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Abstract
Our main equation of study is the nonlinear Schrödinger-Poisson system

⇢
�Du+u+r(x)fu = |u|p�1u, x 2 R3,
�Df = r(x)u2, x 2 R3,

with p 2 (2,5) and r : R3 ! R a nonnegative measurable function. In the spirit of
the classical work of P. H. Rabinowitz [55] on nonlinear Schrödinger equations, we
first prove existence of positive mountain-pass solutions and least energy solutions to
this system under different assumptions on r at infinity. Our results cover the range
p 2 (2,3) where the lack of compactness phenomena may be due to the combined
effect of the invariance by translations of a ‘limiting problem’ at infinity and of the
possible unboundedness of the Palais-Smale sequences. In the case of a coercive r ,
namely r(x)!+• as |x|!+•, we then prove the existence of infinitely many dis-
tinct pairs of solutions. For p 2 (3,5) we exploit the symmetry of the problem by
the action of Z2 as well as some well-known properties of the Krasnoselskii-genus,
whereas for p2 (2,3] we use an appropriate abstract min-max scheme, which requires
some additional assumptions on r .

After establishing these existence and multiplicity results, we are then interested in
the qualitative properties of solutions the singularly perturbed problem

⇢
�e

2Du+lu+r(x)fu = |u|p�1u, x 2 R3

�Df = r(x)u2, x 2 R3,

with r : R3 ! R a nonnegative measurable function, l 2 R, and l > 0, taking ad-
vantage of a shrinking parameter e ⌧ 1. In particular, we seek to understand the
concentration phenomena purely driven by r . To this end, we first find necessary
conditions for concentration at points to occur for solutions in various functional
settings which are suitable for both variational and perturbation methods. We then
discuss a variational/penalisation method, which has been exploited in the case of
nonlinear Schrödinger equations, and discuss its applications to the present nonlinear
Schrödinger-Poisson context, in the attempt of showing that the necessary conditions
are, in fact, sufficient conditions on r for point concentration of solutions. Finally,
we present some preliminary results in this direction that elicit interesting standalone
qualitative properties of the solutions.
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Symbols and Notation

The following symbols and notation will be used throughout the thesis. Any other
notation that is used, will be clearly defined in the thesis.

• D is the classical Laplacian operator.

• |x| is the Euclidean norm of x 2 RN .

• Lp(W), with W ✓ R3 and p � 1, is the usual Lebesgue space. Lp(R3) = Lp.

• The Hölder space Ck,a(W), with W ✓ R3 and a 2 (0,1], is the set of functions
on W that are k-fold differentiable and whose k-fold derivatives are Hölder con-
tinuous of order a .

• H1, W m,p are classical Sobolev spaces.

• X⇤ and H�1(R3) = H�1 denotes the dual space of X and H1(R3), respectively.

• D(R3) is the space of test functions.

• D 0(R3) is the dual space of D(R3).

• D1,2(R3) = D1,2 is the space defined as

D1,2(R3) := {u 2 L6(R3) : —u 2 L2(R3)},

and equipped with norm

||u||D1,2(R3) := ||—u||L2(R3).

• E(R3) = E is the space defined as

E(R3) :=
�

u 2 D1,2(R3) : ||u||E <+•
 
,

where

||u||2E :=
ˆ
R3
(|—u|2 +u2)dx+

✓ˆ
R3

ˆ
R3

u2(x)r(x)u2(y)r(y)
|x� y| dxdy

◆1/2

.

• We set

fu(x) :=
ˆ
R3

r(y)u2(y)
4p|x� y| dy,
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and

f̄u(x) :=
ˆ
R3

r•u2(y)
4p|x� y| dy.

• w is the usual normalization factor for the Green function of the Laplacian in
RN ; in this thesis, w = 4p since we work in R3

• For any h > 0 and any z 2 R3, B
h

(z) is the ball of radius h centered at z. For
any h > 0, B

h

is the ball of radius h centered at 0.

• Sp+1 := infu2H1(R3)\{0}
||u||2

H1(R3)
||u||2

Lp+1(R3)
is the best Sobolev constant for the embed-

ding of H1(R3) into Lp+1(R3).

• Let A ⇢ R3. Then, we define

cA(x) :=

(
1, x 2 A,
0, x 62 A.

• C,C1,C0, etc., denote generic positive constants.

• Asymptotic Notation: For real valued functions f (t),g(t)� 0, we write:

– f (t)g(t) if there exists C > 0 independent of t such that f (t)Cg(t).

– f (t) = o(g(t)) as t !+• if and only if g(t) 6= 0 and limt!+•
f (t)
g(t) = 0.

– f (t) = O(g(t)) as t ! +• if and only if there exists C1 > 0 such that
f (t)C1g(t) for t large.

ix



1 Introduction

In this thesis, we study existence of positive solutions to the following nonlinear
Schrödinger-Poisson system

(
�Du+u+r(x)fu = |u|p�1u, x 2 R3,

�Df = r(x)u2, x 2 R3,
(1.1)

with p 2 (2,5) and r : R3 ! R a nonnegative measurable function which represents
a non-constant ‘charge’ corrector to the density u2. In the context of the so-called
Density Functional Theory, variants of system (1.1) appear as mean field approxima-
tions of quantum many–body systems, see [9], [23], [45]. The positive Coulombic
potential, f , represents a repulsive interaction between particles, whereas the local
nonlinearity |u|p�1u generalises the u5/3 term introduced by Slater [58] as local ap-
proximation of the exchange potential in Hartree–Fock type models, see e.g. [16],
[46].

Throughout this thesis, we work in RN with N = 3. We note that the same analysis
can be performed in every dimension N 6= 2, provided N is such that the functional

space that we work in embeds compactly into L
4N

N+2
loc (RN), yielding a constraint on the

dimension. Namely, we would need the technical assumption that 4N
N+2 is subcriti-

cal with respect to the classical Sobolev exponent 2N
N�2 , which holds if and only if

N = 3, 4, 5. Because of the different structure of the Green function of the Laplacian,
the case N = 2 requires different techniques and is mostly open.

Within a min-max setting and in the spirit of Rabinowitz [55], we study exis-
tence and qualitative properties of the solutions to (1.1), highlighting those phenom-
ena which are driven by r. The system (1.1) ‘interpolates’ the classical equation

�Du+u = up, x 2 R3, (1.2)

whose positive solutions have been classified by Kwong [41], with

(
�Du+u+fu = |u|p�1u, x 2 R3,

�Df = u2, x 2 R3,
(1.3)

studied by several authors in relation to existence, nonexistence, multiplicity and be-
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haviour of the solutions in the semi-classical limit; see e.g. [2], [13], [23], and ref-
erences therein. In the case r(x)! 0 as |x|! +•, (1.2) has been exploited as lim-
iting equation to tackle existence/compactness questions related to certain classes of
systems similar to (1.1), see e.g. [25] and [26]. In the present paper we consider in-
stances where the convergence of approximating solutions to (1.1) is not characterised
by means of (1.2), namely the cases where, as |x|!+•, it holds either that r !+•
(‘coercive case’), or that r ! r• > 0 (‘non-coercive case’). The latter corresponds
to the case where nontrivial solutions of (1.3) (up to coefficients) cause lack of com-
pactness phenomena to occur. The main difficulty in this context is that, despite the
extensive literature, a full understanding of the set of positive solutions to (1.3) has
not yet been achieved (symmetry, non-degeneracy, etc.).

The autonomous system (1.3), as well as (1.1), presents various mathematical fea-
tures which are not shared with nonlinear Schrödinger type equations, mostly related
to lack of compactness phenomena. In a pioneering work [57], radial functions and
constrained minimisation techniques have been used, over a certain natural constraint
manifold defined combining the Pohozaev and Nehari identities, yielding existence
results of positive radial solutions to (1.3) for all p 2 (2,5). Again in a radial setting,
a variant of system (1.3) has been studied more recently in [40]. When p  2 the
change in geometry of the associated energy functional causes differing phenomena
to occur. In [57] existence, nonexistence and multiplicity results have been shown to
be sensitive to a multiplicative factor for the Poisson term. Nonexistence results for
(1.3) have also been obtained in R3 in the range p � 5 (see e.g. [28]). In the pres-
ence of potentials, however, existence may occur when p = 5, as it has been recently
shown in [24]. Ambrosetti and Ruiz [7] improved upon these early results by using
the so-called ‘monotonicity trick’ introduced by Struwe [59] and formulated in the
context of the nonlinear Schrödinger equations by Jeanjean [38] and Jeanjean-Tanaka
[39], in order to show the existence of multiple bound state solutions to (1.3).

Related problems involving a non-constant charge density r , and in the presence
of potentials, have been studied. The vast majority of works involve the range p > 3
since, when p  3, one has to face two major obstacles in applying the minimax
methods: constructing bounded Palais-Smale sequences and proving that the Palais-
Smale condition holds, see e.g [57], and [7], [47]. Cerami and Molle [25] and Cerami
and Vaira [26] studied the system

(
�Du+V (x)u+lr(x)fu = K(x)|u|p�1u, x 2 R3,

�Df = r(x)u2, x 2 R3,
(1.4)

2



where l > 0 and V (x), r(x) and K(x) are nonnegative functions in R3 such that

lim
|x|!+•

r(x) = 0, lim
|x|!+•

V (x) =V• > 0, lim
|x|!+•

K(x) = K• > 0, (1.5)

and, under suitable assumptions on the potentials, proved the existence of positive
ground state and bound state solutions for p 2 (3,5). In [19] existence of positive
solutions to (1.4) in the range p2 [3,5) has been proved under suitable assumptions on
the potentials that guarantee some compact embeddings of weighted Sobolev spaces
into weighted Lp+1 spaces. Vaira [62] also studied system (1.4), in the case that

lim
|x|!+•

r(x) = r• > 0, V (x)⌘ 1, lim
|x|!+•

K(x) = K• > 0, (1.6)

and, assuming l > 0 and K(x) 6⌘ 1, proved the existence of positive ground state
solutions for p 2 (3,5). In a recent and interesting paper, Sun, Wu and Feng (see
Theorem 1.4 of [61]) have shown the existence of a solution to (1.4) for p 2 (1,3],
assuming (1.6) and K(x)⌘ 1, provided l is sufficiently small and

´
R3 r(x)f

r,w
l

w2
l

<´
R3 r•f

r•,w
l

w2
l

, where (w
l

,f
r•,w

l

) is a positive solution to

(
�Du+u+lr•fu = |u|p�1u, x 2 R3,

�Df = r•u2, x 2 R3.

Their results are obtained using the fact that all nontrivial solutions to (1.4) lie in a
certain manifold M�

l

(see Lemma 6.1 in [61]) to show that the energy functional J
l

is
bounded from below on the set of nontrivial solutions to (1.4). We believe that this is
necessary to prove Corollary 4.3 in [61], and, ultimately, to prove Theorem 1.4 in [61],
and thus the existence result is only viable in the reduced range 2.18 ⇡ �2+

p
73

3 < p 
3 and provided the additional assumption 3p2+4p�23

2(5�p) r(x) + p�1
2 (—r(x),x) � 0 also

holds. In this range of p and under these assumptions, as observed in [61], solutions
are ground states.

1.1 Main original results

In light of the above results, in this thesis we aim to study existence and qualitative
properties of solutions to (1.1), in the various functional settings corresponding to
different hypotheses on the behaviour of r at infinity. The main original results of
this thesis are contained in Theorem 4.2, Corollary 4.3, Proposition 4.4, Theorem 4.3,
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Theorem 4.4, Corollary 4.6, Theorem 5.1, Theorem 5.3, Theorem 6.1, Theorem 6.2,
Proposition 7.3, and Theorem 7.3.

1.1.1 Existence

We first study the case of coercive r , namely r(x) ! +• as |x| ! +•, and work
in the natural setting for this problem, E(R3). When p 2 (2,3), we make use of
the aforementioned ‘monotonicity trick’ exploiting the structure of our functional, in
order to construct bounded Palais-Smale sequences for small perturbations of (1.1).
We are able to prove that these sequences converge using a compact embedding estab-
lished in Lemma 4.5. We finally show that these results extend to the original problem
and obtain the existence of a positive mountain pass solution in Theorem 4.2. After
establishing these results, we prove the existence of positive least energy solutions
for all p 2 (2,5) in Corollary 4.3. When p 2 (3,5) the existence follows relatively
straightforwardly using the Nehari characterisation of the mountain pass level, and
for p 2 (2,3], we make use of a minimising sequence in order to obtain the result.

We then focus on the case of non-coercive r , namely when r(x) ! r• > 0 as
|x| ! +•. For this problem, E(R3) coincides with the larger space H1(R3). Our
method to look for solutions of (1.1) in this case relies on an a posteriori compactness
analysis of bounded Palais-Smale sequences (in the spirit of the classical book of M.
Willem [64]), in which we find that any possible lack of compactness is related to the
invariance by translations of the subcritical ‘problem at infinity’ associated to (1.1).
This a posteriori compactness analysis is provided by Proposition 4.4. There are
several compactness results of similar flavour since the pioneering works of P.L. Lions
[44] and Benci-Cerami [12], which include more recent contributions in the context
of Schrödinger-Poisson systems, see e.g. [26], [62], [24]. We point out that these
recent results are mostly in the range p> 3, for Palais-Smale sequences constrained on
Nehari manifolds, and for functionals without positive parts, unlike our result. In the
case p 2 (2,3), we use Proposition 4.4 together with a Pohozaev type inequality and
Nehari’s identity to show that a sequence of approximated critical points, constructed
by means of the ‘monotonicity trick’, is relatively compact. This enables us to obtain
the existence of a positive mountain pass solution in Theorem 4.3. The non-coercive
case turns out to be more ‘regular’ with respect to compactness issues when p � 3. In
fact, we can show that the Palais-Smale condition holds at the mountain pass level and
as a consequence we obtain Theorem 4.4. We follow up the previous two theorems
with Corollary 4.6, which gives the existence of positive least energy solutions in the
non-coercive case.
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1.1.2 Multiplicity

After proving the existence of mountain pass and least energy solutions (which may
or may not coincide), we then study the existence of multiple distinct solutions to
(1.1). In the case of a coercive r and for p > 3, the existence of infinitely many pairs
of distinct solutions to (1.1) (Theorem 5.1) follows relatively straightforwardly using
the results of [6], which rely on the structure of the associated energy functional as
well as some well-known properties of the Krasnoselskii-genus. As usual, however,
when p  3, we face the additional difficulties of constructing bounded Palais-Smale
sequences, as well as proving that the Palais-Smale condition holds. To overcome this,
we need a more robust approach than given in [6]. Namely, in the case of a coercive
r and p  3, inspired by [7], we use an appropriate abstract min-max scheme and
the aforementioned ‘monotonicity trick’, in order to obtain the existence of infinitely
many pairs of distinct solutions to (1.1) (Theorem 5.3).

1.1.3 Necessary conditions for point concentration

After establishing these existence and multiplicity results, it is natural to ask if the
non-locality of the Schrödinger-Poisson system allows us to find localised solutions.
Moreover, we are interested in removing any compactness condition on r . For these
reasons we focus on the equation

(
�e

2Du+lu+r(x)fu = |u|p�1u, x 2 R3

�Df = r(x)u2, x 2 R3,
(1.7)

with r : R3 ! R a nonnegative measurable function, l 2 R, and l > 0, taking ad-
vantage of a shrinking parameter e ⇠ h̄ ⌧ 1 which behaves like the Planck constant
in the so-called ‘semiclassical limit’. In this direction, Ianni and Vaira [37] notably
showed that concentration of semiclassical solutions to

(
�e

2Du+V (x)u+r(x)fu = |u|p�1u, 1 < p < 5, x 2 R3

�Df = r(x)u2, x 2 R3,

occurs at stationary points of the external potential V using a Lyapunov-Schmidt
approach (in the spirit of the Ambrosetti-Malchiodi monograph [5] on perturbation
methods), whereas in [18] concentration results have been obtained using a varia-
tional/penalisation approach in the spirit of del Pino and Felmer [30]. In particular, in
[18] the question of studying concentration phenomena which are purely driven by r

has been raised. None of the aforementioned contributions have dealt with necessary
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conditions for concentration at points in the case V ⌘ constant and in the presence
of a variable charge density function r . We manage to fill this gap, by obtaining a
necessary condition, related to r , for the concentration at points for solutions to (6.1)
both in E(R3) (Theorem 6.1) and in H1(R3) (Theorem 6.2), which are the suitable
settings for the study of concentration phenomena with variational and perturbative
techniques, respectively. These results are obtained in the spirit of [63] using classical
blow-up analysis, uniform decay estimates, and Pohozaev type identities.

1.1.4 Sufficient conditions for point concentration

As a natural next step, by adapting the penalisation method of del Pino and Felmer
[30], we are interested in showing that the necessary conditions for the point concen-
tration of solutions to (1.7) that we found, are, in fact, also sufficient conditions on r .
At this stage, we have only partial results in this direction, however at least two of the
results we have obtained thus far elicit interesting standalone qualitative properties of
the solutions. Namely, in Proposition 7.3, we show that if we rescale the solutions u

e

to (6.1) as u
e

(x
e

+ e·) around a well-chosen family of points x
e

, then the rescaled so-
lutions have a strong limit in C1,a

loc (R3). Then, in Theorem 7.3, we show that under the
additional assumption r 2 L•(R3), we can find a uniform L• bound on the rescaled
solutions.

1.2 Organisation of Thesis

Chapter 2 consists of a background discussion of existence results for the nonlin-
ear Schrödinger equation. In Section 2.1, we detail two constrained minimisation
arguments that are used to obtain existence results for this equation when the nonlin-
earity is |u|p�1u. In Section 2.2, we present the well-known Mountain Pass Theorem
which allows us to work with unconstrained energy functionals, even in instances
when the functional is unbounded from below. In Section 2.3, we revisit the non-
linear Schrödinger equation, but this time with a more general nonlinearity. We list
two existence results due to Rabinowitz [55], based on variants of the Mountain Pass
Theorem, which hold when the nonlinearity satisfies the Ambrosetti-Rabinowitz con-
dition. We then shift the focus to the case when the nonlinearity does not satisfy
this condition. We discuss the technique that Jeanjean [38] and Jeanjean and Tanaka
[39] developed, inspired by Struwe’s ‘monotonicity trick’ [59], to overcome the diffi-
culty of constructing bounded Palais-Smale sequences and obtain an existence result
in this case. Finally, in Section 2.4 we relate this discussion back to the nonlinear
Schrödinger-Poisson system in order to better understand the unique features associ-
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ated with it in comparison to the nonlinear Schrödinger equation.

Chapter 3 includes the preliminary results on the nonlinear Schrödinger-Poisson
system that will be used throughout this thesis. In Section 3.1, we define the space
D1,2(R3) and the explicit representation of fu that allows us to reduce the Schrödinger-
Poisson system to one equation. Then, in Section 3.2 we define the energy functional
associated with the nonlinear Schrödinger-Poisson system and discuss the functional
settings that are used throughout the thesis, as well as some associated properties. In
Section 3.3, we prove a result which gives the regularity and positivity of solutions to
the Schrödinger-Poisson system. Lastly, a Pohozaev type inequality is established in
Section 3.4 that gives a necessary condition satisfied by solutions to the Schrödinger-
Poisson system under suitable assumptions on r .

Chapter 4 consists of the results that give the existence of mountain pass and least
energy solutions to the Schrödinger-Poisson system. The results in this chapter are
from [50]. In Section 4.1, we outline the min-max setting and define the levels c

µ

and c•
µ

, c, and c•, which are relevant for both the coercive and non-coercive cases.
We then find lower bounds on the functions I

µ

and I•
µ

, when restricted to the set of
nontrivial solutions which are fundamental in relation to compactness properties of
Palais-Smale sequences. In Section 4.2, we study the case of a coercive r and estab-
lish that this coercivity is a sufficient condition for the compactness of the embedding
E(R3) ,! Lp+1(R3). This enables us, using the min-max setting of Section 4.1, to
prove existence of positive mountain pass solutions in the coercive case for p 2 (2,3)
(Theorem 4.1). We then use a minimisation argument to prove the existence of posi-
tive least energy solutions (Corollary 4.3). In Section 4.3, we focus on a non-coercive
r , and we first establish a representation result for bounded Palais-Smale sequence
for I

µ

in Proposition 4.4. Using the min-max setting of Section 4.1 and the lower
bounds found in this section, we prove existence of positive mountain pass solutions
for p 2 (2,3) (Theorem 4.3). We then show that for p � 3 the Palais-Smale condition
holds for I at the level c, following which the proof of Theorem 4.4 easily follows.
We finally prove the existence of positive least energy solutions in the non-coercive
case for p 2 (2,5) (Corollary 4.6).

Chapter 5 includes the multiplicity results that we have obtained in the case of
a coercive r . The results in this chapter are from [31]. In Section 5.1, we provide
some background on the Krasnoselskii-genus and define the min-max levels bm that
are relevant when p > 3, in order to obtain the existence of infinitely many pairs of
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distinct solutions in this case (Theorem 5.1). Then, in Section 5.2 we discuss the ab-
stract min-max setting that is used when p  3. We include a technical lemma that
enables us to use this min-max setting, along with the ‘monotonicity trick’, to prove
the existence of infinitely many pairs of distinct solutions for low p (Theorem 5.3).

Chapter 6 focuses on a singularly perturbed Schrödinger-Poisson system and the
concentration behaviour of its solutions in the semiclassical limit. The results in this
chapter are from [50]. In Section 6.1 and 6.2, we obtain necessary conditions for the
concentration at points in E(R3) (Theorem 6.1) and H1(R3) (Theorem 6.2), respec-
tively.

Chapter 7 then focuses on the aim of showing that the necessary conditions ob-
tained in the previous chapter for solutions to the singularly perturbed Schrödinger-
Poisson system are also sufficient conditions on r for point concentration (Conjecture
7.1). The results in this chapter are from [51]. In Section 7.1, we first look at sufficient
conditions for concentration of solutions to the nonlinear Schrödinger equation, as a
model problem. We discuss the penalisation method of del Pino and Felmer [30] and
highlight the main elements of their proof of such sufficient conditions. In Section
7.2, we introduce the penalisation scheme for the nonlinear Schrödinger-Poisson sys-
tem and highlight the difficulties that we face and must overcome in trying to adapt
the method discussed in the previous section. In Section 7.3, we then list and prove
the initial results that we have obtained for the nonlinear Schrödinger-Poisson system.
These results include those established in the spirit of [30], as well as some further
qualitative properties of the rescaled solutions that we believe will be used going for-
ward to obtain some vital estimates on the energy levels.
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2 Background

In this chapter, we begin by providing a background discussion of existence results
for the nonlinear Schrödinger equation under different assumptions on the potential
and the nonlinearity, which ultimately enables us to understand the unique features
associated with the nonlinear Schrödinger-Poisson system. The results included in
this section are based on lecture material presented by Carlo Mercuri.

2.1 Nonlinear Schrödinger equation with nonlinearity |u|p�1u

We first focus on the nonlinear Schrödinger equation

�Du+V (x)u = |u|p�1u, x 2 R3, (2.1)

with V 2C(R3,R) and V (x)� c > 0. Defining the space

H1
V :=

⇢
u 2 H1(R3) :

ˆ
R3

V (x)|u|2 <+•
�
,

with norm

||u||2H1
V

:=
ˆ
R3

�
|—u|2 +V (x)u2� ,

we search for weak solutions of (2.1) as critical points of the functional J : H1
V ! R

defined by

J(u) :=
1
2

ˆ
R3

�
|—u|2 +V (x)u2�� 1

p+1

ˆ
R3

|u|p+1.

2.1.1 Coercive potential V

We consider a coercive potential V , namely V (x) ! +• as |x| ! +•. In this case,
the following result holds.

Lemma 2.1. Assume V (x)!+• as |x|!+•. Then, H1
V is compactly embedded in

Lp+1(R3) for all p 2 [1,5).
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This compactness result enable us to prove the existence of a solution to (2.1) in
the case of a coercive V . Namely, we have the following lemma.

Lemma 2.2. Assume V 2 C(R3,R), V (x) � c for some c > 0, and V (x) ! +• as
|x|!+•. Then, (2.1) has a positive weak solution u 2 H1

V for all p 2 [1,5).

Proof. Set

a = inf
u2H1

V
||u||p+1

Lp+1=1

I(u), where I(u) :=
1
2

ˆ
R3

�
|—u|2 +V (x)u2� .

Take a minimising sequence (un)n2N ⇢ H1
V such that ||un||Lp+1 = 1 and I(un) ! a .

It follows that ||un||H1
V
 C1 and so, by the Banach-Alaoglu Theorem, up to a subse-

quence, un * u in H1
V and, by Lemma 2.1, un ! u in Lp+1(R3) for p 2 [1,5). Hence,

||u||Lp+1 = 1 and, by the weak lower semicontinuity of the norm,

I(u) liminf
n!+•

I(un) = a.

By the definition of a it therefore holds that I(u) = a . So, by the Lagrange Multiplier
Rule, there exists l 2 R such that

ˆ
R3

—u—f +

ˆ
R3

V (x)uf = l (p+1)
ˆ
R3

|u|p�1uf , 8f 2 H1
V .

Setting u
l

= [l (p+1)]
1

p�1 u, it holds that

ˆ
R3

—u
l

—f +

ˆ
R3

V (x)u
l

f =

ˆ
R3

|u
l

|p�1u
l

f , 8f 2 H1
V .

Namely J0(u
l

) = 0, and so u
l

2 H1
V is a weak solution to (2.1). Since u

l

is real, then
|u

l

| 2 H1
V and

ˆ
R3

|—|u
l

||2 =
ˆ
R3

|—u
l

|2,

and so J(u
l

) = J(|u
l

|). Therefore, u
l

� 0. Further, by standard regularity arguments
we can show u 2 C1(R3) and we can then use the maximum principle to show u

l

>

0.

10



2.1.2 Non-coercive potential V

We now consider (2.1) with a non-coercive potential V , namely V (x) ! V• > 0 as
|x|!+•. We note that the proof of Lemma 2.2 relied on the compact embedding of
H1

V into Lp+1 in order to obtain the strong convergence of the minimising sequence
in Lp+1. However, in the case of a non-coercive potential V , we no longer have this
compact embedding and therefore we require some additional compactness analysis
in order to prove the existence of a weak solution. Namely, we will require the fol-
lowing well-known compactness result due to P. L. Lions.

Lemma 2.3 (Concentration-Compactness Lemma [44]). Let q2 [2,6) and r > 0. Sup-
pose (un)n2N ⇢ H1(R3) is bounded and

sup
y2R3

ˆ
Br(y)

|un|q ! 0, as n !+•.

Then, un ! 0 in Lp(R3) for all p 2 (2,6).

With this in place, we can now prove an existence result in the case of a non-
coercive potential V .

Lemma 2.4. Assume V 2C(R3,R), V (x)� c, and V (x) liminf|y|!+•V (y)<C for
all x 2 R3 and some c, C > 0. Then, (2.1) has a positive weak solution u 2 H1 for all
p 2 (1,5).

Proof. We first note that since c <V (x)<C for all x 2 R3 by assumption, it follows
that the H1 and H1

V norm are equivalent and so we work in H1. We set

a = inf
u2H1

||u||p+1
Lp+1=1

I(u), where I(u) :=
1
2

ˆ
R3

�
|—u|2 +V (x)u2� , (2.2)

and notice that a can be written as

a = inf
06⌘u2H1

I
✓

u
||u||Lp+1

◆
= inf

06⌘u2H1

I(u)
||u||2Lp+1

.

11



So, it holds that

I(u)� a||u||2Lp+1 , 8u 2 H1. (2.3)

We now take a minimising sequence (un)n2N⇢H1 such that ||un||Lp+1 = 1 and I(un)!
a . It follows that ||un||H1 C1 and so, by the Banach-Alaoglu Theorem, up to a sub-
sequence, un * u in H1. Due to this weak convergence, it holds that

I(un) =
1
2
⇥
||un �u||2H1 + ||u||2H1 �2(un �u,u)

⇤

= I(un �u)+ I(u)+o(1), as n !+•.

Namely, we have

I(un �u)+ I(u)! a, as n !+•. (2.4)

We now break the proof into three claims.

Claim 1. The following alternative holds: ||u||p+1
Lp+1 = 1 or u ⌘ 0.

We first note that since ||un||H1  C1, then un ! u almost everywhere in R3, and
so, by Fatou’s Lemma,

||u||p+1
Lp+1  liminf

n!+•
||un||p+1

Lp+1 = 1.

That is,

b

:= ||u||p+1
Lp+1 2 [0,1].

By the Brezis-Lieb Lemma, as n !+•, it holds that

b + ||un �u||p+1
Lp+1 = ||u||p+1

Lp+1 + ||un �u||p+1
Lp+1 ! ||un||p+1

Lp+1 = 1.

Combining this with (2.3) and (2.4), we find that as n !+•,
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a � a(1�b )
2

p+1 +ab

2
p+1 .

That is, as n !+•,

1 � (1�b )
2

p+1 +b

2
p+1 , b 2 [0,1].

From Figure 1, we can see that f : [0,1]! R defined by f (b ) := (1�b )
2

p+1 +b

2
p+1

is such that f (b ) 1 exactly when b = {0,1}.

b

0

1

1

f (b )

Figure 1: Sketch of f (b ) := (1�b )
2

p+1 +b

2
p+1 .

This proves the claim.

Claim 2. If ||u||p+1
Lp+1 = 1, we are done. If u ⌘ 0, then there exists a sequence (yn)n2N ⇢

R3 such that vn := un(·� yn) does not have any subsequences which weakly converge
to zero.

If ||u||p+1
Lp+1 = 1, then we can argue exactly as in Lemma 2.2 using the weak lower

semi-continuity of the norm and the Lagrange multiplier rule in order to obtain a
positive solution u 2 H1.

If u ⌘ 0, we first recall that ||un||Lp+1 = 1 and so by Lemma 2.3, it holds that

sup
y2R3

ˆ
B1(y)

|un|2 9 0.

Namely, there exists C2 > 0 and a sequence (yn)n2N ⇢ R3 such that
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ˆ
B1(yn)

|un|2 �C2 > 0.

Setting vn := un(·� yn), we find that

ˆ
B1(0)

v2
n �C2 > 0, 8n 2 N,

which implies that vn does not have any subsequences which weakly converge to zero.

Claim 3. If u ⌘ 0, then the sequence (vn)n2N constructed in the previous claim is a
minimising sequence for (2.2).

We first note that

ˆ
R3

|—vn|2 =

ˆ
R3

|—un|2, (2.5)
ˆ
R3

|vn|2 =

ˆ
R3

|un|2, (2.6)
ˆ
R3

|vn|p+1 =

ˆ
R3

|un|p+1 = 1. (2.7)

Moreover, ||vn||2L2 = ||un||2L2 < C1, and so by Bolzano-Weierstrass Theorem, there
exists some k 2 R such that

||vn||2L2 = kun||2L2 ! k, as n !+•. (2.8)

Setting

g

:= liminf
|y|!+•

V (y)�V (x),

we find that

limsup
n!+•

ˆ
R3

V (x)v2
n  limsup

n!•
g

ˆ
R3

v2
n = gk. (2.9)

Now, since un * u ⌘ 0 then, by Rellich Theorem and the assumption that V (x) C,
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it follows that for any R > 0,

liminf
n!+•

ˆ
R3

V (x)u2
n = liminf

n!•

ˆ
|x|>R

V (x)u2
n. (2.10)

We note that by the definition of g , it holds that for every e > 0, there exists R
e

> 0
such that V (x)> g � e for all |x|> R

e

, and therefore we can write

ˆ
|x|>R

e

V (x)u2
n � (g � e)

ˆ
|x|>R

e

u2
n. (2.11)

Combining (2.8), (2.10) and (2.11) and once again using Rellich Theorem, it follows
that

liminf
n!+•

ˆ
R3

V (x)u2
n � (g � e)k. (2.12)

Hence, from (2.9) and (2.12), we can see that

limsup
n!+•

ˆ
R3

V (x)v2
n  liminf

n!+•

ˆ
R3

V (x)u2
n,

which, along with (2.5), (2.6), and (2.7), implies that vn is a minimising sequence for
(2.2).

Conclusion. In summary, if we let (un)n2N be a minimising sequence for (2.2), then
by Claim 1, un * u in H1 with ||u||p+1

Lp+1 = 1 or u ⌘ 0. If ||u||p+1
Lp+1 = 1 we are done

by Claim 2. If u ⌘ 0, then we construct (vn)n2N as in Claim 2 and have that vn is a
minimising sequence for (2.2) by Claim 3. Moreover, up to a subsequence, vn * v in
H1, by Banach-Alaoglu. Then, either ||v||p+1

Lp+1 = 1 or v ⌘ 0 by Claim 1, but by Claim
2 the second alternative cannot hold and so we know ||v||p+1

Lp+1 = 1. Thus, we can argue
as in Lemma 2.2 using the weak lower semi-continuity of the norm and the Lagrange
multiplier rule in order to obtain a positive solution v 2 H1.

2.2 Mountain Pass Theorem

The existence results that we discussed in the previous section relied on a constrained
minimisation argument. In this section we will discuss the well-known Mountain Pass
Theorem due to Ambrosetti-Rabinowitz [6], which gives us a set of conditions for the
energy functional to satisfy in order to guarantee the existence of a critical point at
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a certain critical level. The Mountain Pass Theorem allows us to work with uncon-
strained energy functionals, even in instances when the functional is unbounded from
below. In order to state the theorem we will need some preliminary definitions.

