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Abstract
Piezoelectric vibration energy harvesters have demonstrated the potential for sustainable energy generation from
diverse ambient sources in the context of low-powered micro-scale systems. However, challenges remain concerning
harvesting more power from low-frequency input excitations and broadband random excitations. To address this, here
we propose a purely mechanical approach by employing inertial amplifiers with cantilever piezoelectric vibration energy
harvesters. The proposed mechanism can achieve inertial amplification amounting to orders of magnitude under certain
conditions. Harmonic, as well as broadband random excitations, are considered. Two types of harvesting circuits, namely,
without and with an inductor, have been employed. We explicitly demonstrate how different parameters describing the
inertial amplifiers should be optimally tuned to maximise harvested power under different types of excitations and circuit
configurations. It is possible to harvest five times more power at a 50% lower frequency when the ambient excitation is
harmonic. Under random broadband ambient excitations, it is possible to harvest 10 times more power with optimally
selected parameters.

Keywords
Vibration energy harvesting, inertial amplifiers, optimisation, random excitation, cantilever harvesters

1. Introduction

Vibrating piezoelectric devices to harvest energy from
ambient sources have received significant attention over
the past decade. A key motivation behind vibration
energy harvesters is to employ them for low-powered
devices in remote locations where changing batteries
can be difficult. Examples include wireless sensors for
human and structural health monitoring, portable and
small electronics (Jang et al., 2010; Karami and Inman,
2012) and wildlife tracking (Wu et al., 2014). According
to a leading market research (Credence Research,
2018), vibration energy harvesting systems market
reached $396.68 million in 2017 with a predicted pro-
mising compound annual growth rate (CAGR) of
9.8% during the forecast period from 2018 to 2026.
The rise of Internet of Things (IoT) applications and
energy harvesting powered sensors for structural heath
monitoring and digital twin systems (Arup, 2019) are
behind this predicted growth in the market. An energy
harvesting device can be specifically tailored to the kind
of ambient vibration available. The harvester must be
designed in a way that maximises the harvested energy
from external excitations. When the ambient excitation
is harmonic in nature with a known predominant

frequency content, it is possible to tune an energy har-
vester to maximise the harvested power (duToit et al.,
2005; Ng and Liao, 2005; Roundy, 2005; Renno et al.,
2009). However, there are many practical situations
where ambient excitations cannot be guaranteed to be a
harmonic excitation with a known frequency. In such
cases, the excitation should be considered as random
excitations. (Adhikari et al., 2009, 2016; Halvorsen,
2008; Lefeuvre et al., 2007; Litak et al., 2010) have pro-
posed methods to optimally design vibration energy
harvesters subjected to broadband random excitations.

Although several effective approaches have been
proposed to maximise harvested power, a fundamental
limitation of energy harvesters exploiting linear vibra-
tion is that the harvested power reduce significantly
when the resonance frequency of a harvester is far from
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the driving frequency (Ali et al., 2010). The frequency
content of the majority of ambient vibration sources
(e.g building/bridge vibration, human waling and wind
excitations) tends to be lower compared to the reso-
nance frequency of the harvesters, which are generally
smaller in size due to practical limitations. There are
two broad ways to address this issue of discrepancy
between the excitation frequency and the resonance fre-
quency of the energy harvester. The first approach is to
reduce the effective stiffness while keeping the mass
unchanged so that the resonance frequency of the
energy harvester becomes lower. The second approach
is to increase the effective mass while keeping the stiff-
ness unchanged, resulting in a reduced resonance fre-
quency. Both approaches have advantages and
disadvantages and several methods and concepts have
been proposed to numerically investigate and practi-
cally realise the underlying ideas (Daqaq et al., 2014;
Lan and Qin, 2017). There are also other approaches
such as frequency up-conversion methods. We refer to
works by Abedini and Wang (2019) and Wu et al.
(2019) on recent developments and applications of fre-
quency up-conversion techniques in piezoelectric vibra-
tion energy harvesting.

When the effective stiffness of a vibration energy
harvester is reduced, large deformations are expected to
occur (Friswell et al., 2012). In such cases, linear equa-
tions to describe the equations of motion are no longer
valid and consequently, a nonlinear set of equations
must be used. Nonlinear energy harvesters have been
proposed and shown to have superior power generation
at lower frequencies (Barton et al., 2010; Erturk et al.,
2009; Ferrari et al., 2010; Friswell et al., 2012; Harne
and Wang, 2013; Masana and Daqaq, 2011; Quinn
et al., 2011; Ramlan et al., 2010). Nonlinear vibration
energy harvesters have been optimally designed for har-
monic and random excitations. The simplest equation
of motion with a double-well potential is the well
known Duffing oscillator, which has been extensively
studied, particularly for sinusoidal excitation. The
dynamics are often complex, sometimes with coexisting
periodic solutions and sometimes exhibiting a chaotic
response. The Duffing oscillator model has been used
for many energy-harvesting simulations, with the addi-
tion of electromechanical coupling for the harvesting
circuit. One popular implementation of such a potential
is a piezomagnetoelastic system based on the magnetoe-
lastic structure that was first investigated by Moon and
Holmes (1979) as a mechanical structure that exhibits
strange attractor motions. Several innovative concep-
tual designs for nonlinear energy harvesters have been
proposed and demonstrated.

Despite extensive research on energy harvesters
exploiting nonlinear dynamics, practical implementa-
tions and device fabrications remain challenging. This
is primarily due to the fact that physical realisation of
vibration energy harvesters with a precise design

nonlinearity is often not reliable. A small change in the
system parameter values or forces can lead to a very
different outcome compared to predicted perfor-
mances. Linear vibration energy harvesters on the
other hand (Ali et al., 2010) behave in a predictable
manner and easer to realise in practice. This is one of
the primary reason for considering linear energy har-
vesters in this paper. Piezoelectric linear vibration
energy harvesters generally formulated as cantilever
beams with a tip mass (Erturk and Inman, 2011) to
tune the natural frequency to the excitation frequency.
However, a key disadvantage is that increasing the
mass physically to lower the resonance frequency is
often practically not feasible. This is due to limitations
in the available space and allowable weight of the har-
vesting device. Additionally, physically higher mass can
lead to significant static strain which can be beyond the
material limits of the underlying cantilever structure. A
different and innovative route to increase the effective
mass without actually increasing the physical mass the
use of an inerter (Smith, 2002). Initial works on inerters
involved noise and vibration reduction in automobiles.
Later inerters have been used for vibration absorption
(Di Matteo et al., 2019; Giaralis and Petrini, 2017;
Lazar et al., 2014, 2016; Marian and Giaralis, 2014).
More recently (Marian and Giaralis, 2017) inerters
have been used for vibration energy harvesting. Similar
to the principle of employing a dynamic magnifier
(Aladwani et al., 2012; Aldraihem and Baz, 2011), the
use of inerters leads to a linear two degree of freedom
model for the vibration energy harvester. Following a
different approach, Moshrefi-Torbati et al. (2017) pro-
posed a novel ball screw device concept to have an
adaptive inertia for vibration energy harvesting. The
aim of this paper is to propose an approach where iner-
tial enhancement is possible within the dominant single
degree of freedom mode of a cantilever vibration
energy harvester. As the first mode of vibration of a
cantilever has the maximum energy, it is expected that
keeping the first mode of the cantilever as the predomi-
nant mode will lead to an enhanced energy capture
from the underlying dynamics.

