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Abstract. We present a completeness characterization of box splines on three-directional
triangulations, also called Type-I box spline spaces, based on edge-contact smoothness prop-
erties. For any given Type-I box spline, of specific maximum degree and order of global
smoothness, our results allow to identify the local linear subspace of polynomials spanned by
the box spline translates. We use the global super-smoothness properties of box splines as
well as the additional super-smoothness conditions at edges to characterize the spline space
spanned by the box spline translates. Subsequently, we prove the completeness of this space
space with respect to the local polynomial space induced by the box spline translates. The
completeness property allows the construction of hierarchical spaces spanned by the trans-
lates of box splines for any polynomial degree on multilevel Type-I grids. We provide a basis
for these hierarchical box spline spaces under explicit geometric conditions of the domain.

1. Introduction

Box splines are locally supported piecewise polynomial functions defined on uniform grids.
They were first introduced by de Boor and DeVore in [4], and are considered a generalization
of the univariate B-spline functions to the multivariate setting. From a geometric point of
view, box splines can be seen as density functions of the shadows of higher dimensional boxes
and half-boxes [35]. We remark that they can also be studied as a special case of the so-called
simplex splines [10]. Box splines possess a number of useful properties that make them well-
suited for applications[14, 34]. For instance, it has been shown that box splines have small
support (a few cells of the underlying grid), they are non-negative, form a partition of unity,
and are refinable i.e., the box spline spaces on refined grids are nested [3, 7].

Box splines can be defined from an arbitrary set of directional vectors in Rn, but of par-
ticular interest for Geometric Design are box splines surfaces which are defined on uniform
triangulations of the plane. In this article, we focus on type-I box splines. They are splines
defined on three-directional meshes that are commonly known as type-I triangulations of R2.

From the rich literature on box splines, we mention a few monographs and survey articles
which include [6–9, 35], and a few representative publications on two specific topics. Firstly,
a substantial number of results on the approximation power of box splines is described in the
literature e.g., [5,30,36,37]. Secondly, several publications discuss techniques for the efficient
manipulation of box spline bases. Sablonnière pioneered local Bernstein-Bézier representations
for a variety of splines, including type-I box splines, see [38] and references therein. A general
stable evaluation algorithm is devised in [27]. In [26] the problem of efficient evaluation of
box splines is addressed by making use of the local Bernstein representation of basis functions
on each triangle. Recent applications of box splines include surface fitting [24], and solving
linear elasticity problems in isogeometric analysis [20]. In other areas of mathematics, the
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theory of box splines has been proved useful to compute the volume of polytopes, and to deal
with the integration of continuous functions over polytopes [44].

In this article, we are interested in the linear spaces of spline functions generated by the
translates of any fixed type-I box spline. These spline spaces share good approximation
properties. For example, the set of translates of any type-I box spline form a partition of
unity on R2, they are globally, and also locally, linearly independent. These properties of
type-I box splines were studied by Dahmen and Micchelli in [13] and Jia in [21]. In particular,
they investigated the linear independence of translates of a box spline in [12,22].

The linear independence property implies that the set of translates of any type-I box spline
constitutes a basis for the spline space they span. In general this property is not satisfied for
box spline functions associated to other uniform partitions, and that makes type-I box splines
particularly relevant for applications. For instance, the set of translates of box splines defined
from a set of four directional vectors, the so-called type-II box splines, are linearly dependent.
For a concise treatment of type-II box splines, further references, and alternative proofs of
box spline properties, see [29, Chapter 12] and [8, Chapter 2].

A second interesting feature of type-I box splines is that, although for any fixed type-I box
spline of degree d and order of smoothness r, the box spline translates form a basis, in general
these translates do not generate all possible piecewise polynomial functions of degree 6 d and
global smoothness r over the three-directional mesh. More precisely, the box spline translates
span a proper subspace of the space of Cr-continuous spline functions Srd(G) of degree at most
d on a three-directional mesh G (cf. Figure 1), for any d > 1. Thus, if the domain is taken as
the entire mesh G, or as an infinite collection of triangles in G, then both spaces are infinite
dimensional. However, if the domain is restricted to a finite collection of triangles Ω, as it is
the usual setting in practice, then their finite dimension differ. Explicit dimension formulas
in terms of the combinatorics of the domain Ω are well known for both spaces, dimSrd(Ω) can
be computed using homological methods [33], or Bernstein-Bézier methods as in [8, Chapter
2].

The understanding of the space spanned by (a finite set of) translates of type-I box splines in
terms of continuity and polynomial or spline function inclusion is paramount for inducing the
approximation power of the considered finite dimensional space. We refer to [5] for early results
in this direction based on truncated power bases and [37] for results based on the construction
of quasi-interpolants. In our work we deduce hierarchical space and basis constructions for
adaptively refined type-I grids, thus extending the aforementioned approximation results to
the hierarchical setting.

In the present paper we provide a characterization for the space spanned by box splines
translates based on supersmooth conditions across the edges of the underlying partition. We
prove that for any fixed degree d and order of global smoothness r, the space of splines satis-
fying these extra local smoothness conditions is precisely the space spanned by the translates
of the corresponding type-I box spline. From this we deduce that the type-I box spline spaces
are complete with respect to the local polynomial space induced by the box spline translates.
The proof of this result uses the Fourier transform of box splines, as well as the algebraic
properties of the Bernstein-Bézier representations of type-I box splines. We generalize the
classic definition of spline space in Definition 1 to link the spline polynomial pieces to specific
polynomial subspaces of R[x, y] and present the main result in the paper in Section 4.

Furthermore, in Section 5, we apply the completeness characterization of box splines into
the construction of hierarchical spline spaces based on local refinements of a type-I triangu-
lation. Hierarchical splines constitute a well-established approach to adaptive refinement in
geometric modeling [15] and numerical analysis [39, 43]. Hierarchical tensor-product spline
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spaces were introduced by Kraft in [28] using a selection mechanism for B-splines. The method
has been refined leading to spline basis with better approximation properties, such as the par-
tition of unity property, strong stability and full approximation power [18, 19, 41, 45]. It has
also been adapted to Powell-Sabin splines [40], Zwart-Powell elements and B-spline-type ba-
sis functions for cubic splines on regular grids [46]. In an earlier article, we constructed a
hierarchical basis for quartic C2-continuous box splines [42]. Quartic hierarchical box splines
spaces have also been studied and used for surface fitting applications by Kang, Chen and
Deng in [24] and [25]. Truncated hierarchical type-I box splines were considered in [23] and
[20] in connection to isogeometric analysis applications. Other subdivision schemes has been
explored in [16, 32]. A C1-continuous scheme based on cubic half-box splines was presented
in [1].

The results we present in this article generalize our previous work [42] on quartic box
splines. Our results apply to type-I box splines of any polynomial degree with no restriction
on the symmetry of their support.

The remainder of this paper is organized as follows. In Section 2 we introduce the relevant
notation for type-I triangulations, spline functions and the directional derivatives. Section 3
concerns the definition and properties of type-I box spline spaces. We define the space of
translates and recall existing results on local and global smoothness of these functions. In
Section 4 we prove Lemma 22 which is the main result in the paper, and corresponds to the
edge-contact characterization for type-I box splines. In Section 5 we construct the hierarchical
type-I meshes and the corresponding hierarchical box spline spaces. This construction follows
the approach presented in [31] and [42]. We conclude the paper with some final remarks in
Section 6.

