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Abstract

We shed light on how the price explosivity characterising Bitcoin and other major cryptocurrencies

is triggered, by employing the Quantile Self-Exciting Threshold Autoregressive (QSETAR) model.

Our results for Bitcoin, Ripple, and Stellar reveal that the explosive behaviour originates from the

extreme upper tails of the return distributions following a price increase in the preceding day. We

do not find evidence of explositivity in the price of Litecoin.
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1 Introduction

Much has been written about Bitcoin – and other cryptocurrencies – since its inception in 2008.

As the related markets keep developing and maturing, it is important to delve more deeply the

dynamics characterising their functioning (Katsiampa et al. 2019). For instance, despite the fact

that Bitcoin and other cryptocurrencies have become increasingly popular, their price behaviour

– still extremely volatile – does not seem to have been entirely comprehended as of yet (King &

Koutmos 2020).

During the past three years, cryptocurrency enthusiasts witnessed a number of strong rallies

in the Bitcoin markets. For example, the first rally started sometime in the beginning of October

2017 when the price of Bitcoin per US dollar (BTC/USD) rose sharply from around $4,000 to

about $20,000 in mid-December – an increase of approximately 440% in a space of two and a

half months.1 After the spectacular rise, BTC/USD steadily marched downward to reach its

lowest point of just above $3,200. Around the end of March 2019, the currency unexpectedly

staged a comeback. The BTC/USD soared to about $12,000 around August from approximately

$4,000 – an increase of roughly 300%. During the periods of these two powerful market rallies,

the Bitcoin market saw no fewer than 10 days of very large positive price jumps: daily returns

of 20.34% realised on 7th December 2017 and 16.72% observed on 2nd April 2019, for example.2

The “bubble-like” and “explosive” behaviour of BTC/USD, clearly illustrated in Figure 1, might

be ascribed to the relative newness of the cryptocurrency markets and the consequent appeal

that this generates on speculators (Bouri et al. 2019).

Originally designed to be an innovative and decentralised method of payment free from central

banks’ intervention, the excitement which Bitcoin sparked triggered off debates on whether

it should be considered as a speculative vehicle (Baur et al. 2018) or an asset class to hold

1The holding period return is equivalent to around 3,200% on an annualised basis.
2It is worth noting that our sample ends in September 2019, which is when we started working on this project.

At the time of writing, we were aware of the most recent and still ongoing rallies in the Bitcoin markets. These
rallies had started approximately in December 2020 and had pushed BTC/USD up to just over $40,000 in January
2021, which is the all-time high. This period is not included in our analysis.
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for hedging or diversification purposes (Panagiotidis et al. 2019). Besides that, scholars have

also devoted particular attention to research on a number of other themes regarding Bitcoin

and cryptocurrencies in general, such as volatility (Katsiampa 2017, Baur & Dimpfl 2018),

volatility spillovers (Ji et al. 2019, Koutmos 2018, Corbet, Meegan, Larkin, Lucey & Yarovaya

2018), price jump risk (Chaim & Laurini 2018, Scaillet et al. 2018, Gronwald 2019), tail risk

(Gkillas & Katsiampa 2018, Borri 2019), technical trading (Hudson & Urquhart 2021), herding

and feedback trading (King & Koutmos 2020), price efficiency (Urquhart 2016, Nadarajah &

Chu 2017, Bariviera 2017, Khuntia & Pattanayak 2018) and, more broadly, the importance

of information in market activity (Katsiampa et al. 2020). While much has been written on

the inefficiency and on the exuberance of the cryptocurrency markets, more investigations are

needed to study how observed “bubble-like” behaviours are brought about.

A number of scholars have looked into the explosivity theme characterizing the exuberance in

cryptocurrency prices. More specifically, Corbet, Lucey & Yarovaya (2018) analyse the underline

fundamentals (i.e., blockchain position, hashrate, and liquidity) that can significantly thrive

price growth, and then employ such measures to detect and datestamp Bitcoin and Ethereum

bubbles. The authors observe the existence of short periods in which each fundamental clearly

impacts on the price formation, and nevertheless highlight that such effects vanish rapidly.

