensive characterization of these crucial material constants as the excitation
frequency changes. The ‘static’ elastic constants appear as a special case when the
frequency is ‘zero’. The adaptive nature of the materials constants in the frequency
domain gives rise to exciting new physical phenomenon such as negative elastic mod-
uli at certain frequency ranges [54, 55|, negative mass density [59] and anisotropic
mass density [60].

e Quantification of damping: Due to the presence of damping in the microstructure,
the material constants become complex-valued functions in the frequency domain.
This gives a direct route to quantify damping of the overall material. This is in
general not possible if classical elastic constants are used.

o Computational advantage: Dynamic analysis of complex systems with embedded
cellular materials is governed by boundary value problems. In general, some numer-
ical methods such as the finite element method are necessary to solve such problems.
The use of frequency dependent elasticity constants will allow coarser discretisation
leading to an efficient computational approach. This is possible because frequency
dependent elasticity constants take account of inertia properties and localised vi-
bration modes accurately.

Frequency-dependent elasticity constants, therefore, quantify equivalent homogeneous
properties of 2D lattices when subjected to external harmonic excitation. Although the
equivalent homogeneous properties are considered here, another area where the proposed
formation will be relevant is the in-plane wave propagation [61, 62]. Here frequency de-
pendent elasticity constants can be incorporated for enhanced computational efficiency
and accuracy.



2.2. The unit cell model

The effective elastic property of a lattice structure can be obtained by exploiting the
periodicity of a suitably selected unit cell. The choice of the unit cell is not unique.
If a two-dimensional lattice is perfectly periodic in both the directions and there are a
sufficient number of unit cells, the equivalent elastic properties are independent of the
choice of the unit cell as long as it physically represents the entire lattice structure.
Therefore, it is customary to choose a unit cell which simplifies the analysis. In Fig. 2
we show a representative example of a hexagonal lattice and its corresponding unit cell.
Each of the cell walls bend and stretch when subjected to in-plane stress. When the
applied stress is uniform along with the out of plane, each elements of the unit cell in
Fig. 2(b) can be modelled as a beam. Here we briefly discuss the statics and dynamics of
beams using different standard approaches. Two different types of beam theories, namely,
Euler-Bernoulli beam theory and Timoshenko beam theory will be covered. For each of
the beam theories, three different ways of modelling the deformation will be investigated
- (a) static deformation, (b) dynamics using the conventional finite element approach,
and (c) the dynamic stiffness approach. These three approaches are ordered in the degree
of higher fidelity. The static analysis can be considered as a special case of a dynamic
analysis when the frequency is zero. For the dynamic analysis in general we consider that
the system is damped. This, in turn, will result in complex system matrices.

2.3. The beam elements for static analysis

In this subsection we have briefly presented the beam stiffness matrices under static
condition for the sake of completeness. It may noted that this particular subsection is not
novel; however, it is kept in this paper concisely to maintain the flow of understanding
and chronological development of the research topic.

2.3.1. Fuler-Bernoulli beam element

The equation governing the transverse deflection of a beam modelled using the Euler-
Bernoulli beam theory [57] is given by

Mw
Bl =y (4)

Here w = w(z) and f, = f,(x) are the transverse displacement and applied transverse
forcing on the beam. The quantity ET is the bending stiffness of the beam, I is the inertia
moment of the beam cross section and E is the Young’s modulus of the beam material
(i.e. intrinsic material property). If the axial deformation is considered, the equation
governing is expressed as
PPu .
or? fa ( )
where u = u(z) and f, = f,(z) are the axial displacement and applied axial forcing on
the beam. Here EA is the axial stiffness of the beam and A is the area of the beam
cross-section. It is well known that the force-displacement relationship of a beam element
governed by the above two differential equation can be ezactly represented using the finite
element formulation with cubic shape function for the bending and linear shape function
for the axial deformation. A beam element of length L is shown in Fig. 3 with two nodes
and three degrees of freedom per node. The degrees of freedom in each node corresponds

EA



Fig. 2: (a) Typical representation of a hexagonal lattice (b) The unit cell considered in this paper.
Dimensions of the three-beam element are shown in the figure (¢) The out of plane cross-section of each

beam element.
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Fig. 3: A beam element with six degrees of freedom and two nodes. The degrees of freedom in each node

corresponds to the axial, transverse and rotational deformation.

to the axial, transverse and rotational deformation. The stiffness matrix [57, 63] of the
beam element in Fig. 3 can be expressed by
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The subscript s in the above equation denotes the fact that the stiffness matrix is ob-
tained using the shape functions satisfying the governing equations of static deformation.
The displacements corresponding to degrees of freedom 1 and 4 correspond to the axial
deformation governed by Eq. (5), while the displacements corresponding to degrees of
freedom 2, 3, 5 and 6 correspond to the bending deformation governed by Eq. (4).



2.3.2. Timoshenko beam element
The equations governing the transverse deflection [57] of a beam modelled using the
Timoshenko beam theory are given by

2
kAG% <%_9> =0 and El%ijAG (g—:—@) =/ (7)
Here 6 = 0(x) is the rotation of the beam, kAG is the shear stiffness with G as the shear
modulus and k is the shear area coefficient. For solid rectangular sections k& = 5/6 and
for solid circular sections k = 9/10. Following the conventional finite element method, it
can be shown that the stiffness matrix [57, 63] of the Timoshenko beam element can be
expressed as

EA 0 0 —£4 0 0
0 12 (1+E<I>I)L3 6 (1+EcI>I)L2 0 —12 (1+E<I>I)L3 6 (1+E<I>I)L2
C_| 0 swEe EBE 0 owEm M|
N 0 0 EA 0 0
0 12 (1+E<I>I)L3 —6 (1+}_:7I§)L2 0 12 (1+EcI>I)L3 —6 (1+]€I>I)L2
0 onfe BN 0 —oum WS

The term @ gives the relative importance of the shear deformations to the bending defor-
mations. For a rectangular cross-section

12681 2(1 £\’

o _2y) (9)

kAGL? k L
Here is v is the Poisson’s ratio of the beam material and we have used the relationships
G=FE/2(1+v) (10)

1

I =—bt? 11
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and A =10t (12)

Shear deformation effects are significant for beams which have a length-to-depth ratio
less than 5. To neglect the shear deformation, we set ® = 0. In this case, the stiffness
matrix given here reduces to the classical stiffness matrix of the Euler-Bernoulli beam
given in the preceding subsection. Therefore, Timoshenko beam model can be viewed as
a generalisation of the Euler-Bernoulli beam theory in the static regime. In the follow-
ing subsections, we will show as to how the static formulation of beams can be further
generalized for dynamic conditions.

2.4. The beam elements for dynamic analysis

For dynamic analysis using the finite element method, the mass matrix of the beam
is necessary. The mass matrix M, can be obtained using the same shape functions used
to derive the element stiffness matrices given in the previous section using the standard
finite element procedure. Using the mass, damping and stiffness matrices, the element
dynamic matrix can be obtained as

D,(w) = —w?M, +iwC, + K, (13)



where w is the frequency of excitation, C, is the damping matrix and i = v/—1 is the
unit imaginary number. The dynamic equilibrium equation corresponding to the above
element dynamic matrix can be expressed as

D, (w)U.(w) = f.(w) (14)

Here U, (w) and f.(w) are respectively the nodal displacement and applied forcing vector
on the element. In general both vectors are complex valued.

The stiffness matrix appearing in Eq. (13) is given in the previous section for two
types of beam elements. The mass matrix [57, 63] for the Euler-Bernoulli beam element
is given by
[ 140 0 0 70 0 0 ]
0 156 22L 0 54 —13L

_ pAL 0 22L 4> 0 13L —3L?
ST 420 | 000 0 140 0 0
0 54 13L 0 156 —22L
0 —13L —-3L> 0 —22L 4IL?

(15)

For the Timoshenko beam element, the mass matrix [57, 63] can be expressed as

280 0 0 140 0 0
312 4 588d + 28082 (44 7T 4 35@2) L 0 108 +252d 4+ 17582  — (26 1 63® 4 35@2) L
o PAL (8 1140 + 7@2) L2 o (26 163D + 35@2) A (6 114 + 7@2) L?
s~ 340 280 0 0
312 4 588d 4 28042  — (44 7T 4 35@2) L
(8 4140 + 7<1>2) L?
(16)

To neglect the shear deformation, we set ® = 0., in which case the mass matrix given in
Eq. (16) reduces to the mass stiffness matrix of the Euler-Bernoulli beam given in Eq.
(15). The damping matrix can be obtained using the finite element method similar to the
mass and stiffness matrices. However, often damping matrix is expressed in terms of he
mass and stiffness matrices. If Rayleigh damping model is used (see for example [64])),
then the damping matrix can be expressed as

C, =K, + ¢,,M, (17)

Here ¢, and ¢, are mass and stiffness proportional damping coefficients. Using this
damping matrix, the element dynamic matrix from (13) can be rewritten as

D(w) = (1 +iweg) Ky + (—w2 + iwcm) M, (18)

All the elements of this 6 x 6 matrix can be obtained for both Euler-Bernoulli and Timo-
shenko beam elements using the respective expressions of the mass and stiffness matrices.
This matrix will be referred as dynamic finite element matrix differentiating with the
static stiffness matrix discussed in the previous section. Indeed, for the special case of
static defamation, setting the frequency w = 0, this dynamic finite element matrix reduces
to the conventional static stiffness matrix, as expected.

The dynamic element matrix given in Eq. (18) is derived using the shape function for
static deformation of the beam. Therefore, it cannot be used for higher frequency unless
the beam is discretised into a fine mesh. Although the procedure is rather straightfor-
ward, it will not give closed-form expressions we are seeking in this paper. Moreover, a
fine discretization makes the analysis computationally quite intensive. In the next sec-
tion, dynamic stiffness matrix method is discussed which uses the exact shape function
satisfying the governing differential equations.