It is conventional to realise the classical inerter
(Smith, 2002) using a flywheel-gear mechanism. A dif-
ferent and simple route to inertial enhancement in the
use of an inertial amplification mechanism (Cheng
et al., 2020). This is achieved through a link-bar
mechanism loaded with symmetric masses and a spring.
Like the classical inerter, an inertial amplifier also deli-
vers an increased effective mass without increasing the
physical mass. Motivated by this, we investigate the
possibility of low-frequency energy harvesting within
the scope of linear vibration with inertial amplifiers.
The main idea is to directly employ an inertial amplifier
with a conventional piezoelectric cantilever based
energy harvester. The inertial amplifier increases the
effective mass of the harvester without physically
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adding significantly extra mass and also keeps the
dynamics within the first mode of vibration. This, in
turn, results in higher harvested power at a lower fre-
quency. Harmonic and broadband base excitations
have been considered to demonstrate the proposed con-
cept. Two different types of energy harvesting circuits,
namely circuits without an inductor and circuits with
an inductor have been considered. Optimal values of
the parameters which maximise the harvested power at
a lower frequency have been obtained. Results are pre-
sented in non-dimensional forms for generality and
physical insights.

2. Inertial amplification

Inertial amplifiers are mechanisms which augment the
effective inertia of a system without proportionally
increasing its actual mass. Inertial amplifiers have been
used for vibration absorption and attenuation (Acar
and Yilmaz, 2013; Cheng et al., 2020; Chowdhury
et al., 2021) and low-frequency band-gaps (Acar and
Yilmaz, 2013; Frandsen et al., 2016; Li and Li, 2018;
Orta and Yilmaz, 2019; Taniker and Yilmaz, 2017;
Yilmaz et al., 2007). It is well evidenced that the
amount of harvested power and bandwidth signifi-
cantly depends on the mass of the resonators and heavy
resonators are the key towards the low-frequency and
wideband harvester. However, attaching a larger mass
is not practical in many cases due to the increased size
of the devices, higher cost and lower fatigue perfor-
mances among many possible reasons. To overcome
this, in this paper we employ inertial amplifiers which
can magnify the dynamic inertia of the system without
increasing its static mass.

Schematic diagrams of a cantilever beam based
energy harvesters with inertial amplifiers are shown in
Figure 1. There are two types of circuits which are com-
monly used in practice. They include circuits without
and with an inductor and are depicted in Figure 1(a)
and (b). A bimorph configuration (Erturk and Inman,
2011) for the piezoelectric patch is shown in the figure
as an example. The analysis presented here is equally
applicable an unimorph configuration should it be nec-
essary. A tip mass (m) is utilised to enhance the strain
in the piezoelectric material and to increase the division
between the first and second natural frequencies. Note
that the tip mass is employed in addition to the inertial
amplifier mass. The inertial amplifier is obtained by
attaching two small masses (ma) with rigid (assumed to
be mass-less) rods which are pivoted on the main mass
and to the ground so that they are free to rotate in a
frictionless manner. The rods are placed at angle f with
respect to the vertical line. Additionally, a spring (ka) is
attached from the main mass to the ground.

The key to understanding the physics of inertial
amplification lies in the internal forces within the rigid

link bars shown in Figure 1. Assume that a vertical
upwards motion y(t) of the primary mass m of the har-
vester results in inward horizontal motions u(t) of the
inertial amplifier masses ma. As the mass of the both
sides as well as the lengths of the link bars are the same,
the motion of the masses ma is symmetric. Considering
the kinematic relationship of the rigid bars in Figure 1
one deduce that y cosf= u sinf or u= y cotf. The
acceleration of the inertial amplifier masses cause
forces opposite to the direction of motion as per
Newtons law of motion. Assuming the internal force
within the rigid links as F, balancing the force arising
from the motion of the amplifier mass we have
2F sinf=ma€u. Using the kinetic relationship this
becomes 2F sinf=ma cotf€y. Considering the equili-
brium of only the inertia forces for the primary mass, it
can be observed that a component of the internal force
in the link bars must act in the direction of its own iner-
tia force. The total inertial force is therefore the sum of
the inertia forcing arising from the acceleration of the
mass m and the component of the force F arising from
the two attached link bars, that is m€y+ 2F cosf.
Eliminating the internal force using the kinematic rela-
tionship, the total effective mass mT can be expressed
as

mT

m
= 1+ gm cot2 f=Gm ð1Þ

where the mass ratio gm is given by

gm =
ma

m
ð2Þ

The quantity Gm in equation (1) is defines as the mass
factor of the inertial amplifier. This quantifies the over-
all inertial amplification of the system and depends on
gm and f. For certain selection of ma and f it can be
observed that the total effective mass can be signifi-
cantly more than the original mass m. This amplifica-
tion in the inertia has the potential of harvesting more
vibration energy at a lower excitation frequency. To
understand the inertial amplification, in Figure 2 the
inertial amplification (normalised with mass m) as given
by equation (1) is shown.

Due to the huge variation in the inertial amplifica-
tion when the amplifier angle f is varied from 18 to 608,
the log-scale is used in the vertical axis of Figure 2(a).
Huge amplification can be observed for smaller values
of the amplifier angle f. Even when the mass ratio gm

is less than 0.5, several orders of inertial amplification
is possible with smaller amplifier angles. In Figure 2(b)
the amplifier angle f is varied from 108 to 608 and a lin-
ear scale is used in the vertical axis. Four different val-
ues of the mass ratio gm, namely, 0.1, 0.2, 0.5 and 1.0
have been used for illustrative purposes. We observe
significant inertial amplification for smaller values of f.
As expected, a higher mass ratio leads to increasing
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amplification. The combination of the amplifier angle
and mass ratio can be selected to achieve any desired
inertial amplification for energy harvesting.

From Figure 2(a) we observe that the inertial ampli-
fication increases exponentially when the amplifier
angle f is close to zero. The two key assumptions made
in the above analysis are (1) the hinge movements
between the four link-bars, the three masses, the ground
and the spring are frictionless, and (2) the masses of the
four link-bars are negligible. When the amplifier angle
f becomes close to zero, the mechanism becomes very
narrow and even very small friction in the hinges will
prevent it from operating properly. The friction in the
hinges will result in energy loss and in turn will increase

the overall damping of the system. Such additional
damping could reduce the efficiency of energy harvest-
ing. Keeping this in mind, in our discussions we choose
f.108. This will ensure that the assumption (1) is appli-
cable to our model. In the other extreme case, when the
amplifier angle f is large, say f! 908, the mechanism
becomes very wide. In this case, significantly stronger
and heavier link-bars are needed to support the weight
of the amplifier masses. This will invalidate the assump-
tion (2). For this reason, in the following discussions,
the upper limit of the amplifier angle is set to f\608.
In Figure 2(a) value of the mass ratio gm up to 4 is used,
while in Figure 2(b), the maximum value of gm used is
1. If gm.1, the each of the inertial amplifier mass is

(a) (b)

Figure 1. Cantilever bimorph piezoelectric energy harvesters with inertial amplifiers. Two different configurations for the
harvesting circuits are shown in the figure, namely, without and with an inductor are shown in subfigures (a) and (b) respectively. The
tip mass m is the primary mass of the harvester, while two small masses ma contribute towards the inertial amplification. The
amplifier angle is f and the amplifier stiffness is ka. Rl is the load resistance and L is the inductor of the harvesting circuit. The source
of the ambient energy is through the base-excitation yb(t). The displacement of the primary mass and the voltage generated due to
the strain in the piezoelectric layers are denoted by y(t) and v(t) respectively. The horizontal velocity of the amplifier masses are
given by uðtÞ ¼ y(t) cos f= sin f. (a) Harvesting circuit without an inductor and (b) harvesting circuit with an inductor.