Fry (2018) corroborates the existence of bubbles in the Bitcoin and Ethereum markets, and

warns that booms and bust can occur even in the absence of a clear bubble. The presence of

bubbles in the Bitcoin market is further supported by Cretarola & Figà-Talamanca (2019) who

attribute their existence to the correlation between market attention (as proxied by the Google

Search Volume Index) and Bitcoin returns. Cagli (2019) widens his sample and includes some

more altcoins in order to detect potential price explosivity and pairwise co-movements in their

explosive behaviour. He finds all cryptocurrencies, except one, to show explosivity, as well as

a number of co-explosive relationships in some altcoins pairs. Bouri et al. (2019) take a step

further and observe that the explosivity in one cryptocurrency is likely due to the existence
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of explosive dynamics in other cryptocurrencies. They demonstrate that co-explosivity is not

necessarily driven by the size of the cryptocurrencies. Finally, a recent paper by Gronwald (2019)

reveals overwhelming evidence that cryptocurrency prices are characterised by (temporary)

explosiveness and confirms that some cryptocurrency prices are explosive even if expressed in

terms of Bitcoin and not, as conventionally, in USD. Overall, while in general scholars and

experts confirm evidence of price explosivity (Corbet, Lucey & Yarovaya 2018, Fry 2018, Bouri

et al. 2019, Cagli 2019), none of them however shed light on how the behaviour is brought about.

In this article, using the Quantile Self-Exciting Threshold Autoregressive (QSETAR) model,

we characterise the bubble-like behaviour in the prices of Bitcoin and three other major cryptocur-

rencies: Litecoin, Ripple, and Stellar. The QSETAR model of Cai & Stander (2008) specifies

the cryptocurrency return at the different quantiles of the return distribution to follow different

autoregressive processes according to the pre-defined thresholds. Specifically, our framework

examines how the cryptocurrency markets react to past price information when returns are

located at the different quantiles with added flexibility that allows the reaction to vary depending

on the state in which the markets were previously. The technique captures a more realistic

trading behaviour: cryptocurrency traders enter the markets after the market direction has

become clear. Evidence of price explosivity uncovered in this paper goes beyond the findings

documented in Corbet, Lucey & Yarovaya (2018), Fry (2018), Cagli (2019).

Our empirical results for Bitcoin, Ripple, and Stellar show that the explosive behaviour

originates only from the extreme right tail of the return distribution following a price increase in

the preceding day. Taking Bitcoin as an example, we find that when the return is located at the

95th percentile after the return on Bitcoin turns positive on the preceding day, a rise of 1% in

the return is estimated to push the price up by a further 1.30%. We do not find evidence of

explosivity in the price of Litecoin, however.

In the following section, we present an exposition of the QSETAR model of Cai & Stander

(2008). Sections 3 and 4 discuss our sample and the empirical results, respectively. Section 5
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concludes.

2 Methodology

A general quantile self-exciting threshold autogressive (QSETAR) time series model (Cai &

Stander 2008) is defined by

qτ
rt|rt−1

=
m+1∑
i=1

(βτ
i0 + βτ

i1rt−1 + . . . + βτ
iprt−p)I[rt−dτ ∈Ωi] (1)

where Ωi = (wi−1, wi], i = 1, . . . , m, and Ωm+1 = (wm, wm+1), where m ≥ 0 and −∞ = w0 <

w1 < · · · < wm+1 = ∞ are thresholds, p is the order of the model, rt−1 = (rt−1, rt−2, . . . , r0)T ,

βτ
ij for j = 0, 1, . . . , p and dτ are model parameters depending on τ . Moreover, τ ∈ (0, 1) is

the probability such that P (rt < qτ
rt|rt−1

|rt−1) = τ and dτ is the delay parameter of the model.

Therefore, qτ
rt|rt−1

is the τth conditional quantile of the distribution of rt.

Let βτ = (βτ
10, . . . , βτ

1p, . . . , βτ
m+10, . . . , βτ

m+1p, dτ )T . Then βτ may be estimated by solving

the following minimisation problem (Koenker 2005):

min
βτ

n∑
k+1

ρτ (ut) (2)

where ρτ (ut) = ut(τ − I[ut<0]), and

ut = rt − qτ
rt|rt−1

= rt −
m+1∑
i=1

(
βτ

i0 + βτ
i1rt−1 + · · · + βτ

iprt−p

)
I[rt−dτ ∈Ωi] ,

in which k = max{p, dmax} and dmax is the maximum value of the delay parameter that one

would like to consider. It is worth noting that Yu et al. (2010) suggest that for threshold GARCH

models, dmax = 3 would be a reasonable choice. In this paper, we let dmax = 5 to cover a wider

range of possible values of the delay parameter.

Since the delay parameter dτ is an integer, it is not straightforward to solve the minimisation
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problem on the parameter space. However, it is worth noting that minimizing Eq. (2) is

equivalent to maximising

ℓ(rk+1, . . . , rn | βτ , rk) = τn−k(1 − τ)n−ke
−

∑n

t=k+1 ρτ (ut)
. (3)

This expression can be viewed as the likelihood function of rk+1, rk+2, . . . , rn given rk =

(rk, rk−1, . . . , r0)⊤ if we assume that rt follows the threshold model

rt =
m+1∑
i=1

(
βτ

i0 + βτ
i1rt−1 + · · · + βτ

iprt−p + ϵτ
t

)
I[rt−dτ ∈Ωi] ,

where ϵτ
t are iid asymmetric Laplace random variables with density function f(ϵ) = τ(1 −

τ)e−ρτ (ϵ) . Therefore, the parameter estimates obtained by maximising the likelihood function,

shown in Eq. (3), are the same as those obtained by minimising Eq. (2).

