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Abstract: This paper presents a numerical method to address function estimation problems in inverse
heat transfer problems using parameter estimation approach without prior information on the
functional form of the variable to be estimated. Using an inverse analysis, the functional form of a
time-dependent heat transfer coefficient is estimated efficiently and accurately. The functional form
of the heat transfer coefficient is assumed unknown and the inverse heat transfer problem should be
treated using a function estimation approach by solving sensitivity and adjoint problems during the
minimization process. Based on proposing a new sensitivity matrix, however, the functional form can
be estimated in an accurate and very efficient manner using a parameter estimation approach without
the need for solving the sensitivity and adjoint problems and imposing extra computational cost,
mathematical complexity, and implementation efforts. In the proposed sensitivity analysis scheme,
all sensitivity coefficients can be computed in only one direct problem solution at each iteration. In
this inverse heat transfer problem, the body shape is irregular and meshed using a body-fitted grid
generation method. The direct heat conduction problem is solved using the finite-difference method.
The steepest-descent method is used as a minimization algorithm to minimize the defined objective
function and the termination of the minimization process is carried out based on the discrepancy
principle. A test case with three different functional forms and two different measurement errors is
considered to show the accuracy and efficiency of the used inverse analysis.

Keywords: inverse heat transfer; steepest-descent method; sensitivity analysis; function estimation;
parameter estimation; body-fitted grid generation; time-dependent heat transfer coefficient

1. Introduction

In a heat transfer problem, the accuracy of thermophysical properties and boundary
conditions is critical to obtain an accurate numerical simulation. As a boundary condition,
convective heat transfer depends on different parameters such as time, surface geometry,
and surface temperature, to name a few. The accurate determination of the convective
heat transfer coefficient is a difficult task as convection is a very complicated phenomenon
and expensive experiments with sophisticated instruments are required to appropriately
unravel its dynamics [1].

The advent of high-speed and high-capacity computers and the development of
different regularization methods over the past decades have played significant roles in
successful applications of numerical inverse methods, as inexpensive alternatives to costly
and time-consuming experiments with sophisticated instruments, to appropriately estimate
unknown heat transfer quantities such as the heat transfer coefficient [2–10]. Inverse heat
transfer problems are mathematically challenging problems because they are ill-posed and
the accuracy of the estimation of an unknown quantity is very sensitive to measurement
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errors [11–13]. If the unknown quantity to be estimated (in this study, the heat transfer
coefficient) can be expressed as a constant parameter [14,15] or represented by a few
parameters [16], a parameter estimation approach may be used to estimate the parameters
thereby estimating the unknown quantity. However, a function estimation approach
should be used to estimate the unknown functional form of the unknown quantity when
there is no information available on the functional form of the unknown quantity. In the
function estimation approach, the sensitivity and adjoint problems are required to obtain
the gradient of objective function with respect to unknown functional form which impose
additional mathematical developments and computational costs on the inverse analysis.
In this study, based on the numerical procedure employed in [17], a two-dimensional
transient inverse heat conduction problem is considered. The thermophysical properties
are assumed constant, the geometry of heat-conducting body is irregular, and the body
is subject to Neumann and Robin boundary conditions at its boundary surface parts.
Using the parameter estimation approach initially developed in [17] for the estimation
of unknown functional form of a time-dependent heat flux (a boundary condition of
second kind) imposed at a boundary surface, here the unknown functional form of a
time-dependent heat transfer coefficient(a third-kind boundary condition) is estimated
efficiently and accurately without involving the solution of the sensitivity and adjoint
problems. Thus, the mathematical development effort and the computational cost are
reduced significantly.

To do so, the heat-conducting body (the physical domain) is mapped onto a regular
computational domain in order to take advantage of the ease of implementation of the
finite-difference method to explicitly solve the transient heat conduction equation and the
associated boundary conditions. As the body shape is irregular, a body-fitted (elliptic)
grid generation method is used to mesh the irregular domain which makes the proposed
method general and applicable to any irregular domain as long as it can be mapped onto a
regular computational domain. Using the chain rule to relate the temperature at sensor
place and the time-dependent heat transfer coefficient applied on the part of the body
boundary, explicit expressions are derived to compute sensitivity coefficients during the
solution of the transient heat conduction equation without the need for solving the sensi-
tivity and adjoint equations. The steepest-descent method, as an iterative regularization
method, with a stopping criterion specified by discrepancy principle is used to minimize
the objective function and reach the solution accurately. A test case with three complicated
functional forms of timewise variation of the heat transfer coefficient is presented to reveal
the accuracy, efficiency, and robustness of the inverse analysis. Moreover, two different
measurement errors are considered. It is shown that the inverse analysis is not strongly
affected by the errors involved in the temperature measurements and the unknown func-
tional forms of the timewise variation of the heat transfer coefficient can be recovered with
excellent accuracy. As stated before, the objective of this study is to present a parameter
estimation approach to estimate the unknown functional form of a time-dependent heat
transfer coefficient efficiently and accurately.