Definition 1 (Mountain Pass Geometry). Let X be a Banach space. A functional
J 2C1(X ,R) has the Mountain Pass Geometry if the following conditions hold:

(i) J(0)=0

(ii) There exists r, a > 0 such that J(u)� a if ||u||X = r

(iii) There exists v 2 X with ||v||X > r such that J(v) 0.

Definition 2 (Palais-Smale sequence at level c). Let X be a Banach space, J 2C1(X ,R)
and c 2 R. A sequence (uk)k2N ⇢ X is a Palais-Smale sequence at level c for J, de-
noted (PS)c sequence, if the following hold:

(i) J(uk)! c

(ii) J0(uk)! 0 in X⇤.

Remark 2.1. It has been shown that if a functional J has the Mountain Pass Geome-
try, then there exists a (PS)c sequence at the level

c := inf
g2G

max
0t1

J(g(t)),

where

G = {g 2C([0,1],X) : g(0) = 0, J(g(1)) 0} .

The next definition gives a compactness condition that must hold in order to find
solutions using the Mountain Pass Theorem.

Definition 3 (Palais-Smale condition). Let X be a Banach space, J 2 C1(X ,R) and
c 2 R. The (PS)c condition holds if every (PS)c sequence has a strongly convergent
subsequence.
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With these definitions in place, we can now state the Mountain Pass Theorem.

Theorem 2.1 (Mountain Pass Theorem [6]). Let X be a Banach space. Assume J 2
C1(X ,R) has the Mountain Pass Geometry. Define

c := inf
g2G

max
0t1

J(g(t)),

where

G = {g 2C([0,1],X) : g(0) = 0, J(g(1)) 0} .

If J satisfies the (PS)c condition at the level c defined above, then c is a critical value
of J.

For the sake of brevity, the proof of the Mountain Pass Theorem will be omitted.
For a complete proof see e.g. p. 478–480 in [32]. The proof relies heavily on a so
called Deformation Theorem. The idea of the proof is to show that if c is not a critical
level, then for some sufficiently small d > 0 we can nicely deform the set

Ac+d

= {u 2 X : J(u) c+d}

into the set

Ac�d

= {u 2 X : J(u) c�d} .

In order to do so, one solves an appropriate ordinary differential equation and follows
the resulting flow “downhill”.

Remark 2.2. We note the the Mountain Pass Theorem gives rise to nontrivial solu-
tions. Namely, by the definition of a critical value, there exists u 2 X such that

J0(u) = 0,

which implies u is a solution, and
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J(u) = c = inf
g2G

max
0t1

J(g(t))> 0,

where the positivity is guaranteed by the Mountain Pass Geometry and implies that u
is nontrivial.

2.3 Nonlinear Schrödinger equation with a more general nonlin-
earity

In this section, the nonlinear Schrödinger equation will be considered with a more
general nonlinearity f (x,u). Namely, we consider

�Du+V (x)u = f (x,u), x 2 R3. (2.13)

The ideas and results from this section will be used for our purposes later in the thesis.

2.3.1 Nonlinearity satisfying the Ambrosetti-Rabinowitz condition

In a crucial paper, Rabinowitz [55] listed assumptions on the nonlinearity f so that
variational methods based on variants of the Mountain Pass Theorem could be used
in order to obtain existence results for (2.13) in the case of both a coercive and non-
coercive potential V . In order to state the results, we first list certain hypotheses on V
and f that will need to be used, namely:

(V1) V 2C1(R3,R) and there is a c > 0 such that V (x)� c for all x 2 R3,
(V2) V (x)!+• as |x|!+•,
(V3) liminf|x|!+•V (x) =V•,
(V4) V• �V (x) for all x 2 R3 with V• 6⌘V (x),
( f1) f 2C2(R3 ⇥R, R),
( f2) f (x,0) = 0 = fz(x,0),
( f3) there are constants a1, a2 > 0 and s 2 (1,5) such that for all
x 2 R3 and z 2 R,

| fz(x,z)| a1 +a2|z|s�1,

( f4) there is a constant µ > 2 such that
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0 < µF(x,z) := µ

ˆ z

0
f (x, t)dt  z f (x,z)

for all x 2 R3 and z 2 R\{0}.
( f5) t�1z f (z, tz) is an increasing function of t > 0 for all x 2 R3 and z 2 R\{0}.

We now state the existence result for a coercive potential V .

Theorem 2.2 ([55]). If (V1)-(V2) and ( f1)-( f4) are satisfied, then (2.13) possesses a
nontrivial classical solution u 2 H1.

Proof. See Theorem 1.7 in [55].

We follow up this theorem with the existence result for a non-coercive potential V .

Theorem 2.3 ([55]). Suppose (V1), (V3) and (V4) are satisfied. Assume further that f
is independent of x and ( f1)-( f5) hold. Define J : H1

V ! R by

J (u) :=
1
2

ˆ
R3

�
|—u|2 +V (x)u2��

ˆ
R3

F(x,u)dx.

Then,

c = inf
g2G

max
0t1

J (g(t)),

with

G = {g 2C([0,1],X) : g(0) = 0, J (g(1)) 0} ,

is a critical value of J .

Proof. See Theorem 4.27 in [55].
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Remark 2.3. Observe that the nonlinearity f (z) = |z|p�1z satisfies ( f1)-( f5) for all
p 2 (1,5), and so the results of Lemma 2.2 and 2.4 can be seen as specific cases of
Theorem 2.2 and 2.3, respectively.

As anticipated earlier, the proofs of these results are based on variants of the
Mountain Pass Theorem. Namely, the assumptions on the nonlinearity f are first used
to show that the Mountain Pass Geometry holds. As per Remark 2.1, this guarantees
the existence of a (PS)c sequence. Assumption ( f4), known as the global Ambrosetti-
Rabinowitz condtion, is then used in a vital way in order to show the boundedness
of the (PS)c sequence, which, up to a subsequence, implies the existence of a weak
limit by the Banach-Alaoglu Theorem. This weak limit can then be shown to be a
weak solution to (2.13). The main difficulty in this problem is that it is unknown how
to prove that this weak limit is in fact a strong limit, namely that the (PS)c condition
holds, because of the lack of compactness due to the nonlinearity. As a consequence,
it is not immediately known if the weak solution is nontrivial. To overcome this dif-
ficulty, Rabinowitz [55] argued by contradiction in the case of a coercive potential V
and by using comparison arguments in the case of a non-coercive potential V in order
to obtain the above results.

2.3.2 Nonlinearity not satisfying the Ambrosetti-Rabinowitz condition

The natural next step was to relax the global assumption on the nonlinearity f , namely
to relax the global Ambrosetti-Rabinowitz condition ( f4). However, in doing so, a
new difficulty needed to be faced on top of the lack of compactness due to the non-
linearity; namely, constructing bounded Palais-Smale sequences. Jeanjean [38] and
Jeanjean and Tanaka [39] developed a technique to overcome this issue. Namely,
Jeanjean [38] and Jeanjean and Tanaka [39] formulated and proved the following the-
orem, which generalises Struwe’s ‘monotonicity trick’ [59] to the context of nonlinear
Schrödinger equations. We include the full statement of the result, as it will be used
for our purposes later in the thesis.

Theorem 2.4 ([38], [39]). Let X be a Banach space equipped with a norm || · ||X and
let J ⇢ R+ be an interval. We consider a family (J

µ

)
µ2J of C1-functionals on X of

the form

J
µ

(u) = A(u)�µB(u), 8µ 2 J,
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where B(u) � 0 for all u 2 X, and such that either A(u) ! +• or B(u) ! +• as
||u||X !+•. We assume there are two points v1, v2 in X such that

c
µ

= inf
g2G

max
t2[0,1]

J
µ

(g(t))> max{J
µ

(v1),Jµ

(v2)}, 8µ 2 J,

where

G = {g 2C([0,1],X) : g(0) = v1, g(1) = v2}.

Then, for almost every µ 2 J, there is a sequence {vn}⇢ X such that

(i) {vn} is bounded,

(ii) J
µ

(vn)! c
µ

,

(iii) J 0
µ

(vn)! 0 in X⇤.

The proof of this result will be omitted for the sake of brevity, but it is important
to note that it depends in a crucial way on the monotonicity of the functional J

µ

with respect to µ and the almost everywhere differentiability of the mapping µ 7! c
µ

.
This theorem then enabled Jeanjean and Tanaka [39] to obtain the following existence
result for nonlinearities which do not satisfy the global Ambrosetti-Rabinowitz con-
dition.

Theorem 2.5 ([39]). Assume f 2C(R+,R) is such that:

(i) f (0) = 0 and f 0(0) defined as lims!0+ f (s)s�1 exists,
(ii) there is p < 5 such that lims!+• f (s)s�p = 0,
(iii) lims!+• f (s)s�1 =+•.

Suppose further that the potential V 2C(R3,R) satisfies the following conditions:

(i) f 0(0)< infs(�D+V (x)), where s(�D+V (x)) denotes the spectrum of the
self-adjoint operator �D+V (x) : H2(R3)! L2(R3), i.e.,

infs(�D+V (x)) = inf
u2H1(R3)\{0}

´
R3(|—u|2 +V (x)u2)dx´

R3 |u|2
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(ii) V (x)!V• 2 R as |x|!+•,
(iii) V (x)V• a.e.,
(iv) there exists a function j 2 L2(R3)\W 1,•(R3) such that

|x||—V (x)| j

2(x), 8x 2 R3.

Then, (2.13) possesses a positive solution u 2 H1.

Although we will not include a formal proof of this result, we will try to give the
general ideas. The proof relies on investigating the “perturbed problem,”

�Du+V (x)u = µ f (x,u), x 2 R3, µ 2


1
2
,1
�

(2.14)

with the associated family of functionals J
µ

: H1 ! R given by

J
µ

(u) :=
1
2

ˆ
R3

�
|—u|2 +V (x)u2��µ

ˆ
R3

F(x,u)dx, µ 2


1
2
,1
�
,

where

F(x,z) :=
ˆ z

0
f (x, t)dt.

Under the assumptions of Theorem 2.5, it can be proved that J
µ

has the Mountain
Pass Geometry for each µ 2

⇥1
2 ,1
⇤
. Using this and the monotonicity of J

µ

with
respect to µ , the min-max levels c

µ

> 0 can be defined as in Theorem 2.4, namely
in such a way that the class G does not depend on µ . Applying Theorem 2.4 with
J = [1

2 ,1], it follows that there exists a bounded Palais-Smale sequence for J
µ

at level
c

µ

for almost every µ 2
⇥1

2 ,1
⇤
. Through compactness analysis, it can then be shown

that each of these levels c
µ

correspond to a critical level of J
µ

, thus giving a sequence
of critical points of the perturbed functionals. The assumed decay assumption on
—V (x) enables the derivation of a Pohozaev type identity, that is a necessary condition
satisfied by critical points u of J

µ

obtained by using (x,—u) as a test function in
(2.14). The Pohozaev identity can then be used in order to show the boundedness of a
selected sequence of critical points of the perturbed functionals. Finally, it is possible
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to prove that this sequence of critical points actually converges to a solution of the
original problem (2.13). In fact, this sequence of critical points is, indeed, a bounded
Palais-Smale sequence for J .

2.4 Nonlinear Schrödinger equation versus nonlinear Schrödinger-
Poisson system

In this thesis, we will be interested in the nonlinear Schrödinger-Poisson system,

(
�Du+u+r(x)fu = |u|p�1u, x 2 R3,

�Df = r(x)u2, x 2 R3,

with p 2 (2,5) and r : R3 !R a nonnegative measurable function. Within a min-max
setting and in the spirit of Rabinowitz [55], we study existence and qualitative prop-
erties of the solutions to this system highlighting those phenomena which are driven
by r , in both the case of a coercive and non-coercive r . This system presents various
mathematical features, sensitive to the range of p, which are not shared with the non-
linear Schrödinger equation. Indeed, the vast majority of previous works involve the
range p > 3 since, when p  3, one has to face two major obstacles in applying the
minimax methods: constructing bounded Palais-Smale sequences and proving that
the Palais-Smale condition holds, see e.g [57], and [7], [47].

We are immediately able to highlight a feature which is not shared with the non-
linear Schrödinger equation; even though the nonlinearity in the Schrödinger-Poisson
system satisfies the global Ambrosetti-Rabinowitz condition, the boundedness of the
Palais-Smale sequences is not automatic. Indeed, it is the structure of the functional
associated with the nonlinear Schrödinger-Poisson system when p < 3 that causes the
possible unboundedness of the Palais-Smale sequences. It remains an open question
as to whether the Palais-Smale sequences are bounded for p < 3 and it is, in fact, sus-
pected to be untrue. For p  3, one must also overcome the obstacle of showing that
the Palais-Smale condition holds. In order to prove this condition, some compactness
analysis is needed. In the case r(x) ! r• > 0 as |x| ! +• it is the invariance by
translations of the limiting problem at infinity that causes the lack of compactness
phenomena to occur. This type of lack of compactness has been tackled in pioneer-
ing works of [44] and [12] in the context of minimisation problems and Schrödinger
type equations, respectively. More recent contributions in the context of Schrödinger-
Poisson systems are mostly in the range p > 3 (see e.g. [26], [62], [24]).

23



The results contained in this thesis cover this difficult range p  3. We generalise
previous results that we have discussed in this chapter to the context of the nonlin-
ear Schrödinger-Poisson system, in order to overcome the important technical differ-
ences associated with this system in comparison to the nonlinear Schrödinger equa-
tion. Namely, we make use of the aforementioned ‘monotonicity trick’ [59], [38],
[39] exploiting the structure of our functional to construct bounded Palais-Smale se-
quences for small perturbations of the nonlinear Schrödinger-Poisson system. We
then prove that these sequences converge using compact embeddings and an a pos-
teriori compactness analysis of bounded Palais-Smale sequences (in the spirit of the
classical book of M. Willem [64]) in the case of a coercive and non-coercive potential
r , respectively.
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3 Preliminaries

In this section, we discuss some preliminary results on the nonlinear Schrödinger-
Poisson system that will be used throughout this thesis. The results included in this
section are a critical elaboration on lecture material presented by Carlo Mercuri.

3.1 The space D1,2(R3) and the explicit representation of fu

We set D1,2(R3) = D1,2 as the space defined as

D1,2(R3) := {u 2 L6(R3) : —u 2 L2(R3)},

and equipped with norm

||u||D1,2(R3) := ||—u||L2(R3).

With this definition in place, we can state the next result, which will ultimately allow
us to reduce the nonlinear Schrödinger-Poisson system to one equation. This result is
classical from potential theory, but we include the statement and proof for the reader’s
convenience.

Theorem 3.1. Assume r : R3 ! R is a nonnegative measurable function. If u2
r 2

L1
loc(R3) is such that

ˆ
R3

ˆ
R3

u2(x)r(x)u2(y)r(y)
|x� y| dxdy <+•, (3.1)

then,

fu(x) :=
ˆ
R3

r(y)u2(y)
4p|x� y| dy 2 D1,2(R3)

is the unique weak solution in D1,2(R3) of the Poisson equation

�Df = r(x)u2
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and it holds that

ˆ
R3

|—fu|2 =
ˆ
R3

rfuu2 dx =
ˆ
R3

ˆ
R3

u2(x)r(x)u2(y)r(y)
4p|x� y| dxdy. (3.2)

Proof. We will break the proof into a series of claims.

Claim 1. Define fn(x) := min(r
1
2 (x)u(x), n) ·cBn(0)(x). Then,

fn(x) :=
ˆ
R3

f 2
n (y)

4p|x� y| dy

solves

�Dfn = f 2
n

in the sense of distributions. Namely, it holds that

�
ˆ
R3

fnDy =

ˆ
R3

f 2
n y,

for all y 2C•
c (R3). Moreover, fn 2C1(R3) and fn is uniformly bounded in D1,2(R3).

We first note that by definition fn has the following properties:

(i) fn has compact support,

(ii) fn is nondecreasing,

(iii) fn % r

1
2 u almost everywhere,

(iv) fn 2 L•(R3).

Thus, by Theorem 6.21 in [42], it follows that

fn(x) :=
ˆ
R3

f 2
n (y)

4p|x� y| dy

solves
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�Dfn = f 2
n ,

in the sense of distributions. It further follows from this theorem that fn has a distri-
butional derivative that is given, for almost every x, by

∂ifn(x) =
ˆ
R3

∂Gy(x)
∂xi

f 2
n (y)dy, (3.3)

where

Gy(x) =
1

4p|x� y| ,

∂Gy(x)
∂xi

=
�1
4p

|x� y|�3(xi � yi),

and

�DGy = dy in D 0(R3),

meaning that

ˆ
R3

Gy(x)Dy(x)dx =�y(y) 8y 2C•
c (R3). (3.4)

Now, by (iv) and Theorem 10.2 in [42], it follows that fn 2 C1(R3). Finally, using
(3.3) and (iii), it holds that

ˆ
R3

|—fn|2 =
3

Â
i=1

ˆ
R3
(∂ifn)

2

=

ˆ
R3

ˆ
R3

f 2
n (x) f 2

n (y)
4p|x� y|


ˆ
R3

ˆ
R3

u2(x)r(x)u2(y)r(y)
4p|x� y| ,

which is bounded by assumption, and so the claim is proved.
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Claim 2. Since fn is uniformly bounded in D1,2(R3) by the previous claim, then up to
a subsequence fn * f in D1,2(R3). We claim that

�Df = r(x)u2

in the sense of distributions. Namely, it holds that

�
ˆ
R3

fDy =

ˆ
R3

ru2
y,

for all y 2C•
c (R3).

We first note that by Theorem 8.6 in [42] we have that fn ! f in Lp
loc(R3) for

all p < 6 and fn ! f a.e. on R3. On the other hand, by the Monotone Convergence
Theorem, as n !+•, it holds that

fn(x) =
ˆ
R3

f 2
n (y)

4p|x� y| !
ˆ
R3

r(y)u2(y)
4p|x� y| =: fu(x).

Therefore, we have that fn ! fu a.e. and, so by the uniqueness of the limit, fu ⌘ f 2
D1,2(R3). By Claim 1, we have that

�
ˆ
R3

fnDy =

ˆ
R3

f 2
n y, (3.5)

for all y 2C•
c (R3). Now, since fn 2C1(R3), fn * f in D1,2(R3), and y has compact

support, it holds that

�
ˆ
R3

fnDy =

ˆ
R3

—fn—y !
ˆ
R3

—f—y, as n !+•. (3.6)

Further, by the Monotone Convergence Theorem, as n !+•,

ˆ
R3

f 2
n y !

ˆ
R3

ru2
y. (3.7)

Therefore, putting together (3.5), (3.6), and (3.7) we have shown that for all y 2
C•

c (R3),
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�
ˆ
R3

fDy =

ˆ
R3

ru2
y.

Claim 3. For each n 2 N, the following hold:

(a)
´
R3 —fn—yk =

´
R3 f 2

n yk, 8yk 2C•
c (R3),

(b)
´
R3 —fn—y =

´
R3 f 2

n y, 8y 2 D1,2(R3).

To prove (a), we take yk 2 C•
c (R3). Then, using (3.3) and Fubini’s Theorem, it

holds that

ˆ
R3

—fn—yk =

ˆ
R3

3

Â
i=1

✓ˆ
R3

∂Gy

∂xi
(x) f 2

n (y)dy
◆

∂iyk dx

=

ˆ
R3

3

Â
i=1

✓ˆ
R3

∂Gy

∂xi
(x)∂iyk dx

◆
f 2
n (y)dy

=

ˆ
R3

yk f 2
n ,

where we have used integration by parts and (3.4) to obtain the final equality.

To prove (b), we let y 2 D1,2(R3) be arbitrary. We pick yk 2 C•
c (R3) such that

yk ! y in D1,2(R3). This is possible because D1,2(R3) can be defined as the closure
of C•

c (R3) with respect to ||— · ||L2 . Then, by (a), it holds that

ˆ
R3

—fn—yk =

ˆ
R3

yk f 2
n . (3.8)

We note that by the Cauchy Schwarz Inequality,

����
ˆ
R3

—fn—(yk �y)

���� ||—fn||L2 ||—(yk �y)||L2

= ||fn||D1,2 ||yk �y||D1,2 ! 0, as k !+•, (3.9)

since fn is bounded in D1,2(R3) by Claim 1. Moreover, by Hölder’s and Sobolev’s

29



Inequality,

����
ˆ
R3
(yk �y) f 2

n

���� || fn||2L•

ˆ
supp fn

|yk �y|

 || fn||2L• |supp fn|
5
6 ||yk �y||L6

C|| fn||2L• |supp fn|
5
6 ||—(yk �y)||L2

=C|| fn||2L• |supp fn|
5
6 ||yk �y||D1,2 ! 0, as k !+•, (3.10)

since fn is compactly supported and bounded in L•(R3) by Claim 1. Putting together
(3.8), (3.9), and (3.10), we have shown

ˆ
R3

—fn—y =

ˆ
R3

f 2
n y.

Claim 4. The following hold:

(a)
´
R3 —f—yk =

´
R3 ru2

yk, 8yk 2C•
c (R3),

(b)
´
R3 —f—y =

´
R3 ru2

y, 8y 2 D1,2(R3).

Since �Df = ru2 in the sense of distributions by Claim 2, the proof of (a) follows
similarly to that of Claim 3. To prove (b), we let y 2 D1,2(R3) be arbitrary. We pick
yk 2C•

c (R3) such that yk ! y in D1,2(R3). Then, by (a), it holds that

ˆ
R3

—f—yk =

ˆ
R3

ru2
yk. (3.11)

As in Claim 3, by Cauchy Schwarz Inequality, we have that

����
ˆ
R3

—f—(yk �y)

���� ||—f ||L2 ||—(yk �y)||L2

= ||f ||D1,2 ||yk �y||D1,2 ! 0, as k !+•, (3.12)

since f is bounded in D1,2(R3) by Claim 2. We now notice that since fn is bounded
in D1,2(R3) by Claim 1 and |yk| 2 D1,2(R3), then using Claim 3 (b) and the Cauchy
Schwarz Inequality, it holds that
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ˆ
R3

f 2
n |yk|=

ˆ
R3

—fn—|yk|

 ||—fn||L2 ||—yk||L2

C||yk||D1,2 . (3.13)

Moreover, for each fixed k, by the Monotone Convergence Theorem,

ˆ
R3

f 2
n |yk|!

ˆ
R3

ru2|yk|, as n !+•. (3.14)

Putting (3.13) and (3.14) together, we have that

ˆ
R3

ru2|yk|C||yk||D1,2 .

Using this and Fatou’s Lemma, we obtain

����
ˆ
R3

ru2
y

����
ˆ
R3

ru2|y|

 liminf
k!+•

ˆ
R3

ru2|yk|

C liminf
k!+•

||yk||D1,2

=C||y||D1,2 .

Therefore, we have shown that y 7!
´

ru2
y is a linear and continuous functional in

D1,2(R3). Hence, since yk ! y in D1,2(R3), it follows that

ˆ
R3

ru2
yk !

ˆ
R3

ru2
y,

and so putting this, (3.12) and (3.11) together, we have proved the claim.

Claim 5. It holds that

f(x)⌘ fu(x) :=
ˆ
R3

r(y)u2(y)
4p|x� y| dy
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is the unique weak solution in D1,2(R3) of the Poisson equation

�Df = r(x)u2.

It follows from Claim 2 that f ⌘ fu, where, by Claim 4 (b), f is a weak solution in
D1,2(R3) of the Poisson equation �Df = r(x)u2. It remains to prove the uniqueness
of f . Assume there exists f1, f2 2 D1,2(R3) such that

�Dfi = r(x)u2, for i = 1,2.

It follows that

D(f1 �f2) = 0.

Testing this equation with (f1 �f2), we obtain

ˆ
R3

|—(f1 �f2)|2 = ||—(f1 �f2)||2L2 = 0.

Using this and the Sobolev Inequality, we can see that

C||f1 �f2||2L6  ||—(f1 �f2)||2L2 = 0,

which implies f1 ⌘ f2, thus proving uniqueness.

Claim 6. The following are equivalent:

ˆ
R3

|—fu|2 =
ˆ
R3

rfuu2 dx =
ˆ
R3

ˆ
R3

u2(x)r(x)u2(y)r(y)
4p|x� y| dxdy.

Testing the equation �Dfu = r(x)u2 with fu, we obtain

ˆ
R3

|—fu|2 =
ˆ
R3

rfuu2.

Therefore, plugging in

32



fu(x) =
ˆ
R3

r(y)u2(y)
4p|x� y| dy,

it follows that

ˆ
R3

|—fu|2 =
ˆ
R3

rfuu2 dx =
ˆ
R3

ˆ
R3

u2(x)r(x)u2(y)r(y)
4p|x� y| dxdy.

3.2 The associated energy functional and functional settings

Using the explicit representation of fu given in Theorem 3.1 reduces the nonlinear
Schrödinger-Poisson system

(
�Du+u+r(x)fu = |u|p�1u, x 2 R3,

�Df = r(x)u2, x 2 R3,

to the problem

�Du+u+r(x)fuu = |u|p�1u. (3.15)

Positive solutions of this problem are critical points of the functional

I(u) :=
1
2

ˆ
R3
(|—u|2 +u2)+

1
4

ˆ
R3

rfuu2 � 1
p+1

ˆ
R3

up+1
+ , (3.16)

which is natural to define in E(R3)✓ H1(R3)

E(R3) :=
�

u 2 D1,2(R3) : ||u||E <+•
 
,

where

||u||E :=

0

@
ˆ
R3
(|—u|2 +u2)dx+

✓ˆ
R3

ˆ
R3

u2(x)r(x)u2(y)r(y)
|x� y| dxdy

◆ 1
2

1

A

1
2

.

Variants of this space have been studied since the work of P.L. Lions [43], see e.g.
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[56], and [11], [19], [48]. We recall that by the classical Hardy-Littlewood-Sobolev
inequality, it holds that

����
ˆ
R3

ˆ
R3

u2(x)r(x)u2(y)r(y)
4p|x� y| dxdy

����C||ru2||2
L

6
5 (R3)

, (3.17)

for some C > 0. Thus, if u2H1(R3), we see that, depending on the assumptions on r ,
we may not be able to control the Coulomb integral using the natural bound provided
by Hardy-Littlewood-Sobolev inequality. This may be the case if e. g. r(x)!+• as
|x|! +•. For these reasons, in the present thesis we analyse those instances where
E(R3) and H1(R3) do not coincide.

3.2.1 The space E(R3)

Let us assume that r is continuous and nonnegative. It is easy to see that E(R3) is a
uniformly convex Banach space. As a consequence it is reflexive and, in particular,
the unit ball is weakly compact. Reasoning as in Proposition 2.4 in [56] and Proposi-
tion 2.10 in [48], we have the following important result.

Lemma 3.1. Assume r is continuous and nonnegative. A sequence (un)n2N ⇢ E(R3)

is weakly convergent to u in E(R3) if and only if it is bounded in E(R3) and converges
strongly to u in L1

loc(R3). In particular, fun * fu in D1,2(R3).

Proof. We first note that if un * u in E(R3), then ||un||E(R3) <C by weak lower semi-
continuity of the norm and so un ! ũ in L1

loc(R3) by Rellich Theorem. On the other
hand, if we assume un ! ũ in L1

loc(R3) and ||un||E(R3) < C, then un * u in E(R3)

since E(R3) is reflexive. Thus, to prove the first part of the lemma, it suffices to show
that u = ũ a.e. We first note that if we take j 2C•

c (R3) and v 2 E(R3), then
����
ˆ
R3

jv
����C

ˆ
suppj

v C||v||E(R3),

for some C > 0. Thus, v 7!
´

jv is a linear and continuous functional on E(R3). So,
since un * u in E(R3), it follows that

ˆ
R3

jun !
ˆ
R3

ju.

Moreover, since un ! ũ in L1
loc(R3), it holds that
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ˆ
R3

j(un � ũ)C
ˆ

suppj

(un � ũ)! 0.

Therefore, we have shown

ˆ
R3

ju =

ˆ
R3

j ũ,

and so since j 2C•
c (R3) was arbitrary, we conclude that u = ũ a.e.

It remains to show fun * fu in D1,2(R3). Let y 2 D1,2(R3) be arbitrary. Pick
yk 2C•

c (R3) such that yk ! y in D1,2(R3). Then, since fun solves �Dfun = r(x)u2
n,

it holds that

ˆ
R3

—fun—yk =

ˆ
R3

r(x)u2
nyk. (3.18)

Now, since fun is bounded in D1,2(R3) by assumption, then, up to a subsequence,
fun * f in D1,2(R3), for some f 2 D1,2(R3). Thus, it automatically follows from the
weak convergence that

ˆ
R3

—fun—yk !
ˆ
R3

—f—yk, as n !+•. (3.19)

Moreover, since u2
n ! u2 in L1

loc(R3) by Rellich Theorem and since r is continuous
by assumption, it holds that

����
ˆ
R3

r(u2
n �u2)yk

����C
ˆ

supp yk

|u2
n �u2|! 0, as n !+•. (3.20)

Therefore, combining (3.18), (3.19) and (3.20) we have now shown that

ˆ
R3

—f—yk =

ˆ
R3

r(x)u2
yk. (3.21)

Now, arguing exactly as in the proof of Claim 4 of Theorem 3.1, we obtain

����
ˆ
R3

—f—(yk �y)

����! 0, as k !+•, (3.22)
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since f 2 D1,2(R3). Furthermore, using the facts that

ˆ
R3

ru2
nyk !

ˆ
R3

ru2
yk, as n !+•,

by (3.20) and fn is bounded in D1,2(R3) by assumption, we can argue similarly to the
proof of Claim 4 of Theorem 3.1 to show that y 7!

´
ru2

y is a linear and continuous
functional on D1,2(R3). Hence, since yk ! y in D1,2(R3), it follows that

ˆ
R3

ru2
yk !

ˆ
R3

ru2
y, as k !+•,

and so putting this, (3.22) and (3.21) together, we obtain

ˆ
R3

—f—y =

ˆ
R3

r(x)u2
y.

Namely, we have shown that f 2 D1,2(R3) solves �Df = r(x)u2, and so by the
uniqueness of the solution in D1,2(R3) (Theorem 3.1) we have f = fu.

The following nonlocal Brezis-Lieb lemma, which is stated without proof, will
also be very useful to study the compactness of Palais-Smale sequences.

Lemma 3.2 ([10], [48]). [Nonlocal Brezis-Lieb lemma] Assume r is continuous and
nonnegative. Let (un)n2N ⇢ E(R3) be a bounded sequence such that un ! u almost
everywhere in R3. Then it holds that

lim
n!•

h
k—funk2

L2(R3)�k—fun�uk2
L2(R3)

i
= k—fuk2

L2(R3).

3.3 Regularity and positivity

Using standard regularity theory and the maximum principle, we now provide a result
giving the regularity and positivity of the solutions to the Schrödinger-Poisson system.
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Proposition 3.1. [Regularity and positivity] Let p 2 [1,5], r 2 C(R3)\L•
loc(R3) \

{0} be nonnegative and (u,fu)2 E(R3)⇥D1,2(R3) be a weak solution of the problem

(
�Du+bu+ cr(x)fu = d|u|p�1u, x 2 R3,

�Df = r(x)u2, x 2 R3,
(3.23)

with b,c,d 2 R+. Assume that u is nonnegative. Then, u, fu 2 W 2,q
loc (R3), for every

q � 1, and so u, fu 2C1,a
loc (R3). If, in addition, u 6⌘ 0, then u, fu > 0 everywhere.

Proof. Under the hypotheses of the proposition, both u and fu have weak second
derivatives in Lq

loc for all q < •. In fact, note that from the first equation in (3.23), we
have that �Du = g(x,u), where

|g(x,u)|= |(�bu� cr(x)fu+d|u|p�1u|

C(1+ |rfu|+ |u|p�1)(1+ |u|)

:= h(x)(1+ |u|).

Using our assumptions on r , fu, and u, we can show that h 2 L3/2
loc (R3), which implies

that u 2 Lq
loc(R3) for all q < +• (see e.g. p. 270 in [60]). Note that since u2

r 2
Lq

loc(R3) for all q < +•, then by the second equation in (3.23) and the Calderón-
Zygmund estimates, we have that fu 2 W 2,q

loc (R3) (see e.g. [35]). This then enables
us to show that g 2 Lq

loc(R3) for all q < +•, which implies, by Calderón-Zygmund
estimates, that u 2 W 2,q

loc (R3) (see e.g. [35]). The C1,a
loc (R3) regularity of both u,fu

is a consequence of Morrey’s embedding theorem. Finally, the strict positivity is a
consequence of the strong maximum principle, and this concludes the proof.

Remark 3.1. If, in addition, r 2 C0,a
loc (R3), then, by Schauder’s estimates on both

equations, it holds that u,fu 2C2,a
loc (R3).