2. Preliminaries

Throughout this article we assume that G is the uniform type-I triangulation of the real
plane R2, see Figure 1. This triangulation is obtained by drawing in the north-east diagonals in
the bi-infinity grid with grid lines at the integers. This triangulation of the plane is associated
to three directional vectors, namely e1 = (1, 0), e2 = (0, 1) and e3 = (1, 1), and therefore is
also called a three directional mesh. Each line of G is parallel to one of these vectors and go
through the points of the integer grid Z2.

We consider G as the union of T,E and V , where T denotes the collection of triangles in
G, which are considered as open sets in R2, E is the collection of all edges, and V = Z2 is the
collection of all vertices. The set of edges is the disjoint union E = E1 t E2 t E3, where Ei
is the set of edges that are parallel to the vector ei. The edges in Ei are called edges of type
i. The combinatorial closure of a triangle 4 ∈ T , denoted by 4̂, is the set consisting of the
vertices and edges of 4, and 4 itself. Analogously, ε̂ of an edge ε ∈ E is the set consisting of
the edge itself and its two vertices.

A multicell domain M is the triangulation in R2 induced by a finite set of triangles
{41, . . . , 4m} ⊂ T , i.e.

M =
m⋃
i=1
4̂i .

This means, that for every triangle 4i ∈ M , all the vertices and edges of 4i are considered
as elements of M . The subspace of R2 defined by the (topological) closure 4i of the triangles
4i defining the multicell domain M will be denoted by M∗, namely

(1) M∗ =
⋃
4∈M

4 .
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Figure 1. Uniform type-I triangulation (or three-directional mesh) of R2 as-
sociated to the directional vectors e1 = (1, 0), e2 = (0, 1) and e3 = (1, 1). We
denote this grid as G.

Given a multicell domain M , the diamond of an edge ε is defined as the union of all (at most
two) triangles of M which have ε as an edge, that is

3(ε) =
⋃

4∈M, ε∈4̂

4̂ .

Similarly, the diamond of a vertex ν is defined by

3(ν) =
⋃

4∈M, ν∈4̂

4̂ ,

which is the union of the (at most six) triangles 4 in M such that ν is a vertex of 4̂.
Notice that the diamond �(·), of an edge or a vertex, depends on the multicell domain M .

From the context, it will be clear the particular domain we are considering in each case.

We denote by R[x, y] the space of bivariate polynomials over the real numbers, and for
d > 0, Pd ⊆ R[x, y] is the set of all bivariate polynomials in x and y of total degree 6 d. In
our presentation, the polynomial pieces that define the splines are taken from a finite vector
subspace V of R[x, y]. This subspace V is not necessarily the same as Pd for any polynomial
degree d, it may be a proper linear subspace. In this setting, we define the space of continuous
splines P(M,V) on a multicell domain M as follows.

Definition 1. Given a multicell domain M , and a vector subspace V ⊆ R[x, y], we define
P(M,V) as the set of piecewise polynomials functions on M i.e.,

P(M,V) =
{
f ∈ C0(M∗) : f |4 ∈ V|4 for each triangle 4 ∈M

}
,

where M∗ is as defined in Equation (1), and f |4 denotes the restriction of the function f to
the triangle 4, and V|4 is the restriction to 4 of the polynomials in V (seen as functions on
R2).

In particular, when V = Pd, the space P(M,V) coincides with the usual space of C0-
continuous splines (or piecewise polynomial functions) on M of degree at most d.

For any index s = (s1, s2, s3) ∈ Z3
>0, that we also called regularity vector, we consider the

mixed directional derivative operator

Ds : R[x, y]→ R[x, y]
p 7→ (∇ · e1)s1(∇ · e2)s2(∇ · e3)s3(p) .
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For a given multicell domain M and a polynomial vector space V, we extend the operator Ds

to elements f ∈ P(M,V) by applying Ds to the restrictions f |4, namely

(Dsf)|4 = Ds(f |4) , for each triangle 4 ∈M.

If x0 is a point on the boundary of triangle 4 i.e., if x0 is a vertex or a point on an edge
of 4, we define (Dsf |4)|x0 as limx→x0(Dsf |4)|x. By an abuse of notation, we say that for
Dsf ∈ C0(M∗) if (Dsf |4)|x0 = (Dsf |4′)|x0 for any pair of triangles 4,4′ ∈ M such that
x0 ∈ 4 ∩4

′.

Definition 2. For a given index set I ⊂ Z3
>0, and a vector space of functions V ⊆ R[x, y], we

define the space of functions DI(M,V) on a multicell domain M by

DI(M,V) =
{
f ∈ P(M,V) : Dsf ∈ C0(M∗) for all s ∈ I

}
,

where M∗ is as defined in Equation (1).

Remark 3. Using the notation in Definition 2 we have

D∅(M,V) = P(M,V) .

If Srd(M) denotes the space of globally Cr-continuous spline functions on M of degree at most
d, then Srd(M) can be written as DI(M,Pd), where I =

{
s ∈ Z3

>0 : s1 + s2 + s3 6 r
}
.

In this paper, for a given multicell domain M , we shall consider piecewise polynomial
functions, or splines, on M with a specific order of smoothness associated to each of the three
directions associated to the grid G. Namely, for a regularity vector d = (d1, d2, d3) ∈ Z3

>0 we
define the index sets:

Id
1 =

{
s ∈ Z3

>0 : s2 + s3 6 d1
}
,

Id
2 =

{
s ∈ Z3

>0 : s1 + s3 6 d2
}
,

Id
3 =

{
s ∈ Z3

>0 : s1 + s2 6 d3
}
,

and consider the spline space Sd(M,V) defined as follows.

Definition 4. For a multicell domain M of the three directional grid G, a vector space
V ⊆ R[x, y], and a vector d ∈ Z3, the spline space with edge smoothness d on M denoted
Sd(M,V) is defined as the set of piecewise polynomial functions on M such that the derivatives
of order s ∈ Id

i are continuous across the edges of type i for i = 1, 2, 3. More precisely,

Sd(M,V) =
{
f ∈ P(M,V) : f |3(ε)∗ ∈ Cdi (3(ε)∗) for every ε ∈ Ei ∩M

and i ∈ {1, 2, 3}
}
,

=
{
f ∈ P(M,V) : f |3(ε)∗ ∈ DId

i
(3(ε)∗,V) for every ε ∈ Ei ∩M

and i ∈ {1, 2, 3}
}
,

where 3(ε)∗ =
⋃
4∈�(ε)M 4 as defined in Equation (1).

Later in this paper (see Definition 8 below), we shall introduce a spline space but with
smoothness conditions at the vertices of the domain M , the notation in Definition 4 will be
particularly convenient for that purpose.

In the following example we illustrate Definition 4 for a specific multicell domain in the
grid G and a regularity vector d ∈ Z3

>0.
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(0, 0)

(1, 1)

(2, 2)(1, 2)

ε1

ε2 ε3

△1

△2

△3

△4

b

b b b

b

b

Figure 2. Multicell domain M = ∪4
i=14̂i, with edges εi = 4i ∩4i+1 for i = 1, 2, 3.

Example 5. Let M be the multicell domain in Figure 2. It is composed of four triangles
denoted 41, . . . ,44, we take V = P2 (the polynomials in R[x, y] of degree at most 2), and
the regularity vector d = (0, 1, 0). Then

Id
1 = {(i, 0, 0) : i ∈ Z>0}, Id

2 = {(0, j, 0), (1, j, 0), (0, j, 1) : j ∈ Z>0} ,

and Id
3 = {(0, 0, k) : k ∈ Z>0} .