2. Governing Equation

The body shown in Figure 1a is initially at the temperature T0. At time t > 0, it is
exposed to a time-dependent heat flux

.
q(t) at boundary surface Γ1 and convective heat

transfer on boundary surfaces Γi, i = 2, 3, 4 with corresponding heat transfer coefficients
h2(t), h3, and h4 and surrounding temperatures T∞i , i = 2, 3, 4. The thermal conductivity,
density, and specific heat of the body are kT , ρ, and c, respectively.
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Figure 1. Two-dimensional irregular (arbitrarily shaped) heat-conducting body (physical domain) 
subjected to a time-dependent heat flux ( )q t  on surface 1Γ  and convective heat transfer on sur-
faces =Γ , 2,3,4i i  (a) and the corresponding computational domain (b). 

The governing equation for a two-dimensional transient heat conduction problem 
with no heat generation can be expressed as [17,18] 
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where t  is the time. Since the heat-conducting body is irregular, it (the x  and y  
physical domain) can be mapped onto a regular one (the ξ  and η  computational do-
main). The elliptic grid generation method is employed to generate a grid over the 
physical domain. Then the heat conduction equation and its associated boundary and 
initial conditions can be transformed from the ( , ,x y t ) to the ( , ,ξ η t ) variables [12,18]. The 
transformation results in 
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Figure 1. Two-dimensional irregular (arbitrarily shaped) heat-conducting body (physical domain)
subjected to a time-dependent heat flux

.
q(t) on surface Γ1 and convective heat transfer on surfaces

Γi, i = 2, 3, 4 (a) and the corresponding computational domain (b).

The governing equation for a two-dimensional transient heat conduction problem
with no heat generation can be expressed as [17,18]

kT

(
∂2T(x, y, t)

∂x2 +
∂2T(x, y, t)

∂y2

)
= ρc

∂T(x, y, t)
∂t

in physical domain Ω(x, y) (1)

with the boundary and initial conditions

∂T(x, y, t)
∂n1

=

.
q(t)
kT

on boundary surface Γ1(x, y) (2)

∂T(x, y, t)
∂n2

= −h2(t)
kT

(
TΓ2(x, y, t)− T∞2

)
on boundary surface Γ2(x, y) (3)

∂T(x, y, t)
∂ni

= − hi
kT

(
TΓi (x, y, t)− T∞i

)
on boundary surface Γi(x, y), i = 3, 4 (4)

T(x, y, 0) = T0(x, y) in physical domain Ω(x, y) (5)

where t is the time. Since the heat-conducting body is irregular, it (the x and y physical
domain) can be mapped onto a regular one (the ξ and η computational domain). The
elliptic grid generation method is employed to generate a grid over the physical domain.
Then the heat conduction equation and its associated boundary and initial conditions
can be transformed from the (x, y, t) to the (ξ, η, t) variables [12,18]. The transformation
results inα

∂2T(ξ,η,t)
∂ξ2 − 2β

∂2T(ξ,η,t)
∂ξ∂η + γ

∂2T(ξ,η,t)
∂η2

J2 + (∇2ξ)
∂T(ξ, η, t)

∂ξ
+ (∇2η)

∂T(ξ, η, t)
∂η

 =
ρc
kT

∂T(ξ, η, t)
∂t

(6)

where∇2ξ = P(ξ, η) and∇2η = Q(ξ, η) are grid control functions. If P(ξ, η) = Q(ξ, η) = 0,
then a smooth grid over the physical domain is obtained. Therefore, Equation (6) becomesα

∂2T(ξ,η,t)
∂ξ2 − 2β

∂2T(ξ,η,t)
∂ξ∂η + γ

∂2T(ξ,η,t)
∂η2

J2

 =
ρc
kT

∂T(ξ, η, t)
∂t

in 1 < ξ < M, 1 < η < N, for t > 0 (7)
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where
α = x2

