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Abstract 34 

 35 

We examined how summated training and match load measures relate to salivary 36 

immunological and hormonal profile changes in professional football players. Data 37 

were collected from 18 elite-level professional male football players from one English 38 

Championship team across a complete 40 wk competitive season. Daily training 39 

(micro-technology) and match (computerised tracking) measures of total, high-speed 40 

and high-metabolic load running distance and sprint, acceleration, deceleration and 41 

sRPE load were converted into exponentially weighted moving average ‘acute’ (7d), 42 

‘chronic’ (28d) and acute:chronic composite load measures. Bi-weekly morning saliva 43 

samples were analysed for immunoglobulin-A, alpha-amylase, testosterone, cortisol 44 

and testosterone:cortisol. A two-stage data reduction technique using partial least 45 

squares modelling and a backward stepwise selection procedure determined the most 46 

parsimonious model for each salivary variable. Testosterone had non-linear 47 



relationships with chronic total (P=0.015; Cohen’s D: large), high-metabolic load 48 

(P=0.001;small) and high-speed (P=0.001;trivial) running distance and linear 49 

relationships with chronic sRPE (P=0.002;moderate) and acute:chronic high-speed 50 

running distance (P=0.001; trivial). Cortisol had a non-linear relationship with chronic 51 

high-speed running distance (P=0.001;trivial). Testosterone:cortisol had non-linear 52 

relationships with chronic decelerations (P=0.039;small) and chronic summated 53 

acceleration and deceleration load (P=0.039;small). Non-linear relationships typically 54 

indicated optimal hormonal responses at squad mean loads. No load variables clearly 55 

related to salivary immunoglobulin-A or alpha-amylase changes. We conclude that 56 

chronic total and high-intensity load measures relate to hormonal changes and might 57 

be useful indicators of player readiness. Acute load variables were not related to 58 

immunological or hormonal changes and consequently, should not be used as 59 

surrogate measures of player readiness in isolation. 60 
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 63 

Introduction 64 

 65 

Professional association football training and match play are high-intensity, high-66 

volume activities. The competitive season is long (i.e., 40 – 42 wks) and characterised 67 

by frequent, clustered periods of high game density (i.e., when players are required to 68 

play 2 games in 7 d) 1. Consequently, imbalance to the relationship between 69 

summated training and match load (‘load’) and recovery can occur, resulting in 70 

maladaptive training; denoted by negative changes in a biological system in response 71 

to external load or inadequate recovery 2-4.  72 



 73 

Individualised, multivariate, concurrent monitoring of internal and external training and 74 

match load, alongside biological fatigue measures (i.e., immunological or hormonal 75 

measures used to quantify the physiological response to load 2-5), are advocated to 76 

determine the load-recovery relationship, and mitigate the risk of maladaptive training 77 

2-4. In football, load is readily monitored using indices derived from Global Positioning 78 

Systems (GPS), Micro-Electrical Mechanical (MEMS) sensors and computerised 79 

tracking technology 6. Of these, total distance (TD), high-speed running distance 80 

(HSR), sprint, acceleration, deceleration and metabolic power measures (i.e., high 81 

metabolic load distance (HMLd)) are most frequently used in practice 6 and research 82 

7-9. It has recently been recommended that load indices should be converted into 83 

composite values to reflect ‘acute’ ((A) ~ 7 d average load; proposed to be analogous 84 

to player ‘fatigue’) and ‘chronic’ ((C) ~ 28 d average load; proposed to be analogous 85 

to player ‘fitness’) load, and the acute : chronic (A:C) load ratio in order to indicate 86 

player ‘readiness’ (to accept new load 3) 3,4. To date, composite load measures have 87 

demonstrated relationships with injury risk 7,8 and match play physical performance 9 88 

in football players. 89 

 90 

Biological fatigue measures can be collected around games (i.e., ~ 24 – 48 h pre- and 91 

post- match) 6 to indicate player recovery status 2-4. Owing to high game frequencies 92 

in football, regular (often bi-weekly) monitoring is warranted to facilitate timely player 93 

load management decision making. Consequently, measures that impart minimal 94 

psychophysiological stress (i.e., those that are not fatiguing or invasive) and have fast 95 

result availability are preferable. As such, resting salivary measures of immunological 96 



and hormonal status are popular 6 because sample collection is fast (~ 30 s), non-97 

invasive and results are available rapidly 10-14.   98 

 99 

Salivary immunoglobulin-A (s-IgA) and 𝛼-amylase (s-AA) are antimicrobial proteins, 100 

secreted by mucosal cells under sympathetic adrenal medullary (SAM) axis regulation 101 

15. Prolonged, excessive psychophysiological stress (i.e., by excessive training and/or 102 

match load or inadequate recovery) can reduce s-IgA and s-AA secretion, and 103 

compromise mucosal immunity 15. To date, reductions in s-IgA have been associated 104 

with increases in upper respiratory tract infection (URTI) risk in football players 11, and 105 

both s-IgA and s-AA have demonstrated the ability to track changes in load in football 106 

players 13,16 and professional 17 and Paralympic 18,19 swimmers.  107 

 108 

Testosterone (T) and cortisol (C) are steroid hormones, detectable in saliva (s-T, s-C) 109 

