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Abstract: For large-span hybrid roof structures, the construction uncertainties of cable 5 

tension usually have significant influences on its mechanical performance and should 6 

be considered in reliability evaluation. An effective approach to quantify uncertainties 7 

of cable tensions and to evaluate structural reliability is proposed to carry out the 8 

studies by combining the finite element simulation with the multiple response surfaces 9 

method. Taking a hybrid roof structure with cables and steel trusses as an example, the 10 

main procedures on this issue are illustrated. Firstly, a finite element model is 11 

established for the hybrid roof structure considering construction deviations, such as 12 

the deviations of cable force between the design values and the real measured values. 13 

The ultimate bearing capacity of the structure is calculated for models with and without 14 

deviations, and the effects of construction deviations on structural bearing capacity are 15 

analyzed. Then, an uncertainty model of cable tension for structural reliability 16 
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evaluation is proposed by establishing the statistics of initial strain in a structural 17 

analysis based on the monitored deviations. With subspace division and limit state 18 

sample (or sample pair), the multiple response surfaces method is developed to solve 19 

reliability for examples with complex failure functions. It is found that the hybrid roof 20 

structure has a high reliability index about 6.76; and the uncertainties of cable tensions 21 

have a large impact on the reliability, especially the uncertainties of the upper 22 

suspension cable tensions and the back cable tensions. 23 

Key words: hybrid roof structure; cable; steel truss; multiple response surfaces method; 24 

reliability, uncertainty of cable tension; construction deviation. 25 

Introduction 26 

In recent years, large-span space structures (e.g. cable domes, shell structures) 27 

have been widely used in public buildings due to their good mechanical performance 28 

and light self-weight, such as stadiums and airports (Morino 1998; Phocas and 29 

Alexandrou. 2018; Yan et al. 2019; Wakefield 1999). 30 

To be largely different from simple frame structures in mechanical performance, 31 

the large-span space structures often have various structural types, e.g. foldable 32 

kirigami structure (Cai et al. 2019, Zhang et al. 2020), and need complex analysis and 33 

design techniques. In order to better promote the development of large-span space 34 

structures, several scholars have carried out significant amount of researches on 35 

tensegrity structure, which can be constructed with the largest span in theoretically. 36 

Fuller (1975) firstly studied a novel structure: the tensegrity structure. However, this 37 

tensegrity dome structure has not been perfectly used in engineering practice. Based on 38 



Fuller's thinking, Geiger et al. (1986) studied a new structure called cable dome and 39 

successfully implemented the structure in the circle roof structure of the stadium for 40 

gymnastics and fencing games of Seoul Olympic Games in 1986. In addition, further 41 

mechanical analyses of the tensegrity structures have been carried out. For example, 42 

Kebiche et al. (1999) discussed the geometric nonlinearity of tensegrity structure. 43 

Sultan et al. (2001, 2002) studied the linear dynamics of tensegrity structure and 44 

derived the linear motion equation of tensegrity structure with arbitrary equilibrium 45 

configuration, and also investigated prestressing problems of tensegrity structures. 46 

Williamson et al. (2003) studied the requirement of initial equilibrium state of 47 

tensegrity structure. Feng (2005) carried out a comprehensive study on the structural 48 

behaviors of tensegrity dome, and performed a prototype analysis of the first tensegrity 49 

dome-Georgia dome with numerical calculation. Cai et al. (2019) investigated the 50 

effects of initial imperfections of struts on the mechanical behavior of tensegrity 51 

structure. 52 

By comparison, hybrid structures, consisting of cables and rigid structures (e.g. 53 

shell structure, arch structure, truss structure), have attracted more attentions due to the 54 

conveniences in construction. Yasuhiko et al. (1999) proposed a structural behavior 55 

analysis method and made model tests of the hybrid structures considering the effects 56 

of both prestressing and static load deformation. Jiang et al. (2016) proposed an 57 

effective method to study the stiffness of inner concave cable-arch structure based on 58 

force method, which has main advantages that the ratio of each deformation (such as 59 

bending deformation) to the total deformation can be clearly obtained through a 60 



simplified analysis. 61 

For both tensegrity structure and hybrid structure, which include flexible cable 62 

members, the nonlinear effect is very obvious. Therefore, the form finding analysis is 63 

very important for the design and construction of structures. Tibert and Pellegrino 64 

(2003) as well as Juan and Tur (2008) summarized the current form finding methods 65 

for tensegrity structures. Cai and Feng (2015) proposed an effective numerical form 66 

finding method for regular and non-regular tensegrity structures. Zhang and Ohsaki 67 

