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Abstract
The identification of hidden conducting permeable objects from measurements
of the perturbed magnetic field taken over a range of low frequencies is impor-
tant in metal detection. Applications include identifying threat items in security
screening at transport hubs, location of unexploded ordnance, and antiperson-
nel landmines in areas of former conflict, searching for items of archeologi-
cal significance and recycling of valuable metals. The solution of the inverse
problem, or more generally locating and classifying objects, has attracted con-
siderable attention recently using polarizability tensors. The magnetic polar-
izability tensor (MPT) provides a characterization of a conducting permeable
object using a small number of coefficients, has an explicit formula for the cal-
culation of their coefficients, and a well understood frequency behavior, which
we call its spectral signature. However, to compute such signatures, and build
a library of them for object classification, requires the repeated solution of a
transmission problem, which is typically accomplished approximately using a
finite element discretization. To reduce the computational cost, we propose an
efficient reduced order model (ROM) that further reduces the problem using a
proper orthogonal decomposition for the rapid computation of MPT spectral sig-
natures. Our ROM benefits from a posteriori error estimates of the accuracy of
the predicted MPT coefficients with respect to those obtained with finite element
solutions. These estimates can be computed cheaply during the online stage of
the ROM allowing the ROM prediction to be certified. To further increase the
efficiency of the computation of the MPT spectral signature, we provide scaling
results, which enable an immediate calculation of the signature under changes
in the object size or conductivity. We illustrate our approach by application to a
range of homogenous and inhomogeneous conducting permeable objects.
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1 INTRODUCTION

There is considerable interest in using the magnetic polarizability tensor (MPT) characterization of conducting perme-
able objects to classify and identify hidden targets in metal detection. The MPT is a complex symmetric rank 2 tensor,
which has six independent coefficients, although the number of independent coefficients for objects with rotational or
reflectional symmetries is smaller.1 Its coefficients are a function of the exciting frequency, the object’s size, its shape as
well as its conductivity and permeability. Explicit formulas for computing the tensor coefficients have been derived1-4

and validated against exact solutions and measurements.3,5 Also, the way in which the tensor coefficients vary with the
exciting frequency is theoretically well understood4 offering improved object classification. The frequency (or spectral)
behavior of the MPT is henceforth called its spectral signature.

In practical metal detection, the MPT coefficients can be determined from the perturbed magnetic field when a
highly conducting object is placed in a low frequency time varying background field. The background field is gen-
erated by a set of transmit coils and the perturbed magnetic field is measured as a voltage in a set of receive coils.
Systems of transmit and receive coils have been designed to carefully measure the spectral signature of the MPT in
the laboratory6,7 as well as for specific applications including walk through metal detectors at transport hubs,8,9 the
identification of antipersonnel landmines,10 in-line scanning,11,12 and the recycling of valuable metals.13 Neverthe-
less, these systems will lead to noise and errors in the MPT coefficients. Errors may occur from a range of sources,
including inaccuracies in the model used for the perturbed magnetic field and background field. The MPT object char-
acterization has been shown to be associated with the leading order in an asymptotic expansion of the perturbed
magnetic field as the object size goes to 0 and assumes the background field is uniform over the object.1 In prac-
tice, this is not always the case and, if the object is placed in a highly nonuniform background, the higher order
terms in the expansion may become important (and dominate) so that higher rank tensor characterizations of objects
become important.14 There will also be other errors and noise associated with capacitive coupling with low-conducting
objects or soil in the background as well as general noise (e.g., from amplifiers, parasitic voltages in the receive coils
and from filtering).9 The amount of error and noise will vary from application to application and from system to sys-
tem. For MPT spectral signatures obtained in laboratory the current accuracy is about 1% (e.g., Reference 7) while for
walk through metal detectors it is about 5% (e.g., References 8,9), but the accuracy of these systems is improving all
the time.

The MPT spectral signature has been exploited in a range of different classification algorithms including simple library
classification for homogeneous15 and inhomogeneous objects,16 a k nearest neighbors (KNN) classification algorithm8

and other machine learning approaches.17 The MPT classification of objects has already been applied to a range of dif-
ferent applications including airport security screening,8,18 waste sorting,13 and antipersonnel landmine detection.10 The
aforementioned supervised classification techniques rely on a library of MPT spectral signatures to learn how to classify
the objects. Previous practical applications have used libraries of measured MPT coefficients for known objects, rele-
vant for the application under consideration, for example, Reference 9 considered between 3 and 13 classes of objects
with up to 200 samples for the classification. But, such libraries are subject to errors and have unavoidable noise, as
described above, and, hence, this may limit the performance of classification of unknown objects if it is then used in a
metal detection system with less noise (and/or reduced errors) compared with the system used for the creating the train-
ing library. The purpose of this article is to describe an efficient tool for computing this library in order to overcome these
challenges.

One approach for the automated computation of the MPT spectral signature is to postprocess finite element method
(FEM) solutions to eddy current problems obtained using commercial packages (e.g., with ANSYS as in Reference 6); how-
ever, improved accuracy, and a better understanding, can be gained by using the available explicit expressions for MPT
coefficients, which rely on computing finite element (FE) approximations to a transmission problem.1,3,4 A further alter-
native would be to use the boundary element method (BEM) to discretize the transmission problem, which only requires
discretization of the conductor’s surface for a homogenous conductor and hence has fewer degrees of freedom. However,
unlike the sparse matrices in FEM, BEM results in fully populated matrices, and, for general inhomogeneous objects,
requires discretization of the conductor’s volume and coupling with FEM. Appropriate types of BEM for the transmission
problem are described in References 19,20. Nevertheless, to produce an accurate MPT spectral signature, the solution pro-
cess (using FEM or BEM) must be repeated for a large number of excitation frequencies leading to potentially expensive
computations for fine discretizations (with small mesh spacing and high order elements). The present article addresses
this issue by proposing a reduced order model, in the form of a (projected) proper orthogonal decomposition (POD)
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scheme, that relies on full order model solutions 1computed using the established open source FE package, NGSolve,
and the recently derived alternative explicit expressions formulas for the MPT coefficients.4 The use of NGSolve23,24

ensures that the solutions to underlying (eddy current type) transmission problems are accurately computed using high
order H(curl) conforming (high order edge element) discretizations (see References 25-27 and references therein) and the
POD technique ensures their rapid computation over sweeps of frequency. This means the MPT coefficients are obtained
with higher accuracy than can currently be achieved from measurements (noise appropriate to the system can be added
to the library during a classifier training if desired), the spectral signature is accurately computed for a large frequency
range (up to the limit of the eddy current model) rather than obtained at a small number of discrete frequencies and,
through scripting, it allows a much larger library of objects and variations of materials to be considered, which is all highly
desirable for achieving greater fidelity and accuracy when training machine learning classifiers.

Reduced order models (ROMs) based on POD have been successfully applied to efficiently generate solutions for
new problem parameters using a small number representative full order model solutions (often called snapshots, e.g.,
References 21,22) in a range of engineering applications including mechanics,28,29 thermal problems,30,31 fluid flow32,33

as well as electromagnetic problems with application to integrated circuits34 and recently to coupled magnetomechanical
problems.22 However, ROMs have not been applied to the computation of MPT spectral signatures. A review of current
POD techniques is provided in References 21,35.

The main novelty of the work is the application of a POD approach to the efficient and accurate computation of the
MPT spectral signature and the derivation of a posteriori error estimates of the accuracy of reduced order predictions of the
MPT coefficients with respect to those obtained with FEM. Importantly, these error estimates can be computed cheaply
during the online stage of the ROM allowing the prediction of the MPT coefficients to be certified. This ROM approach is
motivated by the previous success of POD approaches and the theoretical study,4 which shows the spectral behavior of the
MPT is characterized by a small number of functions and, hence, has a sparse representation. The practical computation
requires only computing FE solution snapshots at a small number of frequencies and the evaluation of the MPT spectral
signature follows from solving a series of extremely small linear systems. A second novelty is the presentation of simple
scaling results, which enable the MPT spectral signature to easily be computed from an existing set of coefficients under
the scaling of an object’s conductivity or object size.

The article is organized as follows: Section 2 briefly reviews the eddy current model, which applies in metal detection,
and the asymptotic expansion of the perturbed magnetic field in the presence of a conducting permeable object, which
leads to the explicit expression of the MPT. Then, in Section 3, the FE model used for obtaining the full order model
solutions is described. Section 4 presents the POD reduced order model scheme. This is followed, in Section 5, by the
derivation of results that describe the scaling of the MPT under parameter changes. Sections 6 and 7 present numerical
examples of the POD scheme for computing the frequency behavior of the MPT and examples of the scaling of the MPT
under parameter changes, respectively.

2 THE EDDY CURRENT MODEL AND ASYMPTOTIC EXPANSION

We briefly discuss the eddy current model along with stating the asymptotic expansion that forms the basis of the magnetic
polarizability description of conducting objects in metal detection.

2.1 Eddy current model

The eddy current model is a low frequency approximation of the Maxwell system that neglects the displacement currents,
which is valid when the frequency is small and the conductivity of the body is high. A rigorous justification of the model
involves the topology of the conducting body.36 The eddy current model is described by the time-harmonic system

∇ × E𝛼 = i𝜔𝜇H𝛼, (1a)

∇ × H𝛼 = J0 + 𝜎E𝛼, (1b)

1While there is some variation in literature, we follow References 21,22 and call the full order model that obtained by a discrete (e.g., FEM)
approximation to a boundary value or transmission problem, which itself involves approximations.
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where E𝛼 and H𝛼 are the electric and magnetic interaction fields, respectively, J0 is an external current source, i ∶=
√
−1,

𝜔 is the angular frequency, 𝜇 is the magnetic permeability, and 𝜎 is the electric conductivity. We will use the eddy current
model for describing the forward and inverse problems associated with metal detection.

