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Abstract. In an arithmetical structure one can make division a total
function by defining 1/0 to be an element of the structure, or by adding a
new element such as infinity oo or error element 1. A wheel is an algebra
in which division is totalised by setting 1/0 = co but which also contains
an error element L to help control its use. We construct the wheel of
rational numbers as an abstract data type Q. and give it an equational
specification without auxiliary operators under initial algebra semantics.
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1 Introduction

In arithmetical structures the most important operator that fails to be total is
1/x when z = 0. That division becomes a total operation is of value for the
semantic modelling, specification and verification of computations with com-
puter arithmetics. Among a number of approaches to making division total are
arithmetical algebras in which:

(i) 1/0 behaves as one of the elements in the structure, e.g., 0 or 1;
(ii) 1/0 behaves as an error element L, additional to the structure;
(iii) 1/0 behaves as an infinite element oo, additional to the structure.

Meadows are an axiomatically defined class of arithmetical algebras first studied
in [3,11] in which the internal option (i) was examined, especially 1/0 = 0.
Later, meadows with the external error element option (ii) were introduced in
[6], where they were called common meadows. The infinity element option (iii)
was discussed in the survey [2]. All three options deliver workable and interesting
ways of removing partiality. In the case of (ii) and (iii), basic properties such as

l+z=1,1.2=1 and co+ x = 00,00.2 = 00
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begin to shape intuitions about the semantics. However, adding elements to
structures commonly cause complications because the new elements must oper-
ate sensibly with all the algebraic constants and operations of the structure. For
example, in the case of adding infinity, we could easily find

0.00 = o0,

which is unattractive and against some arithmetic intuitions. Thus, a next step
in the case of infinity oo is to also add an error element | so that some unwanted
or suspect results can be controlled:

0.00 =1 and, indeed, co + 00 =1 .

The idea of adding a single infinity has several precedents, not least the
Riemann sphere (from 1857 onwards); the idea of adding an error element is
also older than the approach using meadows and is known as a wheel. Wheels
are an axiomatically defined class of algebras first studied in [13,18]. Along with
the key ideas of a wheel, namely, % = oo and that é = 0, come the subtle
controlling properties that 0.0o =1 and oo + co =.1.

The viability or fitness for purpose of any method of totalising division
depends upon the axioms for the structures and, subsequently, on their applica-
tion to a computational problem. Both axiomatisations of meadows and wheels
start with familiar axioms for commutative ring-like structures to which axioms
for inverse ~! are added. Central to both meadows, wheels and other approaches
to totalisation is the field of rational numbers and the problem of totalising divi-
sion; see [11] and for several other options for division by zero [2].

In the case of meadows, the development uses the theory of algebraic speci-
fications of abstract data types, in which a central concept is axiomatisation by
a finite set F of equations over a signature X', whose initial algebra defines the
data type up to isomorphism. Thus, in [11], are finite equational specifications
of the rationals with 1/0 = 0 up to isomorphism, which defines the abstract
data type Qg of the meadow of rational numbers. Interestingly, the existence of
a finite equational specification for the rational numbers was open until [11].

In this paper we examine the basic structure of the rational number arith-
metic considered as a wheel. We will extend and adapt some of the axioms of
wheels in [13] using techniques from meadows [3] to give an equational specifica-
tion for the wheel of rational numbers as an abstract data type Q,,: we give a set
of equations E,, over the signature X, such that under initial algebra semantics

I(Zy, Ew) = Qu.

The structure of the paper is as follows. In Sect. 2 we list some basic concepts
and principles of our general approach, including the methodology of abstract
data type theory and the focus of our interest, namely arithmetical structures.
In Sect. 3 we introduce a concrete model of a wheel of rationals and in Sect. 4 we
give it its initial algebra specification. Section 5 makes some concluding remarks.
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We assume that the reader is familiar with the basic algebraic concepts used
to model data types: signature, algebra, erpansion, reduct, congruence, term,
homomorphism, equational theory, first order theory, etc. These basics can be
found in several introductions to algebraic methods and abstract data type the-
ory [14-16,21]. We have chosen to keep our algebraic techniques very simple to
focus attention on a new topic for theoretical investigation, namely arithmetic
data type theory.