(2006) presented an improved numerical method for finding the form of tensegrity 68 

structure, which can automatically adjust the values of the force densities to adapt to 69 

the requirement on rank deficiency. 70 

As well known, the node deviations in construction have a great impact on the 71 

structural performance. Therefore, more attentions have been paid to evaluating the 72 

effects of construction deviations on structures. For example, aiming at the tension 73 

system of the crescent-shaped Yueqing Stadium in China, Deng et al. (2013, 2016) 74 

studied the effects of cable pretension deviations on structural mechanics, which is 75 

caused by the geometric deviations (e.g. manufacturing error of component length and 76 

installation error of anchor joint). However, a deterministic analysis is mainly involved, 77 

and quantifying the influences of construction deviation uncertainties on structural 78 

reliability needs to be further carried out. 79 

At present, the reliability-based design and evaluation has been widely applied in 80 

engineering practice. Many methods are proposed for reliability calculation of practical 81 

structures, which usually with implicit performance functions. Among them, the 82 



surrogate model method is able to obtain relatively accurate results with a small number 83 

of samples [Dubourg et al. 2013], and it is widely accepted in the field of reliability 84 

analysis. It approximates the performance function to calculate the failure probability 85 

by constructing a surrogate model. The commonly used surrogate model methods 86 

include Kriging model [Xue et al. 2017], Polynomial Chaos Expansion (PCE) [Marelli 87 

and Sudret 2018], Artificial Neural Networks (ANN) [Papadopoulos et al. 2012], and 88 

Response surface method (RSM) [Jiang et al. 2015] et al. Among them, the Kriging 89 

model usually has good performance in approximating local characteristics. Based on 90 

this characteristic, scholars proposed many adaptive Kriging methods [Teixeira et al. 91 

2020;Wang and Shafieezadeh 2019; Xiao N C et al. 2019] for structural reliability 92 

analysis. However, the construction of Kriging model is relatively complex, and it is 93 

very time-consuming to construct Kriging model in the case of large samples. In 94 

addition, the fitting effect of Kriging model is not good for high-dimensional problems. 95 

PCE model has good performance in approximating global characteristics, but it has 96 

the phenomenon of "dimension curse", that is, with the increase of the dimension of 97 

input variables, the computation task needed for model construction increases 98 

significantly [Schobi et al. 2015]. Therefore, many scholars have proposed the 99 

corresponding sparse method to overcome the "dimension curse" phenomenon. 100 

RSM usually has three main forms: using polynomial basis functions, radial basis 101 

functions, and spline basis functions [Teixeira et al. 2020]. Due to the compromise 102 

between practicability and efficiency, polynomial basis RSM is one of the most popular 103 

metamodeling technique for reliability [Guimarães et al. 2018], and many scholars have 104 



studied and developed it. Ju et al. (2013) proposed an adaptive response surface method 105 

based on moving least squares method. Jiang et al. (2015, 2017) proposed an efficient 106 

response surface method based on techniques of generation of uniform support vector, 107 

which has the advantages that it can dramatically increase the proportion of support 108 

vectors to the whole samples and requires less samples in function fitting. Hadidi et. al 109 

(2017) proposed another efficient response surface method, which can greatly reduce 110 

the number of samples by using an exponential response surface model and an 111 

experimental updating technique. Moreover, the accuracy of the proposed method is 112 

improved by judiciously selecting the location of sample points which are close to the 113 

actual limit state surface. Examples show high efficiency of this method for reliability 114 

analysis of simple structures, e.g. planar truss or planar frame. However, the 115 

conventional response surface methodology has some shortcomings in reliability 116 

analysis, especially for structures with complex and high-dimensional failure functions, 117 

and it is affected by the phenomenon of "dimension curse", too [Guimarães et al. 2018]. 118 

For large hybrid roof structures with complex mechanical behaviors and a lot of 119 

uncertainties, it is difficult to quantify the influences of these uncertainties on structural 120 

safety. In order to solve these problems, this paper establishes an uncertainty model of 121 

cable force for the finite element structure with the measured construction deviation, 122 

and proposes a reliability method based on the multi-response surface technology. 123 

Combing the uncertainty model with the reliability method, the reliability index of 124 

structural bearing capacity is calculated. The influence of different cables on the 125 

reliability of the structure is also discussed. 126 



Structural Bearing Capacity Analysis 127 

Introduction of Hybrid Roof Structure  128 

A terminal building is selected, which is built in Yueyang City, China and has a 129 

long-span hybrid roof structure. The whole structure consists of three parts: steel trusses, 130 

cables, and membranes, as shown in Fig.1 and Fig.2. Because the membranes are 131 

supported by the steel trusses and cables, and used for exterior protected usage only, 132 

the steel trusses and cables are considered only in the following bearing capacity 133 

analysis, as shown in Fig.3. The truss structures are used for both main bearing trusses 134 

in the middle and towers in the sides. 135 

It is seen that the steel trusses include: truss beam (TB), truss column (TC), truss 136 

tower (TT), truss support (TS), Steel column (SC) and so on. The cables include: upper 137 

suspension cables (CU), lower suspension cables (CL), back cables in east and west 138 

sides (CE and CW), membrane-supported cables (CS), boundary cable (CB) and pendent 139 

cable (CP) and so on. The nominal strength of cables and steel trusses are 1670 MPa 140 

and 345 MPa respectively, and other design information is shown in Table 1 and Table 141 

2. 142 

Design Model without Deviations 143 

Based on the above section information and structural layout, the finite element 144 

model of the HRS (hybrid roof structure) was established by using ANSYS 12.0 145 

software, as shown in Fig.4, where the Link10 tension element is used for cables, and 146 