2.1.1 Forward problem

In the forward (or direct) problem, the position and materials of the conducting body B𝛼 are known. The object has a
high conductivity, 𝜎 = 𝜎∗, and a permeability, 𝜇 = 𝜇∗. For the purpose of this study, the conducting body is assumed to
be buried in soil, which is assumed to be of a much lower conductivity so that 𝜎 ≈ 0 and have a permeability 𝜇 = 𝜇0 ∶=
4𝜋 × 10−7 H/m. A background field is generated by a solenoidal current source J0 with support in the air above the soil,
which also has 𝜎 = 0 and 𝜇 = 𝜇0. As shown in Figure 1, the region around the object is Bc

𝛼 ∶= R3 ⧵ B𝛼 where the overbar
denotes the closure of B𝛼 . We will also use the overbar to denote the complex conjugate, but it should be clear from the
context as to which definition applies. Note that a similar model also applies in the situation of identifying hidden targets
in security screening8,18 and waste sorting13 among others.

The forward model is described by the system (1), which holds in R3, with

𝜇(x) =

{
𝜇∗ x ∈ B𝛼

𝜇0 x ∈ Bc
𝛼

, 𝜎(x) =

{
𝜎∗ x ∈ B𝛼

0 x ∈ Bc
𝛼

. (2)

The regions B𝛼 and Bc
𝛼 are coupled by the transmission conditions

[n × E𝛼]Γ𝛼
= [n × H𝛼]Γ𝛼

= 0, (3)

which hold on Γ𝛼 ∶= 𝜕B𝛼 . In the above, [u]Γ𝛼
∶= u|+ − u|− denotes the jump, the + refers to just outside of B𝛼 , and the −

to just inside and n denotes a unit outward normal to Γ𝛼 .
The electric interaction field is nonphysical in Bc

𝛼 and, to ensure uniqueness of this field, the condition ∇ ⋅ E𝛼 = 0 is
imposed in this region. Furthermore, we also require that E𝛼 = O(1∕|x|) and H𝛼 = O(1∕|x|) as |x| → ∞, denoting that the
fields go to zero at least as fast as 1∕|x|, although, in practice, this rate can be faster.

2.1.2 Inverse problem

In metal detection, the inverse problem is to determine the location, shape and material properties (𝜎∗ and 𝜇∗)
of the conducting object B𝛼 from measurements of (H𝛼 − H0)(x) taken at a range of locations x in the air. As
described in the introduction, there are considerable advantages in using spectral data, that is, additionally measuring
(H𝛼 − H0)(x) over a range of frequencies 𝜔, within the limit of the eddy current model. Here, H0 denotes the background
magnetic field and E0 and H0 are the solutions of (1) with 𝜎 = 0 and 𝜇 = 𝜇0 in R3. Similar to above, we also require the
decay conditions E0 = O(1∕|x|) and H0 = O(1∕|x|) as |x| → ∞. Note that practical metal detectors measure a voltage per-
turbation, which corresponds to ∫Sn ⋅ (H𝛼 − H0)(x)dx over an appropriate surface S.3 For very small coils, this voltage
perturbation is approximated by m ⋅ (H𝛼 − H0)(x) where m is the magnetic dipole moment of the coil.3

F I G U R E 1 A diagram showing a hidden conducting object
B𝛼 , buried in soil, with a current source located in the air above
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A traditional approach to the solution of this inverse problem involves creating a discrete set of voxels, each with
unknown 𝜎 and 𝜇, and posing the solution to the inverse problem as an optimization process in which 𝜎 and 𝜇 are found
through minimization of an appropriate functional, for example, Reference 37. From the resulting images of 𝜎 and 𝜇

one then attempts to infer the shape and position of the object. However, this problem is highly ill-posed38 and presents
considerable challenges mathematically and computationally in the case of limited noisy measurement data.

Instead, we seek an approximation of the perturbation (H𝛼 − H0)(x) at some point x exterior to B𝛼 , which allows
objects to be characterized by a small number of coefficients in a MPT that are easily obtained from the measurements of
(H𝛼 − H0)(x) once the object position is known, which can be found from a MUSIC algorithm, for example, Reference 2.
The object identification then reduces to a classification problem, as discussed in the introduction.

2.2 The asymptotic expansion and MPT description

Following References 1,2 we define B𝛼 ∶= 𝛼B + z where B is a unit size object with Lipschitz boundary, 𝛼 is the object
size and z is the object’s translation from the origin as shown in Figure 2.

Then, using the asymptotic formula obtained by Ammari et al.,2 Ledger and Lionheart1 have derived the simplified
form

(H𝛼 − H0)(x)i = (D2
xG(x, z))ij()jk(H0(z)

)
k + O(𝛼4), (4)

which holds as 𝛼 → 0 and makes the MPT explicit. The relationship between the leading order term in the above to
the dipole expansion of (H𝛼 − H0)(x) is discussed in Reference 3. In the above, G(x, z) ∶= 1∕(4𝜋|x − z|) is the free space
Laplace Green’s function, D2

xG denotes the Hessian of G and Einstein summation convention of the indices is implied.
In addition,  = ()jkej ⊗ ek, where ei denotes the ith orthonormal unit vector, is the complex symmetric rank 2 MPT,
which describes the shape and material properties of the object B𝛼 and is frequency dependent, but is independent of
the object’s position z, allowing the inverse problems of object location and object characterization to be separated. We
will sometimes write [𝛼B, 𝜔] to emphasize its dependence on 𝛼B and 𝜔 and also use [𝛼B, 𝜔, 𝜎∗, 𝜇r] to emphasize its
dependence also on 𝜇r ∶= 𝜇∗∕𝜇0 and 𝜎∗. The above formulation, and the definition of  below, are presented for the
case of a single homogenous object B, the extension to multiple inhomogeneous objects can be found in References 4,16.

Using the derivation in Reference 4, we state the explicit formulas for the computation of the coefficients of , which
are particularly well suited to a FEM discretization. The earlier explicit expressions in References 1,3,5 are equivalent for
exact fields. We use the splitting ()ij ∶= ( 0)ij + ()ij + i()ij obtained in Reference 4 with

( 0[𝛼B])ij ∶= 𝛼3𝛿ij∫B
(1 − 𝜇̃−1

r )d𝝃 + 𝛼3

4 ∫B∪Bc
𝜇̃−1

r ∇ × 𝜽̃(0)i ⋅ ∇ × 𝜽̃(0)j d𝝃, (5a)

([𝛼B, 𝜔])ij ∶= −𝛼3

4 ∫B∪Bc
𝜇̃−1

r ∇ × 𝜽(1)j ⋅ ∇ × 𝜽(1)i d𝝃, (5b)

([𝛼B, 𝜔])ij ∶=
𝛼3

4 ∫B
𝜈

(
𝜽
(1)
j +

(
𝜽̃
(0)
j + ej × 𝝃

))
⋅
(
𝜽
(1)
i +

(
𝜽̃
(0)
i + ei × 𝝃

))
d𝝃, (5c)

where Bc ∶= R3 ⧵ B and  0[𝛼B], [𝛼B, 𝜔], [𝛼B, 𝜔] are real symmetric rank 2 tensors, which each have real eigenvalues.
In the above, 𝝃 is chosen to be measured from an origin inside B,

𝜇̃r(𝝃) ∶=

{
𝜇r 𝝃 ∈ B
1 𝝃 ∈ Bc

,

F I G U R E 2 A diagram showing the physical description of B𝛼 with
respect to the coordinate axes
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and 𝜈 ∶= 𝛼2𝜔𝜇0𝜎∗, 𝛿ij is the Kronecker delta. The computation of (5) rely on the real solution 𝜽(0)i (𝝃) of the transmission
problem4

∇ × 𝜇̃−1
r ∇ × 𝜽(0)i = 0 in B ∪ Bc, (6a)

∇ ⋅ 𝜽(0)i = 0 in B ∪ Bc, (6b)[
n × 𝜽(0)i

]
Γ
= 0 on Γ, (6c)[

n × 𝜇̃−1
r ∇ × 𝜽(0)i

]
Γ
= 0 on Γ, (6d)

𝜽
(0)
i − ei × 𝝃 = O

(|𝝃|−1) as |𝝃| → ∞, (6e)

where Γ ∶= 𝜕B and the complex solution 𝜽(1)i (𝝃) of the transmission problem

∇ × 𝜇−1
r ∇ × 𝜽(1)i − i𝜈

(
𝜽
(0)
i + 𝜽(1)i

)
= 0 in B, (7a)

∇ × ∇ × 𝜽(1)i = 0 in Bc, (7b)

∇ ⋅ 𝜽(1)i = 0 in Bc, (7c)[
n × 𝜽(1)i

]
Γ
= 0 on Γ, (7d)[

n × 𝜇̃−1
r ∇ × 𝜽(1)i

]
Γ
= 0 on Γ, (7e)

𝜽
(1)
i = O

(|𝝃|−1) as |𝝃| → ∞. (7f)

Note also that we choose to introduce 𝜽̃(0)i (𝝃) ∶= 𝜽(0)i (𝝃) − ei × 𝝃, which can be shown to satisfy the same transmission
problem as (6) except with a nonzero jump condition for

[
n × 𝜇̃−1

r ∇ × 𝜽̃(0)i

]
Γ

and the decay condition 𝜽̃(0)i (𝝃) = O
(|𝝃|−1)

as |𝝃| → ∞.