η + y2
η

β = xξ xη + yξ yη

γ = x2
ξ + y2

ξ

J = xξ yη − xηyξ (Jacobian of transformation) (8)

The transformed boundary and initial conditions can be expressed as(
−1

J
√

γ

(
γ

∂T(ξ, η, t)
∂η

− β
∂T(ξ, η, t)

∂ξ

))
Γ1

=

.
q(t)
kT

at 1 < ξ < M, η = 1, for t > 0 (9)

(
1

J
√

γ

(
γ

∂T(ξ, η, t)
∂η

− β
∂T(ξ, η, t)

∂ξ

))
Γ2

= −h2(t)
kT

(T(ξ, η, t)− T∞2) at 1 < ξ < M, η = N, for t > 0 (10)

(
−1
J
√

α

(
α

∂T(ξ, η, t)
∂ξ

− β
∂T(ξ, η, t)

∂η

))
Γ3

= − h3

kT
(T(ξ, η, t)− T∞3) at 1 < η < N, ξ = 1, for t > 0 (11)

(
1

J
√

α

(
α

∂T(ξ, η, t)
∂ξ

− β
∂T(ξ, η, t)

∂η

))
Γ4

= − h4

kT
(T(ξ, η, t)− T∞4) at 1 < η < N, ξ = M, for t > 0 (12)

T(ξ, η, 0) = T∗0 (ξ, η) in 1 < ξ < M, 1 < η < N, for t = 0 (13)

where the initial condition T0(x, y) is rewritten as T∗0 (ξ, η) in terms of the variables ξ
and η. Now the finite-difference method can be employed to discretize the derivatives
present in the above equations in the regular computational domain, as follows (assuming
∆ξ = ∆η = 1)

fξ =
1
2
( fi+1,j − fi−1,j)

fη =
1
2
( fi,j+1 − fi,j−1)

fξξ = fi+1,j − 2 fi,j + fi−1,j

fηη = fi,j+1 − 2 fi,j + fi,j−1

fξη =
1
4
( fi+1,j+1 − fi−1,j+1 − fi+1,j−1 + fi−1,j−1) (14)

where f ≡ x, y, T. One-sided forward and one-sided backward relations are used to
discretize the boundary condition equations. The explicit method can be used to solve the
resulting transient heat conduction equation, Equation (7). Using forward-time-central-
space (FTCS) discretization and the relations in Equation (14), we get

1
J2

(
α(Tn

i+1,j − 2Tn
i,j + Tn

i−1,j)− 2β
1
4
(Tn

i+1,j+1 − Tn
i−1,j+1 − Tn

i+1,j−1 + Tn
i−1,j−1) + γ(Tn

i,j+1 − 2Tn
i,j + Tn

i,j−1)

)
=

ρc
kT

Tn+1
i,j − Tn

i,j

∆t
, i = 2, . . . , M− 1, j = 2, . . . , N − 1 for t > 0

(15)

where ∆t is the time step. Taking into account the stability criterion, the time-marching pro-
cedure can be used to solve Equation (15) and obtain Tn+1

i,j . That is, the nodal temperatures

at the time level n + 1, Tn+1
i,j , can be determined from the knowledge of nodal temperatures

at the previous time level n, Tn
i,j, as follows

Tn+1
i,j = Tn

i,j+

kT∆t
ρcJ2

(
α(Tn

i+1,j − 2Tn
i,j + Tn

i−1,j)− 2β
1
4
(Tn

i+1,j+1 − Tn
i−1,j+1 − Tn

i+1,j−1 + Tn
i−1,j−1) + γ(Tn

i,j+1 − 2Tn
i,j + Tn

i,j−1)

) (16)
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3. The Inverse Analysis
3.1. Objective Function

The inverse heat transfer problem of interest deals with the estimation of the time-
dependent heat transfer coefficient h2(t) applied at the time ti and at the surface Γ2,
h2(ti), i = 1, . . . , r (r is the number of time steps) using the transient readings of a single
sensor S placed at the point (Si, Sj) inside the heat conducting body. In inverse analysis,
the aim is to minimize the mismatch between the estimated temperatures at the sensor
place, Te(Si, Sj, ti), computed from the solution of the direct transient heat conduction
problem using the estimated heat transfer coefficient h2(ti) and the measured temperatures
Tm(Si, Sj, ti) over the time domain 0 < t < tr. This can be mathematically expressed as a
least-squares minimization as follows

min

{
J

h2 at Γ2

:= ‖Te(Si, Sj, t)− Tm(Si, Sj, t)‖2 : Equation (1) in Ω, BCs and IC in Equations (2)–(5)