Beam188 element is used for steel members. There are 9359 nodes and 5390 elements 147 

in the finite element model. 148 



In the finite element model, the structural parameters of cables, e.g. pretensions 149 

and strength, are assumed to adopt their design values, as shown in Table 1. 150 

Structural Model with Deviations 151 

Because the cables often play an important role in the hybrid roof structure, their 152 

tensions should be monitored carefully during the construction. To match well with 153 

their design values, key cables are monitored in construction, as shown in Fig.5. The 154 

process of tensioning the suspension cables is shown in Fig.6. 155 

It is known that the measured cable tensions are varying in the whole construction 156 

steps. After the constructions of all cables and trusses finished, the measured cable 157 

tensions and their design tensions as well as the errors are compared. The results are 158 

shown in Table 3, where Td and Tm denote their design value and measured value, 159 

respectively. 160 

It is seen that the largest error is about 20% for the CL1 cable. Based on the 161 

measured cable tensions, the finite element model can be updated, and the structural 162 

model with deviations are obtained for capacity analysis. 163 

Comparisons of Ultimate Bearing Capacity of Two Models 164 

When the initial prestress is applied to the cable and the ultimate bearing capacity 165 

analysis of the structure, the shape of the structure will change greatly, and the small 166 

deformation assumption will no longer applicable. In order to improve the calculation 167 

accuracy, considering the material and geometric nonlinearity, the ultimate bearing 168 

capacity of the two models is analyzed. Considering the unfavorable design load 169 

combination: cool down 24 degrees Celsius, combined with 1.2DL + 1.4SL + 0.98LL, 170 



where DL, SL and LL represent dead load, snow load and live load, 171 

respectively[GB50009-2012]. 172 

For the structural model without cable tension deviations, the maximum vertical 173 

displacement is about 1.12m when the structure reaches the ultimate limit state (e.g. 174 

the maximum bearing capacity or excessive deformation which may cause structural 175 

collapse), which occurs at the node 141 of the upper suspension cable in the middle of 176 

the structure, as shown in Fig.7. However, for the structural model with cable tension 177 

deviations, the 190 node has the maximum displacement when the structure under 178 

ultimate limit state. The load-displacement curves of node 141 and node 190 are shown 179 

in Fig.8. From the nonlinear curves, it can be seen that the structural nonlinear 180 

behaviors are strong obviously. The ultimate bearing capacity of the design model and 181 

the measured model are 2.21 and 2.22 respectively, and there is little difference between 182 

them. However, the difference of ultimate deformation is large, which is 1.12 m and 183 

1.29 m respectively, and the deformation increases by 15.2%. The results show tha t 184 

the cable force deviation has little influence on the bearing capacity of the structure, 185 

but has a great influence on the displacement of the structure under the limit state, 186 

which can not be ignored. The maximum tensile stress of the cable is 457MPa, which 187 

is far less than the design strength of 1670MPa. The failures of the steel structure 188 

dominate the failures of the structure in structural bearing capacity analysis. 189 

Uncertainty Model of Cable Tension Forces 190 

As mentioned earlier, the actual cable tensions are measured after the 191 

constructions finished. For some cables, the measured tensions get larger than their 192 



design value; while for other cables, the measured tensions get smaller. However, due 193 

to uncertainties in service, e.g. creep of cable and rheologic changes which may cause 194 

the prestress loss of cables（Dai et al. 2019；Kmet and Mojdis. 2013; Kmet et al. 2007), 195 

and possible damages under long-time actions (Wang et al., 2019), the cable tensions 196 

would present complex changes by mechanical interactions and thus become uncertain 197 

during the service period, too. If the uncertainties are not carefully considered, it may 198 

lead to an overestimation of safety or even an erroneous judgment. Once the whole 199 

structure fails, it will cause huge losses. 200 

For the finite element model of structure, the pretension of cable is simulated by 201 

setting initial strain in Link 10 element. In order to consider the uncertainties of cable 202 

tensions practically, the initial strain of the corresponding cable can be multiplied by 203 

an uncertainty factor γ in the finite element model. It is well known that the uncertain 204 

variables such as material properties, geometric parameters and dead loads of the 205 

structure will fluctuate around the mean values rather than around the nominal values 206 

[Cheng, 2010]. Moreover, based on 30 sets of tension error data in Table 3, the mean 207 

value of deviations between design tension and measured tension is calculated as about 208 

0, indicating that the uncertainty factor γ is reasonable to be considered as 1.0, too. 209 

Therefore, the mean value of the uncertainty factor γ is considered as 1.0. For the 210 

possible maximum variation of cable tension, it is assumed to be 20%, which matches 211 

well with the maximum error between the actual tension and the designed tension 212 

shown in Table 3. Following this assumption, the standard deviation of the uncertainty 213 

factor γ corresponding to the initial strain can be determined. For example, Structural 214 



analysis shows that if the cable force of the upper suspension cable CU needs to be 215 

increased by 20% from 1080kN to 1300kN, the corresponding initial strain should be 216 

increased by 30%, that is, the initial strain factor γ1 should be 1.3, as shown in Table 4, 217 

which is the simulated design tension in the finite element model (with a small 218 

difference from the real design tension 1000kN due to simulation errors). Let Tpre and 219 

Tpost be the cable force value before and after adjusting initial strain, respectively. The 220 

error v between them is given by 221 
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Where εi is the initial strain. 223 