If we define f ∈ P(M,P2) by f |4̂i
= fi, where

(2)
f1 = x2;
f2 = (x− y + 1)2;

f3 = (y − 2x)(y − 2);
f4 = 2(x− 1)(y − x) + 2x− y2 .

Then f is an element in Sd(M,P2). In fact, if we put g1,2 = (f1, f2) = f |�(ε1), since f1 − f2 =
(y − 1)(2x− y + 1) then Ds g1,2 is a continuous function on �(ε1) for s ∈ Id

1 . Similarly, if we
put gi,i+1 = (fi, fi+1) it is easy to check that Ds g2,3 and Dt g3,4 are continuous functions for
every s ∈ Id

2 and t ∈ Id
3 on �(ε2) and �(ε3), respectively. �

In an analogous way as we defined a spline space associated to smoothness along the edges
(Definition 4) of a multicell domain, we will introduce a space of splines with additional
smoothness at the vertices of a given multivariate domain M . We prepare this definition by
listing the possible vertex-vertex contact configurations 4 ∩ 4′ = {ν} between any pair of
triangles 4,4′ ∈ T . First we need the following definitions.

Definition 6. Two triangles 4 and 4′ in the grid G, are said to be edge-connected if there is
a collection of triangles 40,41, . . . ,4m ∈ T such that 4 = 40, 4′ = 4m and 4i−1∩4i ∈ E
for every i = 1, . . .m. Such a collection of triangles40,41, . . . ,4m is called an edge-connected
chain between 4 and 4′.

Definition 7. If 4,4′ ∈ T are triangles such that 4∩4′ 6= ∅, we define the smoothness type
ST(4,4′) ⊆ {1, 2, 3} as the set of edge-types that are in the shortest edge-connected chain
in G between 4 and 4′. If 4 = 4′ we define ST(4,4′) = ∅.

For any given pair of triangles 4,4′ ∈ T with a non-empty intersection, we can identify
them with a pair of triangles from A to F in Figure 3, and their smoothness type ST(4,4′)
becomes one of the subsets listed in the table on the left of Figure 3.

We now use Definitions 6 and 7 to introduce the space of strongly regular splines associated
to a multicell domain M in the three directional grid G.
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ST(4,4′) A B C D E F

A ∅ {1} {1,2} {1,2,3} {2,3} {3}
B {1} ∅ {2} {2,3} {1,2,3} {1,3}
C {1,2} {2} ∅ {3} {1,3} {1,2,3}
D {1,2,3} {2,3} {3} ∅ {1} {1,2}
E {2,3} {1,2,3} {1,3} {1} ∅ {2}
F {3} {1,3} {1,2,3} {1,2} {2} ∅

△A

△B

△C

△D

△E

△F

11

2

2

3

3

Figure 3. Smoothness types of a pair of triangles4, 4′ such that4∩4′ 6= ∅.
We can identify 4, 4′ with two triangles in the picture on the right. The type
ST(4,4′) is the corresponding index set shown in the table on the left side,
which is constructed according to the shortest edge-connected chain between
them (see Definition 6).

Definition 8. For a multicell domain M in G, a vector space V ⊆ R[x, y], and a regularity
vector d = (d1, d2, d3), we define the set Ŝd(M,V) of strongly regular splines on M as follows,

Ŝd(M,V) =
{
f ∈ P(M,V) : f |U ∈ DI(U,V) for 4,4′ ∈M,4∩4′ 6= ∅ ,

U = 4∪4′ , and I =
⋂
i∈ST(4,4′) I

d
i

}
.

Namely, the elements in Ŝd(M,V) are the splines f ∈ P(M,V) such that for any pair of
triangles 4,4′ ∈ M such that 4∩4′ 6= ∅, the derivatives Ds of f are C0-smooth for every
s ∈

⋂
i∈ST(4,4′) I

d
i . A spline f ∈ P(M,V) that satisfies this property is called strongly regular.

(Notice that an edge-connected chain is composed of triangles in the grid G and are not
necessarily in M .)

The set Ŝd(M,V) is the linear space of splines with edge and vertex smoothness d on the
multicell domain M .

Example 9. Let M be the multicell domain in Figure 2, V = P2 and d = (0, 1, 0) as
in Example 5. It is easy to check that the piecewise function f defined in Equation (2)
is in Ŝd(M,V). For instance, if we take the triangles 41 and 44, the smoothness type
ST(41,44) = {1, 2, 3}. Then I =

⋂3
i=1 I

d
i = {(0, 0, 0)}, and in fact f1(1, 1) = f4(1, 1).

Similarly, taking the triangles 42 and 44, we get ST(42,44) = {2, 3} and I =
⋂3
i=2 I

d
i =

{(0, 0, k) : k = 0, 1}. The polynomials f2 and f4 and also their derivatives ∂(fi)/∂(x− y), for
i = 2 and 3, have the same value at (1, 1).

In contrast, if g is the function on M defined by g|4i
= gi with g1 = 0, g2 = y − 1,

g3 = x2−2x+y and g4 = x2−y, then g is also in Sd(M,V), but it is not in Ŝd(M,V). In fact,
for the triangles 42 and 44, the derivatives ∂g2/∂(x− y) = −1 and ∂g4/∂(x− y) = 2x+ 1.
Then g|U 6∈ DI(U,V) for U = 42 ∪44. 3

Remark 10. From Definitions 4 and 8, it is clear that both Ŝd(M,V) and Sd(M,V) are con-
tained in the space of splines that are globally Cr-continuous on M , where r = min{d1, d2, d3}.
Moreover, they are both contained in DI(M,V) for I = Id

1 ∩ Id
2 ∩ Id

3 (see Definition 2), and
Ŝd(M,V) ⊆ Sd(M,V). By Example 9 we also know that the set of strongly regular splines
Ŝd(M,V) may be properly contained in the spline space Sd(M,V).
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In the following we give a sufficient condition for the equality Sd(M,V) = Ŝd(M,V). For
this we introduce the concept of over concave vertices and kissing triangles.

Definition 11. For a multicell domain M in the three-directional grid G we say that a vertex
ν ∈ V on the boundary of M is over-concave if star (ν)\M consists of a single triangle, where

star (ν) = {4 ∈ T : ν ∈ 4̂} ∪ {ε ∈ E : ν ∈ ε̂} ∪ {ν} .
Since we work exclusively in the three directional grid G then star (ν) consists of 6 triangles,
6 edges and ν itself. An example of an over-concave vertex is illustrated in Figure 4.

◦ν3

◦ν4 ◦ν1

ν2

M

v

N

B(1,3,1)(· − v)

Figure 4. On the left, the shadowed regions around the vertices νi ∈ M
correspond to the triangles in star (νi) ∩M , respectively; notice that in this
multicell domain M , by Definition 11, the only over-concave vertex is ν2. On
the right, the multicell domain N does not have over-concave vertices; the
figure also illustrates Definition 25 from Section 4, the shadowed region corre-
sponds to the support of the box spline B(1,3,1)(· − v) considered in Example
26.

Definition 12. Two non edge-connected triangles 4 and 4′ in M are called kissing triangles
if 4∩4′ = {ν} for a vertex ν ∈ V .

In Figure 3, for instance, in a multicell domain composed by only two triangles, the triangles
{A,E}, {A,D}, and {A,C} are kissing triangles.