}
(17)

where h2 = [h2(t1), h2(t2), h2(t3), . . . , h2(tr)]
T. Therefore, the objective function can be

expressed as

J =
r

∑
i=1

[Te(Si, Sj, ti)− Tm(Si, Sj, ti)]
2 (18)

3.2. Sensitivity Analysis

The calculation of the gradient of the objective function J defined by Equation (18)
with respect to h2(ti), i = 1, . . . , r is required in gradient-based minimization methods.
Therefore, it can be written

∂J
∂h2(ti′)

= 2
r

∑
i=1

[Te(Si, Sj, ti)− Tm(Si, Sj, ti)]
∂Te(Si, Sj, ti)

∂h2(ti′)
(19)

The sensitivity coefficients ∂Te(Si,Sj,ti)
∂h2(ti′ )

(i = 1, . . . , r, i′ = 1, . . . , r) can be explicitly
expressed using the chain rule (using the constant thermal conductivity kT) as follows

∂Te(Si, Sj, ti)

∂h2(ti′)
=

∂Te(Si, Sj, ti)

∂kT
∂h2(ti′)

∂kT

(20)

The expression in the numerator of Equation (20), ∂Te(Si,Sj,ti)
∂kT

, can be obtained by taking

derivative of Tn+1
i,j in Equation (16) with respect to kT , as follows

∂Tn+1
e (Si, Sj, ti)

∂kT
=

∆t
ρcJ2

(
α(Tn

Si+1,Sj − 2Tn
Si,Sj + Tn

Si−1,Sj)

−2β
1
4
(Tn

Si+1,Sj+1 − Tn
Si−1,Sj+1 − Tn

Si+1,Sj−1 + Tn
Si−1,Sj−1) + γ(Tn

Si,Sj+1 − 2Tn
Si,Sj + Tn

Si,Sj−1)

) (21)

The expression in the denominator of Equation (20), ∂Te(Si,Sj,ti)
∂kT

, can be obtained from
the boundary condition involving the heat transfer coefficient h2(t), Equation (9), as follows(

1
J
√

γ

(
γ

∂T(ξ, η, t)
∂η

− β
∂T(ξ, η, t)

∂ξ

))
Γ2

= −h2(t)
kT

(T(ξ, η, t)− T∞2) (22)

therefore, we get

∂h2(ti′)

∂kT
=

−1
T(ξ, η, t)− T∞2

(
1

J
√

γ

(
γ

∂T(ξ, η, t)
∂η

− β
∂T(ξ, η, t)

∂ξ

))
Γ2

(23)
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where the terms Tξ , Tη , J, γ and β are computed using the finite-difference expressions
associated with the surface Γ2. That is,

fξ =
1
2
( fi+1,N − fi−1,N)

fη =
1
2
(3 fi,N − 4 fi,N−1 + fi,N−2)

where f ≡ x, y, T. Therefore, the sensitivity coefficients in Equation (20) can be calculated
by dividing the term in Equation (21) by the one in Equation (23).

∂Te(Si, Sj, ti)

∂h2(ti′)
=

1(
−1

T(ξ,η,t)−T∞2

(
1

J
√

γ

(
γ

∂T(ξ,η,t)
∂η − β

∂T(ξ,η,t)
∂ξ

))
Γ2

)
ti′

∆t
ρcJ2

(
α(Tti

Si+1,Sj − 2Tti
Si,Sj + Tti

Si−1,Sj)

−2β
1
4
(Tti

Si+1,Sj+1 − Tti
Si−1,Sj+1 − Tti

Si+1,Sj−1 + Tti
Si−1,Sj−1) + γ(Tti

Si,Sj+1 − 2Tti
Si,Sj + Tti

Si,Sj−1)

) (24)

It can be seen that all sensitivity coefficients ∂Te(Si,Sj,ti)
∂h2(ti′ )

can be computed during the
transient solution of the direct heat conduction equation. The sensitivity matrix Ja can be
explicitly written as

Jah2(t) =



∂Te(Si,Sj,t1)
∂h2(t1)

∂Te(Si,Sj,t1)
∂h2(t2)

∂Te(Si,Sj,t1)
∂h2(t3)

. . . ∂Te(Si,Sj,t1)
∂h2(tr)

∂Te(Si,Sj,t2)
∂h2(t1)

∂Te(Si,Sj,t2)
∂h2(t2)

∂Te(Si,Sj,t2)
∂h2(t3)

. . . ∂Te(Si,Sj,t2)
∂h2(tr)

∂Te(Si,Sj,t3)
∂h2(t1)

∂Te(Si,Sj,t3)
∂h2(t2)

∂Te(Si,Sj,t3)
∂h2(t3)

. . . ∂Te(Si,Sj,t3)
∂h2(tr)

...
...

