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The transverse and longitudinal gluon propagators in the Landau gauge are studied in the two-color
lattice QCD at nonzero quark chemical potential μq. Parametrization of the momentum dependence of the
propagators is provided for all values of chemical potential under study. We find that the longitudinal
propagator is infrared suppressed at nonzero μq with suppression increasing with increasing μq. The
transverse propagator dependence on μq was found to be opposite: it is enhanced at large μq. It is found,
respectively, that the electric screening mass is increasing while the magnetic screening mass is decreasing
with increasing μq. Nice agreement between the electric screening mass computed from the longitudinal
propagator and the Debye mass computed earlier from the singlet static quark-antiquark potential was
found. We discuss how the dependence of the propagators on the chemical potential correlates with the
respective dependence of the string tension. Additionally, we consider the difference between two
propagators as a function of the momentum and make interesting observations.
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I. INTRODUCTION

Understanding of the phase diagram of the strong
interactions is of high importance for experimental studies
of hadronic matter created in relativistic heavy ion colli-
sions. The most difficult for theoretical investigation part of
this phase diagram is at low temperature and high density.
Lattice QCD being the nonperturbative first principles
approach is very successful at zero baryon density but is
inapplicable at high baryon density due to the so-called sign

problem [1]. This makes important to study the theories
similar to QCD (QCD-like) but without the sign problem.
In particular, two popular QCD-like theories are QCD with
SUð2Þ gauge group [2] (to be called below QC2D) and
QCD with nonzero isospin chemical potential [3]. QCD
with the isospin chemical potential was intensively studied
both within lattice and other approaches (see, for instance,
[3–8]). In this paper we are going to focus on QC2D at
nonzero quark chemical potential μq. Although two-color
QCD differs from three-color QCD, lattice study of QC2D
at nonzero quark chemical potential can provide us with
important information about the properties of QCD with
nonzero baryon density.
QC2D was studied using various approaches: chiral

perturbation theory [2,9,10], Nambu-Jona-Lasinio model
[11–13], quark-meson-diquark model [14,15], random
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matrix theory [16,17], Dyson-Schwinger equations [18],
massive perturbation theory [19,20]. These studies sug-
gested the following phase structure of low-temperature
QC2D. There is a hadronic phase at μq < μc ¼ mπ=2,
Bose-Einstein condensation phase at μc < μq < μd, and the
phase with diquark condensation due to the Bardeen-
Cooper-Schrieffer mechanism at μq > μd.
It is worth to note that these approaches are also

applicable to QCD at high baryon density. It is thus
important to check them in the case of QC2D confronting
respective results with first principles lattice results.
Lattice studies of QC2D were undertaken with both

staggered fermions [21–28] for Nf ¼ 4 or, more recently,
Nf ¼ 2 and Wilson fermions [29–35] for Nf ¼ 2 mostly.
In general the lattice results supported the phase structure
described above.
The question of the confinement-deconfinement transi-

tion in QC2D at low temperature is still under debate. In our
recent paper [26] we studied Nf ¼ 2 lattice QC2D with
staggered fermionic action at high quark density and T ¼ 0
and demonstrated that the string tension σ decreases with
increasing μq and becomes compatible with zero for μq
above 850 MeV. The simulations were carried out at small
lattice spacing a ¼ 0.044 fm which was few times smaller
than in all other lattice studies. This allowed to reach the
domain of large quark chemical potentials avoiding strong
lattice artifacts. In a more recent paper [36], where Nf ¼ 2

lattice QC2Dwith Wilson fermionic action was studied, the
authors did not find the confinement-deconfinement tran-
sition at low temperature. It is worth to note that in [36]
rather coarse lattices were used with lattice spacings three
times or more larger than in our study [26]. Thus the range
of large μq where we found the transition to deconfinement
was reached in [36] at parameter aμq > 0.5 implying
possibility of strong lattice artifacts.
In this paper we concentrate on the study of the Landau

