
Exact transcendental stiffness matrices of general beam-columns

embedded in elastic mediums

Sondipon Adhikaria

aZienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK

Abstract

Stiffness matrices of beams embedded in an elastic medium and subjected to axial forces are considered.
Both the bending and the axial deformations have been incorporated. Two approaches for deriving the
element stiffness matrix analytically have been proposed. The first approach is based on the direct force-
displacement relationship, whereas the second approach exploits shape functions within the finite element
framework. The displacement function within the beam is obtained from the solution of the governing
differential equation with suitable boundary conditions. Both approaches result in identical expressions when
the exact transcendental displacement functions are used. Exact closed-form expressions of the elements of
the stiffness matrix have been derived for the bending and axial deformation. Depending on the nature
of the axial force and stiffness of the elastic medium, seven different cases are proposed for the bending
stiffness matrix. A unified approach to the non-dimensional representation of the stiffness matrix elements
and system parameters that are consistent across all the cases has been developed. Through Taylor-series
expansions of the stiffness matrix coefficients, it is shown that the classical stiffness matrices appear as an
approximation when only the first few terms of the series are retained. Numerical results shown in the paper
explicitly quantify the error in using the classical stiffness compared to the exact stiffness matrix derived
in the paper. The expressions derived here gives the most comprehensive and consistent description of the
stiffness coefficients, which can be directly used in the context of finite element analysis over a wide range
of parameter values.

Keywords: Beam-column; elastic foundation; bending deformation; stiffness matrix; exact solutions;
transcendental shape function

1. Introduction

The analysis of beam and beam-columns on elastic foundation is a traditional topic. The impact of beam
theory spans across different length scales. At small length scales, beam theory has been used for nanoscale
structures such as carbon nanotubes and microtubules. At the macro scale, beam theories have been used
for larger structures such as aircraft wings and long-distance pipelines. The striking fact is that beam theory
with suitable adaptations has provided simple mechanical and physical justifications of observed results
beyond any other simple mechanics-based theories. For this reason, in spite of being a classical topic, the
mechanics of beams is still an important research area and likely to remain so in the near future. Carrera
unified formulation [1] is an excellent example of an advanced beam theory. Relatively recent developments in
size-dependent structural beam theories, such as nonlocal [2, 3], hybrid nonlocal [4] and strain gradient-based
approaches [5, 6] have further increased the relevance of beam theories on contemporary developments.

Although the analysis of ‘individual’ beams using the theory of continuum mechanics is physically in-
sightful and numerically accurate, extending this approach to complex built-up structures with thousands
of beams is not straightforward. In this case, the stiffness matrix of an elemental beam can be assembled to
represent the mechanics of the global system. The accuracy and computational efficiency of the approach
depend on two crucial factors, namely, (a) the ability of the beam element stiffness matrix to capture the
true physics of the deformation patterns within the beam and (b) the number of finite elements used to
represent the global mechanical behaviour of the system. The aim of an efficient approach is to have a
stiffness matrix which truly captures the deformation mechanics of a beam such that a minimum number of
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finite elements are used to capture the global response behaviour under prescribed external forces. Several
authors have proposed beam element stiffness matrices towards these directions. For a beam without any
axial forcing and not resting on an elastic foundation, the internal deflection is exactly expressed by a cubic
polynomial. The classical stiffness matrix of a beam is derived [7–10] using cubic polynomial shape functions
within the scope of finite element formulation. For the more general case of beam-columns on elastic foun-
dation, the displacement function is expressed by transcendental functions (see for example [11, 12]). Sirosh
et al. [13] used exponential form of the displacement function and numerically obtained the stiffness matrix
of a general beam-column with tensile axial force. Yankelevsky and Eisenberger [11], on the other hand,
considered compressive axial force and obtained the coefficients of the 4 × 4 stiffness matrix in closed-form
using transcendental functions. For the same problem, Razaqpur [14] independently obtained the stiffness
matrix numerically and the equivalent nodal force analytically. Karamanlidis and Prakash [15] obtained the
element stiffness matrix in closed-form for a beam-column with a two-parameter elastic foundation. While
these formulations consider Euler-Bernoulli beam theory, equivalent analysis is also available for more general
Timoshenko beams (see for example [16, 17]).

From this brief discussion, it is clear that extensive references are available for the exact stiffness matrix
of Euler-Bernoulli beams under the most general case. In spite of these excellent results, the vast majority
of commercial software and research literature still uses beam element stiffness matrix based on the classical
beam finite element stiffness matrix founded on the cubic shape functions [7]. The reason behind this include,
but are not limited to: (1) lack of clarity and consistency in defining the element stiffness coefficients, (2) the
absence of a universal parameterisation approach, and perhaps most importantly, (3) explicitly quantifying
the impact on the accuracy of using classical stiffness matrix in comparison to the exact stiffness matrix. In
this paper, all of these three identified aspects are addressed rigorously and comprehensively.

The paper is organised as follows. In Section 2, the conventional stiffness matrices using the classical
cubic shape functions have been reviewed. Two different approaches to obtain the exact stiffness matrix
have been proposed for the general beam-column on an elastic foundation. In Section 3 the exact stiffness
matrix of a beam with an axial force is considered. Expressions are derived for both compressive and tensile
forces. The stiffness matrix when the beam is resting on an elastic foundation is derived in Section 4. The
most general case is discussed in Section 5 where in addition to the elastic foundation, an axial force is also
considered. Based on different parameter combinations, four sub-cases are considered. In Section 6, the exact
stiffness matrix for the axial deformation is derived in terms of hyperbolic functions. For all the cases, the
stiffness matrix elements have been obtained analytically and expressed by closed-form expressions. Finally,
in Section 7 some conclusions are drawn based on the results obtained in the paper.

2. A general derivation of the exact stiffness matrix

We consider a general Euler-Bernoulli beam-column resting on an elastic foundation as shown in Fig. 1.
Different parameters which govern the deflection of the beam are shown in the figure. In this section, we
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Fig. 1: An Euler-Bernoulli beam on an elastic foundation subjected to an axial force. Here A is the cross-sectional area, E is
Young’s modulus of the material, I is second the moment of area, k is the stiffness per unit length of the elastic foundation, N
is the axial force, and L is the length of the beam. Different boundary conditions can be applied at both ends of the beam.

first briefly review the conventional finite element approach for the derivation of the general stiffness matrix.
Then two distinct approaches are proposed to obtain the general stiffness matrix exactly. The first approach,
developed in Subsection 2.2, is a physics-based approach that exploits the force-displacement relationship of
the beam. The second approach developed in Subsection 2.3 is a theoretical approach that utilises the exact
shape function of the beam.



2.1. The conventional finite element approach for a general beam-column

The transverse deflection of the beam shown in Fig. 1 is governed by a fourth-order following ordinary
differential equation (see for example [7–9] ) as

EI
d4W (x)

dx4
+N

d2W (x)

dx2
+ kW (x) = F (x) (1)

Here N is the axial force, k is the stiffness per unit length of the elastic foundation, EI is the bending rigidity
of the beam, W (x) is transverse displacement. In the above equation, F (x) is externally applied distributed
transverse force on the beam (not explicitly shown in Fig. 1). The elastic foundation is assumed to be the
‘Winkler Foundation’. This implies that the interface between the beam and the springs as shown in Fig. 1
satisfies the displacement compatibility condition [18].