Figure 2. Inertial amplification as a function of the amplifier angle f and mass ratio gm: (a) the variation is plotted in the log scale
when the mass ratio is varied from 0 to 4 while the angle f is varied from 18 to 608. Several order of magnitude of inertial
amplification can be observed for small values of f. (b) The variation of inertial amplification with respect to the amplifier angle f

varied from 18 to 608 for four different values of the mass ratio gm. Inertial amplification remains almost constant (close to 1) with
respect to the mass ratio gm when the amplifier angle f is more than about 458. However, for smaller amplifier angles f / 308, the
inertial amplification becomes prominent for higher gm. Inertial amplification becomes 15 times when f is close to 108 and the mass
ratio is only 0.5. (a) Variation of inertial amplification in the log scale and (b) inertial amplification as a function of the amplifier angle f.
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more than the tip mass of the energy harvester. In this
case heavier link-bars are needed to support the static
weight of the amplifier masses even when the amplifier
angle f is small. This may not satisfy the assumption
(2) above. Therefore, we only consider the case when
the inertial amplifier mass is less than the tip mass of
the harvester. Summarising, to obtain optimal para-
meters of the inertial amplifier, we impose the restric-
tion of 108\f\608 and gm\1 in this paper to make
our predictions consistent with the assumptions made.

Here we adopt a simplified mathematical
approach for the compliant mechanism in Figure 1.
We refer to Ling et al. (2016) for a detailed analysis
of piezoelectric compliant mechanisms. The defor-
mation of the tip of the cantilever is assumed to be
small for the linear theory of structural dynamics to
be applicable. The motion of the dynamic systems in
Figure 1 is also considered to be in the 2D plane
only. For practical implementation of the inertial
amplifiers, however, the complete motion in 3D
should be taken into account. Any lack of rigidity in
the out-of-plane direction may cause unwanted sway
and rocking vibrations, which have not been mod-
elled in the present study. Therefore, to realise the
devices as formulated here, it should be ensured that
the oscillatory motion takes place in the plane as
indicated in Figure 1. This can be practically
achieved in a few ways, such as (a) making the
hinges stiff in the out-of-plane direction or (b) using
roller type transverse supports to ensure the motion
is constrained in the 2D plane. The analytical
approach proposed in this paper is, however, inde-
pendent of such detailed design choices.

So far our discussion only involved the inertial
properties of the harvester. The spring ka in Figure 1
also plays a crucial role in delivering the harvested
power. We define the stiffness factor Gk , which quan-
tifies the overall equivalent stiffness of the dynamic
system, as

Gk = 1+ gk where gk =
ka

k
ð3Þ

Here gk is the stiffness ratio describing the stiffness of
the spring ka relative to the stiffness of the cantilever
beam in the first mode of vibration. The spring ka

should be strong enough to support the static weight of
the three masses so that the beam is not subjected to
too much static strain. However, too much spring stiff-
ness will result in small dynamic deformation and will
diminish harvested power. The view taken in this paper
is that the stiffness ratio is a variable parameter and
should be optimally designed based on the other para-
meters of the model. In the next sections, the impact of
the stiffness ratio is assessed and methods to obtain it
subjected to various optimality conditions have been
proposed.

3. Analytical background

3.1. Equation of motion for piezoelectric cantilevers

Due to the small thickness to length ratio, Euler-
Bernoulli beam theory is generally used to model bend-
ing vibration of energy harvesting cantilevers (Erturk
and Inman, 2011) shown in Figure 1. The equation of
motion of free-vibration of a damped cantilever mod-
elled (see for Banks and Inman, 1991) using Euler-
Bernoulli beam theory can be expressed as

EI
∂4U (x, t)

∂x4
+ bc1

∂5U (x, t)

∂x4∂t
+ rhA

∂2U (x, t)

∂t2

+ bc2

∂U (x, t)

∂t
= 0

ð4Þ

In the above equation x is the coordinate along the
length of the beam, t is the time, E is the Young’s mod-
ulus, I is the second-moment of the cross-section, A is
the cross-section area, rh is the density of the material
and U (x, t) is the transverse displacement. The length
of the beam is assumed to be L. Additionally bc1 is the
strain-rate-dependent damping coefficient, bc2 is the
velocity-dependent viscous damping coefficient. The
strain-rate-dependent damping can be used to model
inherent damping property of the material of the canti-
lever beam. The velocity-dependent viscous damping
can be used to model damping due to external factors.
The undamped natural frequencies (Hz) of the cantile-
ver beam in (4) can be expressed as

fj =
l2

j

2p

ffiffiffiffiffiffiffiffiffiffiffiffi
EI

rhAL4

s
, j= 1, 2, 3, � � � ð5Þ

where lj needs to be obtained by (Blevins, 1984)
solving the following transcendental equation
cosl cosh l+ 1= 0. Solving this equation, the values
of lj can be obtained as 1.8751, 4.69409, 7.8539 and
10.99557, for j= 1, 2, 3 and 4. For larger values of j, in
general we have lj =(2j� 1)p=2. The vibration mode
shape corresponding to the j-th natural frequency can
be expressed as

cj(j)= coshljj � cosljj
� �
� sinhlj � sinlj

coshlj + coslj

� �
sinhljj � sinljj
� � ð6Þ

where j = x
L

is the normalised coordinate along the
length of the cantilever. For energy harvesting applica-
tions we are primarily interested in the first few modes
of vibration only.

3.2. Equivalent single-degree-of-freedom model

The equation of motion of the beam in (4) is a partial
differential equation. Considering a steady-state har-
monic motion with frequency v we have
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U (x, t)= u(x) exp½ivt�, where i=
ffiffiffiffiffiffiffi
�1
p

. Substituting this
in the beam equation (4) we have

EI
d4u(x)

dx4
+ivbc1

d4u(x)

dx4
� rhAv2u(x)+ ivbc2u(x)= 0

ð7Þ

Following the damping convention in dynamic analysis
as in (Meirovitch, 1997), we consider stiffness and mass
proportional damping. Therefore, we express the
damping constants as bc1 =ac(EI) and bc2 =bc(rA),
where ac and bc are stiffness and mass proportional
damping factors. Assuming a unimodal solution, the
dynamic response of the beam can be expressed as
U (x, t)= zj(t)cj(x), j= 1, 2, 3, � � �. Substituting this
assumed motion into the equation of motion (4), multi-
plying by cj(x) and integrating by parts over the length
one has

EIzj(t)

ðL

0

c
002

j (x)dx+acEI _zj(t)

ðL

0

c
002

j (x)dx

+bcrhA_zj(t)

ðL

0

c2
j (x)dx+ rhA€zj(t)

ðL

0

c2
j (x)dx= 0

ð8Þ

Using the equivalent mass, damping and stiffness, this
equation can be rewritten as

meqj
€zj(t)+ ceqj

_zj(t)+ keqj
zj(t)= 0 ð9Þ

where the equivalent mass and stiffness terms are given
by meqj

= rhA
Ð L

0
c2

j (x)dx and keqj
=EI

Ð L

0
c
002

j (x)dx. The
equivalent damping is given by ceqj

=akeqj
+bmeqj

.
When there is a point mass of M at the tip of the
cantilever, then the effective mass becomes
meqj

= rhALI1j
+Mc2

j (1). The equivalent single degree
of freedom model given by equation (9) is used in the
paper.