2.5. Dynamic stiffness analysis of beams

The dynamic stiffness method was first proposed by Kolousek in 1940’s [65] with
many synonyms such as spectral element method [66], spectral finite element method
[67] etc. One of the most important properties of the dynamic stiffness method [68]
is that its shape functions are essentially the exact general solutions derived from the
differential equation governing structural vibration in the frequency domain. There is no
approximation involved based on the governing differential equation and therefore, only
a single dynamic stiffness element can be used to describe the deformation of an element
within the whole frequency range without resorting to discretization. Another important
property is that the dynamic stiffness matrix is of analytical essence whose elements are
transcendental functions of frequency instead of separated stiffness and mass matrices
as in the finite element method. The mass distribution of the elements in the dynamic
stiffness method is treated in an exact manner for deriving the element dynamic stiffness
matrix. The dynamic stiffness matrix of one-dimensional structural elements, taking into
account the effects of flexure, torsion, axial and shear deformation, and damping, is exactly
determinable, which, in turn, enables the exact vibration analysis by an inversion of the
global dynamic stiffness matrix. The method does not employ eigenfunction expansions
and, consequently, a major step of the traditional finite element analysis, namely, the
determination of natural frequencies and mode shapes, is eliminated which avoids the
errors due to series truncation. The method is essentially a frequency-domain approach
suitable for steady-state harmonic or stationary random excitation problems.

In what follows, the analytical expressions of the dynamic stiffness formulations are
provided for both the axial vibration and bending vibration (both Euler-Bernoulli and
Timoshenko theories) of a beam element as shown in Fig. 3.

2.5.1. Axial vibration
The equation governing axial motion [63, 68, 69] of a beam is

0\ 0%u 0*u ou
EA (]. + Cka) @ - pAﬁ - Caa =0 (19)
and the axial force boundary condition is
N(x) = FEA(1+ (,0/0t) Ou/0x (20)

in which, F'A is the stiffness for axial deformation, pA is mass per unit length, ( is
the stiffness proportional damping factor, ¢, is the velocity-dependent viscous damping
coefficient. By introducing the non-dimensional length ¢ = x/L and harmonic vibration
assumption u(z,t) = U(z)e™!, one has the characteristic equation

d*U

— +kU=0 21

e (21)
where

12 (pAw? — iwe,) L? _ pw? L2 (1 — i pa/w)
© EA(L+iwG) E(1 + iwC)

and (e = ¢q/(pA) is the mass proportional damping factor for axial vibration. The exact
shape function can be derived

U(€) = ¢y cos (ko&) + cosin (k&) (23)

(22)




Therefore, the displacement boundary conditions for a beam element can be written in
the matrix form as

{ g; } - { ggi(l); } - {Cosl(ka) Sin((]k:a) } {2 } (24)

whereas the force boundary conditions can be given as

l%; } B H]é(i:l)m } < l () cos_éa)} [2} (25)

Eliminating the unknowns ¢, ¢y leads to the dynamic stiffness formulation for the axial

vibration of a beam element
N1 . a; as U1
=l e 20

a; = EA (1 +iw(g) ko cot(ka)/L,as = —FEA (1 4 iw(y) kq csc(ky) /L . (27)

where

2.5.2. Bending vibration based on FEuler-Bernoulli theory
The governing differential equation [63, 68, 69] for bending vibration based on Euler-
Bernoulli beam theory is given as follows

9\ 0w D*w Ow

and the natural boundary conditions are given as
0\ 0?w
M(l‘) = EI <1 + C]g§> ﬁ
0\ PPw
a)aﬁ
where ¢, is the velocity-dependent viscous damping coefficient for bending deformation,
ET is the bending stiffness of the beam, [ is the inertia moment of the beam cross

(29)
V(zx)=—-FEI <1 + Ck

section. By introducing the harmonic vibration assumption w(z,t) = W(x)e™!, we have
the following characteristic equation
(D' — k)W =0 (30)
where D = d/d¢ = Ld/dx and
K= (pAw? — iwey) L4 N pAWA L (1 — i/ w) _ 120w L4 (1 — i/ w) (31)
BT (1+ iwy) ET (1 + iwCy) B (1 + iwCy)
Therefore, the general solutions of W () is
W (&) = ¢y sin (kpé) + o cos (kp€) + cg sinh (kp€) + ¢4 cosh (kp) (32)
O(&) = crkp cos (kpl) — cokysin (k&) + c3ky cosh (kp) + cakyp sinh (kyé)
The displacement and force boundary conditions can be applied as follows
W(0) = W,,6(0) = 6, W(1) = 5, 0(1) = &, )

V(0)==Vi,M(0) = =M, V(1) = Vo, M(1) = M,



By eliminating the unknowns ¢y, ¢9, ¢3 and ¢4, we have the dynamic stiffness matrix for a
Euler-Bernoulli beam element

Vi di dy dy ds %%
M, | ds —ds dg Ch
v | T 4 —dy | | W, (34)
M, sym ds 0,
where
d1 = Rg (CS+SC) /5
d2 = RQSS/(s
dngl <SC—CS> /(5 (35)
d4 = —Rg (S+S)/5
ds =Ry (C—c¢) /o
dg =R1 (S —5)/
and where '
Rj:EI(kb/L)] j=1,2,3
s=sink,, c¢=cosk,, S =sinhk,, C = coshk (36)
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2.5.3. Bending vibration based on Timoshenko theory
The governing differential equation [68] for bending vibration based on Timoshenko
beam theory is given as follows
0\ 0 [ow 0w ow
kEAG (1 — = |=——-0) - — =
¢ ( G ot) 0x \ Ox )

9 > (37)
1 (1 2) 20 a1 62) (22 -0) -2 -0 o
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where ¢, and ¢, are the velocity-dependent viscous damping coefficients for both shear and
bending deformations, kAG and FI are the shear and bending stiffnesses of the beam,
I is the inertia moment of the beam cross section. The natural boundary conditions are
given as

M(z) =—-FEI 1+ 9 a_i
V(z) = k;AG<<1 +Z§3)8<gt: _ 9) (38)

By introducing the non-dimensional length £ = /L and harmonic vibration assumptions
w(x, t) = W(z)e“t and 0(z,t) = O(z)e™?, we have the following characteristic equation

[D*+0* (r? + %) D* = b* (1 = b*r*s*)| H =0 (39)
where D = d/d§ = Ld/dx; H =W or © and
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Therefore, the general solutions of W (&) and ©(¢) are
W (&) = Ay cos A€ + Ay sin M€ + Az cosh Ao& + Ay sinh A\o¢

O(&) = By cos M€ + By sin M€ + Bs cosh A€ + By sinh A\o€ (41)
where
;; } —b {iA/Q + [A2/4 4 (1 — Br2s?) /7] 1/2}1/2 (42)
with A =72 + 5% and
By =kiAy/L By =—k1A/L B3z =koAy/L By=kyAs/L (43)
with
ky= (X2 =022 /A1, ko = (A2 4+ b%5%) /Ny (44)
The displacement and force boundary conditions can be applied as follows
W(0) = 117, 0(0) = ©y, IW(1) = 5, 6(1) = © )

V(0) = =Vi, M(0) = —My, V(1) = Vi, M(1) = M,

By eleminating the unknowns A;, As, A3 and Ay, we have the dynamic stiffness matrix
for a Timoshenko beam element

Vi di dy dy ds Wi
M1 . dg —d5 d6 @1
V| T & —dy | | W, (46)
M, sym ds 0,
where B
d1 = R3b2 ()\2 + 77)\1) (CS + 7780) /()\1)\25)
d2 = Rzkl [()\1 -+ 77)\2) SS — ()\2 — 77)\1) (1 — CC)] /5
d3 = Ry (A2 +n\1) (sC —neS) /6 (47)
d4 = —R3b2 ()\2 + 77)\1) (S + 7]8) /()\1)\25)
d5 = Rle ()\2 + 77)\1) (C — C)/5
de = Ry (A2 +n\1) (nS —s) /6
and where

Ry = EI(1+iwG,) /LI, j=1,23
s=sinA;, c=-cosA;, S =sinh\y, C =cosh\, (48)
n="ki/ky, 6=2n(1~-cC)+(1-n%sS

According to Sections 2.3 and 2.4, the elemental matrix of a beam element can be written

as _ B
aa 0 0 ax O 0
0 d1 dg 0 d4 d5
O P A (9
0 dy —ds 0 di —d
_0 d5 d6 0 —dg dg i

The subscript d in the above equation denotes the fact that the stiffness matrix is obtained
using the shape functions satisfying the equation of dynamic motion.




3. General derivation of stretching enriched in-plane elastic moduli

Dynamic behaviour of the overall lattice structure depends on the frequency-dependent
deformation characteristics of the constituent individual beams. A representative depic-
tion of the constituent beam elements is shown in Fig. 1(b-c). Vibration mode of these
constituent members is shown symbolically, wherein the vibrating beams would undergo
deformation under applied external loads. The rule of deformation in such cases would
be different from the static condition. This leads to a different value of effective elastic
moduli of the lattice material from conventional static values. In the previous section, the
stiffness matrix of a beam element is given considering the static and dynamic equilibrium
incorporating the bending, shear and axial deformations. The objective of this section
is to express equivalent in-plane elastic moduli of the lattice in terms of the stiffness
matrix elements of the beams using the unit cell approach. For the case of equivalent
static properties of the lattice, we refer to well-known references by Gibson and Ashby
[24] and Masters and Evans [70]. For the sake of generality, we consider the dynamic
equilibrium of the unit cell under a different stress condition. A general notation of the
frequency-dependent stiffness matrix K(w) is employed here.

3.1. The longitudinal Young’s modulus Ey and the Poisson’s ratio vis
A uniform harmonic stress o; = o1(w)e“! is applied to the unit cell in direction-1
(refer to Fig. 4) for deriving the expression of longitudinal Young’s modulus. This results
in an harmonic force P = P(w)e™! being applied at point A (and B) on the unit cell.
We consider the steady-state condition for the dynamic equilibrium and express free-body
diagram for a given frequency.