3.4 Pohozaev inequality

To complete the preliminaries on the nonlinear Schrödinger-Poisson system, we es-
tablish a useful Pohozaev type inequality, that gives a necessary condition satisfied
by solutions under suitable assumptions on r . Since we do not find a precise ref-
erence, we give a proof for the reader’s convenience. It is interesting to note that
Pohozaev type identities are often used to prove nonexistence results by showing that
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the necessary condition provided by the identity is violated, see the pioneering works
of Pohozaev [53] in the context of bounded domains and of Berestycki and Lions [15]
in RN . However, unlike these arguments, we will use the Pohozaev inequality that we
establish in the next lemma to produce existence results, in the spirit of [57].

Lemma 3.3. [Pohozaev inequality] Assume p 2 [1,5], r 2 L•
loc(R3) \W 1,1

loc (R3)

is nonnegative, and kr(x)  (x,—r) for some k > �2(p�2)
(p�1) . Let (u,fu) 2 E(R3)⇥

D1,2(R3) be a weak solution of the problem (3.23). Then, it holds that

1
2

ˆ
R3

|—u|2 + 3b
2

ˆ
R3

u2 +
(5+2k)c

4

ˆ
R3

rfuu2 � 3d
p+1

ˆ
R3

|u|p+1  0. (3.24)

Proof. With the regularity remarks of Section 3.3 in place, we now multiply the first
equation in (3.23) by (x,—u) and integrate on BR(0) for some R > 0. We will compute
each integral separately. We first note that by Lemma 3.1 in [28] it holds that

ˆ
BR

�Du(x,—u)dx =�1
2

ˆ
BR

|—u|2 dx

� 1
R

ˆ
∂BR

|(x,—u)|2 ds +
R
2

ˆ
∂BR

|—u|2 ds .
(3.25)

Fixing i = 1,2,3, integrating by parts and using the divergence theorem, we then see
that,

ˆ
BR

bu(xi∂iu)dx = b

�1

2

ˆ
BR

u2 dx+
1
2

ˆ
BR

∂i(u2xi)dx
�

= b

�1

2

ˆ
BR

u2 dx+
1
2

ˆ
∂BR

u2 x2
i

|x| ds

�
.

So, summing over i, we get

ˆ
BR

bu(x,—u)dx = b

�3

2

ˆ
BR

u2 dx+
R
2

ˆ
∂BR

u2 ds

�
. (3.26)
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Again, fixing i = 1,2,3, integrating by parts and using the divergence theorem, we
find that,

ˆ
BR

crfuuxi(∂iu)dx = c

� 1

2

ˆ
BR

rfuu2 dx� 1
2

ˆ
BR

fuu2xi(∂ir)dx

� 1
2

ˆ
BR

ru2xi(∂ifu)dx+
1
2

ˆ
BR

∂i(rfuu2xi)dx
�

= c

� 1

2

ˆ
BR

rfuu2 dx� 1
2

ˆ
BR

fuu2xi(∂ir)dx

� 1
2

ˆ
BR

ru2xi(∂ifu)dx+
1
2

ˆ
∂BR

rfuu2 x2
i

|x| ds

�
.

Thus, summing over i, we get

ˆ
BR

crfuu(x,—u)dx = c

� 3

2

ˆ
BR

rfuu2 dx� 1
2

ˆ
BR

fuu2(x,—r)dx

� 1
2

ˆ
BR

ru2(x,—fu)dx+
R
2

ˆ
∂BR

rfuu2 ds

�
. (3.27)

Finally, once more fixing i = 1,2,3, integrating by parts and using the divergence
theorem, we find that,

ˆ
BR

d|u|p�1u(xi∂iu)dx = d


�1
p+1

ˆ
BR

|u|p+1 dx+
1

p+1

ˆ
∂BR

|u|p+1 x2
i

|x| ds

�
,

and so, summing over i, we see that

ˆ
BR

d|u|p�1u(x,—u)dx = d


�3
p+1

ˆ
BR

|u|p+1 dx

+
R

p+1

ˆ
∂BR

|u|p+1 ds

�
.

(3.28)
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Putting (3.25), (3.26), (3.27) and (3.28) together, we see that

�1
2

ˆ
BR

|—u|2 dx� 1
R

ˆ
∂BR

|(x,—u)|2 ds +
R
2

ˆ
∂BR

|—u|2 ds

+b

� 3

2

ˆ
BR

u2 dx+
R
2

ˆ
∂BR

u2 ds

�

+ c

� 3

2

ˆ
BR

rfuu2 dx� 1
2

ˆ
BR

fuu2(x,—r)dx

� 1
2

ˆ
BR

ru2(x,—fu)dx+
R
2

ˆ
∂BR

rfuu2 ds

�

�d


�3
p+1

ˆ
BR

|u|p+1 dx+
R

p+1

ˆ
∂BR

|u|p+1 ds

�
= 0.

(3.29)

We now multiply the second equation in (3.23) by (x,—fu) and integrate on BR(0) for
some R > 0. Using Lemma 3.1 in [28] we see that

ˆ
BR

ru2(x,—fu)dx =
ˆ

BR

�Dfu(x,—fu)dx

=�1
2

ˆ
BR

|—fu|2 dx� 1
R

ˆ
∂BR

|(x,—fu)|2 ds

+
R
2

ˆ
∂BR

|—fu|2 ds .

Substituting this into (3.29) and rearranging, we get

1
2

ˆ
BR

|—u|2 dx+
3b
2

ˆ
BR

u2 dx+
(3+ k)c

2

ˆ
BR

rfuu2 dx

� c
4

ˆ
BR

|—fu|2 dx� 3d
p+1

ˆ
BR

|u|p+1 dx

 1
2

ˆ
BR

|—u|2 dx+
3b
2

ˆ
BR

u2 dx+
3c
2

ˆ
BR

rfuu2 dx

+
c
2

ˆ
BR

fuu2(x,—r)dx� c
4

ˆ
BR

|—fu|2 dx� 3d
p+1

ˆ
BR

|u|p+1 dx

=� 1
R

ˆ
∂BR

|(x,—u)|2 ds +
R
2

ˆ
∂BR

|—u|2 ds +
bR
2

ˆ
∂BR

u2 ds

+
cR
2

ˆ
∂BR

rfuu2 ds +
c

2R

ˆ
∂BR

|(x,—fu)|2 ds

� cR
4

ˆ
∂BR

|—fu|2 ds � dR
p+1

ˆ
∂BR

|u|p+1 ds ,

(3.30)

where we have used to assumption kr(x)  (x,—r) for some k > �2(p�2)
(p�1) to obtain
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the first inequality. We now call the right hand side of (3.30) IR, namely

IR :=� 1
R

ˆ
∂BR

|(x,—u)|2 ds +
R
2

ˆ
∂BR

|—u|2 ds +
bR
2

ˆ
∂BR

u2 ds

+
cR
2

ˆ
∂BR

rfuu2 ds +
c

2R

ˆ
∂BR

|(x,—fu)|2 ds

� cR
4

ˆ
∂BR

|—fu|2 ds � dR
p+1

ˆ
∂BR

|u|p+1 ds .

We note that |(x,—u)| R|—u| and |(x,—fu)| R|—fu| on ∂BR, so it holds that

|IR|
3R
2

ˆ
∂BR

|—u|2 ds +
bR
2

ˆ
∂BR

u2 ds

+
cR
2

ˆ
∂BR

rfuu2 ds +
3cR

4

ˆ
∂BR

|—fu|2 ds +
dR

p+1

ˆ
∂BR

|u|p+1 ds .

Now, since |—u|2, u2 2 L1(R3) because u2 E(R3)⇢H1(R3), rfuu2, |—fu|2 2 L1(R3)

because
´
R3 rfuu2 dx=

´
R3 |—fu|2 dx and fu 2D1,2(R3), and |u|p+1 2 L1(R3) because

E(R3) ,! Lq(R3) for all q 2 [2,6], then it holds that IRn ! 0 as n !+• for a suitable
sequence Rn ! +• (see e.g. [28]). Moreover, since (3.30) holds for any R > 0, it
follows that

1
2

ˆ
R3

|—u|2 dx+
3b
2

ˆ
R3

u2 dx+
(3+ k)c

2

ˆ
R3

rfuu2 dx

� c
4

ˆ
R3

|—fu|2 dx� 3d
p+1

ˆ
R3

|u|p+1 dx  0,

and so, we obtain

1
2

ˆ
R3

|—u|2 dx+
3b
2

ˆ
R3

u2 dx+
(5+2k)c

4

ˆ
R3

rfuu2 dx� 3d
p+1

ˆ
R3

|u|p+1 dx  0,

using the fact that
´
R3 |—fu|2 dx =

´
R3 rfuu2 dx.
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4 Existence

In this chapter, we prove the existence of both mountain pass solutions and least en-
ergy solutions to the nonlinear Schrödinger-Poisson system

(
�Du+u+r(x)fu = |u|p�1u, x 2 R3,

�Df = r(x)u2, x 2 R3,
(4.1)

with p 2 (2,5) and r : R3 ! R a nonnegative measurable function, in the case of a
coercive and non-coercive r . The results in this chapter are from [50].

4.1 The min-max setting: definition of c
µ

, c•
µ

, c, and c•

In what is to come, we will first examine the existence of solutions of (4.1) in the case
of a coercive potential r (see Section 4.2). The appropriate setting for this problem
will be the space E(R3) ⇢ H1(R3). We begin by recalling that solving (4.1) reduces
to solving

�Du+u+r(x)fuu = |u|p�1u, (4.2)

with fu(x) :=
´
R3

u2(y)r(y)
4p|x�y| dy2D1,2(R3). Positive solutions of this equation are critical

points of the functional I : E(R3)! R, defined as

I(u) :=
1
2

ˆ
R3
(|—u|2 +u2)+

1
4

ˆ
R3

rfuu2 � 1
p+1

ˆ
R3

up+1
+ . (4.3)

It will also be useful to introduce a perturbation of (4.2), namely

�Du+u+r(x)fuu = µ|u|p�1u, µ 2


1
2
,1
�
. (4.4)

Similarly, the positive solutions of this perturbed problem are critical points of the
corresponding functional I

µ

: E(R3)! R, defined as

I
µ

(u) :=
1
2

ˆ
R3
(|—u|2 +u2)+

1
4

ˆ
R3

rfuu2 � µ

p+1

ˆ
R3

up+1
+ , µ 2


1
2
,1
�
. (4.5)

We will now show that I
µ

has the mountain pass geometry in E for each µ 2 [1
2 ,1].
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Lemma 4.1. [Mountain-Pass Geometry for I
µ

] Suppose r 2C(R3) is nonnegative
and p 2 (2,5]. Then, for each µ 2 [1

2 ,1], it holds:

(i) I
µ

(0) = 0 and there exists constants r,a > 0 such that I
µ

(u)� a if ||u||E = r.

(ii) There exists v 2 E with ||v||E > r, such that I
µ

(v) 0.

Proof. We follow Lemma 14 in [19]. To prove (i) note that since H1(R3) ,!Lp+1(R3)

then for some constant C > 0, it holds that

I
µ

(u)� 1
2
||u||2H1 +

1
4

ˆ
R3

rfuu2 �Cµ||u||p+1
H1 .

Now, from the definition of the norm in E we can see that

4p

ˆ
R3

rfuu2 =
�
||u||2E � ||u||2H1

�2
.

Therefore, we have that

I
µ

(u)� 1
2
||u||2H1 +

1
16p

�
||u||2E � ||u||2H1

�2 �Cµ||u||p+1
H1

=
1
2
||u||2H1 +

1
4p

✓
1
4
||u||4E � 1

2
||u||2E ||u||2H1 +

1
4
||u||4H1

◆
�Cµ||u||p+1

H1 .

For some a 6= 0, using the elementary inequality

1
2
||u||2E ||u||2H1 

a

2

4
||u||4H1 +

1
4a

2 ||u||
4
E

we have

I
µ

(u)� 1
2
||u||2H1 +

1
4p

✓
1
4
||u||4E � a

2

4
||u||4H1 �

1
4a

2 ||u||
4
E +

1
4
||u||4H1

◆

�Cµ||u||p+1
H1
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=
1
2
||u||2H1 �

1
4p

✓
a

2 �1
4

◆
||u||4H1 +

1
4p

✓
a

2 �1
4a

2

◆
||u||4E (4.6)

�Cµ||u||p+1
H1 .

We now assume ||u||E < d for some d > 0, which also implies that ||u||2H1 < d

2, and
we take a > 1. Then, from (4.6), we see that

I
µ

(u)�


1
2
� 1

4p

✓
a

2 �1
4

◆
d

2 �Cµd

p�1
�
||u||2H1 +

1
4p

✓
a

2 �1
4a

2

◆
||u||4E

� 1
4p

✓
a

2 �1
4a

2

◆
||u||4E , for d sufficiently small.

Hence, we have shown that the origin is a strict local minimum for I
µ

in E if p 2 [2,5].
To show (ii), pick u 2 C1(R3), supported in the unit ball, B1. Setting vt(x) :=

t2u(tx) we find that

I
µ

(vt) =
t3

2

ˆ
R3
|—u|2 + t

2

ˆ
R3

u2 +
t3

4

ˆ
R3

ˆ
R3

u2(y)r( y
t )u

2(x)r( x
t )

4p|x� y| dy dx

� µt2p�1

p+1

ˆ
R3

up+1
+ .

(4.7)

Since the Poisson term is uniformly bounded, namely for t > 1

ˆ
R3

ˆ
R3

u2(y)r( y
t )u

2(x)r( x
t )

4p|x� y| dy dx  ||r||2L•(B1)

ˆ
R3

ˆ
R3

u2(y)u2(x)
4p|x� y| dy dx <+•,

the fact that 2p�1 > 3 in (4.7) yields I
µ

(vt)!�• as t !+•, and this is enough to
prove (ii). This concludes the proof.

The previous lemma, as well as the monotonicity of I
µ

with respect to µ , imply
that there exists v̄ 2 E \{0} such that

I
µ

(v̄) I1
2
(v̄) 0, 8µ 2


1
2
,1
�
.
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Thus, we can define, in the spirit of Ambrosetti-Rabinowitz [6], the min-max level
associated with I

µ

as

c
µ

:= inf
g2G

max
t2[0,1]

I
µ

(g(t)), (4.8)

where G is the family of paths

G := {g 2C([0,1],E) : g(0) = 0, g(1) = v̄}.

It is worth emphasising that to apply the monotonicity trick [38] and [39] it is essential
that the above class G does not depend on µ.

Lemma 4.2. Suppose r 2C(R3) is nonnegative and p 2 (2,5). Then:

(i) The mapping
⇥1

2 ,1
⇤
3 µ 7! c

µ

is non-increasing and left-continuous.

(ii) For almost every µ 2 [1
2 ,1], there exists a bounded Palais-Smale sequence for I

µ

at the level c
µ

. That is, there exists a bounded sequence (un)n2N ⇢ E such that
I
µ

(un)! c
µ

and I0
µ

(un)! 0.

Proof. The proof of (i) follows from Lemma 2.2 in [7]. To prove (ii), we notice that
by Lemma 4.1, it holds that

c
µ

= inf
g2G

max
t2[0,1]

I
µ

(g(t))> 0 � max{I
µ

(0), I
µ

(v̄)}, 8µ 2


1
2
,1
�
.

Thus, the result follows by Theorem 2.4.

With this result in place, we can define the set

M :=
⇢

µ 2


1
2
,1
�

: 9 bounded Palais-Smale

sequence for I
µ

at the level c
µ

�
.

(4.9)
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We can now state the following corollary which will be used to obtain the existence
of solutions to the non-perturbed problem.

Corollary 4.1. The set M defined in (4.9) is dense in
⇥1

2 ,1
⇤
.

Proof. Recall that M is dense in
⇥1

2 ,1
⇤

if and only if for all x 2
⇥1

2 ,1
⇤

and for all
d > 0 there exists y 2 M such that y 2 (x� d , x+ d ). Let x 2

⇥1
2 ,1
⇤

and d > 0 be
arbitrary. Then,

l

✓
1
2
,1
�
\ (x�d , x+d )

◆
2 [d ,2d ] ,

where here l denotes the Lebesgue measure. We note that
⇥1

2 ,1
⇤
\M has zero

Lebesgue measure by Lemma 4.2 (ii). Therefore, it holds that

l (M \ (x�d , x+d )) = l

✓
1
2
,1
�
\ (x�d , x+d )

◆

�l

✓✓
1
2
,1
�
\M

◆
\ (x�d , x+d )

◆

= l

✓
1
2
,1
�
\ (x�d , x+d )

◆

2 [d ,2d ] .

So, since M \ (x� d , x+ d ) has positive measure, it is necessarily nonempty. In
particular, we can choose y 2 M \ (x�d , x+d ). This completes the proof.

Now, we note that since I has the mountain pass geometry by Lemma 4.1, using
(i) of Lemma 4.2, we can define the min-max level associated with I as

c :=

(
c1, p 2 (2,3),
inf

g2Ḡ maxt2[0,1] I(g(t)), p 2 [3,5),
(4.10)

where c1 is defined in (4.8) and Ḡ is the family of paths

Ḡ := {g 2C([0,1],E(R3)) : g(0) = 0, I(g(1))< 0}.
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This finalises the preliminary min-max scheme for the case of a coercive r .

In Section 4.3, we will then focus on the case of non-coercive r , namely r(x)!
r• as |x|!+•, and the appropriate setting for this problem will be the space H1(R3).
It will once again be useful to introduce a perturbation of (4.2), namely, (4.4), and to
recall that the positive solutions of this perturbed problem are critical points of the
corresponding functional, I

µ

: H1(R3) ! R, defined in (4.5). We note that Lemma
4.1 and Lemma 4.2 hold with E(R3) = H1(R3), and thus M can be defined as in
(4.9). We now introduce the problem at infinity related to (4.2) and (4.4) in this case,
namely

�Du+u+r•f̄uu = |u|p�1u, (4.11)

and

�Du+u+r•f̄uu = µ|u|p�1u, µ 2


1
2
,1
�
, (4.12)

respectively, where f̄u(x) :=
´
R3

r•u2(y)
4p|x�y|dy 2 D1,2(R3). Positive solutions of (4.11) are

critical points of I• : H1(R3)! R defined as

I•(u) :=
1
2

ˆ
R3
(|—u|2 +u2)+

1
4

ˆ
R3

r•f̄uu2 � 1
p+1

ˆ
R3

up+1
+ . (4.13)

Similarly, positive solutions of (4.12) are critical points of the corresponding func-
tional, I•

µ

: H1(R3)! R, defined as

I•
µ

(u) :=
1
2

ˆ
R3
(|—u|2 +u2)+

1
4

ˆ
R3

r•f̄uu2 � µ

p+1

ˆ
R3

up+1
+ , µ 2


1
2
,1
�
. (4.14)

It can be shown that I•
µ

satisfies the geometric conditions of the mountain-pass theo-
rem, using similar arguments as those used in the proof of Lemma 4.1. We therefore
define the min-max level associated with I•

µ

as

c•
µ

:= inf
g2G•

max
t2[0,1]

I•
µ

(g(t)), (4.15)

where
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G• := {g 2C([0,1],H1(R3)) : g(0) = 0, I•
1
2
(g(1))< 0}.

Moreover, we define the min-max level associated with I• as

c• :=

(
c•

1 , p 2 (2,3),
inf

g2Ḡ• maxt2[0,1] I•(g(t)), p 2 [3,5),
(4.16)

where c•
1 is given by (4.15) and Ḡ• is the family of paths

Ḡ• := {g 2C([0,1],E(R3)) : g(0) = 0, I•(g(1))< 0}.

4.1.1 Lower bounds for I and I•

In the next two lemmas, we establish lower bounds on I
µ

and I•
µ

, when restricted to
nonnegative and nontrivial solutions of (4.4) and (4.12), respectively. These bounds
will be used on numerous occasions.

Lemma 4.3. Suppose r 2 C(R3) is nonnegative and µ 2 [1
2 ,1]. Define A := {u 2

H1(R3)\{0} : u is a nonnegative solution to (4.4)}. Then, if p 2 [3,5), it holds that

inf
u2A

I
µ

(u)� p�1
2(p+1)

�
Sp+1

� p+1
p�1 > 0.

If p 2 (2,3), suppose, in addition, r 2 W 1,1
loc (R3) and kr(x)  (x,—r) for some k >

�2(p�2)
(p�1) . Then, it holds that

inf
u2A

I
µ

(u)�C(k, p),

with

C(k, p) :=
✓

2(p�2)+ k(p�1)
(3+2k)(p+1)

◆�
Sp+1

� p+1
p�1 > 0.

Proof. Let ū 2 H1(R3) \ {0} be an arbitrary nonnegative solution of (4.4) such that
I
µ

(ū) = c̄, for some c̄ 2 R. Using the Sobolev embedding theorem and the fact that
I0
µ

(ū)(ū) = 0, we see that
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Sp+1||ū||2Lp+1  ||ū||2H1  ||ū||2H1 +

ˆ
R3

rfūū2 = µ||ū||p+1
Lp+1 .

Since µ  1 it follows that

�
Sp+1

� p+1
p�1  ||ū||2H1 . (4.17)

If p 2 [3,5), using the definition of c̄ and Nehari’s condition, we can see that

⇣1
2
� 1

p+1

⌘
||ū||2H1  c̄,

and so the bound on c̄ immediately follows from (4.17). If p 2 (2,3), we first note
that since I

µ

(ū) = c̄, I0
µ

(ū)(ū) = 0, and ū = (ū)+, then ū satisfies

1
2

ˆ
R3
(|—ū|2 + ū2)+

1
4

ˆ
R3

rfūū2 � µ

p+1

ˆ
R3

ūp+1 = c̄, (4.18)

and

ˆ
R3
(|—ū|2 + ū2)+

ˆ
R3

rfūū2 �µ

ˆ
R3

ūp+1 = 0. (4.19)

Moreover, since ū solves (4.4) then, as a consequence of Lemma 3.3, it holds that

1
2

ˆ
R3
(|—ū|2 + ū2)+

✓
5+2k

4

◆ˆ
R3

rfūū2 � 3µ

p+1

ˆ
R3

ūp+1  0. (4.20)

For ease, we now set a = ||ū||2H1 , g =
´
R3 rfūū2, and d = µ

´
R3 ūp+1, and note that

a , g , d � 0. From (4.18), (4.19), and (4.20), we can see that a , g , and d satisfy

8
><

>:

1
2a + 1

4g � 1
p+1d = c̄,

a + g � d = 0,
1
2a +

�5+2k
4
�

g � 3
p+1d  0,

and so, it holds that
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d  c̄(3+2k)(p+1)
2(p�2)+ k(p�1)

,

and

a = d � g.

Since g is nonnegative, we find

a  a + g = d  c̄(3+2k)(p+1)
2(p�2)+ k(p�1)

.

This and (4.17) implies the statement, since k > �2(p�2)
(p�1) > �3

2 for p 2 (2,3). This
concludes the proof.

Lemma 4.4. If p 2 (2,5), µ 2 [1
2 ,1] and u 2 H1(R3)\{0} is a nonnegative solution

of (4.12), then, it holds that

I•
µ

(u)� c•
µ

> 0.

Moreover, if p 2 (2,5) and u 2 H1(R3)\{0} is a nonnegative solution of (4.11), then

I•(u)� c• > 0.

In both cases, u > 0.

Proof. The lower bounds follow easily by similar arguments to those used in the proof
of Proposition 3.4 in [36]. Since u is nonnegative and nontrivial, then it is strictly
positive by the strong maximum principle, and this concludes the proof.

4.2 The case of coercive r(x)

In this section we will examine the existence of solutions of (4.1) in the case of a
coercive potential r , namely r(x)!+• as |x|!+•.
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4.2.1 Preliminary results

In the following lemma, we establish that this coercivity is indeed a sufficient condi-
tion for the compactness of the embedding E ,! Lp+1(R3).

Lemma 4.5. Assume r(x) ! +• as |x| ! +•. Then, E is compactly embedded in
Lp+1(R3) for all p 2 (1,5).

Proof. We first recall that for any u 2 E, it holds that

�Dfu = ru2,

where fu(x) :=
´
R3

r(y)u2(y)
4p|x�y| dy 2 D1,2(R3). Testing this equation with u+ and u� and

using the Cauchy-Schwarz inequality, it follows that

ˆ
R3

r|u|3 =
ˆ
R3

—|u|—fu


✓ˆ

R3
|—|u||2

◆ 1
2
✓ˆ

R3
|—fu|2

◆ 1
2

=

✓ˆ
R3

|—u|2
◆ 1

2
✓ˆ

R3

ˆ
R3

u2(x)r(x)u2(y)r(y)
4p|x� y|

◆ 1
2


✓

1
4p

◆ 1
2
||u||3E .

Thus, if r > 0, this implies the continuous embedding E ,! L3
r

(R3), where L3
r

(R3) :=
{u : r

1
3 u 2 L3(R3)}, equipped with norm ||u||L3

r

:= ||r 1
3 u||L3 .

Without loss of generality, assume un * 0 in E. Since r(x)! +• as |x|! +•,
then for any e > 0, there exists an R > 0 such that

ˆ
R3\BR

|un|3 =
ˆ
R3\BR

r

r

|un|3 < e

ˆ
R3\BR

r|un|3 < eC, (4.21)

for some C > 0. This and the classical Rellich theorem implies that, passing if neces-
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sary to a subsequence,

ˆ
R3

|un|3 ! 0. (4.22)

Therefore, we have proved the lemma for p = 2. Now, if p 2 (1,2), then, by interpo-
lation, for some a 2 (0,1), it holds that

||un||Lp+1(R3)  ||un||aL2(R3)||un||1�a

L3(R3)
! 0,

as the L2(R3) norm is bounded. The case p 2 (2,5) is similar using Sobolev’s in-
equality, and this concludes the proof.

As a consequence of the previous lemma, we have the following warm-up theo-
rem regarding existence in the coercive case for p � 3.

Theorem 4.1. [Coercive case: existence of mountain pass solution for p � 3] Sup-
pose r 2C(R3) is nonnegative and r(x)!+• as |x|!+•. Then, for any p 2 [3,5),
there exists a solution, (u,fu) 2 E(R3)⇥D1,2(R3), of (4.1), whose components are
positive functions. In particular, u is a mountain pass critical point of I at level c,
where c is the min-max level defined in (4.10).

Proof. Since r(x)! +• as |x|! +•, then E is compactly embedded in Lp+1(R3)

by Lemma 4.5, and therefore the existence of a Mountain Pass solution u to (4.1)
is provided by Theorem 1 of [19]. Both u,fu are positive by the strong maximum
principle, and this concludes the proof.

It is also worth finding conditions such that the term ru2 goes to zero at infinity,
since the whole right hand side of the Poisson equation is classically interpreted as a
‘charge density’. This is provided by the following.

Proposition 4.2. [Decay of u and ru2] Let r : R3 ! R be continuous and nonnega-
tive, p 2 [1,5], and (u,fu) 2 E(R3)⇥D1,2(R3) be solution to (4.1). Assume that u is
nonnegative. Then, for every g 2 (0,1), there exists C > 0 such that
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u(x)Ce�g(1+|x|) (L2-decay).

If, in addition, r is such that

(i) liminf|x|!• r(x)|x|1�2a > A

(ii) limsup|x|!• r(x)e�b (1+|x|)a  B

for some a,b ,A,B > 0, with b < 2
p

A, then, for some constant C > 0, it holds that

(a) u(x)Ce�
p

A(1+|x|)a

and therefore

(b) r(x)u2(x) = O(e(b�2
p

A)(1+|x|)a

), as |x|!+•.

Proof. The conclusion easily follows by Theorem 6 in [19] (see also [21]). More
precisely, setting W (x) := 1+ r(x)

|x| , the L2-decay follows as W (x)� 1 and therefore

liminf
|x|!+•

W (x)> g

2

is automatically satisfied for every g 2 (0,1). Moreover, note that by (i) it follows that

liminf
|x|!+•

W (x)|x|2�2a � liminf
|x|!+•

r(x)|x|1�2a > A

which yields (a) again by Theorem 6 in [19]. This concludes the proof.

4.2.2 Theorem 4.2

We now prove the following theorem regarding existence of mountain pass solutions
in the coercive case for p < 3.

Theorem 4.2. [Coercive case: existence of mountain pass solution for p 2 (2,3)]
Suppose r 2C(R3)\W 1,1

loc (R3) is nonnegative and r(x)!+• as |x|!+•. Suppose
further that kr(x) (x,—r) for some k > �2(p�2)

(p�1) . Then, for any p 2 (2,3), there ex-
ists a solution, (u,fu) 2 E(R3)⇥D1,2(R3), of (4.1), whose components are positive
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functions. In particular, u is a mountain pass critical point of I at level c, where c is
the min-max level defined in (4.10).

Proof. We first note that by Corollary 4.1, the set M , defined in (4.9), is dense in
⇥1

2 ,1
⇤
. We now break the proof into a series of claims.

Claim 1. The values c
µ

are critical levels of I
µ

for all µ 2 M . Namely, there exists
u 2 E such that I

µ

(u) = c
µ

and I0
µ

(u) = 0.

By definition, for each µ 2M , there exists a bounded sequence (un)n2N ⇢ E such
that I

µ

(un)! c
µ

and I0
µ

(un)! 0. Since (un)n2N is bounded, there exists u 2 E such
that, up to a subsequence, un * u in E. Using this and the fact that E is compactly
embedded in Lp+1(R3) by Lemma 4.5, arguing as in Lemma 16 in [19], with V (x) = 1
and K(x) = µ , we see that for all d > 0, there exists a ball B ⇢ R3 such that

limsup
n!+•

ˆ
R3\B

rfunu2
n < d , (4.23)

and

limsup
n!+•

�����

ˆ
R3\B

rfununu

�����< d . (4.24)

We then note that since (un)n2N is bounded in E, we also have that, up to a subse-
quence, un * u in H1. Now, using this and the fact that (un)n2N is a bounded Palais
Smale sequence for I

µ

, as well as (4.23), (4.24), and Lemma 4.5, we can reason as in
Lemma 18 in [19], with V (x) = 1 and K(x) = µ , to see that

ˆ
R3
(|—un|2 +u2

n)!
ˆ
R3
(|—u|2 +u2). (4.25)

Thus, using (4.23) and the boundedness of (un)n2N, we can argue as in the proof of
Theorem 1 in [19], to see that

ˆ
R3

rfunu2
n !
ˆ
R3

rfuu2, (4.26)

which, when combined with (4.25) and Lemma 4.5, implies that
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I
µ

(un)! I
µ

(u).

Therefore, we have shown

I
µ

(u) = c
µ

.

Moreover, by standard arguments, using the weak convergence un * u in E, we can
show

I0
µ

(u) = 0.

We finally note that, by putting (4.25) and (4.26) together, we have that ||un||2E !
||u||2E , and so by Lemma 3.2, it follows that un ! u in E. This concludes the proof of
Claim 1.

Claim 2. Let (µn)n2N be an increasing sequence in M such that µn ! 1 and assume
(un)n2N ⇢ E is such that I

µn(un) = c
µn and I0

µn(un) = 0 for each n. Then, there exists
u 2 E such that, up to a subsequence, un ! u in E, I(u) = c, and I0(u) = 0.

We first note that testing the equation I0
µn(un) = 0 with (un)�, one sees that un � 0

for each n. Therefore, it holds that un satisfies

�Dun +un +r(x)funun = µnup
n , (4.27)

1
2

ˆ
R3
(|—un|2 +u2

n)+
1
4

ˆ
R3

rfunu2
n �

µn

p+1

ˆ
R3

up+1
n = c

µn , (4.28)

and

ˆ
R3
(|—un|2 +u2

n)+

ˆ
R3

rfunu2
n �µn

ˆ
R3

up+1
n = 0. (4.29)
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Moreover, since un solves (4.27) then, as a consequence of Lemma 3.3, we see that

1
2

ˆ
R3
(|—un|2 +u2

n)+

✓
5+2k

4

◆ˆ
R3

rfunu2
n �

3µn

p+1

ˆ
R3

up+1
n  0. (4.30)

Setting an =
´
R3(|—un|2 + u2

n), gn =
´
R3 rfunu2

n, and dn = µn
´
R3 up+1

n , we can see
from (4.28), (4.29), and (4.30), that an, gn, dn � 0 satisfy

8
><

>:

1
2an + 1

4gn � 1
p+1dn = c

µn ,

an + gn � dn = 0,
1
2an +

�5+2k
4
�

gn � 3
p+1dn  0.

(4.31)

Solving the system, we find that

dn 
c

µn(3+2k)(p+1)
2(p�2)+ k(p�1)

,

gn 
�2c

µn(p�5)
2(p�2)+ k(p�1)

,

and

an = dn � gn.

Since c
µn is bounded, k > �2(p�2)

(p�1) > �3
2 , and dn, gn, and an are all nonnegative, we can

deduce that dn, gn, and an are all bounded. Hence, the sequence (un)n2N is bounded
in E and so there exists u 2 E such that, up to a subsequence, un * u in E.