15, that reflect anabolic (s-T) and catabolic (s-C) balance (s-T:C) 20. Their secretion is 110 

regulated by the hypothalamic pituitary adrenal (HPA) (s-T and s-C) and hypothalamic 111 

pituitary gonadal (HPG) (s-T) axes. Football match play typically induces acute 112 

increases in C, equivocal changes to T but reductions in T:C, signalling a catabolic 113 

state, that can manifest for ~ 24 – 72 h 20. Longitudinally, 25% and 35% increases in 114 

C have been reported during sustained periods of increased load 21 and game density 115 

22 in football players. Since muscular recovery is augmented in anabolic environments 116 

23, s-T, s-C and s-T:C are considered as useful indicators of athletic readiness 15. 117 

Collectively, owing to their reactivity to SAM, HPA and HPG axis activation, salivary 118 

immunological (s-IgA, s-AA) and hormonal (s-T, s-C, s-T:C) measures are considered 119 

as useful indicators of holistic stress balance (i.e., from the psychophysiological stress 120 



derived from both sport and non-sport means 2-4) and the load-recovery relationship 121 

in athletes 15 and football players 13,16,20-22,24-26. 122 

 123 

High acute loads have been associated with increased injury risk 7,8 and compromised 124 

match play physical performances in football players 9. Conversely, high chronic loads 125 

have been associated with reduced injury risk 7,8 and improved high-intensity match 126 

play physical performances 9. These findings have typically been attributed to the 127 

effects of ‘fatigue’ and ‘fitness’, based on the premise that ‘acute’ and ‘chronic’ load 128 

indices are analogous to ‘fatigue’ and ‘fitness’ status. However, the relationships 129 

between composite load indices and biological fatigue measures are yet to be 130 

empirically evaluated to test these assumptions. Indeed, no longitudinal empirical 131 

investigations have examined if composite load indices relate to immunological (s-IgA, 132 

s-AA) or hormonal (s-C, s-T, s-T:C) profile changes in football players. To optimally 133 

support player health and performance, it is clearly important to understand how 134 

composite load measures relate to biological fatigue measures. Accordingly, the aim 135 

of this investigation was to investigate how composite measures of summated training 136 

and match load (TD, HSR, sprint, acceleration, deceleration and HMLd) relate to 137 

biological fatigue measures (s-IgA, s-AA, s-T, s-C and s-T:C) in elite-level professional 138 

football players. 139 

 140 

Materials and Methods 141 

 142 

Study design 143 

Daily training and/or match load measures and bi-weekly resting saliva samples were 144 

collected from 18 senior professional male outfield players (age = 24  4 years; height 145 



= 181  7.0 cm, body mass = 72.4  5.2 kg) from one English Championship (EC) 146 

team across one complete season. Informed consent was obtained from all 147 

participants prior to data collection and an ethics declaration was approved for this 148 

investigation by the Edith Cowan University (Australia) Human Research Ethics Office. 149 

 150 

Training load 151 

Training load was recorded for all pre-season and in-season training sessions. 152 

External load was measured using sports GPS and MEMS sensors (Statsports Viper 153 

2, Belfast, Northern Ireland, UK), sampling at 10 Hz (GPS) and 100 Hz (tri-axial 154 

accelerometer, gyroscope and magnetometer). Typical error for distance and speed 155 

for this device are < 3% and < 2% 27 respectively. A software application 156 

(www.gnssplanning.com) reported previously 9, was used to identify a geographical 157 

point (ground station) based on the latitude and longitude coordinates of the team 158 

training facility. This determined the mean number of satellites and horizontal dilution 159 

of precision for GPS data across the sample period, which equated to 8.7 ± 1.0 and 160 

0.66 ± 0.08 % respectively; indicating optimal conditions for satellite transmissions 28.  161 

 162 

Players wore the same GPS device for all training sessions. Devices were worn in a 163 

neoprene vest, between the scapulae as per manufacturer guidelines. Load variable 164 

selection was based on use in practice 6 and similar scientific research literature 165 

relating to load quantification in elite level professional football 7-9. Total distance – 166 

(total distance completed (m)); high-speed running (HSR) – (total distance completed 167 

between 5.5 m/s and 80% of individualised maximal linear running velocity (m)); high 168 

metabolic load distance (HMLd) – (distance covered when energy consumption per 169 

kilogram per second is > 25 W/kg-1 (m)); number of sprints (total number of sprint 170 



efforts > 80% of individualised maximal linear running velocity); and high intensity 171 

variables: total number of accelerations (ACC), decelerations (DEC) and changes to 172 

speed (ACC+DEC) were recorded. Acceleration and DEC efforts were identified 173 

according to manufacturer guidelines as a change in player velocity of > 0.5 m/s2 174 

maintained for > 0.5 s. Efforts were zone-banded based on the peak magnitude of 175 