The deformation of the unit cell is symmetric about the OC line. The amplitude of

the force P acting on point A for a given frequency w is given by
P(w) = o1(w)b(h + [ sin 0) (50)

Considering n4(w) and y4(w) as deformations transverse and along the inclined member

AQO, we have

P(w)sinf P(w) cosf
K 55 (w) K44 (w)

Here Ks5(w) and Ky4(w) are elements of the stiffness matrix of the inclined member AO
of length [. Due to the presence of damping, Ks5(w) and Ky4(w) are in general complex
valued functions of the frequency parameter w. As a result, the deformations 74(w) and
~va(w) are complex valued functions of w. The total dynamic deflection in the 1-direction
is therefore

na(w) = and  ya(w) = (51)

. 2 2
51<W) = UA(W) Sinﬁ—l—fyA(w) cosh = P(w) < sin” 0 cos* 6 )

Kos(@) | Kaa(@)

52
Psin? 6 5 K55 (w) (52)
=———1|1+4cot®f
K55(w) K44(w)
The strain the 1-direction is obtained as
Si(w) o1 (w)b(h/l+ sin ) sin® 0 5 o Ks5(w)
= = 1 t=0 5
@) lcosf Ks5(w) cos @ oo Ky(w) (53)

Using this, the Young’s modulus in 1-direction is obtained in terms of the elements of the
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Fig. 4: Dynamic equilibrium and deformation patterns of the unit cell under the application of a harmonic
stress field 51 = o3 (w)e‘m applied in the 1-direction. This configuration is used for the derivation of the
longitudinal Young’s modulus F;(w) and the Poisson’s ratio vi2(w).

stiffness matrix as
w Kss(w 0
() o1 (w) 55(w) cos (54)

€1(w) b(h/l + sin @) sin? 0 (1 + cot? Q—Eigzg)

To obtain the Poisson’s ratio v15, we need to obtain the strain in the direction 2 for applied
stress in the 1-direction. Using the expressions of the deformations in Eq. (51), we obtain
total deflection in the 2-direction as

— 02(w) = na(w) cosf — ya(w) sinfd = P(w) (Sln(‘)cosﬁ smﬁcos@)

K55(W) - K44(Cd)

_ Plw)sinfcosd [ Ks5(w)
e () o

The total strain in the 2-direction is

So(w)  o(w)bsindcosd (1 K55(w)>

—6(w) = - —2 (56)

" htlsind Ks5(w) Ky (w)
Using the expressions of the strains in directions 1 and 2 given by Egs. (53) and (56), we
obtain the Poisson’s ratio v
cos? 6 (1 — —K55(w))
1/12(w) _ _Eg(w) _ Kaa(w) (57)

e1(w) (h/l + sin @) Sin9<1+cot20%)

From equations (54) and (57), it can be observed that only two coefficients of the 6 x 6
element stiffness matrix of the inclined member, namely, Ks5(w) and Kyy(w), contribute
towards the value of F; and v5, which in general are complex valued functions of the
frequency w due to the presence of damping.

3.2. The transverse Young’s modulus Ey and the Poisson’s ratio vy

For deriving the expression of transverse Young’s modulus and Poisson’s ratio v, a
uniform harmonic stress gy = 09(w)e*? is applied to the unit cell in direction-2 as shown
in Fig. 5. From the free-body diagram depicting the dynamic equilibrium at the steady

state condition, we deduce that the the deformation of the unit cell is symmetric about
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Fig. 5: Dynamic equilibrium and deformation patterns of the unit cell under application of a harmonic
stress field 7o = 02 (w)e*? applied in the 2-direction. This configuration is used for the derivation of the
transverse Young’s modulus Fs(w) and the Poisson’s ratio o1 (w).

the OC line. It addition, the point O has no deflection in the 1-direction. Therefore, it
is sufficient to consider the deflection of point A or B with respect to point C under the
applied stress. Considering point A, the harmonic stress results in a harmonic vertical
force W = W (w)e* for a given frequency w. The amplitide of this vertical force is given
by

W(w) = o9(w)bl cos (58)

Considering 74 and v4 as deformations transverse and along the inclined member AO,
we have

W (w) cos b W(w) sin 6
—————— and W)= ——"—"—
K55(W) /YA( ) K44(CU)
Here K55 and K4y are elements of the stiffness matrix of the member AO. The deflection

in the 2-direction is therefore

92,0 (W) =na(w) cosf + ya(w)sinh = W(w) (
_ W(w)cos*6 o Ks5(w)
 Kss(w) (1 o 9K44(w))

The total force acting in the 2-direction at point O is 2W. Therefore, the displacement
of point O in the 2-direction arising from the axial deformation of the vertical member

OC is

na(w) = (59)

cos? 6 sin® 6 )

Kos(@) | Kaa(@) .

2W (w
8o (w) = % (61)
Ky (w)
Here () corresponds to the properties arising from the vertical member OC of length
h. The total deflection in the 2-direction is therefore

R <1 e iy ‘)ffff(i))) v




The strain the 2-direction is obtained as
da(w) o9(w)bcos® 0 o K55(w) 5 » Ks5(w)
= = 1+t 6 2 0 6
W) = e 0 Ka(w) (bl snd) \ LT O oy T2 K () (63)

Using this, the Young’s modulus in 1-direction is obtained in terms of the elements of the
stiffness matrix as

Bo(w) = oo (w) _ Ks5(w)(h/l + sin @) (64)

bcos3 60 (1 + tan? 9K55 : +2sec2d K(si)((w)))

To obtain the Poisson’s ratio 147, we need to obtain the strain in the direction 1 due
to the applied stress in the 2-direction. Using the expressions of the deformations in Eq.
(59), we obtain total deflection in the 1-direction as

01 (w) = ya(w) cosf — na(w)sinf = =W (w) <
W(w)sinfcost (. Kzs(w)
Ks5(w) <1 K44(W)>

The total strain in the 1-direction is

_ 01(w)  oo(w)bsind Ks5(w)
@1lw) = lcos  [Kss(w) (1 B K44(w)) (66)

Using the expressions of the strains in directions 1 and 2 given by Eqgs. (53) and (56), we
obtain the Poisson’s ratio vy

sinfcosf  siné Cosﬁ)

Kss(w)  Ku(w) (65)

(h/l + sin 6) sin 0 (1 _ K_w))

() =~ wul (67)
(w) cos26 | 1+ tan? 9K55 w) ;+2 sec? Ko )
(@) K{) ()

From equations (64) and (57), it can be observed that only two coefficients of the 6 x 6
element stiffness matrix of the inclined member and one coefficients of the 6 x 6 element
stiffness matrix of vertical member, namely, Ks5(w), Ky(w) and KW (w), contribute
towards the value of Fy and v5;. Like the previous case, in general the Young’s moduli
as well as the Poisson’s ratio are complex valued functions of the frequency w due to the
presence of damping.

The proposed expressions of the general frequency dependent elastic moduli also con-
form the reciprocal theorem

El(W)I/Ql(W) = EQ(CU)VlQ(W) =
Ky (w) (1- %) (69)

) K5 (w
bsin § ( + cot? QKii ®) ) cosf (1 + tan? «9K55(“ + 2sec? K(sf)((i:)))

3.83. Shear modulus Gy

The derivation of the shear modulus G2(w) requires the superpositions strain contri-
butions arising from bending and axial deformations. In Fig. 6, the consideration of both
the cases are depicted. For deriving the bending contributions, considering the deforma-
tion of the adjacent cells, it can be deduced that the mid point of the vertical member



will only have a deformation in the 1-direction due to shear. Therefore, in Fig. 6(a) we
consider the unit cell with the vertical member with length h/2 and a slant member with
the usual length . The points A and O will not have any relative movement due to sym-
metrical structure. The shear deflection vp due to bending consists of two components,
namely, bending deflection of the member OD and its deflection due to rotation of joint
O arising from the bending of the slant members.

It can be noted here that the elements of the dynamic stiffness matrix (refer to equation
(49)) will be different for the vertical member and the slant member due to their different
lengths. Using the stiffness components of the dynamic stiffness matrix with length h/2,
the bending deformation of point D with respect to point O in direction the 1 can be
obtained as

Fy(w) Fy () K8 (w)
o) = (h/2) KEP KDWY [ ot (h/2) N #/2) N\ (99)
() - BAZEET)  (REPWKGP () - (K )
Here
Fi(w) = 27(w)lbcos b (70)

and we make use of the symmetry of the elements of the dynamic stiffness matrix. Here
(8)("/2) corresponds to the properties arising from the vertical member OD of length h /2
as shown in Fig. 6(a).
From the diagram in Fig. 6(a), the moment acting on point O is obtained as
Fi(w) h Fi(w)h

M(w) = 5 X5 =4 (71)
On the basis of the degrees of freedom as denoted in Fig. 3, deflection of the end O with
respect to the end A due to application of moment M at the end O is given as

M
5, (w) = (w)
—K65 (w)
Here Kgs is the stiffness element corresponding to the slant member and the negative

arise due to the direction of the rotation as given in Fig. 3. Thus the rotation of joint O
can be expressed as

(72)

Fi(w)h (73)

4ZK65 (CU)

Shear deformation in the 1-direction due to bending at point D under the application of
shear stress 7 can be expressed as

0, (w) =2 (¢(W)g + ”D<W))
_ Rw)k’ 2F (w)Kge ™ (w) )
4 Kes(w) ( KO () 2 () < K2 (w)>2)

The factor 2 in the above expression arises due to the consideration of two units shown
in Fig. 6(a) to capture the total shear deformation by representing a complete unit cell
that can create the entire lattice structure on tessellation.
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Fig. 6: Dynamic equilibrium and patterns patters of the unit cell under the application of the harmonic
shear stress field 7 = 7(w)e'“!. These configurations are used for the derivation of the shear modulus

G12(w).