We now follow a similar procedure to that of Claim 1. Using the facts that
I0
µn(un) = 0, un is bounded in E, E is compactly embedded in Lp+1(R3) by Lemma

4.5, and µn ! 1, by an easy argument similar to the proof of Lemma 16 in [19], with
V (x) = 1 and K(x) = µn, we have that for all d > 0, there exists a ball B ⇢ R3 such
that

limsup
n!+•

ˆ
R3\B

rfunu2
n < d , (4.32)
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and

limsup
n!+•

�����

ˆ
R3\B

rfununu

�����< d . (4.33)

Now, using the facts that I0
µn(un) = 0 and µn ! 1, as well as (4.32), (4.33), and Lemma

4.5, we can adapt the proof of Lemma 18 in [19], with V (x) = 1 and K(x) = µn, to
see that

ˆ
R3
(|—un|2 +u2

n)!
ˆ
R3
(|—u|2 +u2). (4.34)

Finally, using (4.32), (4.34), the boundedness of un, Lemma 4.5, and the fact that
µn ! 1, we can easily adapt the proof of Theorem 1 in [19], to see that

ˆ
R3

rfunu2
n !
ˆ
R3

rfuu2, (4.35)

c
µn = I

µn(un)! I(u), (4.36)

and

0 = I0
µn(un)! I0(u).

As in Claim 1, we see that (4.34) and (4.35) imply that ||un||2E ! ||u||2E , and so by
Lemma 3.2, it follows that un ! u in E. We now recall that, for p 2 (2,3), it holds
that c

µn ! c as µn % 1 by definition (4.10). Thus, from (4.36) it follows that I(u) = c.

Conclusion. Let (µn)n2N be an increasing sequence in M such that µn ! 1. By Claim
1, we can choose (un)n2N ⇢ E such that I

µn(un) = c
µn and I0

µn(un) = 0 for each n. By
Claim 2, it follows that that there exists u 2 E such that, up to a subsequence, un ! u
in E, I(u) = c, and I0(u) = 0. Namely, we have shown (u,fu) 2 E(R3)⇥D1,2(R3) is
a solution of (4.1). By the strong maximum principle fu is strictly positive. Testing
the equation I0(u) = 0 with u� one sees that u � 0 and, in fact, strictly positive as a
consequence of the strong maximum principle. This concludes the proof.
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4.2.3 Corollary 4.3

We now prove the existence of least energy solutions for all p 2 (2,5). It is important
to note that for p 2 (3,5) the solutions provided by the following corollary coincide
with those provided by Theorem 4.1. For p 2 (2,3], we make use of a minimising se-
quence in order to obtain the result, however we do not know whether the least energy
solutions provided by what follows are the same as those provided by Theorem 4.1
(p = 3) and Theorem 4.2.

Corollary 4.3. [Coercive case: existence of a least energy solution for p 2 (2,5)]
Suppose r 2 C(R3) is nonnegative and r(x)! +• as |x|! +•. If p 2 (2,3), sup-
pose, in addition, that r 2W 1,1

loc (R3) and kr(x) (x,—r) for some k > �2(p�2)
(p�1) . Then,

for all p 2 (2,5), there exists a solution, (u,fu) 2 E(R3)⇥D1,2(R3), of (4.1), whose
components are positive functions, such that u is a least energy critical point of I.

Proof. When p > 3 it is standard to see that the Mountain Pass level c has the follow-
ing characterisation

c = inf
u2N

I(u), N = {u 2 E \{0} | I0(u)u = 0}, (4.37)

see e.g. Theorem 5 in [19]. It follows that the mountain pass solution u found in
Theorem 4.1 is a least energy solution of I in this case. If p 2 (2,3], define

c⇤ := inf
u2A

I(u),

where

A := {u 2 E(R3)\{0} : u is a nonnegative solution to (4.2)}.

When p = 3, we notice that the mountain pass critical point, u, that we found in
Theorem 4.1 is such that u 2A . Similarly, when p 2 (2,3), the mountain pass critical
point that we found in Theorem 4.2 is in A . Therefore, in both cases, A is nonempty
and c⇤ is well-defined. Now, let (wn)n2N ⇢ A be a minimising sequence for I on A ,

namely I(wn)! c⇤ as n !+• and I0(wn) = 0. If p = 3, it holds that

c+1+o(1)||wn||E(R3) � (p+1)I(wn)� I0(wn)wn � kwnk2
H1(R3),
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and it follows from standard arguments that (wn)n2N is bounded (see e.g. Lemma
7.14). If p 2 (2,3), setting an =

´
R3(|—wn|2 + w2

n), gn =
´
R3 rfwnw2

n, and dn =´
R3 wp+1

n , and arguing as in Theorem 4.2 Claim 2, we see that an, gn, and dn sat-
isfy the system (4.31) with dn := I(wn) in the place of c

µn . Thus, solving this system
and arguing as in Theorem 4.2 Claim 2, we can obtain that an, gn, and dn are all
bounded since (dn)n2N is uniformly bounded. It follows that (wn)n2N is also bounded
in this case. Therefore, for all p 2 (2,3], there exists w0 2 E such that, up to a sub-
sequence, wn * w0 in E. Arguing as in the proof of Theorem 4.2 Claim 1, we can
show wn ! w0 in E, I(w0) = c⇤, and I0(w0) = 0. We note that by Lemma 4.3, it holds
that c⇤ � C > 0 for some uniform constant C > 0, and so w0 is nontrivial. Finally,
reasoning as in the conclusion of Theorem 4.2, we see that both w0,fw0 are positive,
and this concludes the proof.

Remark 4.1. If we define

I (u) :=
1
2

ˆ
R3
(|—u|2 +u2)+

1
4

ˆ
R3

rfuu2 � 1
p+1

ˆ
R3

|u|p+1, (4.38)

then, under the same assumptions on r as in Corollary 4.3, we can prove the existence
of a least energy critical point for I for all p 2 (2,5) by following similar techniques
to those used in the proof of Corollary 4.3. Since for p > 3 the mountain pass level
is equal to the infimum on the Nehari manifold, in this range it is possible to select a
positive groundstate critical point for I . It is not clear whether this is also the case
for p 2 (2,3].

4.3 The case of non-coercive r(x)

We now turn our attention to the problem of finding solutions when r is non-coercive,
namely when r(x)! r• > 0 as |x|! +•. In this setting, E(R3) coincides with the
larger space H1(R3), and so we look for solutions (u,fu) 2 H1(R3)⇥D1,2(R3) of
(4.1).

4.3.1 Bounded PS sequences: proof of Proposition 4.4

Before moving forward, we will need some useful preliminary lemmas.
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Lemma 4.6 ([52]). Let p � 0 and (un)n2N ⇢ Lp+1(R3) be such that un ! u almost
everywhere on R3, supn ||un||Lp+1 < +•, and (un)� ! 0 in Lp+1(R3). Then, u 2
Lp+1(R3), u � 0,

(un �u)� ! 0 in Lp+1(R3),

and

||(un �u)+||p+1
Lp+1 = ||(un)+||p+1

Lp+1 � ||u+||p+1
Lp+1 +o(1).

Lemma 4.7. Let p > 0 and set

F(u) =
1

p+1

ˆ
R3

|u|p+1, F+(u) =
1

p+1

ˆ
R3

up+1
+ .

Assume (un)n2N ⇢ H1(R3) is such that un ! u a.e. on R3 and supn ||un||H1 < +•.
Then, it holds that

F 0(un)�F 0(un �u)�F 0(u) = o(1), in H�1(R3).

If, in addition, (un)� ! 0 in Lp+1(R3), then

F 0
+(un)�F 0

+(un �u)�F 0
+(u) = o(1), in H�1(R3).

Proof. The result follows as a consequence of Lemma 3.2 in [52], Lemma 4.6, and
Hölder’s inequality.

The final preliminary result that we need is a splitting lemma for the nonlocal part
of the derivative of the energy functional along bounded sequences. The proof follows
by convexity estimates and Fatou’s lemma, adapting similar arguments of Section 3
in [49] and Lemma 4.2 in [29] to a nonlocal context.

Lemma 4.8. [Nonlocal splitting lemma] Assume (un)n2N ⇢ H1(R3) is bound-
ed and un ! v0 almost everywhere. Suppose further r 2 C(R3) is nonnegative and
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r(x)! r• � 0 as |x|!+•. Then, the following hold:

(i) rf(un�v0)(un � v0)�r•f̄(un�v0)(un � v0) = o(1) in H�1(R3)

(ii) rfunun �rf(un�v0)(un � v0)�rfv0v0 = o(1) in H�1(R3).

Proof. For the proof of (i), we set

f

⇤
u (x) :=

ˆ
R3

u2(y)
4p|x� y| dy.

Take any h 2 H1, and note that

����
ˆ
R3

�
rf(un�v0)(un � v0)�r•f̄(un�v0)(un � v0)

�
h
����


����
ˆ
R3
(r �r•)f(un�v0)(un � v0)h

����

+

����
ˆ
R3

r•(f(un�v0)� f̄(un�v0))(un � v0)h
����

=: I1 + I2. (4.39)

Now, by assumption, for every e > 0, there exists R
e

> 0 such that |r �r•| < e for
all |x|> R

e

. So, using Hölder’s and Sobolev’s inequalities, we can see that

I1 

�����

ˆ
BR

e

(r �r•)f(un�v0)(un � v0)h

�����

+

�����

ˆ
|x|>R

e

(r �r•)f(un�v0)(un � v0)h

�����

 ||r||L• ||f(un�v0)||L6 ||un � v0||L2(BR
e

)||h||L3

+ e||f(un�v0)||L6 ||un � v0||L2 ||h||L3

. (||r||L• ||—f(un�v0)||L2 ||un � v0||L2(BR
e

)

+ e||—f(un�v0)||L2 ||un � v0||L2)||h||H1 . (4.40)
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Moreover, by using Hölder’s and Sobolev’s inequalities once again, we have

I2  r•||f(un�v0)� f̄(un�v0)||L6 ||un � v0||L2 ||h||L3

. r•||f(un�v0)� f̄(un�v0)||L6 ||un � v0||L2 ||h||H1 , (4.41)

and, by Minkowski’s, Sobolev’s, and Hardy-Littlewood-Sobolev inequalities, for ev-
ery e > 0, it holds

||f(un�v0)�f̄(un�v0)||L6

=

 ˆ
R3

����
ˆ
R3

(r(y)�r•)(un � v0)2(y)
4p|x� y| dy

����
6

dx

! 1
6



0

@
ˆ
R3

 ˆ
BR

e

|r(y)�r•|(un � v0)2(y)
4p|x� y| dy

!6

dx

1

A

1
6

+

0

@
ˆ
R3

 ˆ
|x|>R

e

|r(y)�r•|(un � v0)2(y)
4p|x� y| dy

!6

dx

1

A

1
6

 ||r||L•

0

@
ˆ
R3

 ˆ
R3

(un � v0)2(y)c2
BR

e

(y)

4p|x� y| dy

!6

dx

1

A

1
6

+ e

 ˆ
R3

✓ˆ
R3

(un � v0)2(y)
4p|x� y| dy

◆6

dx

! 1
6

= ||r||L• ||f⇤
(un�v0)cBR

e

||L6 + e||f⇤
(un�v0)

||L6

. ||r||L• ||—f

⇤
(un�v0)cBR

e

||L2 + e||—f

⇤
(un�v0)

||L2

. ||r||L• ||(un � v0)cBR
e

||2
L

12
5
+ e||—f

⇤
(un�v0)

||L2 . (4.42)

So, putting together (4.39), (4.40), (4.41), and (4.42), we obtain, for every e > 0,

����
ˆ
R3

�
rf(un�v0)(un � v0)�r•f̄(un�v0)(un � v0)

�
h
����

C(||r||L• ||—f(un�v0)||L2 ||un � v0||L2(BR
e

) + e||—f(un�v0)||L2 ||un � v0||L2
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+r•||r||L• ||(un � v0)cBR
e

||2
L

12
5
||un � v0||L2

+r•e||—f

⇤
(un�v0)

||L2 ||un � v0||L2)||h||H1 ,

for some C > 0. Since r 2 L•, f(un�v0),f
⇤
(un�v0)

are uniformly bounded in D1,2, un�v0

is uniformly bounded in L2, and un�v0 ! 0 in L2
loc and L

12
5

loc, then we have proven (i).

To prove (ii), we first take any h 2 H1, and note that by Hölder’s and Sobolev’s
inequalities, it holds that

����
ˆ
R3
(rfunun �rf(un�v0)(un � v0)�rfv0v0)h

����

 ||r||L• ||funun �f(un�v0)(un � v0)�fv0v0||
L

3
2
||h||L3

C||r||L• ||funun �f(un�v0)(un � v0)�fv0v0||
L

3
2
||h||H1 ,

(4.43)

for some C > 0. Now, by convexity, iterating the inequality

|a+b|
3
2 

p
2
⇣
|a|

3
2 + |b|

3
2

⌘
,

we can obtain

Fn :=
��
funun �f(un�v0)(un � v0)�fv0v0

�� 3
2

 2
⇣���

fun �f(un�v0)

�
un
�� 3

2 +
��
f(un�v0)v0

�� 3
2 + |fv0v0|

3
2
⌘
. (4.44)

Then, using the Cauchy-Schwarz inequality, we notice that

��
fun �f(un�v0)

��
ˆ
R3

r|2un � v0||v0|
4p|x� y| dy


✓ˆ

R3

r|2un � v0|2

4p|x� y| dy
◆ 1

2
✓ˆ

R3

r|v0|2

4p|x� y| dy
◆ 1

2

= f

1
2
(2un�v0)

f

1
2

v0 ,
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and so, using this and applying Young’s inequality twice, we see that, for every e > 0,

���
fun �f(un�v0)

�
un
�� 3

2  f

3
4
(2un�v0)

f

3
4

v0 |un|
3
2

 e

8
7
f

6
7
(2un�v0)

|un|
12
7 + e

�8
f

6
v0

 e

8
7

⇣
f

6
(2un�v0)

+ |un|2
⌘
+ e

�8
f

6
v0
. (4.45)

Moreover, again using Young’s inequality, it holds, for every e > 0,

��
f(un�v0)v0

�� 3
2  e

4
f

6
(un�v0)

+ e

� 4
3 v2

0. (4.46)

Combining (4.44), (4.45), and (4.46), we see that, for all e > 0,

Fn  2
⇣

e

8
7

⇣
f

6
(2un�v0)

+ |un|2
⌘
+ e

�8
f

6
v0
+ e

4
f

6
(un�v0)

+ e

� 4
3 v2

0 + |fv0v0|
3
2
⌘

=: Gn,

and so Gn �Fn � 0. We recall that by assumption un ! v0 almost everywhere, and so
it follows that f(un�v0) ! 0, fun ! fv0 , and f(2un�v0) ! fv0 almost everywhere. Thus,
applying Fatou’s Lemma to Gn �Fn, we obtain

2
ˆ
R3

⇣
e

8
7 (f 6

v0
+ |v0|2)+ e

�8
f

6
v0
+ e

� 4
3 v2

0 + |fv0v0|
3
2
⌘

 2
✓

e

8
7 sup

n�1

ˆ
R3

⇣
f

6
(2un�v0)

+ |un|2
⌘
+ e

�8
ˆ
R3

f

6
v0
+ e

4 sup
n�1

ˆ
R3

f

6
(un�v0)

+ e

� 4
3

ˆ
R3

v2
0 +

ˆ
R3

|fv0v0|
3
2

◆
� limsup

n!+•

ˆ
R3

Fn.

Therefore, after cancelations and using Sobolev’s inequality, we see that
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limsup
n!+•

ˆ
R3

Fn  2
✓

e

8
7 sup

n�1

ˆ
R3

⇣
f

6
(2un�v0)

+ |un|2
⌘

+ e

4 sup
n�1

ˆ
R3

f

6
(un�v0)

� e

8
7

ˆ
R3

⇣
f

6
v0
+ |v0|2

⌘◆

= 2
✓

e

8
7 sup

n�1

⇣
||f(2un�v0)||

6
L6 + ||un||2L2

⌘

+ e

4 sup
n�1

||f(un�v0)||
6
L6 � e

8
7

⇣
||fv0 ||

6
L6 + ||v0||2L2

⌘◆

C
✓

e

8
7 sup

n�1

⇣
||—f(2un�v0)||

6
L2 + ||un||2L2

⌘

+ e

4 sup
n�1

||—f(un�v0)||
6
L2 � e

8
7

⇣
||fv0 ||

6
L6 + ||v0||2L2

⌘◆
,

for some C > 0 and for all e > 0. We note that un,v0 are uniformly bounded in
L2 and f(un�v0),f(2un�v0) are uniformly bounded in D1,2 since un � v0,2un � v0 are
uniformly bounded in H1. Moreover, since v0 2H1, it follows that ||fv0 ||6L6 is bounded
by Sobolev’s inequality. Hence, since e > 0 is arbitrary, it holds that

lim
n!+•

ˆ
R3

Fn = 0,

which combined with (4.43) yields (ii), and this concludes the proof.

With these preliminaries in place, we now prove a useful ‘splitting’ proposition for
bounded Palais-Smale sequences for I

µ

, that highlights the connection to the problem
at infinity. There are several compactness results of similar flavour since the pio-
neering works of P.L. Lions [44] and Benci-Cerami [12], which include more recent
contributions in the context of Schrödinger-Poisson systems, see e.g. [26], [62], [24].
We point out that these recent results are mostly in the range p > 3, for Palais-Smale
sequences constrained on Nehari manifolds, and for functionals without positive parts,
unlike our result.

Proposition 4.4. [Global compactness for bounded PS sequences] Suppose r 2
C(R3) is nonnegative and r(x)! r• � 0 as |x|!+•. Let p 2 (2,5) and µ 2

⇥1
2 ,1
⇤

and assume (un)n2N ⇢ H1(R3) is a bounded Palais-Smale sequence for I
µ

. Then,
there exist l 2 N, a finite sequence (v0, . . . ,vl) ⇢ H1(R3), and l sequences of points
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(y j
n)n2N ⇢ R3, 1  j  l, satisfying, up to a subsequence of (un)n2N,

(i) v0 is a nonnegative solution of (4.4),

(ii) v j are nonnegative, and possibly nontrivial, solutions of (4.12) for 1  j  l,

(iii) |y j
n|!+•, |y j

n � y j0
n |!+• as n !+• if j 6= j0,

(iv) ||un � v0 �Âl
j=1 v j(·� y j

n)||H1(R3) ! 0 as n !+•,

(v) ||un||2H1(R3)
! Âl

j=0 ||v j||2H1(R3)
as n !+•,

(vi) I
µ

(un) = I
µ

(v0)+Âl
j=1 I•

µ

(v j)+o(1).

Remark 4.2. In the case r• = 0, the limiting equation (4.12) reduces to coincide with
the classical nonlinear Schrödinger equation �Du+u = up , whose positive solutions
have been classified by Kwong [41].

Proof of Proposition 4.4. Since (un)n2N is bounded in H1, we may assume un * v0

in H1 and un ! v0 a.e. in R3. We set u1
n := un � v0, and we first note that

||u1
n||2H1 = ||un � v0||2H1 = ||un||2H1 � ||v0||2H1 +o(1). (4.47)

We now prove three claims involving the sequence (u1
n)n2N.

Claim 1. I•
µ

(u1
n) = I

µ

(un)� I
µ

(v0)+o(1).

Testing I0
µ

(un) with (un)� we have

I0
µ

(un)(un)� =

ˆ
R3

(—un—((un)�)+un(un)�)+

ˆ
R3

rfunun(un)�

�µ

ˆ
R3
(un)

p
+(un)�
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= ||(un)�||2H1 +

ˆ
R3

rfun(un)
2
�.

Since (un)n2N is bounded, I0
µ

(un)(un)� = o(1), which implies

(un)� ! 0 in H1,

and by Sobolev’s embedding

(un)� ! 0 in Lp+1 8p 2 [1,5].

Now, using this and the boundedness of (un)n2N in Lp+1, it holds, by Lemma 4.6, that

||(u1
n)+||

p+1
Lp+1 = ||(un)+||p+1

Lp+1 � ||(v0)+||p+1
Lp+1 +o(1).

Therefore, using this and (4.47), we can see that

I•
µ

(u1
n) =

1
2
(||un||2H1 � ||v0||2H1)+

1
4

ˆ
R3

r•f̄(un�v0)(un � v0)
2

� µ

p+1

⇣
||(un)+||p+1

Lp+1 � ||(v0)+||p+1
Lp+1

⌘
+o(1).

(4.48)

We now notice that since, by symmetry,

ˆ
R3

r•(un � v0)
2
f(un�v0) =

ˆ
R3

r(un � v0)
2
f̄(un�v0),

then it holds that

����
ˆ
R3

rf(un�v0)(un � v0)
2 �
ˆ
R3

r•f̄(un�v0)(un � v0)
2
����


ˆ
R3

f(un�v0)(un � v0)
2|r(x)�r•|+

ˆ
R3

f̄(un�v0)(un � v0)
2|r(x)�r•|

=: I1 + I2.
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We note that for all e > 0 there exists R
e

> 0 such that |r(x)�r•|< e for all |x|> R
e

.
Thus, we can see,

I1 
ˆ

BR
e

f(un�v0)(un � v0)
2|r(x)�r•|

+

ˆ
|x|>R

e

f(un�v0)(un � v0)
2|r(x)�r•|

C
✓
||r||L• || ||—f(un�v0)||L2 ||un � v0||2

L
12
5 (BR

e

)

+ e ||—f(un�v0)||L2 ||un � v0||2
L

12
5

◆
,

where C > 0 is a constant. Since r 2 L•, f(un�v0) is uniformly bounded in D1,2 and
un � v0 ! 0 in L12/5

loc , the above shows that I1 ! 0 as n !+•. Similarly, we can see
that

I2 C0
✓
||r||L• || ||—f̄(un�v0)||L2 ||un � v0||2

L
12
5 (BR

e

)

+ e||—f̄(un�v0)||L2 ||un � v0||2
L

12
5

◆
,

and so I2 ! 0 as n !+•. Therefore, we have shown that

ˆ
R3

r•f̄(un�v0)(un � v0)
2 =

ˆ
R3

rf(un�v0)(un � v0)
2 +o(1),

and thus, by the nonlocal Brezis-Lieb Lemma 3.2, it holds that

ˆ
R3

r•f̄(un�v0)(un � v0)
2 =

ˆ
R3

rfunu2
n �
ˆ
R3

rfv0v2
0 +o(1).

Putting this together with (4.48), we see that I•
µ

(u1
n) = I

µ

(un)� I
µ

(v0)+o(1), and the
claim is proved.

Claim 2. I0
µ

(v0) = 0 and v0 � 0.

We notice that for all y 2C•
c (R3), it holds that
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I0
µ

(un)(y) =

ˆ
R3
(—un—y +uny)+

ˆ
R3

rfununy �µ

ˆ
R3
(un)

p
+y.

Using the fact that un * v0 in H1 and a local compactness argument, we can show
that I0

µ

(un)(y) = I0
µ

(v0)(y)+o(1). So, since I0
µ

(un)! 0 by the definition of a Palais-
Smale sequence, it holds that I0

µ

(v0) = 0 by density. We note that by testing this
equation with (v0)�, we obtain that v0 � 0.

Claim 3. (I•
µ

)0(u1
n)! 0.

We first note that by Lemma 4.8, it holds that

rfunun �r•f̄(un�v0)(un � v0)�rfv0v0

= rfunun �rf(un�v0)(un � v0)�rfv0v0 +o(1) (4.49)

= o(1) in H�1(R3).

Moreover, since we have showed in Claim 1 that (un)� ! 0 in Lp+1, then, by Lemma
4.7, it follows that

(un)
p
+� (un � v0)

p
+� (v0)

p = o(1), in H�1(R3). (4.50)

Therefore, using (4.49) and (4.50), we can conclude that

(I•
µ

)0(u1
n) = I0

µ

(un)� I0
µ

(v0)+o(1),

and so

(I•
µ

)0(u1
n) = o(1)

since I0
µ

(un)! 0 by the definition of Palais-Smale sequence and I0
µ

(v0) = 0 by Claim
2. This completes the proof of the claim.

Partial conclusions. With these results in place, we now define
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d

:= limsup
n!+•

 
sup
y2R3

ˆ
B1(y)

|u1
n|p+1

!
.

We can see that d � 0. If d = 0, the P. L. Lions Lemma [44] implies u1
n ! 0 in Lp+1.

Since it holds that

(I•
µ

)0(u1
n)(u

1
n) = ||u1

n||2H1 +

ˆ
R3

r•f̄u1
n
(u1

n)
2 �µ

ˆ
R3
(u1

n)
p+1
+ ,

and (I•
µ

)0(u1
n)! 0 by Claim 3, then, if u1

n ! 0 in Lp+1, it follows that u1
n ! 0 in H1.

In this case, we are done since we have un ! v0 in H1. Therefore, we assume d > 0.
This implies that there exists (y1

n)n2N ⇢ R3 such that

ˆ
B1(y1

n)
|u1

n|p+1 >
d

2
.

We now define v1
n := u1

n(·+ y1
n). We may assume v1

n * v1 in H1 and v1
n ! v1 a.e. in

R3. Then, since

ˆ
B1(0)

|v1
n|p+1 >

d

2
,

it follows from Rellich Theorem that v1 6⌘ 0. Since u1
n * 0 in H1, then (y1

n)n2N must
be unbounded and so we assume, up to a subsequence, |y1

n| ! +•. We set u2
n :=

u1
n � v1(·� y1

n), and, using (4.47), we note that

||u2
n||2H1 = ||u1

n||2H1 � ||v1||2H1 +o(1) = ||un||2H1 � ||v0||2H1 � ||v1||2H1 +o(1). (4.51)

We now prove three claims regarding the sequence (u2
n)n2N.

Claim 4. I•
µ

(u2
n) = I

µ

(un)� I
µ

(v0)� I•
µ

(v1)+o(1).

Arguing similarly as in Claim 1, namely testing (I•
µ

)0(u1
n) with (u1

n)�, we can show
that (u1

n)� ! 0 in Lp+1, and so (u1
n(·+ y1

n))� ! 0 in Lp+1. Thus, once again using
Lemma 4.6, we can see that
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||(u1
n)+||

p+1
Lp+1 = ||(u1

n(·+ y1
n)� v1)+||p+1

Lp+1 + ||(v1)+||p+1
Lp+1 +o(1)

= ||(u1
n � v1(·� y1

n))+||
p+1
Lp+1 + ||(v1)+||p+1

Lp+1 +o(1)

= ||(u2
n)+||

p+1
Lp+1 + ||(v1)+||p+1

Lp+1 +o(1),

and so

||(u2
n)+||

p+1
Lp+1 = ||(u1

n)+||
p+1
Lp+1 � ||(v1)+||p+1

Lp+1 +o(1).

Therefore, using this and (4.51), we have that

I•
µ

(u2
n) = ||u1

n||2H1 � ||v1||2H1 +
1
4

ˆ
R3

r•f̄(u1
n�v1(·�y1

n))
(u1

n � v1(x� y1
n))

2

� µ

p+1

⇣
||(u1

n)+||
p+1
Lp+1 � ||(v1)+||p+1

Lp+1

⌘
+o(1).

We can show, by changing variables and using Lemma 3.2, that

ˆ
R3

r•f̄(u1
n�v1(·�y1

n))
(u1

n � v1(x� y1
n))

2 =

ˆ
R3

r•f̄u1
n
(u1

n)
2 �
ˆ
R3

r•f̄v1v2
1 +o(1).

Thus, by combining the last two equations and using Claim 1, we see that I•
µ

(u2
n) =

I•
µ

(u1
n)� I•

µ

(v1)+o(1) = I
µ

(un)� I
µ

(v0)� I•
µ

(v1)+o(1), and so the claim is proved.

Claim 5. (I•
µ

)0(v1) = 0 and v1 � 0.

Let h 2 H1(R3) and set hn := h(·� y1
n). By a change of variables, we can see that

(I•
µ

)0(u1
n(x+ y1

n))(h) = (I•
µ

)0(u1
n)(hn),
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and so, since (I•
µ

)0(u1
n)! 0 by Claim 3, we have that

(I•
µ

)0(u1
n(x+ y1

n))! 0. (4.52)

We now note, for any y 2C•
c (R3), it holds that

����
ˆ
R3

r•f̄u1
n
(x+ y1

n)u
1
n(x+ y1

n)y �
ˆ
R3

r•f̄v1v1y

����


����
ˆ
R3

r•f̄u1
n
(x+ y1

n)(u
1
n(x+ y1

n)� v1)y

����

+

����
ˆ
R3

r•(f̄u1
n
(x+ y1

n)� f̄v1)v1y

����

 r•||f̄u1
n
(·+ y1

n)||L6 ||u1
n(·+ y1

n)� v1||L2(suppy)||y||L3

+r•||f̄u1
n
(·+ y1

n)� f̄v1 ||L2(suppy)||v1||L6 ||y||L3 ,

and so since u1
n(·+ y1

n)� v1 ! 0 in L2
loc and f̄u1

n
(·+ y1

n)� f̄v1 ! 0 in L2
loc, and all of

the other terms in the final equation are bounded, then we have shown that

ˆ
R3

r•f̄u1
n
(x+ y1

n)u
1
n(x+ y1

n)y !
ˆ
R3

r•f̄v1v1y.

Using this and the fact that u1
n(·+ y1

n) * v1 in H1, it follows by standard arguments
that (I•

µ

)0(u1
n(x+ y1

n))(y) = (I•
µ

)0(v1)(y)+o(1). This implies that (I•
µ

)0(v1) = 0, by
(4.52) and density. Testing this equation with (v1)�, shows that v1 � 0.

Claim 6. (I•
µ

)0(u2
n)! 0.

We take any h 2 H1(R3) and set hn := h(·+ y1
n). We note that, by a change of

variables, it holds that

(I•
µ

)0(u2
n)(h) = (I•

µ

)0(u1
n(·+ y1

n)� v1)(hn). (4.53)
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Now, arguing as we did in the proof of (ii) of Lemma 4.8, we can show that

r•f̄u1
n
(·+ y1

n)u
1
n(·+ y1

n)

�r•f̄(u1
n(·+y1

n)�v1)(u
1
n(·+ y1

n)� v1)�r•f̄v1v1 = o(1),
(4.54)

in H�1(R3). Moreover, since we showed (u1
n(·+ y1

n))� ! 0 in Lp+1 in Claim 4, we
can once again use Lemma 4.7 to conclude that

(u1
n(·+ y1

n))
p
+� (u1

n(·+ y1
n)� v1)

p
+� (v1)

p
+ = o(1), in H�1(R3).

It follows from this and (4.54) that

(I•
µ

)0(u1
n(·+ y1

n)� v1) = (I•
µ

)0(u1
n(·+ y1

n))� (I•
µ

)0(v1)+o(1), in H�1(R3). (4.55)

Since, by Claim 5 and a change of variables, it holds that

(I•
µ

)0(u1
n(·+ y1

n))(hn)� (I•
µ

)0(v1)(hn) = (I•
µ

)0(u1
n)(h),

then combining this, (4.53) and (4.55), we see that

(I•
µ

)0(u2
n) = (I•

µ

)0(u1
n)+o(1), in H�1(R3).

It therefore follows that (I•
µ

)0(u2
n) ! 0 since (I•

µ

)0(u1
n) ! 0 by Claim 3, and we are

done.

Conclusions. With these results in place we can now see that if u2
n ! 0 in H1, then we

are done. Otherwise, u2
n * 0 in H1, but not strongly, and so we repeat the argument.

By iterating the procedure, we obtain sequences of points (y j
n)n2N ⇢ R3 such that

|y j
n|!+•, |y j

n�y j0
n |!+• as n !+• if j 6= j0 and a sequence of functions (u j

n)n2N

with u1
n = un � v0 and u j

n = u j�1
n � v j�1(·� y j�1

n ) for j � 2 such that
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u j
n(x+ y j

n)* v j(x) in H1,

||un||2H1(R3) =
l�1

Â
j=0

||v j||2H1(R3) + ||ul
n||2H1 +o(1), (4.56)

||un � v0 �
l

Â
j=1

v j(·� y j
n)||H1(R3) ! 0 as n !+•,

I
µ

(un) = I
µ

(v0)+
l�1

Â
j=1

I•
µ

(v j)+ I•
µ

(ul
n)+o(1),

(I•
µ

)0(v j) = 0 and v j � 0 for j � 1,

We notice from the last equation that it holds that (I•
µ

)0(v j)(v j) = 0 for each j � 1.
Using this, the Sobolev embedding theorem and the fact that µ  1, we have that

Sp+1||v j||2Lp+1  ||v j||2H1  ||v j||2H1 +

ˆ
R3

r•f̄v j(v j)
2 = µ||(v j)+||p+1

Lp+1  ||v j||p+1
Lp+1 ,

and therefore, we can conclude that, for each j � 1,

||v j||2H1 � (Sp+1)
p+1
p�1 .

Combining this and the fact (un)n2N is bounded in H1, we see from (4.56) that the
iteration must stop at some finite index l 2 N.

4.3.2 Theorem 4.3

We are finally in position to establish two sufficient conditions that guarantee the ex-
istence of a mountain pass solution to (4.1) in the case of non-coercive r . When
p 2 (2,3), we use Proposition 4.4 together with a Pohozaev type inequality and Ne-
hari’s identity to show that a sequence of approximated critical points, constructed by
means of the ‘monotonicity trick’, is relatively compact. This enables us to obtain the
following result.