3 FULL ORDER MODEL

To approximate the solutions to the transmission problems (6) and (7) we truncate the unbounded domain Bc at a finite
distance from the object B and create a bounded domain Ω containing B. On 𝜕Ω, we approximate the decay conditions
(6e) and (7f) by n × 𝜽̃(0)i = n ×

(
𝜽
(0)
i − ei × 𝝃

)
= 0 and n × 𝜽(1)i = 0, respectively. On this finite domain, we approximate

the associated weak variational statements to these problems using FEM with a H (curl) conforming discretization with
mesh spacing h and order elements p where

H (curl) ∶= {u ∶ u ∈
(

L2 (Ω)
)3
, ∇ × u ∈

(
L2 (Ω)

)3}, (8)

and L2 (Ω) denotes the standard space of square integrable functions. In Section 3.1 we provide their weak formulations
and provide their discretization in Section 3.2. It is clear that the eddy current model (1), the asymptotic formula (4), the
domain truncation to form Ω and the steps that follow to form a discrete FE model all involve approximations. However,
our goal is to accurately and efficiently obtain the MPT coefficients in (5) and, to distinguish the coefficients obtained
using FEM from those obtained from the further reduced ROM, we call their FEM approximation the full order model.

3.1 Weak formulation of the problem

Following the approach advocated in Reference 25 for magnetostatic and eddy current problems, we add a regularization
term 𝜀∫Ω𝜽̃(0)i ⋅ 𝝍d𝝃, where 𝜀 is a small regularization parameter, to the weak variational statement of (6), written in terms
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of 𝜽̃(0)i , in order to circumvent the Coulomb gauge ∇ ⋅ 𝜽̃
(0)
i = 0. For details of the small error induced by this approximation

see References 25, 27. Then, by choosing an appropriate set of H (curl) conforming finite element functions in W (hp) ⊂

H (curl), we obtain the following discrete regularized weak form for (6) : Find real solutions 𝜽̃(0,hp)
i ∈ Y ∩ W (hp) such that

∫Ω
𝜇̃−1

r ∇ × 𝜽̃(0,hp)
i ⋅ ∇ × 𝝍 (hp)d𝝃 + 𝜀∫Ω

𝜽̃
(0,hp)
i ⋅ 𝝍 (hp)d𝝃

= 2∫B

(
1 − 𝜇−1

r
)

ei ⋅ ∇ × 𝝍 (hp)d𝝃, (9)

for all 𝝍 (hp) ∈ Y ∩ W (hp), where

Y ∶= {u ∈ H (curl) ∶ n × u = 0 on 𝜕Ω} .

In a similar manner, the discrete weak variational statement of (7) is: Find complex solutions 𝜽(1,hp)
i ∈ Y ∩ W (hp) such that

∫Ω

(
𝜇−1

r ∇ × 𝜽(1,hp)
i

)
⋅
(
∇ × 𝝍 (hp)

)
d𝝃 − i∫B

𝜈𝜽
(1,hp)
i ⋅ 𝝍 (hp)d𝝃

+ 𝜀∫Ω⧵B
𝜽
(1,hp)
i ⋅ 𝝍 (hp)d𝝃 = i∫B

𝜈𝜽
(0,hp)
i ⋅ 𝝍 (hp)d𝝃, (10)

for all 𝝍 (hp) ∈ Y ∩ W (hp).
For what follows it is beneficial to restate (10) in the following form: Find 𝜽(1,hp)

i ∈ Y ∩ W (hp) such that

a
(
𝜽
(1,hp)
i ,𝝍 (hp);𝝎

)
= r

(
𝝍 (hp);𝜽(0,hp)

i ,𝝎
)
, (11)

for all 𝝍 (hp) ∈ Y ∩ W (hp) where

a
(
𝜽
(1,hp)
i ,𝝍 (hp);𝝎

)
∶=

⟨
𝜇̃−1∇ × 𝜽(1,hp)

i ,∇ × 𝝍 (hp)
⟩

L2(Ω)

− i
⟨
𝜈𝜽

(1,hp)
i ,𝝍 (hp)

⟩
L2(B)

+ 𝜀

⟨
𝜽
(1,hp)
i ,𝝍 (hp)

⟩
L2(Ω⧵B)

, (12a)

r
(
𝝍 (hp);𝜽(0,hp)

i ,𝝎
)
∶= i

⟨
𝜈𝜽

(0,hp)
i ,𝝍 (hp)

⟩
L2(B)

, (12b)

⟨u, v⟩L2(Ω) ∶= ∫Ωu ⋅ vd𝝃 denotes the L2 inner product over Ω and 𝝎 indicates the list of the problem parameters
(𝜔, 𝜎∗, 𝜇r, 𝛼) that one might wish to vary. Note that r

(
𝝍 (hp);𝜽(0,hp)

i ,𝝎
)

is a function of 𝜇r as 𝜽(0,hp)
i depends on 𝜇r.

3.2 Finite element discretization

For the implementation of (9) and (11), we use NGSolve23,24,27,39 along with the hierarchic set of H (curl) conforming
basis functions proposed by Schöberl and Zaglmayr,26 which are available in this software. In the following, for simplicity,
we focus on the treatment of 𝜽(1,hp)

i and drop the index i as each direction can be computed in a similar way (as can
𝜽̃
(0,hp)
i ). We denote these basis functions by N(k) (𝝃) ∈ W (hp) leading to the expression of the solution function along with

the weighting functions

𝜽(1,hp) (𝝃,𝝎) ∶=
Nd∑

k=1
N(k) (𝝃) qk (𝝎) , (13a)

𝝍 (hp) (𝝃,𝝎) ∶=
Nd∑

k=1
N(k) (𝝃) lk (𝝎) , (13b)
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where Nd is the number of degrees of freedom. Here, and in the following, the bold italic font denotes a vector field and
the bold nonitalic Roman font represents a matrix (upper case) or column vector (lower case). With this distinction, we
rewrite (13) in matrix form as

𝜽(1,hp) (𝝃,𝝎) = N (𝝃)q (𝝎) , (14a)

𝝍 (hp) (𝝃,𝝎) = N (𝝃) l (𝝎) , (14b)

where N (𝝃) is the matrix constructed with the basis vectors Nk (𝝃) as its columns, that is,

N (𝝃) ∶=
[

N(1) (𝝃) ,N(2) (𝝃) , ...,N(Nd) (𝝃)
]
.

With this, we may also rewrite (11) as follows

Nd∑
i=1

Nd∑
j=1

li (𝝎)a
(

N(j) (𝝃) ,N(i) (𝝃) ;𝝎
)

qj (𝝎) =
Nd∑
i=1

li (𝝎)r
(

N(i) (𝝃) ;𝜽(0,hp),𝝎
)
, (15)

and, with a suitable choice of li (𝝎), we may rewrite (15) as the linear system of equations

A (𝝎)q (𝝎) = r
(
𝜽(0,hp),𝝎

)
, (16)

where the coefficients of A (𝝎) and r
(
𝜽(0,hp),𝝎

)
are defined to be

(A (𝝎))ij ∶= a
(

N(j) (𝝃) ,N(i) (𝝃) ;𝝎
)
, (17a)(

r
(
𝜽(0,hp),𝝎

))
i ∶= r

(
N(i) (𝝃) ;𝜽(0,hp),𝝎

)
. (17b)

NGSolve offers efficient approaches for the computational solution to (16) using preconditioned iterative solvers,25,27

which we exploit. Following the solution of (16), we can obtain 𝜽(1,hp) (𝝃,𝝎) using (14) and, by repeating the process for
i= 1, 2, 3, we get 𝜽(1,hp)

i (𝝃,𝝎). Then ([𝛼B, 𝜔])ij, for the full order model, is found by using (5).

4 REDUCED ORDER MODEL (ROM)

A traditional (full order model) approach for the computation of the MPT spectral signature, that is, the variation
of the coefficients of [𝛼B, 𝜔] with frequency, would involve the repeated solution of the Nd sized system (16) for
different 𝜔. To reduce the computational cost of this, we wish to apply a ROM in which the solution of (16) is
replaced by a surrogate problem of reduced size. Thus, reducing both the computation cost and time to produce a
solution for each new 𝜔. In particular, in Section 4.1, we describe a ROM based on the POD method21,22,35,40 and,
in Section 4.2, apply the variant called projection based POD (which we denote by PODP), which has already been
shown to work well in the analysis of magnetomechanical coupling applied to MRI scanners.22 To emphasize the
generality of the approach, the formulation is presented for an arbitrary list of problem parameters denoted by 𝝎.
In Section 4.3 we derive a procedure for computing certificates of accuracy on the ROM solutions with negligible
additional cost.

4.1 Proper orthogonal decomposition

Following the solution of (16) for q (𝝎) for different values of the set of parameters, 𝝎, we construct a matrix D ∈ CNd×N

with the vector of solution coefficients as its columns in the form

D ∶=
[
q (𝝎1) ,q (𝝎2) , ...,q (𝝎N)

]
. (18)
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Note that q (𝝎i) denotes the vector of coefficients, which, when combined with (14a), produces a representative full
order model solution snapshot for the ith set of parameters 𝝎i and N ≪Nd denotes the number of such snapshots.
Application of a singular value decomposition (SVD), for example, References 41-43 gives

D = U𝚺VH , (19)

where U ∈ CNd×Nd and V ∈ CN×N are unitary matrices and 𝚺 ∈ RNd×N is a diagonal matrix enlarged by zeros so that it
becomes rectangular. In the above, VH = V

T
is the Hermitian of V.