The beam element has two nodes and four degrees of freedom. The displacement field within the element
is expressed by cubic shape functions [7] for the classical finite element analysis and they are given by

N(ξ) =
[

2 ξ3 − 3 ξ2 + 1, Lξ (ξ − 1)
2
,−2 ξ3 + 3 ξ2, Lξ2 (ξ − 1)

]T

(2)

In the above, the non-dimensional length variable is expressed as

ξ = x/L (3)

Note that these shape functions do not arise from the exact solution of the governing differential equation (1)
with relevant boundary conditions. Employing these shape functions in conjunction with the conventional
variational formulation [7], the stiffness matrix of the general beam element can be obtained as

K = EI

∫ L

0

d2N(x)

dx2

d2NT (x)

dx2
dx−N

∫ L

0

dN(x)

dx

dNT (x)

dx
dx+ k

∫ L

0

N(x)NT (x)dx

=
EI

L3

∫ 1

0

d2N(ξ)

dξ2
d2NT (ξ)

dξ2
dξ − N

L

∫ 1

0

dN(ξ)

dξ

dNT (ξ)

dξ
dξ + kL

∫ 1

0

N(ξ)NT (ξ)dξ

=
EI

L3

∫ 1

0

(

d2N(ξ)

dξ2
d2NT (ξ)

dξ2
− ν2

dN(ξ)

dξ

dNT (ξ)

dξ
+ 4η4N(ξ)NT (ξ)

)

dξ

(4)

In the above equation, the non-dimensional axial force and the non-dimensional foundation stiffness are given
by

ν2 =
NL2

EI
(5)

and η4 =
kL4

4EI
(6)

Evaluating the integral in equation (4) and simplifying we have the classical stiffness matrix of the beam-
column on an elastic foundation corresponding to Fig. 1 as

K =
EI

L3







d1 d2L −d5 d6L
d3L

2 −d6L d4L
2

d1 −d2L
sym d3L

2







(7)

where

d1 = 12− 6

5
ν2 +

52η4

35
, d2 = 6− 1

10
ν2 +

22η4

105
, d3 = 4− 2

15
ν2 +

4η4

105

d4 = 2 +
1

30
ν2 − η4

35
, d5 = d1 and d6 = d2

(8)

In the absence of the axial force and the foundation stiffness, that is when ν = η = 0, the above expression
reduces to the conventional stiffness matrix of Euler-Bernoulli beams as

KEB = K(ν=η=0) =
EI

L3







12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L2

6L 2L2 −6L 4L2







(9)

Although the integral in equation (4) is evaluated exactly in deriving the stiffness matrix, the error in



employing this matrix in the context of the finite element analysis arises from the fact that the displacement
field within the beam is not exactly represented by the cubic polynomials used in the shape function in
equation (2). As a result, a larger number of elements need to be used in solving practical problems. Despite
these limitations, the stiffness coefficients expressed by equation (8) are widely used for their simplicity and
convenience. In this paper, we are focusing on closed-form expressions of stiffness matrices of 1D elements.
Note that for 2D and 3D elements with complex shapes, it is more common to obtain integrals as Eq. (4)
numerically, for example, using a Gaussian quadrature [19] method. In the rest of the paper, the integrals
appearing in the derivation of the stiffness matrix are obtained analytically.

2.2. The method based on force-displacement relationships

In contrast to the preceding case, if the stiffness matrix is derived using the exact displacement field,
only one ‘element’ will be necessary for an entire beam (as in the special case with (7) when ν = η = 0).
Therefore, it is vitally important to obtain the exact stiffness matrix of the beam element. For the general
case, transforming equation (1) in the non-dimensional coordinate ξ we have

d4w(ξ)

dξ4
+ ν2

d2w(ξ)

dξ2
+ 4η4w(ξ) = 0 (10)

Here w(ξ) ≡ W (x) and the forcing is assumed to be zero. Assuming a solution of the form

w(ξ) = exp [λξ] (11)

and substituting in equation (10) results in the characteristics equation

λ4 + ν2λ2 + 4η4 = 0 (12)

This equation will result in four roots for λ as λ1 · · · , λ4. Considering these roots, the general solution can
be expressed as

w(ξ) = sT (ξ)c (13)

Here the vectors of basis functions and unknown constants are given by

sT (ξ) = {exp [λ1ξ] , exp [λ2ξ] , exp [λ3ξ] , exp [λ4ξ]} (14)

and c = {c1, c2, c3, c4}T (15)

In general the roots of (12) are complex valued. Therefore, it is often convenient to the express the basis
functions in terms of real valued trigonometric and hyperbolic functions.

The natural boundary conditions of the beam are expressed in terms of the displacement W (x), rotation
(Θ(x)), bending moment (M(x)) and shear force (V (x)). They are given by

Θ(x) =
dW (x)

dx
≡ 1

L

dw(ξ)

dξ
(16)

M(x) = EI
d2W (x)

dx2
≡ EI

L2

d2w(ξ)

dξ2
(17)

and − V (x) = EI
d3W (x)

dx3
+N

dW (x)

dx
≡ EI

L3

(
d3w(ξ)

dξ3
+ ν2

dw(ξ)

dξ

)

=
EI

L3
L [w(ξ)] (18)

where the operator

L ≡ d3

dξ3
+ ν2

d

dξ
(19)

The nodal displacement vector of the beam consists of the displacement and rotation of the beam at the two
ends. This can be obtained in terms of the displacement function w(ξ) in equation (13) as

δ =







W1

Θ1

W2

Θ2







=







W (0)
Θ(0)
W (L)
Θ(L)







=







w(0)
1
L
w′(0)
w(1)
1
L
w′(1)







=







sT (0)
1
L
s
′T

(0)
sT (1)
1
L
s
′T

(1)







︸ ︷︷ ︸

A4×4

c (20)

In the above equation (•)′ denotes the derivative with respect to ξ. The nodal force vector consists of the
shear force and bending moment at the two ends of the beam. The displacement function w(ξ) in equation



(13) can be used to obtain them as

f =







V1

M1

V2

M2







=







−V (0)
−M(0)
V (L)
M(L)







=
EI

L3







L
[
sT (0)

]

−Ls
′′T

(0)
−L

[
sT (1)

]

Ls
′′T

(1)







︸ ︷︷ ︸

B4×4

c (21)

In the above equation (•)′′ denotes the second derivative with respect to ξ. Eliminating the constant vector
c from the previous two equations we obtain a direct relationship between the nodal force and displacement
vectors as

f =
EI

L3

[
BA

−1
]

︸ ︷︷ ︸

K4×4

δ (22)

HereK is the exact stiffness matrix, which can be obtained in closed-form using the expression derived above.
The derivation proposed here does not use the shape functions and consequently avoids the determination
of integrals similar to what encountered in equation (4).

