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Abstract

In recent years, the study of Hankel determinants for various subclasses of normalised
univalent functions f ∈ S given by f(z) = z +

∑∞
n=2 anz

n for D = {z ∈ C : |z| < 1} has
produced many interesting results. The main focus of interest has been estimating the second
Hankel determinant of the form H2,2(f) = a2a4 − a23. A non-sharp bound for H2,2(f) when
f ∈ K(α), α ∈ [0, 1) consisting of convex functions of order α was found by Krishna and
Ramreddy [7], and later improved by Thomas et.al [17]. In this paper, we give the sharp
result. Moreover we obtain sharp results for H2,2(f

−1) for the inverse functions f−1 when
f ∈ K(α), and when f ∈ S∗(α), the class of starlike functions of order α. Thus the results in
this paper complete the set of problems for the second Hankel determinants of f and f−1 for
the classes S∗(α), K(α), S∗β and Kβ, where S∗β and Kβ are respectively the classes of strongly
starlike, and strongly convex functions of order β.

1. Introduction

Denote by A, the class of analytic functions defined in the unit disk D = {z ∈ C : |z| < 1},
with expansion

f(z) = z +
∞∑
n=2

anz
n, (1)

and let S be the subset of A, consisting of functions which are univalent in D.

For a given f ∈ A of the form (1), the qth Hankel determinant Hq,n(f) is defined by

Hq,n(f) =

∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q
· · · · · · · · · · · ·

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣ , (2)

where n, q ∈ N.

In recent years most investigations concerning Hankel determinants for various subclasses
of A have focused on finding estimates for the second Hankel determinant

H2,2(f) = a2a4 − a23, (3)

with some recent results devoted to the third Hankel determinant H3,1(f). Most results have
been concerned with subclasses of S.
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The Koebe function k(z) = z/(1 − z)2 serves as the extreme function for many coefficient
problems in S, but when f ∈ S, no exact bound for H2,2(f) is known. However it is known [5],
that when f ∈ S, |H2,2(f)| ≤ C, where C is an absolute constant, and that C can be greater
than 1, [14]. Thus k(z) is not the extreme function in this case.

In finding bounds for H2,2(f) and H3,1(f) for subclasses of S, most authors have used
the method developed by Janteng, Halim and Darus in [6], who found the sharp bound
|H2,2(f)| ≤ 1 when f ∈ S∗, the class of starlike functions, and the sharp bound |H2,2(f)| ≤ 1/8,
when f ∈ K the class of convex functions.

Although as mentioned above, |H2,2(f)| ≤ 1 when f ∈ S∗, the exact bound in the case of
close-to-convex functions is still unknown, the best result to date being |H2,2(f)| ≤ 1.242 . . .
[14].

We next note the following well-known generalisations of S∗ and K.

For α ∈ [0, 1), we say that f is a starlike (respectively) convex function of order α if, and
only if,

Re
zf ′(z)

f(z)
> α, (4)

and

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α. (5)

We denote these classes by S∗(α) and K(α) respectively, noting that both S∗(α) and K(α)
are natural subclasses of S.

Similarly for β ∈ (0, 1], we say that f is a strongly starlike (respectively) strongly convex
function of order β if, and only if, ∣∣∣∣arg

zf ′(z)

f(z)

∣∣∣∣ < π

2
β, (6)

and ∣∣∣∣arg

(
1 +

zf ′′(z)

f ′(z)

)∣∣∣∣ < π

2
β. (7)

We denote these classes by S∗β and Kβ respectively, noting again that both S∗β and Kβ are
natural subclasses of S.

For f ∈ S∗(α), f ∈ S∗β and f ∈ Kβ, the following sharp bounds for H2,2(f) are known
(see [15], [16]).

Theorem 1. ( [3, Theorem 2.3]) Let α ∈ [0, 1). If f ∈ S∗(α) and is given by (1), then

|H2,2(f)| ≤ (1− α)2.

Theorem 2. ( [2, Theorem 2.3] and [16, Theorem 4.1]) Let β ∈ (0, 1].

(i) If f ∈ S∗β and is given by (1), then

|H2,2(f)| ≤ β2.
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(ii) If f ∈ Kβ and is given by (1), then

|H2,2(f)| ≤


β2

9
β ∈ (0, 1/3],

β(1 + β)(1 + 17β)

72(3 + β)
β ∈ [1/3, 1].

For f ∈ K(α), the best bound for H2,2(f) to date is the following.

Theorem 3. ( [17, p. 77]) Let α ∈ [0, 1). If f ∈ K(α) and is given by (1), then

|H2,2(f)| ≤ (1− α)2(36− 36α + 17α2)

144(2− 2α + α2)
. (8)

The primary object of this paper is to provide the sharp bound for H2,2(f) when f ∈ K(α).

Let P denote the class of functions p analytic in D, for which Re p(z) > 0 in D, with p given
by

p(z) = 1 +
∞∑
n=1

cnz
n . (9)

The following lemmas for functions in P are well-known.

Lemma 1. [13, p. 41] If p ∈ P, then the sharp inequality |cn| ≤ 2 holds for n ≥ 1.

Lemma 2. [9, p. 228] (see also [10, p. 254]) If p ∈ P and is given by (9) with c1 ≥ 0, then

2c2 = c21 + ζ(4− c21), (10)

and

4c3 = c31 + 2c1(4− c21)ζ − c1(4− c21)ζ2 + 2(4− c21)(1− |ζ|2)η, (11)

for some ζ and η such that |ζ| ≤ 1 and |η| ≤ 1.