The diagonal entries (𝚺)ii = 𝜎i
2are the singular values of D and they are arranged as 𝜎1 > 𝜎2 > … > 𝜎N . Based on

the sparse representation of the solutions to (7) as function of 𝜈, and hence 𝜔, (and hence also the sparse representation
of the MPT) found in Reference 4, we expect these to decay rapidly toward zero, which motivates the introduction of a
truncated singular value decomposition (TSVD), for example, References 41,42

D ≈ DM = UM𝚺M(
VM)H

, (20)

where UM ∈ CNd×M are the first M columns of U, 𝚺M ∈ RM×M is a diagonal matrix containing the first M singular values
and

(
VM)H ∈ CM×N are the first M rows of VH . The computation of (20) constitutes the offline stage of the POD. Using

(20) we can recover an approximate representation for each of our solution snapshots as follows

q
(
𝝎j
)
≈ UM𝚺M

((
VM)H

)
j
, (21)

where ((VM)H)j refers to the jth column of (VM)H .

4.2 Projection-based proper orthogonal decomposition (PODP)

In the online stage of PODP, qPODP (𝝎) ≈ q (𝝎) is obtained by taking a linear combination of the columns of UM where
the coefficients of this projection are contained in the vector pM (𝝎). We choose to also approximate l (𝝎) in a similar way
so that

𝜽(1,hp) (𝝃,𝝎) ≈
(
𝜽(1,hp))PODP (𝝃,𝝎) ∶= N (𝝃)qPODP (𝝎) = N (𝝃)UMpM (𝝎) ∈ Y (PODP), (22a)

𝝍 (hp) (𝝃,𝝎) ≈
(
𝝍 (1,hp))PODP (𝝃,𝝎) ∶= N (𝝃) lPODP (𝝎) = N (𝝃)UMoM (𝝎) ∈ Y (PODP), (22b)

where Y (PODP) ⊂Y ∩W (hp). Substituting these lower dimensional representations into (15) we obtain the following

M∑
i=1

M∑
j=1

oM
i (𝝎)a(N(j)(𝝃)(UM)j,N(i)(𝝃)(UM)i;𝝎)pM

j (𝝎)

=
M∑

i=1
oM

i (𝝎)r(N(i)(𝝃)(UM)i;𝜽(0,hp),𝝎),

(oM(𝝎))H((UM)HA(𝝎)UM)pM(𝝎) = (oM(𝝎))H(UM)Hr(𝜽(0,hp),𝝎). (23)

Then, if we choose oM (𝝎) appropriately, we obtain the linear system

AM (𝝎)pM (𝝎) = rM (
𝜽(0,hp),𝝎

)
, (24)

which is of size M ×M where AM (𝝎) ∶=
(
UM)HA (𝝎)UM and rM (

𝜽(0,hp),𝝎
)
∶=

(
UM)Hr

(
𝜽(0,hp),𝝎

)
. Note, since

M <N ≪Nd, this is significantly smaller than (16) and, therefore, substantially computationally cheaper to solve. After
solving this reduced system, and obtaining pM (𝝎), we obtain an approximate solution for 𝜽(1,hp) (𝝃,𝝎) using (22).

2Note that 𝜎∗ is used for conductivity and 𝜎i for a singular value; however, it should be clear from the application as to which definition applies.
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Focusing on the particular case where 𝝎 = 𝜔, from (12) we observe that we can express A and r as the simple sums

A (𝜔) = A(0) + 𝜔A(1),

r
(
𝜽(0,hp), 𝜔

)
= 𝜔r(1)

(
𝜽(0,hp)) ,

where the definitions of A(0), A(1), and r(1)
(
𝜽(0,hp)) are obvious from (17), (12), and the definition of 𝜈. Then, by computing

and storing (UM)HA(0)UM , (UM)HA(1)UM ,
(
UM)Hr(1)

(
𝜽(0,hp)), which are independent of 𝜔, it follows that AM (𝜔) and

rM (
𝜽(0,hp), 𝜔

)
can be efficiently calculated for each new 𝜔 from the stored data. In a similar manner, by precomputing

appropriate data, the MPT coefficients in (5) can also be rapidly evaluated for each new 𝜔 using the PODP solutions.
This leads to further considerable computational savings. We emphasize that the PODP is only applied to obtain ROM
solutions for 𝜽(1) (𝝃, 𝜔) and not to 𝜽(0) (𝝃), which does not depend on 𝜔.

4.3 An a posteriori error estimate to certify the PODP output

We follow the approach described in Reference 21, which enables us to derive an a posteriori error estimate on the MPT
coefficients obtained with PODP, with respect to those obtained with full order model, as a function of 𝜔. Importantly,
this estimate can be computed at negligible additional cost during the online stage of PODP allowing it to be used to
certify the MPT coefficients obtained using the ROM and to check their accuracy is within acceptable limits. To do this,

we set 𝜺i (𝜔) = 𝜽(1,hp)
i (𝜔) −

(
𝜽
(1,hp)
i

)PODP
(𝜔) ∈ Y (hp), where we have reintroduced the subscript i, as we need to distinguish

between the cases i= 1, 2, 3. Although 𝜺i also depends on 𝝃, we have chosen here, and in the following, to only emphasize
its dependence on 𝜔. We have also introduced Y (hp) =Y ∩W (hp) for simplicity of notation, and note that this error satisfies

a (𝜺i (𝜔) ,𝝍 ;𝜔) = r
(
𝝍 ;𝜽(0,hp)

i , 𝜔

)
∀𝝍 ∈ Y (hp), (25)

which is called the error equation21 and

a (𝜺i (𝜔) ,𝝍 ;𝜔) = 0 ∀𝝍 ∈ Y (PODP), (26)

which is called Galerkin orthogonality.21 The Riesz representation21 of r
(
⋅;𝜽(0,hp)

i , 𝜔

)
denoted by r̂i (𝜔) ∈ Y (hp) is such

that

(r̂i (𝜔) ,𝝍)Y (hp) = r
(
𝝍 ;𝜽(0,hp)

i , 𝜔

)
∀𝝍 ∈ Y (hp), (27)

so that

a (𝜺i (𝜔) ,𝝍 ;𝜔) = (r̂i (𝜔) ,𝝍)Y (hp) ∀𝝍 ∈ Y (hp). (28)

Then, by using the alternative set of formulas for the tensor coefficients4

([𝛼B, 𝜔])ij = −𝛼3

4 ∫B
𝜈Im

(
𝜽
(1,hp)
j

)
⋅ 𝜽(0,hp)

i d𝝃 = −𝛼3

4

⟨
𝜈Im

(
𝜽
(1,hp)
j

)
,𝜽

(0,hp)
i

⟩
L2(B)

, (29a)

([𝛼B, 𝜔])ij =
𝛼3

4

(
∫B

𝜈Re
(
𝜽
(1,hp)
j

)
⋅ 𝜽(0,hp)

i d𝝃 + ∫B
𝜈𝜽

(0,hp)
j ⋅ 𝜽(0,hp)

i d𝝃
)

= 𝛼3

4

(⟨
𝜈Re

(
𝜽
(1,hp)
j

)
,𝜽

(0,hp)
i

⟩
L2(B)

+
⟨
𝜈𝜽

(0,hp)
j ,𝜽

(0,hp)
i

⟩
L2(B)

)
, (29b)

which are written in terms of the full order solutions, we obtain an a posteriori error estimate for the tensor entries
computed using PODP stated in the lemma below. Note that the formulae stated in (5) are used for the actual POD
computation of

(PODP[𝛼B, 𝜔]
)

ij and
(PODP[𝛼B, 𝜔]

)
ij, but the form in (29) is useful for obtaining the error estimate. Also,

as
( [𝛼B]

)
ij is independent of 𝜔 we have

( 0,PODP[𝛼B]
)

ij =
( 0[𝛼B]

)
ij and we write PODP[𝛼B, 𝜔] =  0,PODP[𝛼B] +

PODP[𝛼B, 𝜔] + iPODP[𝛼B, 𝜔] for the MPT obtained by PODP.
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Lemma 1. An a posteriori error estimate for the tensor coefficients computed using PODP is

|([𝛼B, 𝜔])ij −
(PODP[𝛼B, 𝜔]

)
ij| ≤(Δ[𝜔])ij, (30a)

|([𝛼B, 𝜔])ij −
(PODP[𝛼B, 𝜔]

)
ij| ≤(Δ[𝜔])ij, (30b)

where

(Δ[𝜔])ij ∶=
𝛼3

8𝛼LB

(||r̂i (𝜔) ||2Y (hp) + ||r̂j (𝜔) ||2Y (hp) + ||r̂i (𝜔) − r̂j (𝜔) ||2Y (hp)

)
,

and 𝛼LB is a lower bound on a stability constant.