2 Preliminaries on ADTs

2.1 The Approach of ADTs

The theory of abstract data types is based upon the following principle:

Principle. In programming, data is characterised by the operations and tests
we can use on the data. All the data can be constructed and accessed by applying
the operations to given constants. An interface to the data type is a syntactic
declaration of these constant, operator and test names. What is known to the
programmer about the implementation of the data type is only a set of properties
of the constants, operators and tests. The interface and set of properties is called
a specification of an abstract data type.

These ideas about programming are faithfully modelled by the algebraic
and logical theories of general algebras and relational structures. In particu-
lar, the interface is modelled by a signature X' and the properties modelled by
an axiomatic theory T'.

Principle. An abstract data type is an isomorphism class of algebras of common
signature. Each algebra is a possible representation or construction or implemen-
tation of the data type. The algebras for which all the data can be constructed by
applying their operations to their constants are the minimal algebras.

Thus, to specify an abstract data type is to specify an isomorphism class of
algebras. In the case of the field of rational numbers, the standard notation Q will
stand for the isomorphism type and @ will stand for a particular representative
or construction or implementation of the rational isomorphism type. Thus, @ is
a concrete data type and Q is the abstract data type.

In general, conditions are added to this idea of an abstract data type, of which
finite, computable, semicomputable abstract data types are common; notice such
properties must be isomorphism invariants of algebras. Computable algebras
have important roles in modelling data [19], and especially in classical field
theory [20].

Let us expand on the ideas introduced above.

The interface is a signature X and, typically, the properties is a set T of
first order axioms about the constants, operations and tests in X. A Y-algebra
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A is Y-minimal if all the elements of A can be constructed by applying the
operations to the constants of A. The pair (X,T) is an axiomatic specification
and Alg(X,T) is the class of all Y-structures that satisfy the axioms of T. Of
particular importance is the case when the axiomatisations consist of a set F
of equations only. Such an equational specification (X, E') has an initial algebra
I(X,E) in the class Alg(X, F) that is unique up to isomorphism. The initial
algebra has an important representative structure. Let T'(X) be the set of all
closed terms over the signature X'. Define a congruence on T'(X) for any t1,ts €
T(2),

ti1=ty<— FEFt1 =t

Then we have

I(5,E)=T(%)/

Thus the

Specification Problem. Given a X-algebra A representing an implementation
of an abstract data type, can we find an equational specification (X, E) such that
(X E)=2T(Y) == A

The general specification problem for computable, semicomputable and
cosemicomputable abstract data types has been studied in depth [1,9,10]. In
general, auxiliary data, operators and even sorts may be needed. For example,
small equational specifications exist for all computable data types, provided
some auxiliary operations may appear in the specification; indeed, general the-
ory [9] shows that the rational number data types studied here are computable
and, therefore, can all be specified with 6 auxiliary functions and 4 equations
only! However, these general theoretical results use advanced methods from com-
putability theory and do not yield recognisable and useable axiomatisations. Here
the specifications are close to the algebra of rational numbers and do not use
auxiliary operators.

2.2 Arithmetic Structures

The signature X,, for meadows contains the ring operations and an inverse ~!

operation. It is richer than signatures commonly used for working with fields
and skew structures as often inverse ~! is not an explicit operation having an
axiomatisation. Binary division —/— seems to be rarely used but is useful to
have as a derived function, £ = z.y~!, that can be eliminated. In some cases of
interest to us, it is convenient to add other binary operations such as subtraction
as a binary operation. To give an hint of what we have in mind for the term
‘arithmetic structures’:

Definition 1. X is an arithmetic signature if it extends the meadow signature,
e, Xy C XL
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Consider the following signature for wheels which simply adds two character-
istic constants, oo for infinity and L for error, to the signature X, for meadows:

signature X,
sorts num

constants 0 :— num
1:— num
00 1— num
1:— num

operations + : num X num — num
I nUM X num — num
— 1 num — num
1 num — num

/ : num X num — num

end

Clearly, a wheel signature is an arithmetic signature.