Proposition 13. If M is a multicell domain in the three directional grid G, such that it does
not have kissing triangles nor over-concave boundary vertices, then Sd(M,V) = Ŝd(M,V) i.e.,
all splines with edge smoothness d on M are strongly regular.

Proof. Let 4 and 4′ be two triangles in the multicell domain M , and denote U = 4∪4′. If
4∩4′ = ε ∈ Ei then U = �(ε)∗. By Definition 7, the smoothness type of this pair of triangles
is ST(4,4′) = {i}, and the index set associated to U in Definition 8 is simply I = Id

i . Then,
by Definition 4 and Definition 8, we have Ŝd(M,V) ⊆ Sd(M,V). Conversely, let us take
f ∈ Sd(M,V). By hypothesis, M does not have kissing triangles and since we have checked
that the continuity conditions restricted to two triangles are equivalent if the triangles have a
common edge, then let us assume that 4∩4′ = {ν} for a vertex ν ∈ V , where 4 and 4′ are
edge-connected. We want to check that f |U ∈ DI(U,V). By Definition 12, we know that here
exist an edge-connected chain of triangles 40,41, . . . ,4m in M ∩ star (ν) such that 4 = 40
and 4′ = 4m. The smoothness type ST(4,4′) is contained in every set of edge-types in
any edge-connected chain in G between 4 and 4′. In particular, ST(4,4′) is a subset of
the edge-types in the chain 40,41, . . . ,4m. Since f ∈ Sd(M,V) then Dsf is continuous at
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ν for every s ∈ Id
j and every j in the edge-types of the chain 40,41, . . . ,4m. In particular,

Dsf |U is a continuous function for every s ∈ Id
j and every j ∈ ST(4,4′). It follows that

f ∈ Ŝd(M,V), and hence Sd(M,V) ⊆ Ŝd(M,V) as required. �

3. Box splines on type-I triangulations

In this section we define box splines on the uniform type-I triangulation G defined in Section
2, Figure 1. This triangulation has vertices at all lattice points (i, j) ∈ Z2.

Definition 14. If β is a real-valued function on R2, we denote by supp (β) the support β,
and it is defined as the set of points x ∈ R2 such that β(x) 6= 0.

Recall from Definition 11, that the star of a vertex ν ∈ V , denoted star (ν), is composed of
ν and all the triangles 4 ∈ T and all edges ε ∈ E which have ν as one of their vertices.

Definition 15. If n = (n1, n2, n3) ∈ Z3 is a triple of integers such that ni > 1, the type-I
box spline Bn associated to n is defined recursively by

Bn(x) =
∫ 1

0
Bn−ei(x− tei)dt ,

for x ∈ R2 and i ∈ {1, 2, 3} such that n − ei > 1 = (1, 1, 1); the function B1 is the classical
Courant hat function with support on the star of the vertex (1, 1) given in Figure 5. More
precisely, B1 is the piecewise linear function on R2 satisfying B1(1, 1) = 1 and B1(i, j) = 0 for
every (i, j) ∈ Z2 \ {(1, 1)}.

b b

b

b

b b

b

(0, 0)

(1, 1)

(1, 0)

(2, 1)

(2, 2)

(0, 1)

(1, 2)

(1, 1)
b

(1, 1)
b

Figure 5. Support of the Courant hat function B1, it corresponds to star (ν)
where ν is the vertex (1, 1) (left), support of the box splines B(2,1,1) (center)
and B(2,2,1) (right).

The coordinates ni of n denote the number of convolutions of B1 along the directions ei.
The support of the box spline Bn is the zonotope in R2 formed by the Minkowski sum of the
direction vectors ei taken ni times, for i = 1, 2, 3, respectively (see Figure 5 for an example).
Moreover, for every n, the box spline Bn is strictly positive for all x in the interior of its
support, and zero otherwise [29, Theorem 12.2].

From the general theory of type-I box splines, it follows that the box spline Bn is inde-
pendent of the order in which the vectors ei appear in the recursive construction of Bn in
Definition 15. This result follows immediately from the formula for the Fourier transform of
a type-I box spline [29, Theorem 12.6].

For any n, the box spline Bn is a piecewise polynomial function on three directional trian-
gulation G, and each polynomial is of total degree n = |n|− 2, where |n| = n1 +n2 +n3. It is
also well-known that Bn is a Cr-continuous function on R2, where r = mini=1,2,3

{
|n|−ni−2

}
[29, Theorem 2.4].
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There is a rich literature on type-I box splines, a detailed construction and the proof of
structural and smoothness properties can be found for instance in [29, Chapter 12] or [6]. In
particular, it is known that each convolution along a direction ei increases the continuity of the
box spline with respect to differentiation in that direction by one [29, Theorem 12.3]. Thus,
following the notation introduced in Section 2, if d = (n2 + n3 − 2, n1 + n3 − 2, n1 + n2 − 2)
then
(3) Bn ∈ Sd(G,Pn) .
We denote by Bn(G) the set of integer translates of the box spline Bn, which is defined as the
set
(4) Bn(G) =

{
Bn( · − v) : v ∈ Z2} .

The set Bn(G) is also called the set of shifted box splines associated to the direction vector n.

Remark 16. Notice that the translates in Bn(G) have distinct support, it is the zonotope
which is the support of Bn shifted by v. In fact, the set Bn(G) is (globally) linearly indepen-
dent [29, Theorem 12.19] i.e., if∑

v∈Z2

avBn(x− v) = 0, for all x ∈ R2

then av = 0 for all v ∈ Z2. Furthermore, it has been shown that the translates in Bn(G) are
also locally linearly independent i.e., if A is an open set, then the shifted box splines{

Bn(· − v) : supp
(
Bn(· − v)

)
∩A 6= ∅

}
are linearly independent [11, 22]. Here, supp (β) denotes the support of the function β (Defi-
nition 14).

We now introduce the definition of the set of active box splines on a given multicell domain
M in the type-I triangulation G.

Definition 17. If M ⊆ G is a multicell domain, we define
Suppn(M) =

{
v ∈ Z2 : supp

(
Bn(· − v)

)
∩M∗ 6= ∅

}
,

and the set of active box splines Bn on M by

Bn(M) =
{
Bn(· − v)

∣∣
M

: v ∈ Suppn(M)
}
,

where M∗ is the closure of M in R2 as defined in Equation (1).

In particular, if the multicell domain M = 4̂, for a triangle 4 ∈ T , then Bn(4̂) is the set
of translates Bn( · − v) ∈ Bn(G) whose support contains 4. We will denote the number of
elements in Bn(4̂) by φ(n).

Notice that this number φ(n) can be computed by counting the number of different triangles
in the support of Bn which are translations (and not a reflection) of4. This number is exactly
half of the total number of different triangles in the support of Bn. Thus,
(5) φ(n) = n1n2 + n1n3 + n2n3 ,

for n = (n1, n2, n3) ∈ Z3
>1.

Definition 18. If Bn(· − v) is the translate of the type-I box spline Bn by v ∈ Z2, then we
take (1, 1)−v as the point of reference of supp

(
Bn(·−v)

)
in the lattice. For a triangle 4 ∈ T ,

we define the 1-ring neighborhood of 4 as the set of reference lattice points (1, 1) − v such
that supp

(
Bn(· − v)

)
∩4 6= ∅.
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For instance, if 2 = (2, 2, 2) then the elements in B2(4̂) are the translates B2(· − v)
associated to the φ(n) = 12 lattice points in a 1-ring neighborhood of 4 in the grid G, which
are shown in Figure 6.