In proving our results, we use the technique developed in [6]. However this method does
not always give sharp results, and we will use the following inequalities.

Lemma 3. [12, Proposition 6] (see also [4, Theorem 3.1])

For D := {z ∈ C : |z| ≤ 1}, and for real numbers A, B, C, let

Y (A,B,C) = max
{
|A+Bz + Cz2|+ 1− |z|2 : z ∈ D

}
. (12)

If AC ≥ 0, then

Y (A,B,C) =


|A|+ |B|+ |C|, |B| ≥ 2(1− |C|),

1 + |A|+ B2

4(1− |C|)
, |B| < 2(1− |C|).
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If AC < 0, then

Y (A,B,C) =


1− |A|+ B2

4(1− |C|)
, −4AC(C−2 − 1) ≤ B2 ∧ |B| < 2(1− |C|),

1 + |A|+ B2

4(1 + |C|)
, B2 < min {4(1 + |C|)2,−4AC(C−2 − 1)} ,

R(A,B,C), otherwise,

(13)

where

R(A,B,C) =


|A|+ |B| − |C|, |C|(|B|+ 4|A|) ≤ |AB|,
−|A|+ |B|+ |C|, |AB| ≤ |C|(|B| − 4|A|),

(|C|+ |A|)
√

1− B2

4AC
, otherwise.

(14)

2. The Second Hankel determinant for convex functions of order alpha

We estimate the second-order Hankel determinant H2,2(f) for f ∈ K(α).

Theorem 4. Let α ∈ [0, 1) and f ∈ K(α) be given by (1). Then

|H2,2(f)| ≤ (1− α)2(6 + 5α)

48(1 + α)
. (15)

The inequality is sharp.

Proof. Since |H2,2(f)| ≤ 1/8 when f ∈ K, [6], it is enough to consider the case α ∈ (0, 1).

Fix α ∈ (0, 1), and let f ∈ K(α) be given by (1). Then we can write

1 +
zf ′′(z)

f ′(z)
= α + (1− α)p(z),

where p ∈ P , and is given by (9). Equating coefficients we obtain

a2 =
1

2
(1− α)c1,

a3 =
1

6
(1− α)(c2 + (1− α)c21),

and

a4 =
1

12
(1− α)(c3 +

3

2
(1− α)c1c2 +

1

2
(1− α)2c31).

Thus

H2,2(f) = a2a4 − a23 = − 1

144
(1− α)2Φ, (16)

where
Φ = (1− α)2c41 − (1− α)c21c2 + 4c22 − 6c1c3.

Since both the class K(α) and the functional |a2a4 − a23| are rotationally invariant, we may
assume that c1 := c ∈ [0, 2], and so using (10) and (11) in Lemma 2 we have

Φ =
1

2
α(2α− 3)c4 − 1

2
(3− α)c2(4− c2)ζ +

1

2
(4− c2)(8 + c2)ζ2

− 3c(4− c2)(1− |ζ|2)η,
(17)

where ζ, η ∈ D.
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Assume first that c = 2. Then
|Φ| = 8α(3− 2α), (18)

and so from (16), we have

|H2,2(f)| = 1

18
α(1− α)2(3− 2α) <

(1− α)2(6 + 5α)

48(1 + α)
.

Next when c = 0, since ζ ∈ D, we obtain

|Φ| = 16|ζ|2 ≤ 16, (19)

and therefore

|H2,2(f)| ≤ 1

9
(1− α)2 <

(1− α)2(6 + 5α)

48(1 + α)
.

Now let c ∈ (0, 2). Applying the triangle inequality in (17), we obtain

|Φ| ≤ 3c(4− c2)Γ(A,B,C),

where
Γ(A,B,C) = |A+Bζ + Cζ2|+ 1− |ζ|2, ζ ∈ D, (20)

with

A =
α(2α− 3)c3

6(4− c2)
, B =

1

6
(α− 3)c, and C =

8 + c2

6c
.

We now use Lemma 3, noting that AC < 0 holds for c ∈ (0, 2).

First note that
B2 ≥ −4AC(C−2 − 1), c ∈ (0, 2),

since
12(8 + c2)[B2 + 4AC(C−2 − 1)] = c2[8(3 + 6α− 5α2) + 3(1− α)2c2] > 0.

Next |B| > 2(1− |C|), when c ∈ (0, 2). To see this, define

ϕ1(c) = 16− 12c+ (5− α)c2 = 6c(|B| − 2(1− |C|)),
then ϕ′1(c) = 0 when c = c∗ := 6/(5− α) ∈ (0, 2), and ϕ′′1(c∗) > 0. Thus when c ∈ (0, 2),

ϕ1(c) ≥ ϕ1(c
∗) = 16− 36

5− α
≥ 7 > 0,

which shows that |B| > 2(1− |C|).

Also
|C|(|B|+ 4|A|) ≥ |AB|, when c ∈ (0, 2). (21)

To see this, define ϕ2 : [0, 4]→ R by

ϕ2(x) = 32(3− α)− 4(3− 25α + 16α2)x− (1− α)2(3 + 2α)x2.