If the cable tension deviation is assumed to follow a normal distribution (Zhang. 224 

2014; Cheng. 2010), and the maximum varying range is considered as the [μ-2σ, μ+2σ] 225 

(μ means the mean value, σ means the standard deviation) with 95.5% confidence 226 

probability, then the adjustment of initial strain leading to a variation of cable tension 227 

by 20% can be assumed as 2σ (two times of the standard deviation). For example, for 228 

the upper suspension cable CU, the standard deviation of the initial strain factor can be 229 

determined as 0.15, and the mean value is 1.0 as mentioned earlier. Similarly, structural 230 

analysis results show that for other cables, the initial strain factor should be adjusted to 231 

γ2= 1.4, γ3= 1.5, and γ4= 1.5, respectively, if the cable force Tpost is increased by about 232 

20%. To sum up, the required initial strain factors of cables and the corresponding 233 

increases of tensions are shown in Table 5.  234 

Based on the data, the statistics for uncertainties of cable tension is obtained and 235 

shown in Table 6. It is used for the following reliability evaluations. 236 



Reliability Method based on Multiple Response Surfaces Techniques 237 

Multiple Response Surfaces for Function Fitting 238 

As mentioned earlier, the conventional response surface methods often use the 239 

samples not on the limit state surface, and select a single response surface model to 240 

carry out function fitting for reliability analysis of large complex structures, which 241 

possibly causes inaccurate function fitting results. Therefore, this paper develops the 242 

limit state samples and multiple response surfaces based on subspace division 243 

techniques to carry out function fitting. 244 

Generally, both the number and distributions of sample points are important 245 

factors affecting the function fitting accuracy. To obtain a uniform distribution of 246 

samples, the uniform design is applied widely with a uniform design table. The samples 247 

produced by the uniform design method are relatively independent and uniform, 248 

compared with those produced by other methods. Therefore, the uniform design 249 

method is suitable to be used to generate initial sample points for acquisition of limit 250 

state samples. If the random variables are given, the uniform design is carried out by 251 

selecting a uniform table Un(q
m) firstly, where n is the number of experiments, and m 252 

is the maximum number of variables, and q is the number of levels of each variable. 253 

For a random variable in physical space, it can be transformed into a standard normal 254 

variable by the Rosenblatt transformation [Rosenblatt. 1952]. Herein, to simplify the 255 

introduction of failure function fitting, it starts with the assumption that all random 256 

variables are standard normal variables. The initial uniform samples in the standard 257 

normal space are obtained according to Eq. (2). 258 
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where uij is an element of the selected uniform table; xij is the corresponding element 260 

in the standard normal space; λ is a parameter for the possible distribution range of 261 

samples and is generally taken as 3.0, and the corresponding confidence probability is 262 

99.7%. Then, use Eq. (3) to transform all initial uniform samples in the standard normal 263 

space X into those in the actual space Y.
 

264 

1[ ( )]
ii Y iY F X                             (3) 265 

where F-1() and )Φ(  are the inverse function of the cumulative distribution function 266 

of variable Yi and the cumulative distribution function of the standard normal variable 267 

Xi, respectively. With the sample points in the Y space, the finite element model is built 268 

and a deterministic structural failure analysis is carried out, and the ultimate load Flim 269 

is obtained. Then, combine the ultimate load with other resistance variables to obtain a 270 

limit state samples in the Y space. Finally, the limit state samples in the X space is 271 

obtained with Eq. (4). 272 

-1[ ( )]
ii Y iX F Y 

                           
(4) 273 

Due to complex structural properties, the real limit state surface is quite complex, 274 

too. For this sake, the whole limit state surfaces can be divided into multiple sub-275 

surfaces to obtain an accurate approximation. As well known, the closer the point on 276 

the limit state surface is to the origin in the standard normal space, the greater the 277 

influence on the failure probability. Therefore, it is necessary to pay attention to the 278 

point closest to the origin. If X0 is assumed as the closest sample point to the origin 279 

among all sample points, then an inner product coefficient of X0 and Xi are calculated 280 



by Eq. (5), and the total space can be divided into multiple subspaces for function fitting 281 

according to the values of this coefficient. 282 

0 0 0( ) ( ) / /i ii X X X X    i=1, 2, …, N                (5) 283 

where N is the number of the sample points. 284 

The quadratic polynomial without cross terms is usually selected to consider the 285 

nonlinear characteristics of the complex failure function for function fitting. If limit 286 

state sample points are used, then it is expressed as 287 

2

1 1

( ) 0
m m

i i i i

i i

g X a b X c X
 

       i=1, 2, …, m             (6) 288 

where a, bi and ci are the fitting coefficients, m is the number of variables; and a can 289 

be taken a value as 1.0 for limit state sample points. 290 

For all sample points, sort the values of ρ0(i), and select s representative values to 291 

divide the inner product coefficient into s ranges [ρ0(l), ρ0(l-1)] (l=1, 2, …, s), which 292 

satisfy that 1=ρ0(1) ≥ρ0(2) ≥ρ0(3) ≥...≥ρ0(s). Within any range, the corresponding 293 

number of sample points is selected as 2m to satisfy that the fitting coefficients can be 294 

determined properly. Then, the whole space can be divided into s subspaces: Ω1, ..., Ωs, 295 

as shown in Figure 9, The response surface fitting is carried out in each subspace, and 296 

s response surfaces are obtained. 297 

To combine with support vector machine techniques in function fitting, pairs of 298 

samples (safe samples and failure samples) instead of limit state samples can also be 299 

used. It is reported by Jiang et al.(2017) that the safe sample and failure sample can be 300 

generated by the safety load Fl-1 and the failure load Fl calculated with Eq. (7) for each 301 

pair of samples, respectively, where ω is a precision parameter and usually ω=0.05.
 