ACC or DEC with thresholds set at > 3 m/s2 and > -3 m/s2 respectively. These 176 

thresholds are consistent with those reported elsewhere in the football science 177 

research literature 9,29-32. Training load data were extracted from GPS devices using 178 

manufacturer software (Statsports Viper, Belfast, Northern Ireland, UK). Internal load 179 

was recorded using player rating of perceived exertion (RPE) from the CR-10-scale 180 

33. CR-10 response was collected within 30 min of all training sessions and multiplied 181 

by session duration (min) to provide an arbitrary unit (AU) of session load, denoted as 182 

sRPE. This method has been validated for use in football previously 34. Data collection 183 

and analysis was completed by the same investigator across the entire sample period.  184 

 185 

Match load 186 

Match load was recorded for all home and away games.  External load variables were 187 

measured using 6 fixed semi-automated high definition motion cameras (Chyronhego 188 

TRACKAB, London, UK). Following games, raw TRACKAB player position data were 189 

converted to equivalent training load variables using manufacturer software 190 

(Statsports Viper, Belfast, Northern Ireland, UK). This method has been described 191 

previously 35, and is widely used in practice and scientific research literature 7,9,35. 192 

Strong relationships are reported between Statsports Viper and TRACKAB for TD (r2 193 

= 0.98) and HSR (r2 = 0.98) 35 and our unpublished data indicate strong relationships 194 

for HMLd (r2 = 0.93), ACC (r2 = 0.94), DEC (r2 = 0.95) and number of sprints (r2 = 0.97) 195 



using this method during elite-level professional football match play. Internal match 196 

load was calculated using the same sRPE method as was used following training. 197 

 198 

Composite load indices 199 

For each load variable, the pooled (summated training and match derived measures) 200 

7 d absolute sum, 28 d absolute sum, exponentially weighted moving average 201 

(EWMA) acute load, EWMA chronic load and the EWMA acute : chronic load ratio 202 

(A:C) were calculated. EWMA indices were calculated using equations by Williams 203 

and colleagues 36: 204 

 205 

𝐸𝑊𝑀𝐴𝑡𝑜𝑑𝑎𝑦 =  𝐿𝑜𝑎𝑑𝑡𝑜𝑑𝑎𝑦 ∗  𝜆𝑎 + ((1 −  𝜆𝑎) ∗  𝐸𝑀𝑊𝐴𝑦𝑒𝑠𝑡𝑒𝑟𝑑𝑎𝑦) 206 

 207 

Where 𝜆𝑎 represents the degree of time decay. Time decay was calculated using: 208 

 209 

𝜆𝑎 = 2/(𝑁 + 1) 210 

 211 

Where N is the chosen time decay constant. Decay factors representing time 212 

constants for 7 d (acute) and 28 d (chronic) were used. These equated to 0.25 and 213 

0.069 respectively. 214 

 215 

Saliva Sampling  216 

Saliva samples were collected the morning after rest and / or recovery days across 217 

the sample period. Typically, this was two days prior (i.e., match day (MD) -2) and two 218 

days after (i.e., MD +2) games during both single and double game weeks. Baseline 219 

saliva measures were calculated for individual players as the mean of MD-2 data 220 



collected during single game weeks in the first 5-week in-season mesocycle. We 221 

reasoned that this best represented when player ‘fitness’ was high (i.e., following pre-222 

season), when ‘fatigue’ was low (i.e., early in the competitive season, following a 223 

recovery day during single game weeks) and thus when player holistic stress balance 224 

was optimal. Players reported to the team training facility between 09:00 and 09:30 on 225 

sample collection days. They were asked to abstain from caffeine consumption prior 226 

to sample collection and samples were collected prior to breakfast and training. They 227 

were asked to sit quietly, swallow existing saliva in the mouth and to then place an 228 

oral fluid collector (OFC; SOMA Bioscience, Wallingford, UK) on the tongue. With the 229 

mouth closed, 0.5 ml of saliva was collected, as indicated by a volume adequacy 230 

indictor on the OFC. The OFC was then placed into 3 ml of buffer solution in a bespoke 231 

10 ml container (OFC Buffer; SOMA Bioscience, Wallingford, UK) and mixed gently 232 

by hand for 2 min. 233 

 234 

Salivary IgA and Cortisol 235 

Two drops of the OFC sample were applied to two lateral flow 236 

immunochromatographic (LFI; SOMA Bioscience, Wallingford, UK) test strips: which 237 

captured s-IgA and s-C at test and control reagent lines within a solid base 238 

nitrocellulose membrane. After a 5 min incubation period, the LFI strips were inserted 239 

into a lateral flow device reader (LFD; SOMA Bioscience, Wallingford, UK), which used 240 

signal intensity to provide quantifiable values for s-IgA (𝜇g/ml) and s-C (nM). These 241 

were determined using specifically programmed curves assigned to the LFI strips, 242 

provided by the manufacturer (SOMA Bioscience, Wallingford, UK). Analysis of s-IgA 243 

and s-C was conducted by the same researcher across the entire sample period; who 244 

had ~ 10 years’ experience in sample collection and analysis using this method in the 245 



applied football environment. Comparison of the LFD method with the enzyme-linked 246 

immunosorbent assay (ELISA) method indicates strong validity for s-IgA  (r = 0.93; P 247 