3.3. Derivation of the electromechanical coupling

Piezoelectric layers added to a beam is in a bimorph
configuration as shown in Figure 1. The moment
about the beam neutral axis produced by a voltage V (t)
across the piezoelectric layers may be written as
Mp(x, t)= gpV (t). The constant gp depends on the geo-
metry, configuration and piezoelectric device and V (t)
is the time-dependent voltage. For a bimorph with
piezoelectric layers in the 31 configuration, with thick-
ness hp, width bp and connected in parallel
gp =Ed31bpðh+ hpÞ. Here h is the thickness of the
beam and d31 is the piezoelectric constant. We assume
a monolithic piezoceramic actuator perfectly bonded to
the beam.

The work done by the piezoelectric patches in
moving or extracting the electrical charge is

Wp =
Ð Lp

0
Mp(x, t)kp(x)dx, where Lp is the active length

of the piezoelectric material, which is assumed to be
attached at the clamped end of the cantilever beam.
The quantity kp(x) is the curvature of the beam and this

is approximately expressed by the second-derivative of
the displacement. Using the approximation for kp we

have Wp = uV , where the coupling coefficient

u= gp

Ð Lp

0
∂2c(x)
∂x2 dx. Considering the change to the non-

dimensional spacial variable j and noting that we have
the second-order derivative within an integral, the

above equation can be simplified as u=
gp

L
c0(jp),

where jp = Lp=L is the fraction of the length of the

piezo patch.

4. Harvested power due to harmonic base
excitations

Harmonic excitation is the most common form of
ambient dynamic excitation available to vibration
energy harvesters. This can come from, for example,
systems with rotating machines such as wind turbines,
automobiles, aircraft, generators and engines. If the
excitation source is not strictly harmonic, mathemati-
cally it can be expressed as sums of harmonic excitation
through a spectral decomposition. Therefore, the
consideration or harmonic excitation is a necessary step
to quantify the harvested power through the proposed
inertial amplifier based energy harvesters. Below
we consider two common types of circuits shown in
Figure 1. They include circuits without and with an
inductor respectively.

4.1. Circuit without an inductor

A schematic diagram of a cantilever piezoelectric
energy harvester with an inertial amplifier having a cir-
cuit without an inductor is shown in Figure 1(a). The
coupled electromechanical behaviour of the energy har-
vester (Erturk and Inman, 2011) with base excitation
can be expressed (see, for example (Adhikari et al.,
2009; duToit and Wardle, 2007)) by linear ordinary dif-
ferential equations as

mT€y(t)+ c _y(t)+ k + kað Þy(t)� uv(t)= � mT€yb(t) ð10Þ

Cp _v(t)+
1

Rl

v(t)+ u _y(t)= 0 ð11Þ

Here mT is the total effective mass, y(t) is the relative
motion of the system with respect to the base excitation
yb(t), v(t) is the voltage, Rl is the load resistance, Cp is
the capacitance of the piezoelectric layer, t is the time
and u is the electromechanical coupling. Transforming
the above equations into the frequency domain and
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normalising, the output voltage is expressed in the fre-
quency domain as

V (iO)= � iO
au

Cp

O2GmYb

D1(iO)
ð12Þ

Here base excitation amplitude is denoted by Yb and
D1(iO) is the determinant of the coefficient matrix asso-
ciated with the Fourier transform of the coupled differ-
ential equations (10) and (11). It can be shown that
D1(iO) is a cubic polynomial in (iO) as

D1(iO)=Gm iOð Þ3a+ 2za+Gmð Þ iOð Þ2

+ (k2 +Gk)a+ 2z
� �

iOð Þ+Gk

ð13Þ

We define the normalised frequency O as the ratio
between the driving frequency and the natural fre-
quency of the harvester without the inertial amplifier as
O= v

vn
. The natural frequency of the harvester (vn),

the damping factor (z), the time constant (a) and the
non-dimensional electromechanical coupling coefficient
(k) are defined as

vn =

ffiffiffiffi
k

m

r
, z =

c

2mvn

,a=vnCpRl and k2 =
u2

kCp

ð14Þ

The harvested power can be obtained from the vol-
tage as P(O)= V 2(O)

Rl
. It is convenient to expressed the

harvested power in a non-dimensional form. This can
be achieved in various ways. The voltage at O= 1 when
the damping is zero and without the inertial amplifier is
considered to be used for the normalisation, that is
V0 =V (iO)jfO= 1, z = 0, gm = 0, gk = 0g= � uYb

Cpk2. Using this,
we obtain the non-dimensional voltage response asbV (iO)=V (iO)=V0. The non-dimensional power is now
obtain from

bP(O)= P(O)
P0

=
V (iO)

V0

���� ����2 = bV (iO)
��� ���2 = ak2 iO

3Gm

D1(iO)

���� ����2
ð15Þ

For the case of harmonic base excitation, a key interest
is the variation of the harvested power as a function
of the driving frequency of the base excitation. We
consider an application example to illustrate the use of
the analytical expressions derived here. Numerical
values used (taken from Ali et al., 2010) are

m= 9:12 3 10�3 kg, k = 4:1 3 103 N/m, c= 0:135 Ns/

m, Rl = 3 3 104 Ohm, Cp = 4:3 3 10�8 F and

u= � 4:57 3 10�3 N/V. Using these we obtain

vn = 670:49 rad/s, z = 0:011, a= 0:8649, k2 = 0:1185.
The harvested power, which has been converted to a
non-dimensional form in equation (15), is plotted
against the non-dimensional frequency in Figure 3.

Parameters considered for the inertial amplifier are
gm = 0:25, gk = 1, f= 108 and the parameters for the
energy harvester are z = 0:011, a= 0:8649 and

k2 = 0:1185. Powers obtained from the classical har-
vester without an inertial amplifier and the proposed
harvester with an inertial amplifier are shown for com-
parison. Our results clearly demonstrate higher har-
vested power at a lower frequency compared to the
classical case without any inertial amplifier. Power
obtained from the proposed harvester is three times
more than the classical harvester at a 50% lower fre-
quency. The power spectrum has a relatively narrower
bandwidth. This result demonstrates the fundamental
advantage of employing an inertial amplifier in the con-
text of vibration energy harvesting. As the harvested
power is significantly depended on the parameters of
the inertial amplifier, we aim to obtain optimal para-
meters to maximise the power output of the energy har-
vester. The first step to maximise the harvested power
is to determine at which frequency value the maxima of
the power occurs. To obtain the frequency at which the
harvested power peaks we set derivative of the normal-
ised power given in equation (15) with respect to the

normalised frequency-square to zero as ∂bP(O)
∂O2 = 0. After

some algebraic simplifications and assuming that
damping is small, we obtain the optimal frequency
point as

Figure 3. The (non-dimensional) harvested power from a
harvester without an inductor as a function of the non-
dimensional frequency of the base excitation for damping factor
z = 0:011, the time constant a= 0:8649 and electromechanical
coupling coefficient k2 = 0:1185. The values of the mass ratio
and the stiffness ratio are assumed to be gm = 0:25 and gk = 1.
The amplifier angle is considered as f= 108. Powers obtained
from the classical harvester without an inertial amplifier and the
proposed harvester with an inertial amplifier are shown for
comparison. Power obtained from the proposed harvester is
three times more than the classical harvester at a 50% lower
frequency.
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Omax’

ffiffiffiffiffiffi
Gk

Gm

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+

a2k2

Gm +a2 Gk � 2k2ð Þ

s
ð16Þ

The (non-dimensional) frequency for the maximum
harvested power is a function of the inertial amplifier
parameters, the time constant and the dimensionless
electromechanical coupling coefficient. For a classical
vibration energy harvester without an inertial amplifier,
the harvested power peaks about O’1. From equation
(16) we can observe that if gm and f are selected such
that Gm in equation (1) is large, Omax can be signifi-
cantly less than 1. This is a key advantage of the pro-
posed internal amplifier based energy harvester
compared to the classical vibration energy harvester.