Then we have
ϕ2(0) = 32(3− α) > 0

and
ϕ2(4) = 16(3 + 2α + α2 − 2α3) > 0.
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Since ϕ2 is concave on [0, 4], we get

ϕ2(x) ≥ min{ϕ2(0), ϕ2(4)} > 0, x ∈ [0, 4],

and therefore

36(4− c2)(|C|(|B|+ 4|A|)− |AB|) = ϕ2(c
2) ≥ 0, when c ∈ (0, 2),

which gives (21).

Next in (14), a computation gives

|AB| − |C|(|B| − 4|A|) =
k2c

4 + k1c
2 − k0

36(4− c2)
,

where

k0 = 32(3− α), k1 = 12 + 92α− 64α2,

and

k2 = 3 + 20α− 17α2 + 2α3.

Let ϕ3(x) = k2x
2 + k1x− k0, and

ξ =
−k1 +

√
∆

2k2
(22)

be the unique positive root of ϕ3, where

∆ = 48(27 + 198α− 45α2 − 184α3 + 80α4) > 0, for α ∈ (0, 1).

Then ξ < 4. Therefore for c∗∗ :=
√
ξ ∈ (0, 2), it follows that |AB| = |C|(|B| − 4|A|).

Moreover |AB| ≤ |C|(|B| − 4|A|), when c ∈ (0, c∗∗], and |AB| ≥ |C|(|B| − 4|A|), when
c ∈ [c∗∗, 2).

We now consider the following cases.

A. First suppose that c ∈ (0, c∗∗]. Then |AB| ≤ |C|(|B|−4|A|), and by Lemma 3 we obtain

|Φ| ≤ 3c(4− c2)[−|A|+ |B|+ |C|] = ψ1(c
2),

where

ψ1(x) = 16 + 2(2− α)x− (1 + α)(2− α)x2.

We note that ψ′1(x) = 0 only when x = τ := 1/(1 + α), and it is easily seen that τ ∈ (0, ξ),
and since the function ψ1 has negative leading coefficient, it follows that

ψ1(x) ≤ ψ1(τ) =
3(6 + 5α)

1 + α
, x ∈ (0, ξ],

and so

|Φ| ≤ 3(6 + 5α)

1 + α
, (23)

when c ∈ (0, c∗∗].



THE SECOND HANKEL DETERMINANT 7

B. Next suppose that c ∈ [c∗∗, 2). Then by Lemma 3 we have

|Φ| ≤ 3c(4− c2)(|A|+ |C|)
√

1− B2

4AC

=
1

4
√
α(3− 2α)

g1(c
2)
√
g2(c2) =:

1

4
√
α(3− 2α)

F (c2),

where g1 and g2 are defined by

g1(x) = 32− 4x− (1− α)(1− 2α)x2, (24)

and

g2(x) =
12(3 + 6α− 5α2)− 9(1− α)2x

8 + x
, (25)

respectively, and where

2F ′(x)(g2(x))1/2 = 2g′1(x)g2(x) + g1(x)g′2(x).

Moreover
1

12
(8 + x)2[2g′1(x)g2(x) + g1(x)g′2(x)] = m0 +m1x+m2x

2 +m3x
3 =: g(x),

where
m0 = −96(1 + α)(5− 3α),

m1 = 4(−9− 18α + 159α2 − 216α3 + 80α4),

m2 = 3(1− α)(9− 42α + 67α2 − 30α3),

and
m3 = 3(1− α)3(1− 2α).

Therefore the inequality F (c2) ≤ F (ξ) will hold for all c ∈ [c∗∗, 2) provided g(x) ≤ 0 for
x ∈ [0, 4].

We now consider the following sub-cases.

B(1) When α = 1/2, we have

g(x) = −504− x+
3

2
x2 ≤ g(4) = −484 < 0, when x ∈ [0, 4].

B(2) When α ∈ (0, 1/2), we have m3 > 0, and using x3 ≤ 4x2 gives

g(x) ≤ m0 +m1x+ (m2 + 4m3)x
2 =: h1(x), when x ∈ [0, 4].

Note that
h1(0) = m0 = −96(1 + α)(5− 3α) < 0,

and
h1(4) = m0 + 4m1 + 16m2 + 64m3 = −16α(3− 2α)(81− 150α + 97α2) < 0.

Therefore since
m2 + 4m3 = 3(1− α)(13− 58α + 87α2 − 38α3) > 0,

h1 is convex on [0, 4], and so

g(x) ≤ h1(x) ≤ max{h1(0);h1(4)} < 0, when x ∈ [0, 4].
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B(3) Now suppose that α ∈ (1/2, 1), then m3 < 0. Thus

g(x) ≤ m0 +m1x+m2x
2 =: h2(x), when x ∈ [0, 4].

Using a similar argument to case B(2), we have h2(x) < 0 for x ∈ [0, 4], and so g(x) < 0,
when x ∈ [0, 4].

Thus when c ∈ [c∗∗, 2), we have shown that

|Φ| ≤ 1

4
√
α(3− 2α)

g1(ξ)
√
g2(ξ) = ψ1(ξ) ≤

3(6 + 5α)

1 + α
, (26)

and (15) is proved.

To see that (15) is sharp, define f̃ ∈ A so that

1 +
zf̃ ′′(z)

f̃ ′(z)
= α + (1− α)p̃(z),

where

p̃(z) =
1− z2

1− τ̃ z + z2

with τ̃ =
√
τ = 1/

√
1 + α. Since τ̃ ∈ (0, 1), p̃ ∈ P , and so f̃ ∈ K(α).