< 0.001) 10 and s-C (r2 = 0.79) 37 . Repeated sampling indicates strong reliability for s-248 

IgA (ICC r = 0.89, P < 0.001 and CV = 9.4%) 10 and s-C (CV = 6.8%) 37. 249 

 250 

Salivary 𝜶-Amylase and Testosterone 251 

The remaining OFC buffer solution was sealed and taken to a private laboratory 252 

(SOMA Bioscience, Wallingford, UK) where s-AA (𝜇g/ml) and s-T (pg/ml) were 253 

measured by ELISA using enzyme immunoassay test kits (EIA; SOMA Bioscience, 254 

Wallingford, UK), and an automated analyser (Tecan Nanoquant, Tecan, Männedorf, 255 

Switzerland) as per manufacturer guidelines. Following analysis, s-T was converted 256 

to its molar value to calculate s-T:C. All analysis was completed by the same 257 

laboratory technician. All samples were analysed within 24 h of collection. The intra- 258 

and inter- assay CV for s-AA and s-T analysis using this method is 4.71% and 11.4%; 259 

and 7.94% and 9.4% respectively; as reported in other applied environments 38.  260 

 261 

Statistical analysis 262 

Statistical analysis was conducted using R (version 3.5.1, R Foundation for Statistical 263 

Computing, Vienna, Austria). Individual salivary measures were associated with the 264 

EWMA 7 d ‘acute’ and 28 d ‘chronic’ load measures summated up to the end of the 265 

previous day. The season was divided into nine equal 5-wk mesocycles (one 266 

preseason and eight in-season phases). ‘Phase of season’ was then modelled as a 267 

re-scaled linear effect to represent the linearised effect of ‘readiness’ for each salivary 268 

variable across the season. This was then included as a covariate to help to control 269 

for any potential longitudinal effects (i.e., to changes in player ‘readiness’ across the 270 



season). A two-stage data reduction process was then used to determine the most 271 

parsimonious model for each salivary biomarker. 272 

 273 

First, the ‘multivariate methods with unbiased variable selection’ (‘MUVR’) algorithm 274 

39 was used to identify the minimal-optimal candidate load predictor variables for each 275 

salivary variable. The MUVR package is an algorithm for multivariate modelling, aimed 276 

at finding associations between predictor data (an X matrix) and a response (a Y 277 

vector) via partial least squares modelling. MUVR is useful for handling data that has 278 

large numbers of variables and few observations, and constructs robust, parsimonious 279 

multivariate models that generalize well, minimize overfitting and facilitate 280 

interpretation of results 39.  281 

 282 

Second, the candidate training and match load predictor variables identified for each 283 

salivary measure were entered into a backward stepwise selection procedure to 284 

identify the best-fitting overall model. Quadratic polynomials and interaction effects 285 

between predictors were considered as part of this process. Quadratic models 286 

explored the possibility of non-linear relationships by including a squared predictor 287 

term in the model; if this term was significant and improved the model fit (based on 288 

likelihood ratio tests), the quadratic term was retained and presented as such. If not, 289 

then a linear model was used to assess the relationship between the predictor and 290 

outcome variable. Player identity was included as a random effect to account for 291 

repeated observations within players. Effects were deemed to be statistically 292 

significant at an alpha level of P < 0.05. Data are presented as means and 95% 293 

confidence intervals (CI), alongside Cohen’s d effect sizes (ES) 40. These were 294 

estimated from the estimated marginal means and the ‘sigma’/SD taken from the 295 



random effects term of the mixed model. Thresholds for ES were: 0.0-0.2 = Trivial; 296 

0.2-0.6 = Small; 0.6-1.2 = Moderate; 1.2-2 = Large; >2 = Very Large. The conditional 297 

R2 value (which considers both fixed and random effects in the model) is also provided 298 

as a goodness-of-fit measure for these relationships. Data for non-linear relationships 299 

is presented as means and 95% CI with estimated salivary variable responses at 300 

typically very low (-2 SD), low (-1 SD), mean, high (+ 1 SD) and very high (+2 SD) 301 

values of each training and match load predictor variable . 302 

 303 

Results  304 

 305 

Predictors of Salivary Proteins 306 

s-IgA 307 

Only a linear effect of phase of season (P = 0.011, ES = Trivial ) (Supplementary 308 