Proof. We concentrate on the proof for |([𝛼B, 𝜔])ij −
(PODP[𝛼B, 𝜔]

)
ij| as the proof for the second bound is similar and

leads to the same result. Recalling the symmetry of [𝛼B, 𝜔], we have ([𝛼B, 𝜔])ij =
1
2
(([𝛼B, 𝜔])ij + ([𝛼B, 𝜔])ji) so that

D ∶= |([𝛼B, 𝜔])ij −
(PODP[𝛼B, 𝜔]

)
ij| = 𝛼3

8
||||⟨𝜈Im (𝝐i) ,𝜽(0,hp)

j

⟩
L2(B)

+
⟨
𝜈Im

(
𝝐j
)
,𝜽

(0,hp)
i

⟩
L2(B)

||||
= 𝛼3

8
|||⟨𝜈Im (𝝐i) ,𝜽(0,hp)

i

⟩
L2(B)

+
⟨
𝜈Im (𝝐i) ,𝜽(0,hp)

j − 𝜽(0,hp)
i

⟩
L2(B)

+
⟨
𝜈Im

(
𝝐j
)
,𝜽

(0,hp)
j

⟩
L2(B)

+
⟨
𝜈Im

(
𝝐j
)
,𝜽

(0,hp)
i − 𝜽(0,hp)

j

⟩
L2(B)

|||
= 𝛼3

8
|||⟨𝜈Im (𝝐i) ,𝜽(0,hp)

i

⟩
L2(B)

+
⟨
𝜈Im

(
𝝐i − 𝝐j

)
,𝜽

(0,hp)
j − 𝜽(0,hp)

i

⟩
L2(B)

+
⟨
𝜈Im

(
𝝐j
)
,𝜽

(0,hp)
j

⟩
L2(B)

|||,
which follows since 𝜈 and 𝜽(0,hp)

i are real valued and where we have dropped the dependence of 𝜔 on 𝜺i for simplicity of
presentation. Thus,

D ≤ 𝛼3

8

(|||⟨𝜈𝜺i,𝜽
(0,hp)
i

⟩
L2(B)

||| + |||⟨𝜈 (𝜺i − 𝜺j
)
,𝜽

(0,hp)
j − 𝜽(0,hp)

i

⟩
L2(B)

||| + |||⟨𝜈𝜺j,𝜽
(0,hp)
j

⟩
L2(B)

|||
)
.

Next, using (25), we make the observation that

|||⟨𝜈𝜺i,𝜽
(0,hp)
i

⟩
L2(B)

||| = |||r (𝜺i;𝜽(0,hp)
i , 𝜔

) ||| = |||a (𝜺i, 𝜺i;𝜔)
||| = ||𝜺i||2𝜔.

Also, since r
(
𝝍 ;𝜽(0,hp)

j − 𝜽(0,hp)
i , 𝜔

)
= a

(
𝜽
(1,hp)
j (𝜔) − 𝜽(1,hp)

i (𝜔) ,𝝍 ;𝜔
)
= a

(
𝜺j − 𝜺i,𝝍 ;𝜔

)
for all 𝝍 ∈ Y (hp), we have|||⟨𝜈𝝍 ,𝜽(0,hp)

j − 𝜽(0,hp)
i

⟩
L2(B)

||| = |||a (
𝜺j − 𝜺i,𝝍 ;𝜔

) ||| so that

|||⟨𝜈 (𝜺i − 𝜺j
)
,𝜽

(0,hp)
j − 𝜽(0,hp)

i

⟩
L2(B)

||| = |||r (𝜺i − 𝜺j;𝜽(0,hp)
j − 𝜽(0,hp)

i , 𝜔

) ||| = |a (
𝜺j − 𝜺i, 𝜺i − 𝜺j;𝜔

) | = ||𝜺i − 𝜺j||2𝜔,
and, hence,

D ≤ 𝛼3

8
(||𝜺i||2𝜔 + ||𝜺i − 𝜺j||2𝜔 + ||𝜺j||2𝜔). (31)

Following similar steps to [21, pp. 47–50], and introducing a Riesz representation in (27), we can find that

||𝜺i||2𝜔 ≤ ||r̂i (𝜔) ||2Y (hp)

𝛼LB
, ||𝜺j||2𝜔 ≤ ||r̂j (𝜔) ||2Y (hp)

𝛼LB
, ||𝜺i − 𝜺j||2𝜔 ≤ ||r̂i (𝜔) − r̂j (𝜔) ||2Y (hp)

𝛼LB
,

and, combining this with (31), completes the proof. ▪
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Remark 1. The a posteriori error estimate in Lemma 1 allow the coefficients of PODP[𝛼B, 𝜔] obtained by PODP to be
certified at low-computational cost during the on-line stage of the ROM using the procedure described below. The bound
does not give an explicit dependence on N or 𝜔, but, if desired, could be used as part of an iterative procedure to choose
additional candidate 𝜔 values for the representative full order model solution snapshots in a similar manner to that
described in Reference 21. The (spectral) behavior [𝛼B, 𝜔] with 𝜔 has been considered in Reference 4, where results on
the functions that characterize the spectral signature of the MPT are provided.

The efficient evaluation of (30) follows the approach presented in [21, pp. 52–54], adapted to complex matrices and
with the simplification that we compute a Riesz representation r̂i (𝜔) ∈ Y (h0) using lowest order elements for computa-
tional efficiency. The computations are split in to those performed in the offline stage and those in the on-line stage as
follows.

In the offline stage, the following (2M + 1)× (2M + 1) Hermitian matrices are computed

G(i,j) =
(
W(i))HM−1

0 W(j),

where, since G(j, i) = (G(i, j))H , it follows that, in practice, only the three matrices G(1, 1), G(2, 2), and G(3, 3) are required for
computing the certificates on the diagonal entries of the tensors, and the further three matrices G(1, 2), G(1, 3), and G(2, 3)

are needed for the off-diagonal terms. In the above, (M0)ij = ⟨N(i),N(j)⟩L2(Ω) are the coefficients of a real symmetric FEM
mass matrix for the lowest order, with N(i),N(j) ∈ W (h0) being typical lowest order basis functions, and

W(i) ∶= Pp
0

(
r(1)

(
𝜽
(0)
i

)
A(0)U(M,i) A(1)U(M,i)

)
,

where Pp
0 is a projection matrix of the FEM basis functions from order p to the lowest order 0, U(M, i) is the UM obtained

in (20) for the ith direction. The stability constant 𝛼LB = 𝜆min min
(

1, 𝜔

𝜔′

)
is obtained from the smallest eigenvalue of an

eigenvalue problem [21, p. 56], which, in practice, is only performed once for smallest frequency of interest 𝜔′.
In the on-line stage, we evaluate

||r̂i (𝜔) ||2Y (hp) =
((

w(i) (𝜔)
)HG(i,i) (w(i) (𝜔)

))1∕2
,

||r̂i (𝜔) − r̂j (𝜔) ||2Y (hp) =
(||r̂i (𝜔) ||2Y (hp) + ||r̂j (𝜔) ||2Y (hp) − 2Re

((
wi (𝜔)

)HG(i,j) (w(j) (𝜔)
)))1∕2

,

for each 𝜔 by updating the vector

w(i) (𝜔) =
⎛⎜⎜⎜⎝

𝜔

−pM,(i) (𝜔)
−𝜔pM,(i) (𝜔)

⎞⎟⎟⎟⎠ ,
where pM, (i) refers to pM for the ith direction. We then apply (30) to obtain the a posteriori error estimate.

5 SCALING OF THE MPT UNDER PARAMETER CHANGES

Two results that aid the computation of the frequency sweep of an MPT for an object with scaled conductivity and an
object with a scaled object size from an already known frequency sweep of the MPT for the same shaped object are stated
below.

Lemma 2. Given the MPT coefficients for an object 𝛼B with material parameters 𝜇r and 𝜎∗ at frequency s𝜔, the coefficients
of the MPT for an object, which has the same B, 𝛼 and 𝜇r, but with conductivity s𝜎∗, at frequency 𝜔, are given by

([𝛼B, 𝜔, s𝜎∗, 𝜇r])ij = ([𝛼B, s𝜔, 𝜎∗, 𝜇r])ij, (32)

where ([𝛼B, s𝜔, 𝜎∗, 𝜇r])ij denote the coefficients of the original MPT at frequency s𝜔.
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Proof. This result immediately follows from (5) and (7) since both are written in terms of 𝜈 = 𝛼2𝜎∗𝜇0𝜔. ▪

Lemma 3. Given the MPT coefficients for an object 𝛼B with material parameters 𝜇r and 𝜎∗ at frequency s2𝜔, the coefficients
of the MPT for an object s𝛼B, which is the same as B apart from having size s𝛼, at frequency 𝜔, are given by

([s𝛼B, 𝜔, 𝜎∗, 𝜇r])ij = s3( [
𝛼B, s2𝜔, 𝜎∗, 𝜇r

])
ij, (33)

where
( [

𝛼B, s2𝜔, 𝜎∗, 𝜇r
])

ij denote the coefficients of the original MPT at frequency s2𝜔.

Proof. For the case of 𝜇r = 1 this result was proved by Ammari et al.15 We generalize this to 0 < 𝜇r < 𝜇max
r < ∞ as follows:

We use the splitting ()ij ∶=
( 0)

ij − (𝜎∗ )ij +
( 𝜎∗

)
ij presented in Reference 5 and let 𝜽(0)i,B denote the solution to (6).