Figure 6. The 12 lattice points correspond to the 1-ring of a triangle 4 ∈ T
associated to the box spline B2 = B(2,2,2). Each of these points is the reference
point (1, 1)− v for the translate B2(· − v) such that 4 ⊆ supp (B2(· − v)).

Notice that to any type-I box spline Bn and a triangle4 ∈ T we can associate a linear space
of polynomials. Namely, extending by linearity, we can take Vn|4 as the space generated by
the restrictions of the active box splines Bn to the triangle 4 i.e.,
(6) Vn|4 = spanBn(4̂) .
By Equations (6) and (3), we see that Vn|4 is a linear subspace of Pn ⊆ R[x, y], for any
4 ∈ T and n = n1 + n2 + n3 − 2.

We now prove that for any n ∈ Z3, the subspace Vn|4 ⊆ Pn is independent of the choice of
the triangle 4 ∈ T . The proof of this result is a generalization of [42, Proposition 27], where
we consider the case 2 = (2, 2, 2) and the box spline B2.

Proposition 19. Let n = (n1, n2, n3) ∈ Z3
>1 with n = n1 +n2 +n3− 2. Then, Vn|4 = Vn|4′

for any pair of triangles 4 and 4′ in T .

Proof. Let 4 and 4′ be two triangles in the three-directional grid G. Denote by G0 the
triangulation of R2 obtained by the lines parallel to the vectors e′1 = (a, 0), e′2 = (0, a) and
e′1 = (a, a), for a fixed number a ∈ Z. Notice that for any a ∈ Z, we can see the grid G
as a refinement of a grid G0. Denote by 4a the triangle in G0 with vertices at (0, 0), (0, a)
and (a, a). In particular, let us take ` ∈ Z+ and a = 2` in such a way that the translate
4̃ = 4a − v of 4a by a vector v ∈ Z2 contains both 4 and 4′. Then, Bn(1/2` ·) is the
correspondent box spline associated to n in the grid G0. By the refinement equation for box
splines [29, Theorem 12.9], there exists a finite sequence {cv}v∈Z2 such that

(7) Bn(1/2` ·) =
∑

v∈Z2

cvBn(· − v) .

Let us denote by V0
n|4̃ the span of the box spline translates Bn(1/2` · −v) restricted to 4̃ in

G0. By the symmetry of the box splines supports, the number φ(n) of active translates on a
triangle is independent of the grid and of the given triangle in the grid. Furthermore, these
translates are linearly independent (see Remark 16). Thus,
(8) dimV0

n|4̃ = dimVn|4 = dimVn|4′ .
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Taking the restrictions to 4 and 4′, Equation (7) implies
(
V0

n|4̃
)
|4 ⊆ Vn|4 and

(
V0

n|4̃
)
|4′ ⊆

Vn|4′ .
Since V0

n|4̃ is a polynomial subspace of Pn, we have V0
n|4̃ = (V0

n|4̃)|4 = (V0
n|4̃)|4′ . In

particular, both (V0
n|4̃)|4 and (V0

n|4̃)|4′ have the same dimension as V0
n|4̃. The statement

follows by applying Equation (8). �

Proposition 19 implies that for a given n ∈ Z3
>1 the restrictions of the translates of the box

spline Bn to a triangle 4 ∈ T define a polynomial space which is independent of 4. From
now on, we will denote such polynomial space as Vn.

Remark 20. For any 4 ∈ T and n ∈ Z3
>1, Remark 16 implies that Bn(4̂) ⊆ Pn is a linearly

independent set. Here Pn is as before, the set of bivariate polynomials of degree at most
n = n1 + n2 + n3 − 2, and n = (n1, n2, n3). The number of elements in Bn(4̂) = φ(n)
(Equation (5)) is the dimension of the space of polynomials dimVn associated to the type-I
box Bn. Thus, dim(Vn) = n1n2 + n1n3 + n2n3 6

(n1+n2+n3
2

)
= dimPn.

For ni > 1, equality holds only for n = 1 = (1, 1, 1), which corresponds to polynomial
space V1 associated to the Courant hat function B1 in Definition 15. For any other n ∈ Z3

and the corresponding box spline Bn, the polynomial space Vn is a proper subspace of Pn.

4. Characterization of box spline spaces

Let 4 ∈ T , n ∈ Z3
>1, and consider Vn = spanBn(4̂). As observed in Remark 20, the set

Bn(4̂) of the box spline translates with support on 4 is linearly independent, and hence the
restriction of a polynomial f ∈ Vn to 4 has a unique representation

(9) f |4(x) =
∑

β∈Bn(4̂)

λβ4(f |4)β(x), x ∈ 4,

for coefficients λβ4(f |4) ∈ R.

Lemma 21. Let n = (n1, n2, n3) ∈ Z3
>1, f and f ′ in Vn, and M = 4̂ ∪ 4̂′, such that

4,4′ ∈ T and 4∩4′ ∈ Ei for some i ∈ {1, 2, 3}.
If
(
f |4, f ′|4′

)
∈ Sd(M,Vn), then there exist polynomials g, h ∈ Vn such that

(10)
(
f |4, f ′|4′

)
=
(
g|4, f ′|4′

)
+
(
h|4, 0|4′

)
,

with λβ4
(
g|4

)
= λβ4′

(
f ′|4′

)
for every β ∈ Bn(4̂) ∩Bn(4̂′).

Proof. Define
g|4 =

∑
β∈B(4̂)∩B(4̂′)

λβ4′(f
′|4′)β|4 +

∑
β∈B(4̂)\B(4̂′)

0 · β|4.

Then g|4 ∈ Vn|4, and extending by linearity we can see g|4 as the restriction to 4 of a
polynomial g in Vn ⊆ R[x, y]. By construction, the pair (g|4, f ′|4′) satisfies the required
condition, and taking h = f − g we obtain Equation (10). �

Lemma 22. Let n = (n1, n2, n3) ∈ Z3
>1, f and f ′ in Vn, and4,4′ ∈ T , such that4∩4′ ∈ Ei

for some i ∈ {1, 2, 3}. Then, for M = 4̂ ∪ 4̂′ the following two statements are equivalent:
(i) The pair (f |4, f ′|4′) ∈ Sd(M,Vn), with d = (n2 + n3 − 2, n1 + n3 − 2, n1 + n2 − 2) .

(ii) For every β ∈ Bn(4̂) ∩Bn(4̂′), it holds λβ4(f |4) = λβ4′(f ′|4′) .
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Proof. (ii) ⇒ (i) Let (f, f ′) ∈ Vn be a pair of polynomials satisfying (ii). Then

(11)
(
f |4, f ′|4′

)
=

∑
β∈Bn(4̂)∩Bn(4̂′)

λβ4(f |4)β|4∪4′ + (h|4, 0|4) + (0|4′ , h′|4′) ,

where
h|4 =

∑
β∈Bn(4̂)\Bn(4̂′)

λβ4(f |4)β|4 , and h′|4′ =
∑

β∈Bn(4̂′)\Bn(4̂)

λβ4(f ′|4′)β|4.

Since β ∈ Sd(M,Vn) for every β ∈ Bn(M), then the first term in Equation (11) is in
Sd(M,Vn). Now, if β ∈ B(4̂) \ B(4̂′) then (β|4, 0|4′) = β|M , and similarly for β ∈
B(4̂′) \ B(4̂). Hence, the last two terms in Equation (11) are also in Sd(M,Vn), and (i)
follows.