3 The Wheel of Rationals

In working with arithmetic structures as abstract data types, the distinction
between concrete constructions of algebras and their isomorphism type becomes
important and subtle. There are lots of ways of constructing the rationals from
the integers, and the integers from the naturals.

3.1 Basic Constructions with Rationals

We start with a specific ring @ of rational numbers with unit made from some
specific copy of the integers Z. This is an algebra that is not minimal.
We begin the construction of the rationals as follows: let

SFP ={(n,m):n,m¢€ Z,m > 0,and gcd(n,m) = 1}.

SFP stands for simplified fracpairs.! Note we seek to avoid equivalence
classes in this construction.

The additive identity is uniquely defined by (0,1) — note that elements such
as (0,2) are not in SFP. The multiplicative unit is (1, 1). Note that (1,0) is not
in SF'P We define the operations in stages starting with addition:

(nﬂ m) + (pa Q) - (aa b)

! For information on fracpairs see [7].
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where
np + mq

a =
ged(np +mq, mq)

and
mq

b =
ged(np +mq, mq)

Secondly, we define multiplication:
(’I’L, m).(p, q) = (a’ b)
where
np

a=——"
ged(np, mq)

and
mq

Y S—
ged(np, mq)

Thirdly, we define additive inverse:
—(n,m) = (—n,m).
Let

Q= (SFP|(0,1),(1,1),4+,—,.)

3.2 A Wheel of Rationals

To build a wheel @,, of rational numbers from @ we need to add elements that
behave like infinity and error. The element (1,0) will represent infinity co and
the element (0,0) will represent error L.

The elements (1,0) and (0,0) are not in the set SFP and so we define

SFP, = SFPU{(1,0),(0,0)}

and extend the operations of @ as follows:
For error, if (n,m) € SFP then

(n,m) + (0,0) = (0,0)
(0,0) + (n,m) = (0,0)
(n,m).(0,0) = (0,0)
(0,0).(n,m) = (0,0)
—(0,0) = (0,0)
(0,0) + (0,0) = (0,0)
(0,0).(0,0) = (0,0)
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For infinity, if (n,m) € SFP and n # 0 then

(n,m)+ (1,0) = (1,0)
(1,0) + (n,m) = (1,0)
(n,m).(1,0) = (1,0)
(1,0).(n,m) = (1,0)
(1,0) + (1,0) = (0,0)
(1,0).(1,0) = (1,0)
(1,0).(0,1) = (0,0)
(0,1).(1,0) = (0,0)
—(1,0) = (1,0)

Error and infinity combine as follows:

(1,0) +(0,0) = (0,0)
(0,0) +(1,0) = (0,0)
(1,0).(0,0) = (0,0)
(0,0).(1,0) = (0,0)

Thus the structure @ is extended to the algebra
Q[(1,1),(0,0)] = (SFPy | (0,1),(1,1),+,—,.)

The new elements are not named constants.

19

At this point we expand the algebra Q[(1,1), (0,0)] with inverse operation

~1 defined by:

(070)7 = (070)
(1,071 =(0,1)
(0,1)7" = (1,0)
This extended structure
Qw = (SFPIU | (07 1), (17 1)a (15 0)7 (07 0)7 +7 ) '7_1 )

is a wheel of rational numbers.

Lemma 1. The algebra Q., is a X -minimal algebra.
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Definition 2. The abstract data type Q, of the wheel of rational numbers is
the isomorphism class of the X,,-minimal algebra Q..

4 Initial Algebra Specification of the Wheel of Rationals

We now give an equational specification (X,,, E,,) and prove that it defines our
wheel of rationals.