...
. . .

...
∂Te(Si,Sj,tr)

∂h2(t1)
∂Te(Si,Sj,tr)

∂h2(t2)
∂Te(Si,Sj,tr)

∂h2(t3)
. . . ∂Te(Si,Sj,tr)

∂h2(tr)


r×r

(25)

We know that the temperature estimated at any time is independent of a yet-to-occur
future heat transfer coefficient component [11,19] which gives rise to a lower-triangular
sensitivity matrix. That is, for i′ > i (the terms above the main diagonal of the sensitivity
matrix), ∂Te(Si,Sj,ti)

∂h2(ti′ )
= 0. Thus, we get

Jah2(t) =



∂Te(Si,Sj,t1)
∂h2(t1)

0 0 . . . 0

∂Te(Si,Sj,t2)
∂h2(t1)

∂Te(Si,Sj,t2)
∂h2(t2)

0 . . . 0

∂Te(Si,Sj,t3)
∂h2(t1)

∂Te(Si,Sj,t3)
∂h2(t2)

∂Te(Si,Sj,t3)
∂h2(t3)

. . . 0
...

∂Te(Si,Sj,tr)
∂h2(t1)

...
∂Te(Si,Sj,tr)

∂h2(t2)

...
∂Te(Si,Sj,tr)

∂h2(t3)

. . .
. . .

...
∂Te(Si,Sj,tr)

∂h2(tr)


r×r

(26)

3.3. The Steepest-Descent Method

The steepest-descent optimization method is used in this study to minimize the
objective function given by Equation (18) by searching along the direction of steepest
descent d(k) using a search step length β(k).

h2
(k+1) = h2

(k) + β(k)d(k) (27)

The negative of the gradient direction ∇J(k) denotes the direction of steepest descent
d(k). Thus,

d(k) = −∇J(k) (28)
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In the expression h2
(k+1) = h2

(k) + β(k)d(k) = h2
(k) − β(k)∇J(k), the search step-

length β(k) > 0 is given as follows [12]

β(k) = − [Ja(k)d(k)]
T
[Te − Tm]

[Ja(k)d(k)]
T
[Ja(k)d(k)]

(29)

Optimization Algorithm

The proposed numerical procedure to estimate the time-dependent heat transfer
coefficient at the boundary surface Γ2, h2(t), can be summarized as follows:

1. Measure the temperatures at the sensor place SSi,Sj and the time ti (i = 1, . . . , r),
Tm(Si, Sj, ti).

2. Solve the direct problem to obtain the temperature values at the sensor place and the
time ti (i = 1, . . . , r), Te(Si, Sj, ti), through solving Equations (7)–(13).

3. Compute the objective function value (J(k)) using Equation (18).
4. If value of the objective function obtained in step 3 is less than the specified stopping

criterion, the optimization is finished. Otherwise, go to step 5.
5. Compute the sensitivity matrix Jah2(t) from Equation (26), the gradient direction∇J(k)

from Equation (19), the direction of descent d(k) from Equation (28), and the search
step-length β(k) from Equation (29).

6. Update h2 from Equation (27) and set the next iteration (k = k + 1) and return to the
step 2.

3.4. Stopping Criterion

The minimization process can be terminated if

J(k) < ε (30)

where ε is chosen based on obtaining stable and appropriate results. In this study, when
there are no measurement errors, ε = 10−6. However, if the temperature measurements
contain errors, then the discrepancy principle is used to stop the iterative procedure and
obtain stable results. In this case,

ε = rσ2 (31)

where σ is the standard deviation of the measurement errors [17] and is assumed constant
in this study (σ = 0.001 and σ = 0.005). Here, the measured temperatures containing
random errors, Tmeas(Si, Sj, ti), (i = 1, . . . , r), are generated by adding an error term ωσ to
the exact temperatures Texact(Si, Sj, ti) to give

Tmeas(Si, Sj, ti) = Texact(Si, Sj, ti) + ωσ (32)

where ω is a random variable with normal (Gaussian) distribution, zero mean, and unitary
standard deviation. Assuming 99% confidence for the measured temperature, ω lies in the
range −2.576 ≤ ω ≤ 2.576 and it is randomly generated by using MATLAB.