(i) ⇒ (ii) By Lemma 21 it is enough to consider (f |4, 0|4′) ∈ Sd(M,Vn). We need to show
that λβ4(f |4) = 0 for every β ∈ B(4̂) ∩ B(4̂′). To simplify, by an abuse of notation we will
denote Suppn(4̂) ∩ Suppn(4̂′) simply by Suppn(ε̂3).

Let 4 ∩ 4′ = εi ∈ Ei, and denote by bi the barycentric coordinate relative to 4 which
vanishes at the edge εi. Let n = n1 +n2 +n3. Then (f |4, 0|4′) ∈ Sd(M,Vn) if and only if the
polynomial bn−ni−1

i divides f , see [2, Lemma 2.2]. Notice that the latter condition is satisfied
if and only if the Bernstein-Bézier coefficients cjk` of f |4 are zero for every 0 6 j 6 n−n1−2.

Without loss of generality we can assume that i = 3 and 4 is the triangle with vertices at
(0, 0), (1, 0), and (1, 1). Thus, b3 = x− y. We will prove that if f ∈ Vn and bn−n3−1

3 divides f
then λβ4(f |4) = 0 for every β ∈ B(4̂) ∩B(4̂′). We proceed by induction on n, with ni > 1.

The induction base is n = 3, with n = (1, 1, 1), n3 = 1 and n− n3 − 1 = 1. We have

Bn(4̂ ∪ 4̂′) = {βj}3j=0,

with β0 = Bn, and βi = Bn(· + ei) for i = 1, 2, 3. Thus, the only translates with support on
4 are β0, β2 and β3. Since β0 = b1, β2 = b3, and β3 = b2, then

f |4 = λβ0
4 (f |4)b1|4 + λβ2

4 (f |4)b3|4 + λβ3
4 (f |4)b2|4.

Since the polynomials b1, b2, b3 are linearly independent, and by hypothesis b3|f , it follows
λβi
4(f |4) = 0 for i = 0, 3. This proves the statement for the case n = 3.
Let us assume that the result is true for every m 6 n for some n > 3. Let n = (n1, n2, n3)

with n + 1 = n1 + n2 + n3. We consider three cases, in the first two cases only one of the
indices ni is > 2 and in the last case at least two of the indexes are > 2.
Case 1.: Suppose n1 > 2, and n2 = n3 = 1.

We have (x− y)n1 |f and De1f ≡ 0 mod (x− y)n1−1. Notice that Equation (9) may
be rewritten as

(12) f |4 =
∑

v∈Z2

λv(f)Bn(· − v)
∣∣
4,

where λv = 0 for every v /∈ Suppn(4), and λv(f) = λβ4(f |4) for β ∈ B(4̂) and
β = Bn(· − v).
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Moreover, we know that for any linear combination of box splines

Dei

∑
v∈Z2

avBn(· − v) =
∑

v∈Z2

av
(
Bm(· − v)− Bm(· − v − e1)

)
=
∑

v∈Z2

(av+ei − av)Bm(· − v + ei),(13)

for av ∈ R for every v ∈ Z2, and m = (n1 − 1, n2, n3), see [29, Lemma 12.3].
Thus,

De1

∑
v∈Z2

λv(f)Bn(· − v)
∣∣
4 =

∑
v∈Z2

(
λv+e1(f)− λv(f)

)
Bm(· − v + e1)

∣∣
4

≡ 0 mod (x− y)n1−1,

where m = (n1 − 1, 1, 1). By induction hypothesis λv+e1(f) = λv(f) for every v ∈
Suppm(ε̂3).
Notice that, since n = (n1, 1, 1) then the elements v ∈ Suppv(4̂) are either a multiple
te1 of e1 or of the form e2 + te1, for t ∈ Z. Thus, we have

f |4 = λe1(f)
∑
t∈Z
Bn(· − te1)|4 + λe2(f)

∑
t∈Z
Bn(· − e2 + te1)|4,

for constants λei(f) ∈ R, for i = 1, 2. Moreover, Bn(· − te1)|ε1 = 0 for every t. In
particular, they are zero at the vertex (0, 0). But f(0, 0) = 0, and

1 =
∑

v∈Z2

Bn(· − v) =
∑
t∈Z
Bn(· − te1) + Bn(· − e2 + te1).

Then f |(0,0) = λe2(f)
∑
t∈Z Bn(· − e2 + te1)|(0,0) = λe2(f) = 0. We obtain λe1(f) = 0

by considering the restriction at the vertex (1, 1).

Case 2.: Suppose n3 > 2 and n1 = n2 = 1.
By hypothesis (x − y)|f , and so De3f ≡ 0 mod (x − y). Following the same

argument as above, λv+e3(f) = λv(f) for every v ∈ Suppn(ε̂3). Thus, there is a
constant λe3 which is equal to λv(f) for every v ∈ Suppn(ε̂3), and

f |ε3 = λe3(f)
∑

v∈Z2

Bn(· − v)
∣∣
ε3
.

Since f |ε3 = 0, and
∑

v∈Z2 Bn(· − v)
∣∣
ε3

= 1, it follows λe3(f) = 0.

Case 3.: At least two of the indices ni are > 2, say n1, n2 > 2. By hypothesis (x −
y)n1+n2−1|f , and so Deif ≡ 0 mod (x − y)n1+n2−2 for i = 1, 2. Similarly as before,
rewrite f |4 as in Equation (12), and consider Equation (13) with i = 1. Thus,

De1

∑
v∈Z2

λv(f)Bn(· − v)
∣∣
4 =

∑
v∈Z2

(
λv+e1(f)− λv(f)

)
Bm(· − v + e1)

∣∣
4

≡ 0 mod (x− y)n1+n2−2.

By induction hypothesis λv+e1(f) = λv(f) for every v ∈ Suppm(ε̂3). Similarly, by
considering De2f we get λv+e2(f) = λv(f) for every v ∈ Suppm′(ε̂3), where m′ =
(n1, n2 − 1, n3). This implies that the coefficients λv(f) are equal to a constant λ, for
every v ∈ Suppn(ε̂3).
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Therefore, f |ε3 = λ
∑

v∈Z2 Bn(· − v)|ε3 . But f |ε3 = 0, and
∑

v∈Z2 Bn(· − v) = 1,
in particular when taking the restriction to ε3. Hence, 0 = λ = λβ4(f), for every
β ∈ B(4̂) ∩B(4̂′).

An analogous proof applies when the edge of intersection between 4 and 4′ is parallel to one
of the other two vectors e1 or e2. �

The edge-contact property plays a fundamental role for the construction of hierarchical
spline spaces, we present that construction for any type-I box spline in Section 5. The following
examples illustrate the special nature of type-I box splines, as depicted in Lemma 22; simply
requiring continuity of a spline space will not yield such intrinsic properties.

Example 23. Let M = 4̂ ∪ 4̂′ be the multicell domain in Figure 7.

(−1, 0)

(0, 0)

(1, 1)(0, 1)

ε

△

△′

b b

bb

Figure 7. The triangles 4 and 4′ in G define the multicell domain M in Ex-
ample 23, the triangles share the edge ε ∈ E2 that is parallel to the directional
vector e2.

Take the set B = {f1, . . . , f4} of spline functions fi on M defined as
f1 =

(
y2 + 3x2 + 4x, y2 + x

)
, f2 =

(
4y2, 4y2) ,

f3 =
(
x2, 0

)
, and f4 =

(
0, x2) .