Then, we find that
1
s
𝜽
(0)
i,sB

(
s𝝃′

)
= 𝜽(0)i,B

(
𝝃′
)
,

where 𝜽(0)i,sB is the solution to (6) with B replaced by sB. If 𝜽(1)i,B

[
s2𝜈

]
is the solution to (7) with 𝜈 replaced by s2𝜈, then, we

find that
1
s
𝜽
(1)
i,sB [𝜈]

(
s𝝃′

)
= 𝜽(1)i,B

[
s2𝜈

] (
𝝃′
)
,

where 𝜽(1)i,sB [𝜈] is the solution to (7) with B replaced by sB. Using the above, the definitions in lemma 1 of Reference 5, and
𝝃 = s𝝃′ we find

(𝜎∗ [𝛼 (sB) , 𝜔, 𝜎∗, 𝜇r])ij = − i𝛼3𝜈

4 ∫sB
ei ⋅

(
𝝃 ×

(
𝜽
(1)
i,sB [𝜈] + 𝜽

(0)
i,sB

))
d𝝃

= is3𝛼3𝜈

4 ∫B
ei ⋅

(
s𝝃′ ×

(
𝜽
(1)
i,sB [𝜈]

(
s𝝃′

)
+ 𝜽(0)i,sB

(
s𝝃′

)))
d𝝃′

=
is3𝛼3 (s2𝜈

)
4 ∫B

ei ⋅
(
𝝃′ ×

(
𝜽
(1)
i,B

[
s2𝜈

]
+ 𝜽(0)i,B

))
d𝝃′ = s3(𝜎∗

[
𝛼B, s2𝜔, 𝜎∗, 𝜇r

])
ij,( 0 [𝛼 (sB) , 𝜇r]

)
ij =

𝛼3

2
[
𝜇̃−1]

Γ∫sB
ei ⋅ ∇𝜉 × 𝜽(0)i,sBd𝝃

= s3𝛼3

2
[
𝜇̃−1]

Γ∫B
ei ⋅

1
s
∇𝜉′ ×

(
s𝜽(0)i,B

)
d𝝃′ = s3( 0 [𝛼B, 𝜇r]

)
ij,( 𝜎∗ [𝛼 (sB) , 𝜔, 𝜎∗, 𝜇r, ]

)
ij =

𝛼3

2
[
𝜇̃−1]

Γ∫sB
ei ⋅ ∇𝜉 × 𝜽(1)i,sB [𝜈] d𝝃

= s3𝛼3

2
[
𝜇̃−1]

Γ∫B
ei ⋅

1
s
∇𝜉′ ×

(
s𝜽(1)i,B

[
s2𝜈

])
d𝝃′ = s3( 𝜎∗

[
𝛼B, s2𝜔, 𝜎∗, 𝜇r,

])
ij,

and the result immediately follows. ▪

6 NUMERICAL EXAMPLES OF PODP

The PODP algorithm has been implemented in the Python interface to the high order finite element solver NGSolve
package led by the group of Schöberl23,24,27 available at https://ngsolve.org. The snapshots are computed
by solving (9) and (11) using NGSolve and their H (curl) conforming tetrahedral finite element basis functions of
order p on meshes of spacing h.26 Following the solution of (16), and the application of (13), the coefficients of
 [𝛼B, 𝜔]3 follow by simple postprocessing of (5). If desired, PODP output certificates can also be efficiently com-
puted using the approach described in Section 4.3. The Python scripts for the computations presented can be accessed
at https://github.com/BAWilson94/MPT-Calculator. Specifically, the results presented were obtained with
version 6.2.1905 of NGSolve and commit number 17d5b33208 of MPT-Calculator.

3In the following, when presenting numerical results for the PODP, we frequently choose to drop the superscript PODP on  [𝛼B, 𝜔] [𝛼B, 𝜔],
 [𝛼B, 𝜔] and  0 [B], introduced in Section 4.3, for brevity of presentation where no confusion arises. Also, we will return to using the notation
 [𝛼B, 𝜔, 𝜇r , 𝜎∗], which illustrates the full parameter dependence, in Section 7 when considering scaling of conductivity and object size.
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6.1 Conducting permeable sphere

We begin with the case where B𝛼 = 𝛼B is a permeable conducting sphere of radius 𝛼 = 0.01 m and B is the unit sphere
centered at the origin. The sphere is chosen to have a relative permeability 𝜇r = 1.5 and conductivity 𝜎∗ = 5.96 × 106 S/m.
To produce the snapshots of the full order model, we set Ω to be a ball 100 times the radius of B4, generate a mesh of
26,385 unstructured tetrahedra, refined toward the object, and apply p= 3 elements. We have chosen this discretization
since it has already been found to produce an accurate representation of  [𝛼B, 𝜔] for 102 < 𝜔 < 108 rad/s by comparing
with exact solution of the MPT for a sphere.3,44 Indeed, provided that the geometry discretization error is under control,
performing p-refinement of the full order model solution results in exponential convergence to the true solution.1 For
this mesh, p-refinement has been found to give exponential convergence of  [𝛼B, 𝜔] down to relative error of less than
0.01% and so further increases in the size of Ω were not deemed to be required.

We follow two different schemes for choosing frequencies 𝜔 for generating the solution vectors q (𝜔) required for D
in (18). Firstly, we consider linearly spaced frequencies 𝜔min ≤ 𝜔n ≤ 𝜔max, n= 1, 2, … , N, where, as in Section 4.1, N is
the number of representative full order solution snapshots that follow from using each value of 𝜔n, in turn, and denote
this choice of samples by “Lin” in the results. Secondly, we consider logarithmically spaced frequencies𝜔min ≤ 𝜔n ≤ 𝜔max
and denote this regime by “Log” in the results.

Considering both linearly and logarithmically spaced frequencies with 𝜔min = 1 × 102 rad/s, 𝜔max = 1 × 108 rad/s
and N = 9, 13, 17, in turn, to generate the snapshots, the application of an SVD to D in (19) leads to the results shown in
Figure 3 where the values have been scaled by 𝜎1 and are strictly decreasing. We observe that “Log” case produces singular
values 𝜎i∕𝜎1, which tend to 0 with increasing i, while the “Lin” case produces 𝜎i∕𝜎1, which tend to a finite constant with
increasing i. Also shown is the tolerance TOL= 1× 10−3, that is, we define M such that 𝜎M∕𝜎1 ≤ TOL < 𝜎M+1∕𝜎1 and
create the matrices UM , 𝚺M , and (VM)H by taking the first M columns of U, M rows of VH and first M rows and columns
of 𝚺.

The superior performance of logarithmically spaced frequencies over those linearly spaced is illustrated
in Figure 4 using the error measure |e (Λi (𝜔)) | ∶= |Λexact

i (𝜔) − ΛPODP
i (𝜔) |∕|Λexact

i (𝜔) | with 𝜔, where Λi (𝜔) =
𝜆i
( [𝛼B, 𝜔] + 0 [𝛼B]

)
+ i𝜆i ( [𝛼B, 𝜔]) and 𝜆i (⋅) indicates the ith eigenvalue. We see that choosing 𝜔n to be logarithmi-

cally spaced for the representative full order model solution snapshots results in a smaller error compared with choosing
𝜔n to be linear spaced and also shows an algebraic increase with 𝜔 for N > 5.

(A) Linearly spaced ωn (B) Logarithmically spaced ωn

F I G U R E 3 Sphere with 𝜇r = 1.5, 𝜎∗ = 5.96 × 106 S/m, 𝛼 = 0.01 m: PODP applied to the computation of  [𝛼B, 𝜔] showing 𝜎i∕𝜎1 for
(A) linearly spaced 𝜔n and (B) logarithmically spaced 𝜔n

4Loosely speaking, given the decay of the solutions to (6) and (7), this truncation is such that the difference between the continuous solutions on the
bounded and unbounded domains is not more than 1%, but typically much smaller in practice.
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F I G U R E 4 Sphere with 𝜇r = 1.5, 𝜎∗ = 5.96 × 106 S/m, 𝛼 = 0.01
m: PODP applied to the computation of  [𝛼B, 𝜔] showing variation of
e (Λi (𝜔)) with 𝜔 for linearly and logarithmically spaced frequencies

(A) (B)

F I G U R E 5 Sphere with 𝜇r = 1.5, 𝜎∗ = 5.96 × 106 S/m, 𝛼 = 0.01 m: PODP applied to the computation of  [𝛼B, 𝜔] using N = 9 and
TOL= 1× 10−4 showing (A)𝜆i

( 0 [𝛼B] + [𝛼B, 𝜔]
)

and (B)𝜆i ( [𝛼B, 𝜔]) each with 𝜔

Further tests reveal that the accuracy of the PODP using N = 9, 13, 17 and logarithmically spaced 𝜔n remains similar
to that shown in Figure 4 for TOL≤ 1× 10−3 for this problem. Next, we show in Figure 5 a comparison of 𝜆i ( [𝛼B, 𝜔])
and 𝜆i ( [𝛼B, 𝜔]), each with 𝜔, for the full order model, PODP using N = 9 and the exact solution. Again, the results for
i= 1, 2, 3 are identical and, hence, only i= 1 is shown. In this figure, we observe excellent agreement between PODP, the
full order model solution and exact solution.