Note that the involvement of the delay parameter dτ will also make it difficult to solve the

maximisation problem on the parameter space straightforward. We therefore adopt the Bayesian

approach of Cai & Stander (2008) for the parameter estimation, whereby the posterior density

function is given by

π(βτ |r) ∝ ℓ(rk+1, . . . , rn|βτ , rk)π(βτ ) = τn−k(1 − τ)n−ke
−

∑n

t=k+1 ρτ (ut)
π(βτ )

where π(βτ ) is the prior density function.

The prior density function π(βτ ) allows us to make use of possible prior information about

the parameters when estimating parameters. Cai & Stander (2008) showed that the posterior

density function is well defined on the parameter space for any prior density function. This is

important because it guarantees that a Markov chain Monte Carlo (MCMC) method can be

used for parameter estimation.

Following the work of Cai & Stander (2008), we employ a flat prior for the parameters and
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hence no prior information about the parameters is used for the parameter estimation. This is in

fact one of the advantages of their method as in reality we usually do not have any information

on the parameters. The basic idea of this method is as follows. First, given τ and the current

parameter value βτ , the next possible parameter value, denoted by β′, is proposed in which the

delay parameter d′ is simulated from a uniform distribution on {1, . . . , dmax}, and any other

element in β′ is simulated from a normal distribution, centered at its current value given in βτ .

Then, the proposed value β′ is accepted as the next parameter value with a probability given

by min
{

π(β′|r)
π(βτ |r) , 1

}
. By repeating these steps multiple times, a sequence of model parameters

can be generated. The Markov chain theory guarantees that the equilibrium distribution of the

Markov chain is the posterior distribution defined by π(βτ |r).3

3 Data

This article focuses on four cryptocurrencies, currently actively traded in the markets: Bitcoin,

Litecoin, Ripple, and Stellar. In selecting the cryptocurrencies to be included in our investigation,

we adopt the following criteria. First, based on the data on coinmarketcap.com as of 19/9/2019,

we focus on the top ten most capitalised crytpocurrencies which cover about 89% of the entire

crytpocurrency markets. Second, to ensure a sufficiently long time series, we choose only the

cryptocurrencies that have been actively traded during the last five years. After the filtering

process, we end up with four cryptocurrencies: Bitcoin, Litecoin, Ripple, and Stellar.

Daily dollar returns on the cryptocurrencies are computed using price data collected either

from coinmarketcap.com or www.CryptoCompare.com. Specifically, we rely on coinmarket-

cap.com to gather data for Litecoin, Ripple, and Stellar because this website provides cryptocur-

rency prices as the volume weighted average of hundreds cross currency pairs converted to USD

(Wei 2018). The downside of it, however, is that prices are only available from April 2013, which

is not ideal for Bitcoin provided that this pioneer cryptocurrency started being traded early

3See Brooks (1998), for example.
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in 2010. Therefore, limited to this case, we rely on www.CryptoCompare.com as the website

offers daily information starting from 17/7/2010 – that is when Bitcoin was first traded. The

sample for each of the cryptocurrencies thus starts from the first available daily observation and

ends on 19/9/2019. More specifically, our samples for Bitcoin, Litecoin, Ripple, and Stellar start

from 17/7/2010, 28/4/2013, 4/8/2013, and 5/8/2014, respectively. Table 1 shows the number of

observations available for each of the sampled cryptocurrencies along with some commonly used

summary statistics. According to the reported statistics, Bitcoin has the highest daily mean

return of around 0.4% and is the only cryptocurrency in the sample with positive median. The

skewness and the kurtosis measures for all the cryptocurrencies in the sample point to the return

distributions that are right-skewed and fat-tailed. Bitcoin, once again, has the highest values of

both skewness and kurtosis as well as the largest maximum and the smallest minimum values.

Complementing the descriptive statistics in Table 1, Table 2 reports the empirical distributions

of returns, for each cryptocurrency, at different quantiles.