To gain further understanding on how the para-
meters of the inertial amplifier impact the frequency for
the maximum power, in Figure 4 we show the contour
lines of Omax as functions of the stiffness ratio gk and
inertial amplifier angle f. It is assumed that the damp-
ing factor z = 0:011, the time constant a= 0:8649, the
electromechanical coupling coefficient k2 = 0:1185 and
the mass ratio gm = 0:25. The parameter values used
are representative parameter values. The results will be
quantitatively different if other sets of parameters are
to be used. However, we have observed that qualita-
tively they remain similar to what reported here

(additional data is provided in the Supplemental
Information). In Figure 4 we show the contour line of
the frequency for the maximum power for the classical
energy harvester without the inertial amplifier in the
same plot. This is close to 1 and therefore any contour
lines below this value show the parameter combinations
for which maximum power occurs below the classical
case. A key observation is that a smaller value of the
inertial amplifier angle f (about less than 158) will
always result in a peak harvested power below the clas-
sical case irrespective of the value of the stiffness ratio
gk . For smaller values of f, Omax is not very sensitive
with gk .

The non-dimensional maximum harvested power is
shown in fig:Pmax1 as a function of the stiffness ratio
gk and inertial amplifier angle f for mass ratio
gm = 0:25. The maximum power is obtained by com-
puting the power at frequency values obtained from
equation (16). We also show the contour line of the
maximum power for the classical energy harvester
without the inertial amplifier in the same plot. For
most parameter combinations, the harvested power for
the proposed system with inertial amplifier is more
than the classical harvester. Increasing the stiffness in
general leads to higher harvested power. We also
observe that the harvested power does not change sig-
nificantly beyond the inertial amplifier angle of 308 for
the parameter values selected here. The result shown in
Figure 5 conclusively demonstrates that the harvested
power from the energy harvester with the inertial
amplifier can be several times more than the classical
energy harvester at a lower frequency value with appro-
priately chosen parameters. As an example, for stiffness
ratio gk = 1:25 and f= 208, can yield approximately
five times more power at a 50% lower frequency. Form
Figure 5 observe that a higher stiffness ratio gk leads to
a higher harvested power. However, Figure 4 shows
that higher stiffness ratio gk also leads to higher values
of the frequency for the maximum power, which is not
ideal for low-frequency energy harvesting. Therefore,
the parameters should be selected for an optimal bal-
ance between maximum power and minimum fre-
quency. Equation (16) along with Figures 4 and 5 give
a practical approach towards selecting optimal para-
meters. Next, we consider the case when the electrical
circuit has an inductor.

4.2. Circuit with an inductor

A schematic diagram of a cantilever piezoelectric energy
harvester with an inertial amplifier having a circuit with
an inductor is shown in Figure 1(b). It is generally
recognised that the addition of an optimally designed
inductor can improve the harvested power under har-
monic excitations (Renno et al., 2009). The electrical
equation for this case (see e.g. Adhikari et al., 2009)
becomes

Figure 4. Contours of the non-dimensional frequency for the
maximum power (Omax) of a harvester without an inductor as a
function of the stiffness ratio gk and inertial amplifier angle f. It
is assumed that the damping factor z = 0:011, the time constant
a= 0:8649, the electromechanical coupling coefficient
k2 = 0:1185 and the mass ratio gm = 0:25. The non-
dimensional frequency for maximum power for the equivalent
classical harvester without an inertial amplifier is a constant
(function of the electrical parameters only) and shown by a line
as indicated. Contour lines below the classical line indicate that
the maximum power of a harvester with an inertial amplifier
takes place at a lower frequency. Smaller amplifier angles,
f ’\ 158, ensure this fact for any stiffness ratio.
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Cp€v(t)+
1

Rl

_v(t)+
1

Li

v(t)+ u€y(t)= 0 ð17Þ

where Li is the inductance of the circuit. The mechani-
cal equation is the same as given in equation (10).
Combining this with the mechanical equation intro-
duced before in (10) and transforming the coupled
equations into the frequency domain and normalising,
the voltage response due to a harmonic base excitation
can be expressed as

V (iO)=
O2 abu

Cp
O2GmYb

D2(iv)
ð18Þ

Here D2(iO) is the determinant of the coefficient matrix
associated with the Fourier transform of the coupled
differential equations (10) and (17). It can be shown
that D2(iO) is a quartic polynomial in (iO) as

D2(iO)= iOð Þ4baGm +b 2za+Gmð Þ iOð Þ3 +
k2 +Gk

� �
b+Gm

� �
a+ 2bz

� �
(iO)2

+ Gkb+ 2azð Þ(iO)+Gka

ð19Þ

We introduce the normalised inductor parameter
b=v2

nL. As in the previous case, the voltage at O= 1

when the damping is zero and without the inertial
amplifier is considered to be used for the normalisation
of the output voltage in equation (18). Deriving the
expression the voltage V0 =V (iO)jfO= 1, z = 0, gm = 0, gk = 0g
=� uYb

Cpk2 , the expression of the non-dimensional power
obtained from equation (15) is given by

bP(O)= abk2O2 (iO)2

D2(iO)

���� ����2 ð20Þ

Implementation of equations (15) and (20) explicitly
quantifies harvested power for both types of circuit
configurations when the base excitation is a harmonic
excitation.

The non-dimensional harvested power is plotted as a
function of the non-dimensional frequency in Figure 6.
Parameters considered for the inertial amplifier are
gm = 0:2, gk = 1, f= 108 and the parameters for the
energy harvester are z = 0:011, a= 0:8649 and
k2 = 0:1185. The value of the non-dimensional induc-
tor constant is assumed to be b= 1:0. This plot clearly
demonstrates higher harvested power at a lower fre-
quency compared to the classical case without any iner-
tial amplifier. Comparing this with the equivalent result

Figure 6. The (non-dimensional) harvested power from a
harvester with an inductor plotted as a function of the non-
dimensional frequency of the base excitation for the normalised
inductor parameter b= 1:0. It is assumed that the damping
factor z = 0:011, the time constant a= 0:8649, the
electromechanical coupling coefficient k2 = 0:1185 and the
mass ratio gm = 0:25. The values of the stiffness ratio and the
amplifier angle are considered to be gk = 1 and f= 108.
Powers obtained from the classical harvester without an inertial
amplifier and the proposed harvester with an inertial amplifier
are shown for comparison. Power obtained from the proposed
harvester is over four times more than the classical harvester at
a 50% lower frequency.

Figure 5. Contours of the non-dimensional maximum power
of a harvester without an inductor as a function of the stiffness
ratio gk and inertial amplifier angle f. We consider that the
damping factor z = 0:011, the time constant a= 0:8649, the
electromechanical coupling coefficient k2 = 0:1185 and the
mass ratio gm = 0:25 as before. The non-dimensional maximum
power for the equivalent classical harvester without an inertial
amplifier is a constant (slightly more than 1) and shown by the
indicated line. Contour lines above the classical line indicate that
the maximum power of a harvester with an inertial amplifier is
higher for the respective parameter combinations. Higher
stiffness ratio gk leads to higher harvested power. However, the
harvested power does not change significantly for larger
amplifier angles, f ’ 308. Except for very small values of the
stiffness ratio gk, maximum power obtained from the proposed
harvester is always more than the classical harvester.
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for the harvester without the inductor shown before in
Figure 3, it can be observed that normalised harvested
power is higher at a comparable frequency. This
demonstrates that with suitably selected parameters, it
is possible to obtain more power from the harvester
with the inductor. A similar observation was made by
Renno et al. (2009) for energy harvesters without an
inertial amplifier. As the harvested power significantly
depended on the parameters of the inertial amplifier,
next we aim to obtain optimal parameters to maximise
the power output of the energy harvester.