2.3. The method based on the exact shape functions

The force-displacement approach proposed in the previous section is simple and exact. However, it is
valid only when the exact solution of the displacement function is available. Another issue with the above
method is that if there are distributed body forces within the beam, there are no simple ways to take it
into account within the context of a finite element formulation. The shape function-based approach to be
proposed here addresses these drawbacks.

Using the displacement function in equation (13), the vector of shape functions are expressed as

N(ξ) =







N1(ξ)
N2(ξ)
N3(ξ)
N4(ξ)







=







cT1
cT2
cT3
cT4






s(ξ) (23)

Here cj is the vector of constants giving rise to the jth shape function. These unknown constants need to
be obtained from the boundary conditions which define the shape functions. The relationship between the
shape functions and the boundary conditions can be represented as in Table 1, where boundary conditions
in each column give rise to the corresponding shape function. Writing equation (13) for the above four sets

Table 1: The relationship between the boundary conditions and the shape functions.

N1(ξ) N2(ξ) N3(ξ) N4(ξ)
W (0) = w(0) 1 0 0 0
Θ(0) = 1

L
w′(0) 0 1 0 0

W (L) = w(1) 0 0 1 0
Θ(L) = 1

L
w′(1) 0 0 0 1

of boundary conditions, one obtains
A [c1, c2, c3, c4] = I (24)

In the above I is a 4× 4 identity matrix and the matrix A was defined in equation (20). Solving the above
equation for the unknown constants and substituting in equation (23) we obtain the exact shape functions
as

N(ξ) =
[
A

−1
]T

s(ξ) (25)

Substituting this in the integral expression of the stiffness matrix in equation (4), we obtain

K =
EI

L3
A

−1T







∫ 1

0

(
d2s(ξ)

dξ2
d2sT (ξ)

dξ2
− ν2

ds(ξ)

dξ

dsT (ξ)

dξ
+ 4η2s(ξ)sT (ξ)

)

dξ

︸ ︷︷ ︸

Ke







A
−1 (26)



This is an alternate expression to the one derived in the previous section. The matrix Ke is termed here
as the elementary stiffness matrix and it depends only on the basis functions and not on the boundary
conditions. When exact shape functions are used, both equations give identical results. The expression of
the shape function in equation (26) can be used to obtain nodal forces arising due to the distributed body
forces. Considering f(ξ) ≡ F (x) we obtain

p =

∫ 1

0

N(ξ)f(ξ)dξ = A
−1T

∫ 1

0

s(ξ)f(ξ)dξ

︸ ︷︷ ︸

p
e

(27)

The vector pe is called the elementary body force vector. In view of the stiffness matrix and the forcing
vector, the equilibrium equation of the beam is given by

Kw = p (28)

where w is the nodal response vector. Substituting the expressions of the stiffness matrix and the forcing
vector from equations (26) and (27) we have

(
EI

L3
A

−1T
KeA

−1

)

w = A
−1Tpe or w =

L3

EI
AK

−1
e pe (29)

Using the nodal response vector, the displacement field within the beam can be obtained using the shape
functions as

w(ξ) = NT (ξ)w = sT (ξ)A−1 L
3

EI
AK

−1
e pe =

L3

EI
sT (ξ)

(
K

−1
e pe

)
(30)

It is interesting to note that the displacement field is independent of the A matrix. Next, we apply the
general theory proposed in this section to some physically realistic special cases.

3. Beam-columns with axial forces

A beam-column with an axial forceN is shown in Fig. 2. The transverse deflection of the beam is governed

NN

E, I, L, A

1 3

42

1 2

Fig. 2: An Euler-Bernoulli beam subjected to an axial force N .

by a fourth-order ordinary differential equation given in (1) with k = 0. The characteristics equation is given
by

λ4 + ν2λ2 = 0 or λ2(1 + ν2) = 0 (31)

The four solutions of the above equation are

λ2 = 0, λ = ±iν or λ1,2,3,4 = 0, 0,±iν (32)

Using these solutions, the vector of basis functions is obtained as

sT (ξ) =
{

e(0,0,±iν)ξ
}

= {1, ξ, sin νξ, cos νξ} (33)

From equations (20) and (21), the matrices A and B are derived using the above basis functions as

A =










1 0 0 1

0 L−1 ν
L

0

1 1 sin (ν) cos (ν)

0 L−1 ν cos(ν)
L

− ν sin(ν)
L










and B =










0 ν2 0 0

0 0 0 Lν2

0 −ν2 0 0

0 0 −Lν2 sin (ν) −Lν2 cos (ν)










(34)



Employing these matrices, from equation (22) the exact stiffness matrix is obtained in closed-form similar
to the classical case in (7) as

K =
EI

L3
BA

−1 =
EI

L3







d1 d2L −d5 d6L
d3L

2 −d6L d4L
2

d1 −d2L
sym d3L

2







(35)

where

d1 = −ν3 sin (ν)

∆
, d2 =

ν2 (cos (ν)− 1)

∆

d3 =
ν (ν cos (ν)− sin (ν))

∆
, d4 =

ν (sin (ν)− ν)

∆
d5 = d1 d6 = d2 and ∆ = ν sin(ν)− 2(1− cos(ν))

(36)

In the above expressions, the axial force is considered to be compressive in nature. If the axial force is
tensile, the sign of ν2 will be negative. Following a similar procedure, it can be shown that the coefficients
are expressed in terms of hyperbolic functions. The four unique coefficients are given by

d̄1 =
ν3 sinh (ν)

∆
, d̄2 =

ν2 (cosh (ν)− 1)

∆

d̄3 =
ν (ν cosh (ν)− sinh (ν))

∆
, d̄4 =

ν (sinh (ν)− ν)

∆
and ∆ = ν sinh (ν)− 2 cosh (ν) + 2

(37)

Here the notation d̄ is used to distinguish it from the case of compressive force in (36).
The stiffness matrix derived in equation (35) uses the method based on the force-displacement relation-

ships developed in Subsection 2.2. The exact shape function based method described in Subsection 2.3 can
also be used to obtain the same result. After some algebraic simplification, the vector of shape-functions
can be derived as







N1(ξ)
N2(ξ)
N3(ξ)
N4(ξ)







=












ν cos(ν)−sin(ν)+ν

ν cos(ν)−2 sin(ν)+ν
− ν sin(ν)

ν sin(ν)+2 cos(ν)−2
sin(ν)

ν sin(ν)+2 cos(ν)−2 − sin(ν)
ν cos(ν)−2 sin(ν)+ν

− L(ν cos(ν)−sin(ν))
ν (ν sin(ν)+2 cos(ν)−2) − L sin(ν)

ν cos(ν)−2 sin(ν)+ν

L(− sin(ν)+ν (cos(ν)+1))
ν (−2 sin(ν)+ν (cos(ν)+1))

L(ν cos(ν)−sin(ν))
ν (ν sin(ν)+2 cos(ν)−2)

− sin(ν)
ν cos(ν)−2 sin(ν)+ν

ν sin(ν)
ν sin(ν)+2 cos(ν)−2 − sin(ν)