4 Empirical Analysis & Results

We estimate Eq. (1), setting m = 1, p = 1, . . . , 7, dmax = 5, τ = 0.05, 0.25, 0.50, 0.75, 0.95. We fix

m = 1 because we are only interested in the conditional quantile function of the cryptocurrency

return process when, subject to the delay parameter, the past return is located either above

or below a pre-defined threshold. For each cryptocurrency, we employ two threshold values in

our analysis: w1 = 0 and the cryptocurrency’s median return. The threshold of zero allows

the empirical analysis to mimic the real-world trading behaviour where cryptocurrency traders

pay attention to whether or not the markets were positive or negative in the previous day.4 In

addition, we also experiment with the cryptocurrency’s median return as a threshold because

it is conventional for researchers employing the quantile regression technique to estimate the

4This approach has earlier been adopted by Cai & Stander (2008) who investigate the time series property of
the US GNP using the QSETAR model, also setting m = 1. In their application, the US economy is assumed to
behave in a different manner after contraction and expansion.
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response of the dependent variable to the covariates when the dependent variable is located at

the median.

For each value of p, and each quantile level τ , where τ = 0.05, 0.25, 0.50, 0.75, 0.95, we run –

for each cryptocurrency – the MCMC estimation method from which we obtain, in total, 140

estimated models. For each estimated model, we collect 250 posterior samples for each parameter

after a burn-in period. Then, for the delay parameter, we estimate its value by using the mode

of its posterior samples and, for other parameters, we estimate their values by using the mean of

the respective posterior samples. We also calculate the corresponding 95% credible interval using

the 2.5% and 97.5% quantiles of these posterior samples. The credible interval tells us that the

probability that the parameter of the model taking values within the interval is 0.95. Hence, if

the interval contains number 0, then we can say that the parameter is not significant. Moreover,

for each estimated model, we also obtain the AIC statistics, according to which we find that the

best fitted models – for both thresholds and for all the cryptocurrencies investigated – are the

ones with p = 1 (see, in this regard, Tables 3 and 4). This preliminary check, therefore, leads us

to formalize the following model specification:

qτ
rt|rt−1

=
2∑

i=1
(βτ

i0 + βτ
i1rt−1) I[rt−dτ ∈Ωi]. (4)

We examine the model fit by employing the following procedures. Using the fitted models, we

obtained the estimated quantiles at levels τ = 0.05, 0.25, 0.5, 0.75, 0.95. In Figure 2, we present

the observed return of the cryptocurrency, along with the estimated quantiles at the 5% and the

95% levels in black, green, and yellow, respectively. It can be seen that these quantile curves

reflect the evolution of each cryptocurrency in our sample. In particular, Figure 2 demonstrates

that 5% of the return realisation for each cryptocurrency in the sample, as represented by the

black line, are expected to be higher than the yellow line and 5% of them are expected to be

lower than the green line.
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To test this, we calculate the percentages of the observed cryptocurrency that are under

each of the five estimated quantile curves. We then calculate the mean squared errors (MSE)

to measure the differences between these percentages and the actual τ value. We find that the

MSE values are given by 0.00036, 0.00094, 0.00148 and 0.00265 for Bitcoin, Litecoin, Ripple and

Stellar, respectively – suggesting that these models explain the data well.

We report our estimation results in Tables 5, 6, and 7. For each τ value, the means of the

posterior samples of β11 and β21 are reported in the top row, and the associated 95% credible

intervals are reported in the corresponding second and third rows. According to the results

reported in Tables 5 and 6, we find no evidence of the explosive price behaviour in the Litecoin

market while the evidence exists in the markets of the other cryptocurrencies, depending on the

value of w1. When w1 = 0, the means of the posterior distributions of β11 and β21 for Bitcoin

and Ripple, seen in Table 5, indicate that the explosive price behaviour is triggered when the

rally, following the previous day’s price increase, is strong enough for the returns to reach the

95th quantile. As an example, the value of β21 of 1.2916 for Bitcoin at τ = 0.95, reported in

Table 5, indicates that one day after the return on Bitcoin turns positive, an increase of 1% in

the return – when the return is located at the 95th percentile – results in a further increase in

return of around 1.30%.5 When the threshold is the median return, the findings reported in

Table 6 suggest that only Ripple and Stellar exhibit the explosive price behaviour at the 95th

quantile one day after the previous day’s return crosses the median return from below. We find

no evidence of explosivity in the Bitcoin nor the Litecoin markets when the value of w1 is set to

be the cryptocurrency’s median return.

Our empirical analysis complements and confirms previous research on price explosivity and

co-explosivity by Bouri et al. (2019), Cagli (2019), and Gronwald (2020). While both Bouri et al.

(2019) and Cagli (2019) report the existence of price explosivity and co-explovisivity among

major cryptocurrencies, their papers stop short of examining the trigger behind the explosive

5The estimated value of β21 is statistically significant because the credible interval for β21 does not contain
the value of 0. In other words, the probability for β21 taking positive values is 95%.
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behaviour. Our QSETAR estimation results show that the explosive behaviour is prompted by

strong conviction by the market participants. Following previous day’s price increase, the prices

of Bitcoin and Ripple become explosive when their returns reach 8.71% and 10.43%, respectively.