Using the small damping approximation and maxi-
mising the harvested power by setting the derivative
with respect to the normalised squared frequency to
zero, we can obtain a first-order approximation of the
optimal frequency point similar to the previous case
(the analytical expression is available in the
Supplemental Information). The frequency for the
maximum harvested power is a function the inertial
amplifier parameters, the time constant, normalised
inductor parameter and the electromechanical coupling
coefficient. For a classical vibration energy harvester
without an inertial amplifier, the harvested power
peaks about O’1. From equation (16) we can observe
that if gm and f are selected such that Gm in equation
(1) is large, Omax can be significantly less than 1. A key

advantage of the proposed internal amplifier based
energy harvester compared to the classical vibration
energy harvester is that mass ratio, stiffness ratio and
amplifier angle can be selected such that non-
dimensional frequency for the maximum power is
much less than 1.

It is of prime importance to understand the impact
of different design parameters of the inertial amplifier
on the frequency for the maximum power. In particular,
we want to develop an understanding of the parameter
combinations for which the the maximum power can
occur at a frequency which is lower than the classical
harvester. The contour lines of Omax as functions of the
stiffness ratio gk and inertial amplifier angle f is shown
in Figure 7.

The contour line of the frequency for the maximum
power for the classical energy harvester without the
inertial amplifier is also shown in the same plot. This is
close to 1 and therefore any contour lines below this
value show the parameter combinations for which max-
imum power occurs below the classical case. A key
observation is that a smaller value of the inertial ampli-
fier angle f (about less than 208) will always result in a
peak harvested power below the classical case irrespec-
tive of the value of the stiffness ratio gk . For smaller
values of f, Omax is not very sensitive with gk . When
we compare Figure 7 with the frequency for the maxi-
mum power for the harvester without the inductor
shown before in Figure 4, it is clear that the addition of
an inductor does not significantly influence Omax for
the parameter values selected here. We refer the readers
to the analytical expression of Omax given in the
Supplemental Document to have a comprehensive
overview of the parametric dependence and cross com-
parison of both the cases.

The non-dimensional maximum harvested power is
shown in Figure 8 as a function of the stiffness ratio gk

and inertial amplifier angle f for mass ratio gm = 0:25.
The maximum power is obtained by computing the
power at frequency values given in Figure 7. We also
show the contour line of the maximum power for the
classical energy harvester without the inertial amplifier
in the same plot. For most parameter combinations,
the harvested power for the proposed system with iner-
tial amplifier is more than the classical harvester.
Increasing the stiffness in general leads to higher har-
vested power. We also observe that the harvested
power does not change significantly beyond the inertial
amplifier angle of 308 for the parameter values selected
here. The result shown in Figure 8 conclusively demon-
strates that the harvested power from the energy har-
vester with the inertial amplifier can be several times
more than the classical energy harvester at a lower fre-
quency value with appropriately chosen parameters. As
an example, for stiffness ratio gk’1:5 and f’108 can
yield approximately seven times more power at 50%

Figure 7. Contours of the non-dimensional frequency for the
maximum power of a harvester with an inductor (normalised
inductor parameter b= 1:0) as a function of the stiffness ratio
gk and inertial amplifier angle f. It is assumed that the damping
factor z = 0:011, the time constant a= 0:8649, the
electromechanical coupling coefficient k2 = 0:1185 and the
mass ratio gm = 0:25. The non-dimensional frequency for
maximum power for the equivalent classical harvester without
an inertial amplifier is shown by a line as indicated. Contour
lines below the classical line indicate that the maximum power
of a harvester with an inertial amplifier takes place at a lower
frequency. Smaller amplifier angles, f / 208, ensure this fact for
any stiffness ratio.
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lower frequency. Form Figure 8 observe that a higher
stiffness ratio gk generally leads to a higher harvested
power for f ’ 258. However, Figure 8 shows that
higher stiffness ratio gk leads to higher values of the
frequency for the maximum power for f ’ 258, which
is not ideal for low-frequency energy harvesting.
Therefore, the parameters should be selected for an
optimal balance between maximum power and mini-
mum frequency. Figures 7 and 8 give a practical
approach towards selecting the optimal parameters.

5. Harvested power due to broadband
excitations

The base excitation to the harvester is the source of the
ambient energy. In the previous section, the base exci-
tation is considered to be a harmonic excitation. While
the harmonic excitation is the most basic form of exci-
tation and indeed there are situations when this may be
the case, there are also many practical cases where this
assumption is not strictly true. Examples include excita-
tions due to wind, traffic movements, acoustic noise,
road/track excitations on static or mobile structures

from which energy to be harvested. To encompass the
widest range of possibilities, the excitation is generally
considered to be a broadband random process
(Adhikari et al., 2009, 2016; Halvorsen, 2008; Lefeuvre
et al., 2007).

We consider that the base excitation yb(t) is a broad-
band, Gaussian and weakly stationary random process.
Dynamical systems driven by this type of excitations
have been discussed in Lin (1967), Nigam (1983) using
the theory of random vibration. Our key interest is the

mean harvested power given by E P(t)½ �= E v2(t)½ �
Rl

. Here

E �½ � is the mathematical expectation operator (Papoulis
and Pillai, 2002). This can be computed numerical
using Monte Carlo simulation. Alternatively, for cer-
tain cases this can be obtained using analytical tech-
niques. We take this approach here. Considering the
frequency domain representation for a damped
linear system of the form V (v)=H(v)Yb(v), it can

be shown (Lin, 1967; Nigam, 1983) that E½jV j2j�=
Ð ‘

�‘

jH(v)j2Fybyb
(v) dv. Here Fybyb

(v) is the spectral density

of the input random excitation Yb(v). For a Gaussian
white noise, the spectral density Fybyb

(v) is a constant

with respect to v. The mean power corresponding to
the two cases will be obtained using this expression. As
we perform an integration over the frequency, the mean
harvested power is not a function of the frequency as it
was in the case of harmonic excitation discussed
before.

5.1. Circuit without an inductor

The schematic diagram of a cantilever piezoelectric
energy harvester for this case shown in Figure 1(a). We
assume that the base acceleration €yb(t) is a Gaussian
white noise so that its spectral density is constant with
respect to frequency. Using the voltage in the frequency
domain, from equation (12) and following the normali-
sation in (Adhikari et al., 2009; duToit and Wardle,
2007), the average harvested power can be obtained as

E ePh i
=E

jV j2

(Rlv4Fybyb
)

" #

=mak2G2
m

ð‘

�‘

O2

D1(iO)D
�
1(iO)

dO

=
pmak2G2

m

2z k2 +Gkð Þa2 + Gmk2 + 4z2
� �

a+ 2Gmz

ð21Þ

The evaluation of the above integral requires con-
tour integration techniques in the complex plane.
Details are given in the Supplemental Information.
This closed-form analytical expression describes the
average harvested power as function of all the crucial
parameters of the system. To gain further