4. Results

A test case with three different complicated functional forms of variation of the
heat transfer coefficient with time is presented to investigate the accuracy, efficiency, and
robustness of the proposed sensitivity analysis method to estimate the time-dependent
heat transfer coefficient on part of the boundary of a heat conducting body. Initially the
heat transfer coefficient is assumed to be known, the transient heat conduction problem is
then solved to calculate the temperature at the sensor place at times ti (i = 1, . . . , r). Then,
the calculated temperatures are used as simulated measured ones to recover the initially used
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heat transfer coefficient. The three different forms of timewise variation of the heat transfer
coefficient considered are as follows (Figures 2–4)

h(1)2 (t) =



12, 0 ≤ t < 100 s

8, 100 ≤ t < 200 s
16− 8

300− 200
(t− 200) + 8, 200 ≤ t ≤ 300 s

10− 16
400− 300

(t− 300) + 16, 300 < t ≤ 400 s

10, 400 < t ≤ 500 s

11, 500 < t ≤ 600 s

h(2)2 (t) = 10 + log(t0.5) sin(
t
6
) + t0.45

and h(3)2 (t) which is an arbitrary waveform generated in MATLAB used here to model the
variation of the heat transfer coefficient with time.
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Table 1. Data used for the heat conduction problem (the body is made of stainless steel (type 304) [20]).

.
q (

W
m2 ) kT (

W
m·◦C ) ρ (

kg
m3 ) c (

J
kg·◦C ) h2 (

W
m2·◦C ) hi (

W
m2·◦C ),

i = 3, 4

T∞i (
◦C),

i = 2, 3, 4

2000 + 1000 sin(
πt
180

) 14.9 7900 477 h(1)2 (t), h(2)2 (t), h(3)2 (t) 5 30

In all simulations in this study, the heat conducting body is meshed using a grid size of
M × N = 40 × 40, the temperature measurement sensor is placed at node

(Si, Sj) = (
M
2

, N − 3) = (20, 37) (close to the boundary subject to convective heat transfer
with the convective heat transfer coefficient h2 to obtain sensible sensitivity coefficients)
(Figure 5), the initial temperature is T(x, y, 0) = T0(x, y) = 20 ◦C, the final time is tr = 600 s,
and the time step is ∆t = 0.1 s. Thus, the number of transient readings of the single sensor

S is r =
tr

∆t
=

600 s
0.1 s

= 6000. This means that that the number of unknown parameters
is 6000. Thus, the estimation of such a large number of unknown parameters using the
parameter estimation approach commonly used in the literature is not feasible. However,
using the proposed sensitivity analysis, one can handle the estimation of the large number
of unknown parameters accurately and efficiently. In this study, two different measurement
errors of σ = 0.001 and σ = 0.005 are considered. The stopping criteria for the test case
with the following measurement errors are

σ = 0.001⇒ ε = σ2r = 0.0012(6000) = 0.006

σ = 0.005⇒ ε = σ2r = 0.0052(6000) = 0.15

As the size of Jacobian matrix is r× r, we will deal in this study with a Jacobian matrix
of size 6000× 6000. Once the temperature at the sensor place is obtained at the time ti,
the elements of the Jacobian matrix can be calculated during the transient solution using
the obtained expression for the sensitivity coefficients; that is, during the solution of the

direct problem, the terms TkT (i, 1) =
∂Te(Si, Sj, ti)

∂kT
, i = 1, . . . , r and h2kT

(j, 1) =
∂h2(tj)

∂kT
,
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j = 1, . . . , r are computed from Equations (21) and (23), respectively, and then the sensitivity
coefficients can be obtained using the following pseudo-code

do i = 1, r

do j = 1, r

if(i .LT .j)then

Ja(i, j) = 0.0

else

Ja(i, j) =
TkT(i, 1)
h2kT

(j, 1)

endif

enddo

enddo

Initially, the implementation of the direct problem solver is validated with the results
obtained from the commercial finite element software COMSOL. To do so, using the data
given in Table 1, h(2)2 , and the body shown in Figure 5, the temperature distribution in the
body is calculated by the two methods (our finite-difference explicit code, Equation (16),
using two different time steps of 0.1 and 0.001 s and the finite element software COMSOL)
which is shown in Figure 6. Moreover, the temperature history of the place of the sensor,

S(
M
2

, N − 3), obtained by both methods is shown in Figure 7. The comparison between
the results reveals a very good agreement hereby verifying the correct implementation of
the explicit solver.
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Figure 7. Comparison of temperature history at the sensor location, S(
M
2

, N − 3), obtained from the explicit solver using
two different time steps and the finite-element software COMSOL. The temperature history using the time step of 0.1 s is
used as simulated measured temperatures in inverse analysis.