In Figure 6, we show the certification of the output
(PODP [𝛼B, 𝜔] + 0,PODP [𝛼B]

)
ii ± (Δ [𝜔])ii (summation of

repeated indices is not implied) and
(PODP [𝛼B, 𝜔]

)
ii ± (Δ [𝜔])ii, each with 𝜔, obtained using the a posteriori error

estimate in Lemma 1 and computed using the technique described in Section 4.3 for the case where i= 1 and with
N = 17, 21 and TOL= 1× 10−6. Similar certification can be obtained for the other tensor coefficients. We observe the
output certification is almost indistinguishable from the the MPT coefficients obtained with PODP for low frequen-
cies in both cases and the error estimates rapidly tend to 0 for all 𝜔 as N is increased. Note that the a posteriori error
bounds always vanish when 𝜔 corresponds to an 𝜔n used for the representative full order solution snapshots. The larger
error estimates for higher frequencies indicate that the MPT coefficients obtained by PODP for these frequencies is
less reliable than those for smaller frequencies. However, smaller error bounds and increased reliability is achieved
by increasing N as shown in Figure 6(C) and 6(D) compared with Figure 6(A) and 6(B). Alternatively, smaller error
bounds and increased reliability can be achieved by choosing the additional 𝜔n for the representative offline solution
snapshots corresponding to where (Δ [𝜔])ij is largest45 and, if desired, this could be used as part of an adaptive pro-
cess in a similar manner to Reference 21. Note that TOL= 1× 10−6 is chosen as larger tolerances lead to larger error
estimates; however, this reduction in tolerance does not substantially affect the computational cost of the ROM. Although
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(A) (B)

(C) (D)

F I G U R E 6 Sphere with 𝜇r = 1.5, 𝜎∗ = 5.96 × 106 S/m, 𝛼 = 0.01 m: PODP applied to the computation of  [𝛼B, 𝜔] with TOL= 1× 10−6

showing the PODP solution, full order model solutions and certification of the output (⋅) ± (Δ [𝜔])11 for (A)
( 0 [𝛼B] + [𝛼B, 𝜔]

)
11 using

N = 17, (B)( [𝛼B, 𝜔])11 using N = 17, (C)
( 0 [𝛼B] + [𝛼B, 𝜔]

)
11 using N = 21 and (D)( [𝛼B, 𝜔])11 using N = 21, each with 𝜔

the effectivity indices (Δ [𝜔])11∕|( [𝛼B, 𝜔] −PODP [𝛼B, 𝜔]
)

11| and (Δ [𝜔])11∕|( [𝛼B, 𝜔] − PODP [𝛼B, 𝜔]
)

11|) of the
PODP with respect to the full order model are clearly larger at higher frequencies, we emphasize that they are computed at
negligible additional cost, they converge rapidly to the MPT coefficients obtained with PODP as N is increased and give
credibility in the PODP solution without the need of performing additional full order model solutions to validate the ROM.

The computational speed-ups offered by using the PODP compared with a frequency sweep performed with
the full order model are shown in Figure 7(A) where N = 9, 13, 17 and logarithmically spaced 𝜔n are chosen with
𝜔min = 1 × 102 rad/s, 𝜔max = 1 × 108 rad/s, as before. For the comparison, we vary the number of output points N0 pro-
duced in a frequency sweep and measure the time taken to produce each of these frequency sweeps using a 2.9 GHz quad
core Intel i5 processor and also show the percentage speed up offered by each of these PODP sweeps. Shown in Figure 7(B)
is the breakdown of the computational time for the offline and online stages of the PODP for the case where N = 13. Note,
in particular, that the computational cost increases very slowly with N0 and that the additional cost involved in comput-
ing the output certification is small. The breakdown of computational costs for other N is similar. The implementation in
NGSolve and in the MPT-calculator tool is parallelized and further reductions in time can be achieved by increasing
the number of cores used. In particular, in NGSolve parallelism is exploited in many aspects, which include meshing,
matrix assembly, linear algebra and iterative solution of the linear systems, and is further exploited in MPT-calculator
through the computation of the representative full order model solution snapshots, computation of the ROM solutions at
different output frequencies, computation of the PODP MPT coefficients and calculation of the a posteriori errorestimate.
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(A) (B)

F I G U R E 7 Sphere with 𝜇r = 1.5, 𝜎∗ = 5.96 × 106 S/m, 𝛼 = 0.01 m: PODP applied to the computation of  [𝛼B, 𝜔] with TOL= 1× 10−6

showing, for different numbers of outputs N0, (A) sweep computational time for N = 13, 17, 21 compared with full order and (B) a typical
breakdown of the offline and online computational times for N = 13

6.2 Conducting permeable torus

Next, we consider B𝛼 = 𝛼B to be a torus where B has major and minor radii a= 2 and b= 1, respectively, 𝛼 = 0.01 m
and the object is permeable and conducting with 𝜇r = 1.5, 𝜎∗ = 5 × 105 S/m. The object is centered at the origin so
that it has rotational symmetry around the e1 axis, therefore,  [𝛼B, 𝜔] has independent coefficients ( [𝛼B, 𝜔])11 and
( [𝛼B, 𝜔])22 = ( [𝛼B, 𝜔])33, and, thus,  0 [𝛼B],  [𝛼B, 𝜔] and  [𝛼B, 𝜔] each have two independent eigenvalues for
each 𝜔. Hence, there are only two independent curves for 𝜆i

( 0 [𝛼B] + [𝛼B, 𝜔]
)

and 𝜆i ( [𝛼B, 𝜔]), as functions of 𝜔.
To compute the full order model, we set Ω to be a sphere of radius 100, centered at the origin and containing B, gener-
ate a mesh of 26,142 unstructured tetrahedra, refined toward the object, and apply p= 3 elements. This discretization has
already been found to produce an accurate representation of [𝛼B, 𝜔] for the frequency range with𝜔min = 1 × 102 rad∕s
and 𝜔max = 1 × 108 rad∕s with the full order model.

The reduced order model is constructed using N = 13 representative full order solution snapshots that follow
from using each value of the logarithmically spaced 𝜔n in turn and TOL= 1× 10−4. Figure 8 shows the results for
𝜆i
( 0 [𝛼B] + [𝛼B, 𝜔]

)
and 𝜆i ( [𝛼B, 𝜔]), each with 𝜔, for both the full order model and the PODP. The agreement is

excellent in both cases.
In Figure 9 we show the certification of the output

(PODP [𝛼B, 𝜔] + 0,PODP [𝛼B]
)

ii ± (Δ [𝜔])ii (no summation over
repeated indices implied) and

(PODP [𝛼B, 𝜔]
)

ii ± (Δ [𝜔])ii, each with 𝜔, obtained using the a posteriori error estimate in
Lemma 1 and computed using the technique described in Section 4.3 for the case where N = 17 and TOL= 1× 10−6. Note
that we increased the number of snapshots from N = 13 to N = 17 and have reduced the tolerance to ensure a small error
estimate.

6.3 Conducting permeable tetrahedron

The third object considered is where B𝛼 = 𝛼B is a conducting permeable tetrahedron. The vertices of the tetrahedron B
are chosen to be at the locations

v1 =
⎛⎜⎜⎜⎝
0
0
0

⎞⎟⎟⎟⎠ , v2 =
⎛⎜⎜⎜⎝
7
0
0

⎞⎟⎟⎟⎠ , v3 =
⎛⎜⎜⎜⎝
5.5
4.6
0

⎞⎟⎟⎟⎠ , and v4 =
⎛⎜⎜⎜⎝
3.3
2
5

⎞⎟⎟⎟⎠ ,
the object size is 𝛼 = 0.01 m and the tetrahedron is permeable and conducting with 𝜇r = 2 and 𝜎∗ = 5.96 × 106 S/m.
The object does not have rotational or reflectional symmetries, therefore,  [𝛼B, 𝜔] has six independent coefficients and,
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(A) (B)

F I G U R E 8 Torus with major and minor radii of a= 2 and b= 1, respectively, and 𝜇r = 1.5, 𝜎∗ = 5 × 105 S/m, 𝛼 = 0.01 m: PODP applied
to the computation of  [𝛼B, 𝜔] using N = 13 and TOL= 1× 10−4 showing (A)𝜆i

( 0 [𝛼B] + [𝛼B, 𝜔]
)

and (B)𝜆i ( [𝛼B, 𝜔]), each with 𝜔

(A) (B)

F I G U R E 9 Torus with 𝜇r = 1.5, 𝜎∗ = 5 × 105 S/m, 𝛼 = 0.01 m: PODP applied to the computation of  [𝛼B, 𝜔] using TOL= 1× 10−6 and
N = 17 showing the PODP solution and certification of the output (⋅) ± (Δ [𝜔])ii for (A)

( 0 [𝛼B] + [𝛼B, 𝜔]
)

ii, (B)( [𝛼B, 𝜔])ii, each with 𝜔

thus,  0 [𝛼B],  [𝛼B, 𝜔] and  [𝛼B, 𝜔] each have three independent eigenvalues for each 𝜔. To compute the full order
model, we set Ω to be a cube with sides of length 200 centered about the origin, generate a mesh of 21,427 unstructured
tetrahedra, refined toward the object, and apply p= 3 elements. This discretization has already been found to produce an
accurate representation of  [𝛼B, 𝜔] for the frequency range with 𝜔min = 1 × 102 rad∕s and 𝜔max = 1 × 108 rad∕s.