gauge gluon propagators in Nf ¼ 2 lattice QC2D at zero
temperature and varying quark chemical potential. We use
the same lattice action as in [26,27] and in fact the same set
of lattice configurations. Our goal is to study how nonzero
baryon density influences the gluon propagators in QC2D
theory. Some results of our study of the gluon propagators
were presented in [37]. Here we extend the range of μq
values, make more detailed comparison of two definitions
of the screening masses and consider in more detail the
momentum dependence of the gluon propagators. We also
study a new observable, the difference between the (color-)
electric and magnetic propagators and study its dependence
on the momentum and quark chemical potential.
The gluon propagators are among important quantities to

study, e.g., they play crucial role in the Dyson-Schwinger
equations approach. Landau gauge gluon propagators in
non-Abelian gauge theories at zero and nonzero temper-
ature were extensively studied in the infrared range of

momenta by various methods. We shall note lattice gauge
theory, Dyson-Schwinger equations, Gribov-Zwanziger
approach. At the same time the studies in the particular
case of nonzero quark chemical potential are restricted to a
few papers only. For the lattice QCD this is explained by
the sign problem mentioned above.
The gluon propagators in lattice QC2D at zero and

nonzero μq were studied for the first time in [30]. This study
was continued in [34,38,39]. The main conclusion of
Ref. [34] was that the gluon propagators practically do
not change for the range μq < 1.1 GeV. Our main con-
clusion is opposite. We found substantial influence of the
quark chemical potential on the gluon propagators starting
from rather low values (μq ∼ 300 MeV) and increasing
with increasing μq. Part of our results were presented in
[37]. The gluon propagators in QC2D at nonzero μq were
also studied in Ref. [18] with help of the Dyson-Schwinger
equations approach and in Ref. [20] using the massive
Yang-Mills theory approach at one-loop. The authors
emphasize that after the agreement with the lattice results
for the gluon propagators will be reached their methods
could be applied to real QCD at nonzero baryon density.
Thus to provide unbiased lattice results is very important.
The paper is organized as follows. In Sec. II we specify

details of the lattice setup to be used: lattice action,
definition of the propagators and details of the simulation.
In the next section we present the numerical results for the
momentum dependence of the propagators and our fits to
the data. Section IV is devoted to the screening masses
computation and study of their dependence on the chemical
potential. In Sec. V results for the difference between the
longitudinal and the transverse propagators are presented.
The last section is devoted to the discussion of the results
and to conclusions to be drawn.

II. SIMULATION DETAILS

We carry out our study using 324 lattices for a set of the
chemical potentials in the range aμq ∈ ð0; 0.5Þ. The tree
level improved Symanzik gauge action [40] and the stag-
gered fermion action with a diquark source term [21] were
used. The lattice configurations were generated at a small
value of the diquark source term coupling λ ¼ 0.00075
which was much smaller than the quark mass in lattice units
amq ¼ 0.0075. More details on the generation of these
lattice configurations can be found in Ref. [26]. The pion
mass for this ensemble is rather large,mπ=

ffiffiffi
σ

p ¼ 1.56ð8Þ. In
this paper we prefer to use the dimensionless quantities of
the typem2=σ using the value

ffiffiffi
σ

p
a ¼ 0.106ð1Þ [26] for this

purpose. In case we use the physical units the value for the
Sommer scale r0 ¼ 0.468ð4Þ fm [41] and relation r0=a ¼
10.6ð2Þ [26] are used to convert the lattice spacing a into
physical units.
To reach high quark densities without lattice artifacts one

needs sufficiently small lattice spacing to satisfy condition
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aμq ≪ 1. At the same time, to study the gluon propagators
in the infrared region it is necessary to employ large
physical volume. As a result of a compromise between
these two requirements our lattice size is rather moderate:
L ¼ 3.4=

ffiffiffi
σ

p ¼ 1.4 fm. This implies a potential problem of
large finite volume effects at small momenta. We come to
this problem again at the end of this section.
In the Introduction we briefly described the phase

diagram of dense QC2D at zero temperature. Here we
want to transcribe the boundaries of this phase diagram in
units of

ffiffiffi
σ

p
using results obtained in our previous papers

[25–27]. For small values of the chemical potential
μq < μc, where μc ¼ mπ=2 ≈ 0.78 ·

ffiffiffi
σ

p
, the system is in

the hadronic phase. In this phase the system exhibits
confinement and chiral symmetry is broken. At μq ¼ μc
there is a second order phase transition to a phase where
scalar diquarks form a Bose-Einstein condensate (BEC
phase). Enhancing the baryon density further, we proceed
to dense matter. At sufficiently high baryon density some
observables of the system under study can be determined
using Bardeen-Cooper-Schrieffer theory (BCS phase). In
particular, the baryon density is well described by the
density of noninteracting fermions which occupy a Fermi
sphere of radius rF ¼ μq. The diquark condensate, which
plays the role of a condensate of Cooper pairs, is propor-
tional to the Fermi surface.
In addition to the transition to the BCS phase we found