To obtain the shear deformation due to axial stretching deformation, we consider the
forcing F5(w) in the 2-direction as

Fy(w) = 7(w)b(h + sin ) (75)

Due to the symmetry of the unit cell as depicted in Fig. 6(b), the deformation in the
1-direction of member AO and BO will be the same. On the other hand, the amplitude
of the deformation in the 2-direction of member AO and BO will be the same, but in
the opposite direction. There is no axial deformation in the vertical member OC. It is
therefore sufficient to consider only one inclined element in our calculation. The lengths
of the unit cell in Fig. 6(b) in the 1 and 2 directions are given by

Ly = 2lcosf (76)
and Ly = (h+1sinf) (77)
Total force acting in the axial direction of AO is given by
Fro(w) = Fi/2cos8 + Fysin = 7(w)lb (cos® 0 + (h/l + sin ) sin 0) (78)
The axial deformation of point A is therefore
FAO (w)
w) = 79
7A< ) K44(w) ( )
Using this, the deformation in the 1 and 2 directions are obtained as
b
01, (w) = ya(w) cos = T(w) (cos® 0 + (h/l + sinf) sin ) cos 6 (80)
K44((U)
b
9o, (W) = ya(w) sinf = Ol (cos* @ + (h/l + sinf) sin6) sin 6 (81)

K44((U)



The total shear strain arising due to bending and axial deformation is given by

51D(w) 51A (w) 52A (w)

:h+lsinQ \h—i—lsin@ lcos@l

(83)

-~

s () 7o ()

Here 7, (w) and 7,(w) are respectively the bending and stretching components of the total
shear strain. Using Eq. (74) we obtain the bending component of the shear strain as

o 51D (w)
(@) = 5 Tsmd)

F1 ((,U) B h2 N QKég/Q) ((,U)
- 2
ot A (oGP @) - (kGw))

~ 27(w)lbcost h? + 2K6(2/2)(W) )
= . - 2
(h+1sin6) |~ 4lKgs(w) (Ké’;/ P @)Kl @) — (K (@) )
_ 7(w)bcost h? n 4K (w)
—_= R - 2
(h/1 +sin0) 21 Ke5(w) (Ké/gﬂ) (W) KW (W) — (Kégm (w)) )
The stretching component of the shear strain can be simplified as
. 51A (CU) 52A (CU)
'78(("}) B h -+ lsin @ * lcosf (85)
T(w)lb ) , , cos sin ¢
_ 0+ (h/l 0) sin 0 86
Koo (cos?@ + (h/l + sin 6) sin )<h+lsin0+l6089) (86)
_ 7(w)b (cos® O+ (h/l+ sinf)sin ‘9)2 (87)

C Ky(w) cosO(h/l + sin @)

Substituting the expressions of both the shear strains, the modulus can be obtained as

T(w) T(w)
1w) W) +7s(w)
1
bcos 0 _ h? + 4Kég/2)(w) + b (cos? 6+ (h/l+sin ) sinh)2
(h/l+sin0) 21 K5 (w) (Kég/Q)(w)Kégm)(w)—(Kégm)(w))Q) Kyq(w) cos O(h/l+sin0)
_ (h/l+sin0) 1
beosd ___h? + 4Ké2/2) (w) + (cos 0+(h/l+sin 0) tan 6)*
N S ) )

(88)

From equation (88) it can be observed that in total five elements of two different stiffness



matrices contribute to the shear modulus. They include two coefficients of the 6 x 6
element stiffness matrix of the inclined member, namely, Kg5(w), Ku(w). Additionally
three elements of the stiffness matrix of the vertical member with half the length, namely,
Kég/Z) (w), KéZ/Z) (w) and Ké]g/Q) (w) contribute to the shear modulus. Like the Youngs
moduli, in general the shear modulus is a complex valued function of the frequency w due
to the presence of damping.

4. Analysis of the special cases

In the previous section, the expressions of five quantities characterising the effective in-
plane elastic properties of 2D cellular materials have been derived in terms of the stiffness
element of a beam. In total six cases arise depending on what form of the stiffness matrix
is employed in the general expressions of the elastic moduli. They include static finite
element, dynamic finite element and dynamic stiffness considering Euler-Bernoulli and
Timoshenko beam theory. In this section we consider these cases separately and derive
explicit closed-form expressions of the Fy, Es, 115 , V91 and G15. A pictorial representation
of the special cases and the mapping of their derivation from the more general cases (in
terms of the applicability in higher frequency range and thicker cell walls) is provided in
Fig. 7. It can be noted that the comparison of analytical expressions corresponding to
different special cases with available literature provides an exact way of validating the
proposed formulation in this article. Considering only the static deformation with Euler-
Bernoulli beam theory and ignoring the stretching deformation, the equivalent elastic
moduli of hexagonal cellular materials can be obtained as [24]

cos

Ey,, = Ed® 89
faa “ (B +sin ) sin* 6 (89)
(B + sin @)
EQGA = EO[?’W (90)
B cos? 6 (91)
M2ea = (B + sinf)sin @
(B + sinf)sind
Plea = cos? 6 (92)
+sin )
d — K 3 (6
and  Giag, e B2(1 + 25) cos (93)
Here the o and 3 are geometric non-dimensional ratios given by
t
h
and (= — (95)

We want to explore the relationships with the expressions proposed here with the above
classical expressions. To this end from Eqgs. (54), (64), (57), (67) and (88) and Eq. (93)
we obtain the ratios

El(W) . K55(W) 1

E - Ebad 2 p Kss5(w)
laa <1+cot eﬁ)

w)

(96)



4 Degree of generality x Degree of generality
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DS with TBT and axial DS with EBT and axial DFE with TBT and DFE with EBT and
deformation deformation axial deformation axial deformation

More
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Static analysis with TBT |\

and axial deformation and axial deformation
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Degree of generality

Static analysis with EBTJ
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Fig. 7: Generality-map of the proposed analytical framework in terms of the applicability in higher
frequency band (note that the static case essentially corresponds to zero frequency) and the constraint
of cell-wall thickness by considering bending, shear and axial deformation in the formulation. Here DS,
DFE, TBT and EBT represent dynamic stiffness, dynamic finite element, Timoshenko beam theory and
Euler-Bernoulli beam theory, respectively. The two blocks at the top represent dynamic analyses, while
the block at the bottom covers static analysis. It may be noted that, in general, the dynamic analysis
using dynamic stiffness approach (the bock at the left-top) is capable of capturing the system behaviour
better than the dynamic finite element approach (the bock at the right-top) at higher frequencies.

EQ((,U) _ K55(w) 1 (97)
Eoca Eba? 2 p Kss(w) 2 g K5 (w)
1+ tan 9%@) + 2sec 9%
_ Ks5(w)
Vo) _ (- ) (98)
V126 (1 + cot? 9%&3)
o K55(w)
V21ga 2 Ks5(w) 2 K5 (w)
(1 + tan® 62227 + 2sec 0K§§)(w))
- 3
Giag, Eba __w_ 4K (w) | (cos0+(Bsin0) tan §)°
TR (e s - (K @) e
(100)

Next six special cases are discussed in details in the order of increasing degree of generality
and fidelity.



4.1. Static elastic moduli with Fuler-Bernoulli beam theory

Using the static Euler-Bernoulli beam theory, the element stiffness matrix is obtained
in Eq. (6) ignoring the shear deformation. From the derivations in Subsection 3.1 and
Subsection 3.2, it can be observed that two coefficients of the 6 X 6 element stiffness matrix
of the inclined member and one coefficients of the 6 x 6 element stiffness matrix of vertical
member, namely, Ks5(w), Kyq(w) and KW (w), are necessary to obtain Ej, Fy 115 and
V1. Using the expressions of moment of inertia and the cross-sectional area in Eqs. (11)
and (12), the stiffness coefficients are given by

12ET1 EA EA Ebt FEb
Kss = —~ = Eba®, Ky = —— = Eba and K ==2 =27 2% (101)
3 l h h I6;
Using these, we obtain the ratios
K, K
2 —? and —55 =a’f (102)
Ky K£4)

When the static Euler-Bernoulli beam stiffness elements are used, the equivalent elastic
properties are not functions of the frequency. Therefore, omitting the frequency depen-
dence, from Eqs. (54), (64), (57) and (67) we have

K5 cos 6 Ea? cosf

B, = = 103
b8+ sin ) sin?0 (1 + cot? 0§—> (8 + sind) (sin” 6 + a? cos? ) (103)
B, — Ks5(8 + sin 6) B Ea?(3 + sin ) (104)
o T (1~ a2 3 2
beosd 0 <1+tan29K55 +286€2«9K5§)) (1 —a?)cos®0+ a?(28+ 1) cosd
K
) cos? 6 (1 — K—ii) cos26 (1 — a?) 105
12 = — : :
(B + sin §) sin @ (1 1 cot? 9%) (B +sinf)sinf (1 + a? cot? )
oY si K ()
(8 + sin0) sin 0 (1 ~ Ru ) _ (B+sinf)sind (1 —a?) (106)

V21 =

1—a? 20 2(2 1

00520<1+tan20K55+256029K(5,f)) (1= a?)cosf +a*(26 +1)

For the shear modulus, five elements from two different stiffness matrices are necessary.

They are two coefficients of the 6 x 6 element stiffness matrix of the inclined member,

namely, K5, Ky as in Eq. (101) with Kg; = 6?21 = —-1/25 Eb®  We also need three
elements of the stiffness matrix of the vertical member with half the length given by

02 _ 12E1 _ SEO® (12 _ 6F1 _ _2Ebt3 and K0 _ AET _ 2Ebt3
(h/2)3 p3 o0 (h/2)? h2 06 (h/2) 3h

(107)

Using these expressions we obtain

(B +sind) 1
Cha = bcos @
_h2 + 4Kég/2) + (cos 0+(B+sin 0) tan 0)2
2 K¢s (Kég/Q)Kég/2)—<Kég/2)>2> Kuy (108)
Ea?(3 + sin )

B (B2(1+28) + a2 (cos 0 + (B + sin 6) tan 0)2) cos 0
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Fig. 8: The ratio between effective elastic moduli and Poisson’s ratio obtained using static Euler-Bernoulli
beam theory and the corresponding classical expressions in Egs. (89) — (93). The results are plotted as
functions of « = t/I for a value of § = h/l = 2.

Substituting o = 0 the equations derived here exactly reduce to the corresponding clas-
sical expressions in Eqs. (89) — (93) [24] (i.e., the case of considering only the bending
deformation).
For a regular lattice § = £ and 3 = % = 1. Substituting these in Egs. (103)-(106)
and (108) we have
4FEa? 4Fa? 1 —a? 1 —a?
B = Gt 2 T Vi ) T B 1 T et

V3(Ba2+1) 7 V3(Baz+1)
Eao?

V3 (a2+1)

It is useful to understand the contribution of the axial stretching on the values of the
effective elastic moduli. In Fig. 8 we have shown the ratio of the expressions derived in
this section to the corresponding classical expressions in Eqgs. (89) — (93). This way it
is possible to explicitly quantify the effect of axial stretching on the five quantities of
interest. It is observed that values of E;, Fs, v15 and vo; reduce upto 50% for certain
values of 6 compared with the classical expression when the thickness to length ratio «
goes up to 0.25. It can also be observed that the cell angle 6 also has a significant role on
the reduced values when the axial stretching is taken into account. The shear modulus is
relatively less impacted by the consideration of axial stretching. This is understandable
due to the fact that the shear deformation is primarily bending dominated for the unit
cell considered. A representative value of 5§ = h/l = 2 is used in this figure.