ν sin(ν)+2 cos(ν)−2
sin(ν)

ν cos(ν)−2 sin(ν)+ν

L(ν−sin(ν))
ν (ν sin(ν)+2 cos(ν)−2) − L sin(ν)

ν cos(ν)−2 sin(ν)+ν

L sin(ν)
ν (ν cos(ν)−2 sin(ν)+ν)

L(sin(ν)−ν)
ν (ν sin(ν)+2 cos(ν)−2)


















1
ξ

sin(νξ)
cos(νξ)







(38)
There are four unique non-dimensional coefficients in the stiffness matrix. They are functions of the axial

force parameter ν only. Expanding them in a Taylor series about ν = 0 we obtain

d1 = 12− 6

5
ν2 − 1

700
ν4 − 1

63000
ν6 − 37

194040000
ν8 − 59

25225200000
ν10 +O

(
ν12
)

d2 = 6− 1

10
ν2 − 1

1400
ν4 − 1

126000
ν6 − 37

388080000
ν8 − 59

50450400000
ν10 +O

(
ν12
)

d3 = 4− 2

15
ν2 − 11

6300
ν4 − 1

27000
ν6 − 509

582120000
ν8 − 14617

681080400000
ν10 +O

(
ν12
)

d4 = 2 +
1

30
ν2 +

13

12600
ν4 +

11

378000
ν6 +

907

1164240000
ν8 +

27641

1362160800000
b10 +O

(
ν12
)

(39)

Considering only the first two terms in the above expansion, it can be confirmed that the stiffness matrix
derived here reduces to the classical case in equation (7). The higher-order terms, therefore, quantify the
extended effect of the axial force on the transverse deflection of the beam. This analysis explicitly connects
the transcendental stiffness coefficients with the classical stiffness coefficients.

The case considered here as in Fig. 2 is vitally important for the finite element analysis of beams and
frames when buckling is investigated. The coefficient matrix associated with the factor ν2 is known as the
tangent stiffness matrix. A generalised eigenvalue problem involving the usual stiffness matrix and the tan-
gent stiffness matrix can be solved to obtain different critical buckling loads and their corresponding buckling
modes. The stiffness matrix coefficients derived in equation (36) incorporate the tangent stiffness matrix
in an implicit manner. One needs to solve a non-linear eigenvalue problem arising from the determinant of
the global generalised stiffness matrix to obtain the critical buckling loads. As the critical buckling loads
are real and positive valued quantities, an algorithm such as the Wittrick-Williams algorithm [20] can be



used to efficiently obtain them [21]. Wittrick-Williams algorithm has been successfully applied to extract
undamped natural frequencies. Further research is needed for its application in buckling analysis using the
stiffness coefficients in equation (36).

To understand the error introduced from the use of the classical finite element stiffness matrix, we
introduce a new error measure. For a given stiffness coefficient, dk, k = 1, · · · , 6, the error norm is defined as

εk = 100× dkclassical − dk
dkEB

, k = 1, 2, · · · 6 (40)

In the above equation, dkEB are the stiffness coefficients from the conventional Euler-Bernoulli beam given
in equation (9). The multiplication with 100 in the above equation ensures that the error is obtained as
a percentage. In Fig. 3, this error is shown for the four unique coefficients for different values of the non-
dimensional axial force ν. Both cases, namely when the axial force is compressive and when the axial force is
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(a) The axial force is compressive
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(b) The axial force is tensile

Fig. 3: Errors in the four unique stiffness coefficients obtained using the classical approach in comparison with the exact
transcendental stiffness coefficients as functions of the non-dimensional axial force ν.

tensile, are shown. Note the difference in the behaviour of the errors for the two case. The error is more when
the force is compressive. We observe that for higher values of the compressive axial force, the error can go up
to 10%. If many elements are used (such as a complex framed structure), then the difference between using
the exact transcendental stiffness matrix and the classical stiffness matrix can be significant. In addition to
the accuracy, the use of the transcendental stiffness matrix will contribute to the computational efficiency as
only one element is necessary for a physical beam (that is, no internal discretisation is necessary). Geometric
non-linearity (also known as the ‘P-δ’ effect) is included in the formulation of the stiffness matrix coefficients
in (36). However, material nonlinearity and large deformation are not considered. Therefore, the stiffness
matrix derived should be used for problems involving small deformation.

4. Beams on elastic foundation

In Fig. 2 we show a beam resting on an elastic foundation with stiffness per unit length k. The transverse

E, I, L, A

k

1 3

42

1 2

Fig. 4: A Euler-Bernoulli beam on elastic foundation with stiffness per unit length k.

deflection of the beam is governed by a fourth-order following ordinary differential equation given in (1) with



N = 0. The characteristics equation is given by

λ4 + 4η4 = 0 (41)

Solving the above equation, the four solutions for λ can be concisely expressed as

λ1,2,3,4=
(

4
√
−1
)√

2η =

(

± 1√
2
± i√

2

)√
2η = (±1± i) η (42)

Using these solutions, the vector of basis functions is obtained as

sT (ξ) =
{

e(±1±i)ηξ
}

= {sin ηξ sinh ηξ, sin ηξ cosh ηξ, cos ηξ sinh ηξ, cos ηξ cosh ηξ} (43)

From equations (20) and (21), the matrices A and B can be derived in closed-form. Using these matrices,
from equation (22) the stiffness matrix is obtained in closed-form in exactly the same form as in equation
(35) with the six unique coefficients given by

d1 = 2
η2 (sinh (η) cosh (η) + sin (η) cos (η))

∆
, d2 = −

η
(

(cos (η))
2 − (cosh (η))

2
)

∆

d3 = − sin (η) cos (η)− sinh (η) cosh (η)

∆
, d4 =

sin (η) cosh (η)− sinh (η) cos (η)

∆

d5 = 2
η2 (sin (η) cosh (η) + sinh (η) cos (η))

∆
, d6 = 2

sin (η) η sinh (η)

∆

and ∆ =
sinh2 η − sin2 η

2η

(44)

The stiffness matrix coefficients derived in equation (44) uses the method based on the force-displacement
relationships developed in Subsection 2.2. The exact shape function based method described in Subsection 2.3
can also be used to obtain the same result. After some algebraic simplification, the vector of shape-functions
can be derived as







N1(ξ)
N2(ξ)
N3(ξ)
N4(ξ)







=













(cos(ξ))2−(cosh(ξ))2

(cos(ξ))2+(cosh(ξ))2−2

sinh(ξ) cosh(ξ)+sin(ξ) cos(ξ)

(cos(ξ))2+(cosh(ξ))2−2

− sinh(ξ) cosh(ξ)−sin(ξ) cos(ξ)

(cos(ξ))2+(cosh(ξ))2−2
1

L(sin(ξ) cos(ξ)−sinh(ξ) cosh(ξ))

ξ((cos(ξ))2+(cosh(ξ))2−2)
L(sinh(ξ))2

ξ((cos(ξ))2+(cosh(ξ))2−2)
− L(sin(ξ))2

ξ((cos(ξ))2+(cosh(ξ))2−2)
0

2 sin(ξ) sinh(ξ)