Table 1. E,: an initial algebra specification of the abstract data type of wheels

t+y=y+z (1)
(@+y)+z=a+(y+2) (2)
z+0==x 3)
Ty =y.x (4)
z.(y.2) = (z.y).2 (5)
zl==x (6)
(zy) t=aty ! (7
(z ) =z (8)
zax ' =1+0z"" 9)
% =zy ! (10)
(z+y)z+0z=z2+y.z2 (11)
00=0 (12)
07! = (13)
co+1=0c (14)
(—z).00 = z.00 (15)
—00 = 00 (16)
0.00 =L (17)
—1=1 (18)
x4+ =1 (19)
z+ (—z) =0z (20)
2 =z (21)
14+ 0.(z+y+2+u) = SELHE sl (22)

(23)

oo+0.(x+y+z+u)=w—i—o.(x—&—y—i—z—i—u) 23

4.1 Axioms

The complete set of equations in FE,, is in Table 1. Notice that Eqgs.1-8 are
familiar; the effects of the new elements on the standard operations start to
appear in Egs. 9, 11 and 20. To get the feel of these axioms, we prove carefully
some basic identities that will be needed as lemmas later on.

First, recall the properties of numerals. Let n = 1+ 1+ ... 4+ 1 (n-times).
Then the following is easy to check:
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Lemma 2. (¥,,E,)Fn+m=n+m and (Xy, E,) - nm=n.

Lemma 3. (X, E,)F0n=

Proof. We do this by induction on n. As basis, note that if n = 0 or n = 1
then the lemma is true by the axioms. Suppose the lemma is true for n = k and
consider n = k + 1. Using the axioms we deduce that

0E+1=k4+1.0 by commutativity
=(k+1).0 by definition of numerals
=(k+1).0+0.0 by axioms 3 and 13
=0k+0.1 by axiom 11
=040 by induction hypothesis
=0.

Lemma 4. (X, E,)Fmm™! =1.

Proof. Applying Lagrange’s Theorem to m — 1, let m = p? + ¢ +r2 + s + 1.
Then:

m PP+’ 41
m p24q?+ri+s4l
=14+0.(p+q+r+s) by axiom 22
=1+4+0.(p+qg+r+s) by Lemma 2
=140 by Lemma 3
=1
O
Lemma 5. (¥, E,)F0m™! =0.
Proof.
0.m~ ' = (O.m).mf1 by Lemma 3
=0.(m.m™ ") by axiom 5
=0.1 by Lemma 3
=0 by axiom 6
O

Lemma 6. (X, E,)F 0.(n.m™!) = 0.
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Proof.
0.(n.m™") = (0.n).m™1) by axiom 5
=0.m* by Lemma 3
=0 by Lemma 5
O
Turning to co we have these basic properties:
Lemma 7. (X, E,)F oo —1=o0.
Proof.
o—1=(c0+1)—1 by axiom 14
=0+ (1-1) by axiom 2
=o00+0 by axiom 20
=00 by axiom 3
O
Lemma 8. (X, E,)F oo™ ! =0.
Proof. Clearly, oo™t = (071)~! = 0 by axioms 13 and 8. O

Lemma 9. (X, E,)F co+ m = oco.

Proof. By induction on m. If m = 0 and m = 1 then the lemma follows from the
axioms 3 and 14, respectively. Suppose m = k + 1. Then co+(k + 1) = (co+k)+1

and, by the induction hypothesis on k, we have co + 1 = cc. a
Lemma 10. (¥, E,) F co.m = oo and (X, Ey) F oo.m™! = oco.

Proof. Consider the first statement. Applying Lagrange’s Theorem, let m =
p? 4+ ¢®> + 12+ 52+ 1. Then

m .
com = — by axiom 13

0
_p2+q2—|—7'2—|—32—|—1

by substitution

5 +0.(p+g+r+s+1) by Lemma 2 and axiom 3
=00+0.(p+q+r+s+1) by axiom 23



Next, consider the second statement.

com ! =(0"'m™)

o (0.0)~!
=0!

=0

Lemma 11. (¥, E,) F co.(n.m™!) = oco.

oo.(n.m™ ') = (co.n).m™

= oo.r;f1

= Q.