Furthermore

a2 =
1− α

2
√

1 + α
, a3 = −α(1− α)

2(1 + α)
,

and

a4 = −(1− α)(6 + 11α− 7α2)

24(1 + α)3/2
,

which implies that

H2,2(f̃) = −(1− α)2(6 + 5α)

48(1 + α)
.

Thus (15) is sharp for the extreme function f̃ . �

3. Hankel determinants for the inverse functions

Since the classes S∗(α), K(α), S∗β and Kβ are all subsets of S, inverse functions f−1 exist
in some neighbourhood of the origin. A classical result of Löwner [11] shows that if f ∈ S,
and f−1 is given by

f−1(w) = w +
∞∑
n=2

dnw
n, (27)

then for n ≥ 2, |dn| ≤ Kn, where Kn are the coefficients of the inverse of the Koebe function,
and that this inequality is sharp.

Sharp bounds for the two initial coefficients of the inverse functions when f ∈ S∗(α) were
found by Krzyż, Libera and Z lotkiewicz in [8], and similar results for the initial coefficients of
the inverse coefficients when f ∈ S∗β were obtained by Ali in [1], and for f ∈ Kβ by Thomas
and Verma in [16].
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In this section we find sharp bounds for H2,2(f
−1), when f ∈ S∗(α), and when f ∈ K(α),

thus completing the set of problems for the second Hankel determinants of f and f−1 for the
classes S∗(α), K(α), S∗β and Kβ.

We first note that if f−1 is the inverse function of f , and f and f−1 are given by (1) and
(27) respectively, then comparing coefficients in f(f−1(w)) = w gives

d2 = −a2, d3 = −a3 + 2a22, d4 = −a4 + 5a2a3 − 5a32, (28)

so that

H2,2(f
−1) = d2d4 − d23 = a2a4 − a23 − a22a3 + a42. (29)

Before stating and proving our results, we note some properties of the following functions,
which we will use in our proofs.

Let Φi : (1/10, 1/2)→ R (i = 1, 2, 3, 4) be defined by

Φ1(x) = (1− α)2, Φ2(x) =
1

15
(19− 42x+ 24x2), (30)

Φ3(x) =
1

3
(1− x)2(1− 2x)(9− 10x), (31)

and

Φ4(x) =
4(1− 2x)1/2(9− 10x)1/2φ1(x)

(17− 30x)2

(
φ2(x)

φ3(x)

)1/2

, (32)

where

φ1(x) = (9− 10x)(11− 33x+ 24x2) + (5x− 3)
√
φ(x),

φ2(x) = −253 + 1092x− 1548x2 + 720x3 + 2
√
φ(x),

and

φ3(x) = 2
(
−86 + 339x− 432x2 + 180x3 −

√
φ(x)

)
,

with

φ(x) = 511− 2706x+ 5292x2 − 4536x3 + 1440x4.

Let α0 = 0.232 · · · be a zero of the polynomial q defined by q(x) = 100x4 − 340x3 + 401x2 −
188x+ 26. Then the following equalities, which can be verified by direct computation hold.

max{Φi(x) : i = 1, 2, 3, 4} =

{
Φ2(x), when x ∈ (1/10, α0],

Φ3(x), when x ∈ [α0, 1/2).
(33)

Theorem 5. Let α ∈ [0, 1), α0 = 0.232 . . . be the root of the polynomial q(x) = 100x4 −
340x3 + 401x2 − 188x+ 26 = 0 in [0, 1), and f−1 be the inverse function of f ∈ S∗(α). Then

|H2,2(f
−1)| ≤


1

3
(1− α)2(1− 2α)(9− 10α), if α ∈ [0, α0],

1

15
(19− 42α + 24α2), if α ∈ [α0,

2

3
],

(1− α)2, if α ∈ [
2

3
, 1).

(34)
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The first inequality is sharp for the inverse function of f ∈ S∗(α), where f is given by

f(z) =
z

(1− z)2(1−α)
, z ∈ D, (35)

the second inequality is sharp for the inverse function of f ∈ S∗(α), where f , is given by

f(z) =
z

((1− z)1+τ/2(1 + z)1−τ/2)1−α
, z ∈ D, (36)

and where

τ =

√
2(2− 3α)

5(1− α)2
, (37)

and the third inequality is sharp for the inverse function of f , where f ∈ S∗(α) is given by

f(z) =
z

(1− z2)1−α
, z ∈ D. (38)

Proof. Let α ∈ [0, 1), and f ∈ S∗(α) be given by (1). Then there exists p ∈ P given by (9)
such that

zf ′(z)

f(z)
= α + (1− α)p(z). (39)

Equating coefficients in (39) we obtain

a2 = (1− α)c1, a3 =
1

2
(1− α)

(
c2 + (1− α)c21

)
, (40)

and

a4 =
1

3
(1− α)

(
c3 +

3

2
(1− α)c1c2 +

1

2
(1− α)2c31

)
. (41)

Now let f−1 be the inverse of f with expansion (27). Then from (29), (40) and (41) we obtain

d2d4 − d23 =
1

12
(1− α)2(4c1c3 − 3c22 − 6(1− α)c21c2 + 5(1− α)2c41). (42)

From Lemma 2, (42) becomes

d2d4 − d23 =
1

12
(1− α)2

(1

4
(1− 2α)(9− 10α)c41 −

1

2
(5− 6α)c21(4− c21)ζ

− 1

4
(12 + c21)(4− c21)ζ2 + 2c1(4− c21)(1− |ζ|2)η

)
,

(43)

with ζ, η ∈ D.