Table 1) was retained from the variable selection process for s-IgA. 309 

 310 

s-AA 311 

Only a linear effect of phase of season (P < 0.001, ES = Small ) (Supplementary 312 

Table 2) was retained from the variable selection process for s-AA. 313 

 314 

Predictors of Salivary Hormones 315 

s-T 316 

Six variables were retained from the variable selection process for s-T (Table 1). 317 

Linear effects were identified for phase of season (P = 0.004, ES = Trivial ), chronic 318 

sRPE (P = 0.002, ES = Moderate ) and A:C HSR (P = 0.011, ES = Trivial ). Non-319 

linear effects were identified for chronic TD (P = 0.015, ES = Large) (Figure 1, Panel 320 



A), chronic HSR (P = 0.001, ES = Trivial) (Figure 1, Panel B) and chronic HMLd (P = 321 

0.001, ES = Small) (Figure 1, Panel C). For TD, s-T was highest at very high chronic 322 

load (+2 SD). For HSR, s-T was highest at very low (-2 SD) and very high (+2 SD) 323 

chronic load. For HMLd, s-T was highest at squad mean chronic load. 324 

 325 

***Insert Table 1 Here***  326 

 327 

***Insert Figure 1 Here***  328 

 329 

s-C 330 

Two variables were retained from the variable selection process for s-C (Table 2): a 331 

linear effect for phase of season (P < 0.001, ES = Small ) and a non-linear effect for 332 

chronic HSR (P = 0.001, ES = Trivial). For chronic HSR, s-C was lowest at squad 333 

mean chronic load and highest at very low (-2 SD) and very high (+2 SD) chronic load 334 

(Figure 1, Panel D). 335 

 336 

***Insert Table 2 Here***  337 

 338 

s-T:C 339 

Four variables were retained from the variable selection process for s-T:C (Table 3). 340 

Linear effects were identified for phase of season (P = < 0.001, ES = Small ) and 341 

chronic HSR (P = 0.554, ES = Trivial ). Non-linear effects were identified for chronic 342 

DEC (P = 0.039, ES = small) (Figure 1, Panel E) and chronic ACC+DEC (P = 0.039, 343 

ES = Small) (Figure 1, Panel F). For chronic DEC, s-T:C was highest at squad mean 344 



chronic load. For ACC+DEC, s-T:C was highest at very low (-2 SD) and very high (+2 345 

SD) chronic load. 346 

 347 

***Insert Table 3 Here***  348 

 349 

Discussion 350 

 351 

The aim of this investigation was to examine the relationships between composite load 352 

measures and salivary immune (s-IgA, s-AA) and hormone (s-T, s-C, s-T:C) profile 353 

changes in elite-level professional football players. Chronic (for TD, HSR, HMLd and 354 

sRPE) and acute:chronic (for HSR) load variables related to hormonal profile changes 355 

(s-T, s-C, s-T:C), exerting trivial to large effects. No load variables were associated 356 

with s-IgA or s-AA profile changes. Results indicate that chronic total and high-intensity 357 

load measures might be useful indicators of player readiness because they relate to 358 

hormonal profile changes, which has been identified as an important element of the 359 

holistic stress balance model 2-4. However, acute load variables did not relate to 360 

immunological or hormonal profile changes, which questions their use as contributing 361 

measures of player readiness in isolation. 362 

 363 

The most important finding from this investigation is the large non-linear relationship 364 

identified between chronic TD and s-T. For this relationship, increases in chronic TD 365 

were associated with increases in s-T, with the greatest s-T values observed at +2 SD 366 

of chronic TD (Table 1 and Figure 1, Panel A). ‘Chronic’ measures of load indicate 367 

medium-to-long-term training and match load exposure (28 d) and are proposed to be 368 

analogous to ‘fitness’ status 41. Since TD is a global measure of training volume 6, this 369 



relationship suggests that chronic training volume might be an important regulator of 370 

T concentration in football players. Previous studies have demonstrated an unclear 371 

relationship between load and T concentration in this population. For example, 372 

sustained periods of high load have been associated with equivocal 21, increasing 26 373 

and decreasing 22,25 effects on T concentration in football players. However, these 374 

investigations are somewhat limited by infrequent hormonal sampling 21,22,25, short 375 

sampling periods 22,25, limited load variable reporting 21,22,25,26 or the use of sub-elite 376 

players 25. Comparatively, the current investigation employed daily multivariate load 377 

monitoring and bi-weekly hormonal sampling across a complete competitive season 378 

in elite-level professional players. Accordingly, the study design and methods 379 

employed herein might facilitate a more sensitive analysis. Our result is consistent with 380 

findings from other researchers, reporting increases in resting T among elite-level 381 

professional rugby union players following periods of high chronic load (21 d) 42. It is 382 

possible that a high chronic training volume up-regulates the HPG axis, serving to 383 

increase T concentration. Indeed, this mechanism has previously been proposed to 384 

explain temporal increases in s-T in football players 20, and might also help to explain 385 

the significant, albeit small ‘U’ shaped relationship identified herein between chronic 386 