Each pair of polynomials fi is defined on 4 and 4′, respectively. Then, B is contained in
the space of splines S0(M,Q), where 0 = (0, 0, 0), and Q ⊆ P2 is the linear subspace of
polynomial spanned by x, x2, and y2.

We have
Q|4 = B|4 =

{
y2 + 3x2 + 4x, 4y2, x2}∣∣

4 , and

Q|4′ = B|4′ =
{
y2 + x, 4y2, x2}∣∣

4′ .

Then, g =
(
5 · (y2 + 3x2 + 4x) + 4y2, y2 + x+ 2 · (4y2)

)
∈ S0(M,Q), but g is not an element

in span (B). 3

The following example illustrates the importance of the spline space Sd(M,Vn) (Definition
4) in the proof of Lemma 22.

Example 24. Let M = 4̂ ∪ 4̂′ be the multicell domain defined from the triangles 4 and
4′ such that 4 ∩ 4′ = ε ∈ E3 in Figure 8. Take n = (2, 1, 1), and consider the linear
space Vn = spanBn(4̂). The support and Bernstein coefficients of the box spline B(2,1,1)
are displayed in Figure 8. The generators of V(2,1,1) can easily be described by restricting
the translates B(2,1,1)(· − v) ∈ Bn(M) to 4′ and using the Bernstein coefficients of B(2,1,1).
Namely, V(2,1,1) is generated by

f1 = 2(x− y)y + y2 ; f2 = 2(1− x)y + y2 ;
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(0, 0)

(1, 1)ε
△

△′

0 0 0 0 0

0 0 1 1 0 0

0 0 1 2 1 0 0

0 0 1 1 0 0

0 0 0 0 0

Figure 8. Bernstein coefficients of the box spline 2B(2,1,1).

f3 = (x− y)2 ;
f4 = (1− x)2 + 4(1− x)(x− y) + (x− y)2 + 2(1− x)y + 2(x− y)y ;

and f5 = (1− x)2 .

In particular,
f = 4(x− y)y + 4(1− x)(x− y) + (x− y)2 = f1 − f2 + f4 − f5 ∈ V(2,1,1) .

Let us notice that g =
(
0|4, f |4′

)
∈ S0(M,Vn), but g /∈ spanBn(M). In fact, for β(·) = Bn(·)

we have β|4′ = f1, and λβ4′(f |4′) = 1, but λβ4(0|4) = 0.
On the other hand, ε ∈ E3 i.e., ε is an edge parallel to the directional vector e3, and g is

not a C1-continuous spline on M . Thus, g /∈ Sd(M,Vn) for d = (0, 1, 1). 3

Definition 25. A multicell domain M is admissible with respect to a type-I box spline Bn

if the support of any β ∈ Bn(M) is a connected set, and there exist no over-concave vertices
(Definition 11), and no kissing triangles in M (Definition 12).

Example 26. The multicell domain on the left of Figure 4 is not admissible for any type-I
box spline Bn because it has an over-concave vertex ν2. If the over-concave vertex is elim-
inated by adding one more triangle, we obtain the domain N shown on the right of Figure
4. The multicell domain N is admissible with respect to the box splines B1 and B(1,2,1) for
example, but N it is not an admissible domain with respect to the box spline B(1,3,1) because
suppB(1,3,1)(· − v)|N is not connected.

In view of Lemma 22 we arrive to the following completeness result.

Corollary 27 (Completeness of type-I box splines). If M ⊆ G is an admissible domain, and
n = (n1, n2, n3) ∈ Z3

>1, then the generating set Bn(M) is complete for Sd(n)(M,Vn), where
d(n) = (n2 + n3 − 2, n1 + n3 − 2, n1 + n2 − 2).

5. Hierarchical type-I box splines

In this section, to any given box spline Bn we associate a space of special splines defined
on a hierarchical grid. We construct a hierarchical basis for such space and prove that this
basis is complete under certain assumptions on the domain hierarchy.

For an integerN > 0, we recursively define a sequence of three-directional gridsG1, G2, . . . , GN

as follows. We take G1 = G as the three-directional grid with vertices Z2 introduced in Section
2, Figure 1. The hierarchical grids

G` for ` = 2, . . . , N
are defined recursively, in such a way that G`+1 is obtained from G` by one global, uniform
dyadic refinement step. More precisely, the grid G`+1 = 1

2G
` is the triangulation of R2 with
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vertices at points 1/2`(k, k), obtained by drawing in the lines x = k/2`, y = k/2`, and
x− y = k/2`, for all k ∈ Z. Thus, to construct G`+1, every triangle in the grid G` is split into
four smaller ones, as illustrated in Figure 9. The index ` will be called the level of the grid,
and the number N specifies the number thereof. Each grid G` is a uniform three-directional
grid, similarly as for the grid G = G1 before, we consider the triangles in this grid as open
sets in R2.

Figure 9. Three levels of three-directional hierarchical grids.

Let Ω be a domain of R2 whose boundary ∂Ω is the union of edges from the grid GN . We
define a hierarchical multicell domain H associated to the domain Ω as follows.

A nested sequence of subdomains of Ω is defined as a collection of domains M` such that
∅ =M0 ⊆M1 ⊆ · · · ⊆ MN = Ω,

where M` =
⋃
4∈M`

4, and M ` ⊆ G` is a multicell domain in the grid G`, for for each

` = 1, . . . , N .
Thus, for each level `, the boundary ∂M` is a union of edges of the grid G`. The difference

between two successive subdomains, denoted D`, is defined as the closure

D` =M` \M`−1 .

The associated refined domain of level D` ⊆ G` is defined as D` = T `(D`), where T `(·) is
the triangulation operator which restrict the grid G` to a given subset of the plane R2. More
precisely,

T `(Q) =
{
4̂ ∈ G` : 4 ⊂ Q

}
.

The hierarchical multicell domain H associated to Ω is then the collection of triangles form
all levels of the refinement area

H =
N⋃
`=1

D`.

Using this notation, the domain Ω can be written as the union Ω =
⋃
4∈H 4 .

Definition 28. Let H be a three-directional hierarchical multicell domain associated to a
domain Ω ⊆ R2, and let Bn be a box spline, for some triple n = (n1, n2, n3) ∈ Z3

>1. We define
P(H,Vn) as the set of piecewise polynomial functions on H associated to Bn i.e.,

P(H,Vn) =
{
f ∈ C0(Ω): f |4 ∈ Vn|4 for each triangle 4 ∈ H

}
.

If d = (n2 + n3 − 2, n1 + n3 − 2, n1 + n2 − 2), the hierarchical box spline space with edge
smoothness d on H is defined as the set

(14) Sd(H,Vn) =
{
f ∈ P(H,Vn) : f |3(ε) ∈ Cdi (3(ε)∗) for every

ε ∈ Ei ∩H and i ∈ {1, 2, 3}
}
.
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For d as above, we define the linear space of hierarchical box splines with edge and vertex
smoothness d on the hierarchical multicell domain H as the set

(15) Ŝd(H,Vn) =
{
f ∈ P(H,Vn) : f |U ∈ DI(U,Vn) for 4,4′ ∈M `,

for some `, 4∩4′ 6= ∅ , U = 4∪4′ , and I =
⋂
i∈ST(4,4′) I

d
i

}
.