Since both the class S∗(α) and the functional |H2,2(f
−1)| are rotationally invariant, we can

assume that c1 = c ∈ [0, 2]. Thus the triangle inequality gives

|H2,2(f
−1)| ≤ 1

12
(1− α)2

[
1

4
|(1− 2α)(9− 10α)| c4 + (4− c2)h(c, |ζ|)

]
, (44)

where h : [0, 2]× [0, 1]→ R is defined by

h(x, y) = 2x+
1

2
|5− 6α|x2y +

1

4
(2− x)(6− x)y2.

Moreover it can be easily seen that h(·, y) is increasing on [0, 1], and so

|H2,2(f
−1)| ≤ 1

12
(1− α)2K(c), (45)
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where

K(c) = k1c
4 + k2c

2 + 12,

and where

k1 =
1

4
(|(1− 2α)(9− 10α)| − 2|5− 6α| − 1) , and k2 = 2 (|5− 6α| − 1) . (46)

We note that k1 < 0, and distinguish various cases.

I. When α ∈ [2/3, 1), clearly k2 < 0, and so K(c) ≤ K(0) = 12, when c ∈ [0, 2]. Thus from
(45), we deduce that |H2,2(f

−1)| ≤ (1− α)2.

II. When α ∈ [0, 1/10], the function K becomes

K(c) = (5α2 − 4α− 1

2
)c4 + 4(2− 3α)c2 + 12,

and since 5α2 − 4α− 1/2 < 0, it follows that

K ′(c) ≥ 8c(1− α)(1− 10α) ≥ 0, for c ∈ [0, 2].

Hence K(c) ≤ K(2) for c ∈ [0, 2], and so from (45) we deduce that

|H2,2(f
−1)| ≤ 1

12
(1− α)2K(2) =

1

3
(1− α)2(1− 2α)(9− 10α).

III. When α ∈ [1/2, 2/3), the function K becomes

K(c) = −5(1− α)2c4 + 4(2− 3α)c2 + 12. (47)

It is easy to see that K has a unique local maximum at c = τ , where τ is given by (37). Thus

K(c) ≤ K(τ) = 12 +
4(2− 3α)2

5(1− α)2
, for c ∈ [0, 2],

and so from (45), we obtain

|H2,2(f
−1)| ≤ 1

15
(19− 42α + 24α2).

IV. Next suppose that α ∈ (1/10, 1/2), where we will use Lemma 3.

First note that when c = 0, since ζ ∈ D, we have

|H2,2(f
−1)| = (1− α)2|ζ|2 ≤ (1− α)2 = Φ1(α), (48)

and that when c = 2,

|H2,2(f
−1)| = 1

3
(1− α)2(1− 2α)(9− 10α) = Φ3(α),

where, Φ1 and Φ3 are defined in (30) and (31).

Now let c ∈ (0, 2). Applying the triangle inequality in (43), we obtain

|H2,2(f
−1)| ≤ 1

6
(1− α)2c(4− c2)Γ(A,B,C), (49)
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where Γ is defined by (20), with

A =
(1− 2α)(9− 10α)c3

8(4− c2)
, B = −(5− 6α)c

4
and C = −12 + c2

8c
.

Note that AC < 0 when α ∈ (1/10, 1/2), and c ∈ (0, 2), and so we again need to check the
various cases in Lemma 3.

The inequalities |B| ≥ 2(1− |C|), and B2 ≥ −4A(1− C2)/C are equivalent to

|5− 6α|c2 ≥ −(2− c)(6− c), and (5− 6α)2 ≥ −(1− 2α)(9− 10α)(36− c2)
12 + c2

,

respectively, which are valid when α ∈ (1/10, 1/2), and c ∈ (0, 2), which shows that the first
two cases in (13) are false.

We next note that the first case in (14) is not true. To see this we observe that the inequality
|AB| ≥ |C|(|B|+ 4|A|) can be written as ϕ1(c

2) ≤ 0, where

ϕ1(x) = (30α3 − 57α2 + 36α− 8)x2 + 4(30α2 − 39α + 11)x+ 12(5− 6α).

since ϕ′′1(x) = 2(30α3 − 57α2 + 36α− 8) < 0 for x ∈ [0, 4], we have

ϕ1(x) ≥ min{ϕ1(0), ϕ1(4)}, when x ∈ [0, 4]. (50)

Moreover since

ϕ1(0) = 12(5− 6α) > 0, and ϕ1(4) = 12(1− 2α)(1 + 2α)(9− 10α) > 0,

(50) implies that ϕ1(x) > 0 holds when x ∈ [0, 4], and so |AB| ≥ |C|(|B|+ 4|A|) is false.

Next note that

|C|(|B| − 4|A|)− |AB| = l2c
4 − 2l1c

2 + l0
8(4− c2)

, (51)

where

l2 = (30α− 17)(1− α)2, l1 = 2(30α2 − 45α + 16), and l0 = 12(5− 6α).

Let L(x) = l2x
2 − 2l1x+ l0, and ξ = (l1 −

√
∆)/l2 be a zero of L, where for α ∈ (1/10, 1/2),

∆ = l21 − l0l2 = 4(511− 2706α + 5292α2 − 4536α3 + 1440α4) > 0.