As for Stellar, the explosive behaviour is triggered only when the return reaches 11.66% and the

previous day’s return cross the median value of around −0.35% from below.

The evidence shows that the explosive price behaviour was triggered in a number of occasions.

To provide a number of examples, we can report that Bitcoin experienced a burst of explosivity

on 22nd and 23rd November 2011, that is one day after the previous day’s return crossed the

threshold of zero (i.e., moving from negative to positive) from −4.8% on 20th November to 5.8%

on 21st November. During the two days between 22nd and 23rd November 2011, the returns

on Bitcoin jumped by around 34%, having reached 15.2% on 22nd November and then rallied

a further 18.7% on 23rd November. Similarly, Ripple showed explosive behaviour from 24th

November 2013, namely one day after the previous day’s return crossed the w1 = 0 threshold,

gaining approximately 112% during the three-day period between 24th and 26th November 2013.

The explosive behaviour of Stellar was triggered on 4th May 2017 when a sharp market rally

occurred one day after the previous day’s return crossed the median return from below, leading

to four consecutive days of price advance which resulted in the holding-period return of over

200%. All of the explosive episodes described share a common trait: it is triggered when the

return reaches the 95th quantile of the return distribution one day after the return crosses the

threshold from below.

Table 7 shows that the delay parameter varies according to the quantile level. Our results

highlight, as well, that the delay parameters are almost identical either when the threshold is

w1 = 0 or the median return. Moreover, when τ = 0.95, we find dτ = 1 for all returns, which

suggests the following: it takes one day after the cryptocurrency return crosses the threshold

(i.e., 0 and the median return, depending on the specification) for the autoregressive coefficient

(i.e,. the market reaction to the previous day’s price information) to switch from β11 to β21 if the
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return crosses the threshold from below and from β21 to β11 if the return crosses the threshold

from above.

To demonstrate the superior performance of the QSETAR model, we compare its coverage

probabilities of the estimated quantiles with those calculated using the conventional SETAR

model whose focus is on the mean return. A good model is expected to deliver the estimated

coverage probabilities of the quantile estimates that are closer to the actual quantile level τ . We

estimate the SETAR model with the same specification as the QSETAR in Eq. (4) as follows:

rt =
2∑

i=1
(βi0 + βi1rt−1 + hiεt) I[rt−1∈Ωi] (5)

where εt ∼ N (0, 1) and h2
i is the conditional variance of rt in the ith regime.

We report the coverage probabilities of the estimated quantiles for both the QSETAR and

the SETAR models in Table 8.6 Our results reveal that the QSETAR model performs better

than the SETAR model according to the the coverage probabilities – especially at the 25th and

the 75th quantiles – and the root-mean-square error (RMSE). Specifically, the RMSE results

also suggest that the QSETAR model outperforms the SETAR model and therefore better suits

the examination of price explosivity in the cryptocurrency markets.

5 Concluding Remarks

In this paper, we characterise the bubble-like behaviour of prices of four major cryptocurrencies

using the QSETAR model of Cai & Stander (2008). The technique is capable of characterising

the behaviour of nonstationary time series with very large, but not necessarily symmetric,

variations. We experiment with two threshold values: the cryptocurrencies’ median returns and

zero. Models for each cryptocurrency in the sample are subject to rigorous diagnostic tests. The

6The coverage probability is estimated as follows. Let qτi
rt|rt−1

be the τith conditional quantile of rt, where
t = 1, ..., n. Let nτi

1 =
∑n

t=1 I[rt ≤ qτi
rt|rt−1

], where I[.] is the indicator function. Then the coverage probability of
the τith quantile estimates is estimated by nτi

1 /n.

12



results show that the QSETAR models fit the data very well and that they outperform the

conventional SETAR model.

Our empirical analysis reveals that the explosive behaviour in the markets for Bitcoin, Ripple,

and Stellar originates from the extreme upper tails of the return distributions. Specifically, our

results suggest that one day following a price increase, explosivity is triggered when the market

rallies are sufficiently strong, putting the cryptocurrency returns in the 95th quantile of the

return distributions. We find no evidence of price explosivity in the markets for Litecoin.

The findings in this article echo concerns raised by researchers such as Gandal et al. (2018)

that cryptocurrency markets appear to be prone to excessive speculation and price manipulation.

The extreme price moves frequently observed in the markets seem to suggest that market

participants behave irrationally, reacting strongly to unanticipated information, thereby causing

unwarranted, sustained periods of strong market rallies. The existence of price explosivity is

perhaps the alluring quality of cryptocurrencies which have attracted investors’ attention. As

rising prices become evident, more cryptocurrency traders joins the rallies, putting upward

pressure on prices, leading to frothy markets.
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Table 1

Summary Statistics of Cryptocurrency Returns

This table reports summary statistics for Bitcoin, Litecoin, Ripple, and Stellar. Our samples for Bitcoin, Litecoin,
Ripple, and Stellar start from 17/7/2010, 28/4/2013, 4/8/2013, and 5/8/2014, respectively. The time series for all
the cryptocurrencies in the sample ends on 19/9/2019.