[26] the confinement-deconfinement transition at
μq=

ffiffiffi
σ

p
∼ 2.1. This transition manifests itself in a rise of

the Polyakov loop and vanishing of the string tension. It is
interesting that the transition to the BEC phase and the
confinement-deconfinement transition are located close to
each other as show our preliminary results. It was also
observed in [26] that above the deconfinement transition
the spatial string tension σs monotonously decreases and
vanishes at μq=

ffiffiffi
σ

p
∼ 4.2.

In our study of the gluon propagators we employ
the standard definition of the lattice gauge vector potential
Ax;μ [42]:

Ax;μ ¼
1

2iag
ðUxμ −U†

xμÞ≡ Aa
x;μ

σa
2
: ð1Þ

The lattice Landau gauge fixing condition is

ð∇BAÞx ≡ 1

a

X4
μ¼1

ðAx;μ − Ax−aμ̂;μÞ ¼ 0; ð2Þ

which is equivalent to finding an extremum of the gauge-
fixing functional

FUðωÞ ¼
1

4V

X
xμ

1

2
TrUω

xμ; ð3Þ

with respect to gauge transformations ωx. To fix the Landau
gauge we use the simulated annealing (SA) algorithm with
finalizing overrelaxation [43]. To estimate the Gribov copy
effect, we employ five gauge copies of each configuration;
however, the difference between the “best-copy” and
“worst-copy” values of each quantity under consideration
lies within statistical errors.
The gluon propagator Dab

μνðpÞ is defined as follows:

Dab
μνðpÞ ¼

1

Va4
hÃa

μðqÞÃb
νð−qÞi; ð4Þ

where

Ãb
μðqÞ ¼ a4

X
x

Ab
x;μ exp

�
iq

�
xþ μ̂a

2

��
; ð5Þ

qi ∈ ð−Ns=2; Ns=2�, q4 ∈ ð−Nt=2; Nt=2� and the physical
momenta pμ are defined by the relations api ¼
2 sin ðπqi=NsÞ, ap4 ¼ 2 sin ðπq4=NtÞ.
At nonzero μq theOð4Þ symmetry is broken and there are

two tensor structures for the gluon propagator [44]:

Dab
μνðpÞ ¼ δabðPT

μνðpÞDTðpÞ þ PL
μνðpÞDLðpÞÞ: ð6Þ

We consider the soft modes p4 ¼ 0 and use the nota-
tion DL;TðpÞ ¼ DL;Tð0; jp⃗jÞ.
Next we come back to discussion of the finite volume

effects. At sufficiently high density the chromoelectric
screening length determined as the inverse of the chromo-
electric mass is estimated in perturbation theory as follows:

lE ¼ 1

mE
∼

1

gðμqÞμq
Our results are in agreement with this prediction as will be
demonstrated in Sec. IV. Thus we expect that for suffi-
ciently large μq there should be no large finite volume
effects for the longitudinal propagator DLðpÞ.
The screening length associated with the transverse

propagator DTðpÞ is defined as the inverse of the chro-
momagnetic screening mass mM. Perturbation theory
predicts zero value of the magnetic screening mass at large
chemical potentials [45]; for this reason, the nonperturba-
tive estimates of mM are of particular interest.
Perturbation theory gives some evidence that, at suffi-

ciently large μq, the chromomagnetic screening mass goes
down, the respective screening length becomes large, and
to study the infrared behavior of DTðpÞ large lattices are
needed. It should be noticed that these arguments apply to
QCD at high baryon density as well.