ACC+DEC and s-T:C (Table 3 and Figure 1, Panel F), for which very high loads were 387 

associated with optimal s-T:C responses. 388 

 389 

Interestingly, our analysis also identified a moderate negative linear relationship 390 

between chronic sRPE load and s-T (Table 1), suggesting that high chronic internal 391 

load compromised s-T concentration. This result contrasts recent findings, indicating 392 

a positive linear relationship between these variables 26. Rowell and colleagues 26 393 

suggested that high chronic internal loads might facilitate increases in s-T secretion, 394 



but did not propose an explanatory mechanism. Session RPE is an internal training 395 

load measure, used to quantify training stress by multiplying perceived effort and 396 

session duration 33,41. Of note, excessive load and / or inadequate recovery are 397 

implicated as the dominant causes of maladaptive training 2-4, which in-turn, can 398 

disturb HPG axis function and reduce T secretion 24. Therefore, it is possible that our 399 

finding is explained by a disturbance to HPG axis function during periods of excessive 400 

internal load across the sample period. Maladaptive training is most likely to occur 401 

during sustained periods of high game density or training load in football 13, both of 402 

which are commonplace in the English Championship 1. Collectively, the relationship 403 

between chronic TD and s-T indicates that high chronic training volume might increase 404 

s-T concentration, while the chronic sRPE – s-T relationship indicates that excessive 405 

chronic internal load might compromise the response. Thus, chronic high-intensity 406 

training volume might have important interactive effects on T secretion in football 407 

players. 408 

 409 

We also observed small non-linear (inverted ‘U’ shaped) relationships between 410 

chronic HMLd and s-T (Table 1 and Figure 1, Panel C) and between chronic DEC and 411 

T:C (Table 3 and Figure 1, Panel E). For these relationships, s-T and s-T:C responses 412 

increased across very low to mean chronic HMLd and DEC loads but decreased 413 

thereafter through high to very high loads. Collectively, these relationships suggest 414 

optimum loading ‘zones’ (at approximately squad mean chronic load, herein) for 415 

determining player T and T:C profiles. Of note, HMLd accounts for acceleration, 416 

deceleration, sprinting and HSR activity (in any combination), and consequently, is 417 

considered a ‘global’ measure of high-intensity load 9. Chronic DEC is a measure of 418 

exposure to negative change in speed, which has a very high mechanical demand at 419 



the threshold employed herein (> - 3 m/s2) 29. Thus, these relationships also implicate 420 

chronic high-intensity training volume as an important moderating factor for T and T:C 421 

profile changes in football players. Moreover, these findings indicate merit in ensuring 422 

that players are exposed to appropriate chronic HMLd and DEC loads to optimise T 423 

and T:C responses, but to avoid excessive chronic HMLd and DEC loads (i.e., +1 and 424 

+2 SD of chronic HMLd and DEC training and match load herein), since these 425 

scenarios might compromise the hormonal response.  426 

 427 

The notion that chronic high-intensity training volume can exert an important influence 428 

on hormonal profile is also supported somewhat by the significant, albeit trivial, ‘U’-429 

shaped relationship identified between s-C and chronic HSR (Table 2 and Figure 1, 430 

Panel D). For this relationship, the s-C response was highest at very low and very high 431 

chronic HSR load and was lowest at approximately the squad mean HSR load. Cortisol 432 

is secreted in response to HPA axis activation and is used as a quantitative stress 433 

biomarker in athletes 17. Accordingly, this suggests that periods of low ‘fitness’ (i.e., 434 

when chronic HSR is very low) and high ‘fatigue’ (i.e., when chronic HSR is very high) 435 

exert compromising effects on C concentration in football players. Interestingly, this 436 

finding is consistent with previous research, reporting increases in s-C during periods 437 

of increased training intensity 12 and load 21 in football players. Practically, the nature 438 

of this relationship indicates merit in exposing players to an appropriate chronic HSR 439 

load (to optimise the C response) but to avoid excessively low (i.e., -2 and -1 SD) and 440 

high (i.e., +1 and +2 SD) chronic HSR loads, since this might compromise the C 441 

response.  442 

 443 



Surprisingly, no training and match load variables related to s-IgA or s-AA profile 444 

changes. This contrasts previous research, indicating that s-IgA and s-AA measures 445 

are sensitive to changes in load in football players 13,14,16 and professional 17 and 446 

Paralympic 18,19 swimmers. Indeed, existing data typically indicate reductions in s-IgA 447 

in response to acute 14 and chronic 13,16 periods of increased load in football players. 448 

We propose several explanations for this finding. First, consistent with previous 449 

recommendations, 36 we quantified ‘acute’ load using an EWMA 7 d decay factor, 450 

spanning 168 hr of training and competition time. Though equivalent data are 451 

unavailable for s-AA, s-IgA is reported to normalise in ~ 18 to 60 h following training  452 

and match-play 43 in football players, respectively. Thus, it is possible that s-IgA 453 

measures are not sensitive to load accrued > 60 h preceding sample collection. 454 