Bitcoin Litecoin Ripple Stellar

N 3, 351 2, 335 2, 237 1, 871
Mean 0.0037 0.0012 0.0018 0.0019
Median 0.0019 −0.0003 −0.0027 −0.0035
Std. Deviation 0.0665 0.0653 0.0740 0.0769
Skewness 2.9480 1.7170 2.0510 1.9870
Std. Error of Skewness 0.0420 0.0510 0.0520 0.0570
Kurtosis 94.3830 25.2090 29.0410 16.0710
Std. Error of Kurtosis 0.0850 0.1010 0.1030 0.1130
Minimum −0.8488 −0.5139 −0.6163 −0.3664
Maximum 1.4744 0.8290 1.0274 0.7231
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Table 2

Quantiles of Cryptocurrency Returns

This table reports the distributions of returns on Bitcoin, Litecoin, Ripple, and Stellar. We report the return
values at the 5th, 25th, 50th, 75th, and 95th quantiles. Our samples for Bitcoin, Litecoin, Ripple, and Stellar start
from 17/7/2010, 28/4/2013, 4/8/2013, and 5/8/2014, respectively. The time series for all the cryptocurrencies in
the sample ends on 19/9/2019.

τ Bitcoin Litecoin Ripple Stellar

0.05 -0.0770 -0.0839 -0.0923 -0.1024
0.25 -0.0136 -0.0206 -0.0230 -0.0310
0.50 0.0019 -0.0003 -0.0027 -0.0035
0.75 0.0218 0.0194 0.0203 0.0267
0.95 0.0871 0.0912 0.1043 0.1166
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Table 3

AIC statistics when the threshold is w1 = 0

This table shows the AIC statistics – for each quantile τ and p = 1, ..., 7 – when the threshold value is w1 = 0.

Bitcoin
p\τ 0.05 0.25 0.50 0.75 0.95
1 6.502108 7.629882 7.567755 7.982147 7.212924
2 8.516421 9.367684 9.568465 9.864459 9.198823
3 10.739352 11.322411 11.569194 11.858959 11.324587
4 12.599169 13.288983 13.588904 13.699591 13.119390
5 14.579397 15.343937 15.574193 15.739112 15.371966
6 16.498389 17.269221 17.575322 17.725333 17.965440
7 18.643327 19.343978 19.667224 19.781388 19.299285

Litecoin
p\τ 0.05 0.25 0.50 0.75 0.95
1 6.309759 7.177583 7.400427 7.570019 7.029870
2 8.554905 9.103804 9.420087 9.561237 9.343828
3 10.343398 11.113302 11.380647 11.572815 11.497163
4 12.357591 13.088285 13.391061 13.562340 13.110089
5 14.312543 15.135724 15.383583 15.479943 15.243180
6 16.395870 17.121087 17.395170 17.521574 17.428193
7 18.336617 19.099428 19.396694 19.622497 18.999818

Ripple
p\τ 0.05 0.25 0.50 0.75 0.95
1 6.265001 7.203146 7.404664 7.265546 6.544424
2 8.464208 9.069515 9.474161 9.556994 8.581126
3 10.204962 11.175128 11.490708 11.265592 10.597363
4 12.345551 13.077693 13.416451 13.805275 12.715281
5 14.159573 15.114419 15.572170 15.636419 15.634413
6 16.255371 17.217220 17.392986 17.523048 17.328143
7 18.858845 19.083811 19.387955 19.563025 19.472317

Stellar
p\τ 0.05 0.25 0.50 0.75 0.95
1 6.183000 7.056618 7.401042 7.527477 6.734905
2 8.616877 9.045981 9.405205 9.512064 8.667104
3 10.722696 11.076436 11.437971 11.750134 11.187539
4 12.044138 13.079619 13.430794 13.514415 13.465772
5 14.067955 15.092446 15.612555 16.075160 15.087909
6 16.089324 17.158386 17.434216 17.486799 17.358809
7 18.406601 19.038180 19.400287 19.580555 19.544746
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Table 4

AIC statistics when the threshold is the median return

This table shows the AIC statistics – for each quantile τ and p = 1, ..., 7 – when the threshold value w1 is the
median return.