III. MOMENTUM DEPENDENCE

In this section we consider the momentum dependence
of the gluon propagators for various values of μq. The
propagators are renormalized according to the MOM
scheme to satisfy the condition
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DL;Tðp ¼ κÞ ¼ 1=κ2 ð7Þ

at κ ¼ 12.6
ffiffiffi
σ

p
.

In Fig. 1(left) we present the momentum dependence for
the longitudinal propagator DLðpÞ for seven selected
values of μq. One can see that the infrared suppression
of the propagator is clearly increasing with increasing μq.
This infrared suppression hints on the increasing of the
electric screening mass. We will study the screening mass
in the next section. The increasing of the infrared sup-
pression of DLðpÞ with increasing μq is analogous to the
well-established behavior of DLðpÞ with increasing tem-
perature in the deconfinement phase of both gluodynamics
and QCD.
In Fig. 1 (right) the momentum dependence for the

transverse propagator DTðpÞ for the same values of μq is
shown. It is clear that DTðpÞ is much less sensitive to
changes of μq. We found decreasing of the respective
screening mass at large μq as will be discussed in the next
section. It is known that at a finite temperature the
propagator DTðpÞ has a clear maximum at the value of
momentum increasing with temperature. Our data give no
evidence for such maximum at a small momentum, how-
ever, we cannot exclude its existence.
We would like to provide an interpolation function for

our data. It was demonstrated many times [46–50] that the
infrared behavior of the gluon propagators at zero and finite
temperature can be well described by the fit function which
is the tree level prediction of the refined Gribov-Zwanziger
approach, [51]

DL;TðpÞ ¼ ZL;T
1þ δL;Tp2

p4 þ 2RL;Tp2 þM2
L;T

: ð8Þ

Our data for nonzero momentum start at rather large value
pmin=

ffiffiffi
σ

p ¼ 1.85ð2Þ. For this reason, the results of our fit
over the infrared region may suffer from finite volume
effects. Still, we believe that our results provide qualita-
tively correct dependence on μq, in particular for DL at
large μq, see relevant discussion in Sec. III.
We found [37] that the fit of the data based on a one-loop

perturbative expression works well for p > pcut, where

pcut ¼ 3.8
ffiffiffi
σ

p þ μq: ð9Þ

for DL and pcut ¼ 6.0
ffiffiffi
σ

p
for DT. We perform the fit (8)

over the domain p < pcut; extending the fitting range above
pcut results in a substantial decrease of the fit quality in
most cases.
The results for the fit parameters forDLðpÞ are presented

in Appendix, Table I. The fits for large μq were not
successful. Using the Table the practitioners of other
approaches to QC2D can compare their results with
ours [52].
In practice we fitted the ratio DL;TðpÞ=DL;Tðp0Þ with

p0=
ffiffiffi
σ

p ¼ 6.3. This allowed us to decrease uncertainties in
the fit parameters M2

L;T , RL;T , δL;T . Respectively, the
parameters ZL;T were not determined from the fitting
procedure but were recomputed (for renormalized propa-
gator) via the relation

 0.01
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FIG. 1. The propagators DL (left) and DT (right) as functions of p for selected values of μq. The curves show results of the fit to
Eq. (8).
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ZL;T ¼ DL;Tðp0Þ
p4
0 þ 2RL;Tp2

0 þM2
L;T

1þ δL;Tp2
0

: ð10Þ

Results of the fits for DLðpÞ are also shown in Fig. 1(left)
together with the lattice data. In the hadron phase, the
propagators change insignificantly with increasing μq. For
this reason, absence of a systematic dependence of the
parameters on μq at small μq is not a surprise. Beyond the
hadron phase, the parameters M2

