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Abstract: The utilization of carbon dioxide is a major incentive for the growing field of carbon
capture. Carbon dioxide could be an abundant building block to generate higher-value chemical
products. Herein, we fabricated a porous copper electrode capable of catalyzing the reduction of
carbon dioxide into higher-value products, such as ethylene, ethanol and propanol. We investigated
the formation of the foams under different conditions, not only analyzing their morphological and
crystal structure, but also documenting their performance as a catalyst. In particular, we studied
the response of the foams to CO2 electrolysis, including the effect of urea as a potential additive to
enhance CO2 catalysis. Before electrolysis, the pristine and urea-modified foam copper electrodes
consisted of a mixture of cuboctahedra and dendrites. After 35 min of electrolysis, the cuboctahedra
and dendrites underwent structural rearrangement affecting catalysis performance. We found that
alterations in the morphology, crystallinity and surface composition of the catalyst were conducive to
the deactivation of the copper foams.

Keywords: copper foam; CO2 reduction; electrocatalysis; heterogeneous catalyst; modified electrodes

1. Introduction

As the concentration of carbon dioxide (CO2) in the atmosphere increases daily,
scientists are searching for a way to stem the tide. Carbon capture is becoming ever more
efficient and has recently been commercialized by companies such as Climeworks [1,2]
and Carbon Engineering [3,4]; however, captured CO2 has marginal commercial value
(USD 3–35 per ton) [5,6]. Therefore, research is being carried out on the sustainable
conversion of CO2 into higher-value fuels and related carbon-based products, such as
methane, ethylene and propanol [7–10]. Nevertheless, it is important to note that, currently,
only CO2 obtained through direct air capture, coupled with electrochemical conversion
using renewable energy, can be viewed as sustainable [11].

Carbon dioxide is a stable molecule that commonly only reacts through high kinetic
barriers. Therefore, a catalyst is required to promote these reactions. Copper is an impor-
tant CO2 reduction catalyst due to its unique properties; until 2018, it was the only metal
reported capable of generating higher value products than carbon monoxide (CO) and
formate from CO2 in appreciable quantities [12–15]. Therefore, the use of copper as an elec-
trocatalyst for CO2 reductions is widely extended, employing solid copper surfaces [16–19],
copper foil [20–23], copper nanoparticles [24–26], copper nanocrystals [27–29], or hollow
copper metal–organic framework (MOF) [30–32]. However, frequently, they are sensitive
to minor contaminants present in water or bicarbonate solution [33–36], requiring exten-
sive purification of both the copper surface and reaction medium before electrocatalysis.
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Such pre-treatments are expensive and time-consuming, making the process industrially
unviable. Moreover, a number of performance indicators must be achieved for commer-
cialization, such as 300 mA/cm2 current density, low over-potentials and high faradaic
efficiency, for selected products [37,38].

Copper foams have shown good tolerance against minor contaminants, as they re-
main active without electropolishing or scavenging the reaction solution [34,36,39]. The
fabrication of copper foams has been previously reported, using electrodeposition. The
electrodeposition using the soft templating effect of hydrogen bubbles has been used to gen-
erate highly porous copper foam structures on the surface of a copper disc electrode [39,40].
Shin et al. [41] and Kim et al. [42] reported that the addition of chemical additives, such as
hydrochloric acid (HCl), ascorbic acid and others, could change the size and morphology
of the pores. However, in order to be used as an electrocatalyst, the morphology of the
microstructures and crystal facets needs to be investigated, ensuring that they are optimum
for CO2 reduction.

The microstructures and crystal facets of copper strongly contribute to the CO2 reduc-
tion mechanism and product distribution [43,44]. Theoretical and experimental research
has demonstrated that the cube-like structures such as Cu(100) facet promote the produc-
tion of ethylene and the Cu(111) facet the production of methane [13]. Moreover, cube-like
structures have been found to promote the formation of propanol. Propanol is an interesting
CO2 reduction product with current efficiencies and current densities that are commonly
low due to the intrinsic complexity of C-C bond formation [20,45,46], translating into high
economic barriers to the commercialization of this process [37]. Kim et al. reported the de-
velopment of copper nanoparticle ensembles loaded onto carbon paper, which re-arranged
during catalysis into cube-like particles. These particles could convert CO2 into a mixture
of n-propanol, acetone and allyl alcohol with a combined faradaic efficiency of 5.9% at
−0.81 V vs. RHE [46]. The total current density was 12.7 mA/cm2, corresponding to a
partial current density jn-propanol ∼ 0.75 mA/cm2. Ren et al. designed a copper catalyst
with a “high surface population of defects” by electroreducing anodized Cu nanoparticles,
leading to nanocrystals in a rough, square shape [47]. Using this catalyst, n-propanol was
generated with 10.6% faradaic efficiency at −0.85 V vs. RHE. Long-term electrolysis was
also carried out at −0.95 V and n-propanol could be continuously produced with a current
density of jn-propanol ∼ −1.74 mA/cm2 for 6 h. Grosse et al. reported copper nanocubes
that underwent structural change during catalysis [48] and a small quantity of n-propanol
was produced ~1.8% at −0.96 V vs. RHE.