Figure 8. Contours of the non-dimensional maximum power
of a harvester with an inductor (b= 1:0) as a function of the
stiffness ratio gk and inertial amplifier angle f. Aa before, we
assume that the damping factor z = 0:011, the time constant
a= 0:8649, the electromechanical coupling coefficient
k2 = 0:1185 and the mass ratio gm = 0:25. The non-
dimensional maximum power for the equivalent classical
harvester without an inertial amplifier is a constant (slightly less
than 1) and shown as the indicated line. Contour lines above the
classical line indicate that the maximum power of a harvester
with an inertial amplifier is higher for the respective parameter
combinations. For f / 158, there is a clear minimum value of gk

for which the power is maximum. For f ’ 408, the harvested
power does not change significantly with f and higher gk leads
to higher harvested power. Except for very small values of the
stiffness ratio gk, maximum power obtained from the proposed
harvester is always more than the classical harvester.
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understanding on how the parameters of the inertial
amplifier impact the mean harvested power due to ran-
dom broadband base excitation, in Figure 9 we show
the contour lines of the normalised mean power ratio
as functions of the stiffness ratio gk and inertial ampli-
fier angle f. The normalised mean power ratio is calcu-
lated by dividing the power obtained from equation
(21) with the equivalent power from a classical har-

vester, denoted by E½eP�classical. For the classical har-

vester without the inertial amplifier we have
gm = gk = 0. This can be incorporated by substituting
Gk =Gm = 1 in equation (21). It is assumed that the
damping factor z = 0:011, the time constant
a= 0:8649, the electromechanical coupling coefficient

k2 = 0:1185 and the mass ratio gm = 0:25. As this plot
is the ratio of the power with respect to the classical
energy harvester, all contour lines above 1 demonstrate
the enhanced harvested power with the inertial

amplifier. In general, more power is harvested with
smaller inertial amplifier angles f, which is consistent
with the observation made in the case of harmonic exci-
tation discussed in the previous section. A key observa-
tion is that the normalised mean power ratio is in
general not very sensitive with the stiffness ratio gk .
Our result clearly demonstrates enhanced harvested
mean power compared to the classical energy
harvester.

One of our main aim is to derive mathematically
optimal parameter combinations which will maximise
the mean harvested power as given by equation (21).
The average harvested power decreases monotonically
with the damping ratio z as a and k2 are positive.
Therefore, to maximise the harvested power, one needs
to minimise the damping of the harvester. The mean
harvested power increases monotonically with the cou-
pling coefficient k2 for fixed values of a and z.
Therefore, the electromechanical coupling coefficient k

should be as large as possible. Differentiating the
mean harvested power in equation (21) with respect to
a and setting it to zero, the optimal condition can be
obtained as

a2 Gk + k2
� �

=Gm ð22Þ

In terms of the physical quantities, the optimal condi-
tion can also be expressed from the preceding equation
as R2

l Cp k + kað ÞCp + u2
� �

=m+ma cot
2 f. If the

circuit parameters are fixed, from equation (22) one
can determine the design spring ratio as
gk =(1+ gm cot2 f)=a2 � (1+ k2). Using the relation-
ship in (22) in the expression of the mean harvested
power in (21), we obtain the maximum power as

E½eP�max=
pmak2G2

m

ak2 + 4zð ÞGm + 4az2
ð23Þ

The normalised mean power ratio as a function of a

is shown in Figure 10 considering z = 0:1 and k= 0:6.
It is assumed that the damping factor z = 0:1, the elec-
tromechanical coupling coefficient k= 0:6, the mass
ratio gm = 0:25, the stiffness ratio gk = 0:5 and inertial
amplifier angle f= 208. The normalised mean power
ratio is obtained by diving the mean power of the har-
vester with the inertial amplifier with the mean power
of the classical harvester with the optimal a given by
(22). The parameters for the inertial amplifier are con-
sidered as gm = 0:25, gk = 0:5 and f= 158. The opti-
mal value of a obtained from equation (22) is 1.245.
Figure 10 clearly demonstrates the maximum power
obtained with the optimal value of a= 1:245 and it is
more than 3.5 times compared to what obtained from
the classical energy harvester.

Figure 9. Contours of the normalised mean power ratio of a
harvester without an inductor as a function of the stiffness ratio
gk and inertial amplifier angle f. The normalised mean power
ratio is calculated by dividing the mean power with the
equivalent mean power from a classical harvester, that is,

E½eP�=E½eP�c2lassical . We assume that the damping factor z = 0:011,

the time constant a= 0:8649, the electromechanical coupling

coefficient k2 = 0:1185 and the mass ratio gm = 0:25 as
considered for the case of harmonic excitation before. For
f / 208, the mean harvested power ratio does not change

significantly with gk. As this plot is the ratio of the power with
respect to the classical energy harvester, all contour lines above
1 demonstrate the enhanced harvested power with the inertial
amplifier. Lower values of the inertial amplifier angle f leads to
significantly higher power even for smaller values of the stiffness
ratio gk. As an example, for gk’1 and f’108, mean power
harvested from the proposed inertial amplifier based energy
harvester is an order of magnitude more than the power
harvested from the classical energy harvester.
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5.2. Circuit with an inductor

The schematic diagram of a cantilever piezoelectric
energy harvester for this case shown in Figure 1(b).
The voltage in the frequency domain for this case is
given by equation (18). Following a normalisation
approach similar to (Adhikari et al., 2009), the average
normalised harvested power can be expressed as

E½eP�=mab2k2G2
m

Ð ‘

�‘
O4

D2(iO)D
�
2(iO)

dO. Evaluating this

integral, the average normalised harvested power is
given by the following closed-form expression

E ePh i
=mabk2Gm

2p Gkb+ 2azð Þ=

(ðð2Gka2z+GmGkaÞk2 + 4Gkz2a+ :

2Gk
2a2 + 2GmGk

� �
z
�
b2 + 4a3z2 + 2Gma2z

� �
k2

�
�4GmGka2z+ 8a2z3 + 4Gmaz2

�
b+ 2Gm

2a2z)

ð24Þ

This is an exact closed-form analytical expression quan-
tifying the average harvested power as function of all
the crucial parameters of the system.

To gain further understanding on how the para-
meters of the inertial amplifier impact the mean har-
vested power due to random broadband base
excitation, in Figure 11 we show the contour lines of
the normalised mean power ratio as functions of the

stiffness ratio gk and inertial amplifier angle f. The
normalised mean power ratio is calculated by dividing
the power obtained from equation (24) with the equiva-
lent power from a classical harvester. This can be
obtained by substituting Gk =Gm = 1 is equation (24).
As this plot is the ratio of the power with respect to the
classical energy harvester, all contour lines above 1
demonstrate the enhanced harvested power with the
inertial amplifier. In general, more power is harvested
with smaller inertial amplifier angle f. A key observa-
tion is that the normalised mean power ratio is not very
sensitive with the stiffness ratio gk . This is in contrast
to the maximum power from the harmonic excitations
given in Figures 5 and 8, where the harvested power is
not very sensitive with the inertial amplifier angle f,
but sensitive to gk . Further, comparing Figure 11 with
the equivalent result for the harvester without the
inductor shown in fig:PmeanRandA, we observe that,
unlike the case of harmonic excitation, the addition of
an inductor does not significantly influence the normal-
ised mean power ratio for the case of random
excitation.

Figure 10. The normalised mean power ratio of a harvester
without an inductor as a function of the time constant a. We
consider an increased value of the damping factor z= 0:1
compared to the previous illustrations to encompass a broader
parameter space. Additionally, the electromechanical coupling
coefficient k= 0:6, the mass ratio gm = 0:25, the stiffness ratio
gk = 0:5 and inertial amplifier angle f= 208. The *
corresponds to the optimal value of a= 1:245 for the
maximum mean harvested power. For this choice of the optimal
time constant, the mean power harvested form the proposed
inertial amplifier based energy harvester is over 3.5 times more
than the power harvested form the classical energy harvester.