Lemma 12. (¥, E,) F 00.00 = 00.
Proof.

00.00 = (071071
=(0.0)7*
=0!

4.2 Remarks on the Equations

Wheel of Rational Numbers

by axiom 13
by axiom 7

by axiom 12
by axiom 13

by axiom 5
by Lemma 10
by Lemma 10

by axiom 13
by axiom 7

by Lemma 3
by axiom 13

23

The equations of F,,, displayed in Table 1, build on a number of sources and
required adaptations. The basic axioms are those of commutative rings. Some
of the axioms are of common meadows which introduce L: e.g., axioms 9 and
20. Axioms 22 and 23 are adaptations of the data generating axioms for the
rationals in [11]. Axiom 11 was used by Setzer and Carlstrém [13,18].

Our set of axioms is intended to be informative and practical. It is not
intended to be minimal. For instance, axiom 22 implies axiom 13 (by setting
the variables = 0). As with all established axiom systems, properties that are
lemmas can often also serve as axioms, whence some axioms can become lemmas.
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Axioms from [13] that are true but which we do not use are:

T yoy= Tty (24)
Y

(x+0y)z=x.2+0y (25)
(x+0y) t=2"14+0y (26)

In the Introduction we suggested some identities about co and | were either
to be expected or are desirable or undesirable. In fact, all identities involving
oo and L offer opportunities for mathematical investigation and possibly new
technical insights and semantic perspectives.

4.3 Equational Specification Theorem

Theorem 1. The initial algebra I(X,,, Ey,) of the equations in E,, is isomorphic
to the wheel Q. of rational numbers.

Proof. We will take the standard term representation T'(X,, E,) of initial
algebra I(X,,E,) and show that T(X,,E,) = Q.. Recall from 2.1 that
T( Xy, Eyw) =T(Xy)/ =g, and that for t1,ty € T(X,,),

t1 =g, t2 <— E, Ft =ts.

To work with the congruence we define a transversal Tr of unique represen-
tatives of the equivalence classes of =g, . Let

Tr={nm™ !, 1,00]| (n,m) € SFP}.
Lemma 13. (X, E,) E Qu

Proof. To prove soundness we inspect each axiom and show its validity in Q.
This involves 23 equations, often with many case distinctions each. We give some
examples to illustrate the pattern of reasoning.

First, consider if any one of the variables is the error element (0,0). Note that
all but one of the equations have the property that the variables that appear
on the left side of the equality sign also appear on the right, and vice versa.
The definition of the operations in the error case of Sect.3.2 shows that (0,0)
propagates. Thus, all these equations are valid if one of the variables is (0,0).
The equation left is  + L =1 which is valid by definition.

Thus we need only consider the equations when their variables have values
that are rationals or infinity. Note that infinity does not always propagate, which
can lead to many case distinctions in the equations with several variables.

1. Consider associativity: « + (y + z) = (x + y) + z. If all variables are rationals
then the equation is easily seen to be valid. There are three cases involving
infinity (1,0).
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If exactly one variable is (1,0) then both sides of the equation evaluate to
(1,0).

If exactly two variables are (1,0) then both sides evaluate to (0, 0).

If all three variables are (1,0) then both sides evaluate to (0,0).

2. Consider (£+40.y).z = x.z+0.y. Suppose y is the infinite element (1, 0). Then
0.y = (0,0) and since error propagates both sides evaluate to (0,0). Suppose
y # (1,0). Then 0.y = (0,1) and the equation reduces to the value of x.z on
both sides.

3. Consider the four squares equation. Suppose one of z,y, z,u is the infinite
element (1,0). Then, on the LHS, the sums of squares numerator and denom-
inator evaluate to the infinite (1,0) and their quotient is the error element
(0,0). On the RHS, the sum of the variables z,y, z,u is (1,0) and its product
with 0 is the error element (0,0), and so the equation holds.