In this inverse heat conduction problem, three different and complicated functional
forms of timewise variations (including the variations which are difficult to be recovered
by an inverse analysis such as discontinuities and sharp corners [12]) for the heat transfer
coefficient are chosen to examine the accuracy, efficiency, and robustness of the inverse
analysis presented in this study. A comparison of the initial (guessed), final, and desired
heat transfer coefficients is shown in Figures 8a, 9a and 10a (for the case of no measure-
ment error, σ = 0), Figures 8c, 9c and 10c (for the measurement error of σ = 0.001), and
Figures 8e, 9e and 10e (for the measurement error of σ = 0.005). By comparing the desired
and final functional forms shown in the above figures, it can be seen that the desired
functional forms are recovered accurately which implies that the inverse analysis is not
strongly affected by the errors involved in the temperature measurements due to the accu-
racy of the proposed sensitivity analysis scheme. When measurement errors exist, some
oscillatory behaviors are observed around the exact values due to the ill-posed nature
of the inverse heat transfer problem. The convergence histories of the objective function
for the three functional forms of interest are shown in Figures 8b, 9b and 10b (for the case
of no measurement error, σ = 0), Figures 8d, 9d and 10d (for the measurement error of
σ = 0.001), and Figures 8f, 9f and 10f (for the measurement error of σ = 0.005). The details
of the results, including the initial and desired values for the unknown time-dependent heat
transfer coefficient, the initial and final values of the objective function, and the number
of iterations required to reach the solutions are given in Table 2. The computation time
for each iteration (the direct and inverse solutions) is about 4 s. In spite of large unknown
variables (6000 in the test case) and large final time, tr = 600 s, this short computation time
confirms that the employed inverse analysis based on the proposed sensitivity analysis is
very efficient. The results are obtained by a FORTRAN compiler and computations are run
on a PC with Intel Core i5 and 6G RAM.
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Figure 8. Estimation of the time-dependent heat transfer coefficient h(1)2 using an initial guess h2 initial (t) = 10.0 (
W

m2 · ◦C ) and

objective function versus iteration number for cases of no measurement error (a,b) and measurement error of σ = 0.001 (c,d),
and σ = 0.005 (e,f).
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Figure 9. Estimation of the time-dependent heat transfer coefficient h(2)2 using an initial guess h2 initial (t) = 25.0 (
W

m2 · ◦C ) and

objective function versus iteration number for cases of no measurement error (a,b) and measurement error of σ = 0.001 (c,d),
and σ = 0.005 (e,f).
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Figure 10. Estimation of the time-dependent heat transfer coefficient h(3)2 using an initial guess h2 initial (t) = 12.0 (
W

m2 · ◦C )

and objective function versus iteration number for cases of no measurement error (a,b) and measurement error of
σ = 0.001 (c,d), and σ = 0.005 (e,f).
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Table 2. A summary of results for the estimation of the time-dependent heat transfer coefficient.

Functional
Form

Initial
Guess, h2initial

Temperature
Measurement

Error, σ

Initial Value
of Objective

Function

Final Value
of Objective

Function

Number of
Iterations

h(1)2
10 σ = 0.0 3.50 9.99× 10−7 3654

(~244 min)

h(1)2
10 σ = 0.001 3.51 0.006 490

(~33 min)

h(1)2
10 σ = 0.005 3.65 0.15 217

(~14 min)

h(2)2
25 σ = 0.0 43.14 7.90× 10−7 1037

(~69 min)

h(2)2
25 σ = 0.001 43.14 0.006 487

(~32 min)

h(2)2
25 σ = 0.005 43.26 0.15 371

(~25 min)

h(3)2
12 σ = 0.0 34.28 6.95× 10−7 948

(~63 min)

h(3)2
12 σ = 0.001 34.28 0.006 387

(~26 min)

h(3)2
12 σ = 0.005 34.42 0.15 197

(~13 min)