302 
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Reliability Calculation Steps 305 

Using the limit state samples or sample pairs, the reliability can be calculated with 306 

the multiple response surface techniques by the following steps: 307 

(1) With the given random variables, select a suitable uniform table to generate 308 

initial uniform samples. Use Eqs. (2) to obtain the initial uniform samples in the 309 

standard norm space. 310 

(2) Combine Eqs. (3-4) with structural failure analysis techniques to obtain the 311 

corresponding limit state samples in the standard normal space. 312 

(3) Use the initial limit state samples (or sample pairs) to divide the whole space 313 

into s subspaces, and obtain s response surfaces. The principle of subspace division is 314 

to ensure that the function fitting with the samples (or sample pairs) in each subspace 315 

is achieved with zero residual (or with correct classification). 316 

(4) Use the conventional reliability method (e.g. the first order reliability method) 317 

to solve the checking points for the obtained response surfaces. The function call (e.g. 318 

finite element analysis) is executed to check whether the obtained checking points are 319 

on the limit state surface. If it is not on the limit state surface, then s limit state samples 320 

(or sample pairs) are generated based on the ways above in step (2), and added to the 321 

current set of samples for iterative calculations. If it is on the limit state surface, the 322 

iteration converges. 323 

(5) Using the converged multiple response surfaces, the structural reliability can 324 



be calculated with the Monte Carlo simulation. The failure probability and reliability 325 

index are given by Eqs. (8-9) 326 
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where if   0iXG
, 
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.
 329 

Numerical Verification Analysis 330 

Consider the following limit state equation reported by Hadidi et al. (2017). 331 

  2 3

2 1 12 0.1 0.06G u u u u                        (10) 332 

where u1, u2 are standard normal random variables. 333 

First, a uniform sample design is carried out for this example with two random 334 

variables. A uniform table with eight training samples (N1-N8) is selected and shown 335 

in Table 7. According to Eq. (2) with λ=3, the initial uniform samples are transformed 336 

into those in the standard normal space, as shown in Table 8. 337 

Next, the limit state sample points are solved. Assume u1 and u2 as resistance 338 

variable and load variable, respectively. With the given limit state equation Eq. (10) 339 

and values of u1 in Table 8, the assumed limit load values of u2 are calculated and the 340 

corresponding limit state samples are obtained, as shown in Table 9. 341 

Then, the whole space is divided into 2 subspaces with Eq. (5) by using the 8 limit 342 

state samples in Table 9, and 2 response surfaces are obtained with Eq. (6) in subspaces. 343 

The corresponding check point is solved for each obtained response surface with the 344 

first order reliability method. It is found that the 2 check points are not on the limit state 345 

surface by calling the limit state function, and 2 limit state samples are obtained by 346 



combining the ultimate load values of u1 with resistance values of u2 corresponding to 347 

these 2 check points. Add these 2 limit state samples to update the current total sample 348 

points for iterations of response surface fitting. Finally, the fitting is converged after 4 349 

iterations, and 16 limit state sample points is obtained in total. The whole space is 350 

divided into 4 subspaces, and there are 4 limit state samples in each subspace for zero 351 

residual fitting, and 4 response surfaces (RS1-RS4) are obtained, too. Because the limit 352 

sate samples are used, which satisfy that performance function equals zero, the 353 

coefficient a is assumed as a=1.0. The other coefficients of each converged response 354 

surface are given in Table 10. Using these coefficients, the response surface equation 355 

can be expressed explicitly in each subspace. The obtained response surfaces are drawn 356 

and compared with the real limit state surface, as shown in Fig.10. 357 

From Fig.10, it can be seen that the fitted failure equation approximates the real 358 

limit state equation quite closely in each subspace. Moreover, with the fitted response 359 

surface equation, the reliability results are calculated by Monte Carlo simulation, as 360 

shown in Table 11. From the comparison of reliability results, it can be seen that the 361 

proposed method has a better accuracy and efficiency in reliability analysis. 362 

Structural Reliability Analysis 363 

Reliability Evaluation using Multiple Response Surfaces Methodology 364 

For this hybrid roof structure, 8 random variables are considered and their 365 

statistics are shown in Table 12, which are given in (Zhang, 2001). The reliability 366 

evaluation of bearing capacity is performed by using the multiple response surfaces 367 

(MRS) method. The main steps are as follows. 368 



(1) Generation of initial uniform samples 369 

As mentioned earlier, there are 8 random variables, and a uniform design with 64 370 

levels is considered. The uniform design table U64(648) is selected. Taking λ=3.0, the 371 

range of variable is obtained as [-3.0, 3.0] with Eq. (2) for each initial sample point in 372 

the standard normal space. The initial samples in the space Y are determined by Eq. (3). 373 