Next suppose more than one of x,y, z, u is the infinite element (1,0). Then
both the sum of squares of the variables on the LHS, and the sum of the vari-
ables on the RHS, are both the error element (0, 0) and since error propagates
the equation holds. m]

Now T(Xy, Ey) is the initial algebra of the class of models of (X, E,).
By Lemma 13, @,, is such a model and so by initiality, there exists a unique
surjective homomorphism ¢ : T(X,,, E) — Q. We have to show that ¢ is an
isomorphism. We do this by proving by induction that every term ¢ € T(X,,)
reduces to an element tq of the transversal Tr, i.e.,

(Xw, Ey) Ft=to.

We deal with the constants in the base case and the operator symbols in the
induction step. There are several case distinctions and the argument uses the 25
equations in various subtle ways.

Basis Case: The Constants. Clearly, the transversal contains the constants L,
0o. We will show that the constant 0 is 0.17! using the axioms of .1 = z and
associativity:

0=01=0.(1.1"" =011

Last we show the constant 1is 1.1} using the four squares axiom:

1 0°40*+0°+0°+1
1 02402402402 +1

=14+0.(0+0+0+0)=1

1

Induction Step. There are four operators —,~ ", = . to consider.

Additive Inverse. Consider the leading operator symbol — and term ¢ = —s.
By induction, the subterm s reduces to one of three cases: s = co, s =1 and
s =n.m~! in the transversal Tr. From the axioms, the first two cases of —s are
immediate as —oo = oo and — L =1, which are in the transversal. The last case
is quite involved, however.
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Suppose t = —(n.m~!). We will show that ¢+ = (—n.m~!), which is in the
transversal. We begin with some lemmas of use here and later on.

To complete the case we need these identities:
Lemma 14. (n.m™ ') + (=(n.m™1)) = 0 and (n.m™ ') + (=n).m~! = 0.

)
Proof. First, we show that (n.m~!) + (—(n.m™!)) = 0.

(nm ')+ (—(om™1)) =0.(n.m™ 1) by axiom 20
= (0.n).m™* by axiom 5
=0.m! by Lemma 3
= (0.m).m ™! by Lemma 3
= 0.(w .mfl). by axiom 5
=0.1 by Lemma 4
=0 by axiom 6

Next we show the second identity, (n.m~!) + (—=n).m~! = 0.
_|_

(nm™ )+ (-n)m ' = (@0 + (-n))m ' +0m! by axiom 11
=@+ (-n))m* by Lemma 5
= (0.1_1).@171 by axiom 20
= 0.(Q.m_1) by axiom 5
=0. by Lemma 6
O
Given the Lemma 14, by subtracting the above equations, it follows that
—(mm™!) — (zn)m~' =0
and, thus,
—(nm™!) = (=n)m~*
which is in the transversal. This completes the basis. a

Multiplicative Inverse. Consider the leading operator symbol ~! and term ¢ =
s~!. By induction, the subterm s reduces to one of four cases: s = o0, s =1,
s=0m ! and s = n.m~! with n # 0 in the transversal Tr.

If s =1 then
57! =(0.00)7" by axiom 17
=0"too! by axiom 7
=00.0 by axiom 17 and Lemma 8
= 0.00 by axiom 4
=1 by axiom 17

which is in the transversal.



If s = oo then s~ = 0 by Lemma 8.
If s=0.m~! then

571 _ (Q.m71)71
=0!
=00

which is in the transversal.
If s=nm™" for n # 0 then

S—l — (n-m—l)—l
—nL(m !
=n"'m
=man!

which is in the transversal.

Wheel of Rational Numbers

by Lemma 5
by axiom 13

by axiom 7
by axiom 8

by axiom 4

27

Addition. Consider the leading operator symbol 4+ and term ¢ = r 4+ s. For
notational ease, we write a for n and b for m. By induction, the subterms 7, s

reduce to one of six cases in the table below:

<
[V

e
8

ab ted !

The first three cases where r =1 follow from the axiom x4+ L=1 and com-
mutativity. The next case uses axioms 20 followed by axiom 17:

00+ 00 =00+ (—00) =0.00 =1 .