Theorem 4.3. [Non-coercive case: existence of mountain pass solution for p 2
(2,3)] Suppose r 2 C(R3)\W 1,1

loc (R3) is nonnegative, r(x)! r• > 0 as |x|! +•,
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and kr(x) (x,—r) for some k > �2(p�2)
(p�1) . Suppose further that

(i) either c < c•,

(ii) or r(x)  r• for all x 2 R3, with strict inequality, r(x) < r•, on some ball
B ⇢ R3,

where c and (resp.) c• are min-max levels defined in (4.10) and (resp.) (4.16). Then,
for any p2 (2,3), there exists a solution, (u,fu)2H1(R3)⇥D1,2(R3), of (4.1), whose
components are positive functions. In particular, u is a mountain pass critical point
of I at level c.

Proof. We first note that by Corollary 4.1 with E = H1, the set M , defined in (4.9),
is dense in

⇥1
2 ,1
⇤
.

Claim 1. Under assumptions (i), the values c
µ

are critical levels of I
µ

for all µ 2
(1 � e,1]\M , with e > 0 sufficiently small. Namely, there exists a nonnegative
u 2 H1 such that I

µ

(u) = c
µ

and I0
µ

(u) = 0 for all µ 2 (1� e,1]\M . Under as-
sumptions (ii), the same statement holds for all µ 2 M .

We recall that for all µ 2 M , by definition, there exists a bounded sequence
(un)n2N ⇢ H1 such that I

µ

(un) ! c
µ

and I0
µ

(un) ! 0. We note that by Proposition
4.4 and the definition of (un)n2N, it holds that

c
µ

= I
µ

(v0)+
l

Â
j=1

I•
µ

(v j), (4.57)

where v0 is a nonnegative solution of (4.4) and v j are nonnegative solutions of (4.12)
for 1  j  l.

Assume that (i) holds. For e > 0 small enough, it holds that c
µ

< c•
µ

for all
µ 2 (1� e,1]\M , by continuity. Pick µ on this set. If v j is nontrivial for some
1  j  l, it would follow that I•

µ

(v j)� c•
µ

> c
µ

by Lemma 4.4. This is in contradic-
tion with (4.57) since I

µ

(v0) � 0, by Lemma 4.3, and so, v j ⌘ 0 for all 1  j  l.
Therefore, un ! v0 in H1 by (iv) of Proposition 4.4, I

µ

(v0) = c
µ

by (4.57), and
I0
µ

(v0) = 0 since v0 is a nonnegative solution of (4.4). Thus, we have shown c
µ

is
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a critical level of I
µ

in this case.

Now, assume that (ii) holds. We note that this implies that I
µ

(g(t))  I•
µ

(g(t))
for each fixed g 2 G•, µ 2 [1

2 ,1] and t 2 [0,1]. It therefore follows that I1
2
(g(1)) 

I•
1
2
(g(1)) < 0 for all g 2 G•, and so G• ✓ G. Using this and Lemma 4.4, we can see

that for each nontrivial v j in (4.57), it holds

I•
µ

(v j)� c•
µ

= inf
g2G•

max
t2[0,1]

I•
µ

(g(t)),

� inf
g2G•

max
t2[0,1]

I
µ

(g(t)) (4.58)

� inf
g2G

max
t2[0,1]

I
µ

(g(t))

= c
µ

.

We now assume, by contradiction, v0 ⌘ 0 in (4.57), which would imply I
µ

(v0) = 0.
Using this and (4.58), we see from (4.57) that there exists one nontrivial v j, call it v1,
such that v1 is a nonnegative solution of (4.12) and

I•
µ

(v1) = c•
µ

= c
µ

. (4.59)

Define v̄t(x) = t2v1(tx) and g : R! H1(R3), g(t) = v̄t . By Lemma 3.3 in [57, p. 663],
the function f (t) = I•

µ

(v̄t) has a unique critical point corresponding to its maximum,
and it can be shown that f 0(1) = 0 by Nehari’s and Pohozaev’s identities for v1. We
deduce that

max
t2R

I•
µ

(g(t)) = I•
µ

(v1),

and that there exists M > 0 such that

I•
1
2
(g(M))< 0,

and
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max
t2R

I•
µ

(g(t)) = max
t2[0,M]

I•
µ

(g(t)).

We then define g0 : [0,1]! H1(R3), g0(t) = g(Mt), and see from the above work that
g0 2 G•. Therefore, we have that

I•
µ

(v1) = max
t2R

I•
µ

(g(t))

= max
t2[0,M]

I•
µ

(g(t))

= max
t2[0,1]

I•
µ

(g0(t)).

Since we have v1 > 0 on B where r(x)< r• by Lemma 4.4, it follows that

c•
µ

= I•
µ

(v1)

= max
t2[0,1]

I•
µ

(g0(t))

> max
t2[0,1]

I
µ

(g0(t))

� inf
g2G•

max
t2[0,1]

I
µ

(g(t))

� inf
g2G

max
t2[0,1]

I
µ

(g(t))

= c
µ

,

which contradicts (4.59). Therefore, we have shown that v0 6⌘ 0. Now, since v0 is a
nontrivial and nonnegative solution of (4.4), then I

µ

(v0) > 0 by Lemma 4.3. Putting
this and (4.58) together in (4.57), it follows that v j ⌘ 0 for all 1  j  l. Therefore,
un ! v0 in H1 by (iv) of Proposition 4.4, I

µ

(v0) = c
µ

by (4.57), and I0
µ

(v0) = 0 since
v0 is a nonnegative solution of (4.4). This concludes the proof of Claim 1.

Claim 2. Let µn ! 1 be an increasing sequence in (1� e,1]\M and (resp.) M

under assumptions (i) and (resp.) (ii). Assume (un)n2N ⇢ H1 is such that un is non-
negative, I

µn(un) = c
µn and I0

µn(un) = 0 for each n. Then, there exists a nonnegative
u 2 H1 such that, up to a subsequence, un ! u in H1, I(u) = c, and I0(u) = 0.
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Since un is nonnegative, (un)+ = un, and so we can see that

I(un) = I
µn(un)+

µn �1
p+1

ˆ
R3

up+1
n

= c
µn +

µn �1
p+1

ˆ
R3

up+1
n , (4.60)

and, for all v 2 H1(R3),

I0(un)(v) = I0
µn(un)(v)+(µn �1)

ˆ
R3

up
nv

 |µn �1| ||un||pLp+1 ||v||Lp+1

 S�
1
2

p+1|µn �1| ||un||pLp+1 ||v||H1 . (4.61)

Set an =
´
R3(|—un|2+u2

n), gn =
´
R3 rfunu2

n, and dn = µn
´
R3 up+1

n . As in Theorem 4.2
Claim 2, we see that an, gn, dn � 0 satisfy (4.31), and thus we can obtain that an, gn,
and dn are all bounded. Therefore, using this, (4.60), (4.61), and the fact that c

µn ! c
as µn % 1 by definition (4.10), we can deduce that ||un||H1 is bounded, I(un)! c and
I0(un) ! 0 as n ! +•. That is, we have shown that (un)n2N is a bounded Palais-
Smale sequence for I = I1 at the level c = c1, and so, 1 2 M . By Claim 1, it follows
that there exists a nonnegative u 2 H1 such that, up to a subsequence, un ! u in H1,
I(u) = c, and I0(u) = 0.

Conclusion. Let µn ! 1 be an increasing sequence in (1� e,1]\M and (resp.) M

under assumptions (i) and (resp.) (ii). By Claim 1, we can choose (un)n2N ⇢ H1 such
that un is nonnegative, I

µn(un) = c
µn and I0

µn(un) = 0 for each n. By Claim 2, it follows
that there exists a nonnegative u 2 H1 such that, up to a subsequence, un ! u in H1,
I(u) = c, and I0(u) = 0. That is, we have shown (u,fu) 2 H1(R3)⇥D1,2(R3) solves
(4.1). Since u and fu are nonnegative by construction, by regularity and the strong
maximum principle, it follows that they are, in fact, strictly positive. This concludes
the proof.
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4.3.3 Theorem 4.4

The non-coercive case turns out to be more ‘regular’ with respect to compactness is-
sues when p � 3. In fact, we can show that the Palais-Smale condition holds at the
mountain pass level c.

Proposition 4.5. [Palais-Smale condition for p � 3] Let r 2C(R3) be nonnegative
such that r(x)! r• > 0 as |x|! +•, and suppose one of the following conditions
holds:

(i) either c < c•,

(ii) or r(x)  r• for all x 2 R3, with strict inequality, r(x) < r•, on some ball
B ⇢ R3,

where c and (resp.) c• are defined in (4.10) and (resp.) (4.16). Then, for any p2 [3,5),
every Palais-Smale sequence (un)n2N ⇢ H1(R3) for I, at the level c, is relatively com-
pact. In particular, c is a critical level for I.

Proof. Since, for p � 3, we have

c+1+o(1)kunkH1(R3) � (p+1)I(un)� I0(un)un � kunk2
H1(R3),

it follows that (un)n2N is bounded. By the definition of un and Proposition 4.4 with
µ = 1, it holds that

c = I(v0)+
l

Â
j=1

I•(v j), (4.62)

where v0 is a nonnegative solution of (4.2) and v j are nonnegative solutions of (4.11)
for 1 j  l. Reasoning as in Claim 1 of Theorem 4.3, setting µ = 1 and replacing c

µ

,
c•

µ

, G, and G• with c, c•, Ḡ, and Ḡ•, respectively, throughout, the statement follows.
This concludes the proof.
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As a consequence of the previous result, we have the following theorem, giving
the existence of mountain pass solutions for p � 3.

Theorem 4.4. [Non-coercive case: existence of mountain pass solution for p � 3]
Suppose r 2 C(R3) is nonnegative and r(x)! r• > 0 as |x|! +•. Let one of the
following conditions hold:

(i) either c < c•,

(ii) or r(x)  r• for all x 2 R3, with strict inequality, r(x) < r•, on some ball
B ⇢ R3,

where c and (resp.) c• are minimax levels defined in (4.10) and (resp.) (4.16). Then,
for any p 2 [3,5) there exists a solution, (u,fu)2 H1(R3)⇥D1,2(R3), of (4.1), whose
components are positive functions. In particular, u is a mountain pass critical point
of I at level c.

Proof. The regularity and the strong maximum principle imply that the nontrivial and
nonnegative critical point, u, of I, found in Proposition 4.5, is strictly positive. For the
same reason, fu > 0 everywhere.

4.3.4 Corollary 4.6

We follow up the previous two existence theorems with a result giving the existence of
least energy solutions in the non-coercive case. When p 2 (3,5) the existence follows
relatively straightforwardly using the Nehari characterisation of the mountain pass
level, and when p 2 (2,3] we use a minimising sequence together with Proposition
4.4 to obtain the result.

Corollary 4.6. [Non-coercive case: existence of least energy solution for p 2
(2,5)] Suppose r 2 C(R3) is nonnegative, r(x) ! r• > 0 as |x| ! +•, and one
of the following conditions holds:

(i) either c < c•,
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(ii) or r(x)  r• for all x 2 R3, with strict inequality, r(x) < r•, on some ball
B ⇢ R3,

where c and (resp.) c• are minimax levels defined in (4.10) and (resp.) (4.16). If
p 2 (2,3), suppose in addition that r 2W 1,1

loc (R3) and kr(x)  (x,—r) for some k >
�2(p�2)
(p�1) . Then, for all p 2 (2,5), there exists a solution, (u,fu) 2 H1(R3)⇥D1,2(R3),

of (4.1), whose components are positive functions, such that u is a least energy criti-
cal point of I.

Proof. If p 2 (3,5), we can use the Nehari characterisation of the mountain pass level
(4.37) with E = H1 to see that the mountain pass solution u found in Theorem 4.4 is
a least energy solution for I. If p 2 (2,3], we set

c⇤ := inf
u2A

I(u),

where

A := {u 2 H1(R3)\{0} : u is a nonnegative solution to (4.2)},

and can show that A is nonempty and c⇤ is well-defined using the mountain pass
critical points that we found in Theorem 4.4 and Theorem 4.3 when p = 3 and p 2
(2,3), respectively. It is important to note that when p = 3, the critical point, u 2 A ,
that we found in Theorem 4.4 satisfies I(u) = c, which implies c⇤  c. Similarly, when
p 2 (2,3), we can show c⇤  c using the critical point that we found in Theorem 4.3.
Now, for any p 2 (2,3), arguing as in the proof of Corollary 4.3, we can show that
there exists a bounded sequence (wn)n2N ⇢ A such that I(wn)! c⇤ as n ! +• and
I0(wn) = 0. By applying Proposition 4.4 with µ = 1 to (wn)n2N, we can see that

c � c⇤ = I(v0)+
l

Â
j=1

I•(v j),

where v0 is a nonnegative solution of (4.2) and v j are nonnegative solutions of (4.11)
for 1  j  l. Reasoning as in Claim 1 of Theorem 4.3 with µ = 1 and replacing c

µ

,
c•

µ

, G, and G• with c, c•, Ḡ, and Ḡ•, respectively, throughout, we can show I(v0) = c⇤

and I0(v0) = 0. We note that by Lemma 4.3, it holds that c⇤ �C > 0 for some uniform
constant C > 0, and so it follows that v0 is a nontrivial least energy critical point of
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I. The strict positivity of v0 and fv0 follows by regularity and the strong maximum
principle since they are nonnegative by construction. This concludes the proof.

Remark 4.3. By following similar techniques to those used in the proof of Corollary
4.6, we can show that under the same assumptions as this corollary (with obvious
modifications to the minimax levels), there exists a least energy solution for I , defined
in (4.38), for all p 2 (2,5). As in the coercive case, it is not clear if we can select a
positive groundstate for p 2 (2,3].
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5 Multiplicity Results

In this chapter, we study the existence of multiple solutions to the same nonlinear
Schrödinger-Poisson system

(
�Du+u+r(x)fu = |u|p�1u, x 2 R3,

�Df = r(x)u2, x 2 R3,
(5.1)

with p 2 (2,5) and r : R3 !R a nonnegative measurable function. We obtain results
in the case of a coercive r for p > 3 and p  3, in the spirit of Ambrosetti and
Rabinowitz [6] and Ambrosetti and Ruiz [7], respectively. The results in this chapter
are from [31].

5.1 Main multiplicity result: coercive r(x) and p > 3

In the case of a coercive r and for p > 3, the existence of infinitely many solutions to
the Schrödinger-Poisson system follows relatively straightforwardly using the results
of [6]. Namely, the main multiplicity result we obtain is as follows.

Theorem 5.1. Suppose r 2C(R3) is nonnegative and r(x)!+• as |x|!+•. Then,
for any p 2 (3,5), there exists infinitely many distinct pairs of critical points in E(R3)

for

I (u) :=
1
2

ˆ
R3
(|—u|2 +u2)+

1
4

ˆ
R3

rfuu2 � 1
p+1

ˆ
R3

|u|p+1.

Remark 5.1. We notice that here we deal with critical points of the functional I

rather than the functional I that we defined in (3.16) as we are no longer solely inter-
ested in positive solutions.

In order to prove this theorem, we will need some background material including
the notion of the Krasnoselskii-genus and its properties.

5.1.1 Krasnoselskii-genus

Throughout this section we let E be the usual Banach space defined previously and
let G be a compact topological group. Following [27], we begin with a number of
definitions that we will need before introducing the notion of the Krasnoselskii-genus.
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Definition 4. The set {T (g) : g 2 G} is an isometric representation of G on E if
T (g) : E ! E is an isometry for each g 2 G and the following hold:

(i) T (g1 +g2) = T (g1)�T (g2) for all g1,g2 2 G

(ii) T (0) = I, where I : E ! E is the identity map on E

(iii) (g,u) 7! T (g)(u) is continuous.

Definition 5. A subset A ⇢ E is invariant if T (g)A = A for all g 2 G.

Definition 6. A mapping R between two invariant subsets A1 and A2, namely R : A1 !
A2, is said to be equivariant if R�T (g) = T (g)�R for all g 2 G.

Definition 7. We denote the class of all closed and invariant subsets of E by A .
Namely,

A := {A ⇢ E : A closed, T (g)A = A 8g 2 G}.

Definition 8. A G-index on E with respect to A is a mapping ind : A ! N[ {+•}
such that the following hold:

(i) ind(A) = 0 if and only if A = /0.

(ii) If R : A1 ! A2 is continuous and equivariant, then ind(A1) ind(A2).

(iii) ind(A1 [A2) ind(A1)+ ind(A2).

(iv) If A 2 A is compact, then there exists a neighborhood N of A such that N 2 A

and ind(N) = ind(A).

With these definitions in place, we are ready to introduce the concept of the
Krasnoselskii-genus.

Lemma 5.1. Let G = Z2 = {0,1} and define T (0) = I, T (1) =�I, where I : E ! E
is the identity map on E. Given any closed and symmetric with respect to the origin
subset A 2 A , define g(A) = k 2 N if k is the smallest integer such that there exists
some odd mapping j 2C(A,Rk \{0}). Moreover, define g(A) = +• if no such map-
ping exists and g( /0) = 0. Then, the mapping g : A ! N[{+•} is a Z2-index on E,
called the Krasnoselskii-genus.
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Proof. See the proof of Proposition 2.1 in [27].

The next lemma gives a property of the Krasnoselskii-genus that will be crucial in
obtaining our multiplicity result.

Lemma 5.2. Assume A 2 A is such that 0 /2 A and g(A) � 2. Then, A has infinitely
many points.

Proof. See the proof of Proposition 2.2 in [27].

5.1.2 The min-max setting: definition of bm

We will now define the min-max levels at which we will find critical points of I . In
order to do so, we introduce a number of sets, following [6]. Namely, we let

Â0 = {u 2 E : I (u)� 0},

G⇤ = {h 2C(E,E) : h(0) = 0, h is a homeomorphism of E onto E, h(B1)⇢ Â0},

G⇤ = {h 2 G⇤ : h is odd},

and

Gm ={K ⇢ E : K is compact and symmetric with respect to the origin and for

all h 2 G⇤, it holds that g(K \h(∂B1))� m}.

We are now in position to define the min-max levels as

bm = inf
K2Gm

max
u2K

I (u).

For what follows, we will also need to define the set of critical points at any level
b > 0, namely

Kb = {u 2 E : I (u) = b, I 0(u) = 0}.
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5.1.3 Proof of Theorem 5.1

Before completing the proof of Theorem 5.1, we recall a vital result from [6].

Theorem 5.2 ([6]). Let I 2C1(E,R) satisfy the following:

(i) I (0) = 0 and there exists constants R,a > 0 such that I (u)� a if ||u||E = R

(ii) If (un)n2N ⇢ E is such that 0 <I (un), I (un) bounded above, and I 0(un)! 0,
then (un)n2N possesses a convergent subsequence

(iii) I (u) = I (�u) for all u 2 E

(iv) For a nested sequence E1 ⇢ E2 ⇢ · · · of finite dimensional subspaces of E of
increasing dimension, it holds that Ei \ Â0 is bounded for each i = 1,2, . . .

Then, for each m 2 N, it holds that 0 < a  bm  bm+1 and bm is a critical value of
I . Moreover, if bm+1 = · · ·= bm+r = b, then g(Kb)� r.

Proof. See the proof of Theorem 2.8 in [6].

We are now in position to prove Theorem 5.1.

Proof of Theorem 5.1. We aim to apply Theorem 5.2 and therefore must verify that
I satisfies assumptions (i)-(iv) of this theorem. Arguing as in Lemma 4.1, we can
show that I satisfies the Mountain Pass Geometry and thus (i) holds. To show (ii),
we note that by the assumptions on (un)n2N and since p > 3, it holds that

C+1+o(1)||un||E � (p+1)I (un)�I 0(un)un � ||un||2H1 +

ˆ
R3

rfuu2,

for some C > 0, and so it follows by standard arguments that (un)n2N is bounded
(see e.g. Lemma 7.14). Then, arguing as in the proof of Claim 1 of Theorem 4.2, we
can show that (un)n2N possesses a convergent subsequence, and thus I satisfies the
Palais-Smale condition. Namely, (ii) holds. Clearly, (iii) holds due to the structure of
the functional I . We now must show that (iv) holds. We first notice by straightfor-
ward calculations that for any u2 ∂B1, namely for any u2E \{0} such that ||u||E = 1,
and any for t > 0, it holds that
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I (tu) =
t2

2
||u||2H1 +

t4

4

ˆ
R3

rfuu2 � t p+1

p+1

ˆ
R3

|u|p+1

=
t2

2

✓
||u||2H1 +

t2

2

ˆ
R3

rfuu2 � 2t p�1

p+1

ˆ
R3

|u|p+1
◆
.

We now set

a

:= ||u||2H1 , b

:=
1
2

ˆ
R3

rfuu2, g

:=
2

p+1

ˆ
R3

|u|p+1 > 0,

and look for positive solutions of

t2

2
(a +b t2 � gt p�1) = 0.

Since p > 3, it holds that a +b t2�gt p�1 = 0 has a unique solution t = t(u)> 0. That
is, we have shown that for each u 2 ∂B1, there exists a unique t = t(u) > 0 such that
I satisfies

I (t(u)u) = 0

I (tu)> 0, 8t < t(u)

I (tu)< 0, 8t > t(u).

We now consider a nested sequence E1 ⇢ E2 ⇢ · · · of finite dimensional subspaces of
E of increasing dimension. For any k 2 N, we set

Vk := {v 2 E : v = tu, t � 0, u 2 ∂B1 \Ek}.

Then, the function h : Ek !Vk given by

h(z) = t
z

||z|| , with t = ||z||

defines a homeomorphism from Ek onto Vk, and so V1 ⇢V2 ⇢ · · · is a nested sequence
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of finite dimensional subspaces of E of increasing dimension. We also notice that

Tk := sup
u2∂B1\Ek

t(u)<+•

since ∂B1\Ek is compact. So, for all t > Tk and u2 ∂B1\Ek, it holds that I (tu)< 0,
and thus Vk \ Â0 is bounded. Since this holds for arbitrary k 2 N, we have shown that
(iv) holds. Hence, we have shown that Theorem 5.2 applies to the functional I . If
bm are distinct for m = 1, . . . ,k with k 2N, we obtain k distinct pairs of critical points
corresponding to critical levels 0 < b1 < b2 < · · · < bk. If bm+1 = · · · = bm+r = b,
then g(Kb) � r � 2. Moreover, 0 /2 Kb since b > 0 = I (0). Further, Kb is invariant
since I is an invariant functional and Kb is closed since I satisfies the Palais-Smale
condition, and so Kb 2 A . Therefore, by Lemma 5.2, Kb possesses infinitely many
points. This concludes the proof.

5.2 Preliminary result: coercive r(x) and p  3

In this section, we discuss a preliminary multiplicity result in the case of a coercive
r and p  3, as well as some current ongoing work. As usual, when p  3, we face
the additional difficulty of constructing bounded Palais-Smale sequences. Because
of this, we need a more robust approach than given in [6]. Namely, in the case of a
coercive r and p  3, we can borrow from the approach of [7] in order to obtain the
following preliminary multiplicity result.

Theorem 5.3. Suppose r 2 C(R3)\W 1,1
loc (R3) is nonnegative and r(x) ! +• as

|x|! +•. Suppose further that r is homogeneous of degree k̄ for some k̄ 2 (0, 1
2 ][

{1}[{3
2}, namely r(tx) = t k̄

r(x) for all t > 0. Then, for any p 2 (2,3], there exists
infinitely many distinct pairs of critical points, ±uk 2 E(R3), k 2 N, for

I (u) :=
1
2

ˆ
R3
(|—u|2 +u2)+

1
4

ˆ
R3

rfuu2 � 1
p+1

ˆ
R3

|u|p+1,

such that I (uk)!+• as k !+•.

Remark 5.2. We note that Theorem 5.3 can actually be proved for k̄ 2 (2� p, 0)
also, however this range of k̄ is incompatible with the coercivity assumption, namely
r(x)!+• as |x|!+•.
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Before proving Theorem 5.3, we must recall some vital results from [7] that will
enable us to obtain our result.

5.2.1 The abstract min-max setting

The first lemma that we recall will give us an abstract definition of the min-max levels
and some properties.

Lemma 5.3 ([7]). Consider a Banach space E, and a functional F
µ

: E ! R of the
form F

µ

(u) = a(u)�µb (u), with µ > 0. Suppose that a , b 2C1 are even functions,
lim||u||!+• a(u) = +•, b (u) � 0, and b , b

0 map bounded sets onto bounded sets.
Suppose further that there exists K ⇢ E and a class F of compact sets in E such that:

(F .1) K ⇢ A for all A 2 F and supu2K F
µ

(u)< c
µ

, where c
µ

is defined as:

c
µ

:= inf
A2F

max
u2A

F
µ

(u).

(F .2) If h 2C([0,1]⇥E,E) is an odd homotopy such that

• h(0, ·) = I, where I : E ! E is the identity map on E

• h(t, ·) is a homeomorphism

• h(t,x) = x for all x 2 K,

then h(1,A) 2 F for all A 2 F .

Then, it holds that the mapping µ 7! c
µ

is non-increasing and left-continuous, and
therefore is almost everywhere differentiable.

Proof. See the proof of Lemma 2.2 in [7].

With this lemma in place, we can now recall the second vital result from [7]. The
following proposition will be used to obtain the boundedness of our Palais-Smale se-
quences.

Proposition 5.1 ([7]). Under the hypotheses of the previous lemma, we denote the set
of values of µ such that c

µ

is differentiable by J ⇢ (0,+•). Then, for any µ 2 J ,
there exists a bounded Palais-Smale sequence for F

µ

at the level c
µ

. That is, there
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exists a bounded sequence (un)n2N ⇢ E such that F
µ

(un)! c
µ

and F0
µ

(un)! 0.

Proof. See the proof of Proposition 2.3 in [7].

The final result we will need is a technical lemma, which we now state and prove.

Lemma 5.4. Assume a, b, c, d are positive constants, p > 2 and k̄ 2 (2� p, 1
2 ][{1}[

{3
2}. Define f : R+

0 ! R as

f (t) = at3 +bt + ct3�2k̄ �dt2p�1, t � 0.

Then, f has a unique critical point corresponding to its maximum.

Proof. We will go through the details for the case k̄ 2 (0, 1
2). We begin by computing

some derivatives of f . Namely,

f 0(t) = 3at2 +b+(3�2k̄)ct2�2k̄ � (2p�1)dt2p�2,

f 00(t) = 6at +(2�2k̄)(3�2k̄)ct1�2k̄ � (2p�1)(2p�2)dt2p�3,

f 000(t) = 6a+(1�2k̄)(2�2k̄)(3�2k̄)ct�2k̄ � (2p�1)(2p�2)(2p�3)dt2p�4,

f (4)(t) = (�2k̄)(1�2k̄)(2�2k̄)(3�2k̄)ct�2k̄�1

� (2p�1)(2p�2)(2p�3)(2p�4)dt2p�5.

Now, since k̄ 2 (0, 1
2) and p > 2, it holds that f 000(t)!+• as t ! 0 and f 000(t)!�•

as t !+•. Moreover, it holds that f (4)(t) = 0 if and only if

t2k̄+2p�4 =
(�2k̄)(1�2k̄)(2�2k̄)(3�2k̄)c

(2p�1)(2p�2)(2p�3)(2p�4)d
.

Thus, since
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(�2k̄)(1�2k̄)(2�2k̄)(3�2k̄)c
(2p�1)(2p�2)(2p�3)(2p�4)d

< 0,

it follows that f 000 has no positive critical points. Taken together, we have shown f 000 is
strictly decreasing and so there exists t3 > 0 such that f 000(t3) = 0 and f 000(t)(t3�t)> 0
for t 6= t3. We now look at f 00 and notice that since f 00(0) = 0 and f 00 is increasing
for t < t3, it follows that f 00 takes positive values at least for t 2 (0, t3). Moreover,
f 00(t) ! �• as t ! +• and f 00 is decreasing for t > t3, and so there exists t2 > t3
such that f 00(t2) = 0 and f 00(t)(t2 � t) > 0 for t 6= t2. Then, since f 0(0) = b > 0 and
f 0(t)!�• as t !+•, we can repeat these arguments to show that there exists t1 > t2
such that f 0(t1) = 0, namely t1 is a critical point of f , and f 0(t)(t1 � t)> 0 for t 6= t1,
namely t1 is unique. Clearly, t1 corresponds to a maximum of f since f (0) = 0 and
f (t)!�• as t !+•. The cases k̄ 2 (2� p, 0), k̄ = 0, k̄ = 1

2 , k̄ = 1, and k̄ = 3
2 follow

by similar analysis on the derivatives of f , with slight modifications.

5.2.2 Proof of Theorem 5.3

We are now in position to prove Theorem 5.3.

Proof of Theorem 5.3. Since r is coercive, we will work in the usual Banach space
E(R3). We aim to apply Proposition 5.1 in the case of the perturbed functional I

µ

:
E(R3)! R defined by

I
µ

(u) :=
1
2

ˆ
R3
(|—u|2 +u2)+

1
4

ˆ
R3

rfuu2 � µ

p+1

ˆ
R3

|u|p+1, µ 2


1
2
,1
�
.

We must verify (F .1) and (F .2). For any u 2 E(R3) and for any t > 0, we set
ut(x) := u(tx). Evaluating I

µ

at t2ut and using the assumption that r is homogeneous
of degree k̄, we find that

I
µ

(t2ut) =
t3

2

ˆ
R3

|—u|2 + t
2

ˆ
R3

u2 +
t3

4

ˆ
R3

ˆ
R3

u2(y)r( y
t )u

2(x)r( x
t )

4p|x� y|

� µt2p�1

p+1

ˆ
R3

|u|p+1
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=
t3

2

ˆ
R3

|—u|2 + t
2

ˆ
R3

u2 +
t3�2k̄

4

ˆ
R3

rfuu2 � µt2p�1

p+1

ˆ
R3

|u|p+1.

We now set

a :=
1
2

ˆ
R3

|—u|2, b :=
1
2

ˆ
R3

u2, c :=
1
4

ˆ
R3

rfuu2, d :=
µ

p+1

ˆ
R3

|u|p+1,

and, noting that a, b, c, d > 0, consider the polynomial

f (t) = at3 +bt + ct3�2k̄ �dt2p�1, t � 0.

By Lemma 5.4, it follows that for each u 2 ∂B1, there exists a unique t = t(u) > 0
such that I

µ

with µ = 1
2 satisfies

I 1
2
(t(u)2ut(u)) = 0

I 1
2
(t2ut)> 0, 8t < t(u)

I 1
2
(t2ut)< 0, 8t > t(u). (5.2)

We can now follow Subsection 2.2 in [7]. We include the details for the sake of
completeness. We begin by considering a nested sequence E1 ⇢ E2 ⇢ · · · of finite
dimensional subspaces of E of increasing dimension. For any k 2 N, we set

Vk := {v 2 E : v = t2ut , t � 0, u 2 ∂B1 \Ek}.

Then, the function h : Ek !Vk given by

h(e) = t2ut , with t = ||e||, u =
e

||e|| ,

defines an odd homeomorphism from Ek onto Vk. We notice that it holds that
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Tk := sup
u2∂B1\Ek

t(u)<+•,

since ∂B1 \Ek is compact. So, the set

Ak := {v 2 E : v = t2ut , t 2 [0,Tk], u 2 ∂B1 \Ek}

is compact and symmetric. We now define

H := {g : E ! E : g is an odd homeomorphism and g(v) = v for all v 2 ∂Ak},

and

Gk := {g(Ak) : g 2 H}.

We are finally in position to verify (F .1) and (F .2). We take Gk as the class F and
K = ∂Ak and define the min-max levels

ck,µ := inf
A2Gk

max
u2A

I
µ

(u).

Then, since Tk � t(u) for all u 2 ∂B1 \Ek by definition, it follows from (5.2) that

I
µ

(v) I 1
2
(v) 0, 8v 2 ∂Ak, 8µ 2


1
2
,1
�
.

Moreover, since Gk ⇢ Gk+1 for all k 2 N, it holds that ck,µ � ck�1,µ � · · ·� c1,µ > 0.
Taken together, we have shown that

sup
v2∂Ak

I
µ

(v) 0 < ck,µ ,

and thus (F .1) is verified. Moreover, for any h given by (F .2) and any g 2 H, it
holds that g̃ = h(1,g) belongs to H, and so (F .2) is satisfied.

Since (F .1) and (F .2) are satisfied, Lemma 5.3 applies. Thus, for any k 2 N,
we denote by Mk the set of values µ 2

⇥1
2 ,1
⇤

such that the function µ 7! ck,µ is
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differentiable. We then let

M :=
\

k2N
Mk.

We note that since


1
2
,1
�
\M =

[

k2N

✓
1
2
,1
�
\Mk

◆

and [1
2 ,1]\Mk has zero Lebesgue measure for each k by Lemma 5.3, then it follows

that
⇥1

2 ,1
⇤
\M has zero Lebesgue measure. We can now apply Proposition 5.1 with

F
µ

= I
µ

. Namely, for each fixed k 2 N and µ 2 M we obtain that there exists a
bounded sequence (un)n2N ⇢ E such that I

µ

(un)! ck,µ and I 0
µ

(un)! 0. Arguing
exactly as in the proof of Claim 1 of Theorem 4.2, we can show that the values ck,µ

are critical levels of I
µ

for each k 2N and µ 2 M . We then take k fixed, (µn)n2N an
increasing sequence in M such that µn ! 1, and (un)n2N ⇢ E such that I

µn(un) =

ck,µn and I 0
µn(un) = 0. We note here that since r is homogeneous of degree k̄ by

assumption, it follows that k̄r(x) = (x,—r). So, arguing as in Claim 2 of Theorem
4.2, we can show that for each fixed k there exists u2E such that, up to a subsequence,
un ! u in E, I (u) = I1(u) = ck,1, and I 0(u) = I 0

1(u) = 0. Since

I (u)� 1
2
||u||2E � 1

p+1

ˆ
R3

|u|p+1, 8u 2 E,

and E is compactly embedded in Lp+1(R3) by Lemma 4.5, we can then argue as in
the proof of Lemma 2.7 of [7] to show that I (u) = ck,1 ! +• as k ! +•. This
concludes the proof.

