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A B S T R A C T  27 

Small-scale aquaculture operation is increasing rapidly in the world, particularly in 28 

developing countries, but the greenhouse gas (GHG) dynamics and fluxes from small 29 

aquaculture ponds are still poorly assessed. In this study, dissolved concentrations and 30 

fluxes of CO2 and CH4 were determined in three coastal earthen shrimp ponds over 31 

one whole year, including both farming and non-farming periods, in the Min River 32 

Estuary, southeastern China. Different from many previous studies, both ebullitive 33 

and diffusive CH4 fluxes were measured. The average concentrations of dissolved 34 

CO2 and CH4 in water column in the farming period varied between 18.1±0.1 and 35 

79.6±1.1 µmol L-1, and 1.3±0.1 and 55.9±3.2 µmol L-1, respectively. Averaged across 36 

the whole year, the mean CO2 and CH4 fluxes from the ponds were –18.4±7.4 and 37 

22.6±6.9 mg m-2 h-1, respectively, suggesting that the shrimp ponds worked as a CO2 38 

sink and a CH4 source. Based on the sustained-flux global warming potential (SGWP) 39 

and sustained-flux global cooling potential (SGCP) models, the annual warming 40 

potential was estimated to be 7.1×103 g CO2-eq m-2 yr-1, with approximately 90% 41 

from the farming period. Ebullition was the dominant emission pathway for CH4, 42 

accounting for over 90% of the total CH4 emission during the farming period. The 43 

full-year study improves the understanding of carbon cycling in coastal aquaculture 44 

ponds and provides scientific basis for updating GHG inventories. 45 

Keywords: Carbon dioxide; Methane; Annual fluxes; Emission pathway; Coastal 46 

aquaculture ponds; Global change  47 
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1. Introduction 48 

Carbon dioxide (CO2) and methane (CH4) are two very potent greenhouse gases 49 

(GHGs). The atmospheric levels of these two GHGs have increased by ca. 44% and 50 

156% since 1750, reaching 414 ppm and 1875 ppb, respectively, in 2019 (National 51 

Oceanic and Atmospheric, 2020). Studies have estimated that global inland waters 52 

release 2.1 Pg C yr-1 of CO2 (Raymond et al., 2013) and 0.65 Pg C yr-1 of CH4 53 

(Bastviken et al., 2011). Hence, GHG emission from continental aquatic ecosystems 54 

plays an important role in the overall carbon cycle and climate forcing (Bastviken et 55 

al., 2011; Tranvik et al., 2009).  56 

Small ponds (<0.01 km2) has been suggested to have the largest GHG emissions 57 

per unit area, but data are still rare and emissions from different kinds of pond are far 58 

from clear (Holgerson, 2015). Downing (2010) estimated that there can be as many as 59 

3.2 billion very small ponds (< 0.001km2) with a total surface area of ca. 0.8 million 60 

km2 in the world. These ponds can be hotspots for GHG emissions because of the 61 

large loadings of both exogenous and endogenous organic matters to fuel GHG 62 

production (Holgerson, 2015; Rubbo et al., 2006). Therefore, detailed assessments of 63 

in situ concentrations and fluxes of GHGs in small ponds are crucial for improving 64 

the global GHG budgets (Holgerson, 2015; Holgerson and Raymond, 2016). Of 65 

particular interest are aquaculture ponds, which have large amounts of carbon and 66 

nutrient loading (Yuan et al., 2019; Yuan et al., 2021). While some preliminary results 67 

point to their importance in national GHG inventories especially in 68 

aquaculture-intensive countries (Yang et al., 2018a, in situ measurements of GHG 69 
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exchange in aquaculture ponds are still quite rare. 70 

Small-scale aquaculture ponds are wide-spread especially in developing countries 71 

(FAO, 2017). The combined global surface area of brackish and freshwater 72 

aquaculture ponds is ca. 1.1×105 km2 in 2005 (Verdegem and Bosma, 2009). China, 73 

the world’s largest producer of aquatic products, has the total aquaculture pond area of 74 

ca. 3.2×104 km2 in 2018, i.e. almost one third of the estimated global area (Bureau of 75 

Fisheries of the Ministry of Agriculture, 2019). These ponds receive large amounts of 76 

organic matter through daily supply of feeds and algal production (Chen et al. 2015; 77 

Yang et al. 2018a). Due to their unique biological, physical and chemical 78 

characteristics (Zha et al., 2006), the dynamics and fluxes of GHGs in aquaculture 79 

ponds can be very different from other aquatic habitats.  80 

Several studies have measured CH4 and CO2 fluxes and their driving factors in 81 

aquaculture systems in China (e.g., Chen et al., 2016; Hu et al., 2016; Wu et al., 2018; 82 