Since ξ ∈ (0, 4), L(x) ≥ 0, when x ∈ [0, ξ], and L(x) ≤ 0, when x ∈ [ξ, 4]. Hence from (51),
we deduce that {

|C|(|B| − 4|A|) ≥ |AB|, when c ∈ [0, ĉ],

|C|(|B| − 4|A|) ≤ |AB|, when c ∈ [ĉ, 4],

where ĉ =
√
ξ ∈ (0, 2).

We now consider the following sub-cases.

IV(a) Suppose first that c ∈ (0, ĉ]. Then by (49) and Lemma 3, we obtain

|H2,2(f
−1)| ≤ 1

6
(1− α)2c(4− c2)[−|A|+ |B|+ |C|] = ϕ2(c

2),

where

ϕ2(x) =
1

12
(1− α)2[−5(1− α)2x2 + 4(2− 3α)x+ 12].



THE SECOND HANKEL DETERMINANT 13

It is easily seen that

ϕ2(x) ≤ ϕ2(τ) =
1

15
(19− 42α + 24α2),

where τ ∈ (0, ξ) is given by (37). Thus

|H2,2(f
−1)| ≤ 1

15
(19− 42α + 24α2) = Φ2(α) (52)

when c ∈ (0, ĉ], where Φ2 is given by (30).

IV(b) Next, let c ∈ [ĉ, 2). Then by (49) and Lemma 3, we have

|H2,2(f
−1)| ≤ 1

6
(1− α)2c(4− c2)(|A|+ |C|)

√
1− B2

4AC

=
1

3
(1− α)2g1(c

2)
√
g2(c2),

(53)

where
g1(x) = (1− α)(2− 5α)x2 − 2x+ 12,

and

g2(x) =
24α2 − 36α + 13− (1− α)2x

(1− 2α)(9− 10α)(12 + x)
.

Now define G(x) = g1(x)
√
g2(x). Then

2(1− 2α)(9− 10α)(12 + x)2
√
g2(x)G′(x) = M(x) := m3x

3 +m2x
2 +m1x+m0, (54)

where
m3 = −4(1− α)3(2− 5α),

m2 = −38 + 163α− 161α2 − 24α3 + 60α4,

m1 = 2(647− 3948α + 8772α2 − 8352α3 + 2880α4),

and
m0 = −12(77− 204α + 132α2).

We note that
M ′(0) = m1 > 0

and
M ′(4) = 2(303− 2240α + 6112α2 − 6816α3 + 2640α4) > 0.

When α ∈ (1/10, 2/5], since m3 ≤ 0, the function M ′ is concave on [0, 4]. So

M ′(x) ≥ min{M ′(0),M ′(4)} > 0, when x ∈ [0, 4]. (55)

When α ∈ (2/5, 1/2), m3 > 0 and

M ′′(x) = 6m3x+ 2m2 ≥ 2m2 > 0, when x ∈ [0, 4].

Thus M ′ is increasing on [0, 4], and M ′(x) ≥ M ′(0) > 0 holds for x ∈ [0, 4]. Therefore when
α ∈ (1/10, 1/2), the function M is increasing on [0, 4], so that

M(x) ≤M(4) = 4(1− 2α)(9− 10α)(87− 388α + 284α2), when x ∈ [0, 4].

Now let α1 := (97−4
√

202)/142 = 0.282 · · · be the zero of the polynomial 87−388x+284x2

in [0, 1].
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IV(b1) When α ∈ [α1, 1/2), M(x) ≤M(4) ≤ 0 for x ∈ [0, 4], and so by (54), G′(x) ≤ 0 for
x ∈ [0, 4]. This, together with (53), gives

|H2,2(f
−1)| ≤ 1

3
(1− α)2G(c2) ≤ 1

3
(1− α)2G(ξ) = Φ4(α), for c ∈ [ĉ, 2), (56)

where Φ4 is defined by (32). Thus from (48), (52), and (56) we obtain

|H2,2(f
−1)| ≤ max{Φ1(α),Φ2(α),Φ4(α)},

and so from (33), we have

|H2,2(f
−1)| ≤ Φ2(α), for c ∈ [0, 2].

IV(b2) Next assume that α ∈ (1/10, α1]. Since M(0) = m0 < 0, M(4) > 0 and M is
increasing on [0, 4], there is a unique µ ∈ (0, 4) such that M(µ) = 0. Hence from (54), G(µ)
is the unique local minimum, and G is convex on [0, 4]. This implies that

G(x) ≤ max{G(ξ), G(4)}, x ∈ [ξ, 4],

which gives

|H2,2(f
−1)| ≤ max{Φ4(α),Φ3(α)},

where Φ3 and Φ4 are defined by (31) and (32). Thus from (48), (52), (56) and (33), we obtain

|H2,2(f
−1)| ≤ max{Φi(α) : i = 1, 2, 3, 4}

=

{
Φ1(α), when α ∈ (1/10, α0],

Φ2(α), when α ∈ [α0, α1],

which gives (34).

We finally find the extreme functions.

On the interval α ∈ [0, α0], consider the function f ∈ S∗(α) defined by (35). Then a2 =
2(1−α), a3 = (1−α)(3− 2α) and a4 = 2(1−α)(2−α)(3− 2α)/3. Hence by (29), we obtain
H2,2(f

−1) = (1− α)2(1− 2α)(9− 10α)/3.