We suspect that the constrained minimisation approach in [61] may help refining
the approach we used in the above proof inspired by [7], in order to relax the rela-
tion between r and —r that we imposed in Theorem 5.3. This, as well as obtaining
multiplicity results in the case of a non-coercive r , is ongoing work.
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6 Necessary Conditions for Point Concentration

In this chapter, we focus on the singularly perturbed system

(
�e

2Du+lu+r(x)fu = |u|p�1u, x 2 R3

�Df = r(x)u2, x 2 R3,
(6.1)

with r : R3 ! R a nonnegative measurable function, l 2 R, and l > 0, taking ad-
vantage of a shrinking parameter e ⇠ h̄ ⌧ 1 which behaves like the Planck constant
in the so-called ‘semiclassical limit’. In what is to follow, we are interested in the
concentration behaviour of solutions, by which we mean the following.

Definition 9. Let (u
e

,fu
e

) be a sequence of positive solutions to (6.1). We say that u
e

concentrate at a point x0 for sufficiently small e > 0 if for all d > 0 there exists e0 > 0
and R > 0 such that u

e

(x) d for |x� x0|� eR, e < e0.

We will prove a necessary condition for the concentration of positive solutions in
the semiclassical limit, e ! 0+, in both E(R3) and H1(R3) using classical blow-up
analysis, uniform decay estimates, and Pohozaev type identities, in the spirit of [63].
The results in this chapter are from [50].

6.1 Theorem 6.1

We first prove a necessary condition for the concentration of positive solutions in
E(R3).

Theorem 6.1. [Necessary conditions in E] Suppose that r 2C1(R3) is nonnegative
and |—r(x)|= O(|x|aeb|x|) as |x|!+• for some a > 0 and some b 2R. Let p 2 [2,5)
and let (u

e

,fu
e

) 2 E(R3)⇥D1,2(R3) be a sequence of positive solutions of (6.1). As-
sume that u

e

concentrate at a point x0 for sufficiently small e . Then, —r(x0) = 0.

Remark 6.1. Since we deal with concentrating solutions, we use the mean value the-
orem to control the growth of r with the assumption on —r in order to apply the
dominated convergence theorem in the proof of the theorem (see Claim 5). We note
that this assumption is not needed in Theorem 6.2 as we work with a bounded r and
therefore the application of the dominated convergence theorem is more immediate.
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Remark 6.2. When b > 0 the proof of Theorem 6.1 Claim 5 is sensitive to e being
smaller than the ratio

p
l

b . This ratio arises as the proof consists of balancing the
aforementioned growth of r and —r with the a priori exponential decay of the con-
centrating solutions in order to apply the dominated convergence theorem.

Proof of Theorem 6.1. We will break the proof into five claims.

Claim 1. sup
e>0 ||ue

||L•(R3) <+•

We will argue by contradiction. Assume, to the contrary, that there exists a se-
quence (em)m2N such that em ! 0 as m !+•, um := u

em solves (6.1) for each m, and
it holds

||um||L•(R3) !+• as m !+•.

Let
am := maxum, (am !+• as m !+•),

bm := a

�(p�1)/2
m , (bm ! 0 as m !+•).

Define
vm(x) :=

1
am

um(xm + embmx),

where xm is a global maximum point of um. We note that such a point exists be-
cause, by regularity theory, um are solutions in the classical sense and, moreover, by
the concentration assumption, um decays to zero uniformly with respect to m. Now,
multiplying (6.1) by b

2
m

am
, we obtain

�e

2
mb

2
m

am
Dum(xm + embmx)+

b

2
m

am
lum(xm + embmx)

+b

2
mr(xm + embmx)fum(xm + embmx)

1
am

um(xm + embmx)

=
b

2
m

am
up

m(xm + embmx).

Noting that Dvm(x) = e

2
mb

2
mDum(xm+embmx)/am and b

2
m/am = 1/a

p
m, we see that vm
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satisfies

�Dvm +b

2
mlvm +b

2
mr(xm + embmx)fum(xm + embmx)vm = vp

m.

We further note that

fum(xm + embmx) =
ˆ
R3

u2
m(y)r(y)

4p|xm + embmx� y| dy

=

ˆ
R3

u2
m(xm + embmy)r(xm + embmy)
4p|xm + embmx� xm � embmy| · e3

mb

3
m dy

= e

2
mb

2
ma

2
m

ˆ
R3

v2
m(y)r(xm + embmy)

4p|x� y| dy,

where we have used the change of variables y ! xm + embmy in going from the first
to second line. Therefore, vm satisfies

�Dvm +b

2
mlvm

+b

2
mr(xm + embmx)

✓
e

2
mb

2
ma

2
m

ˆ
R3

v2
m(y)r(xm + embmy)

4p|x� y| dy
◆

vm = vp
m.

Namely, since b

4
ma

2
m = a

�2(p�1)
m a

2
m = a

4�2p
m (by the definition of b ), we have that vm

satisfies

�Dvm =�e

2
ma

4�2p
m r(xm + embmx)

✓ˆ
R3

v2
m(y)r(xm + embmy)

4p|x� y| dy
◆

vm

�b

2
mlvm + vp

m.

(6.2)

It is worth noting here that since am !+• as m !+•, then a

4�2p
m ! 0 as m !+•

for p > 2 and a

4�2p
m ! 1 as m !+• for p = 2 1.

We now fix some compact set K. We notice, by construction, ||vm||L•(R3) = 1 for
all m, and, by assumption, r is continuous. We also highlight that due to the con-

1This is the only point in which we use the restriction p � 2.
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centration assumption, we have that the sequence of global maximum points xm is
uniformly bounded with respect to m. So, since v2

mr is uniformly bounded in L•(K),
then
´
R3

v2
m(y)r(xm+embmy)

4p|x�y| dy is uniformly bounded in C0,a(K) and consequently, is uni-
formly bounded in L•(K) (see e.g. p. 260 in [42]; p. 11 in [1]). Thus, the entire
right-hand side of (6.2) is uniformly bounded in L•(K) which implies vm is uniformly
bounded in C1,a(K) (see e.g. [35]). It then follows that the right-hand side of (6.2)
is uniformly bounded in C0,a(K), and therefore vm is uniformly bounded in C2,a(K)

by Schauder estimates (see e.g. [35]). Namely, for x,y 2 K, x 6= y, and for every m, it
holds that

|∂ b vm(x)�∂

b vm(y)|CK|x� y|a , |b | 2,

for some constant CK which depends on K but does not depend on m. It follows that
uniformly on compact sets and for some v0 2C2(R3),

∂

b vm ! ∂

b v0 as m !+•, |b | 2.

Therefore, taking the limit m !+• in (6.2) we get

(
�Dv0 = vp

0 , x 2 R3

v0(0) = 1,

where the second equality has come from the fact that vm(0)= um(xm)/am =am/am =

1 for all m. On the other hand from the equation, by a celebrated result of Gidas-
Spruck [34] we infer v0 ⌘ 0. So, we have reached a contradiction, and thus

sup
e>0

||u
e

||L•(R3) <+•.

Claim 2. Assume there exists a sequence (ek)k2N such that ek ! 0 as k ! +• and
uk := u

ek solves (6.1) for each k. Let wk(x) := uk(x0+ekx), where x0 is a concentration
point for uk. Then,

(i) up to a subsequence, wk ! some w0 in C2
loc(R3),

(ii) w0 > 0.
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We begin by proving (i). We first notice that wk solves

(
�Dwk +lwk +r(x0 + ekx)fuk(x0 + ekx)wk = wp

k , x 2 R3

�Dfuk(x0 + ekx) = r(x0 + ekx)w2
k , x 2 R3.

(6.3)

We note that

fuk(x0 + ekx) =
ˆ
R3

u2
k(y)r(y)

4p|x0 + ekx� y| dy

=

ˆ
R3

u2
k(x0 + eky)r(x0 + eky)

4p|x0 + ekx� x0 � eky| · e
3
k dy

= e

2
k

ˆ
R3

w2
k(y)r(x0 + eky)

4p|x� y| dy,

where we have used the change of variables y ! x0 + eky in going from the first to
second line. So, wk solves

�Dwk =�lwk �r(x0 + ekx)
✓

e

2
k

ˆ
R3

w2
k(y)r(x0 + eky)

4p|x� y| dy
◆

wk +wp
k . (6.4)

We now once again fix some compact set K. We notice that, by Claim 1,
supk>0 ||wk||L•(R3) <+•, and, by assumption, r is continuous. So, since w2

kr is uni-

formly bounded in L•(K), then
´
R3

w2
k(y)r(x0+eky)

4p|x�y| dy is uniformly bounded in C0,a(K)

and thus, is uniformly bounded in L•(K) (see e.g. p. 260 in [42]; p. 11 in [1]). There-
fore, the right-hand side of (6.4) is uniformly bounded in L•(K) which implies wk is
uniformly bounded in C1,a(K) (see e.g. [35]). It follows that the right-hand side of
(6.4) is uniformly bounded in C0,a(K), and thus, by Schauder estimates, we have that
wk is uniformly bounded in C2,a(K) (see e.g. [35]). Since this holds for every compact
set contained in R3, arguing the same way as in Claim 1, it follows that uniformly on
compact sets and for some w0 2C2(R3),

∂

b wk ! ∂

b w0 as k !+•, |b | 2.
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Therefore, taking the limit k !+• in (6.4), we have

�Dw0 +lw0 = wp
0 , x 2 R3. (6.5)

We now aim to prove (ii). Let xk be a maximum point of uk. Since uk is a solution
to (6.1), we have that

�e

2
k Duk(xk)+luk(xk)+r(xk)fuxk

(xk)uk(xk) = up
k (xk).

Noting that Duk(xk) 0 since xk is a maximum point of uk, we see that

[l +r(xk)fuxk
(xk)]uk(xk) up

k (xk),

and so

uk(xk)� [l +r(xk)fuxk
(xk)]

1
p�1 � l

1
p�1 > 0. (6.6)

Therefore, the local maximum values of uk, and hence of wk, are greater than or equal
to l

1
p�1 , and since wk ! w0 in C2

loc(R3), then w0 6⌘ 0. In particular, this and (6.5),
imply that w0 > 0 by the strong maximum principle.

Claim 3. For large k, it holds that
´
R3

´
R3

w2
k(y)r(x0+eky)w2

k(x)—r(x0+ekx)
4p|x�y| dy dx = 0.

We first recall that wk, as defined in Claim 2, solves (6.3). Multiplying the first
equation in (6.3) by —wk and integrating on BR(0), we get

0 =

ˆ
BR

Dwk—wk dx�
ˆ

BR

l

—w2
k

2
dx� 1

2

ˆ
BR

—(r(x0 + ekx)fuk(x0 + ekx)w2
k)dx

+
ek

2

ˆ
BR

r(x0 + ekx)—fuk(x0 + ekx)w2
k dx

+
ek

2

ˆ
BR

—r(x0 + ekx)fuk(x0 + ekx)w2
k dx+

ˆ
BR

—wp+1
k

p+1
dx.

By using the divergence theorem and rearranging terms, this becomes
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ek

2

ˆ
BR

—r(x0 + ekx)fuk(x0 + ekx)w2
k dx

=

ˆ
∂BR

 
l

w2
k

2
n �

wp+1
k

p+1
n +

1
2

r(x0 + ekx)fuk(x0 + ekx)w2
kn

!
ds (6.7)

� ek

2

ˆ
BR

r(x0 + ekx)—fuk(x0 + ekx)w2
k dx�

ˆ
BR

Dwk—wk dx,

where n is the exterior normal field on BR. We now focus on the second integral on
the right-hand side of this equality. We begin by noting that if we multiply the second
equation in (6.3) by —fuk(x0 + ekx) and integrate on BR(0), we get

�
ˆ

BR

r(x0 + ekx)—fuk(x0 + ekx)w2
k dx

=

ˆ
BR

Dfuk(x0 + ekx)—fuk(x0 + ekx)dx.
(6.8)

Moreover, using the divergence theorem, we see that

ek

2

ˆ
BR

Dfuk(x0 + ekx)
∂

∂xi
fuk(x0 + ekx)dx

=
1
2

ˆ
BR

div
✓

—fuk(x0 + ekx)
∂

∂xi
fuk(x0 + ekx)

◆
dx

� 1
2

ˆ
BR

—fuk(x0 + ekx)
∂

∂xi
(—fuk(x0 + ekx))dx

=
1
2

ˆ
∂BR

✓
∂fuk(x0 + ekx)

∂n

∂

∂xi
fuk(x0 + ekx)� 1

2
|—fuk(x0 + ekx)|2ni

◆
ds . (6.9)

Therefore, combining (6.8) and (6.9), we obtain

�ek

2

ˆ
BR

r(x0 + ekx)—fuk(x0 + ekx)w2
k dx (6.10)

=
1
2

ˆ
∂BR

✓
—fuk(x0 + ekx)

∂fuk(x0 + ekx)
∂n

� 1
2
|—fuk(x0 + ekx)|2n

◆
ds .
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Turning our attention to the third integral on the right-hand side of (6.7) and by arguing
in a similar way as above, we can show that

ˆ
BR

Dwk—wk dx =
ˆ

∂BR

✓
—wk

∂wk

∂n

� 1
2
|—wk|2n

◆
ds . (6.11)

Therefore, using (6.10) and (6.11), we see that (6.7) becomes

ek

2

ˆ
BR

—r(x0 + ekx)fuk(x0 + ekx)w2
k dx

=

ˆ
∂BR

✓
l

w2
k

2
n �

wp+1
k

p+1
n +

1
2

r(x0 + ekx)fuk(x0 + ekx)w2
kn (6.12)

+
1
2

—fuk(x0 + ekx)
∂fuk(x0 + ekx)

∂n

� 1
4
|—fuk(x0 + ekx)|2n

�—wk
∂wk

∂n

+
1
2
|—wk|2n

◆
ds .

Call the integral on the right-hand side of this equation IR. Then,

|IR|
ˆ

∂BR

✓
l

w2
k

2
+

wp+1
k

p+1
+

1
2

r(x0 + ekx)fuk(x0 + ekx)w2
k

+
1
2
|—fuk(x0 + ekx)|2 + 1

4
|—fuk(x0 + ekx)|2 + |—wk|2 +

1
2
|—wk|2

◆
ds

 3
2

ˆ
∂BR

✓
lw2

k +wp+1
k +r(x0 + ekx)fuk(x0 + ekx)w2

k

+ |—fuk(x0 + ekx)|2 + |—wk|2
◆

ds .

So,

ˆ +•

0
|IR|

ˆ +•

0

3
2

ˆ
∂BR

✓
lw2

k +wp+1
k +r(x0 + ekx)fuk(x0 + ekx)w2

k

+ |—fuk(x0 + ekx)|2 + |—wk|2
◆

ds dR

=
3
2

ˆ
R3

✓
lw2

k +wp+1
k +r(x0 + ekx)fuk(x0 + ekx)w2

k

102



+ |—fuk(x0 + ekx)|2 + |—wk|2
◆

dx

<+• for each k,

since wk is a solution to (6.3). Thus, for each fixed k, there exists a sequence Rm !+•
as m !+• such that IRm ! 0 as m !+•. Letting R = Rm !+• in (6.12) yields

0 =
ek

2

ˆ
R3

—r(x0 + ekx)fuk(x0 + ekx)w2
k dx

=
ek

2

ˆ
R3

ˆ
R3

e

2
k w2

k(y)r(x0 + eky)w2
k(x)—r(x0 + ekx)

4p|x� y| dy dx.

Since this holds for each fixed k, we have

ˆ
R3

ˆ
R3

w2
k(y)r(x0 + eky)w2

k(x)—r(x0 + ekx)
4p|x� y| dy dx = 0. (6.13)

Claim 4. There exists R0 > 0 and C > 0 such that, for k sufficiently large, wk(x) 
C|x|�1e�

p
l

2 |x| for all |x|� R0.

We first note that, by the concentration assumption, it holds that wk ! 0 as |x|!
+•. Namely, there exists R0 > 0, K > 0 such that

wk 
✓

l

2

◆ 1
p�1

, 8 |x|� R0, 8k � K. (6.14)

It follows that

wp
k  l

2
wk, 8 |x|� R0, 8k � K,

and therefore, since wk solves (6.3), we have, for all |x|� R0 and for all k � K,

�Dwk +lwk �Dwk +(l +r(x0 + ekx)fuk(x0 + ekx))wk = wp
k  l

2
wk. (6.15)
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Namely, it holds that

�Dwk �l

2
wk, 8 |x|� R0, 8k � K. (6.16)

Now, define

w(x) :=C|x|�1e�
p

l

2 |x|, where C :=
✓

l

2

◆ 1
p�1

R0 e
p

l

2 R0 ,

Then, using this definition and (6.14), we see that

wk(x)
✓

l

2

◆ 1
p�1

= w(x), for |x|= R0, 8k � K. (6.17)

It can also be checked that,

Dw  l

4
w, for |x| 6= 0. (6.18)

We then define w̄k(x) := wk(x)�w(x). By (6.17) it holds that

w̄k(x) 0, for |x|= R0, 8k � K. (6.19)

Moreover, using (6.16) and (6.18), it holds that

�Dw̄k +
l

2
w̄k  0, 8 |x|� R0, 8k � K. (6.20)

and

lim
|x|!+•

w̄k(x) = 0. (6.21)

Thus, by the maximum principle on unbounded domains (see e.g. [14]), it follows
that,
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wk(x)C|x|�1e�
p

l

2 |x|, 8 |x|� R0,

for k sufficiently large.

Claim 5. r(x0)—r(x0) = 0.

We first pick a uniform large constant C > 0 such that for all x 2 R3 and large k it
holds that

wk(x) w̃(x) :=C(1+ |x|)�1e�
p

l

2 |x|. (6.22)

We now highlight the fact that due to the concentration assumption, from now on, we
can take k large enough and a suitable e1 > 0 such that

ek < e1 < min

(
e0,

p
l

b

)
, if b > 0,

and simply

ek < e0, if b  0,

where e0 > 0 is as in Definition 9. We assume that b > 0 as the case b  0 is easier
and requires only obvious modifications. By the growth assumption on r , there exists
a uniform constant C1 > 0 such that for all x 2 R3,

|—r(x0 + ekx)|C1(1+ |x|)aebe1|x| =: g(x).

By the mean value theorem we have

|r(x0 + eky)| |eky||—r(x0 +q(eky))|+ |r(x0)|,

for some q 2 [0,1]. Combining this with the estimate on |—r(x0+q(eky))|, it follows
that for some uniform constant C2 > 0 and for all y 2 R3,
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|r(x0 + eky)|C2|y|(1+ |y|)aebe1|y|+ |r(x0)|=: f (y).

Therefore, putting everything together, we have that, for k sufficiently large,

����
w2

k(y)r(x0 + eky)w2
k(x)—r(x0 + ekx)

(x� y)

����
w̃2(y) f (y)w̃2(x)g(x)

|x� y| . (6.23)

The right hand side is a uniform L1(R6) bound. In fact, using for instance the Hardy-
Littlewood-Sobolev inequality, we have

����
ˆ
R3

ˆ
R3

w̃2(y) f (y)w̃2(x)g(x)
|x� y| dy dx

����. ||w̃2 f ||L6/5(R3)||w̃
2g||L6/5(R3)

<+•, (6.24)

as the choice of e1 implies that w̃2 f , w̃2g 2 L6/5(R3). We now let k ! +• in (6.13),
and note that by (6.23), (6.24), Claim 2, and the assumption that r 2C1(R3), we can
use the dominated convergence theorem to obtain

ˆ
R3

ˆ
R3

w2
0(y)r(x0)w2

0(x)—r(x0)

4p|x� y| dy dx = 0.

Then, since w0 > 0 by Claim 2, we have that

r(x0)—r(x0) = 0.

Since r is nonnegative, any zero is a global minimum, and so we have —r(x0) =

0.

6.2 Theorem 6.2

We follow up Theorem 6.1 with a similar result on necessary conditions for concen-
tration of solutions in H1(R3).
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Theorem 6.2. [Necessary conditions in H1] Suppose that r 2 C1(R3) is nonnega-
tive and that r,—r are bounded. Let p 2 [2,5) and let (u

e

,fu
e

) 2 H1(R3)⇥D1,2(R3)

be a sequence of positive solutions of (6.1). Assume that u
e

concentrate at a point x0

for sufficiently small e . Then, —r(x0) = 0.

Remark 6.3. It is possible to relax the global boundedness assumption on r and/or
on —r when working in H1(R3), if we make a growth assumption on —r . Namely, if
we work in H1(R3) and have adequate local integrability on r to ensure

ˆ
R3

ˆ
R3

u2(x)r(x)u2(y)r(y)
|x� y| dx dy <+•,

typically identified using the Hardy-Littlewood-Sobolev inequality, the statement of
the theorem and the proof is identical to that of Theorem 6.1.

Proof of Theorem 6.2. The proof closely follows that of Theorem 6.1. We assert that
the same five claims as were made in the proof of Theorem 6.1 hold, and will only
highlight the differences in the proofs of these claims. The proof of Claim 1 and Claim
2 follow similarly as in Theorem 6.1, however since r is both continuous and globally
bounded in this case, we do not need to fix a specific compact set K in the regularity
arguments, but instead it follows directly that vm is uniformly bounded in C2,a

loc (R3)

and wk is uniformly bounded in C2,a
loc (R3). The proof of Claim 3 and Claim 4 follow

exactly as in Theorem 6.1. To prove Claim 5, we define the exponentially decaying
function w̃ as in (6.22) and since r and —r are bounded, we have, for k sufficiently
large,

����
w2

k(y)r(x0 + eky)w2
k(x)—r(x0 + ekx)

(x� y)

����.
w̃2(y)w̃2(x)

|x� y| 2 L1(R6).

This is enough to conclude the proof as in Theorem 6.1 using the dominated conver-
gence theorem.

Remark 6.4. In the proof of both Theorem 6.1 and Theorem 6.2, one actually finds
the condition r(x0)—r(x0) = 0. We believe that this may be a necessary condition in
the case r is allowed to change sign on a small region.
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7 Sufficient Conditions for Point Concentration

In this chapter, we once again focus on the singularly perturbed nonlinear Schrödinger-
Poisson problem

(
�e

2Du+u+r(x)fu = |u|p�1u, x 2 R3

�Df = r(x)u2, x 2 R3,
(7.1)

with r : R3 ! R a nonnegative measurable function and e ⌧ 1. As a natural next
step, in the spirit of del Pino and Felmer [30], we are interested in finding sufficient
conditions on r to guarantee concentration of positive solutions in the semiclassical
limit e ! 0+. Based on related literature on the nonlinear Schrödinger equation, as
well as the necessary conditions that we obtained in the previous chapter, we formu-
late the following conjecture.

Conjecture 7.1. Suppose r 2C(R3) is nonnegative and p 2 (2,5). Assume that L ⇢
R3 is a bounded open set satisfying

r(x0) := inf
x2L

r(x)< inf
x2∂L

r(x).

Then, there exists a family of solutions (u
e

,fu
e

) of (7.1), whose components are posi-
tive functions, such that u

e

concentrate at the point x0 for sufficiently small e .

We will discuss the method that we will attempt to adapt in order to prove this con-
jecture, as well as the preliminary results that we have obtained thus far. The results
in this chapter are from [51].

7.1 Model problem: nonlinear Schrödinger equation

Before going into more details about the partial results that we have obtained in the
case of the nonlinear Schrödinger-Poisson system (7.1), we will first look at suffi-
cient conditions for concentration of solutions to the nonlinear Schrödinger equation
with potentials. The seminal paper on this subject is credited to Floer and Weinstein
[33]. In [3] and [30], sufficient conditions were found on a ‘nice’ potential V , using
perturbative and penalisation approaches, respectively. More general and/or differ-
ent assumptions on the potential V have also been considered, see for example [4],
[8], and [20]. We will restrict our discussion to the penalisation method of del Pino
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and Felmer [30], as our Banach space setting will be most suited to this method. Al-
though the results that we cover in this section are well-established, we include them
for the reader’s convenience in order to illustrate the method that we aim to adapt in
the case of the nonlinear Schrödinger-Poisson system (7.1), as well as to be able to
later highlight the technical obstacles in doing so. Thus, in this section we focus on
the problem

(
�e

2Du+V (x)u = |u|p�1u, x 2 R3

u > 0, x 2 R3.
(7.2)

where e > 0 is a small parameter, p 2 (1,5) and V : R3 ! R is a positive potential
bounded away from zero, namely infx2R3 V (x) > 0. The main concentration result
that we will discuss is as follows.

Theorem 7.1 ([30]). Assume that V is a positive locally Hölder continuous potential
which is bounded away from zero and that L ⇢ R3 is a bounded open set satisfying

V0 := inf
x2L

V (x)< inf
x2∂L

V (x).

Then, there exist e0 > 0 and a family of solutions {u
e

2 H1(R3) : 0 < e < e0} of
(7.2) with the property that each u

e

possesses a single maximum point x
e

such that
V (x

e

)!V0 as e ! 0. Moreover,

lim
e!0

R!+•
||u

e

||L•(L\B(x
e

,eR)) = 0,

and the limiting profile is given by

u
e

(x) = v
✓

x� x
e

e

◆
+w

e

(x),

where v is the unique positive radial solution of

�Dv+V0v = |v|p�1v, x 2 R3,

and w
e

! 0 in C2
loc(R3) and in L•(R3) as e ! 0.
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While we will not go through a precise proof of this result, we will discuss the crucial
steps that are required to do so in the forthcoming sections.

Penalisation Scheme in a Nutshell
The main idea of the approach of del Pino and Felmer [30] is to replace the nonlin-
earity outside of some compact set by an appropriate penalised nonlinearity (Section
7.1.1). Doing so makes the penalised problem compact, whereas the original problem
is, in general, not. Due to this compactness, the existence of mountain pass solutions
to the penalised problem can be deduced. The limit problem is then introduced
(Section 7.1.2), which will later be used to obtain asymptotic estimates and ultimately
to give the limiting profile of solutions to the original problem. The aim is to prove
that the solutions of the penalised problem are small outside of the compact set so
that they solve the original problem. To do so, estimates of the mountain pass level
and asymptotic analyses of solutions to the penalised problem are performed (Section
7.1.3). Barrier functions may be used in order to obtain sharper estimates of decay
of solutions to the penalised problem. Finally, the maximum/comparison principle is
used to prove that the solutions of the penalised problem solve the original problem,
and the asymptotic estimates are used to prove the concentration behaviour of such
solutions (Section 7.1.4).

7.1.1 Penalised problem

As alluded to above, the first step is to introduce the penalised nonlinearity g : R3 ⇥
R+ ! R+ defined by

g(x,s) := cL(x)sp +(1�cL(x))min{kV (x)s,sp},

where k 2 (0,1) and L ⇢ R3 is a bounded open set satisfying

V0 := inf
x2L

V (x)< inf
x2∂L

V (x).

This enables the penalised problem

�e

2Du+V (x)u = g(x,u), x 2 R3, (7.3)
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to be defined. Weak solutions of this problem are critical points of the functional
J

e

: H1
V ! R3 given by

J
e

(u) :=
1
2

ˆ
R3

�
e

2|—u|2 +V (x)|u|2
�
�
ˆ
R3

G(x,u),

where

G(x,u) =
ˆ u

0
g(x,s)ds .

Here, the Hilbert space H1
V is defined as

H1
V :=

⇢
u 2 H1(R3) :

ˆ
R3

V (x)|u|2 <+•
�
,

endowed with norm

||u||
e

=

✓ˆ
R3

�
e

2|—u|2 +V (x)|u|2
�◆ 1

2
.

The advantage of introducing the penalisation is that the penalised problem (7.3) is
compact, and so it is possible to show that J

e

satisfies both the Mountain Pass Ge-
ometry and Palais-Smale condition. Therefore, by the Mountain Pass Theorem, the
following existence result holds for the penalised problem.

Lemma 7.1. For every e > 0, the functional J
e

has a critical point u
e

2 H1(R3) at
the min-max level

c
e

:= inf
g2G

e

max
t2[0,1]

J
e

(g(t)),

where

G
e

:= {g 2C([0,1],H1
V ) : g(0) = 0, J

e

(g(1))< 0}.

In particular, u
e

is a weak positive solution of (7.3).
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7.1.2 Limit problem

It is then important to introduce the limit problem associated with (7.2). Namely, for
a > 0, the limit problem is

(
�Du+au = |u|p�1u, x 2 R3

u > 0, x 2 R3.
(7.4)

Weak solutions are critical points of the functional Ia : H1(R3)! R defined by

Ia(u) :=
1
2

ˆ
R3

�
|—u|2 +au2�� 1

p+1

ˆ
R3

up+1.

Any nontrivial critical point u 2 H1(R3) of Ia belongs to the Nehari manifold

Na := {u 2 H1(R3) : u 6⌘ 0 and I 0
a(u)(u) = 0}.

A function u 2 H1(R3) is a least-energy solution of (7.4) if

Ia(u) = inf
v2Na

Ia(v).

The ground-energy function E : R+ ! R+ is defined by

E (a) := inf
v2Na

Ia(v),

and the concentration function C : R3 ! (0,+•] by

C (x ) = E (V (x )).

The following lemma gives the existence of a solution to the limit problem and its
relation with the ground-energy function.

Lemma 7.2. For every a > 0, E (a) is a critical value of Ia. If u 2 Na and E (a) =
Ia(u), then u 2C1(R3) and up to translation, u is a radial function with a unique and
nondegenerate maximum at the origin.
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7.1.3 Asymptotics of solutions to penalised problem

The next goal is to study the asymptotic behaviour of the solution u
e

of (7.3) as e ! 0.
First, an upper estimate of the critical level c

e

is derived by using a cut-off function
supported in L, so that the penalisation agrees with up. The result is as follows.

Lemma 7.3. It holds that
limsup

e!0
e

�3c
e

 inf
L

C .

This lemma, as well as properties of the penalisation, allow the following estimate
on the norm of the solutions to be proved.

Corollary 7.1. There exists C > 0 such that, for every e small enough

||u
e

||
e

Ce

3
2 .

Since this norm is of order e

3
2 , it is natural to rescale u

e

as u
e

(x
e

+ e·) around a
well-chosen family of points x

e

. For what is to follow, it will be important to observe
that such sequences are relatively compact for the uniform C1-convergence over com-
pact sets, using standard regularity and bootstrap arguments. Namely, the following
holds.

Lemma 7.4. Let (en)n2N ⇢R+ and (xn)n2N ⇢R3 be sequences such that en ! 0 and
xn ! x̄ as n !+•. Set

vn(x) := u
en(xn + enx).

Then, there exists v 2 H1(R3)\C1(R3) such that, up to a subsequence, vn ! v in
C1

loc(R3). Moreover,

ˆ
R3

|—v|2 = lim
R!+•

lim
n!+•

e

�3
n

ˆ
B(xn,enR)

e

2
n |—u

en |2,

and

ˆ
R3

V (x̄)v2 = lim
R!+•

lim
n!+•

e

�3
n

ˆ
B(xn,enR)

V (x)u2
en .
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The next step will be to derive a lower estimate of the energy of the solution u
e

as
a function of the number and the location of its local maxima. This will be done in
the following three lemmas. First, using the uniform C1-convergence of the rescaled
solutions vn over compact sets, as well as the Nehari characterisation of the solutions
to the limiting problem, the following estimate on small balls is established.

Lemma 7.5. Let (en)n2N ⇢ R+ and (xn)n2N ⇢ R3 be sequences such that en ! 0,
xn ! x̄ as n !+• and

liminf
n!+•

u
en(xn)> 0.

Then, up to a subsequence,

liminf
R!+•

liminf
n!+•

e

�3
n

 ˆ
Bn(R)

1
2
�
e

2
n |—u

en |2 +V (x)u2
en

�
�G(x,u

en)

!
� C (x̄),

where Bn(R) := B(xn,enR).

Next, using hR,enu
en as a test function in (7.3), where hR,en 2 C•(R3) is a well

chosen cut-off function supported outside small balls, the following estimate outside
balls is obtained.

Lemma 7.6. Let (en)n2N ⇢R+ and (xi
n)n2N ⇢R3, 1  i  K, be sequences such that

en ! 0 and xi
n ! x̄i 2 L̄ as n !+•. Then, up to a subsequence,

liminf
R!+•

liminf
n!+•

e

�3
n

 ˆ
R3\Bn(R)

1
2
�
e

2
n |—u

en |2 +V (x)u2
en

�
�G(x,u

en)

!
� 0,

where Bn(R) := [K
i=1B(xi

n,enR).