Zhang et al., 2020). However, the data are far from sufficient to understand the 83 

biogeochemical cycle of GHGs in aquaculture ponds, given the large number and 84 

areal coverage of aquaculture ponds. More importantly, previous studies focused on 85 

gas emissions during the farming period only, whereas GHG fluxes at the sediment-air 86 

interface during the non-farming period is virtually unknown.  87 

CO2 is primarily emitted from water surfaces through diffusion across the 88 

water-air interface (diffusive flux), driven by the concentration gradient and the gas 89 

exchange velocity. CH4 can be emitted by diffusive flux, ebullition (bubble flux) or 90 

the combination of both (Bastviken et al., 2004). Although ebullition is widely 91 
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recognized as an important CH4 emission pathway in shallow waters (e.g., Bastviken 92 

et al., 2004; Deshmukh et al., 2016; Natchimuthu et al., 2014, 2016; Xiao et al., 2017), 93 

field measurements of CH4 ebullition in aquaculture ponds are rare. 94 

To address the knowledge gaps outlined above on CO2 and CH4 emissions from 95 

aquaculture ponds, this study measured the CH4 and CO2 fluxes during both farming 96 

and non-farming periods in earthen aquaculture ponds in southeastern China. The 97 

intensity of earthen pond aquaculture has increased steadily over the last few decades 98 

(Wang et al., 2018). Intensive-farming shrimp pond is the most dominant type of 99 

earthen ponds in the coastal region of China with an area of 2.4×103 km2 (Bureau of 100 

Fisheries of the Ministry of Agriculture, 2019), accounting for ca. 12% of the total 101 

global area of shrimp aquaculture ponds. The main aims of the study were to: (1) 102 

determine the spatial and temporal variations in dissolved CO2 and CH4 103 

concentrations in the farming period; (2) determine the magnitude of CO2 and CH4 104 

fluxes for the whole year including both farming and non-farming periods; (3) assess 105 

the dominant CH4 emission pathway in the farming period. 106 

2. Materials and Methods 107 

2.1. Study Area 108 

The three studied shrimp ponds are located at the Shanyutang Wetland 109 

(26°00′36″-26°03′42″ N, 119°34′12″-119°40′40″ E), one of the largest wetlands in the 110 

Min River Estuary, Fujian, southeastern China (Fig. 1). This area is dominated by the 111 

native plants Cyperus malaccensis and Phragmites australis, and the invasive species 112 

Spartina alterniflora. It is in the subtropical monsoon climate zone, and the mean 113 
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annual temperature and average annual precipitation are ca. 19.6 °C and 1,350 mm, 114 

respectively (Tong et al., 2018). The Min River Estuary is affected by the typical 115 

semidiurnal tide, and the surface soil is usually submerged for around 7 hours every 116 

day (Tong et al., 2018). In the central-eastern part of the wetland, the mosaic 117 

vegetated landscape was cleared and converted to aquaculture ponds for the shrimp 118 

species Litopenaeus vannamei in the last several years (Yang et al., 2017a). 119 

2.2. Shrimp pond and aquacultural management 120 

Considering the optimal water temperature for shrimp growth (L. vannamei; 22 - 121 

35 oC), farming in the area often begins in June and ends in November (Yang et al., 122 

2017b). In traditional earthen pond shrimp farming, accumulated sediments are not 123 

removed regularly. In our ponds, the average sediment accumulation rate was 0.79 cm 124 

month-1. Between each production cycle, the first steps of preparation included 125 

cleaning and reinforcing the pond bank, and draining the pond to dry the sediment. 126 

Next, lime was added to the pond (calcium oxide; 0.5 t ha-1). After that, the brackish 127 

water from the adjacent estuary was pumped through a filter bag into the pond. The 128 

water depth was relative stable (1.1–1.5 m) during the farming period. Approximately 129 

7 days after filling, the water was disinfected with trichloroisocyanuric acid (1.5 mg 130 

L-1). A few days later, fertilizer was added (calcium superphosphate; 1.5–2.0 kg per 131 

1000 m3) for 7 to 10 consecutive days. A few days before stocking, probiotics 132 

(Zhengzhou Nongfukang Biotechnology Co., Zhejiang province, China; 200 mL per 133 

1000 m2) were added, and basic physico-chemical parameters (e.g., pH, salinity, 134 

alkalinity, and water colour) were monitored to ensure they were in the appropriate 135 

http://dict.youdao.com/w/trichloroisocyanuric%20acid/#keyfrom=E2Ctranslation
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range.  136 

The shrimps were fed commercial food pellets containing 42% crude protein 137 

(HangshengTM and TianmaTM, Fujian, China) twice per day (7:00 am and 4:00 pm). 138 

For aeration, 3-5 paddlewheel aerators were operated 4 times every day (7:00 139 

am–9:00 am, 12:00 pm–2:00 pm, 6:00 pm–8:00 pm, and 12:00 am–3:00 am). After 140 

harvesting in late November, the pond water was discharged. The non-farming period 141 

lasts from December to next May. For more details about the shrimp pond system and 142 

the operation, please refer to Table S1 and Yang et al. (2017b).  143 

2.3. Collection and analysis of water and sediment samples 144 

In each pond, a foot-bridge extending ~10 m from the bank to the center was used 145 

for sampling at three sites: the first site was close to the bank; the second site in the 146 

mid-section of the bridge; the third site at the center of the pond. On each sampling 147 

day during the farming period, samples were taken between 9:00 am and 11:00 am 148 

and ca. 30 min. after the paddlewheels had been turned off. All sampling sites were at 149 

least 6-7 m away from the aerator. 150 

At each site, water was taken from three depths: the surface layer (10 cm below 151 

the water surface), the middle layer (between surface and bottom layer), and the 152 

bottom layer (near the sediment surface). Water samples were collected from each 153 

depth using a 1.5-L organic glass hydrophores, and 0.2 mL of saturated HgCl2 154 

solution was added into 150 mL water sample to stop microbial activities (Hu et al., 155 