Indeed, s-IgA measures might indicate short-term (i.e., 1-3 d), but not long-term (i.e., 455 

4-7 d) stress balance within-microcycles in football players. It is also possible that our 456 

finding is explained somewhat by the effect of non-training related stress on SNS 457 

activation. Indeed, lifestyle factors and other sources of psychophysiological stress 458 

that were not quantified in the current investigation could have ‘masked’ load-induced 459 

secretory changes to s-IgA and s-AA. For example, it is known that both s-IgA and s-460 

AA are sensitive to changes in psychological stress 15. Importantly, since acute load 461 

variables did not relate to any of the salivary biomarkers, it is evident that EWMA 7 d 462 

‘acute’ and A:C measures should not be used as surrogate measures of player 463 

‘fatigue’ status in isolation. 464 

 465 

Strengths and Limitations 466 

 467 



The strengths of this investigation relate to the participation level of the cohort, the 468 

study duration and the sampling frequency. Indeed, load was measured daily and 469 

salivary variables were analysed bi-weekly in a sample of 18 elite-level professional 470 

football  players for ~ 1 year. However, the authors acknowledge several limitations. 471 

Firstly, data were collected from a single team and we acknowledge that players from 472 

other cohorts might respond differently owing to intra- and inter- team factors (i.e., 473 

variance in individual and team physical, technical, tactical and psychological 474 

preparation methods, and exposure to non-sport related stressors). Secondly, we 475 

acknowledge the relatively high variability of some point of care salivary analysis 476 

variables and recognise that this might account for some trivial interactions reported. 477 

Thirdly, as per manufacturer guidelines, we did not screen saliva samples for blood 478 

contamination, but acknowledge that this might affect the accuracy and validity of 479 

some findings. Accordingly, some caution is advised when interpreting these results. 480 

Fourthly, the authors acknowledge recent scientific literature proposing methodologic 481 

limitations of using ‘acute’ and ‘chronic’ load monitoring variables as surrogate 482 

measures of ‘fatigue’ and ‘fitness’ status (respectively) 44. Accordingly, when 483 

interpreting the results herein, some caution is advised relating to the 484 

interchangeability of these terms. Finally, that we only included male participants limits 485 

the application of these findings to female players. 486 

 487 

Practical Applications 488 

 489 

Chronic EWMA TD, HMLd, HSR, DEC and ACC+DEC load measures exerted 490 

important interactive effects on hormonal profile changes in football players: a linear 491 

relationship was identified between chronic TD load and s-T; non-linear ‘U’ shaped 492 



relationships were identified between chronic HSR load and both s-T and s-C and 493 

between chronic ACC+DEC load and s-T:C; and inverse ‘U’ shaped relationships were 494 

identified between chronic HMLd load and s-T and between chronic DEC load and s-495 

T:C. For all non-linear relationships, the optimal hormonal response was observed at 496 

squad mean loads. Accordingly, coaches and practitioners should attempt to manage 497 

player exposure to these load variables and avoid excessively ‘low’ (i.e., -1 to -2 SD 498 

below squad mean) or excessively ‘high’ (i.e., -1 to -2 SD above squad mean) levels. 499 

Indeed, these scenarios might compromise hormonal responses; which are linked to 500 

player readiness, and in-turn, injury and illness risk and performance potential 2-4.  501 

 502 

No relationships were identified between the EWMA acute load variables and salivary 503 

biomarkers. Therefore, at present, we recommend that EWMA acute and A:C load 504 

variables should not be used in isolation as surrogate measures of player readiness. 505 

Indeed, as per previous recommendations 2,3, regular immunological and hormonal 506 

profile monitoring appears to still be warranted to identify momentary readiness in 507 

football players. 508 

 509 

We acknowledge that other response to load measures are widely used in practice to 510 

help to identify player readiness (i.e., measures of metabolic, neuromuscular, and 511 

inflammatory status) 6. Consequently, further research is also warranted to examine 512 

how EWMA load variables relate to these measures. This will improve current 513 

understanding relating to the efficacy of training and match load measures to indicate 514 

player readiness in football. 515 

 516 

Conclusion 517 



 518 

Measures of chronic EWMA training volume and high intensity training volume are 519 

associated with salivary hormone profile changes; but acute EWMA variables do not 520 

relate to salivary immunological or hormonal profile changes in elite-level professional 521 

football players. 522 

 523 
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Supplementary Table 1. Predictors of Salivary Immunoglobulin-A (s-IgA).  662 
 663 