In Equation (14), the diamond of and edge ε ∈ H is taken over the multicell domain M `

such that ε is an edge of the a triangle 4 ∈M `. Namely,

3(ε) =
⋃

4∈M`,ε∈4̂

4̂ .

Let us fix n = (n1, n2, n3) ∈ Z3
>1 and the corresponding box spline Bn.

For each level ` = 1, . . . , N we denote by B`
n the set of translates of Bn with respect to the

grid G`. In particular, we have B1
n = Bn(G) as defined in Equation (4), and recursively

B`+1
n =

{
β(2· ) : β ∈ B`

n

}
.

In an analogous way as we introduce Bn(M) in Definition 17 for a multicell domain M in the
three-directional grid G, we now define the set B`

n(M `) of active box splines on the multicell
domain M ` in G` as follows,

B`
n(M `) =

{
β|M` : β ∈ B`

n , and suppβ ∩M` 6= ∅
}
.

A set of linearly independent box splines on a hierarchical multicell domain H can be con-
structed by a selection procedure analogous to that proposed by Kraft in [28] in the context
of tensor-product B-splines.

For all levels `, we select box splines translates, and define the sets K` as follows

K` =
{
β` ∈ B`

n(M `) : suppβ` ∩M`−1 = ∅
}
.

The collection of these box splines translates in the levels ` = 1, . . . , N forms a hierarchical
box splines basis given by

(16) K =
N⋃
`=1

K`.

The linear independence of the functions in K is implied by the local linear independence of
the box splines at each level, see [28].

Then the question of completeness of hierarchical type-I box spline spaces can be stated as
follows. For a given hierarchical multicell domain H, does the basis K in Equation (16) span
the hierarchical box spline space Sd(H,Vn) defined in Equation (14)? Does K span Ŝd(H,Vn)
defined in Equation (15)?

In the following theorem we address the first question, and provide a sufficient condition
for the completeness of the hierarchical spline basis.

Theorem 29. Let H be a three-directional hierarchical multicell domain, and let Bn be a
box spline, for some triple n = (n1, n2, n3) ∈ Z3

>1. The basis K in Equation (16) spans
the hierarchical box spline space Sd(H,Vn) if each multicell domain M ` of H is admissible
(Definition 25) with respect to the grid level `.
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Proof. The proof follows standard arguments already presented in [17, 31] for the case of
hierarchical tensor B-spline bases. Let Ω ⊂ R2 be the domain associated to H. We prove by
induction on the levels ` that every spline function s ∈ Sd(H,Vn) admits a representation
(17) s = (h1 + · · ·+ hN )|Ω,
where h` ∈ spanB`

n(M `), and
(18) h`|M` = s|M` − (h1 + . . .+ h`−1)|M` .

for ` = 1, . . . , N .
For any given level `, all functions hk|M` of lower levels k < ` are contained in Sd(M `,Vn).

This follows from the relation
spanBk

n(Mk)|M` ⊆ Sd(M `,Vn).
It follows that s|M` ∈ Sd(M `,Vn). Consequently, the right-hand side of Equation (18) is
contained in Sd(M `,Vn). Since the multicell domain M ` is admissible, we conclude that
h` ∈ spanB`

n(M `) according to Corollary 27. In particular, choosing ` = N in Equation (18)
we get Equation (17).

Moreover, the construction of the functions h` ensures that
h`|M`−1 = 0|M`−1 .

Since the box splines possess the property of local linear independence we can conclude that
h` ∈ spanK`. This completes the proof. �

Theorem 29 is a consequence of Corollary 27, and therefore of Lemma 22. This result
generalizes the completeness property of the space of translates of the quartic box spline B2
proved in [42, Theorem 26].

6. Concluding remarks

Remark 30. The contact characterization property proved in Lemma 22 implies the com-
pleteness of the space spanned by the translates of type-I box splines Bn on a multicell domain
M with respect to the spline space Sd(n)(M,Vn), where d(n) = (n2 +n3− 2, n1 +n3− 2, n1 +
n2−2), and n = (n1, n2, n3). This result holds whenever M is an admissible domain i.e., when-
ever M does not have over-concave vertices nor kissing triangles, and supp (β) is connected
for all translates β of Bn which have support on M . This is a sufficient condition, but it will
also be interesting to prove necessary conditions to achieve this completeness property of the
type-I box spline. In this direction, a complete characterization of the vertex-vertex contact
plays a crucial role. This calls for exploring the algebraic formulation of super-smoothness at
vertices in order to proving an analogous to Lemma 22 for vertex-vertex contact of type-I box
splines.

Remark 31. We partially undertake the vertex-vertex contact question raised in the previous
remark, for low degrees. In particular, we have verified algorithmically the vertex-vertex
contact (that is, Lemma 22 for the case 4∩4′ ∈ V and the space Ŝd(M,Vn)) for all type-I
box splines up to n = (4, 4, 4).

The approach is based on the fact that both statements (i) and (ii) of Lemma 22 yield
linear relations on the coefficients λβ4(f |4) and λβ4′(f ′|4′). We can express each of the two
statements as matrices A(i) and A(ii). The latter matrix has the form

A(ii) =
[
Ip 0q − PIp 0q

]
,
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where P is a permutation matrix, p = #Bn(4̂) ∩Bn(4̂′), and q = φ(n)− p.
The matrix1 A(i) can be computed as a product A(i) = CvLM . The factor Cv describes the

Bézier continuity conditions at the common vertex v, corresponding to the smoothness type
ST(4,4′) (Definition 7) and to the regularity vector d = (n2 +n3−2, n1 +n3−2, n1 +n2−2).
The right factor LM is the Bernstein–Bézier representation of the translates of Bn, considered
independently on each of the two triangles of M :

LM =

 L4 0
0 L4′


or, equivalently, a change of basis matrix of the space C−1(M∗).

Showing that Lemma 22 holds in this setting (and for a fixed n) is done by showing that
A(i) and A(ii) are equivalent matrices. Indeed, in all our computations we obtain A(ii) as the
reduced row echelon form of A(i) for type-I box splines up to total degree 12. This verifies
that the matrices are equivalent and so the vertex-vertex contact lemma holds in these cases.

Remark 32. In the discussion of completeness of hierarchical type-I box splines spaces there
are two main differences to the original approach, which was formulated for tensor-product
splines.

First, the translates of a box spline do not span the whole space of bivariate polynomials
of a given total degree. For this reason, this special polynomial subspace had to be identified.
In some sense this situation generalizes the tensor-product case, where the B-splines span a
polynomial space of a given (coordinate-wise) bi-degree, instead of the the space of bivariate
polynomials of a given total degree.

Second, the constraints on the domains are entirely different, due to the differences in the
characterization of contacts between polynomial pieces. For bivariate tensor-product splines,
both edge-edge and vertex-vertex contacts could be characterized easily by the equality of
spline coefficients. In the case of type-I box splines, we proved the characterization solely
for edge-edge contacts. Consequently, the completeness of hierarchical splines requires more
severe restrictions to the hierarchical grid.

We have alleviated these extra restrictions by proving algorithmically the vertex-vertex
contact for small polynomial degrees (total degree up to 12). By proving a characterization of
the vertex-vertex contact of box splines for arbitrary degree, as we indicated in Remark 30, we
could relax these restrictions on the hierarchical grids and construct more general hierarchical
type-I spline space. We leave this as a future research direction.
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[17] C. Giannelli and B. Jüttler, Bases and dimensions of bivariate hierarchical tensor-product splines, J.

Comput. Appl. Math. 239 (2013), 162–178.
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