2018; Yang et al., 2017b). All samples were stored in a 4 oC cooler for later laboratory 156 

analysis within 4-6 hours.  157 
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The water samples were analysed for chlorophyll a (Chl a), total dissolved 158 

nitrogen (TDN), total dissolved phosphorus (TDP) and dissolved organic carbon 159 

(DOC). For TDN and TDP, a 50 mL aliquot was filtered through a 0.45 μm filter 160 

(Biotrans™ nylon membranes) and the filtrate was analysed by a flow injection 161 

analyser (Skalar Analytical SAN++, Netherlands). For DOC, another 50 mL aliquot 162 

was filtered and the filtrate was analysed by a Total Organic Carbon analyzer 163 

(TOC-VCPH/CPN, Shimadzu, Japan). Chl a was measured by spectrophotometry 164 

(UV-VIS spectrophotometer, Shimadzu UV-2450, Japan) (Yang et al., 2017b).  165 

In the non-farming period, surface sediment (0–15 cm) was collected at each site 166 

with a cylindrical metal corer (6 cm diameter). Sediment samples were stored in a 4 167 

oC cooler until analysis. In the laboratory, the sediment samples were freeze-dried and 168 

ground to fine powder to determine total carbon (TC) and total nitrogen (TN) by an 169 

elemental analyzer (Elementar Vario MAX CN, Germany) (Sun et al., 2013). 170 

Sediment water content (SWC) was determined based on weight difference after 24 171 

hours oven drying (105 oC) (Zhang et al., 2013).  172 

2.4. Measurement of dissolved gas concentrations  173 

To determine the dissolved CO2 and CH4 concentrations in water column in the 174 

farming period, 15 sampling campaigns were conducted between June and November, 175 

2017. In each campaign and at each site, water samples were collected with a 176 

homemade sampler at 10 cm depth intervals and transferred into glass vials without 177 

bubbles. All samples were stored in a 4 oC cooler for later laboratory analysis.  178 

Dissolved CO2 and CH4 in the water samples were extracted by the headspace 179 
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technique: 25-mL of the water was displaced by injecting N2 gas (>99.9% purity) into 180 

the glass vial. The samples were vigorously shaken to attain air-water equilibrium. 181 

After waiting for 30 minutes, CO2 and CH4 concentrations in the headspace were 182 

determined by a gas chromatography (GC-2010, Shimadzu, Kyoto, Japan) with flame 183 

ionization detection (FID) after passing through a methanizer. The dissolved CO2 and 184 

CH4 concentrations were calculated using the volumes of the headspace and water in 185 

the vial and the solubility coefficients of the two gases (Wanninkhof, 1992).  186 

2.5. Gas flux measurement 187 

In the farming period, gas samples were collected using the floating chamber 188 

technique (Lorke et al., 2015; Natchimuthu et al., 2014, 2016). The floating chambers 189 

(an area of 0.1 m2 and a volume of 5.2 L) were fitted with Styrofoam around the rims 190 

for floatation and were covered in reflective aluminum tape to minimise internal 191 

heating by sunlight (Natchimuthu et al. 2016, 2017).  192 

In the non-farming period, gas samples were collected using an enclosed static 193 

chamber (Olsson et al., 2015; Tong et al., 2018), which included two components: a 194 

30 cm tall plastics bottom collar with a base dimension of 35×35 cm2, and a 50 cm tall 195 

polyvinyl chloride top chamber with a base dimension of 35 × 35 cm2. The bottom 196 

collar was inserted 18 cm into the sediment (Yang et al., 2018c). An electric fan was 197 

installed inside the chamber for mixing. 198 

From both types of chambers, four gas samples were collected using 60 mL plastic 199 

syringes equipped with three-way stopcocks at 15-min intervals over a period of 45 200 

min. The collected gas was immediately transferred to an airtight gas sampling bag 201 
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(Dalian Delin Gas Packing Co., Ltd., China) and transported back to the laboratory for 202 

measurement. CO2 and CH4 concentrations in the gas samples were determined using 203 

a gas chromatograph (GC-2010, Shimadzu, Kyoto, Japan) equipped with a flame 204 

ionization detector (FID) within 24 h of sampling. CO2 and CH4 fluxes (mg m-2 h-1) 205 

were estimated via regressions of concentration and time (Yang et al. 2018a).  206 