(109)

and G12 = (110)



4.2. Static elastic moduli with Timoshenko beam theory

The element stiffness matrix is obtained in Eq. (8) using the Timoshenko beam theory
considers the shear deformation. When considering the static Timoshenko beam stiffness
elements, the equivalent elastic properties are not functions of the frequency. Therefore,
we omit the frequency dependence notation below. The necessary stiffness coefficients to
obtain the expressions of Ey, Fy v and vy are

12 EI  Eba? EA w  FEA  Eba
Ky = = Eb d KW/ =—/—=" 111
I B e T e Y 2 (111)
Using these, we obtain the ratios
Kss o Kss o?p
_ q B 9P 112
Ku 1+@ 0 KW 110 (112)
where from Eq. (9) we have
2(1
o ALEY) ;”)cﬂ (113)

Using the expressions of equivalent elastic moduli and Poisson’s ratio from Egs. (54),

(64), (57) and (67) we derive

Ea? cos 6
E, = 114
! (84 sind) ((1+ @) sin® 6 + a2 cos?0) (114)
Ea3(B +sin6)
Ey = 11
T 1+ ®—a?)cos? O+ a2(28 4 1) cos b (115)
2 A2
by — cos?f (1 + @ — a?) (116)

+sinf)sinf (1 + & + a2cot?d
(B

(B+sinf)sind (1+ @ — a?)
= 11
v (14+® —a?)cos?l +a?(20+1) (117)

For the shear modulus, as before five elements from two different stiffness matrices are
necessary. They are two coefficients of the 6 x 6 element stiffness matrix of the inclined
member, namely, Kg5, Ky as in (111) with Kg = —1/2 Eb® _ - For the element of the

Z(1+®) -
vertical member with half the length the shear correction factor can be obtained from Eq.
(9) as
20 +v) [t \® @
oh/2) — -4 — 11
k h/2 52 (118)

We also need three elements of the stiffness matrix of the vertical member with half the

length given by
/o Ebt3 o\ !
K9 =3 5 (1+45

Ebt? o\ !
KW — o= (1 +4—) (119)

Ebt? o\
and KU'® =2/3 <1+4@)




Bor o
w u ~ )
— © ™ ° ~ =
[T 0=15 . [T R 0=15 S S 0 e 9=15"
06 ; . 06 ; <
—6=30 . —6=20 © 06 —
osp 05 - osp 05 05 e
0=60 0=60 960
04 04 i 04
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 0 0.05 01 0.15 0.2 0.25
Theratio aw = t/l Theratio a = t/l Theratio o = t/l
(a) Young’s modulus E; (b) Young’s modulus FE» (¢) Shear modulus G2

707 < 07 ~
£y )

.. 6=15| o N Gl
—0=30 s —6=30
05 g=a5] B i
0=60 0=60

04 . . ! . 04 . . ! !

0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
Theratio a =t/l Theratio a =t/
(d) Poisson’s ratio v (e) Poisson’s ratio vo;

Fig. 9: The ratio between effective elastic moduli and Poisson’s ratio obtained using static Timoshenko
beam theory and the corresponding classical expressions in Egs. (89) — (93). The results are plotted as
functions of o =t/ for a value of § = h/l =2 and v = 0.3.

Using these expressions, after some algebraic simplification, we obtain

Ea3(B +sin6)
G12 — . 2 (120>
(B2(1+ @+ 2p) +88P + a? (cos 0 + (8 + sinf) tan §)~) cos 6
Substituting ® = 0, the equations derived here reduce to the corresponding Euler-

Bernoulli case discussed in the previous section.
For a regular lattice § = £ and 3 = % = 1. Substituting these in Egs. (114)—(117)
and (120) we have

4FEa3 4FEq3 14+ P —a?
b, = By = V2 = o T o
V3 (302 + 1+ ®) V3 (322 +1+ ) 302+ 1+ ®
) (121)
14+ -« Eao?
Vol = o and Gy =
32 +1+d \/g(a2+1_|_3q)>

If both the axial stretching and shear deformation are neglected, then substituting o? = 0
and ® = 0 in the above expressions we have E; = Ey = (4/v/3)Ea® ~ 2.3Ea°, vy =
V1 = 1 and Gig = (1/\/§)Ea3 ~ 0.57Fa?3. These match exactly with the values given
in literature [24]. In Fig. 9 we have shown the ratio of the expression derived in this
section to the corresponding classical expressions in Eqgs. (89) — (93). It is observed that
values of Ey, Fs, v and vy reduce up to 50% for certain values of 6 compared to the
classical expression when the thickness to length ratio a goes up to 0.25. To calculate
the value of ® in Eq. (113), we used the shape constant £ = 9/10 and the Poisson’s ratio
of the underlying material as v = 0.3. It can be observed that the cell angle 6 also has
a significant role in the reduced values when the axial stretching is taken into account
using the Timoshenko beam theory. The shear modulus is impacted more due to axial



stretching compared to the case of the Euler-Bernoulli theory discussed in the previous
section.

4.3. FElastic moduli with Fuler-Bernoulli beam theory using dynamic finite element

Using the static Euler-Bernoulli beam theory, the element stiffness matrix is obtained
in Eq. (6) and the element mass matrix is obtained in Eq. (15). The overall complex
damped stiffness matrix is obtained from Eq. (18) by combining these matrices with the
two damping factors. The frequency dependent complex stiffness coefficients are given by

12E1 156

Ks5(w) = E (1 +iwey) + (—w® + iwen,) pAlEO = Eba’T(w)
EA 14
Ky(w) = - (1+iweg) + (—w® + iweyy,) pAlﬁg = Fbal'y(w) (122)
EA 14 Eb
and KV (w) = - (14 iweg) + (—w® + iweyy,) pAh% = Tal“g(w)

In the above equations, the non-dimensional complex valued functions I'j(w),j = 1,2,3
can be simplified as

. 2 Cm\ 13
Tl(w) = (1 + 1wck) — w—g (]_ — 1;) EO
w? Cm\ 02
Colw) — (1 __(1_-_M>_ 123
o) = 1+ ) 55 (1-1%2) & (123)
. w2 ey 282
and F3<w> = (1 -+ lek) — w_g (1 — U) 3?

where the frequency parameter corresponding to the bending vibration wy is given by

1 [El o |E

TR\ A T 21\ 3 (124)
From the expressions in Eqgs. (122), we obtain the ratios
Kos(w) _ »Th(w) Kos(w) 5 (W)
Ku(w) a ) and KAEZ)(W) =« (@) (125)
Substituting the above expressions in Eqs. (54), (64), (57) and (67) we have
- [y (w)ly(w)Ea?cosd
Byw) = (B +sinf) (Ty(w)sin® § + I'y (w)a? cos? 6) (126)
B I (W) (w)l3(w)Ea®(B + sin §)
Fale) = )~ Tr)ad) ot b+ @) @A) T Tl eosd 120
_ cos® 0 (Ty(w) — Ty (w)a?)
viaw) = (B +sinf)sin @ (T'y(w) + I'1(w)a? cot? 0) (128)
o () [3(w)(B + sin @) sin§ (Ty(w) — 'y (w)a?) (129)

T Ts(w)(Ta(w) — Th (w)a2) cos2 0 + Ty (w)a2(28T 2 (w) + Ts(w))
For the shear modulus, five elements from two different stiffness matrices are necessary.
They are two coefficients of the 6 x 6 element stiffness matrix of the inclined member,



namely K4y as in (122) and

6F1 . . 11 Ebt3
K65(CU) = _l—2 (]_ + 1wck) — (—w2 -+ 1wcm) pAlQm = —WF4(CU) (130)
where ) "
. w Cm
Ly(w) = (1 +iwey) — = (1 - 13) 560 (131)

0
We additionally need three elements of the dynamic matrix of the vertical member with
half the length

pA(/2) _ 2BWC

4F71
Kég/z) (W) = —= (1 +iweg) + (—w2 + iwcm)

(h/2) 105  3h
o 6EI , , 11pA(h/2)2  2Ebt
KE(>6/ )(w) = _(h/2)2 (1 +iwcey) — (—w2 + 1wcm) 510 = [g(w)
h/2 12E1 ) . 13pA(h/2)  8Ebt3
and Ké5/ )(w) = (h2)° (1 +iweg) + (—w® + iwep,) 35 =73 I'7(w)
(132)
The non-dimensional functions I'j(w),j = 5,6, 7 are obtained as
w? c B4
Ts(w) = (1 +iweg) — = (1 — '—’”)
s(w) = (L tiwer) =5 (1=100) 675
w? c 114
Lo(w) = (1 +iwer) — = (1-i™) 133
o(w) = (1 iwe) = 75 (1= 17 ) 0160 (133)
) w? )\ 138%
and F7(w) = (]_ + 1wck) — w—g (1 — 1;) 6720
Substituting these expressions in the general equation for G2 in Eq. (88) we obtain
+ sin 6 1
Gralw) = <560059 :
__w_ 4K p/? (cos 0+(B+sin 0) tan 0)*
20K (w) (K§§/2>Kgg/2>_(f(§g/2>)2) Kia(w)

Ea?(B + sin )y (w)Ty(w)T3(w)
(B2(TE(w) + 20 4(w)Ts5(w)B)Ta(w) + o2 (cos f + (B + sin 6) tan 0)? T4(w)1"§((w)) ()jos 0
134

where we define
I3 (w) = 4T (w)Tr(w) — 3T2(w) (135)

It can be easily deduced that in the zero frequency limit (that is, the static case)
ImIlj(w)=1, j=1,2,---8 (136)
w—0

Using this limiting case, it can be verified that the frequency dependent expressions of the
dynamic equivalent elastic moduli and Poisson’s ratios derived here exactly reduce to the
expressions derived in Subsection 4.1 for the respective static case. Substituting o = 0
along with the static limit, we can also verify that expressions in this section reduce to
the corresponding classical expressions (89) — (93) as given in [24].

In Fig. 10 we have shown the ratio between the expression derived in this section and
the corresponding classical expressions in Eqs. (89) — (93). This way it is possible to
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Fig. 10: The ratio between effective complex elastic moduli and Poisson’s ratio obtained using Euler-
Bernoulli beam theory and the corresponding classical expressions in Egs. (89) — (93). The dynamic finite
element approach is used and the absolute value of the results are plotted as functions of the normalised
frequency w/wp for different values of the cell angle . The following values are used: « = t/l = 0.1,
B = h/l =2 and the damping values ¢,,, = 1072 and ¢; = 1075.

explicitly quantify the effect of axial stretching as a function of frequency. The damping
values used here are ¢,, = 1072 and ¢; = 107 along with a = 0.1 and 8 = 2. As
the quantities in Eqs. (126) — (129) are complex-valued, their modulus are plotted in
Fig. 10 for different cell angles. We only consider F;, Fs, v15 and 15, and ignore Gy
as it is not significantly affected by axial stretching. It can be observed that E; and F,
values can change by orders of magnitude depending on the frequency. We also observed
that (results not shown here) the damping coefficients have a significant impact on the
equivalent elastic properties of the lattice. Lower damping values results in sharper and
higher peaks around the resonance-like frequency points. Results obtained using this
approach are likely to be not very accurate at the higher frequency ranges due to the fact
only one beam element is used in the unit cell model. The accuracy of these results will
be verified by comparing to the exact dynamic stiffness method.