(cos(ξ))2+(cosh(ξ))2−2

− sin(ξ) cosh(ξ)−sinh(ξ) cos(ξ)

(cos(ξ))2+(cosh(ξ))2−2

sin(ξ) cosh(ξ)+sinh(ξ) cos(ξ)

(cos(ξ))2+(cosh(ξ))2−2
0

L(sinh(ξ) cos(ξ)−sin(ξ) cosh(ξ))

ξ((cos(ξ))2+(cosh(ξ))2−2)
L sin(ξ) sinh(ξ)

ξ((cos(ξ))2+(cosh(ξ))2−2)
− L sin(ξ) sinh(ξ)

ξ((cos(ξ))2+(cosh(ξ))2−2)
0



















sin ηξ sinh ηξ
sin ηξ cosh ηξ
cos ηξ sinh ηξ
cos ηξ cosh ηξ







(45)
There are six unique non-dimensional coefficients in the stiffness matrix. They are functions of the

foundation stiffness parameter η only. Expanding them in a Taylor series about η = 0 we obtain

d1 = 12 +
52

35
η4 − 236

40425
η8 +

4408

99324225
η12 − 3014756

8551013538375
η16 +O

(
η20
)

d2 = 6 +
22

105
η4 − 446

363825
η8 +

14188

1489863375
η12 − 8430298

111163175998875
η16 +O

(
η20
)

d3 = 4 +
4

105
η4 − 284

1091475
η8 +

1016

496621125
η12 − 81614284

5002342919949375
η16 +O

(
η20
)

d4 = 2− 1

35
η4 +

1097

4365900
η8 − 899

441441000
η12 +

5220181117

320149946876760000
η16 +O

(
η20
)

d5 = 12− 18

35
η4 +

1279

242550
η8 − 5801

132432300
η12 +

417329273

1185740543988000
η16 +O

(
η20
)

d6 = 6− 13

105
η4 +

1681

1455300
η8 − 112631

11918907000
η12 +

41460911

547264866456000
η16 +O

(
η20
)

(46)

Considering only the first two terms in the above expansion, it can be confirmed that the stiffness matrix
derived here reduces to the classical case in equation (7) for d1 · · · d4. The higher-order terms, therefore,
quantify the extended effect of the foundation stiffness on the transverse deflection of the beam. This analysis
explicitly connects the transcendental stiffness coefficients with the classical stiffness coefficients.

In Fig. 5, the error defined in equation (40) is shown for the six unique coefficients for different values
of the non-dimensional foundation stiffness η. Two different regimes have been selected, namely, 0 ≤ η ≤ 1
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Fig. 5: Errors in the six unique stiffness coefficients obtained using the classical approach in comparison with the exact
transcendental stiffness coefficients as functions of the non-dimensional foundation stiffness η .

and 1 ≤ η ≤ 3. Note the significant difference in the values of the error for the two cases shown in Fig. 5(a)
and Fig. 5(b). For values of η > 1, the difference between using the exact transcendental stiffness matrix
and the classical stiffness matrix is significant. For this case, the proposed transcendental stiffness matrix
should be used.

5. Beam-columns on an elastic foundation with axial forces

This is the general case considered in Fig. 1. The characteristic equation is given by (12). Its roots are
obtained as

λ2 =
−ν2 ±

√

ν4 − 16η4

2
(47)

Depending on the sign of (ν4− 16η4) and whether the axial force is tensile or compressive, the following four
cases arise.

5.1. Case 1: Compressive axial force and (ν4 − 16η4) ≥ 0

For this case, the solutions given in equation (47) can expressed as

λ2 ≡ −
(

ν2 +
√

ν4 − 16η4

2

)

︸ ︷︷ ︸

α2

, −
(

ν2 −
√

ν4 − 16η4

2

)

︸ ︷︷ ︸

β2

(48)

It can be easily verified that both α2 and β2 are positive and real quantities when (ν4−16η4) ≥ 0. Therefore,
the four solutions are given by

λ1,2,3,4 = ±iα,±iβ, where α =

√

ν2 +
√

ν4 − 16η4

2
, and β =

√

ν2 −
√

ν4 − 16η4

2
, α ≥ β > 0

(49)
Using these solutions, the vector of basis functions is obtained as

sT (ξ) =
{

e(±iα,±iβ)ξ
}

= {sin(αξ), cos(αξ), sin(βξ), cos(βξ)} (50)

It can be deduced that the square-sum of the roots

α2 + β2 = ν2 (51)



Using this, the shear force operator in equation (19) can be conveniently expressed in terms of the roots in
equation (48) as

L ≡ d3

dξ3
+
(
α2 + β2

) d

dξ
(52)

From equations (20) and (21), the matrices A and B are derived using the basis functions in equation
(50) as

A =










0 1 0 1

α
L

0 β
L

0

sin (α) cos (α) sin (β) cos (β)

α cos(α)
L

−α sin(α)
L

β cos(β)
L

−β sin(β)
L










(53)

and B =










αβ2 0 α2β 0

0 Lα2 0 Lβ2

−α cos (α)β2 α sin (α)β2 −β cos (β)α2 β sin (β)α2

−Lα2 sin (α) −Lα2 cos (α) −Lβ2 sin (β) −Lβ2 cos (β)










(54)

Using these matrices, from equation (22) the exact stiffness matrix is obtained in closed-form in exactly the
same form as in equation (35) with the six unique coefficients give by

d1 =
αβ (cos (α) sin (β)β − sin (α) cos (β)α) (−α+ β) (α+ β)

∆

d2 = −
(
cos (β)

(
α2 + β2

)
cos (α) + 2 sin (α) sin (β)αβ − β2 − α2

)
β α

∆

d3 = − (α cos (α) sin (β)− sin (α) β cos (β))
(
α2 − β2

)

∆
, d4 =

(sin (α)β − α sin (β))
(
−α2 + β2

)

∆

d5 =
αβ (α sin (α)− β sin (β))

(
α2 − β2

)

∆
, d6 = −αβ (cos (α)− cos (β))

(
α2 − β2

)

∆

and ∆ = − sin (β)
(
α2 + β2

)
sin (α)− 2αβ (cos (α) cos (β)− 1)

(55)

These expressions are valid when
ν4 − 16η4 ≥ 0 or ν ≥ 2η (56)

Next, we consider the case when this condition is not met.