Measurements by the floating chamber represented the combination of ebullitive 207 

and diffusive fluxes (Chuang et al., 2017; Zhu et al., 2016). To tease apart the two 208 

types of flux, first, diffusive CH4 flux was calculated from surface-water gas 209 

concentrations and wind-dependent gas exchange velocity (k) according to the 210 

transfer coefficient model (Cole and Caraco 1998). More detailed explanation of the 211 

calculations can be found in Xiao et al. (2017) and Yang et al. (2019). The proportion 212 

of ebullition was then calculated by subtracting the diffusive flux from the total flux 213 

measured by the floating chamber (Chuang et al., 2017; Xiao et al., 2017; Yang et al., 214 

2019). Based on monthly measurements of the gas fluxes, the annual cumulative 215 

fluxes of CO2 and CH4 were calculated using Eq. (1) (Moore et al. 2011; Song et al. 216 

2009):  217 

hr24 ii DMFAE
      

(1) 218 

where MFi is the mean CO2 (or CH4) flux in the ith month of the year (mg CH4 m-2 219 

h-1), and Di is the total number of days in the ith month.     220 

2.6. Measurement of environmental variables 221 

The meteorological variables including precipitation, air temperature, air pressure 222 

and wind speed were measured at 30 min intervals at a nearby weather station. In 223 
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addition, during the farming period, water temperature, pH, electrical conductivity 224 

(EC), and dissolved oxygen (DO) were measured in situ at three depths (surface, 225 

middle and bottom layers). In the non-farming period, sediment temperature was 226 

measured at 15 cm depth at all sites. pH and temperature were measured using a 227 

portable pH/mV/Temperature meter system (IQ150, IQ Scientific Instruments, 228 

U.S.A.), the EC was measured using a 2265FS EC Meter (Spectrum Technologies, 229 

U.S.A.) and DO was measured using a multiparameter probe (550A YSI, USA).   230 

2.7. Statistical analysis 231 

Two–way ANOVA was conducted to examine the effects of sampling depths, 232 

sampling time, and their interactions on dissolved CO2 (or dissolved CH4) 233 

concentrations in the ponds during the farming period. The independent-sample t-test 234 

was performed to examine the differences in the CO2 and CH4 fluxes between the 235 

farming and the non-farming periods. Pearson correlation coefficients were used to 236 

test the relationships between the CO2 or CH4 concentrations (or fluxes) and 237 

environmental factors. Stepwise regression analysis was conducted to identify 238 

environmental variables that influenced gas fluxes in the farming period. Statistical 239 

analyses were performed in SPSS 22.0 (IBM, Armonk, NY, USA) and the results were 240 

considered significant at the level of p < 0.05.  241 

3. Results 242 

3.1. Physical and chemical properties of water and sediment  243 

During the farming period, physical and chemical properties of the pond water 244 

varied significantly between farming time (p<0.01), but insignificantly between 245 
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depths (except for DO) (p>0.05). During the non-farming period, the sediment 246 

temperature followed air temperature, with mean value ranging between 10.5oC and 247 

28.1oC (Fig. 2a). During the non-farming period, the average sediment TN was 248 

2.41±0.11 g kg-1 (range 14.8-23.8 g kg-1; Fig. 2b), the average TC was 18.15±0.96 g 249 

kg-1 (range 1.9-3.1 g kg-1; Fig. 2c) and the average SWC was 34.17±2.56% (range 250 

25.4-46.2 %; Fig. 2d). TC, TN and SWC decreased gradually with time. 251 

3.2. Dissolved CO2 and CH4 concentrations in water  252 

During the farming period, the average CO2 concentration at the different depths 253 

varied between 18.1 and 79.6 µmol L-1 (Fig. 3), with the corresponding saturation rate 254 

between 77.4 and 505.5%. There were no significant differences between depths. 255 

Across all sampling dates, 53% of the samples were 1.1- to 3.0-fold oversaturated and 256 

27% of the samples were > 3.0-fold oversaturated. Average CO2 concentration was 257 

substantially higher at all depths in mid-August to early September than in the other 258 

months (F=3.480, p<0.01, two-ANOVA; Fig. 3). 259 

The average CH4 concentration at the different depths in the farming period varied 260 

between 1.3±0.9 and 55.9±32.7 µmol L-1 (Fig. 4). CH4 concentration varied 261 

significantly between sampling periods (F=12.637, p<0.01, two-ANOVA) (Fig. 4). 262 

The maximum and minimum CH4 concentrations were recorded in August and June, 263 

respectively (Fig. 4). Across the sampling dates, CH4 concentration increased with 264 

depth (Fig. 4). CH4 was supersaturated relative to the atmosphere across all depths 265 

and all dates, with the mean saturation level between 2447 and 109394 %. Across all 266 

dates, 47% of the samples were 24.0- to 100.0-fold oversaturated and 53% of the 267 
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samples were > 250.0-fold oversaturated.  268 