(2) acquisition of limit load for initial samples 374 

Considering the material and geometric nonlinearity, the ultimate bearing capacity 375 

of the two models is analyzed. The load combination is shown in section 1.4. Through 376 

the finite element simulation by setting 500 load steps, the deterministic structural 377 

failure analysis is performed to solve the limit load corresponding to each initial sample 378 

points in the space Y, as shown in Table 13. 379 

（3）fitting of multiple response surfaces 380 

Based on Eq. (7), 64 groups of initial sample pairs, that is 128 sample points, are 381 

obtained accordingly. Then, these sample points are transformed into those in the 382 

standard normal space with Eq. (4), as shown in Table 14, where the words “S” and “F” 383 

denote the safe sample point and failure sample point corresponding to safe and failure 384 

loads, respectively. 385 

Among the sample points above, N7S can be determined as the closest sample 386 

point to the origin. The inner product coefficients between each sample point vector 387 

and N7S sample point vector are calculated according to Eq. (5). Then, the total space 388 

is divided into 4 subspaces based on the inner product coefficients. 389 

Using the multiple response surfaces method, 4 response surfaces can be obtained 390 



in the four subspaces. Then the checking points YSD1, YSD2, YSD3 and YSD4 391 

corresponding to each response surface can be obtained, too, as shown in Table 15. 392 

Transforming YSD1, YSD2, YSD3 and YSD4 to those in the space Y, it is found that 393 

the 4 transformed checking points are not on the real limit state surface with finite 394 

element analysis. An iterative calculation is needed for reliability evaluation. Four new 395 

sample pairs in the standard normal space are obtained with such 4 transformed 396 

checking points and the limit loads. The initial sample points are updated by adding the 397 

new sample pairs, and 68 pairs of sample points, namely 136 sample points, are 398 

obtained to divide the subspace and to perform response surface fitting again.
  

399 

After 4 iterative steps, the obtained 4 checking points have been accurately located 400 

on the real limit state surface, as shown in Table 16, thus the iterative fitting stops. A 401 

total of 170 sample points including 4 real checking points are obtained. The reliability 402 

indexes of 4 response surfaces in iteration are shown in Fig.11. 403 

Summary on Reliability Results 404 

From Table 16, it can be seen that the uncertainties of cable tensions, especially 405 

the tensions of the upper suspension cables CU (corresponding to x5 variables) and back 406 

cables CW and CE (corresponding x7, x8 variables), which contribute most to reliability 407 

index, have stronger impacts on reliability than other uncertainty variables. Thus 408 

special attentions should be paid to them in the construction and service periods. 409 

According to the 4 converged response surfaces and Monte Carlo method, the 410 

system failure probability is calculated as Pf=6.8996e-12, and the corresponding 411 

reliability index is 6.76. It indicates that the reliability level of the ultimate bearing 412 



capacity is high for the structural model with uncertainties of cable tensions. 413 

Conclusion 414 

This paper proposes a practical model of the uncertainties of cable forces for large 415 

hybrid roof structures and studies the influence of the uncertainties on the structure 416 

safety. In addition, an advanced multi-response surface method is studied and applied 417 

to reliability evaluation. The main conclusions are as follows: 418 

(1) The multiple response surfaces method can be well applied to the reliability 419 

analysis of both example with nonlinear failure function and hybrid roof structure with 420 

a strong nonlinear mechanical behavior in loading process. By using this method, the 421 

reliability index of the structure considering the uncertainty of cable tensions is 422 

calculated as 6.76, which is of a high safety level. 423 

(2) By multiplying the initial strain of the cable by the uncertain factors, which 424 

are determined by errors between the measured cable tensions and the designed cable 425 

tensions, the uncertainties of cable tension can be established conveniently in the finite 426 

element model. 427 

(3) For the hybrid roof structure composed of cables and trusses, the construction 428 

deviation will lead to a maximum difference as large as 20.06% between the actual 429 

tension of cables and the design tension. The maximum nodal displacement of the 430 

structure model without construction deviation is less than that of the structure model 431 

with construction deviation under the limit state, and the error is about 15.2%.  432 

(4)The construction uncertainties of cable tensions have a strong impact on the 433 

reliability of the hybrid roof structure, especially the tensions of the upper suspension 434 



cables and back cables. Thus, special attention should be paid to them in the 435 

construction and service periods. 436 

This study shows that the construction uncertainties in hybrid roof structure do 437 

have an impact on structural mechanical performance, especially the stiffness. The 438 

positive aspect of this paper is that the proposed multi-response surface method can 439 

realize a reliability evaluation efficiently for such structure with a large number of 440 

uncertainties. To sum up, the proposed method in this paper can be widely used in the 441 

reliability evaluation for large structures with complex mechanical behaviors, which is 442 

very beneficial to evaluate the reliability for the practical structures. 443 
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Schedule 587 