5.2. Case 2: Compressive axial force and (ν4 − 16η4) < 0

In this case, the square of roots of the characteristics equation given by equation (47) will be complex
valued as (ν4 − 16η4) is negative. We rewrite them as

λ2 =
−ν2 ± i

√

16η4 − ν4

2
(57)

It is known that when a and b are positive real numbers, then the square root of the complex number can
be expressed by

√
a± ib = ±





√

a+
√
a2 + b2

2
± i

√

−a+
√
a2 + b2

2



 (58)

Applying this to equation (57), all the four roots can be explicitly obtained as

λ1,2,3,4 = ±α± iβ, where α =
1

2

√

4η2 − ν2, β =
1

2

√

4η2 + ν2, β > α > 0 (59)

Using these solutions, the vector of basis functions is obtained as

sT (ξ) =
{

e(±α±iβ)ξ
}

= {sinh (α ξ) sin (β ξ) , sinh (α ξ) cos (β ξ) , cosh (α ξ) sin (β ξ) , cosh (α ξ) cos (β ξ)} (60)

It can be deduced that the square-sum of the roots

β2 − α2 =
1

2
ν2 (61)



Due to this relationship, the shear force operator in equation (19) can be conveniently expressed in terms of
the roots in equation (59) as

L ≡ d3

dξ3
+ 2

(
β2 − α2

) d

dξ
(62)

From equations (20) and (21), the matrices A and B can be derived in closed-form. Using these matrices,
from equation (22) the exact stiffness matrix is obtained in closed-form in exactly the same form as in equation
(35) with the six unique coefficients given by

d1 = 2
αβ

(
α2 + β2

)
(cosh (α) sinh (α) β + sin (β) cos (β)α)

∆

d2 =

(
α2 + β2

) (

(cosh (α))
2
β2 − (cos (β))

2
α2 + α2 − β2

)

∆

d3 = 2
αβ (cosh (α) sinh (α)β − sin (β) cos (β)α)

∆
, d4 = 2

αβ (α cosh (α) sin (β)− sinh (α) β cos (β))

∆

d5 = 2
(α cosh (α) sin (β) + sinh (α) β cos (β))αβ

(
α2 + β2

)

∆
, d6 = 2

αβ sinh (α) sin (β)
(
α2 + β2

)

∆

and ∆ = (sinh (α))
2
β2 − (sin (β))

2
α2

(63)

The stiffness matrix coefficients in equation (63) along with the coefficients in equation (55) derived in
the previous subsection define the stiffness matrix for the general case of compressive axial force and elastic
foundation as shown in Fig. 1 for the complete parametric space of ν and η. In Fig. 6, the error defined in
equation (40) is shown for the six unique coefficients for different values of the non-dimensional foundation
stiffness η and non-dimensional axial force ν. The plots show contours of percentage errors. The contour
marks are labelled clearly in the plots (note the different colour codes in different subplots). All the six
coefficients show unique patterns of their errors. For example, coefficients d1 and d6 show significant growth
in error with increasing η compared to the other four coefficients. There are two generic features in these
plots. The first is the top left corner, which is the ‘ν-dominated’ region of error. Here the value of η is
small, and hence the stiffness coefficients are obtained from equation (63). The straight line in the figure
corresponds to the parameter combination ν = 2η. The second key feature is the ‘η-dominated’ region of
error in the right-hand side of the plots. Here, irrespective of the value ν, the error becomes large for larger
values of η. This observation is consistent with what seen before in Fig. 5 when the variation of only η
was considered. The results shown in Fig. 6 provide a strong justification for the use of the exact stiffness
coefficient derived here.

5.3. Case 3: Tensile axial force and (ν4 − 16η4) ≥ 0

When the axial force is tensile, the characteristic equation is given by

λ4 − ν2λ2 + 4η4 = 0 (64)

The solutions given in equation (47) can expressed as

λ2 ≡ ν2 +
√

ν4 − 16η4

2
︸ ︷︷ ︸

α2

,
ν2 −

√

ν4 − 16η4

2
︸ ︷︷ ︸

β2

(65)

It can be easily verified that both α2 and β2 are positive and real quantities when (ν4−16η4) ≥ 0. Therefore,
the four solutions are given by

λ1,2,3,4 = ±α,±β, where α =

√

ν2 +
√

ν4 − 16η4

2
, and β =

√

ν2 −
√

ν4 − 16η4

2
, α ≥ β > 0 (66)

Using these solutions, the vector of basis functions is obtained as

sT (ξ) =
{

e(±α,±β)ξ
}

= {sinh(αξ), cosh(αξ), sinh(βξ), cosh(βξ)} (67)

It can be deduced that the square-sum of the roots

α2 + β2 = ν2 (68)
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Fig. 6: Contours of percentage errors in the six unique stiffness coefficients obtained using the classical approach in comparison
with the exact transcendental stiffness coefficients as functions of the non-dimensional foundation stiffness η and non-dimensional
compressive axial force ν.

Due to this relationship, the shear force operator can be expressed in terms of the roots in equation (66) as

L ≡ d3

dξ3
−
(
α2 + β2

) d

dξ
(69)

From equations (20) and (21), the matrices A and B can be derived analytically. Using these matrices,



from equation (22) the exact stiffness matrix is obtained in closed-form in exactly the same form as in
equation (35) with the six unique coefficients given by

d1 =
αβ (sinh (β) cosh (α)β − cosh (β) sinh (α)α) (β − α) (β + α)

∆

d2 =
α
(
cosh (β)

(
α2 + β2

)
cosh (α)− 2 sinh (β) sinh (α)αβ − β2 − α2

)
β

∆

d3 =
(α cosh (α) sinh (β)− sinh (α)β cosh (β))

(
α2 − β2

)

∆
, d4 = − (α sinh (β)− sinh (α)β)

(
α2 − β2

)

∆

d5 =
αβ (sinh (β)β − sinh (α)α)

(
−α2 + β2

)

∆
, d6 =

αβ (cosh (β)− cosh (α))
(
−α2 + β2

)

∆

and ∆ = sinh (β)
(
α2 + β2

)
sinh (α) − 2αβ (cosh (α) cosh (β)− 1)

(70)

These expressions are valid when ν ≥ 2η. Next, we consider the case when this condition is not met.

5.4. Case 4: Tensile axial force and (ν4 − 16η4) < 0

In this case, the square of roots of the characteristics equation given by equation (56) will be complex
valued as (ν4 − 16η4) is negative. We rewrite the solutions in equation (65) as

λ2 =
ν2 ± i

√

16η4 − ν4

2
(71)

Using the expression of the square root of a complex number given in (58), all the four roots can be explicitly
obtained as

λ1,2,3,4 = ±β ± iα, where α =
1

2

√

4η2 − ν2, β =
1

2

√

4η2 + ν2, β > α > 0 (72)

Note that the real and imaginary parts are swapped in comparison to the case of compressive force given in
(59). Using these solutions, the vector of basis functions is obtained as

sT (ξ) = {sinh (β x) sin (αx) , sinh (β x) cos (αx) , cosh (β x) sin (αx) , cosh (β x) cos (αx)} (73)

It can be deduced that the square-sum of the roots

α2 + β2 =
1

2
ν2 (74)

The shear force operator can be expressed in terms of the roots in equation (72) as

L ≡ d3

dξ3
− 2

(
β2 − α2

) d

dξ
(75)

From equations (20) and (21), the matrices A and B can be derived in closed-form. Using these matrices,
from equation (22) the exact stiffness matrix is obtained in closed-form in the same form as in equation (35)
with the six unique coefficients given by

d1 = 2
αβ

(
α2 + β2

)
(cos (β) sin (β)α+ sinh (α) cosh (α) β)

∆

d2 =

(
α2 + β2

) (

− (cos (β))2 α2 + (cosh (α))2 β2 + α2 − β2
)