3.3. Temporal variations in CO2 and CH4 fluxes 269 

In the farming period, CO2 flux at the water-air interface varied between 270 

−25.0±3.4 and 20.7±4.0 mg m−2 h−1, with negative values representing CO2 271 

absorption (Fig. 5a). In the non-farming period, CO2 flux across the sediment-air 272 

interface varied between −114.0±34.1 and 28.4±45.4 mg m−2 h−1 (Fig. 5a). Overall, 273 

the ponds were neutral in terms of CO2 during the farming period, but were a CO2 274 

sink in the non-farming period. 275 

Large temporal variation in CH4 flux was also noted (Fig. 5b). During the farming 276 

period, CH4 flux across the water-air interface varied between 1.2±1.2 and 127.1±15.1 277 

mg m−2 h−1. In general, CH4 flux were higher and more variable in the middle of 278 

farming period (from July to September) (Fig. 5b). In the non-farming period, CH4 279 

flux across the sediment-air interface varied from 0.2±0.2 to 20.2±5.2 mg m−2 h−1 (Fig. 280 

5b). The average CH4 flux in the farming period (35.7±1.2 mg m−2 h−1) was 281 

significantly higher than that in the non-farming period (4.8±0.3 mg m−2 h−1) (F = 282 

19.827, p = 0.009).     283 

3.4. Ebullitive and diffusive fluxes 284 

Our results from the floating chambers showed distinct nonlinear increases in CH4 285 

concentration during the sampling period. In addition, the total CH4 flux measured 286 

with the floating chamber method (Fig. 5b) were 1.5-164 times larger than the 287 

diffusive flux calculated from the gas transfer coefficient model, and the difference 288 

between the two values represents ebullitive flux (Fig. 6). During the farming period, 289 
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the CH4 diffusion flux varied from 0.2 to 4.2 mg m-2 h-1 (mean ± SE 1.8±0.3 mg m-2 290 

h-1), while the mean CH4 ebullition varied from 0.5 to 125.7 mg m-2 h-1 (mean ± SE 291 

34.7±10.8 mg m-2 h-1). Overall, ebullition contributed over 90% (range 5 - 98%) of 292 

the total CH4 flux. 293 

3.5. Influence of environmental variables 294 

Correlations between GHG fluxes and several environmental variables were 295 

significant but weak, as indicated by correlation coefficients of 0.28 to 0.66 (Table 1 296 

and Table S2; equivalent to r2 of 0.05 to 0.44).  297 

For the farming period, dissolved CO2 in the water was correlated positively with 298 

temperature (p<0.01, Table S2) and negatively with atmospheric pressure, water pH, 299 

EC and DO (p<0.05 or p<0.01, Table S2). CH4 in the water was correlated positively 300 

with pH, DOC, TDN and TDP (p<0.05 or p<0.01, Table S2). CO2 and CH4 fluxes 301 

were correlated positively with water temperature (p<0.05, Table 1) while negatively 302 

with DO and pH (except CH4) (p<0.05 or p<0.01, Table 1). Based on multiple 303 

regression analysis, CO2 flux was best explained by DO (explained 23% of the 304 

variance), and CH4 emission could be partly explained by water temperature and TDP 305 

(explained 23% of the variance) (Table 2).  306 

During the non-farming period, CO2 and CH4 fluxes showed positive correlation 307 

with sediment TC, TN, and SWC (only CH4) (p<0.01, Table 1). 308 

4. Discussion 309 

4.1. Depth profiles of dissolved CO2 and CH4  310 

This study explored the high-resolution vertical profiles of the dissolved CO2 and 311 
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CH4 concentration in coastal aquaculture ponds. Vertical variations in dissolved CO2 312 

and CH4 have been observed in deep-water systems such as lakes (e.g., Bastviken et 313 

al., 2008; Gerardo-Nieto et al., 2017; Lambert and Sommer, 2007; Martinez-Cruz et 314 

al., 2015), reservoirs (e.g., Gerardo-Nieto et al., 2017; Wang et al., 2011, 2015) and 315 

the ocean (e.g., Gülzow et al., 2014; Sierra et al., 2017). Across most sampling dates, 316 

CO2 concentration in our ponds did not vary much vertically (variation coefficient 317 

between 4.5 and 30.5 %), indicating a relatively well-mixed water column (Fig. 3). 318 

The strongest vertical gradient was observed in August when the surface water 319 

contained 2-fold less CO2 than the bottom water, likely a result of higher respiration 320 

in the sediment and photosynthetic CO2 uptake at the surface. 321 

In contrast to the CO2 profiles, our data showed clearly increasing CH4 with water 322 

depth throughout much of the farming period (Fig. 4). The strongest vertical gradient 323 

was in mid-August when CH4 was negligible at the surface whereas the bottom water 324 

contained >100 μmol CH4 L-1. The very distinct CH4 profile is the likely result of 325 

strong methanogenesis in the sediment and CH4 loss (oxidation and emission) at the 326 

water-air interface (Bastviken et al., 2004; Gerardo-Nieto et al., 2017). Bioturbation 327 

by the shrimps on the sediment would further enhance CH4 flux from the sediment. 328 

4.2. CO2 and CH4 fluxes in the farming period 329 

During the farming period, CO2 flux across the water-air interface was very 330 

variable, fluctuating between net emission and net absorption (Fig. 5a). Similar 331 

patterns have been found in other nutrient-rich, high-productivity aquatic systems 332 