4.4. FElastic moduli with Timoshenko beam theory using dynamic finite element

The stiffness and the mass matrix of a beam element using the Timoshenko beam
theory are given by Egs. (8) and (16). Combining the approaches presented in the
previous two sections, it is possible to obtain the frequency dependent expressions of
the dynamic equivalent elastic moduli and Poisson’s ratios in closed-form. Using the
expressions of equivalent elastic moduli and Poisson’s ratio from Eqs. (54), (64), (57) and
(67), after some algebraic simplifications, we obtain

Ei(w) = [ (w)la(w)Ea? cosd
1 (B +sind) ((1+ @)Ta(w) sin® 0 + I'y (w)a? cos? §)

[y (w)Te(w)T3(w)Fad(B + sin 0)

(137)

Pl = D (T () — [1()e?) cos? 0+ T () (26T5() + To(w)) cos
(138)
B cos® 0 (14 ®)Ty(w) — I'(w)a?)
V(W) = (B +sind)sinf ((1+ @)y(w) 4+ 't (w)a? cot? ) 159
() = La(w)(8 + sin ) sinf (1 + )Ta(w) ~ Di(w)a?) (140)
T3(w)((1 4 ®)Ts(w) — T1(w)a?) cos?  + I (w)a?(26Ts(w) + Ts(w))
Crnle) = Ea?(8 + sin )Ly (w)Ly(w)TE(w) (141)

(B*((1 + @)IF(w) + 204 (w)Ts5(w) B)To(w) + 8T (w)T'a(w)T's(w)
+a? (cos 0 + (B + sin 0) tan 0) [y (w)T3(w)) cosd

The non-dimensional complex valued frequency-dependent functions I';(w),j =1,2,---8
are derived in closed-form as

Ty (w) = (1+ iwey) — i—; (1 - %”) (% + %@ + 3—16<I>2)

Ty(w) = (1 + iweg) — Z_; (1 - 1%”) g‘_;

Fy(w) = (1 + iwey) — Z_; (1-i%) 0‘;52

Ty(w) = (1 + iweg) — Z—; (1 . %”) <% + %cb + ﬁqﬂ) )
Ts(w) = (1 + iweg) — Z—; (1 - 1%> 65;0 (1 + Z(I) + gw)

To(w) = (1 + iweg) — w—g (1 - %”) 205120 (11 + %@ + %@2)

o (w) = (1 + iwey) — Z—g (1 - %”) 65;0 (13 4—29<1> ?qﬂ)

and T3(w) = 405 (w)T7(w) — 3T%(w)

Comparing equivalent expressions for I';(w) for the Euler-Bernoulli case given by Eqs.(123),
(131) and (133), one can deduce that these are a special case of Eq. (142) when ® = 0.
Therefore, the closed-from expressions derived here explicitly quantifies the contribu-
tion of the shear correction factor ® on the Euler-Bernoulli based expressions derived
in the previous subsection. It can be easily deduced that in the zero-frequency limit all
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Fig. 11: The ratio between effective complex elastic moduli and Poisson’s ratio obtained using Timoshenko
beam theory and the corresponding classical expressions in Eqs. (89) — (93). The dynamic finite element
approach is used and the absolute value of the results are plotted as functions of the normalised frequency
w/wy for different values of the cell angle . The following values are used: o« =t/l =0.1, 5 =h/l =2
and the damping values ¢,,, = 1072 and ¢;, = 1075,

I'j(w),j =1,2,---8 approach to unity. Using this limiting case, it can be verified that the
frequency-dependent expressions of the dynamic equivalent elastic moduli and Poisson’s
ratios derived here exactly reduce to the expressions derived in Subsection 4.2 for the
respective static case.

In Fig. 11 we have shown the ratio between the expression derived in this section and
the corresponding classical expressions in Eqs. (89) — (93). This way it is possible to
explicitly quantify the effect of axial stretching as a function of frequency. The damping
values used here are ¢,, = 1072 and ¢, = 107° along with o = 0.1 and 8 = 2. To calculate
the value of ® in Eq. (113), we used the shape constant £ = 9/10 and the Poisson’s ratio
of the underlying material as v = 0.3. As the quantities in Eqs. (137) — (140) are complex-
valued, their modulus are plotted in Fig. 11 for different cell angles. It can be observed
that Fy and Es values can change by orders of magnitude depending on the frequency. The
results obtained here are qualitatively similar to what obtained in the previous subsection
using the Euler-Bernoulli beam theory, though they vary quantitatively. In the following
subsections, we use dynamic stiffness matrix to discuss the accuracy of dynamic elastic



moduli obtained using dynamic finite element method.

4.5. FElastic moduli with Fuler-Bernoulli beam theory using dynamic stiffness

In subsubsection 2.5.2, the dynamic stiffness matrix using Euler-Bernoulli beam theory
was derived. Combining this with the dynamic stiffness matrix due to the axial motion,
the complete 6 X 6 matrix is given by Eq. (49). From the derivations in Subsection 3.1
and Subsection 3.2, it can be observed that two coefficients of the 6 x 6 dynamic stiffness
matrix of the inclined member and one coefficients of the 6 x 6 dynamic stiffness matrix
of the vertical member, namely, Ks55(w), Ky4(w) and Kﬁ) (w), are necessary to obtain Ej,
FE5 v15 and 9. Using the expressions of moment of inertia and the cross-sectional area
in Egs. (11) and (12), the stiffness coefficients are given by

EIK R

Ks5(w) = E (¢S +sC) /6 = Eba Ekb (¢S +sC) /o6
I1(w)
EA _
Ky(w) = ay = ——k, cot(k,) = Ebak, cot(k,) (143)
[ ———
s (w)
EA Eb Eb
and K" (w) = — kM cot (kM) = —ak((lh) cot (kM) = = Bk, cot Bk,

I3(w)
From the derivations in subsubsection 2.5.1 and subsubsection 2.5.2, in the above equa-
tions we have
E = E(1 +iwc,)
i pAVLY (1 ey /w) W (1 —icp/w)
b EI W (14 iwe) (144)

2o

@12

As the expressions in Eq. (143) have the same mathematical form as the expressions in Eq.

(122), the equivalent elastic moduli and Poisson’s ratios are given by exactly the same

expressions in Egs. (126)—(129) noting the difference in the definitions of the complex

frequency dependent functions I'j(w), j = 1,2,3. Upon some algebraic simplifications, we
obtain the closed-form expressions

kb oand kW = g2

Ea’k} (sC 4+ ¢S) cos
Ei(w) = ) b,< 5 : k3 (sC+cS) (145)
(B +sin?0) (125 sin” 0 4 a2 cos? 9m>
Ea’k} (sC + ¢S) (B + sin )
Ey(w) = o R(sC1eS) (146)
126 cos? 0 + a?(sin” 0 + 2 cot k, / cot Bk,) cos 0= o
o cos? 0 (126K, cot kg — a?k} (sC + ¢5)) (147)
)= (B + sin ) sin @ (120k, cot k, + a2k (sC + ¢S) cot? 9)
+ sin ) sin 0 (126k, cot k, — ok} (sC + ¢S
va(w) = s : : ! - (148)

k3 (sC+cS)

a 126 cos? 0 + a2(sin? @ + 2 cot k,/ cot Bky) kq cot kg



Here the frequency-dependent complex quantities are given by
0=1—cC

. . (149)

and s=sink,, c¢=cosk,, S =-sinhk, ~C =coshk,

For the shear modulus, five elements from two different stiffness matrices are necessary.
They are two coefficients of the 6 x 6 element stiffness matrix of the inclined member,
namely Ky4 as in Eq. (143) and three coefficients of the vertical member of length h/2.
The frequency parameter of this element can be expressed as

kM = Bly /2 (150)

where ky, is given in Eq. (144). Using this, the necessary dynamic stiffness coefficients can
be obtained as

EI kysS Ebt® k?sS
Kes(w) = —6- (1/6 5 ) 2266
——
I4(w)
4ET kB (Cgsg — Spcg) 2Ebt3 kB (Cgsg — Spep)
KB () — 1/g P \&pSs = 9pCs) | _ BSp — BCp
w0 (@) = g7y \ /8 35 3h 855
rs(w)
6E1 k252555 2Eb k232545
K2 () — 194 078858\ _ 858
w0 (W) == \V 35 n2 245,
—_———
Ts(w)
and K07 () = 12B1 (kB (Cys5 + Spes) _ 8EWt k33 (Cgs + Ssep)
5 (h/2)3 96 0 h3 96 0
r7(w)
(151)
Here
0g =1 — c3Cp, (152)

sg =sin (Bky/2), ¢z =cos(Bky/2), Sp=sinh(Bk,/2), Cz= cosh(Bk;/2)

As the expressions in (151) have the same mathematical form as the expressions in (130)
and (132), the equivalent shear modulus can be obtained using Eq. (134) noting the
difference in the definitions of the complex frequency dependent functions I';(w),j =
4,---7. Upon some algebraic simplifications, we obtain the closed-form expressions

Eak}k, cos koG (B + sin 6)
(65ka cos koG + o2 sin k,G1 k3 (cos 0 + (5 + sin 6) tan 9)2) cosf

Gm(&)) = (153)
with
G, =Ss ((352 + 1) 552 — 352)
and Ga =0k, (0585 - Sg) (0585 + Sg) 52 + 8 5855 (0585 - 5565)

It can be proved that in the zero-frequency limit all I';(w), j = 1,2, - - - 7 approach to unity.
Using this limiting case, it can be verified that the frequency-dependent expressions of the
dynamic equivalent elastic moduli and Poisson’s ratios derived here exactly reduce to the
expressions derived in Subsection 4.1 for the respective static case. If the axial stretching
is neglected (a®> — 0), then the expressions derived here reduce to what obtained in

(154)



reference [53]. Such analytical exact form of validations using the special cases provide
adequate confidence on the developed formulae.
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Fig. 12: The ratio between, effective complex elastic moduli and Poisson’s ratio obtained using dynamic
stiffness method with the Euler-Bernoulli beam theory, and the corresponding classical expressions in
Egs. (89) — (93). Absolute value of the results are plotted as functions of the normalised frequency w/wy
for different cell angles 6. The following values are used: a = t/l = 0.1, § = h/l = 2 and the damping
constants are ¢, = 1072 and ¢, = 107°.