Figure 11. Contours of the normalised mean power ratio of a
harvester with an inductor (normalised inductor parameter
b= 1:0) as a function of the stiffness ratio gk and inertial
amplifier angle f. The normalised mean power ratio is calculated
by dividing the mean power with the equivalent mean power
from a classical harvester, that is, E½eP�=E½eP�c2lassical . As this plot is
the ratio of the power with respect to the classical energy
harvester, all contour lines above 1 demonstrate the enhanced
harvested power with the inertial amplifier. We assume that the
damping factor z= 0:011, the time constant a= 0:8649, the
electromechanical coupling coefficient k2 = 0:1185 and the mass
ratio gm = 0:25 as considered before. For f / 258, the mean
harvested power ratio does not change significantly when gk ’\ 1.
Lower values of the inertial amplifier angle f leads to a higher
power, which is consistent with the observation made in the
previous case. As an example, for gk’1 and f’108, mean
power harvested from the proposed inertial amplifier based
energy harvester is approximately six times more than the
power harvested from the classical energy harvester.
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We aim to derive mathematically optimal parameter
combination which will maximise the mean harvested
power as given by equation (24). The average harvested
power in (24) decreases monotonically with the damp-

ing ratio z as a and k2 are positive. Therefore, to maxi-
mise the harvested power, one needs to minimise the
damping of the harvester. The mean harvested power
increases monotonically with the coupling coefficient

k2 for fixed values of a and z. Therefore, the electrome-
chanical coupling coefficient k should be maximised.
These are the same conclusions as for the case without
an inductor. We can also determine optimum values for
Gm and Gk . Setting the derivative of the mean power in
(24) with respect to Gk to zero, that is by solving for Gk

from the equation
d E eP� 	� �

dGk
= 0. Considering the posi-

tive solution of the resulting equation, the optimal con-
dition can be expressed as

bGk =Gm ð25Þ

In terms of the physical quantities, the optimal condi-
tion can be expressed as LiCp k + kað Þ=m+ma cot

2 f.
If the circuit parameters are fixed, from equation (25)
one can determine the design spring ratio as
gk =(1+ gm cot2 f)=b2 � 1. Substituting optimal rela-
tionship from (25) in the expression of the mean har-
vested power in (24), we obtain the maximum power as

E ePh i
opt

=
mpGm

2ak2

k2a+ 2zð Þ 2az +Gmð Þ ð26Þ

It can be observed that this maximum value is indepen-
dent of the stiffness ratio gk and the inductor parameter
b.

The normalised mean power ratio as a function of b

is shown in Figure 12 considering a= 0:8649, z = 0:1
and k= 0:6. The normalised mean power ratio is
obtained by diving the mean power of the harvester
with the inertial amplifier with the mean power of the
classical harvester with the optimal b given by (25).
The parameters for the inertial amplifier are considered
as gm = 0:25, gk = 0:5 and f= 208. The optimal value
of b obtained from equation (25) is 1.925. Figure 12
clearly demonstrates that the maximum power is
obtained with the theoretically predicted optimal value
of b= 1:925. With this value of the normalised induc-
tor parameter, the mean power harvested form the pro-
posed inertial amplifier based energy harvester is about
three times more than the power harvested form the
classical energy harvester. Note that although we
obtain the optimal value of b from this analysis, the
physical implementation of the inductor requires fur-
ther practical considerations. For example, the particu-
lar inductor may not be commercially available on the
market. Alternative approaches may be needed in such
situations.

If k and z are fixed, then by further differentiating
equation (26) with respect to a we obtain the optimal
value as

a=

ffiffiffiffiffiffi
Gm

p

k
ð27Þ

In terms of the physical quantities, the optimal condi-
tion can be expressed as R2

l Cpu2 =m+ma cot
2 f. With

this choice, the absolute maxima of the mean harvested
power is obtained as

E ePh i
max

=
mpGm

2k2ffiffiffiffiffiffi
Gm

p
k+ 2z

� �2
ð28Þ

The normalised mean power ratio as a function of a

is shown in Figure 13 considering z = 0:1 and k= 0:6.
The normalised mean power ratio is obtained by divid-
ing the mean power of the harvester with the inertial
amplifier with the mean power of the classical harvester
with the optimal b and a given by equations (25) and
(27) . The parameters for the inertial amplifier are con-
sidered as gm = 0:25, gk = 0:5 and f= 208 as before.
The optimal value of a obtained from equation (27) is
2.832. Figure 13 clearly demonstrates the maximum
power obtained with the optimal value of a= 2:832.
For this optimal combination of the time constant and
normalised inductor parameter, the mean power

Figure 12. The normalised mean power ratio of a harvester
with an inductor as a function of the normalised inductor
parameter b. We assume that the damping factor z = 0:1, the
time constant a= 0:8649, the electromechanical coupling
coefficient k= 0:6. The parameters for the inertial amplifier
are: gm = 0:25, gk = 0:5, f= 208. The * corresponds to the
theoretically predicted optimal value of b= 1:925 for the
maximum mean harvested power. For this choice of the
normalised inductor parameter, the mean power harvested
form the proposed inertial amplifier based energy harvester is
about three times more than the power harvested form the
classical energy harvester.
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harvested from the proposed inertial amplifier based
energy harvester is over four times more than the
power harvested from the classical energy harvester.
This demonstrates the effectiveness of the inertial
amplifier for energy harvesting.

6. Conclusions

We have comprehensively investigated an effective and
simple method for enhancing piezoelectric vibration
energy harvesting. Our approach involves augmenting
a conventional cantilever harvester with an inertial
amplifier. Inertial amplifiers have been theoretically
investigated to manipulate bandgaps in mechanical
metamaterials. The novelty of this paper is that for the
first time the concept of mechanism based inertial
amplifiers has been employed in the context of vibra-
tion energy harvesting. The inertial amplifier concept
explored here is realised through a rigid-link, hinged
with two symmetric masses and connected to the
ground by a spring. Inertial amplifications achieved by
the proposed system have been quantified a wide range
of mathematically optimal parameter values. It has
been demonstrated that orders of magnitude of inertial
amplification are possible under certain conditions.

This increased inertia, in turn, makes it possible to har-
vest more power from external excitations at a lower
frequency.

Considering the base excitation to the cantilever is
the source of the ambient energy, two cases of energy
harvesting circuits, namely, one with an inductor and
another without an inductor, have been employed. For
both the cases, the input excitation is assumed to be
harmonic as well as broadband random excitation.
New analytical methods have been developed to expli-
citly quantify harvested power through closed-form
formulae. These expressions are in turn used to derive
optimal parameters such that the harvested power is
maximum under diverse conditions. We obtained cru-
cial parameter combinations for which the inertial
amplifier enabled vibration energy harvester archives
powers which is several times more than it’s classical
counterpart without the inertial amplifier. In some
cases, the power increase can be an order of magnitude
more and at a 50% lower frequency. Our results pres-
ent a compelling case for considering inertial amplifier
enhanced vibration energy harvesters for future piezo-
electric energy harvesting devices to be used for low-
powered applications. Practical realisation of inertial
amplifier enhanced vibration energy harvesters will cre-
ate the pathway towards a transformative impact in
micro energy generation.
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Figure 13. The normalised mean power ratio of a harvester
with an optimal inductor (normalised inductor parameter
b= 1:925) as a function of the time constant a. We assume
that the damping factor z = 0:1 and the electromechanical
coupling coefficient k= 0:6. The parameters for the inertial
amplifier are: gm = 0:25, gk = 0:5, f= 208. The * corresponds
to the theoretically predicted optimal value of a= 2:832 for the
maximum mean harvested power. For this combination of the
optimal time constant and normalised inductor parameter
(a= 2:832,b= 1:925), the mean power harvested from the
proposed inertial amplifier based energy harvester is over four
times more than the power harvested from the classical energy
harvester.
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