From the above figures, we can also see that the estimated heat transfer coefficient
deviates from the exact one in a neighborhood of tr and approaches the initially guessed
heat transfer coefficient. The mathematical reason is that by approaching the final time
tr, the number of the zero elements in the column vectors of the sensitivity matrix Ja also
increases so that there exists only one nonzero element in the last column vector because
the sensitivity matrix is a lower-triangular matrix (see Equation (26)). Thus, the last column
vector can be written as 

0
0
0
...
0

∂Te(Si, Sj, tr)

∂h2(tr)


(33)

From Equation (19), (
∂J

∂h2
= 2JaT[Te − Tm]), we can write the gradient of the objective

function J with respect to h2 at the final time tr as

∂J
∂h2(tr)

= 2



0
0
0
...
0

∂Te(Si, Sj, tr)

∂h2(tr)



T

Te(Si, Sj, t1)− Tm(Si, Sj, t1)

Te(Si, Sj, t2)− Tm(Si, Sj, t2)

Te(Si, Sj, t3)− Tm(Si, Sj, t3)

...
Te(Si, Sj, tr−1)− Tm(Si, Sj, tr−1)

Te(Si, Sj, tr)− Tm(Si, Sj, tr)


= 2

∂Te(Si, Sj, tr)

∂h2(tr)
[Te(Si, Sj, tr)− Tm(Si, Sj, tr)] (34)

which is a very small number. Substituting a very small value for ∇J(k)h2(tr)
into Equation

(28), d(k)h2(tr)
= −∇J(k)h2(tr)

, results in a very small value for d(k)h2(tr)
. Likewise, substituting a

very small number for d(k)h2(tr)
into Equation (27), h2(tr)

(k+1) = h2(tr)
(k) + β(k)d(k)h2(tr)

, results

in h2(tr)
(k+1) ≈ h2(tr)

(k), as observed. In other words, by approaching the final time tr,
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there is no significant modification in the value of h2 during the minimization process
and the heat transfer coefficient retains its initially guessed value until the end of the
minimization process.

5. Conclusions

Based on explicit expressions, an accurate and efficient sensitivity analysis scheme
was proposed to estimate the unknown functional form of a time-dependent heat transfer
coefficient applied on part of the boundary of an irregular heat conducting body subjected
to specified initial and boundary conditions through transient readings of a single sensor
placed inside the irregular body. Since there was no prior information available on the
functional form of the variable to be estimated, the commonly used method to address
this inverse heat conduction problem was based on the function estimation approach.
However, here a parameter estimation approach was proposed to estimate the unknown
functional form accurately and efficiently. As the body geometry was general (irregular),
the physical domain was mapped onto a regular computational domain in order to take
advantage of the ease of implementation of the finite-difference method to explicitly solve
the transient heat conduction equation and associated boundary conditions. The chain
rule was used to relate the sensor temperature and the time-dependent heat transfer
coefficient applied on the part of the body boundary, the two ingredients of the sensitivity
coefficients. Formulating this way, all sensitivity coefficients could be computed during the
transient solution of the direct heat conduction problem without the need for solving the
sensitivity and adjoint equations. The steepest-descent method with a stopping criterion
specified by the discrepancy principle was used to minimize the objective function and
reach the solution accurately. The accuracy, efficiency, and robustness of the inverse analysis
were presented through considering three different complicated functional forms. As a
future study, more challenging problems of heat conduction in materials with temperature-
dependent or space-dependent thermal conductivity (in functionally graded materials,
for instance) may be considered. In this study, the transient heat transfer equation (direct
solution) was solved by the explicit method; the feasibility of derivation of the sensitivity
coefficients using an implicit method needs to be investigated.
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Nomenclature

c specific heat (
J

kg·◦C )

d(k) direction of steepest descent

h heat transfer coefficient (
W

m2·◦C )

kT thermal conductivity of the solid body (
W

m·◦C )

J objective function
J Jacobian of transformation
Ja Jacobian (sensitivity) matrix
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.
q heat flux (

W
m2 )

S sensor
T temperature (◦C)
Te estimated temperature (◦C)
Tm measured temperature (◦C)
T0 initial temperature (◦C)
T∞ ambient temperature (◦C)
t time (s)
x, y Cartesian coordinates in the physical domain
α, β, γ metric coefficients in two-dimensional elliptic grid generation
β(k) search step-length at iteration k
ξ, η Cartesian coordinates in the computational domain
Γ boundary
Ω domain (heat-conducting body)

ρ density (
kg
m3 )

σ standard deviation of the measurement error
ε stopping criterion
ω random variable
r number of time steps
k iteration number
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