In Fig. 12 we have shown the ratio between the expressions derived in this section and
the corresponding classical expressions in Eqs. (89) — (93). The damping values used
here are ¢,, = 1072 and ¢; = 107° along with o = 0.1 and 3 = 2. As the quantities in
Eqgs. (126) — (129) are complex-valued, their modulus are plotted in Fig. 12 for different
cell angles. It can be observed that F; and Fs values can change by orders of magnitude
depending on the frequency. The results obtained using this approach are accurate as the
dynamic stiffness method is exact for any frequency ranges. Compared to the equivalent
results in Fig. 10, it can be observed that more details of the dynamic behaviour at the
higher frequency ranges have been captured here. This, in turn, provides the significance
of adopting dynamic stiffness approach instead of a dynamic finite element approach with
a single beam element as the members of the unit cells. A higher degree of discretization
in the dynamic finite element approach would improve the result, but at the cost of more
computational intensiveness and inability to have presentable closed-form expressions.



4.6. FElastic moduli with Timoshenko beam theory using dynamic stiffness
Following a procedure similar to the previous section, the necessary stiffness coefficients
are obtained as

Kos (1) = ETb? (Ay +1\1) (¢S + nsC) _ bl il_)Q (A2 + A1) (eS + nsC)
I3 (A1A90) 12 (A1 A20)
riw)
EA _
Ky(w) =ay = —k, cot(k,) = Ebak, cot(k,)
[ ————
To(w)
5 A E E
and KAEZ)(W) = kW ot (kM) = ﬂkéh) cot(kM) = Lba Bk, cot Bk,
h ) ) o
3(w

(155)

From the derivations in subsubsection 2.5.1 and subsubsection 2.5.2, in the above equa-
tions we have

2 pAWALA (1 —icy,/w)  w? (1 —icy,/w)

EI(1+iwcy) w2 (14 iwey)
2

k2 = %132 and kM = g22

a

(156)

As the expressions in Eq. (155) have the same mathematical form as the expressions in Eq.
(122), the equivalent elastic moduli and Poisson’s ratios are given by exactly the same
expressions in Eqs. (126)—(129) noting the difference in the definitions of the complex
frequency dependent functions I';(w), j = 1,2, 3. Upon some algebraic simplifications, we
obtain the closed-form expressions

Eat? (\g +n\1) (nsC + ¢S) cos §

Ei(w) = - (157)
(B4 5in0) (120A 0 sin20 + a2 cos2 g ( A2 1) (15C + c5)
k, cot k,
Ea’b? (A\y + 1)) (nsC + ¢S) (B + sin )
By(w) = B (M2 + A1) (5C + cS)
126 A1 Az cos? 6 + a2(sin? 6 + 2 cot k,/ cot Bk,) cos f
k. cot k,
(158)
cos? 6 (2001 Aok, cot kg — a?b? (s + 1) (nsC + ¢S))
viz(w) = — - 3 (159)
(B + sin6) sin 0 (126k, cot k, + a2b? (A2 + nA1) (nsC + ¢S) cot? 0)
@) (B +sin6)sin 0 (261 Aok, cot ko — a?0% (A2 + nA1) (nsC + ¢S))
Vop(W) =

b2 (A A
126\ Ao cos? 0 + a2(sin? § + 2 cot k, / cot Bk,) ( (A2 +Z é())t(zsc i CS))

(160)

The shear modulus can also be obtained following a procedure similar to the previous

section. However, the resulting closed-form expression is not simple and presentable and

is omitted here. It is suggested to use the general formula for G2 in Eq. (88) together
with the elements of the dynamic stiffness matrix derived in subsubsection 2.5.3.

In Fig. 13 we have shown the ratio between the expression derived in this section and

the corresponding classical expressions in Eqs. (89) — (92). The damping values used
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Fig. 13: The ratio between, effective complex elastic moduli and Poisson’s ratio obtained using dynamic
stiffness method with the Timoshenko beam theory, and the corresponding classical expressions in Eqs.
(89) — (93). Absolute value of the results are plotted as functions of the normalised frequency w/wy for
different cell angles 6. The following values are used: « = t/l = 0.1, 8 = h/l = 2 and the damping
constants are ¢, = 1072 and ¢, = 107°.

here are ¢,, = 1072 and ¢; = 107° along with o = 0.1 and 3 = 2. As the quantities in
Egs. (137) — (140) are complex valued, their modulus are plotted in Fig. 13 for different
cell angles. It can be observed that E; and Es values can change by orders of magnitude
depending on the frequency. The results obtained using this approach are accurate as the
dynamic stiffness method is exact for any frequency ranges. Compared to the equivalent
results in Fig. 11, it can be observed that more details of the dynamic behaviour at the
higher frequency ranges have been captured here.

4.7. Discussions on the results

In the previous subsections, effective elastic moduli and Poisson’s ratio of the lattice
were obtained using six different approaches. Here we aim to compare and contrast the
results presented and develop physical interpretations. In Fig. 14, two Young’s moduli
and Poisson’s ratio obtained using the Euler-Bernoulli and Timoshenko beam approaches
have been compared. The analytical derivations corresponding to the two approaches are
given in Subsection 4.1 and Subsection 4.2. The values of both Young’s moduli become
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Fig. 14: The comparison of normalised effective elastic moduli and Poisson’s ratio obtained using two
static approaches. The results are plotted as functions of o = ¢/ for a value of 5 =h/l =2 and v = 0.3
and different cell angles 6.

lower when using the Timoshenko beam theory compared to the Euler-Bernoulli beam
theory. This is expected as the Timoshenko beam theory incudes the deformation due
to shear and therefore it is mechanically a less rigid model. For higher ¢/l ratios, the
differences can be significant for certain values of the cell angle . Compared to the elastic
moduli, the differences between the Poisson’s ratios obtained using the Euler-Bernoulli
and Timoshenko beam are less. Recall that the values plotted in Fig. 14 are normalised
with respect to the classical results [24] given in Eqgs. (89) — (92). Therefore, when the
axial deformations are included, regardless of what beam theory is used, the values of the
effective elastic moduli and Poisson’s ratio of the lattice are reduced.

In Fig. 15, results obtained from four dynamic approaches are compared. We consider
the normalised values of Ej(w), Ea(w), v12(w) and vg;(w). The four methods compared
here are Euler-Bernoulli beam theory with the dynamic finite element (Subsection 4.3),
Timoshenko beam theory with the dynamic finite element (Subsection 4.4), Euler-Bernoulli
beam theory with the dynamic stiffness approach (Subsection 4.5) and Timoshenko beam
theory with the dynamic stiffness approach (Subsection 4.6). These four methods incor-
porate an increasing degree of generality of underlying dynamic deformation of the beam
within the unit cell. Timoshenko beam theory with the dynamic stiffness approach offers



=
o
N
=
o
N

GA
GA

- N
g 0 E 0
= 10 3 10
=, =,
w w
————— Euler-Bernoulli with:dynamic finite element
2 — Timoshenko with dynamic finite element 2
10°E T s 1 10
= = —Euler-Bernoulli with dynamic stiffness
---------- Timoshenko with dynamic stiffness
0 20 40 60 80 100 0 20 40 60 80 100
w/wo w/wo
(a) Young’s modulus F; (w) (MY Vanno’a madnlng Fali))
20 . . 20 T T r
15¢
<
(O]
S
2
3 10F
N
2
5 L

80 100 100

(c) Poisson’s ratio v12(w) (d) Poisson’s ratio vo1 (w)

Fig. 15: The comparison of normalised effective complex elastic moduli and Poisson’s ratio obtained using
four dynamic approaches. Absolute value of the results are compared as functions of the normalised
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and the damping constants are ¢, = 1072 and ¢ = 107°.

the most flexible deformation pattern and consequently, its resonance peak is at the lowest
frequency in Fig. 15. A clear aspect can be seen from this figure is the striking difference
between the dynamic finite element and the dynamic stiffness approaches for higher nor-
malised frequency values (w/wy > 10). This difference is attributed to the fact that the
dynamic finite element method uses only one ‘finite element’ obtained using the static
shape functions of the beam, while the dynamic stiffness approach uses exact frequency-
dependent dynamic shape functions. Effective elastic moduli and Poisson’s ratio of the
lattice obtained using the dynamic stiffness approach, with both the Euler-Bernoulli and
Timoshenko beam theories, are exact and can be considered as benchmark results in
Fig. 15.

5. Generalisation to further geometries and shapes

The inclusion of stretching and shear deformation in the formulation allow the pro-
posed analytical framework to be applied to various other lattice patterns and geometry
of the constituent members, as discussed in Fig. 1. Below we give the details for some



special cases of wide interest.

5.1. Rectangular lattice: 6 =0

The rectangular lattice is obtained when 6 = 0. The unit cell and the corresponding
lattice material can be imagined from Fig. 1. Therefore, taking the limit # — 0 in Egs.
(54), (64), (57) and (67) we have

, Ks5(w) cosd Kyy(w)
Er(w) = fim 2 Ko@) b (161)
V(B + sin ) sin® 6 ( + cot? 9K55(w)> p
K in 6 K
By(w) = lim s5(w)(8 + sin ) - 55 (w) (162)
" heos3 6 (1 + tan? 0K55(w) + 2sec?d Kf,f)( )) b (1 +2 Kf,f)(é”)))
2 Ks5(w)
' cos® 0 (1 — Kii(w))
via(w) = (1911% o 0 (163)
— 3 3 2 55w
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. (B + sin §) sin 0 (1 - ggg;)
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For a rectangular lattice, the Poisson’s ratio in both the directions are effectively zero.
The shear modulus can be obtained as
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For the case of static Timoshenko beam, the equivalent elastic moduli for the rect-
angular lattice can be obtained as Ey = Fa/B,FEy, = Ea®8/(1 + 2a%8 + ®),G1y =
Ea3B/ (8226 + 1+ ®) + 8P3 + a?). Similar expressions can be readily obtained using
Euler-Bernoulli beam theory. It is worthy to note that the effective elastic properties
of a rectangular lattice needs to incorporate the axial deformation since it is the most
significant deformation mechanism in such lattices.