Then, combining Lemma 7.5 and 7.6, the following result is derived, which gives
a lower estimate of the energy of the solution u

e

.
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Lemma 7.7. Let (en)n2N ⇢R+ and (xi
n)n2N ⇢R3, 1  i  K, be sequences such that

en ! 0 and xi
n ! x̄i 2 L̄ as n !+•. If for every 1  i  j  K, we have

limsup
n!+•

|xi
n � x j

n|
en

=+•,

and if for every 1  i  K,

liminf
n!+•

u
en(x

i
n)> 0,

then

liminf
n!+•

e

�3
n J

en(uen)�
K

Â
i=1

C (x̄i).

After establishing this estimate from below, it is then shown that there does, in
fact, exist a sequence (xn)n2N ⇢R3 satisfying the assumptions of the previous lemma.
Namely, using the definition of the penalisation and the positivity of u

e

, the following
result is established.

Lemma 7.8. It holds that
||u

e

||L•(L) > (kV0)
1

p�1 .

7.1.4 Concentration and existence of solutions to original problem

With these results in place, it is possible to prove a first concentration result. The
proof of each of the statements in the following lemma rely on contradiction argu-
ments in which the energy of the solution is estimated from below using the assump-
tion infx2LV (x) < infx2∂LV (x) and Lemma 7.7. Ultimately a contradiction is found
with the upper estimate of the critical level obtained in Lemma 7.3.

Lemma 7.9. Let (x
e

)
e>0 ⇢ L be such that

liminf
e!0

u
e

(x
e

)> 0.

Then,

(i) lim
e!0V (x

e

) = infx2LV (x),
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(ii) liminf
e!0 dist(x

e

,∂L)> 0,

(iii) for every d > 0, there exists e0 > 0 and R > 0 such that, for every e 2 (0,e0),

||u
e

||L•(L\B(x
e

,eR))  d .

Using this lemma, the assumption on the potential V and the maximum principle,
it is then shown that up

e

 kVu
e

in R3 \L and so g(x,u
e

) = up
e

in R3 \L. Namely, the
solution u

e

to the penalised problem (7.3) is, in fact, a solution to the original problem
(7.2). This is summarised in the following result.

Lemma 7.10. Assume that V is a continuous potential bounded away from zero and
that L ⇢ R3 is a bounded open set satisfying

V0 := inf
x2L

V (x)< inf
x2∂L

V (x).

Then, there exist e0 > 0 such that for every 0 < e < e0, problem (7.2) has at least one
positive solution u

e

2 H1(R3)\C2,a(R3).

Regularity estimates are then used to improve Lemma 7.4 and show that the
rescaled solutions converge to a solution of the limiting equation (7.4), giving the
limiting profile of the solutions u

e

.

Lemma 7.11. Suppose that the assumptions of Lemma 7.10 are satisfied and assume
furthermore that V is locally Hölder continuous in L. Let u

e

be the positive solution
of (7.2) found in that lemma and let (en)n2N ⇢ R+ and (xn)n2N ⇢ R3 be sequences
such that en ! 0 and xn ! x̄ as n !+•. Set

vn(x) := u
en(xn + enx).

Then, there exists v 2 H1(R3)\C2(R3) such that, up to a subsequence, vn ! v in
C2,a

loc (R3). In fact, v solves (7.4) with a =V (x̄).

Next, using the fact that up
e

 kVu
e

in R3 \L, it is shown that if x
e

is a local max-
imum of u

e

, then x
e

2 L. Using Lemma 7.9 and the non-degeneracy of the maximum
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of v (Lemma 7.2), an argument by contradiction shows that u
e

has exactly one maxi-
mum. Namely, the following result is obtained.

Lemma 7.12. Suppose that the assumptions of Lemma 7.10 are satisfied and assume
furthermore that V is locally Hölder continuous in L. Let u

e

be the positive solution
of (7.2) found in that lemma. Then, there exists e0 > 0 such that for every 0 < e < e0,
u

e

has exactly one local, and hence global, maximum x
e

2 L.

Finally, Theorem 7.1 is the consequence of combining Lemma 7.9, 7.10, 7.11 and
7.12.

7.2 Preliminaries for nonlinear Schrödinger-Poisson system

In this section, we will introduce the penalisation scheme for the nonlinear Schrödinger-
Poisson system, and then we will discuss in more detail how we aim to adapt the
method of del Pino and Felmer [30] in order to prove Conjecture 7.1. We will see that
although we would like to mimic the technique discussed in the previous section, it is
not directly applicable in the case of the nonlinear Schrödinger-Poisson system due to
a major obstacle; namely, a lack of direct relation with the limiting problem.

7.2.1 Penalised problem

We will first define the penalisation and its properties. Assume there exists a bounded
open set L ⇢ R3 satisfying

r(x0) := inf
x2L

r(x)< inf
x2∂L

r(x).

Fix k 2 (0, 1
2). Define the penalised nonlinearity g : R3 ⇥R+ ! R+ as

g(x,s) := cL(x)sp +(1�cL(x))min{ks,sp}, (7.5)

and set

G(x,s) :=
ˆ s

0
g(x,s)ds .

We note that g is a Carathéodory function which satisfies:
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(g1) g(x,s) = o(s) as s ! 0+ uniformly in compact subsets of R3,
(g2) there exists l 2 (1,5) such that lims!+•

g(x,s)
sl

= 0,
(g3) (i) 0 < (p+1)G(x,s) g(x,s)s for all x 2 L, s > 0,

(ii) 0 < 2G(x,s) g(x,s)s  ks2 for all x 62 L, s > 0,
(g4) the function s 7! g(x,s)

s in non-decreasing in R3.

With these definitions in place, we can now work with the penalised problem

(
�e

2Du+u+r(x)fu = g(x,u), x 2 R3,

�Df = r(x)u2, x 2 R3.
(7.6)

Using the explicit representation

fu(x) :=
ˆ
R3

r(y)u2(y)
4p|x� y| dy,

the system (7.6) reduces to solving the equation

�e

2Du+u+r(x)fuu = g(x,u). (7.7)

Weak solutions of this equation are critical points of the functional J
e

: E
e

(R3)! R
given by

J
e

(u) :=
1
2

ˆ
R3
(e2|—u|2 +u2)+

1
4

ˆ
R3

rfuu2 �
ˆ
R3

G(x,u). (7.8)

Here, the space E
e

(R3) = E
e

is defined as

E
e

(R3) :=
�

u 2 D1,2(R3) : ||u||E
e

<+•
 
,

where

||u||2E
e

:=
ˆ
R3
(e2|—u|2 +u2)dx+

✓ˆ
R3

ˆ
R3

u2(x)r(x)u2(y)r(y)
|x� y| dxdy

◆1/2

.

For what follows, we will also need to define
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||u||2H1
e

:=
ˆ
R3
(e2|—u|2 +u2)dx.

Assumptions (g2) and (g3) imply that J
e

is well-defined and J
e

2C1(E
e

,R).

7.2.2 Limit problem

We now introduce the associated limit problem, namely,

(
�Du+u = |u|p�1u, x 2 R3

u > 0, x 2 R3,
(7.9)

whose solutions have been classified by Kwong [41].

Remark 7.1. The limiting equation is identified by using the scaling

u
e

(·) := u
✓
·� x0

e

◆

in the Schrödinger-Poisson system (7.1). Formally, one obtains the equation

�Du+u+ e

2
r(ex+ x0)

✓ˆ
R3

u2(y)r(ey+ x0)

|x� y| dy
◆

u = |u|p�1u, (7.10)

which becomes (7.9) as e ! 0.

Remark 7.2. Due to the nature of our problem, namely due to the e

2 that appears in
front of the Poisson term in (7.10), we lose all information on r in the limiting equa-
tion. This is in stark contrast to the case of the nonlinear Schrödinger equation, in
which the limiting problem, ground energy function and concentration function have
a direct relation with the limit of the rescaled potential V (ex+ x0).

Weak solutions of the limit problem (7.9) are critical points of the functional I :
H1(R3)! R given by

I(u) :=
1
2

ˆ
R3
(|—u|2 +u2)� 1

p+1

ˆ
R3

|u|p+1. (7.11)
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It is standard to characterise the energy level of ground state solutions of (7.9) by

c̄ := inf
g2Ḡ

max
t2[0,1]

I(g(t)), (7.12)

where Ḡ is the family of paths

Ḡ := {g 2C([0,1],H1(R3)) : g(0) = 0, I(g(1))< 0}.

7.2.3 Perturbed penalised and associated limit problem

For p 2 (2,3), it will be useful to define a perturbation of the penalised problem (7.6),
namely

(
�e

2Du+u+r(x)fu = µg(x,u), x 2 R3, µ 2
⇥1

2 ,1
⇤
,

�Df = r(x)u2, x 2 R3,
(7.13)

which reduces to solving

�e

2Du+u+r(x)fuu = µg(x,u), µ 2


1
2
,1
�
, (7.14)

with fu(x) :=
´
R3

r(y)u2(y)
4p|x�y| dy. Weak solutions of this equation are critical points of the

functional J
e,µ : E

e

! R given by

J
e,µ(u) :=

1
2

ˆ
R3
(e2|—u|2+u2)+

1
4

ˆ
R3

rfuu2�µ

ˆ
R3

G(x,u), µ 2


1
2
,1
�
. (7.15)

For each µ 2
⇥1

2 ,1
⇤
, the associated perturbed limit problem is

(
�Du+u = µ|u|p�1u, x 2 R3,

u > 0, x 2 R3.
(7.16)

Weak solutions of this limit problem are critical points of the functional I
µ

: H1(R3)!
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R given by

I
µ

(u) :=
1
2

ˆ
R3
(|—u|2 +u2)� µ

p+1

ˆ
R3

|u|p+1, µ 2


1
2
,1
�
. (7.17)

7.2.4 Outline of the proposed method and associated difficulties

Inspired by the approach of del Pino and Felmer [30] and with the aim to obtain Con-
jecture 7.1, for p 2 [3,5), we first prove that for each e > 0 there exists a solution u

e

to
the penalised problem (7.7) (Theorem 7.2). Our goal is to then study the asymptotic
behaviour of u

e

as e ! 0. The first key ingredient of such study is a comparison of the
mountain pass level associated with the penalised problem (7.7) and the energy level
associated with the limit problem (7.9) for small e . Doing so gives an upper estimate
of the mountain pass level. We obtain a preliminary estimate of this type in Lemma
7.18, however it seems that due to the nature of our problem we need higher order
estimates. Namely, we obtain an estimate of the form

e

�3J
e

(u
e

) I(v)+o(1), (7.18)

where v solves the limit problem (7.9). However, following a personal communication
of Denis Bonheure [17], the ideal type of estimate that we need to obtain in order to
retain information on the minimum of r is

e

�3J
e

(u
e

)� I(v)
e

2  1
4

r

2(x0)

ˆ
R3

ˆ
R3

v2(x)v2(y)
|x� y| +o(1), (7.19)

where v solves the limit problem (7.9) and r(x0) = infx2L r(x). Thus, we can see
that we require the remainder terms on the right hand side of (7.18) to be of order e

2.
Rescaling u

e

as u
e

(x
e

+ e·) around a well-chosen family of points x
e

, the next step
is to show that the rescaled sequences are relatively compact for the uniform C1,a

convergence over compact sets (Proposition 7.3). Using this, the aim is to then esti-
mate from below the energy of solution u

e

as a function of the number and location
of its local maxima. In the approach of del Pino and Felmer [30], estimates are ob-
tained inside and outside small balls and then such estimates are combined. Here, we
endeavour to obtain an estimate of the form

e

�3J
e

(u
e

)� I(v)
e

2 � 1
4

r

2(x )

ˆ
R3

ˆ
R3

v2(x)v2(y)
|x� y| +o(1), (7.20)
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where v solves the limit problem (7.9) and x
e

! x 2 L̄. However, we once again
face difficulties in mimicking the technique discussed for the nonlinear Schrödinger
equation due to the lack of direct relation between our concentration function (right
hand side of (7.20)) and the limit problem (7.9). Once obtained, the estimates from
above and below would then be used in a contradiction argument to show that, in fact,
x

e

! x0 where r(x0) = infx2L r(x). Namely, assuming by contradiction that x
e

! x

where r(x0) = infx2L r(x)< r(x ), then if (7.19) and (7.20) hold, it would follow that
as e ! 0,

1
4

r

2(x )

ˆ
R3

ˆ
R3

v2(x)v2(y)
|x� y|  1

4
r

2(x0)

ˆ
R3

ˆ
R3

v2(x)v2(y)
|x� y|

<
1
4

r

2(x )

ˆ
R3

ˆ
R3

v2(x)v2(y)
|x� y| ,

a contradiction. This would give a first concentration result. Finally, the asymptotic
estimates would then enable the application of the maximum/comparison principle to
show that u

e

are small outside L and actually solve the original problem (7.1) for e

small.

7.3 Initial results for nonlinear Schrödinger-Poisson system

In this section, we discuss the results that we have obtained thus far which, based on
the discussion in the previous section, should aid in proving Conjecture 7.1.

7.3.1 Existence of solutions to penalised problem

Using the properties of the penalisation, we first prove that the functional J
e

has the
Mountain-Pass Geometry for each e > 0.

Lemma 7.13. [Mountain-Pass Geometry for J
e

] Suppose r 2C(R3) is nonnegative
and p 2 (2,5]. Then, for each e > 0, it holds:

(i) J
e

(0) = 0 and there exists constants r,a > 0 such that J
e

(u)� a if ||u||E
e

= r.

(ii) There exists v 2 E
e

with ||v||E
e

> r, such that J
e

(v) 0.
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Proof. To prove (i), we first note that by (g3) and the Sobolev inequality, for all
u 2 E

e

, it holds that

J
e

(u) =
1
2

ˆ
R3
(e2|—u|2 +u2)+

1
4

ˆ
R3

rfuu2 �
ˆ

L
G(x,u)�

ˆ
R3\L

G(x,u)

� 1
2

ˆ
R3
(e2|—u|2 +u2)+

1
4

ˆ
R3

rfuu2 � 1
p+1

ˆ
L
|u|p+1 � 1

2

ˆ
R3\L

ku2

�
✓

1�k

2

◆
||u||2H1

e

+
1
4

ˆ
R3

rfuu2 � 1
p+1

ˆ
L
|u|p+1 (7.21)

�
✓

1�k

2

◆
||u||2H1

e

+
1
4

ˆ
R3

rfuu2 �C||u||p+1
H1

e

,

for some C > 0. Using the definition of the norm in E
e

and following the arguments
of Lemma 4.1 we can show that the origin is a strict local minimum for J

e

in E
e

if
p 2 [2,5].

To show (ii), we pick u 2C1(R3)\{0}, supported in L. Setting vt(x) := t2u(tx),
with t > 0, we argue as in Lemma 4.1 to show J

e

(vt)!�• as t !+• if p 2 (2,5].
This concludes the proof.

We now define the min-max level associated with J
e

as

c
e

:= inf
g2G

e

max
t2[0,1]

J
e

(g(t)), (7.22)

where G
e

is the family of paths

G
e

:= {g 2C([0,1],E
e

) : g(0) = 0, J
e

(g(1))< 0}.

The previous lemma gives us the existence of a Palais-Smale sequence for J
e

at the
level c

e

. That is, there exists a sequence (un)n2N ⇢ E
e

such that J
e

(un) ! c
e

and
J0

e

(un) ! 0. For large p, the boundedness of such Palais-Smale sequences follows
relatively straightforwardly. Namely, we have the following result.

Lemma 7.14. Suppose r 2 C(R3) is nonnegative, p 2 [3,5), and (un)n2N ⇢ E
e

(R3)

is a Palais-Smale sequence for J
e

. Then, (un)n2N is bounded in E
e

(R3).
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Proof. Assume (un)n2N ⇢ E
e

(R3) is a Palais-Smale sequence for J
e

. Then,

(p+1)J
e

(un)� J0
e

(un)(un) =

✓
p�1

2

◆ˆ
R3

�
e

2|—un|2 +u2
n
�
+

✓
p�3

4

◆ˆ
R3

funu2
nr

+

ˆ
R3

(g(x,un)un � (p+1)G(x,un)) . (7.23)

Using the definition of g and property (g3), we find that

ˆ
R3

(g(x,un)un � (p+1)G(x,un))�
ˆ
R3\L

(g(x,un)un � (p+1)G(x,un))

� (�p+1)
ˆ
R3\L

G(x,un)

� �p+1
2

k

ˆ
R3\L

u2
n

� �p+1
2

k||un||2H1
e

. (7.24)

Putting (7.23) and (7.24) together, and using the fact that (un)n2N is a Palais-Smale
sequence, we obtain

c+o(1)||un||E
e

� (p+1)J
e

(un)� J0
e

(un)(un)

�
✓

p�1
2

◆
(1�k)||un||2H1

e

+

✓
p�3

4

◆ˆ
R3

funu2
nr. (7.25)

For convenience, we now set

an := ||un||H1
e

,

and

bn :=
✓ˆ

R3
funu2

nr

◆ 1
2
.
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We then assume, by contradiction, ||un||E
e

!+•, and note that this can occur in three
ways; namely

(i) an, bn !+•,

(ii) an bounded and bn !+•,

(iii) an !+• and bn bounded.

Thus, we need to find a contradiction in each of these three cases.

We first restrict to p > 3. If bn ! +•, then it follows that b2
n � bn for large n.

Hence, for large n, (7.25) can be written as

c+o(1)||un||E
e

� min
⇢✓

p�1
2

◆
(1�k),

✓
p�3

4

◆� 
||un||2H1

e

+

✓ˆ
R3

funu2
nr

◆ 1
2
!

= min
⇢✓

p�1
2

◆
(1�k),

✓
p�3

4

◆�
||un||2E

e

.

So, dividing by ||un||E
e

and letting n !+•, we have reached a contradiction in case
(i) and (ii). If an !+• and bn is bounded, then, for large n, this implies

||un||E
e

⇠ an.

Combining this with (7.25), we find that, for large n,

c+o(1)an � min
⇢✓

p�1
2

◆
(1�k),

✓
p�3

4

◆�✓
||un||2H1

e

+

ˆ
R3

funu2
nr

◆

� min
⇢✓

p�1
2

◆
(1�k),

✓
p�3

4

◆�
a2

n.

Thus, dividing by an and letting n ! +•, we have reached a contradiction in case
(iii). Therefore, since we have reached a contradiction in each possible case, we have
shown that if p > 3, then (un)n2N is bounded in E

e

.
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We now consider p = 3. Once again, we need to find a contradiction in each of
the three cases. We first notice that since un is a Palais-Smale sequence for J

e

and by
property (g3) and the Sobolev inequality, it holds that

c � J
e

(un)

=
1
2

a2
n +

1
4

b2
n �
ˆ
R3

G(x,u)

�
✓

1�k

2

◆
a2

n +
1
4

b2
n �Cap+1

n ,

for some c, C > 0. Hence, it follows that

c+Cap+1
n �

✓
1�k

2

◆
a2

n +
1
4

b2
n

� 1
4

b2
n, (7.26)

which immediately yields a contradiction in case (ii). In both remaining cases we
assume an !+•, and so, since p = 3, we can see from (7.26) that, for large n,

bn . a2
n. (7.27)

We also notice that since p = 3, (7.25) becomes

c+o(1)||un||E
e

� (1�k)||un||2H1
e

. (7.28)

Now, dividing both sides of this inequality by ||un||E
e

=
�
a2

n +bn
� 1

2 , we obtain

(1�k) · a2
n

(a2
n +bn)

1
2
= o(1),

or equivalently

(1�k)2 · a4
n

a2
n +bn

= o(1).
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Hence, we find that, for large n,

bn & a4
n,

immediately yielding a contradiction in case (iii). Otherwise, by combining the pre-
vious inequality with (7.27), we obtain, for large n,

a4
n . a2

n,

a contradiction in case (i). Therefore, we have reached a contradiction in each pos-
sible case, and so we have shown that if p = 3, then (un)n2N is bounded in E

e

. This
completes the proof.

We note that the previous result only holds for p 2 [3,5). When p 2 (2,3) we
can recover the boundedness of Palais Smale sequences associated with the perturbed
energy functional J

e,µ for almost every µ 2
⇥1

2 ,1
⇤
. We will first need the following

preliminary result.

Lemma 7.15. [Mountain-Pass Geometry for J
e,µ] Suppose r 2C(R3) is nonnega-

tive and p 2 (2,5]. Then, for each e > 0 and each µ 2
⇥1

2 ,1
⇤
, it holds:

(i) J
e,µ(0) = 0 and there exists constants r,a > 0 such that J

e,µ(u)� a if ||u||E
e

= r.

(ii) There exists v 2 E
e

with ||v||E
e

> r, such that J
e,µ(v) 0.

Proof. The proof follows similarly to that of Lemma 7.13.

The previous lemma, as well as the monotonicity of J
e,µ with respect to µ , imply

that for each e > 0, there exists v̄ 2 E
e

\{0} such that

J
e,µ(v̄) J

e, 1
2
(v̄) 0, 8µ 2


1
2
,1
�
.

Thus, for each e > 0, we can define the min-max level associated with J
e,µ as

c
e,µ := inf

g2G̃
e

max
t2[0,1]

J
e,µ(g(t)), (7.29)
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where G̃
e

is the family of paths

G̃
e

:= {g 2C([0,1],E
e

) : g(0) = 0, g(1) = v̄}.

Applying Lemma 4.2, it follows that for each e > 0 and for almost every µ 2
⇥1

2 ,1
⇤
,

there exists a bounded Palais-Smale sequence for J
e,µ at the level c

e,µ . That is, for
every fixed e > 0, we can define the following dense set of

⇥1
2 ,1
⇤
,

M
e

:=
⇢

µ 2


1
2
,1
�

: 9 bounded Palais-Smale sequence

for J
e,µ at the level c

e,µ

�
. (7.30)

Using the results we have obtained thus far, we can now obtain existence to the pe-
nalised problem for each e > 0 if p 2 [3,5) and existence to the perturbed penalised
problem for each e > 0 and each µ 2 M

e

if p 2 (2,3).

Theorem 7.2. Suppose r 2 C(R3) is nonnegative. If p 2 (2,3), then for each e > 0
and each µ 2 M

e

, there exists a solution (u
e,µ ,fu

e,µ ) 2 E
e

(R3)⇥D1,2(R3) of (7.13),
whose components are nonnegative functions, such that u

e,µ is a critical point of J
e,µ

at level c
e,µ . If p 2 [3,5), then for each e > 0, there exists a solution (u

e

,fu
e

) 2
E

e

(R3)⇥D1,2(R3) of (7.6), whose components are positive functions, such that u
e

is
a critical point of J

e

at level c
e

.

Before completing the proof of this theorem, we will need two preliminary lem-
mas. These results are known in the case E(R3) is compactly embedded in Lp+1(R3),
so here we will only highlight the parts of the proof where the penalisation replaces
the role of this embedding.

Lemma 7.16. Suppose r 2C(R3) is nonnegative. Let (un)n2N be a bounded Palais-
Smale sequence for J

e,µ , with µ 2
⇥1

2 ,1
⇤
, such that, up to a subsequence, un * u in

E
e

(R3). Then, for every d > 0, there exists a ball B ⇢ R3 such that
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(i) limsup
n!+•

ˆ
R3\B

funu2
nr < d ,

(ii) limsup
n!+•

ˆ
R3\B

u2
n < d ,

(iii) limsup
n!+•

�����

ˆ
R3\B

fununur

�����< d .

Proof. Consider a smooth function x (r) such that x (r) = 1 on [2,+•) and x (r) = 0
on [0,1]. Define

hR(x) := x

✓
log(1+ |x|)

R

◆
.

Since (un)n2N is a bounded Palais-Smale sequence for J
e,µ , arguing as in Lemma 16

in [19], it holds that

o(1)� J0
e,µ(un)(unhR)

�
ˆ
R3

e

2|—un|2hR +

ˆ
R3

u2
nhR +

ˆ
R3

funu2
nrhR �µ

ˆ
R3

g(x,un)unhR +O
✓

1
R

◆
.

We note that we can take R large enough so that hR ⌘ 0 on L, and so, from the
definition of g and the previous equation, it follows that, for R large,

o(1)�
ˆ
R3

e

2|—un|2hR +

ˆ
R3
(1�µk)u2

nhR +

ˆ
R3

funu2
nrhR +O

✓
1
R

◆
.

Since all of the terms are nonnegative, taking B := {x 2 R3 : |x|  e2R} with R large
enough, the previous inequality yields both (i) and (ii). The proof of (iii) follows as
in Lemma 16 (b) in [19].

Lemma 7.17. Suppose r 2C(R3) is nonnegative. Let (un)n2N be a bounded Palais-
Smale sequence for J

e,µ , with µ 2
⇥1

2 ,1
⇤
, such that, up to a subsequence, un * u in

E
e

(R3). Then, passing if necessary to another subsequence, it holds that
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||un||2H1
e

! ||u||2H1
e

.

Proof. We first note that since (un)n2N is a Palais-Smale sequence and un * u in
E

e

(R3), it follows that

o(1) = J0
e,µ(un)(un �u)

= ||un||2H1
e

� ||u||2H1
e

+o(1)

+

ˆ
R3

funun(un �u)r �µ

ˆ
R3

g(x,un)(un �u). (7.31)

Using Lemma 7.16, we can argue as in Lemma 18 in [19], to show

ˆ
R3

funun(un �u)r = o(1), (7.32)

and so it remains only to prove

µ

ˆ
R3

g(x,un)(un �u) = o(1). (7.33)

To do so, let d > 0 be arbitrary. By Lemma 7.16 (ii), we can choose B ⇢ R3 large
enough so that it contains L and, for large enough n,

�����

ˆ
R3\B

g(x,un)(un �u)

�����
ˆ
R3\B

kun|un �u|

 k

 ˆ
R3\B

u2
n

! 1
2
 ˆ

R3\B
|un �u|2

! 1
2

< d . (7.34)

Now, since (un)n2N is bounded, then by Rellich Theorem, up to a subsequence un ! u
in Lp+1(L). So, on L, we have that |g(x,un)| < g(x) for some g 2 L

p+1
p (L). Thus,
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using the Dominated Convergence Theorem, it follows that

����
ˆ

L
g(x,un)(un �u)

����
✓ˆ

L
|g(x,un)|

p+1
p

◆ p
p+1
✓ˆ

L
|un �u|p+1

◆ 1
p+1

! 0. (7.35)

Similarly, by Rellich Theorem, up to a subsequence un ! u in L2(B\L), and so again
using the Dominated Convergence Theorem, we have

�����

ˆ
B\L

g(x,un)(un �u)

�����
 ˆ

B\L
|g(x,un)|2

! 1
2
 ˆ

B\L
|un �u|2

! 1
2

! 0. (7.36)

Since d > 0 was arbitrary, putting together (7.34), (7.35) and (7.36), we have proved
(7.33), and therefore, we have shown ||un||2H1

e

! ||u||2H1
e

.

We are now in position to complete the proof of Theorem 7.2.

Proof of Theorem 7.2. For p 2 (2,3), we follow the ideas of Theorem 4.2 Claim 1.
First, fix e > 0 and µ 2M

e

. By definition, there exists a bounded sequence (un)n2N ⇢
E

e

(R3) such that J
e,µ(un) ! c

e,µ and J0
e,µ(un) ! 0 as n ! +•. Since (un)n2N is

bounded, there exists u 2 E
e

(R3) such that, up to a subsequence un * u in E
e

(R3) as
n !+•. We will show

(i) J
e,µ(un)! J

e,µ(u),

(ii) J0
e,µ(u) = 0.

To prove (i), we first note that by Lemma 7.17, it holds that

||un||2H1
e

! ||u||2H1
e

.

Moreover, using Lemma 7.16 and the boundedness of (un)n2N, we can argue as in the
proof of Theorem 1 in [19], to show that
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ˆ
R3

rfunu2
nr !

ˆ
R3

rfuu2.

It therefore remains to show that

µ

ˆ
R3

G(x,un)! µ

ˆ
R3

G(x,u). (7.37)

To do so, we let d > 0 be arbitrary. Then, we can choose B ⇢ R3 containing L and
large enough so that, arguing as in the proof of the previous lemma and using property
(g3), the compact embeddings E

e

,!,! Lq(L) for all q2 [1,6) and E
e

,!,! L2(B\L),
the Dominated Convergence Theorem and Lemma 7.16 (ii), we can show that

����
ˆ
R3

G(x,un)�G(x,u)
����=
����
ˆ

L
G(x,un)�G(x,u)

����+

�����

ˆ
B\L

G(x,un)�G(x,u)

�����

+

�����

ˆ
R3\B

G(x,un)�G(x,u)

�����

< d ,

for large n. Since d > 0 was arbitrary, it follows that (7.37) holds and so we have
proved (i). The proof of (ii) is standard using the weak convergence and similar
splitting arguments as we have used above and in the proof of the previous lemma.
Therefore, by (i) and (ii), for each e > 0 and µ 2 M

e

, we have shown the existence
of a solution to (7.13), which we denote by (u

e,µ ,fu
e,µ ) 2 E

e

(R3)⇥D1,2(R3) to rep-
resent the dependence on e and µ . By the strong maximum principle, u

e,µ > 0.

When p 2 [3,5), we first fix e > 0. By Lemma 7.13, there exists a Palais-Smale
sequence for J

e

at the level c
e

. That is, there exists a sequence (un)n2N ⇢ E
e

such that
J

e

(un)! c
e

and J0
e

(un)! 0. By Lemma 7.14, it follows that (un)n2N is bounded in
E

e

(R3). Thus, up to a subsequence, un * u in E
e

(R3). Now, setting µ = 1, we notice
that J

e,1 = J
e

, and so both Lemma 7.16 and Lemma 7.17 hold with J
e,1 replaced by

J
e

. Therefore, we can argue exactly as in the case p 2 (2,3), to show

(i) J
e

(un)! J
e

(u),
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(ii) J0
e

(u) = 0,

yielding a solution to (7.6), which we denote by (u
e

,fu
e

) 2 E
e

(R3)⇥D1,2(R3) to
represent the dependence on e . By the strong maximum principle, u

e

> 0. This
concludes the proof.

Remark 7.3. For p 2 (2,3), the idea will be to prove that each of the results that we
obtain are independent of µ , with the ultimate goal to show that, for sufficiently small
e , there exists a family of solutions (u

e,µ ,fu
e,µ ) of the perturbed Schrödinger-Poisson

system

(
�e

2Du+u+r(x)fu = µ|u|p�1u, x 2 R3, µ 2
⇥1

2 ,1
⇤
,

�Df = r(x)u2, x 2 R3.

For each e > 0 small enough, we would then take (µn)n2N an increasing sequence
in M

e

such that µn ! 1, and follow the ideas of Theorem 4.2 Claim 2 to show that
u

e,µn ! u
e

where (u
e

,fu
e

) is a solution of (7.1). In what is to follow, however, we
only consider the case p 2 [3,5).

7.3.2 Asymptotics of solutions to penalised problem

Now that we have established the existence of solutions to the penalised problem, the
next step is to study the asymptotic behaviour of such solutions as e ! 0. The follow-
ing lemma gives a preliminary upper estimate of the mountain pass level c

e

.

Lemma 7.18. Suppose r 2 C(R3) is nonnegative and p 2 [3,5). Then, for e suffi-
ciently small, it holds that

c
e

 e

3(c̄+o(1)),

where c
e

is defined in (7.22) and c̄ is defined in (7.12).

Proof. We first note that, by definition of infimum, for all d > 0, we can choose a
continuous path g

d

2 Ḡ such that
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c̄ = inf
g2Ḡ

max
t2[0,1]

I(g(t)) max
t2[0,1]

I(g
d

(t)) c̄+d .

Let x0 2L be such that r(x0)= infx2L r(x). Define a cut-off function h 2C(R3, [0,1])
such that

h(x) = 1 for all x in a neighborhood of x0,

h(x) = 0 for all x 2 R3 \L,

||—h ||L•(R3) C for some C > 0,

and consider the path

ḡ

d

(t) : x ! h(x)
✓

g

d

(t)
✓

x� x0

e

◆◆
.

By a change of variables, and using the fact that g

d

(t) 2 H1(R3), we find that

ˆ
R3
(e2|—ḡ

d

(t)(x)|2 + |ḡ
d

(t)(x)|2)dx

= e

5
ˆ
R3

����(gd

(t)(y))—h(ey+ x0)+
1
e

(—g

d

(t)(y))h(ey+ x0)

����
2

dy

+ e

3
ˆ
R3

|(g
d

(t)(y))h(ey+ x0)|2 dy

= e

5
ˆ
R3

|g
d

(t)(y)|2|—h(ey+ x0)|2 dy

+2e

4
ˆ
R3
(g

d

(t)(y))—h(ey+ x0)(—g

d

(t)(y))h(ey+ x0)dy

+ e

3
ˆ
R3

|—g

d

(t)(y)|2|h(ey+ x0)|2 dy

+ e

3
ˆ
R3

|g
d

(t)(y)|2|h(ey+ x0)|2 dy

= e

3
ˆ
R3
(|—g

d

(t)(y)|2 + |g
d

(t)(y)|2)(|h(ey+ x0)|2 �1)dy

+ e

3
ˆ
R3
(|—g

d

(t)(y)|2 + |g
d

(t)(y)|2)dy+o(e3). (7.38)
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Now, let d̄ > 0 be arbitrary. Since g

d

(t) 2 H1(R3), there exists a compact set contain-
ing x0 such that

ˆ
R3\K

(|—g

d

(t)(y)|2 + |g
d

(t)(y)|2)(|h(ey+ x0)|2 �1)dy  d̄

2
.