Nomenclature 588 

TB truss beam n number of experiments 

TC truss column m maximum number of variables 

TT truss tower q number of levels of each variable 

TS truss support uij 
an element of the selected uniform 

table 

SC Steel column xij 
corresponding element in the 

standard normal space 

CU upper suspension cable λ 
a parameter for the possible 

distribution range of samples 

CL lower suspension cable Xi a variable in standard normal space 

CE back cables in east side Yi a variable in actual space 

CW back cables in west side F-1() 
inverse function of the cumulative 

distribution function of variable Yi 

CS membrane-supported cable Φ(·) 
cumulative distribution function of 

the standard normal variable Xi 

CB boundary cable Flim ultimate load 

CP pendent cable N number of the sample points 

Dw, Nw diameter and number of cables X0 
the closest sample point to the 

origin among all sample points 

Td, Tm 
designed and measured 

pretensions of each cable 
ρ0 

an inner product coefficient of X0 

and Xi 

DL, SL, LL 
dead load, snow load and live 

load 
a, bi, ci   the fitting coefficients 

γ Initial strain factor Ωi the ith subspace 

Tpre, Tpost 
cable force values before and 

after adjusting initial strain 
ω precision parameter 

v 
cable force errors before and 

after adjusting initial strain 
pf failure probability 

ε initial strain β reliability index 

μ mean value u1, u2 standard normal random variables 

σ standard deviation COV Coefficient of variation 

Un(q
m) uniform table YSD checking point 

Table.1 Design information of cable structure 589 

Members name Dw (mm) Nw Pretension (kN) 

CE 140 10 3915 

CW 140 10 4040 

CU 100 5 1000 



CL 120 5 2000 

CS 20 130 20 

CB 30 10 80 

CP 20 45 0.1 

Note: Dw and Nw denote the diameter and number of cables. 590 

Table.2 Design information of steel structure 591 

Members name position Members section 

TB 

upper chord 650×20 

struts 426×12 

lower chord 180×8 

TC 

upper chord 325×12 

struts 140×6 

lower chord 325×10 

SC 
west side 500×16 

east side 650×16 

TS 

upper chord 325×10 

struts 140×6 

lower chord 219×10 

TT 

Shuttle chord 850~1309×24~36 

struts 140×6 

lower chord 245×10 

Note: Cross-section of member: (diameter) × (Thickness). 592 

Table.3 Designed and measured pretensions of each cable  593 

No. Tm(kN) Td(kN) Error No. Tm(kN) Td(kN) Error 

CU1 966 1000 -3.4% CW6 3423 4040 -18.03% 

CU2 913 1000 -8.7% CW7 3834 4040 -5.37% 

CU3 875 1000 -12.5% CW8 3953 4040 -2.20% 

CU4 923 1000 -7.7% CW9 3887 4040 -3.94% 



CU5 944 1000 -5.6% CW10 4229 4040 4.47% 

CL1 2431 2000 21.6% CE1 4075 3915 3.93% 

CL2 2267 2000 13.4% CE2 3950 3915 0.89% 

CL3 2236 2000 11.8% CE3 3706 3915 -5.64% 

CL4 2244 2000 12.2% CE4 3734 3915 -4.85% 

CL5 2311 2000 15.6% CE5 3484 3915 -12.37% 

CW1 4306 4040 6.18% CE6 3091 3915 -20.06% 

CW2 3716 4040 -8.72% CE7 3667 3915 -6.76% 

CW3 4126 4040 2.08% CE8 3747 3915 -4.48% 

CW4 3654 4040 -10.56% CE9 3704 3915 -5.70% 

CW5 3289 4040 -22.83% CE10 4066 3915 3.71% 

Note: as mentioned earlier, CU, CL, CE and CW denote upper cable, lower cable, east side 594 

cable, west side cable. 595 

Table.4 Variations of cable tensions with increase of cable CU tension by 30% 596 