L, RL, and 1=δL show a
similar behavior: they increase with μq.
In the case of the transverse propagator the fits were

successful for μq=
ffiffiffi
σ

p
< 3.0, see Table II. The fit para-

meters M2
T , RT and 1=δT again show qualitatively similar

dependence on μq. Their values are lower at the inter-
mediate values 1.0 < μq=

ffiffiffi
σ

p
< 1.8 than in the hadron

phase and then increase again at μq=
ffiffiffi
σ

p ≳ 1.8 to roughly
the same values (M2

T and RT) or to higher values (1=δT)
than in the hadron phase.
It is instructive to look also at the respective dressing

functions JL;TðpÞ defined as

JL;TðpÞ ¼ p2DL;TðpÞ ð11Þ

It is seen in Fig. 2 (left) that with increasing μq the
maximum of the longitudinal dressing function goes down
and shifts to the right, thus approaching dressing function
of a massive scalar particle. We note once more that this
dependence on μq is very similar to dependence on the
temperature, see, e.g., Ref. [53].
As can be seen in Fig. 2 (right) the transverse dressing

function shows instead infrared enhancement with increas-
ing μq. This is in agreement with the disappearance of the

magnetic field screening at extremely large quark chemical
potential predicted in [45].

IV. SCREENING MASSES

The widely used definition of the screening mass, see the
review [54] and references therein, is through the inverse of
the propagator at zero momentum

m2
E ¼ 1

DLð0Þ
; m2

M ¼ 1

DTð0Þ
: ð12Þ

It is clear, that the screening mass defined by Eq. (12)
depends on renormalization. Moreover, it is rather sensitive
to the finite volume effects. Loosely speaking, Eq. (12)
characterizes “the total amount” of the interaction since

1

m2
E;M

¼
Z

dx4dx⃗DL;Tðx4; x⃗Þ; ð13Þ

where DL;Tðx4; x⃗Þ are the propagators in the coordinate
representation.
We also consider another definition of the screening

mass using fitting of D−1
L;TðpÞ at low momenta by Taylor

expansion in p2:

D−1
L;TðpÞ ¼ Z−1ðm̃2

E;M þ p2 þ c4 · ðp2Þ2 þ � � �Þ: ð14Þ

This method was used in [55] in the studies of lattice QCD
at finite temperatures and we applied it to QC2D in [37].
In fact it would be more consistent to use the Yukawa type
fitting function

D−1
L;TðpÞ ¼ Z−1ðm̃2

E;M þ p2Þ ð15Þ

FIG. 2. Dressing functions JL and JT as functions of p at different values of μq. Empty symbols in the left panel are those beyond our
fitting range (9).
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as was done in [56–58] in the studies of lattice gluody-
namics at zero and finite temperatures. It was shown in [58]
that the Yukawa type function (15) provides a constant
value for m̃2

E over rather wide range of momenta in the
infrared. The reason we are using function (14) rather than
function (15) is that we have no enough data points in the
infrared region where the propagator can be described by
the function (15). Thus, to obtain a reasonable fit results we
have to use terms up to ðp2Þ2 for DLðpÞ and terms up to
ðp2Þ3 for DTðpÞ. Still, we hope that making use of the fit
function (14) provides reasonably good estimates of the
parameters in Eq. (15).
Let us note that the definition of m̃2

E;M can be related to
the definition of the correlation length:

m̃2
E;M ¼ ξ−2E;M; ð16Þ

where the correlation length ξE;M is conventionally defined
in terms of the correlation function (propagator in our case)
by the expression [59]

ξ2 ¼ 1

2

R
V dx4dx⃗ D̃ðx4; x⃗Þjx⃗j2R

V dx4dx⃗Dðx4; x⃗Þ

¼ −
1

2Dð0; 0⃗Þ
X3
i¼1

�
d
dpi

�
2
����
p⃗¼0

Dð0; p⃗Þ: ð17Þ

Even after the propagators are renormalized the defi-
nitions of the screening mass (16)–(17) and (12) differ in
general by a factor which may depend on the chemical
potential or temperature. Its temperature dependence was
found in SUð3Þ gluodynamics [58].
In Fig. 3 we show the electric (left panel) and magnetic

(right panel) masses defined according to these two
definitions. Our value for m̃E=

ffiffiffi
σ

p
at μq ¼ 0 is 1.50(4).