∆

d3 = −2
αβ (cos (β) sin (β)α− sinh (α) cosh (α) β)

∆
d4 = −2

αβ (sinh (α) β cos (β)− α cosh (α) sin (β))

∆

d5 = 2
(α cosh (α) sin (β) + sinh (α) β cos (β))αβ

(
α2 + β2

)

∆
, d6 = 2

αβ sin (β) sinh (α)
(
α2 + β2

)

∆

and ∆ = (sinh (β))
2
α2 − (sin (α))

2
β2

(76)

The stiffness matrix coefficients in equation (76) along with the coefficients in equation (70) derived in the
previous subsection define the stiffness matrix for the general case of tensile axial force and elastic foundation
as shown in Fig. 1 for the complete parametric space of ν and η. In Fig. 7, the error defined in equation
(40) is shown for the six unique coefficients for different values of the non-dimensional foundation stiffness η



and non-dimensional axial force ν. Characteristics of these plots are similar to the case of compressive axial

(a) Coefficient d1 (b) Coefficient d2

(c) Coefficient d3 (d) Coefficient d4

(e) Coefficient d5 (f) Coefficient d6

Fig. 7: Contours of percentage errors in the six unique stiffness coefficients obtained using the classical approach in comparison
with the exact transcendental stiffness coefficients as functions of the non-dimensional foundation stiffness η and non-dimensional
tensile axial force ν.

force discussed before.
The results obtained in this section are for the most general case. Therefore, the analytical expressions of

the stiffness matrix coefficients in Section 3 and Section 4 can be obtained as special cases of what is derived
here. The case of beam-columns with axial forces only discussed in Section 3 can be recovered by taking



limη→0 with cases 2 and 4 depending upon whether the axial force is compressive or tensile. Similarly, the
case of beams on elastic foundation in Section 4 can be recovered by taking limν→0 with cases 1 or 3 (will
give the same result).

6. General beam-columns embedded in elastic mediums with axial deformation

6.1. The axial stiffness matrix

So far, only the bending deformation has been considered. However, when the axial deformation, in
addition to the bending deformation, is taken into account, we consider ka as the stiffness per unit length of
the elastic medium. In this case, the beam element will have six degrees of freedom as shown in Fig. 8. The

NN

ka

k

2 6

4

3

1 2
1

5

Fig. 8: An Euler-Bernoulli beam embedded in an elastic medium. Here k is the stiffness per unit length of the elastic medium
for bending deformation, and ka is the stiffness per unit length of the elastic medium for axial deformation (marked by the
shaded region). The beam element has six degrees of freedom where 1 and 4 correspond to axial deformation, while 2, 3, 5 and
6 correspond to transverse deformation and rotation at the two ends.

axial deformation is uncoupled from the bending deformation for Euler-Bernoulli beams. Therefore the 2×2
stiffness matrix corresponding to the axial deformation can be obtained independently to the bending case
considered before. The axial deflection of the beam shown in Fig. 8 is governed by a second-order ordinary
differential equation (see for example [7, 9]) as

EA
d2U(x)

dx2
− kaU(x) = Fa(x) (77)

Here ka is the stiffness per unit length of the elastic medium, EA is the axial rigidity of the beam, U(x) is
axial displacement, and Fa(x) is the applied distributed axial force on the beam. The applied distributed
force will contribute towards the element forcing vector, which is not considered in this study. The beam
element for the axial case will have two nodes and two degrees of freedom. The axial displacement field
within the element is expressed by linear shape functions [7] for the classical finite element analysis, and
they are given by

N(ξ) = [1− ξ, ξ]
T

(78)

where the non-dimensional length variable ξ = x/L.
These shape functions do not arise from the exact solution of the governing differential equation (77)

with relevant boundary conditions. Employing these shape functions in conjunction with the conventional
variational formulation [7], the stiffness matrix of the general beam element can be obtained as

Ka = EA

∫ L

0

dN(x)

dx

dNT (x)

dx
dx+ ka

∫ L

0

N(x)NT (x)dx

=
EA

L

∫ 1

0

dN(ξ)

dξ

dNT (ξ)

dξ
dξ + kaL

∫ 1

0

N(ξ)NT (ξ)dξ

=
EA

L

∫ 1

0

(

dN(ξ)

dξ

dNT (ξ)

dξ
+ µ2N(ξ)NT (ξ)

)

dξ

(79)

In the above equation, the non-dimensional elastic medium stiffness is given by

µ2 =
kaL

2

EA
(80)

Evaluating the integral in equation (79) and simplifying we have the classical axial stiffness matrix a the rod
embedded in an elastic medium corresponding to Fig. 8 as

Ka =
EA

L

[
a1 −a2
−a2 a1

]

(81)



where

a1 = 1 +
1

3
µ2, and a2 = 1− 1

6
µ2 (82)

In the absence of the elastic medium, that is, when µ = 0, the above expression reduces to the conventional
stiffness matrix of a rod. The linear shape functions in equation (78) do not arise from the exact solution of
the governing equation in (77). Consequently, the stiffness matrix coefficients in equation (82) are not exact.

Transforming the governing differential equation (77) in the non-dimensional coordinate we have

d2u(ξ)

dξ2
− µ2u(ξ) = 0 (83)

Here u(ξ) ≡ U(x) and the forcing is assumed to be zero. Assuming a solution of the form u(ξ) = exp [λξ]
and substituting in equation (83) results in the characteristics equation

λ2 − µ2 = 0 (84)

This equation will result in two roots for λ and consequently the general solution can be expressed as

u(ξ) = sT (ξ)c (85)

Here the vectors of basis functions and unknown constants are given by

sT (ξ) = {sinh(µξ), cosh(µξ), } and c = {c1, c2}T (86)

The natural boundary conditions are expressed in terms of the displacement U(x) and the axial force H(x)

−H(x) = EA
dU(x)

dx
=

EA

L

du(ξ)

dξ
(87)

The nodal displacement vector consists of the displacements at the two ends. This can be obtained in terms
of the displacement function u(ξ) in equation (85) as

δ =

{
U1

U2

}

=

{
U(0)
U(L)

}

=

{
u(0)
u(1)

}

=

[
sT (0)
sT (1)

]

c =

[
0 1

sinh(µ) cosh(µ)

]

︸ ︷︷ ︸

Aa2×2

c (88)

The nodal force vector consists of the axial forces at the two ends of the beam. The displacement function
u(ξ) in equation (85) can be used to obtain them as

f =

{
H1

H2

}

=

{
−H(0)
H(L)

}

=
EA

L

[

−s
′T

(0)

s
′T

(1)

]

c =
EA

L

[
−µ 0

µ cosh(µ) µ sinh(µ)

]

︸ ︷︷ ︸

Ba2×2

c (89)

In the above equation (•)′ denotes the derivative with respect to ξ. Eliminating the constant vector c from
the previous two equations we obtain a direct relationship between the nodal force and displacement vectors
as

f =
EA

L

[
BaA

−1
a

]

︸ ︷︷ ︸

Ka2×2

δ (90)