Moreover, since |h(ey+x0)|2�1 converges uniformly to 0 on K as e ! 0, there exists
e0 > 0 such that for all e < e0 it holds that

ˆ
K
(|—g

d

(t)(y)|2 + |g
d

(t)(y)|2)(|h(ey+ x0)|2 �1)dy  d̄

2
.

Therefore, combining the previous two inequalities and (7.38), we have shown that
for all e < e0,

ˆ
R3
(e2|—ḡ

d

(t)(x)|2 + |ḡ
d

(t)(x)|2)dx = e

3
ˆ
R3
(|—g

d

(t)(y)|2 + |g
d

(t)(y)|2)dy+o(e3).

We now focus on the Poisson term. Making the change of variables x ! ex0+ x0 and
y ! ey0+ x0, we obtain

ˆ
R3

ˆ
R3

(ḡ
d

(t)(x))2
r(x)(ḡ

d

(t)(y))2
r(y)

|x� y| dxdy

 e

5||r||2L•(L)

ˆ
R3

ˆ
R3

(g
d

(t)(x0))2(h(ex0+ x0))2(g
d

(t)(y0))2(h(ey0+ x0))2

|x0 � y0| dx0 dy0

= o(e3),

by the Hardy-Littlewood-Sobolev inequality since g

d

(t) 2 H1(R3). Finally, arguing
similarly, since h = 0 on R3 \L we see that

ˆ
R3

G(x, ḡ
d

(t)(x))dx =
1

p+1

ˆ
R3


h(x)

✓
g

d

(t)
✓

x� x0

e

◆◆�p+1
dx

=
e

3

p+1

ˆ
R3

[h(ey+ x0)(g
d

(t)(y))]p+1 dy

=
e

3

p+1

ˆ
R3
[g

d

(t)(y)]p+1 dy+o(e3).
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Thus, for e > 0 small enough, we have

J
e

(ḡ
d

(t)) e

3
ˆ
R3
(|—g

d

(t)|2 + |g
d

(t)|2)dy� e

3

p+1

ˆ
R3
[g

d

(t)]p+1 dy+o(e3)

= e

3I(g
d

(t))+o(e3).

It follows that for e > 0 small enough, ḡ

d

belongs to the class of paths G
e

. Therefore,

c
e

= inf
g2G

e

max
t2[0,1]

J
e

(g(t))

 max
t2[0,1]

J
e

(ḡ
d

(t))

 max
t2[0,1]

e

3I(g
d

(t))+o(e3)

 e

3(c̄+d )+o(e3),

and so, since d > 0 is arbitrary, we have

c
e

 e

3(c̄+o(1)) as e ! 0.

As a consequence of the previous result, the following estimates on the H1
e

norm
of the solutions and on the Poisson term can be established.

Corollary 7.2. Suppose r 2 C(R3) is nonnegative. Let u
e

⇢ E
e

be the sequence of
positive solutions to (7.7) found in Theorem 7.2. For all p 2 [3,5), it holds

||u
e

||2H1
e

Ce

3,

Furthermore, for all p 2 (3,5), it holds

ˆ
R3

|—fu
e

|2 dx Ce

3,
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for some C > 0.

Proof. Using the result of the previous theorem, we see that

e

3(p+1)(c̄+o(1))� (p+1)c
e

= (p+1)J
e

(u
e

)� J0
e

(u
e

)(u
e

)

=
p�1

2
||u

e

||H1
e

+
p�3

4

ˆ
R3

|—fu
e

|2

+

ˆ
R3

(g(x,u
e

)u
e

� (p+1)G(x,u
e

)) . (7.39)

By (g3), we have that

ˆ
R3

(g(x,u
e

)u
e

� (p+1)G(x,u
e

))��(p�1)
ˆ
R3\L

G(x,u
e

)

� �(p�1)
2

ˆ
R3\L

ku2
e

� �(p�1)
4

||u
e

||2H1
e

. (7.40)

Hence, putting (7.39) and (7.40) together, we have

e

3(p+1)(c̄+o(1))� p�1
4

||u
e

||2H1
e

+
p�3

4

ˆ
R3

|—fu
e

|2,

and so we have shown that for e > 0 small enough, it holds

||u
e

||2H1
e

 4(p+1)c̄
p�1

e

3,

and

2
ˆ
R3

|—fu
e

|2 dx  4(p+1)c̄
p�3

e

3.

2This is the only point in which we use the restriction p > 3.
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This concludes the proof.

As in the case of the nonlinear Schrödinger equation, it is natural to rescale the so-
lutions u

e

as u
e

(x
e

+e·) around a well chosen family of points x
e

. A crucial step is to
observe that such sequences are relatively compact for the uniform C1,a -convergence
of compact sets. This requires much more delicate regularity and bootstrap arguments
in the case of the nonlinear Schrödinger-Poisson system, provided in the proof of the
following proposition.

Proposition 7.3. Suppose r 2C(R3) is nonnegative and p 2 [3,5). Let (en)n2N ⇢R+

and (xn)n2N⇢R3 be sequences such that en ! 0 and xn ! x⇤ 2 L̄ as n!+•. Assume
u

en ⇢E
en is the sequence of positive solutions to (7.7) found in Theorem 7.2 and define

vn(x) := u
en(xn + enx). Then, vn is positive and there exists v 2 H1(R3) such that, up

to a subsequence,

vn ! v in C1,a
loc (R

3).

Proof. Since u
en solves (7.7), it follows that vn solves

�Dvn =�vn �r(xn + enx)f̄n(x)vn +g(xn + enx,vn), (7.41)

where

f̄n(x) := fu
en (xn + enx) = e

2
n

✓ˆ
R3

v2
n(y)r(xn + eny)

4p|x� y|

◆
,

and

g(xn + enx,vn) = cL(xn + enx)vp
n +(1�cL(xn + enx))min{kvn,vp

n}.

We first note that by Corollary 7.2, we have that vn is uniformly bounded in H1(R3).
We then notice that since xn ! x⇤ 2 L̄, then for any x 2 K, where K ⇢ R3 is some
fixed compact set, and for n large enough, it holds that xn + enx 2 B, where B is some
ball such that L̄ ⇢ B. So, for n large,
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e

2
n

ˆ
K

v6
nr

3(xn + enx)
� 1

3
 e

2
n ||r||L•(B)||vn||2L6(R3)

Ce

2
n ||r||L•(B)||—vn||2L2(R3)

Ce

2
n ||r||L•(B)||vn||2H1(R3)

CKe

2
n ,

and thus e

2
n v2

nr(xn + enx) is uniformly bounded in L3
loc(R3). It follows that f̄n is

uniformly bounded in C0,a
loc (R3) and consequently, is uniformly bounded in L•

loc(R3)

(see e.g. [42, p. 260]; [1, p. 11]). Hence, r(xn + enx)f̄n(x) is uniformly bounded
in L•

loc(R3) since by assumption r 2 L•
loc(R3) and xn ! x⇤ 2 L̄. So, looking at the

right-hand side of (7.41), on any compact set K, we have that

|� vn �r(xn + enx)f̄n(x)vn +g(xn + enx,vn)| (1+r(xn + enx)f̄n(x))vn + vp
n

CK(vn + vp
n). (7.42)

We now use a bootstrap argument. From Corollary 7.2 and the Sobolev inequality it
holds that vn is uniformly bounded in Lq(B(0,R)) for all q 2 [1,6], and so from (7.42)
we have that the right-hand side of (7.41) is uniformly bounded in L

6
p (B(0,R)) for

any R > 0. It then follows that vn is uniformly bounded in W 2, 6
p (B(0,R)) (see e.g. p.

235 in [35]). We have three cases:

(i) If 12
p > 3 (namely, p 2 [3,4)), then

W 2, 6
p (B(0,R))⇢C0,a(B(0,R)), a  2� p

2
,

and so vn is is uniformly bounded in L•(B(0,R)). Therefore, using this and
(7.42) it follows that the right-hand side of (7.41) is uniformly bounded in
L•(B(0,R)), which implies that vn is uniformly bounded in C1,a(B(0,R)).

(ii) If 12
p = 3 (namely, p = 4), then

W 2, 6
p (B(0,R))⇢ Lq(B(0,R)), 8q 2 [1,+•).
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Using this and (7.42) we have that the right-hand side of (7.41) is uniformly
bounded in Lq0(B(0,R)), where q0 = q

p 2 [1,+•). It follows that vn is uniformly
bounded in W 2,q0(B(0,R)) for all q0 2 [1,+•).

(iii) If p 2 (4,5), then

W 2, 6
p (B(0,R))⇢ Lq(B(0,R)), 8q 2


1,

6
p�4

�
.

Using this and (7.42) we have that the right-hand side of (7.41) is uniformly
bounded in L

6
p(p�4) (B(0,R)). It follows that vn is uniformly bounded in

W 2, 6
p(p�4) (B(0,R)).

In cases (i) and (ii), namely for p 2 [3,4], we are done. In case (iii), namely if
p 2 (4,5), we go through a second iteration of this process and again find three cases
depending on the value of p:

(i’) If 12
p(p�4) > 3 (namely, p 2 (4,2+

p
8 ⇡ 4.83), then

W 2, 6
p(p�4) (B(0,R))⇢C0,a(B(0,R)), a  2� p(p�4)

2
.

As in (i), we can show vn is uniformly bounded in C1,a(B(0,R)).

(ii’) If 12
p(p�4) = 3 (namely, p = 2+

p
8 ⇡ 4.83), then

W 2, 6
p(p�4) (B(0,R))⇢ Lq(B(0,R)), 8q 2 [1,+•).

As in (ii), it follows that vn is uniformly bounded in W 2,q0(B(0,R)) for all
q0 2 [1,+•).

(iii’) If 12
p(p�4) < 3 (namely, p 2 (2+

p
8 ⇡ 4.83,5)), then

W 2, 6
p(p�4) (B(0,R))⇢ Lq(B(0,R)), 8q 2


1,

6
p(p�4)�4

�
.
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Using this and (7.42) we have that the right-hand side of (7.41) is uniformly
bounded in L

6
p[p(p�4)�4] (B(0,R)). It follows that vn is uniformly bounded in

W 2, 6
p[p(p�4)�4] (B(0,R)).

Again, in cases (i0) and (ii0), namely for p 2 [3,2+
p

8 ⇡ 4.83], we are done. In case
(iii0), namely if p 2 (2+

p
8 ⇡ 4.83,5), a third iteration of this process reveals, once

again, three cases depending on the value of p. Continuing to iterate this process, we
find that at the nth iteration, the third case does not occur for all p such that

8
<

:

12
p � 3, if n = 1

12
pn�4Ân�1

i=1 pi � 3, if n � 2.
.

For each n � 1, this can be rewritten as

pn �4
n�1

Â
i=0

pi  0,

namely,

pn �4
✓

1� pn

1� p

◆
 0.

Solving this inequality for n, we find that this condition is equivalent to

n �
ln
⇣

4
5�p

⌘

ln(p)
.

So, for fixed p 2 [3,5) we find that the third case does not occur after the nth iteration,
where

n =

2

666

ln
⇣

4
5�p

⌘

ln(p)

3

777
2 N.

Therefore, we have shown that for any p 2 [3,5), we are done after a finite number of
steps depending on p. Now, since vn in uniformly bounded in H1(R3) by Corollary
7.2, then up to a subsequence vn * v, for some v 2 H1(R3). Hence, using the result of
our bootstrap argument and Morrey estimates, we have that vn ! v in C1,a(B(0,R))
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for every R > 0. By a diagonal argument, it follows that, up to a subsequence, vn ! v
in C1,a

loc (R3). Finally, applying the strong maximum principle, we have that vn is
positive.

Remark 7.4. An alternative way to conclude the bootstrap argument is as follows.
After the first iteration, if we are in case (iii), it holds that vp�1

n is uniformly bounded
in L

3
2+d (B(0,R)) for some d > 0, where (p�1)

�3
2 +d

�
< 6

p�4 . Note that it is possible
to choose such a d since

6
p�4

� 3(p�1)
2

=
�3p(p�5)

2(p�4)
> 0,

for p 2 (4,5). Multiplying and dividing by 1+ vn, we can rewrite (7.41) as

�Dvn = an +anvn,

where

an :=
�vn �r(xn + enx)f̄n(x)vn +g(xn + enx,vn)

1+ vn
.

Using (7.42), we can see that

|an|C(1+ vp�1
n ),

and so an is uniformly bounded in L
3
2+d (B(0,R)). From the Harnack inequality (see

e.g. [54, p. 163]), it follows that

sup
B(0,R)

vn C
✓

inf
B(0,2R)

vn +K(R)
◆
,

with C and K(R) depending only on d , R, and ||an||
L

3
2+d (B(0,4R))

. Using this and

Corollary 7.2 it holds that

sup
B(0,R)

v6
n C1

ˆ
B

v6
n C2,

with B(0,R) ⇢ B. Therefore, it follows that vn is uniformly bounded in L•(B(0,R)),
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and we are done.

Corollary 7.4. Suppose r 2C(R3) is nonnegative and p 2 [3,5). Let (en)n2N ⇢ R+

and (xn)n2N ⇢ R3 be sequences such that en ! 0, xn ! x⇤ 2 L̄ as n !+•, and

liminf
n!+•

u
en(xn)> 0,

where u
en ⇢ E

en is the sequence of positive solutions to (7.7) found in Theorem 7.2.
Define vn(x) := u

en(xn + enx) and let v 2 H1(R3) be the strong C1,a
loc (R3) limit found

in Proposition 7.3. Then, v is a positive weak solution to the equation

�Dv+ v = c(x)vp +(1�c(x))min{kv,vp}, (7.43)

where c is a measurable function satisfying 0  c(x) 1.

Proof. By Proposition 7.3, we have that, up to a subsequence,

vn ! v in C1,a
loc (R

3).

Moreover, since L is smooth, up to a subsequence, cL(xn + enx) converges almost
everywhere to a measurable function c satisfying 0  c(x)  1. Thus, taking the
limit n ! +• in the weak formulation of (7.41), it follows that v is a weak solution
to the equation

�Dv+ v = c(x)vp +(1�c(x))min{kv,vp}.

By assumption, we have that

v(0) = lim
n!•

vn(0) = lim
n!•

u
en(xn)> 0,

and so it follows that v is nontrivial, and, in fact, positive by the strong maximum
principle.

In the next result, we show that there does, in fact, exist a sequence (xn)n2N ⇢ R3

satisfying the assumptions of the previous corollary.
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Lemma 7.19. Suppose r 2 C(R3) is nonnegative and p 2 [3,5). Let u
e

⇢ E
e

be the
sequence of positive solutions to (7.7) found in Theorem 7.2. Then, it holds that

||u
e

||L•(L) > k

1
p�1 ,

where k > 0 is as in (7.5).

Proof. Assume by contradiction, that u
e

 k

1
p�1 in L. Then, for all x 2 L,

g(x, u
e

) = up�1
e

·u
e

 ku
e

,

and, moreover, for all x 62 L

g(x, u
e

) = min
�

ku
e

, up
e

 
 ku

e

.

Thus, for all x 2 R3, it holds that

0 =�e

2Du
e

+u
e

+r(x)fu
e

u
e

�g(x,u
e

)

��e

2Du
e

+u
e

�g(x,u
e

)

��e

2Du
e

+(1�k)u
e

Multiplying the previous inequality by u
e

and integrating, we obtain

ˆ
R3

�
e

2|—u
e

|2 +(1�k)u2
e

�
 0,

contradicting the positivity of u
e

. This completes the proof.

7.3.3 Further properties of rescaled solutions

In this section we establish some properties of the rescaled solutions vn. Since we can-
not directly apply the technique we discussed for the nonlinear Schrödinger equation
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in Section 7.1 in order to obtain a lower estimate of e

�3
n J(u

e

), we expect that having
further information on the rescaled solutions will aid us in adapting the method to
our problem. Going forward, we would like to use these properties to obtain a lower
estimate similar to (7.20). We first state a result on the pointwise decay of the rescaled
solutions, which we will need for the subsequent theorem.

Lemma 7.20. Suppose r 2 C(R3) is nonnegative and p 2 [3,5). Let (en)n2N ⇢ R+

and (xn)n2N⇢R3 be sequences such that en ! 0 and xn ! x⇤ 2 L̄ as n!+•. Assume
u

en ⇢ E
en is the sequence of positive solutions to (7.7) found in Theorem 7.2 and

define vn(x) := u
en(xn+enx). Then, for every l > 0 and d 2 (0,1), there exists C > 0,

possibly depending on n, such that

vn(x)Ce�l (1+|x|)d

.

Proof. We note that vn satisfies (7.41), which we can rewrite as

�Dvn +


1+ e

2
n r(xn + enx)

✓ˆ
R3

v2
n(y)r(xn + eny)

4p|x� y|

◆�
vn =

g(xn + enx,vn)

vp
n

vp
n .

By definition, it holds that g(xn + enx,vn) vp
n , and so

g(xn + enx,vn)

vp
n

 1.

Moreover,

liminf
|x|!+•


1+ e

2
n r(xn + enx)

✓ˆ
R3

v2
n(y)r(xn + eny)

4p|x� y|

◆�
|x|2�2d � |x|2�2d > l

2,

for any l > 0 and d 2 (0,1). Thus, the conclusion follows from Theorem 8 (ii) in
[21].

Next, using the previous result and the bounds established in Corollary 7.2, we
find a uniform L• bound on the rescaled solutions. We note that, at this point, we can
only prove the following theorem under the additional assumption that r 2 L•(R3),
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and so, in what follows, the space E
en coincides with the larger space H1

en .

Theorem 7.3. Suppose r 2C(R3)\L•(R3) is nonnegative and p 2 [3,5). Let
(en)n2N ⇢ R+ and (xn)n2N ⇢ R3 be sequences such that en ! 0 and xn ! x⇤ 2 L̄ as
n !+•. Assume u

en ⇢ H1
en is the sequence of positive solutions to (7.7) found in The-

orem 7.2 and define vn(x) := u
en(xn + enx). Then, it holds that supn2N ||vn||L•(R3) <

+•.

Proof. We will argue by contradiction. Assume, to the contrary, that there exists a
sequence (em)m2N such that em ! 0 as m ! +•, u

em solves (7.7) for each m, and it
holds

||vm||L•(R3) !+• as m !+•,

where vm(x) := u
em(xm + emx). Let

am := maxvm, (am !+• as m !+•),

bm := a

�(p�1)/2
m , (bm ! 0 as m !+•).

Define

v̄m(x) :=
1

am
vm(x̄m +bmx),

where x̄m is a global maximum point of vm. We note that such a point exists because,
by regularity theory, vm are solutions in the classical sense and, moreover, by Lemma
7.20, vm decays to zero for each m. Now, since u

em solves (7.7), then vm solves (7.41).
Multiplying this equation by b

2
m

am
, we obtain

�b

2
m

am
Dvm(x̄m +bmx)

=�b

2
m

am
vm(x̄m +bmx)

� b

2
m

am
r(xm + emx̄m + embmx)fu

em (xm + emx̄m + embmx)vm(x̄m +bmx)
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+
b

2
m

am


cL(xm + emx̄m + embmx)vp

m(x̄m +bmx)

+(1�cL(xm + emx̄m + embmx))min{kvm(x̄m +bmx),vp
m(x̄m +bmx)}

�
.

Noting that Dv̄m(x) = b

2
mDvm(x̄m+bmx)/am and b

2
ma

p�1
m = 1, we see that v̄m satisfies

�Dv̄m =�b

2
mv̄m

�b

2
mr(xm + emx̄m + embmx)fu

em (xm + emx̄m + embmx)v̄m

+cL(xm + emx̄m + embmx)v̄p
m

+(1�cL(xm + emx̄m + embmx))min
⇢

k

v̄m

a

p�1
m

, v̄p
m

�
. (7.44)

Now, since

fu
em (xm + emx̄m + embmx) =

ˆ
R3

u2
em(y)r(y)

|xm + emx̄m + embmx� y| dy

= a

2
me

2
mb

2
m

ˆ
R3

v̄2
m(y)r(xm + emx̄m + embmy)

|x� y| dy,

then (7.44) reads as

�Dv̄m =�b

2
mv̄m

�a

2
me

2
mb

4
mr(xm + emx̄m + embmx)

✓ˆ
R3

v̄2
m(y)r(xm + emx̄m + embmy)

|x� y| dy
◆

v̄m

+cL(xm + emx̄m + embmx)v̄p
m

+(1�cL(xm + emx̄m + embmx))min
⇢

k

v̄m

a

p�1
m

, v̄p
m

�
. (7.45)

It is worth noting here that since am ! +• as m ! +•, then, using the assumption
p � 3, it follows that a

2
me

2
mb

4
m = a

�2(p�1)
m e

2
ma

2
m = a

4�2p
m e

2
m ! 0 as m !+•. Hence,

we can use the same regularity arguments as in the proof of Theorem 6.2. Namely,
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we notice that, by construction, ||v̄m||L•(R3) = 1 for all m, and, by assumption, r is in

L•(R3). So, since v̄2
mr is uniformly bounded in L•(R3), then

´
R3

v̄2
m(y)r(xm+emx̄m+embmy)

4p|x�y|
is uniformly bounded in C0,a

loc (R3) and consequently, is uniformly bounded in L•
loc(R3)

(see e.g. [42, p. 260]; [1, p. 11]). Thus, the entire right-hand side of (7.45) is uni-
formly bounded in L•

loc(R3) which implies v̄m is uniformly bounded in C1,a
loc (R3) (see

e.g. [35]). It then follows that uniformly on compact sets and for some v̄ 2C1(R3)

∂

b v̄m ! ∂

b v̄ as m !+•, |b | 1.3 (7.46)

We now notice that Corollary 7.2 implies that ||vm||H1 C for some C > 0, and so we
have

||v̄m||p+1
Lp+1 =

1
a

p+1
m b

3
m
||vm||p+1

Lp+1

= a

(p�5)/2
m ||vm||p+1

Lp+1

Ca

(p�5)/2
m ||vm||p+1

H1

 C̄a

(p�5)/2
m , (7.47)

Since a

(p�5)/2
m ! 0 as m ! +•, it follows from (7.46) and (7.47), that v̄ ⌘ 0 by

Fatou’s Lemma. On the other hand, by definition v̄m(0) = vm(x̄m)/am = am/am = 1
for all m, and so in particular v̄(0) = 1. We have therefore reached a contradiction and
have proved that

sup
n2N

||vn||L•(R3) <+•.

Remark 7.5. We note that this proof is very similar to the proof of Theorem 6.2,
however in the previous proof we used (7.47) to arrive at a contradiction rather than
obtaining a contradiction from the limiting problem. We are not able to simplify the
proof of Theorem 6.2 in this way because we have no information about the varia-
tional characterisation of the solutions in that theorem. Indeed, to obtain (7.47) in the
previous theorem, we use Corollary 7.2, which relies in a vital way on the fact that the
solutions we deal with are Mountain Pass solutions.

3In fact, we only require uniform convergence at this stage.
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Remark 7.6. An interesting consideration is how far we can get in the previous proof
if we do not have the variational characterisation of the solutions, namely if we do
not have (7.47). If this is the case, we must go to the limiting problem associated
with (7.45). We first recall that a

2
me

2
mb

4
m = a

4�2p
m e

2
m ! 0 as m ! +• since p � 3.

Moreover, since L is smooth, it follows that, up to a subsequence, cL(xm + emx̄m +

embmx) converges almost everywhere to a measurable function c̄ which satisfies c̄ 2
[0,1]. Thus, taking the limit m !+• in (7.45), we get

(
�Dv̄ = c̄(x)v̄p, x 2 R3

v̄(0) = 1.
(7.48)

We now look at three possible cases. If

limsup
m!+•

dist(xm + emx̄m, R3 \L)
embm

=+•, (7.49)

then this implies c̄(x)⌘ 1, and if

limsup
m!+•

dist(xm + emx̄m, ∂L)
embm

<+•, (7.50)

then this would imply that c̄(x) = cE(x), where E is a half-space. In both cases, one
can evoke some Liouville type theorems, as in [34], to show that v̄ ⌘ 0, in contradic-
tion with v̄(0) = 1. If neither (7.49) nor (7.50) hold, then it follows that

limsup
m!+•

dist(xm + emx̄m, L)
embm

=+•, (7.51)

and so c̄(x)⌘ 0. In order to arrive at a contradiction in this case, one needs to show
that v̄ has bounded energy. Thus, the conclusion in this case seems to rely on an Lp+1

estimate such as (7.47), and so we have the impression that this is precisely the point
where the variational characterisation of the solutions is needed.

7.3.3.1 Partial conclusions

We observe that by Proposition 7.3 we are able to prove the strong C1,a
loc (R3) conver-

gence of the rescaled solutions vn. We will show that this strong convergence also
holds in H1(R3), provided one proves the following uniform decay estimate on the
rescaled solutions.
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(H1) For every l > 0 and d 2 (0,1), there exists a uniform constant C > 0
such that

vn(x)Ce�l (1+|x|)d

,

where vn(x) := u
en(xn + enx), u

en is the sequence of nonnegative solu-
tions to (7.7) found in Theorem 7.2, and (en)n2N ⇢ R+ and (xn)n2N ⇢
R3 are sequences such that en ! 0 and xn ! x⇤ 2 L̄ as n !+•.

Assuming that r 2C(R3)\L•(R3) is nonnegative and p 2 [3,5), we believe that it is
very plausible that (H1) can be proved by combining the previous two results we have
obtained, namely, the pointwise decay estimate found in Lemma 7.20 and the uniform
L• bound found in Theorem 7.3. Hypothesis (H1) will be required for the following
result.

Lemma 7.21. Suppose r 2C(R3)\L•(R3) is nonnegative and p 2 (3,5). Let
(en)n2N ⇢ R+ and (xn)n2N ⇢ R3 be sequences such that en ! 0 and xn ! x⇤ 2 L̄ as
n !+•. Assume u

en ⇢ H1
en is the sequence of nonnegative solutions to (7.7) found in

Theorem 7.2 and define vn(x) := u
en(xn + enx). Then, if (H1) holds, it follows that up

to a subsequence,

vn ! v in H1(R3),

where v 2 H1(R3) is a positive weak solution to equation (7.43).

Proof. By Corollary 7.2 we have that vn is uniformly bounded in H1(R3). By Propo-
sition 7.3 and Corollary 7.4, we have that up to a subsequence vn * v in H1(R3),
where v 2 H1(R3) is a positive weak solution to equation (7.43), which can be rewrit-
ten as

�Dv+ v =


c(x)vp +(1�c(x))min{kv,vp}
vp

�
vp.

Since

c(x)vp +(1�c(x))min{kv,vp}
vp  1,
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we can follow the same arguments as in the proof of Lemma 7.20, to show that for
every l > 0 and d 2 (0,1), there exists a constant C̄ > 0 such that

v(x) C̄e�l (1+|x|)d

,

by Theorem 8 (ii) in [21]. Combining this with (H1), we have

|vn � v| 2max{C,C̄}e�l (1+|x|)d . e�l (1+|x|)d

.

So, for any e > 0, there exists an R > 0 such that

ˆ
R3\BR

|vn � v|q =
ˆ
R3\BR

|vn � v|q�2|vn � v|2

. e�l (q�2)(1+|R|)d ||vn � v||2H1(R3)

< ce�l (q�2)(1+|R|)d

< ce,

for some uniform constant c > 0 and for all q > 2. This and the classic Rellich Theo-
rem implies that, passing if necessary to a subsequence,

ˆ
R3

|vn � v|q ! 0,

for all q 2 (2,6). We now note that since vn solves (7.41), it follows that

ˆ
R3

(—vn—(vn � v)+ vn(vn � v))+
ˆ
R3

r(xn + enx)f̄n(x)vn(vn � v)

�
ˆ
R3

g(xn + enx,vn)(vn � v)! 0, (7.52)

where

f̄n(x) := fu
en (xn + enx) = e

2
n

✓ˆ
R3

v2
n(y)r(xn + eny)

4p|x� y|

◆
,
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and

g(xn + enx,vn) = cL(xn + enx)vp
n +(1�cL(xn + enx))min{kvn,vp

n}.

Since vn * v in H1(R3), it holds that

ˆ
R3

(—vn—(vn � v)+ vn(vn � v))! ||vn||2H1(R3)� ||v||2H1(R3), (7.53)

and since we showed that vn ! v in Lq(R3) for all q 2 (2,6), it also holds that

ˆ
R3

g(xn + enx,vn)(vn � v)! 0. (7.54)

Moreover, since r 2 L•(R3) by assumption and —f̄n is uniformly bounded in L2(R3)

by Corollary 7.2, we have that

����
ˆ
R3

r(xn + enx)f̄n(x)vn(vn � v)
���� ||r||L•(R3)||f̄n||L6(R3)||vn(vn � v)||

L
6
5 (R3)

C||r||L•(R3)||—f̄n||L2(R3)||vn(vn � v)||
L

6
5 (R3)

C1||vn(vn � v)||
L

6
5 (R3)

C1||vn||
L

12
5 (R3)

||(vn � v)||
L

12
5 (R3)

! 0, (7.55)

where the final convergence holds since vn is uniformly bounded in L
12
5 (R3) as a

consequence of Corollary 7.2 and we showed vn ! v in Lq(R3) for all q 2 (2,6).
Therefore, combining (7.52), (7.53), (7.54), and (7.55), implies that

||vn||H1(R3) ! ||v||H1(R3).

Using this and the fact that vn * v in H1(R3), we obtain

||vn � v||2H1(R3) = ||vn||2H1(R3)�2(vn,v)H1(R3) + ||v||2H1(R3) ! 0,
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and so we have shown that

vn ! v in H1(R3),

as required.
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8 Related questions

In addition to accomplishing the sufficient conditions programme discussed in the
previous chapter, there are a number of interesting questions related to our work in
this thesis which, in our opinion, are worth studying in future projects.

A. Radial versus non-radial solutions. In the case r is a radial function one can
restrict on functions having the same symmetry to find radial solutions, using Palais
criticality principle, in all of the scenarios we have discussed (coercive/non-coercive
cases, for low/large p). It is not clear how to compare the energy levels nor the sym-
metry of the solutions with those that one finds using the non-radial approaches em-
ployed in this thesis.

B. Variational characterisation. When p 2 (2,3], it is not obvious whether the
mountain pass critical points for I, are least energy solutions. Namely, for p 2 (2,3],
there is no clear relation between the solutions found in Theorem 4.1 (for p = 3) and
Theorem 4.2 with those found in Corollary 4.3, as well as between the solutions found
in Theorem 4.4 (for p = 3) and Theorem 4.3 with those found in Corollary 4.6.

C. Multiplicity. We suspect that the constrained minimisation approach in [61] may
help refining the approach in [7], to obtain a multiplicity result for coercive r and
p  3, with a more relaxed relation between r and —r than is assumed in Theorem
5.3

D. ‘Sharp’ necessary conditions for point concentration. Is it possible to allow a
faster growth for r in the necessary conditions for point concentration? The proof we
provide is based on the uniform exponential decay of solutions, which is essentially
due to the L2 setting.
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1984, 1, pp. 109-145 and 223-283.

[45] P. L. Lions. Solutions of Hartree-Fock equations for Coulomb systems. Comm.
Math. Phys., 1987, 109(1), pp. 33–97.

[46] N. J. Mauser. The Schrödinger-Poisson-Xa equation. Appl. Math. Lett., 2001,
14(6), pp. 759–763.

[47] C. Mercuri. Positive solutions of nonlinear Schrödinger-Poisson systems with
radial potentials vanishing at infinity. Atti Accad. Naz. Lincei Rend. Lincei Mat.
Appl., 2008, 19(3), pp. 211 – 227.

[48] C. Mercuri, V. Moroz and J. Van Schaftingen. Groundstates and radial solu-
tions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency.
Calc. Var. Partial Differential Equations, 2016, 55(6), pp. 1– 58.

[49] C. Mercuri and M. Squassina. Global compactness for a class of quasi-linear
problems. Manuscripta Math., 2013, 140(1-2), pp. 119–144.

158



[50] C. Mercuri and T. M. Tyler. On a class of nonlinear Schrödinger-Poisson sys-
tems involving a nonradial charge density. Rev. Mat. Iberoam., Electronically
published on January 7, 2020. doi: 10.4171/rmi/1158 (to appear in print).

[51] C. Mercuri and T. M. Tyler. Concentration at points driven by a nonradial charge
density for solutions to nonlinear Schrödinger-Poisson systems. In preparation.

[52] C. Mercuri and M. Willem. A global compactness result for the p-Laplacian
involving critical nonlinearities. Discrete and Continuous Dynamical Systems,
2010, 28(2), pp. 469–493.

[53] S. Pohozaev. Eigenfunctions of the equation Du + l f (u) = 0. Soviet. Math.
Dokl., 1965, 6, pp. 1408–1411.

[54] P. Pucci and J. Serrin. The Maximum Principle, Progress in nonlinear differen-
tial equations and their applications, 73. Basel, Switzerland: Birkhäuser Verlag,
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