This value can be compared with the value 1.47(2) obtained
in SU(3) gluodynamics at zero temperature [57] by fitting
the inverse propagator to the form (15) at small momenta
[60] We also quote a value 1.48(5) obtained for a mass
dominating the small momentum behavior of a gluon
propagator in SUð2Þ lattice gluodynamics in [61].
One can see that mE and m̃E show qualitatively very

similar dependence on μq. They do not change much at
small μq corresponding to the hadron phase. Above
μq=

ffiffiffi
σ

p
≈ 0.5 they start to increase and continue to increase

at all μq values. This behavior is similar to increasing of
the electric screening mass with increasing temperature in
QCD at T > Tc as was demonstrated by lattice simulations
with definition (12) in [53,58,62] and with definition
(16)–(17) in [56,58]. No such increasing was reported in
Ref. [34].
In Ref. [37] we found that the ratio m̃E=mE can be well

approximated by a constant 1.6 for the range
0.9 < μq=

ffiffiffi
σ

p
< 3.0. Now we can confirm this conclusion

for larger μq included in this paper. The lower curve in this
figure shows fit of mE values by a polynomial of degree
two. The upper curve is obtained by multiplication with
factor 1.6. One can see that the upper curve agree well with
m̃E. The visible deviation is observed for the hadron phase
only as we reported in Ref. [37].
From Fig. 3 (right) one can see that the magnetic

screening masses mM and m̃M also have qualitatively
similar dependence on μq, although with one exception:
m̃M shows increasing in the range 1.0≲ μq=

ffiffiffi
σ

p ≲ 1.5.
while mM is not increasing. Further, Fig. 3 shows that for
μq=

ffiffiffi
σ

p ≳ 3.4 the values of both m̃M and mM are smaller
than their values at lower μq. Thus, we find an indication
that the magnetic screening length is increasing at large
chemical potential in opposite to the electric screening

FIG. 3. Electric (left panel) and magnetic (right panel) screening masses defined by Eqs. (16)–(17) (squares) and by Eq. (12) (circles)
as functions of μq. The curves in the left panel are described in the text.)
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length and in agreement with perturbation theory. No
similar decreasing of mM was observed in the high temper-
ature QCD or high temperature gluodynamics. Note, that
the range of μq=

ffiffiffi
σ

p ≳ 3.4 is roughly corresponding to the
range where the spatial string tension σs is zero, see Fig. 5
in Ref. [26].
Comparing with results of Ref. [34] we note that the

fluctuation ofmM around a constant value at smaller values
of μq was also observed in that paper. At large values of μq
no decreasing of mM was found in Ref. [34]. In opposite,
the results of Ref. [34] hint to increasing of mM at large μq.
In Ref. [27] we computed the Debye screening mass mD

from the singlet quark-antiquark potential at large distances
using the Coulomb gauge. It is expected that mD should
agree with the electric screening mass computed from the
gluon propagator. In Fig. 4 we compare m̃E and mD.
One can see the agreement within a standard deviation at
all values of μq in the deconfinement phase, i.e., at
μq=

ffiffiffi
σ

p
> 1.9. Thus, the values of the electric screening

mass computed using two different approaches in two
different gauges coincide in the deconfinement phase over a
wide range of μq values. We consider this as an important
result because it gives some evidence for gauge invariance
of the electric screening mass. Note also that the ratio
m̃E=μq is a slowly varying function of μq in a qualitative
agreement with perturbation theory.
We end this section with a remark on the reason for the

differences between our results for the screening masses
and results of Ref. [34]. We use a very small value of the
lattice spacing in our simulations. This allows us to reach
large physical values of μq keeping aμq small. In opposite,
the values of lattice spacing used in Ref. [34]) are at least

three times greater and this might cause large lattice
artifacts at large μq. Another source of the difference in
results is the difference in the fermion action discretization
used in this paper and in Ref. [34]). Thus results with the
Wilson fermions and small lattice spacing are highly
needed.

V. DL −DT AS AN INDICATOR OF TRANSITIONS

In the previous two sections we demonstrated that the
propagators DLðpÞ and DTðpÞ become more and more
different in the infrared region when the chemical potential
is increasing. At the same time they approach each other at
high momenta for fixed μq. In this section we study how
fast they approach each other with increasing momentum
and how the picture changes with increasing μq. Similar
comparison of these two propagators was made in Ref. [58]
in finite-temperature SUð3Þ gluodynamics where their ratio
was computed. It was demonstrated that DLðpÞ dominates
over DTðpÞ in the confinement phase at all momenta,
whereas DTðpÞ becomes dominating at high enough
momenta in the deconfinement phase.
We show below that, in the theory under study, the