Now
o+abt=oc0b™ !t 4ab?
=(co+a)b ' +0.b7!
=00.b7t 40

=o00.b7 !

= o0

which is in the transversal.

by Lemma 10
by axiom 11
by Lemma 9
by axiom 3

by Lemma 10
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Consider the last case:

abl4+edt=abtl+ecd !l by axiom 6
=ab tdd ' +cdtob! by Lemma 4
=adbtd ' +ecbdtb? by axiom 4
=(a.d+ecb).b~td P +0b7d ! by axiom 11
d+cb

= % +0 by axiom 7
d+cb

= %. by axiom 3

To finish this deduction: let p = ged(a.d+ ¢.b, bd). Choose p’, p” such that p.p’ =

a.d+ c.b and p.p” = b.d. Then %4teb — LI = P which is in the transversal.

Multiplication. Consider the leading operator symbol . and term ¢ = r.s. By
induction, the subterms r, s reduce to one of six cases as in the table above; each
case will need an argument.

1.1 =(00.0).(c0.0) by axiom 17
= 00.00.0 by axioms 5, 4, 12
= 00.0 by lemma 12
=1 by axiom 17

which is in the transversal. The next case is straightforward:

1 .00 = (00.0).00 by axiom 17
= (00.00).0 by axioms 5, 4
= 00.0 by lemma 12
=1 by axiom 17

which is in the transversal.

L .ab™ ! =(c0.0).ab7?! by axiom 17
= o00.(0.a.b7t) by axioms 5
= 00.0 by lemma 6
=1 by axiom 17

which is in the transversal.
Consider co.a.b™!.

o0.(a.b™t) = (c0.a).b™! by axiom 5
= (c0.b™h) by lemma 10
=00 by lemma 10

which is in the transversal.
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Finally, the last case is this deduction: let p = gcd(ac, bd)

ab ted ™t = (a.c).(bd)! by axioms 4 and 7

= (p.p)).(p.p") 71 by substitution
= (pp).(p~tp"™h) by axiom 7

=@p .0 by axiom 4

= (1pp" ™Y by Lemma 4

=p'p't by axiom 6

which is in the transversal.
This concludes the proof of the theorem. O

5 Concluding Remarks

Using a general conceptual framework for analysing numerical data types with
total operations, we have given a mathematical model of the wheel of rational
numbers. The concept of a wheel was introduced by Anton Setzer in unpublished
notes [18]. It was motivated by Jens Blanck’s lectures on exact real number
computations, based on domains and rational number intervals, and Per Martin
Loft’s suggestion to allow 0 in denominators of elements of quotient fields. Later
wheels were studied in greater generality and published by Jesper Carlstrém
[13]. Carlstrom generalised the constructions to semirings, developed equations
and identities, and considered the class of wheels.

The concept of a meadow emerged when we were making an algebraic specifi-
cation of the rational numbers in [11]; we studied the axiomatic class of meadows
in [3]. A substantial series of papers has built an algebraic theory of meadows
with different properties, e.g., [4-6,8,12].

The ideas in this paper suggest problems and topics for further study. In the
case of the meadow programme on totalisation, algebraic specifications for other
methods of totalisation in arithmetic structures could be tackled. An obvious
candidate is transrational arithmetic due to James Anderson, as described in
[2,17]. Transrational arithmetic provides signed infinities, i.e., +00 and —oo, in
addition to an error element (which is called nullity and denoted by @ instead of
1). Thus, while wheels are aimed at reasoning for exact real arithmetics based
on intervals, the transrationals are aimed at floating point arithmetics. Other
semantic interpretations of infinities and errors are conceivable that could lead
to interesting arithmetic data types.

As with most algebraic specification problems, there is also the search for
new specifications with good term rewriting properties for arithmetic structures.
In the specific case of wheels, can a basis theorem for the class of wheels be
provided? In the case of common meadows, which feature L but not oo, a basis
theorem has been obtained in [6]. The case of wheels seems to be much harder,
however.
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