Bitcoin
p\τ 0.05 0.25 0.50 0.75 0.95
1 6.558470 7.401306 7.616606 7.811130 7.237105
2 8.712559 9.377810 9.610050 9.769683 9.469767
3 10.616625 11.374364 11.609519 11.836909 11.562212
4 12.759651 13.365491 13.637782 13.894548 13.662482
5 14.537339 15.315875 15.617206 15.774277 15.434152
6 16.534188 17.319596 17.637874 17.830242 17.402648
7 18.694055 19.332562 19.608678 19.787000 19.311141

Litecoin
p\τ 0.05 0.25 0.50 0.75 0.95
1 6.287696 7.068629 7.438560 7.557180 6.984493
2 8.493792 9.070666 9.356818 9.613444 9.924253
3 10.146881 11.050838 11.356131 11.752736 11.710226
4 12.154898 13.143162 13.355349 13.527987 13.620087
5 14.151685 15.123064 15.401824 15.480751 15.616061
6 16.095184 17.138353 17.359025 17.520704 17.356802
7 18.546042 19.076425 19.369570 19.526664 19.432512

Ripple
p\τ 0.05 0.25 0.50 0.75 0.95
1 6.112647 7.021669 7.350633 7.645379 6.497065
2 8.174058 9.047064 9.397760 9.506547 9.251517
3 10.278312 11.019051 11.348291 11.513425 11.406681
4 12.830842 13.078399 13.350471 13.505912 13.777331
5 14.187123 15.006143 15.373361 15.517410 15.169858
6 16.114265 17.008317 17.344003 17.534641 17.712271
7 18.230105 19.025180 19.526577 19.517259 19.315860

Stellar
p\τ 0.05 0.25 0.50 0.75 0.95
1 6.079600 7.056956 7.356917 7.557868 6.925788
2 8.107468 9.048540 9.409459 9.485658 8.623965
3 9.911982 10.981165 11.357618 11.588873 11.567617
4 11.984077 13.016580 13.357567 13.706924 13.672293
5 14.085852 15.004719 15.436294 15.524615 15.305201
6 16.028472 16.988928 17.352968 17.619626 17.016013
7 18.137357 18.978120 19.447552 19.498815 20.011219
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Table 5

The QSETAR Estimation Results

This table reports the estimated parameter values for the QSETAR model shown in Eq. (4) where p = 1, d = 1,
and w1 = 0. For each value of τ , where τ = 0.05, 0.25, 0.50, 0.75, 0.95, we report the means of the posterior
distributions of parameters β11 and β21 (first row) along with the credible intervals which are shown below the
corresponding mean estimates (second and third rows). Bold font is used to highlight statistical significance.

τ
Bitcoin Litecoin Ripple Stellar

β11 β21 β11 β21 β11 β21 β11 β21

0.05

0.9855 -0.6140 0.4085 -0.4334 0.4761 -0.7138 0.2939 -0.5502

-0.3503 -1.8599 -0.8130 -1.6651 -0.4759 -2.4586 -0.8247 -2.8612
2.7027 0.3126 2.2672 0.4692 2.5605 0.3373 2.2639 0.4234

0.25

0.2623 -0.1867 0.0700 -0.1081 0.0869 -0.1634 -0.0943 -0.1713

-0.3371 -0.7970 -0.5166 -0.5637 -0.4961 -0.6801 -0.6292 -0.7942
1.0691 0.2819 0.7971 0.3213 1.0846 0.3200 0.4969 0.3547

0.50

0.0064 0.0141 -0.0611 -0.0710 -0.0395 0.0087 -0.1284 -0.0594

-0.3996 -0.3174 -0.4470 -0.5079 -0.4890 -0.3332 -0.5955 -0.5000
0.4250 0.4661 0.3938 0.3846 0.3624 0.4690 0.3423 0.4446

0.75

-0.2447 0.3145 -0.2442 0.4009 -0.3373 0.6761 -0.1883 0.3748

-0.9714 -0.2530 -0.8415 -0.3302 -0.9310 -0.1877 -0.7581 -0.3782
0.2869 1.0992 0.4006 1.3946 0.2096 1.7699 0.3187 1.4293

0.95

-0.7315 1.2916 -0.6520 1.0852 -0.8664 1.7142 -0.5724 1.6340

-2.2899 0.0161 -2.2344 -0.3370 -2.5596 0.1047 -2.5536 -0.0525
0.1806 3.4924 0.6113 2.8898 0.4952 3.5153 0.8000 3.7254
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Table 6

The QSETAR Estimation Results

This table reports the estimated parameter values for the QSETAR model shown in Eq. (4) where p = 1, d = 1, and
w1 is the median of the cryptocurrency return distribution. For each value of τ , where τ = 0.05, 0.25, 0.50, 0.75, 0.95,
we report the means of the posterior distributions of parameters β11 and β21 (first row) along with the corresponding
credible intervals which are shown below the corresponding mean estimates (second and third rows). Bold font is
used to highlight statistical significance.