On the interval α ∈ [α0, 2/3], consider the function f ∈ S∗(α) defined by (36). Then
a2 = (1− α)τ , a3 = (1− α)(2 + (1− α)τ 2)/2 and

a4 =
1

6
(1− α)τ

(
8− 6α + (1− α)2τ 2

)
.

Again using (29) we obtain H2,2(f
−1) = −(19− 42α + 24α2)/15, which gives equality in this

case.

Finally on the interval α ∈ [2/3, 1), consider the function f defined by (38). Then clearly
H2,2(f

−1) = −(1− α)2. This completes the proof of Theorem 5. �
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Theorem 6. Let α ∈ [0, 1), and f−1 be the inverse of f ∈ K(α). Then

|H2,2(f
−1)| ≤



1

96
(12− 28α + 19α2), if α ∈ [0, 2/5],

1

9
(1− α)2, if α ∈ [2/5, 4/5],

α(1− α)2(19α− 8)

48(1 + α)(2α− 1)
, if α ∈ [4/5, 1).

(57)

All the inequalities are sharp, with equality when α ∈ [0, 2/5] for the inverse function of
f ∈ K(α) given by

f ′(z) =
1

((1− z)1+τ/2(1 + z)1−τ/2)1−α
, z ∈ D, (58)

when α ∈ [2/5, 4/5] for the inverse function of f ∈ K(α) given by

f ′(z) =
1

(1− z2)1−α
, z ∈ D, (59)

and when α ∈ [4/5, 1) for the inverse function of f ∈ K(α) given by

f ′(z) =
1

(1− µz + z2)1−α
, z ∈ D, (60)

where

τ =

√
2− 5α

2(1− α)2
and µ =

√
5α− 4

(1 + α)(2α− 1)
. (61)

Proof. Let α ∈ [0, 1), and f ∈ K(α) be given by (1), and let f−1 be the inverse of f given by
(27).

Since zf ′ ∈ S∗(α), (29), (40) and (41) give

H2,2(f
−1) =

1

144
(1− α)2(6c1c3 − 4c22 − 5(1− α)c21c2 + 2(1− α)2c41). (62)

Then from Lemma 2, we obtain

H2,2(f
−1) =

1

288
(1− α)2

(
α(4α− 3)c41 + (5α− 3)c21(4− c21)ζ

− (8 + c21)(4− c21)ζ2 + 6c1(4− c21)(1− |ζ|2)η
)
,

(63)

with ζ, η ∈ D.

Again we can assume that c1 := c ∈ [0, 2], and so applying the triangle inequality, we obtain

|H2,2(f
−1)| ≤ 1

288
(1− α)2[α|4α− 3|c4 + (4− c2)h(c, |ζ|)], (64)

where h : [0, 2]× [0, 1]→ R is defined by

h(x, y) = 6x+ |5α− 3|x2y + (2− x)(4− x)y2.

Since the function h(·, y) increases in [0, 1], we obtain

|H2,2(f
−1)| ≤ 1

72
(1− α)2K(c), (65)
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where
K(c) = k1c

4 + k2c
2 + 8,

and where

k1 =
1

4
(α|4α− 3| − |5α− 3| − 1) and k2 = |5α− 3| − 1.

We again consider various cases.

I. When α ∈ [0, 2/5], K(c) = −(1 − α)2c4 + (2 − 5α)c2 + 8, and it can be easily seen that
K(c) ≤ K(τ), when c ∈ [0, 2], where τ is given by (61). Hence by (65), we obtain

|H2,2(f
−1)| ≤ 1

96
(12− 28α + 19α2).

II. When α ∈ [2/5, 4/5], K(c) ≤ K(0) = 8, when c ∈ [0, 2], and so by (65)

|H2,2(f
−1)| ≤ 1

9
(1− α)2.

III. When α ∈ (4/5, 1), let

Ψ(α) :=
α(1− α)2(19α− 8)

48(1 + α)(2α− 1)
.

We now show that |H2,2(f
−1)| ≤ Ψ(α).

We first note that by (64),

|H2,2(f
−1)| = 1

9
(1− α)2 < Ψ(α), when c = 0, (66)

and

|H2,2(f
−1)| = 1

18
α(1− α)2(4α− 3) < Ψ(α), when c = 2. (67)

Now let c ∈ (0, 2). Then by (63),

|H2,2(f
−1)| ≤ 1

48
(1− α)2c(4− c2)Γ(A,B,C), (68)

where Γ is defined in (20), with

A =
α(4α− 3)c3

6(4− c2)
, B =

(5α− 3)c

6
and C = −c

2 + 8

6c
.

Note that AC < 0. Simple computations show that |B| > 2(1 − |C|), and B2 > −4A(1 −
C2)/C hold for α ∈ (4/5, 1), and c ∈ (0, 2). Thus the two first cases in (13) are not possible.
Also, the first case in (14) is not possible. Indeed, the inequality |AB| ≥ |C|(|B| + 4|A|) is
equivalent to ϕ1(c

2) ≤ 0, where

ϕ1(x) = (3− 20α)(1− α)2x2 + 4(32α2 − 29α + 3)x+ 32(5α− 3),

and since ϕ1 is concave on the interval [0, 4],

ϕ1(0) = 32(5α− 3) > 0, and ϕ1(4) = 80α(3− α)(4α− 3) > 0,
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it follows that

ϕ1(x) ≥ min{ϕ1(0), ϕ1(4)} > 0, x ∈ [0, 4].