difference between the transverse and longitudinal propa-
gators, ΔðpÞ ¼ DTðpÞ −DLðpÞ has interesting depend-
ence both on momentum and on chemical potential. The
important finding is that the soft mode ΔðpÞ; p4 ¼ 0which
is studied here shows clear exponential dependence on p,
which was observed recently also in SUð2Þ gluodynamics
at finite temperatures [63].
Our numerical results forΔðpÞ are presented in Fig. 5.We

showdata at μq=
ffiffiffi
σ

p ¼ 1.04, 2.17, and 4.24. The exponential
decreasing is well established starting from some momen-
tum p0 depending on μq. We found that p0 ¼ pmin for 1.0 ≤
μq=

ffiffiffi
σ

p
≤ 3.0 and p0=

ffiffiffi
σ

p
≈ 3.2 for higher μq.

Thus we arrive at a simple fit function to describe the
momentum dependence of ΔðpÞ at p > p0.

ΔðpÞ ¼ c expð−ν · pÞ; ð18Þ

As a check we compared the fit by function (18) with the fit
by function

ΔðpÞ ¼ d · pα ð19Þ

motivated by a powerlike behavior of both gluon propa-
gators when p → ∞.
We were not able to fit the data for μq=

ffiffiffi
σ

p
< 0.5 since in

this range of μq ΔðpÞ differs from zero only at two values of
the momentum. For 0.5 ≤ μq=

ffiffiffi
σ

p
≤ 1.0 ΔðpÞ does not

vanish at a very few momenta. For this reason, both fit
functions work well. At μq=

ffiffiffi
σ

p
> 1.0 only the fit function

(18) works. We show the results of our fits for this range of
μq in Fig. 5.

FIG. 4. Comparison of our results for the electric screening
mass m̃E (circles) and Debye mass mD (triangles) computed in
Ref. [27].
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The dependence of the parameters ν and c on the quark
chemical potential is shown in Fig. 6. The exponent ν is
linearly decreasing over the range 1.0 ≤ μq=

ffiffiffi
σ

p
≤ 4.2,

(i.e., beyond the hadron phase): νðμqÞ can be fitted by
the linear function

ν ¼ ν0 − ν1μq; ð20Þ

where ν0 ¼ 1.76ð3Þ= ffiffiffi
σ

p
, ν1 ¼ 0.26ð1Þ=σ, χ2

Nd:o:f
¼ 2.0

(p-value ¼ 0.04). The parameter c is increasing with μq
in the confinement phase (μq=

ffiffiffi
σ

p
< 1.8) while it mainly

decreases above the transition to the deconfinement phase.

Thus the new quantity ΔðpÞ considered here changes its
properties at both transition to the superfluid phase and
transition to the deconfinement phase. Further studies are
needed to confirm this observation.

VI. CONCLUSIONS

We presented results of our study of the longitudinal and
transverse propagators in the Landau gauge of the QC2D
with Nf ¼ 2 lattice staggered quark action at nonzero
quark chemical potential. In contrast to earlier studies of
the gluon propagators in this theory [30,34,38,39], we
employed lattices with a very small lattice spacing and thus
reached large physical values of μq keeping lattice values of
aμq small.
We checked the effects of Gribov copies and found no

such effects even in the infrared region. This is different
from the results of lattice gluodynamics. There are two
reasons for this difference. The Z2 center symmetry which
is a source of the Gribov copies in the gluodynamics with
periodic boundary conditions is broken in a theory with the
matter field. Another reason is that the physical volume of
our lattices is rather small.
Our main observations are as follows. We found that the

longitudinal propagator DLðpÞ is more and more sup-
pressed in the infrared with increasing μq. This is reflected
in particular in the increasing of the electric screening mass.
Such dependence of DLðpÞ on μq is analogous to its
dependence on the temperature at T > Tc. In opposite, we
found much weaker dependence on μq for the transverse
propagator DTðpÞ with indication of the infrared enhance-
ment at large μq.
We considered two definitions of the screening mass.

The definition Eq. (12) is widely used though it has
some drawbacks, in particular it depends on renormaliza-
tion. The other definition Eq. (14) is renormgroup invariant.