(e.g., lake, reservoir) (Gerardo-Nieto et al., 2017; Gruca-Rokosz et al., 2017; Wang et 333 
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al., 2011, 2015; Xing et al., 2006; Yang et al., 2011). CO2 flux is influenced by factors 334 

such as respiration, photosynthesis and remineralization of organic matter (Abnizova 335 

et al. 2012; Ding et al., 2013). In this study, net CO2 flux was negatively correlated 336 

with DO (Table 1), indicating the important role of algal photosynthesis in CO2 337 

draw-down in the initial (from June to mid-July) and final stages (from 338 

mid-September to mid-November) of farming. Notably, CO2 emission did not 339 

decrease (Fig. 5a) in spite of high Chl-a concentrations in the middle farming stage 340 

(between late June and early September) (Yang et al., 2020). This may be due to the 341 

relatively high water temperature and extensive heterotrophic metabolism, which 342 

could have caused respiration and remineralization of organics to dominate over 343 

photosynthesis. This explanation is consistent with the positive relationships between 344 

water temperature and CO2 flux (Table 1).   345 

Strong seasonality of CH4 emission has been found in the aquatic ecosystems (e.g., 346 

Borges, et al., 2018; Natchimuthu et al., 2016; Sierra et al., 2017; Xiao et al., 2017). 347 

Notably, CH4 production and emission both increase with the rise in temperature 348 

(Vizza et al., 2017; Yang et al., 2018a; Yvon-Durocher et al., 2014). In the summer 349 

months of August and September, CH4 emission reached maximum values (Fig. 5b). 350 

Our statistical analysis also confirmed the significant correlation between air / water 351 

temperature and CH4 emission in the farming period (Table 1). However, the 352 

fluctuating range of CH4 fluxes was substantially larger than those observed in air / 353 

water temperature. The phenomenon was likely caused by variations in CH4 ebullition. 354 

In the present study, the CH4 ebullition varied from 0.5 to 125.7 mg m-2 h-1, which 355 
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shown a striking variability over time. Ebullition is a combination of CH4 production 356 

being fast enough to form bubbles in the sediment and the physical release of these 357 

bubbles. Temperature affect the CH4 production rate directly, and thereby indirectly 358 

affect the bubble release rate as sediment bubbles will grow and gain buoyancy faster 359 

when warmer. Bubbles can also be triggered physically by turbulence or pressure 360 

changes, and after each ebullition event there is a “bubble recharge” lag-phase before 361 

ebullition can happen again. Such effects of physical triggers of more extensive 362 

ebullition events can be more important for the high ebullition variability than 363 

temperature. 364 

4.3. CO2 and CH4 fluxes in the non-farming period 365 

After harvesting, farmers drain the aquaculture ponds for routine maintenance. A 366 

previous study has shown that shrimp ponds act as a CO2 source, releasing 21.6-116.6 367 

mg m-2 h-1 in the non-farming period (Yang et al., 2018b). The initial exposure of the 368 

sediment to air after drainage may allow oxygen penetration into the sediment, which 369 

then promotes the decomposition of organic matter (e.g., food pellets and biological 370 

residues) and microbial respiration (Yang et al., 2018b). In contrast to the previous 371 

study, which covered only December-January of the non-farming period, our data 372 

show that after the initial CO2 emission in the first two weeks after drainage, the 373 

shrimp ponds turned into a strong CO2 sink in the remaining months of the 374 

non-farming period (Fig. 5a). Field observation found some pioneer herbaceous plants 375 

in the ponds from late 2017, which might be responsible for the net CO2 uptake.  376 

CH4 flux from the sediment increased initially after drainage but then decreased 377 
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quickly towards a stable and low emission over time (Fig. 5b). The trend and the 378 

magnitude of CH4 flux in this study were similar to a previous report (range 0.1-28.3 379 

mg m-2 h-1) (Yang et al. 2018b). The initial increase in CH4 emission after drainage 380 

could be due to degassing of the sediment. Similarly, Harrison et al. (2017) found that 381 

a reservoir drawdown of only 0.5 m can already stimulate CH4 ebullition. There were 382 

also similar temporal patterns of CH4 flux and sediment water content (SWC) (Figs. 383 

2d and 5b) and a significantly positive correlation between them (Table 1). Therefore, 384 

the extended decrease in CH4 flux in the non-farming period could be explained by 385 

the decrease in SWC, which would create a more aerobic condition that was less 386 

favourable for methanogenesis (Dinsmore et al., 2009; Yang et al., 2013a). In addition, 387 

evaporation during the non-farming period would increase the sediment salinity, 388 

which may also suppress CH4 production through the effects of iron stress on 389 

extracellular enzymes and the competitive failure of methanogens versus 390 

sulfate-reducing bacteria in using carbon substrates (e.g., Hu et al., 2017; 391 

Poffenbarger et al., 2011; Sun et al., 2013; Vizza et al., 2017; Welti et al., 2017). 392 