τ
Bitcoin Litecoin Ripple Stellar

β11 β21 β11 β21 β11 β21 β11 β21

0.05

0.8701 -0.5122 0.3414 -0.5104 0.4652 -0.5437 0.2950 -0.4006

-0.2267 -1.5665 -0.9416 -1.9766 -0.7190 -1.6411 -0.8194 -1.5886
2.3418 0.3224 1.9459 0.5003 2.0469 0.2439 2.8161 0.2792

0.25

0.1585 -0.1348 0.0752 -0.1505 0.0370 -0.1550 -0.0831 -0.1703

-0.4028 -0.5866 -0.4801 -0.7362 -0.5007 -0.6360 -0.6592 -0.7836
0.9300 0.2508 0.9163 0.2512 0.7249 0.3089 0.4746 0.3413

0.50

0.0030 -0.0180 -0.0552 -0.0520 -0.0260 -0.0282 -0.1206 -0.0901

-0.4085 -0.4304 -0.4654 -0.5033 -0.4120 -0.4120 -0.6023 -0.5318
0.4114 0.4456 0.3995 0.4097 0.3969 0.3854 0.4409 0.3946

0.75

-0.2447 0.3123 -0.2498 0.3718 -0.2208 0.4323 -0.2096 0.3782

-0.8362 -0.2455 -0.9202 -0.3446 -0.8281 -0.2272 -0.9726 -0.2552
0.3237 0.7988 0.3299 1.1334 0.3664 1.4876 0.3977 1.5732

0.95

-0.8230 1.1721 -0.8410 1.2731 -0.8513 1.7145 -0.8104 1.6691

-2.3601 -0.0422 -3.6114 -0.1570 -2.5309 0.3175 -2.6314 0.1740
0.2966 3.2214 0.4896 3.4577 0.3208 3.6196 0.7097 3.7097
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Table 7

Estimated values of the delay parameter d

This table shows the estimated values of d – when the threshold value is either w1 = 0 (top panel) or the median
return (bottom panel) – for the best estimated models according to the AIC.

w1 = 0
τ Bitcoin Litecoin Ripple Stellar
0.05 1 2 2 2
0.25 2 3 2 3
0.50 3 3 3 3
0.75 2 2 1 2
0.95 1 1 1 1

w1 = median return
τ Bitcoin Litecoin Ripple Stellar
0.05 1 2 2 2
0.25 2 3 2 3
0.50 3 3 3 3
0.75 2 2 2 2
0.95 1 1 1 1
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Table 8

Coverage Probabilities for The Quantile Estimates from QSETAR and SETAR

This table reports the coverage probabilities for the quantile estimates from QSETAR and SETAR, where the
coverage probability is estimated as follows. Let qτi

rt|rt−1
be the τith conditional quantile of rt, where t = 1, ..., n.

Let nτi
1 =

∑n

t=1 I[rt ≤ qτi
rt|rt−1

], where I[.] is the indicator function. Then the coverage probability of the τith
quantile estimates is estimated by nτi

1 /n.

τ 0.05 0.25 0.50 0.75 0.95 RMSE

QSETAR
Bitcoin 0.0358 0.2181 0.5127 0.7660 0.9624 0.0423
Litecoin 0.0313 0.2266 0.5032 0.7807 0.9670 0.0463
Ripple 0.0304 0.2226 0.5150 0.7836 0.9660 0.0524
Stellar 0.0283 0.2261 0.5131 0.7686 0.9679 0.0434

SETAR
Bitcoin 0.0355 0.1197 0.5066 0.8821 0.9660 0.1869
Litecoin 0.0343 0.1422 0.5107 0.8732 0.9649 0.1654
Ripple 0.0322 0.1346 0.5407 0.8703 0.9566 0.1726
Stellar 0.0380 0.1626 0.5257 0.8455 0.9535 0.1326
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Figure 1

Time Series of Prices of Bitcoin, Litecoin, Ripple, and Stellar
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This figure plots the time series of prices of Bitcoin, Litecoin, Ripple, and Stellar. To ensure the readability and
informativeness of the chart, we scale the prices, in a similar fashion to Borri (2019), as follows: we divide Bitcoin
by 1,000, and Litecoin by 10; whereas we multiple both Ripple and Stellar by 10. The sample for each of the
sampled cryptocurrencies starts from the first available daily observation (i.e., 17/7/2010, 28/4/2013, 4/8/2013,
and 5/8/2014, for Bitcoin, Litecoin, Ripple, and Stellar, respectively), until 19/09/2019.
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Figure 2

Estimated Quantile Curves at the 5% and the 95% Quantiles
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Estimated quantile curves at the 5% (green) and 95% (yellow) levels for each cryptocurrency, where the black
curves are the observed cryptocurrency.
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