FIG. 5. Difference Δ ¼ DT −DL as function of p at few values
of μq.

FIG. 6. Parameters of the fit (18) as functions of μq.

BORNYAKOV, BRAGUTA, NIKOLAEV, and ROGALYOV PHYS. REV. D 102, 114511 (2020)

114511-8



We found that both electric masses increase with μq and
their ratio is a constant factor. A similar relation between
the magnetic masses m̃M and mM is not ruled out although
our results for m̃M have rather large statistical errors.
It is encouraging that our value m̃E=

ffiffiffi
σ

p ¼ 1.50ð4Þ
obtained at μq ¼ 0 is in a good agreement with respective
values found in SUð2Þ [61] and SUð3Þ [57] lattice
gluodynamics.
Another important result concerning the electric screen-

ing mass is a very good agreement between m̃E and the
Debye screening mass mD determined from the singlet
quark-anti-quark potential at large distances, see Fig. 4.
This result indicates gauge invariance of the electric
screening mass (14).
For the magnetic screening masses we found that they

show only a weak dependence on μq at μq ≲ 2.2
ffiffiffi
σ

p
with

clearly lower values at μq ≳ 3.4
ffiffiffi
σ

p
. As we know from our

previous study [26], this is the range where the spatial string
tension becomes zero. One can expect that in dense three-
color QCD the magnetic sector of the theory is also screened
due to the colored diquark Cooper pairs. However, the
mechanism responsible for this phenomenon in three-color
QCD obviously differs from that in the world with two
colors. This is because diquarks in two-color QCD are color
singlets. One possible explanation is that because of the
deconfinement in two-colorQCD there appear quark degrees
of freedom which screen the magnetic sector. However, to
find out if this is correct further study is required.

Both increasing of the electric screening mass and
decreasing of the magnetic screening mass at high quark
densities were not observed before in simulations with
Wilson fermions on coarse lattices [30,34,38,39].
We also studied the difference ΔðpÞ ¼ DLðpÞ −DTðpÞ

and found that it decreases exponentially withmomentum at
large p. The respective exponent is decreasing linearly with
μq thus indicating that asymmetry between the propagators
survives for higher momenta with increasing μq.
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TABLE I. Parameters of the fits of DLðpÞ to function (8).

μq=
ffiffiffi
σ

p
ML=σ RL=σ δLσ p-value χ2=Ndof ZL=σ

0.00 3.34(17) 2.12(48) 0.060(8) 0.68 0.67 16.9
0.28 2.90(13) 0.95(25) 0.082(9) 0.65 0.54 12.6
0.47 3.82(17) 0.79(24) 0.076(8) 0.66 0.53 13.2
0.66 3.80(30) 1.91(67) 0.064(13) 0.27 1.30 15.8
0.85 4.45(33) 1.89(61) 0.057(11) 0.46 0.86 17.0
0.94 4.80(71) 3.2(1.6) 0.050(19) 0.04 2.48 19.9
1.04 5.31(36) 2.95(74) 0.049(9) 0.65 0.67 20.0
1.23 8.0(1.2) 7.9(3.5) 0.023(11) 0.17 1.49 37.6
1.41 8.01(49) 5.6(1.2) 0.031(6) 0.95 0.35 29.4
1.79 10.1(1.4) 7.7(2.8) 0.024(10) 0.38 1.08 37.0
2.17 10.0(1.0) 6.4(1.9) 0.028(8) 0.11 1.58 31.8
2.36 12.8(1.1) 10.2(2.9) 0.019(5) 0.56 0.88 44.4
2.83 18.4(2.3) 13.3(3.9) 0.017(6) 0.49 0.95 53.0
3.77 22.6(4.0) 14.5(4.7) 0.022(10) 0.63 0.82 45.8
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APPENDIX: FIT RESULTS

In this Appendix, we give the parametersML;T , RL;T , and
δL;T determined from the fits of the function (8) to our
numerical data for the longitudinal (Table I) and transverse

(Table II) propagators for each individual value of μq
under consideration. The normalization factors ZL;T and
the parameters characterizing goodness of fit are also
shown.
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