The reduced order model is constructed using N = 13 representative full order solution snapshots that follow
from using each value of the logarithmically spaced 𝜔n in turn and TOL= 1× 10−4. Figure 10 shows the results for
𝜆i
( 0 [𝛼B] + [𝛼B, 𝜔]

)
and 𝜆i ( [𝛼B, 𝜔]), each with 𝜔, for both the full order model and the PODP. The agreement is

excellent in both cases.
In Figure 11 we show the certification of the output

(PODP [𝛼B, 𝜔] + 0,PODP [𝛼B]
)

ij ± (Δ [𝜔])ij and(PODP [𝛼B, 𝜔]
)

ij ± (Δ [𝜔])ij, both with 𝜔, for i= j and i≠ j obtained using the a posteriori error estimate in Lemma 1
and computed using the technique described in Section 4.3 for the case where N = 21 and TOL= 1× 10−6. Once again,
we increased the number of snapshots from N = 13 to N = 21 and have reduced the tolerance to ensure tight certificates
bounds, except at large frequencies.
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(A) (B)

F I G U R E 10 Irregular tetrahedron with 𝜇r = 2, 𝜎∗ = 5.96 × 106 S/m, 𝛼 = 0.01 m: PODP applied to the computation of  [𝛼B, 𝜔] using
N = 13 and TOL= 1× 10−4 showing (A)𝜆i

( 0 [𝛼B] + [𝛼B, 𝜔]
)

and (B)𝜆i ( [𝛼B, 𝜔]), each with 𝜔

(A) (B)

(C) (D)

F I G U R E 11 Irregular tetrahedron with 𝜇r = 2, 𝜎∗ = 5.96 × 106 S/m, 𝛼 = 0.01 m: PODP applied to the computation of  [𝛼B, 𝜔] using
TOL= 1× 10−6 and N = 21 showing the PODP solution and certification of the output (⋅) ± (Δ [𝜔])ij for (A)

( 0 [𝛼B] + [𝛼B, 𝜔]
)

ij,
i= j(B)( [𝛼B, 𝜔])ij,i= j, (C)

( 0 [𝛼B] + [𝛼B, 𝜔]
)

ij,i≠ j, (D)( [𝛼B, 𝜔])iji≠ j, each with 𝜔
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(A) (B)

F I G U R E 12 Inhomogeneous bar with two distinct conductivities (see section 6.1.3 of Reference 16): PODP applied to the computation
of  [𝛼B, 𝜔] using N = 13 and TOL= 1× 10−4 showing (A)𝜆i

( 0 [𝛼B] + [𝛼B, 𝜔]
)

and (B)𝜆i ( [𝛼B, 𝜔]), each with 𝜔.

6.4 Inhomogeneous conducting bar

As a final example we consider B𝛼 = 𝛼B to be the inhomogeneous conducting bar made up from two different conducting
materials. The size, shape and materials of this object are the same as those presented in section 6.1.3 of Reference 16.
This object has rotational and reflectional symmetries such that  [𝛼B, 𝜔] has independent coefficients ( [𝛼B, 𝜔])11,
( [𝛼B, 𝜔])22 = ( [𝛼B, 𝜔])33 and, thus,  0 [𝛼B],  [𝛼B, 𝜔] and  [𝛼B, 𝜔] each have two independent eigenvalues for
each 𝜔. To compute the full order model, we set Ω to be a sphere of radius 100, centered about the origin, generate a mesh
of 30,209 unstructured tetrahedra, refined toward the object, and apply p= 3 elements. This discretization has already
been found to produce an accurate representation of  [𝛼B, 𝜔] for the frequency range with 𝜔min = 1 × 102 rad∕s and
𝜔max = 1 × 108 rad∕s.

The reduced order model is constructed using N = 13 representative full order solution snapshots that follow
from using each value of the logarithmically spaced 𝜔n in turn and TOL= 1× 10−4. Figure 12 shows the results for
𝜆i
( 0 [𝛼B] + [𝛼B, 𝜔]

)
and 𝜆i ( [𝛼B, 𝜔]), each with 𝜔, for both the full order model and the PODP. The agreement is

excellent in both cases. The behavior of 𝜆i
( 0 [𝛼B] + [𝛼B, 𝜔]

)
with 𝜔 for the inhomogeneous conducting bar is differ-

ent to that for a homogeneous object, showing the presence of multiple nonlocal points of inflection rather being sigmoid
with 𝜔. Similarly, 𝜆i ( [𝛼B, 𝜔]), for the inhomogeneous conducting bar, shows the presence of local maxima rather than
a single maxima. For further details about the behavior of MPT spectral signature of inhomogeneous objects we refer
to Reference 16.

In Figure 13 we show the output certificates
(PODP [𝛼B, 𝜔] + 0,PODP [𝛼B]

)
ii ± (Δ [𝜔])ii (no summation over repeated

indices implied) and
(PODP [𝛼B, 𝜔]

)
ii ± (Δ [𝜔])ii, both with 𝜔, obtained using the a posteriori error estimates in Lemma 1

and computed using the technique described in Section 4.3 for the case where N = 23 and TOL= 1× 10−6. Note that we
increased the number of snapshots from N = 13 to N = 23 and have reduced the tolerance to ensure small error estimates,
except at large frequencies.

7 NUMERICAL EXAMPLES OF SCALING

In this section we illustrate the application of the results presented in Section 5.

7.1 Scaling of conductivity

As an illustration of Lemma 2, we consider a conducting permeable sphere B𝛼 = 𝛼B where 𝛼 = 0.01 m with materials
properties 𝜇r = 1.5 and 𝜎

(1)
∗ = 1 × 107 S/m and a second object, which is the same as the first except that
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(A) (B)

F I G U R E 13 Inhomogeneous bar with two distinct conductivities (see section 6.1.3 of Reference 16): PODP applied to the computation
of  [𝛼B, 𝜔] using N = 23 showing the PODP solution and certification of the output (⋅) ± (Δ [𝜔])ii for (A)

( 0 [𝛼B] + [𝛼B, 𝜔]
)

ii,
(B)( [𝛼B, 𝜔])ii, each with 𝜔

(A) (B)

F I G U R E 14 Sphere with 𝜇r = 1.5, 𝜎(1)
∗ = 1 × 107 S/m, 𝛼 = 0.01 m and second sphere, which is the same as the first except that

𝜎
(2)
∗ = s𝜎(1)

∗ = 10𝜎(1)
∗ : showing the translation predicted by (32) compared with the full order model solutions for

(A)𝜆i
( 0 [𝛼B, 𝜇r] + [𝛼B, 𝜔, 𝜎∗, 𝜇r]

)
and (B)𝜆i ( [𝛼B, 𝜔, 𝜎∗, 𝜇r])

𝜎
(2)
∗ = s𝜎(1)

∗ = 10𝜎(1)
∗ . In Figure 14, we compare the full order computations of  [

𝛼B, 𝜔, 𝜎(1)
∗ , 𝜇r

]
and  [

𝛼B, 𝜔, 𝜎(2)
∗ , 𝜇r

]
with that obtained from (32). We observe that the translation predicted by (32) is in excellent agreement with the full
order model solution for  [

𝛼B, 𝜔, 𝜎(2)
∗ , 𝜇r

]
.

7.2 Scaling of object size

To illustrate Lemma 3, we consider a conducting permeable tetrahedron B(1)
𝛼 = 𝛼(1)B = 0.01B with vertices as described

in Section 6.3 and material properties 𝜇r = 1.5 and 𝜎∗ = 1 × 106 S/m. Then, we consider a second object B(2)
𝛼 = 𝛼(2)B =

s𝛼(1)B = 0.015B, which, apart from its size, is otherwise the same as B(1)
𝛼 . In Figure 15, we compare the full order compu-

tations of  [
𝛼(1)B, 𝜔, 𝜎∗, 𝜇r

]
and  [

𝛼(2)B, 𝜔, 𝜎∗, 𝜇r
]

with that obtained from (33). We observe that the translation and
scaling predicted by (33) is in excellent agreement with the full order model solution for  [

𝛼(2)B, 𝜔, 𝜎∗, 𝜇r
]
.
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(A) (B)

F I G U R E 15 Tetrahedron B(1)
𝛼 = 𝛼(1)B = 0.01B with 𝜇r = 1.5 and 𝜎∗ = 1 × 106 S/m, 𝛼 = 0.01 m and a second tetrahedron, which is the

same as the first except that B(2)
𝛼 = 𝛼(2)B = s𝛼(1)B = 0.015B: showing the translation and scaling predicted by (33) compared with the full order

model solutions for (A)𝜆i
( 0 [𝛼B, 𝜇r] + [𝛼B, 𝜔, 𝜎∗, 𝜇r]

)
and (B)𝜆i ( [𝛼B, 𝜔, 𝜎∗, 𝜇r])

8 CONCLUSIONS

An application of a ROM using PODP for the efficient computation of the spectral signature of the MPT has been stud-
ied in this article. The MPT coefficients follow from computing solutions to a vectorial transmission problem, which
has been approximated by a high order H (curl) conforming discretization using the NGSolve finite element package
and we called this the full order model. The offline stage of the ROM involves computing a small number representa-
tive full order solution snapshots at logarithmically spaced frequencies, then, in the online stage, the spectral signature
of the MPT is rapidly and accurately predicted to arbitrarily fine fidelity using PODP. An a posteriori error estimate
for the MPT coefficients obtained with PODP, with respect to those obtained with the full order model, has been
derived. This can be computed for a small additional computational cost during the online stage of the ROM allow-
ing the PODP prediction of the MPT coefficients to be certified and check their accuracy is within acceptable limits.
If desired, this error estimate could be used to drive an adaptive procedure for choosing new snapshots, in a simi-
lar manner to the presented approach in Reference 21. However, by choosing the frequency snapshots logarithmically,
accurate spectral signatures of the MPT were already obtained with small error bounds. In addition, simple scaling
results, which enable the MPT spectral signature to be easily computed from an existing set of coefficients under the
scaling of an object’s conductivity or object size, have been derived. This has been implemented in the parallelized
MPT-Calculator software tool, available at https://github.com/BAWilson94/MPT-Calculator. A series
of numerical examples have been presented to demonstrate the accuracy and efficiency of our approach for homoge-
neous and inhomogeneous conducting permeable objects. Future work involves applying the presented approach to
generate a dictionary of MPT spectral signatures for different objects, enabling larger dictionaries to be obtained in less
time and with increased accuracy, for the purpose of improved metallic object identification using a (machine learning)
classifier.
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