No. Tpost/kN Tpre/kN v 

CU 1300 1080 20.25% 

CL 1860 1990 -6.67% 

CE 

CW 

4170 

4450 

4060 

4350 

2.76% 

2.24% 

 597 

 598 

Table.5 Initial strain factors and the increases of tensions 599 

Initial strain factor Cable Tpost/kN Tpre/kN v 

γ1=1.3 CU 1300 1080 20.25% 

γ2=1.4 CL  2430 1990 22.16% 

γ3=1.5 CE  4970 4060 22.46% 

γ4=1.5 CW 5320 4350 22.14% 



Table.6 Statistics for uncertainties of cable tension 600 

Variable Distribution μ σ 

γ1 Normal 1.0 0.15 

γ2 Normal 1.0 0.20 

γ3 

γ4 

Normal 

Normal 

1.0 

1.0 

0.25 

0.25 

Table.7 Uniform design for the numerical example 601 

Variable N1 N2 N3 N4 N5 N6 N7 N8 

u1 2 7 8 3 6 5 1 4 

u2 3 5 7 8 2 4 6 8 

Table.8 Uniform samples in the standard normal space  602 

Variable N1 N2 N3 N4 N5 N6 N7 N8 

u1 -2.142 2.142 3.0 -1.285 1.285 0.428 -3.0 -0.428 

u2 -1.285 0.428 2.142 3.0 -2.142 -0.428 1.285 3.0 

Table.9 Limit state sample points 603 

Variable N1 N2 N3 N4 N5 N6 N7 N8 

u1 -2.142 2.142 3.0 -1.285 1.285 0.428 -3.0 -0.428 

u2 0.950 2.131 2.720 1.707 1.962 1.986 -0.520 1.976 

 604 

 605 

Table.10 Fitting coefficients of response surface equation 606 

bi RS1 RS2 RS3 RS4 ci RS1 RS2 RS3 RS4 

b1 0.978 0.267 0.23 116.31 c1 -0.44 -0.22 0.086 13.93 

b2 -1.49 -1.54 0.52 -21.69 c2 -5.94 -6.10 -0.45 -9.72 

Table.11 Comparison of reliability calculation results 607 



Method No. of samples Pf β 

Proposed Method 16 3.43×10-3 1.82 

Hadidi et al. (2017) 24 2.17×10-3 2.00 

Monte Carlo method 106 3.32×10-3 1.82 

Table.12 Statistics of random variables 608 

X-space 

variable 

Y-space 

variable 

Actual 

variables 
Distribution mean COV Ref. 

x1 y1 DL/DLn normal 1.06 0.074 [Zhang, 2001] 

x2 y2 SL/SLn Type I largest 1.14 0.285 [Zhang, 2001] 

x3 y3 LL/LLn Type I largest 0.71 0.206 [Zhang, 2001] 

x4 y4 fy/fyn normal 1.09 0.070 [Zhang, 2001] 

x5 y5 γ1 normal 1.00 0.150 assume 

x6 y6 γ2 normal 1.00 0.200 assume 

x7 y7 γ4 normal 1.00 0.250 assume 

x8 y8 γ3 normal 1.00 0.250 assume 

Note: item with subscript “n” means their nominal value. 609 

 610 

 611 

 612 

Table.13 Sample points in Y space and limit load factor 613 

No. y1 y2 y3 y4 y5 y6 y7 y8 Flim 

N1 1.19 0.68 1.75 0.98 0.63 0.49 1.54 1.43 2.00 

N2 0.97 1.73 1.15 1.27 1.26 1.16 1.33 0.64 2.20 

N3 0.84 0.89 1.23 0.94 0.97 0.77 1.03 0.43 2.25 

N4 1.15 1.57 1.39 0.90 0.69 1.34 1.29 1.36 1.50 



N5 1.02 1.81 0.68 1.05 0.76 0.64 1.13 0.69 1.90 

… … … … … … … … … … 

N58 0.98 0.57 0.68 1.24 1.02 0.60 1.31 1.68 3.20 

N59 1.17 0.31 0.48 1.17 1.34 0.57 1.06 0.99 3.25 

N60 1.11 1.70 0.39 0.92 1.08 0.55 1.68 1.13 1.65 

N61 1.01 0.84 1.08 1.20 1.21 1.23 0.78 1.54 2.50 

N62 1.25 1.44 0.46 1.00 0.56 0.92 0.71 0.73 1.80 

N63 0.89 1.76 1.05 1.09 1.33 1.14 1.50 1.47 1.80 

N64 1.18 1.49 1.11 1.06 0.99 0.90 1.66 0.30 1.70 

Table 14 Sampling points in the standard normal space  614 

No. x1 x2 x3 x4 x5 x6 x7 x8 

N7S 7.81 3.51 4.99 -2.72 1.15 2.44 0.32 0.04 

N7F 8.71 3.64 5.13 -2.72 1.15 2.44 0.32 0.04 

N28S 9.59 4.17 4.64 -1.8 -1.15 1.33 0.04 -1.33 

N28F 10.56 4.31 4.78 -1.8 -1.15 1.33 0.04 -1.33 

… … … … … … … … … 

N59F 47.90 1.09 4.56 1.06 2.26 -2.16 0.23 -0.04 

N59S 45.46 0.94 4.42 1.06 2.26 -2.16 0.23 -0.04 

N44F 43.68 3.44 3.72 1.8 -1.89 -1.33 -1.8 1.61 

N44S 41.41 3.31 3.59 1.8 -1.89 -1.33 -1.8 1.61 

Note: Sample points have been sorted by distance from coordinate origin 615 

Table.15 Checking points and reliability index for first iteration 616 

No. x1 x2 x3 x4 x5 x6 x7 x8 β 

YSD1 0.663 5.208 3.360 -3.340 0.048 -0.009 -0.17 0.049 7.077 

YSD2 0.758 5.119 2.764 -3.680 0.060 -0.239 0.45 -0.30 6.953 

YSD3 0.375 4.009 2.877 -3.250 0.198 0.230 -0.18 0.049 5.934 

YSD4 0.564 3.966 3.547 -3.820 -0.025 -0.050 0.135 0.112 6.570 

Note: YSD is expressed as checking point 617 



Table.16 Check points and reliability index for the last iteration 618 

DP x1 x2 x3 x4 x5 x6 x7 x8 β 

YSD17 0.514 0.373 -0.101 -0.166 -3.387 0.971 5.884 2.107 7.206 

YSD18 -0.18 -0.41 0.082 0.055 -3.544 0.819 5.517 2.995 7.271 

YSD19 0.053 0.289 0.296 -0.244 -3.368 0.494 4.599 2.744 6.364 

YSD20 0.214 0.042 -0.121 0.074 -4.011 0.627 4.070 3.465 6.722 

 619 