  s-IgA 

Predictors Estimates ES CI Standardized CI P 

(Intercept) 89.71  43.8 – 135.7  <0.001 

Phase of Season 34.8 Trivial  8.1 – 61.6 0.02 – 0.13 0.011 

Random Effects 

σ2 18274 

τ00 Player_ID 1357 

ICC 0.07 

N Player_ID 18 

Observations 1154 

Marginal R2 0.123 

Conditional R2 0.184 

  664 



Supplementary Table 2. Predictors of Salivary 𝛼-amylase (s-AA).  665 

 666 

  s-AA 

Predictors Estimates ES CI Standardized CI P 

(Intercept) 169.8  111.4 – 228.4  <0.001 

Phase of Season -163.0 Small  -197.5 – -128.6 -0.30 - -0.20 <0.001 

Random Effects 

σ2 29408 

τ00 Player_ID 3711 

ICC 0.11 

N Player_ID 18 

Observations 1136 

Marginal R2   0.212 

Conditional R2 0.300 
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Table 1. Predictors of Salivary Testosterone (s-T). EWMA, exponentially weighted moving average; 668 

TD, total distance; HSR, high-speed running; HMLd, high metabolic load distance; sRPE, session 669 

rating of perceived exertion; A:C, acute:chronic; 2, denotes a non-linear relationship. 670 

 671 

  s-T 

Predictors Estimates ES CI Standardized CI P 

(Intercept) 208.2  5.58 – 410.8  0.044 

Phase of Season -73.9 Trivial  -124.8 – -23.0 -0.12 - 0.01 0.004 

EWMA chronic TD2 0.00 Large 0.00 – 0.00 0.03 – 0.28 0.015 

EWMA chronic HSR2 0.02 Trivial 0.01 – 0.03 0.08 – 0.30 0.001 

EWMA chronic HMLd2 0.00 Small -0.01 – -0.00 -0.53 – -0.14 0.001 

EWMA chronic sRPE -1.32 Moderate  -2.13 – -0.50 -0.61 – -0.14 0.002 

EWMA A:C HSR 16.9 Trivial  3.87 – 29.98 0.03 – 0.20 0.011 

Random Effects 

σ2 40663 

τ00 Player_ID 3396 

ICC 0.08 

N Player_ID 18 

Observations 1093 

Marginal R2  0.087 

Conditional R2 0.157 

  672 



Table 2. Predictors of Salivary Cortisol (s-C). EWMA, exponentially weighted moving average; HSR, 673 

high-speed running; 2, denotes a non-linear relationship 674 

 675 

  s-C 

Predictors Estimates ES CI Standardized CI P 

(Intercept) 12.79  8.47 – 17.12  <0.001 

Phase of Season -8.53 Small  -10.5 – -6.6 -0.34 – -0.22 <0.001 

EWMA chronic HSR2 0.00 Trivial 0.00 – 0.00 0.04 – 0.15 0.001 

Random Effects 

σ2 74.24 

τ00 Player_ID 5.29 

ICC 0.07 

N Player_ID 18 

Observations 1083 

Marginal R2 0.138 

Conditional R2 0.195 
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Table 3. Predictors of Salivary Testosterone : Cortisol (s-T:C). EWMA, exponentially weighted moving 677 

average; DEC, deceleration; ACC+DEC, combined acceleration and deceleration; HSR, high-speed 678 

running; 2, denotes a non-linear relationship. 679 

 680 

  s-T:C 

Predictors Estimates ES CI Standardized CI P 

(Intercept) 59.4  30.1 – 88.7  <0.001 

Phase of Season 48.9 Small  34.7 – 63.0 0.17 – 0.30 <0.001 

EWMA chronic DEC2 -0.20 Small  -0.39– -0.01 -0.41 – -0.01  0.039 

EWMA chronic ACC+DEC2 0.06 Small  0.00 – 0.11 0.01 – 0.44 0.039 

EWMA chronic HSR 0.05 Trivial  -0.12 – 0.23 -0.10 – 0.18 0.554 

Random Effects 

σ2 3447 

τ00 Player_ID 669 

ICC 0.16 

N Player_ID 18 

Observations 1064 

Marginal R2 /  0.066 

Conditional R2 0.218 
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 682 



Figure 1. Non-linear relationships between exponentially weighted moving average 683 

(EWMA) chronic total distance and salivary testosterone (panel A), EWMA chronic 684 

high-speed running distance and salivary testosterone (panel B), EWMA chronic high-685 

metabolic load distance and salivary testosterone (panel C), EWMA chronic high-686 

speed running distance and salivary cortisol (panel D), EWMA chronic decelerations 687 

and salivary testosterone : cortisol (panel E) and EWMA chronic summated 688 

accelerations and decelerations and salivary testosterone : cortisol (panel F). Data are 689 

presented as mean ± 95% CI bands, denoted by grey areas on the curves. Figures 690 

demonstrate predicted hormonal responses at very low (-2 SD), low (-1 SD), mean, 691 

high (+1 SD) and very high (+2 SD) EWMA workloads. Model-predicted EWMA 692 

workload values at -2 SD, -1SD, mean, +1 SD and +2 SD are provided in brackets on 693 

the X-axis. 694 
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