Furthermore, the gradual decrease in sediment carbon content (TC; Fig. 2) means less 393 

substrate to support methane production over time (Table 1).  394 

4.4. Contribution of ebullitive flux to CH4 emission 395 

The current estimates of CH4 emission in aquatic ecosystems are still largely 396 

constrained by data scarcity on ebullitive fluxes (Bastviken et al., 2011; Tušeret al., 397 

2017; Wu et al., 2019; Yang et al., 2019). In this study, the ebullitive CH4 fluxes were 398 

estimated to contribute more than 90% to the total CH4 emission in the farming period. 399 
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Similarly large contributions of ebullition are found in rivers (Wu et al., 2019), lakes 400 

(e.g., Bastviken et al., 2004; Chuang et al., 2017; Wik et al., 2013; Xiao et al., 2017) 401 

and reservoirs (Deemer et al., 2016; Deshmukh et al., 2016; Rodriguez and Casper, 402 

2018). Notably, ebullition in the middle stage of farming (from August to September) 403 

accounted for ~ 90% of the total CH4 emission (Fig. 6). Higher CH4 ebullition at this 404 

stage could be caused by the larger loads of organic matter (e.g., aquatic feed) and 405 

higher water temperature, which would enhance CH4 bubble formation in sediments 406 

and transportation from sediment to water surface (Wu et al., 2019; Zhu et al., 2016). 407 

The magnitude of CH4 ebullitive flux in our shrimp ponds was similar to that in a 408 

shallow peat lake on the eastern part of Tibetan Plateau, China (Zhu et al., 2016) and a 409 

reservoir in Ohio, USA (Beaulieu et al., 2018) (Table S3). However, the overall 410 

average of CH4 ebullitive flux in our ponds was substantially larger than those 411 

observed in north Siberian thermokarst lakes (Walter et al., 2006), mid-boreal lake in 412 

Finland (Huttunen et al., 2001), shallow eutrophic lake in Eastern China ( Xiao et al., 413 

2017), and three subarctic lakes in northernmost Sweden (Wik et al., 2013), northern 414 

boreal beaver pond (Dove et al., 1999), a subtropical river in China (Wu et al., 2019), 415 

and rivers in the Amazon Basin (Sawakuchi et al., 2014) (Table S3). The larger CH4 416 

ebullition make the total emission per unit area from our aquculture ponds much 417 

larger compared with most other aquatic ecosystems (e.g. Bastviken et al., 2011; Yang 418 

and Flower, 2012). 419 

4.5. Contribution of farming period to the annual GHG emission 420 

Combining data from this study with previous measurement of CO2 emission 421 
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(Yang et al., 2018b), the annual cumulative GHG fluxes from these aquaculture ponds 422 

were ca. -77.6 g CO2 g m-2 yr-1 and 154.3 g CH4 g m-2 yr-1. The sustained-flux global 423 

warming potential (SGWP, for gas emissions) and sustained-flux global cooling 424 

potential (SGCP, for gas uptake) models were applied to calculate the radiative 425 

forcing of CO2 and CH4 fluxes from the ponds over a 100-year period (Neubauer and 426 

Megonigal, 2015; Tangen et al., 2016). The annual cumulative CO2-eq emission from 427 

the shrimp ponds was 7.1×103 g CO2-eq m-2 yr-1, with ca. 99% in the form of CH4 428 

emission and ca. 90% occurring in the farming period. Increasing warming due to 429 

climate change and environmental contamination could further exacerbate CH4 430 

production and emission from aquaculture ponds (Yang, 2014; Yang et al., 2013a), 431 

and developing an effective management strategy to minimize GHG release, 432 

particularly CH4, in the farming period will be an important task for the aquatic food 433 

producers. 434 

4.6. Limitations and future research 435 

Our research focused on GHG (CO2 and CH4) dynamics in Min River Estuary 436 

over a one-year period. Our results highlight the importance of taking into account the 437 

spatiotemporal variations in dissolved GHG concentrations and fluxes, and further 438 

studies in multiple estuaries can provide more information for inter-estuary 439 

comparison and extrapolation. We only did daytime sampling, whereas some 440 

researchers have observed diurnal differences in GHG fluxes in aquatic ecosystems. 441 

For example, some studies have shown a lower or even negative CO2 emission in 442 

daytime but higher emission at night (e.g., Del Giorgio et al., 1999; Erkkilä et al., 443 
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2018; Natchimuthu et al., 2014; Xing et al., 2004), whereas CH4 flux shows the 444 

opposite diurnal pattern (Hartmann et al., 2020; Sieczko et al., 2020). However, the 445 

reported diurnal differences are less than 3-fold and a diel correction factor of 0.7 was 446 

suggested to adjust daytime fluxes to 24-h fluxes (Sieczko et al. 2020). If this factor is 447 

valid also for aquaculture systems, it illustrates the diel bias in our data and that this 448 

bias does not change the main results as we observed an order-of-magnitude 449 

difference between the farming period and the non-farming period; hence, our 450 

measurements were sufficient to characterise the differences in GHG fluxes between 451 

these time periods and from the ponds on an annual basis. Nevertheless, future work 452 

may include nighttime measurements to fully resolve the diurnal variations. 453 

Significant spatial variations in CH4 ebullition have been observed in other aquatic 454 

ecosystems (e.g., river, lake, and reservoir) (e.g., Wik et al., 2013; Wu et al., 2019). 455 