Using this expressions, the exact stiffness matrix for the axial case is given by equation (81) with two unique
coefficients

a1 = µ coth(µ), and a2 = µ cosech(µ) (91)

These expressions are similar to the expression of the axial dynamic stiffness matrix [22, 23], except here
hyperbolic functions are employed. The derivation proposed here does not use the shape functions and
consequently avoids the determination of integrals similar to what encountered in equation (79). It can be
shown that the exact shape functions for the axial case is given by

N(ξ) =

[
− coth(µ) sinh(µx) + cosh(µξ)

cosech(µ) sinh(µξ)

]

(92)

Using these shape functions, the exact stiffness matrix can be alternatively obtained using equation (79).
There are two unique non-dimensional coefficients in the stiffness matrix in equation (90). They are

functions of the elastic medium stiffness parameter µ only. Expanding them in a Taylor series about µ = 0



we obtain

a1= 1 +
1

3
µ2 − 1

45
µ4 +

2

945
µ6 − 1

4725
µ8 +O

(
µ10
)

a2= 1− 1

6
µ2 +

7

360
µ4 − 31

15120
µ6 +

127

604800
µ8 +O

(
µ10
)

(93)

Considering only the first two terms in the above expansion, it can be confirmed that the stiffness matrix
derived here reduces to the classical case in equation (82). Therefore, the higher-order terms quantify the
extended effect of the elastic medium stiffness on the axial deflection of the beam. This analysis explicitly
connects the transcendental stiffness coefficients with the classical stiffness coefficients. In Fig. 9, the error
defined in equation (40) is shown for the two unique coefficients for different values of the non-dimensional
elastic medium stiffness µ. Two different regimes have been selected, namely, 0 ≤ µ ≤ 1 and 1 ≤ µ ≤ 3.
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Fig. 9: Errors in the two unique axial stiffness coefficients obtained using the classical approach in comparison with the exact
transcendental stiffness coefficients as functions of the non-dimensional elastic medium stiffness µ .

Note the significant difference in the values of the error for the two cases shown in Fig. 9(a) and Fig. 9(b).
For values of µ > 1, the difference between using the exact transcendental stiffness matrix and the classical
stiffness matrix is significant. For this case, the proposed transcendental axial stiffness matrix should be
used.

6.2. The combined stiffness matrix

The complete 6× 6 stiffness matrix can be obtained by combing the bending and axial stiffness matrices
from equations (22) and (90). Considering the degrees-of-freedom described in Fig. 8, the bending and axial
stiffness matrices should be combined into a single 6× 6 stiffness matrix considering the respective indices.
Using the notations in equations (7) and (81), the general stiffness matrix can be expressed as

Kg =
EI

L3











γa1 0 0 −γa2 0 0
0 d1 d2L 0 −d5 d6L
0 d2L d3L

3 0 −d6L d4L
2

−γa2 0 0 γa1 0 0
0 −d5 d6L 0 d1 −d2L
0 −d6L d4L

2 0 −d2L d3L
2











(94)

Here the non-dimensional factor γ is given by

γ =
EA

L

L3

EI
=

AL2

I
(95)

For the rectangular and circular cross sections we can derive γ = 12(L/t)2 and γ = 4(L/r)2 respectively.
Here t is the thickness of the rectangular beam and r is the radius of the circular beam. The expression and
also the numerical value of γ can be obtained for other cross-sectional profiles using equation (95). Equation
(94) along with the definition of a1, a2 in equation (91) and d1 · · · d6 for the seven cases in equations (36),



(37), (44), (55), (63), (70) and (76) completely define the overall stiffness matrix of general beam columns in
the most comprehensive, concise, clearer and universal manner. Due to the closed-form expressions and non-
dimensional nature of these coefficients, they can be easily incorporated within a finite element framework in
a convenient and efficient manner. The employment of the general stiffness matrix derived here will lead to
superior physical insights, higher accuracy and lower computational cost due to coarser discretisation owing
to the exact nature of the underlying expressions.

The focus of this paper has been on the derivation of the stiffness matrices of general beam-columns
embedded in elastic mediums. The engineering applications of the derived expressions will be in two broad
directions. The first will be in the finite element analysis of large framework like structures where individual
beams can be modelled as a single element without further discretisation. This will lead to computational
efficiency. Both the response analysis and the eigenbuckling analysis can be carried out using the matrices
derived here. The second direction will be in the analytical solution of bespoke mechanical problems involv-
ing beam-columns on elastic medium. Some examples include mechanics of carbon nanotubes embedded
in substrates, analysis of railway tracks subjected to point and distributed loads, mechanics of pipelines
embedded in the soil. As only a single ‘element’ is necessary, the present formulation will lead to closed-form
expressions for the response and buckling load, providing physical insights and clarity on the parametric
dependence.

7. Summary and conclusions

Stiffness matrices of general beam-columns embedded within an elastic medium are considered. Two
approaches for deriving the stiffness matrix have been proposed. The first approach is based on the direct
force-displacement relationship, while the second approach exploits shape functions within the scope of
the finite element framework. Both approaches result in identical expressions when the exact displacement
functions are used. The displacement function within the beam is obtained from the solution of the governing
differential equation with suitable boundary conditions. The first approach is easier to implement in practice,
and it does not involve any integration over the length of the beam. However, the second approach is more
general as it can be applied to beams with non-uniform cross-section and take account of distributed body
forces.

There is extensive literature available on the topic of the paper due to its classical nature. The novelty
of this paper lies in (1) consistency and clarity in defining the element stiffness coefficients for different
possible cases in a non-dimensional manner and (2) explicitly quantifying the accuracy of using the exact
transcendental stiffness matrices over the classical stiffness matrix. It was shown that the 4 × 4 stiffness
matrix for the bending deformation has in general six unique coefficients, while the 2× 2 stiffness matrix for
the axial deformation has two unique coefficients. The bending stiffness coefficients are expressed in terms
of trigonometric and hyperbolic functions, whereas the axial stiffness coefficients are expressed in terms of
hyperbolic functions only. Seven physically different cases are considered for the bending stiffness matrix,
namely, (1) beam-columns with compressive axial force, (2) beam-columns with tensile axial force, (3) beams
on elastic foundation and four additional parametric cases comprising beam-columns on an elastic foundation
with compressive and tensile axial forces. Some of the key contributions of the paper are:

• A unified approach to the non-dimensional representation of the elements of the stiffness matrix and
system parameters which is consistent across all the cases.

• The derivation of the transcendental shape functions based on the exact solution of the governing
differential equation.

• Taylor-series expansions of the stiffness matrix coefficients and establishing direct correspondence with
the equivalent classical expressions with lower-order terms.

• An explicit quantification of error using a universal metric.

The results obtained revealed that the use of a conventional stiffness matrix could lead to very large errors for
beams embedded in an elastic medium. The relative error for the bending coefficients is larger compared to
the axial coefficients. However, the impact of the axial force on the error in the bending stiffness coefficients
is smaller than the foundation stiffness. The results derived here and the methodology developed to derive
them can be extended to more advanced beam theories in future research.
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