Next note that

36(4− c2)[|C|(|B| − 4|A|)− |AB|] = l2c
4 + 2l1c

2 + l0, (69)

where

l2 = 3− 2α + 11α2 − 20α3, l1 = 2(3 + 19α− 32α2), and l0 = 32(5α− 3).

Let L(x) = l2x
2 + 2l1x+ l0, and ξ = −(l1 +

√
∆)/l2 be the greatest zero of L, where

∆ = l21 − l0l2 = 12(27− 18α + 171α2 − 712α3 + 608α4) > 0.

Note that l2 < 0 and ξ ∈ (0, 4). Therefore L(x) ≥ 0, when x ∈ [0, ξ], and L(x) ≤ 0, when
x ∈ [ξ, 4]. Thus from (69), we obtain{

|C|(|B| − 4|A|) ≥ |AB|, when c ∈ (0, ĉ],

|C|(|B| − 4|A|) ≤ |AB|, when c ∈ [ĉ, 4),

where ĉ =
√
ξ ∈ (0, 2).

III(a) Let c ∈ (0, ĉ]. Then by (68) and Lemma 3, we obtain

|H2,2(f
−1)| ≤ 1

48
(1− α)2c(4− c2)[−|A|+ |B|+ |C|] = ϕ2(c

2), (70)

where

ϕ2(x) =
1

144
(1− α)2[−(1 + α)(2α− 1)x2 + 2(5α− 4)x+ 16]. (71)

Note that ϕ′2(x) = 0, when x = µ2, where µ is given by (61). Since µ2 ∈ (0, ξ), and ϕ′′2(x) =
(1− α)2(1 + α)(1− 2α)/72 < 0, ϕ2(x) ≤ ϕ2(µ

2), when x ∈ [0, ξ], and so from (70) we have

|H2,2(f
−1)| ≤ ϕ2(µ

2) = Ψ(α). (72)

III(b) Next let c ∈ [ĉ, 2). Then by (68) and Lemma 3, we obtain

|H2,2(f
−1)| ≤ 1

48
(1− α)2c(4− c2)(|A|+ |C|)

√
1− B2

4AC

=
1

192
(1− α)2g1(c

2)
√
g2(c2),

(73)

where

g1(x) = −(1− α)(1 + 4α)x2 − 4x+ 32,

and

g2(x) =
76α2 − 72α + 12− 3(1− α)2x

3α(4α− 3)(8 + x)
.

It is easily seen that g1, and g2 are decreasing on [ξ, 4], and so from (73) we obtain

|H2,2(f
−1)| ≤ 1

192
(1− α)2g1(ξ)

√
g2(ξ) = ϕ2(ξ) ≤ Ψ(α), (74)

where ϕ2 is defined by (71).
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Thus from (66), (67), (72) and (74), we have

|H2,2(f
−1)| ≤ Ψ(α),

which is inequality (57).

We now show that the inequalities are sharp.

When α ∈ [0, 2/5], consider f ∈ K(α) satisfying (58). Then a2 = (1 − α)τ/2, a3 =
(1− α)(2 + (1− α)τ 2)/6, and

a4 =
1

24
(1− α)τ

(
8− 6α + (1− α)2τ 2

)
.

Hence from (29) we obtain H2,2(f
−1) = −(12− 28α + 19α2)/96.

When α ∈ [2/5, 4/5], consider the function f ∈ K(α) defined by (59). Then a2 = a4 = 0,
and a3 = (1− α)/3, and so from (29) we have H2,2(f

−1) = −(1− α)2/9.

Finally when α ∈ [4/5, 1), consider the function f satisfying (60). Then

a2 =
1

2
(1− α)µ, a3 =

1

3

(
−1 + α +

1

2
(2− α)(1− α)µ2

)
,

and

a4 = − 1

24
µ(2− α)(1− α)(6− (3− α)µ2).

Hence from (29) we have

H2,2(f
−1) = −α(1− α)2(19α− 8)

48(1 + α)(2α− 1)
.

This completes the proof of Theorem 6. �

When α = 0 we deduce the following corollaries.

Corollary 1. Let f−1 be the inverse of f ∈ S∗. Then

|H2,2(f
−1)| ≤ 3.

Equality holds for rotations of f(z) = z/(1− z)2.

Corollary 2. Let f−1 be the inverse of f ∈ K. Then

|H2,2(f
−1)| ≤ 1

8
.

Equality holds for rotations of f(z) = 2z/(1− z +
√

1− z2).

Acknowledgements

The first author was supported by a National Research Foundation of Korea (NRF) grant
funded by the Korean Government (MSIP; Ministry of Science, ICT and Future Planning)
(No. NRF-2017R1C1B5076778).



THE SECOND HANKEL DETERMINANT 19

References

[1] R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malaysian Math.
Soc., 26, 63–71 (2003).

[2] N. E. Cho, B. Kowalczyk, O.S. Kwon, A. Lecko and Y.J. Sim, Some coefficient inequalities
related to the Hankel determinant for strongly starlike functions of order alpha, J. Math.
Inequal., 11), no. 2, 429–439 (2017).

[3] N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko and Y.J. Sim, The bounds of some
determinants for starlike functions of order alpha, Bull. Malays. Math. Sci. Soc. (2) 41,
no. 1, 523–535 (2018).

[4] J. H. Choi, Y. C. Kim, T. Sugawa, A general approach to the Fekete-Szegö problem, J.
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