5.2. Auzetic lattice: 0 is negative

The auxetic or re-entrant lattice is obtained when the angle 6 is negative. The unit
cell and the corresponding lattice material is shown in Fig. 1(e). Therefore, taking the
case # = —60 in Eqgs. (54), (64), (57) and (67) we have

K, 0
Bi(w) = ole) cos (1660
b(f — sinf) <sin2 0 + cos? HKL(”))

Ky (w)
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The shear modulus can also be obtained as
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5.83. Rhombus lattice: h =3 =10
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(170)

The rhombus lattice is obtained when h = = 0. This implies the absence of the

vertical member in the unit cell in Fig. 2. T

he revised unit cell and the corresponding

lattice material is shown in Fig. 1(h). For simplicity, only static Timoshenko beam is used
as an example case. Extension to other element type follow a similar approach describe

before. Therefore, taking the limit 5 = 0 in Eqgs. (114), (115), (116) and (117) we have

E1 = lim

E2 = lim

V19 = lim

Vo1 = lim

G12<w)

Ea? cos 6 B Ea?cos 6
8=0 (B +sind) ((1+ @) sin® 6 + a2 cos?0)  sind ((1+ @) sin® 6 + a2 cos?0)
(171)
Fa3(B +sin6) B FEa?sinf
§-0 (1+® —a?) cos® 0 + a?(28 + 1) cosf  cosd ((1+ @) cos?§ + a?sin® 0)
(172)
cos? 0 (1 + @ — a?) cos?O (14D —a?) (173)
60 (B +sin@)sinf (1 + ®+a2cot?d) (14 ®)sin?6 + a2 cos?f
(B+sinf)sinf(1+P—a?) sin?d (14 ® — a?) (174)
850 (1 +® —a?)cos?f +a2(2B8+1) ((1+ @) cos? 6 + a?sin”0)
The shear modulus can be obtained in a similar manner from Eq. (120) as
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5.4. Other two and three dimensional lattices

In the last three subsections, we have shown how the closed-form formulae of effective
elastic properties of hexagonal lattices can be directly converted to different other lattice
forms. In principle, the dynamic stiffness based framework incorporating bending, shear
and axial deformation can be utilized to all other two and three dimensional lattices,
which may not be directly deducible from a hexagonal lattice (for example, refer to the
triangular lattice shown in Fig. 1(i)). In such cases, an appropriate unit cell needs to be
identified and the same dynamic stiffness matrix for a beam element can be used to find
the effective elastic properties following a similar analytical framework.

5.5. Lattice with non-prismatic general elements

The analytical formulations outlined so far consider prismatic beam elements as con-
stituent members of the lattice. This implies that the properties of the beam do not change
along the length of the beam. However, to consider beams with variable cross-section as
outlined earlier in Fig. 1(d) or beams made of advanced materials such as composite mate-
rials [71], a more general approach is necessary. In Fig. 16 a beam element with arbitrary
variable cross section is shown. This general element is a constituent beam-like member
of the entire lattice under consideration. As we are interested only in the in-plane proper-
ties of the lattice, the consideration of two-dimensional deformation is sufficient. The 2D
beam element can be discretised in a finite number of elements. We propose a dynamic
condensation approach for this general case such that the stiffness element components
corresponding to only the end degree of freedom are needed to be considered. This will
essentially pave the way to utilize the analytical framework presented in this article in
terms of the stiffness matrix of the constituent beam elements for finding out the effective
elastic properties of the entire lattice.

For dynamic analysis using the finite element method, the dynamic equilibrium equa-
tion corresponding to the beam element in Fig. 16 can be expressed as

D(w)U(w) = f(w) (176)

Here U(w) € C" and f(w) € C" are respectively the nodal displacement and applied
forcing vector on the element. In general both vectors are complex valued and the total
degree of freedom n > 6 due to the fine discretization of the beam element. Using the
n X n mass, damping and stiffness matrices, the element dynamic matrix can be obtained
as

D(w) = —w’M +iwC + K (177)

We denote
U, (w) = {U1(w), Us(w), Us(w), Up_s(w), Up_1(w), Un(w)} € CO
and  f.(w) = {/1(w), fo(w), f3(©), fo-2(w), fa1(w), fu(w)} € C°

as the displacement and applied forcing vector on the element corresponding to the two
end nodes, respectively. Recall that the analytical formulation derived in Section 3 only
requires a direct relationship between these two vectors. To obtain this relationship, we
partition the overall dynamic matrix in Eq. (177) and rewrite the dynamic equilibrium

R - [ R D

(178)



Fig. 16: A 2D beam element with arbitrary variable cross section. The beam element is discretised using
the finite element method. There are a total of six degrees of freedom at the two end nodes. The degrees
of freedom in each node correspond to the axial, transverse and rotational deformation.

In the above equation subscript ¢ denotes internal degrees of freedom and subscript e
denotes end degrees of freedom. The dimensions of the matrices and vectors in the
above equation are given by Uj(w) € C"% D, (w) € C™*"=9 D, (w) € C"9*6 and
D,i(w) € C"=9*(=6) " Ag there is no internal forcing, the vector corresponding to f;(w)
is 0 € R0,

Eliminating the internal degree of freedom U;(w), from Eq. (179) we obtain the direct
relationship between end nodal forces and displacements as

[Dee(w) — Dei(w)D_l(w)Die(w)er(w) =f.(w) (180)

113

D.s (w)€C6X6

The elements of the above condensed dynamic matrix D,(w) can be used in the analytical
expressions derived in Section 3 to obtain the equivalent elastic moduli and Poisson’s ratio
of the lattices with any general beam element. Further, the above approach couple be
used to account for the effect of spatially varying intrinsic material properties within the
constituting beam elements. Therefore, the proposed analytical framework in this article is
not only generic in terms of the band of vibration frequency and lattice geometry, but it is
also capable of accounting any non-prismatic spatially varying beam shapes and intrinsic
material properties.

6. Conclusions and perspective

An augmented dynamic stiffness approach based generic analytical framework is pre-
sented for analysing the elastic moduli of lattice materials under steady-state vibration
conditions. In a vibrating condition, the frequency-dependent local deformation mech-
anism of the constituent beam-like elements of a lattice leads to a completely different
deformation behaviour at the global level compared to the static condition. Here we
propose to exploit the possibility of modulating the elastic properties of the lattices as a
function of the ambient vibration. An analytical framework leading to the development
of closed-form expressions for the frequency-dependent elastic moduli, as derived in this
article, provides a computationally efficient and physically insightful approach for inves-
tigating the global lattice behavior under dynamic conditions. Such computational effi-
ciency can be particularly appealing for developing multi-functional engineered material
micro-structures where multiple realizations are often needed in an inverse identification
framework.

The stretching-enriched physics of deformation in the lattice materials in addition to
the bending and shear deformations under dynamic conditions lead to complex elastic



moduli due to the presence of damping. This has been exactly captured using the pro-
posed dynamic stiffness based framework, which is valid over any frequency ranges. The
dynamic stiffness method employs exact frequency-adaptive shape functions to represent
the deformation of the unit cell in the lattice. In the context of wave propagation, this
captures the sub-wavelength scale dynamics. Dependence of Poisson’s ratio on the intrin-
sic material physics in case of a geometrically regular lattice, as unravelled in this article,
is in contrary to the common notion that Poisson’s ratios of perfectly periodic lattices
are the only function of the microstructural geometry. The article systematically shows
that the proposed expressions of elastic moduli exactly reduce to the previously reported
formulae for special cases of neglecting the axial and shear deformation effect under the
dynamic condition as well as the standard formulae for hexagonal honeycombs when the
vibrating frequency tends to zero (i.e. static deformation). This essentially provides exact
analytical validations for the proposed formulae corresponding to static and dynamic con-
ditions. Detailed analytical derivations of the most general to the several special cases are
shown including the static finite element, dynamic finite element and dynamic stiffness
considering Euler-Bernoulli and Timoshenko beam theory.

Novelty of this paper includes the development of generalized closed-form analytical
expressions for frequency-dependent elastic moduli of lattice materials under dynamic
condition including the effect of axial and shear deformation. The chronological devel-
opment of the effective elastic moduli as systematically presented in this paper may be
noted. For the sake of completeness and maintaining the flow of a comprehensive presen-
tation, we start with the static stiffness matrices of a single beam for both Euler-Bernoulli
and Timoshenko beam theories, which are used in the following step to derive the closed
form expressions of the effective elastic moduli of the entire lattice under static condition.
The dynamic elastic moduli of the lattices are also presented following Euler-Bernoulli
and Timoshenko beam theories in the framework of dynamic stiffness matrix and dynamic
finite element matrix. It is clearly explained that the formulations based on Timoshenko
beam theory is more generic than the Euler-Bernoulli beam theory both in static and
dynamic conditions, while the dynamic stiffness based approach can cover wider range
of frequencies compared to the dynamic finite element formulation. The closed-form
analytical formulae for the dynamic elastic moduli of lattices including shear and axial
deformations are reported for the first time in this article.

The attractiveness of this article lies in the generality and comprehensiveness of the
proposed analytical framework, which would have a broad impact on artificially engineered
materials development. The analytical framework reported here is the most general to
date; it is applicable to (a) any form of two or three dimensional lattices (though we have
focused on a set of two dimensional lattices, the generic dynamic stiffness based framework
can be readily extended to other lattice forms following a similar approach), (b) any profile
of the constituent beam-like elements due to inclusion of axial and shear deformation
effects (different cross sections as well as spatially varying geometry and intrinsic material
properties), (c) a wide range of frequency band covering low (including zero) to high
frequencies, and (d) dynamic systems including the effect of intrinsic material damping.
Most of the research activities in the field of lattice metamaterials dealing with elastic
properties revolve around intuitively designing the microstructural geometry of the lattice
structure. Here we develop the necessary analytical framework to couple the physics of
deformation as a function of vibrating frequency along with the conventional approach of
designing microstructural geometry to expand the effective design space significantly. The



efficient and elegant, yet physically insightful closed-form formulae along with the generic
analytical approach, proposing new exploitable dimensions in the engineered materials
research, would lead to unravelling unprecedented material properties for modern multi-
functional structural systems across the length-scales.
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