Future field sampling should consider more sites and higher measurement frequency 456 

to better quantify ebullitive fluxes. Further research into CH4 production and 457 

consumption including the relevant microbial compositions and activities, such as 458 

methanotrophs, methanogens and sulfate-reducing bacteria, within the ponds will 459 

improve our understanding of the carbon cycle and inform more effective measures to 460 

mitigate carbon emission (Yang et al., 2013b). 461 

5. Conclusions 462 

The fast expansion of aquaculture operation world-wide raises legitimate concerns 463 

about the related GHG emissions (MacLeod et al., 2020). This study shows that 464 

subtropical earthen aquaculture ponds are a more intensive CH4 emission source per 465 
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m2 than most inland water bodies. However, there were also vast differences in CO2 466 

and CH4 fluxes between the farming and non-farming periods; therefore, excluding 467 

the non-farming period could lead to gross overestimation of GHG emissions from 468 

aquaculture ponds. Ebullitive CH4 flux in our shrimp ponds were substantially larger 469 

than those in many other aquatic systems, and was the dominant emission pathway. 470 

Overall, our results provide a more comprehensive picture of GHG fluxes over an 471 

annual cycle including both farming and non-farming periods, and shed light on the 472 

large contribution of CH4 ebullition to the total CH4 emission. 473 
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 1 

Fig. 1. Location of the researched aquaculture ponds in the Min River estuary, Fujian, Southeast 2 

China.3 

Figure



 
 

4 

Fig. 2. Temporal variation in (a) sediment temperature at 15 cm depth, and (b) total carbon 5 

(TC) , (c) total nitrogen (TN), and (d) sediment water content (SWC) in surface sediments 6 

(0-15 cm) of aquaculture ponds in the Min River Estuary in the non-culture period. Bars are 7 

means±1 SE (n = 3 ponds).8 
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Fig. 3. The depth profiles of dissolved CO2 concentration at mariculture ponds in the Min River Estuary in the culture period. Error bars 10 

represent standard error (n = 3 ponds). The italics numbers below the dates are the average concentrations from surface to bottom layer.11 
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Fig. 4. The depth profiles of dissolved CH4 concentration at mariculture ponds in the Min River Estuary in the culture period. Error bars 13 

represent standard error (n = 3 ponds). The italics numbers below the dates are the average concentrations from surface to bottom layer14 
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Fig. 5. CO2 and CH4 fluxes (mean ± SE) from the aquaculture ponds in the Min River Estuary in both aquaculture and non-aquaculture periods. 16 

The CH4 fluxes represent the sum of diffusive flux and bubble flux. Error bars represent standard error (n = 3 ponds). The pond sediments were 17 

air-exposed during the non-culture period.18 
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Fig. 6. CH4 ebullitive fluxes vs diffusive fluxes from mariculture ponds in the culture 20 

period. 21 



 

Table 1  1 

Pearson correlation coefficients for net CO2 flux, CH4 total flux and environmental variables at aquaculture ponds in the aquaculture period and 2 

the non-aquaculture period.  3 

Environmental variables 
Net CO2 flux CH4 total flux 

Aquaculture perioda Non-aquaculture periodb Aquaculture perioda Non-aquaculture periodb 

Meteorological factors     

  Air temperature NS  0.323*  

  Wind speed NS  NS  

  Atmospheric Pressure -0.295*  NS  

Physical and chemical properties of water     

  Water temperature 0.282*  0.348*  

  Conductivity (EC) NS  NS  

  pH -0.298*  NS  

  Dissolved oxygen (DO) -0.480**  -0.326*  

  Dissolved organic carbon (DOC) NS  NS  

  Chlorophyll a (Chl a) NS  NS  

  Total dissolved nitrogen (TDN) NS  NS  

  Total dissolved phosphorus (TDP) NS  NS  

Sediment properties     

  Sediment temperature at 15 cm depth  -0.334*  -0.471* 

  Total carbon (TC)  0.421*  0.659** 

  Total nitrogen (TN)  0.425**  0.531** 

  Sediment water content (SWC)  NS  0.543** 

NS denotes “nonsignificant relationship.” Bold numbers indicate the correlation coefficients for significant relationships. The symbols * and ** denote the significant 4 

correlations at p < 0.05 and 0.01, respectively. a n = 45 for environmental variables and GHGs fluxes at aquaculture ponds in the aquculture period; b n = 33 for 5 

environmental variables and GHGs fluxes at aquaculture ponds in the non-aquaculture period. 6 

Table



 

Table 2  7 

Multiple regression equations between GHGs fluxes and environmental variables at the aquaculture ponds in Min River Estuary in the 8 

aquaculture period. 9 

GHGs fluxes Regression equations F R2 p 

CO2 fluxes Y = 29.668 - 2.063xDissolved oxygen 12.869 0.230 <0.001 

CH4 fluxes Y = -117.518 +4.804xWater temperature + 110.048xTDP 6.115 0.226 <0.005 

 10 