Considering the importance of the copper microstructure on CO2 electroreduction, we
turned our attention to the fabrication of copper foams under various conditions, aiming
to tune the microstructure of the copper foam and its capabilities as an electrocatalyst. In
the past, we have reported that the impregnation of a copper foam with poly(acrylamide)
enhanced the production of ethylene, reaching faradaic efficiencies of 26% and an over-
all reduction current density of 60 mA/cm2 [49]. Therefore, in this work, we further
investigated the addition of nitrogen-containing moieties, using urea. The addition of
nitrogen-containing moieties can tune the properties of the copper catalyst to potentially
give higher current densities, promote C-C bond formation and lead to greater product
selectivity [45,50,51]. We expected the modification of copper foam with the simplest
amide, i.e., carbamide, also known as urea, could stabilize carbon monoxide adsorbed
intermediates *CO on copper promoting C-C bond formation. Urea was previously used
with copper [52] or to electrodeposit copper [53], but not to change the properties of the
copper in the attempt to promote C-C bond formation in CO2 reduction. We wanted to
establish whether the addition of urea would promote the formation of n-propanol and
increase the current density of copper foam catalysts. Interestingly, we found that whilst
urea did not enhance selectivity for n-propanol, it instead improved the lifetime of the
copper foam impacting on CO2 catalysis.
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2. Materials and Methods
2.1. Materials

Potassium bicarbonate (99.5%, Sigma Aldrich, St. Louis, MO, USA), Copper sulphate
pentahydrate (99.9%, Sigma Aldrich), Urea (99.5%, Sigma Aldrich), Hydrochloric Acid
(37.5%, Sigma Aldrich), Sulphuric acid (95–98%, Sigma Aldrich), Perchloric acid (70% ACS
reagent, Sigma Aldrich), Argon gas (99.998%, BOC, Industrial Gases, UK), Carbon dioxide
gas (99.995%, BOC). All reagents were used without further purification. Deionized water
with 15 MΩ.cm resistance from Merck Elix type 2 water purification system.

2.2. Copper Foam Preparation

The preparation was adapted from our previous work [49]. A 3 mm diameter copper
rod (99.99%, Goodfellow, Huntingdon, UK) was cut into cylindrical pieces and embedded
into a polycarbonate body with Araldite epoxy (Huntsman Advanced Materials, Basel,
Switzerland). The electrode was mechanically polished with 0.3 µm alumina slurry, fol-
lowed by rinsing and ultrasonication in deionized water for 1 min. Copper foam was
electrodeposited on the copper disc by submerging in 0.2 M of CuSO4, 1.5 M of H2SO4(aq)
and 4–73 mM of HCl(aq) and applying a fixed cathodic current of 3 A cm–2 for 15 s. Urea-
modified copper foam was synthesized by (i) dissolving a mass of urea corresponding to a
10–100 mM concentration and (ii) dip-coating unmodified electrodeposited copper foam in
an H2O solution of 100 mM concentration urea for 1 min. The electrodeposited foams were
submerged in deionized water for 5 min to remove traces of electrodeposition solution
before electrochemical measurements.

The foams are denoted as follows: CF-xH, CF-18H-xU and CF-18H-DCU, where
CF = copper foam, xH = concentration in millimoles of HCl added to electrodeposition bath,
xU = concentration in millimoles of urea added to deposition bath and DCU = dip-coated
in aqueous 100 mM urea solution.

2.3. Material Characterization

Scanning electron microscopy images were taken using field emission gun scanning
electron microscopy (FEG-SEM JEOL 7800F, JEOL, Tokyo, Japan). XPS was performed
using a Kratos Axis Supra (Kratos Analytical, Kyoto, Japan), utilizing a monochromated Al-
Kα X-ray source, 15 mA emission current, magnetic hybrid lens and slot aperture. Region
scans were performed using a pass energy of 40 eV and a step size of 0.1 eV. Prior to XPS
analysis, the copper foams were dried in a vacuum desiccator for 24 h. Scans were run of
the copper foams after initial synthesis and again after their use as catalysts. It was possible
to preclude the presence of CO2 catalysis contaminants such as zinc and lead potentially
deposited onto the surface from the electrolyte during electrolysis [54]. XRD measurements
were carried out on a Bruker D8 Discover diffractometer (Bruker Corporation, Billerica,
MA, USA) with Cu-Kα source radiation (λ = 0.15418 nm). Data were recorded in the 2θ
range of 35–100◦ in 0.04◦ increments with a step time of 0.5 s.

2.4. CO2 Electrocatalysis

The electrocatalysis was carried out following the procedure established by Ahn
et al. [49] and is detailed in full in the SI. Minor changes to the previously reported
procedure are detailed here. The electrolyte solution was prepared by saturating a 0.1 M
KHCO3 solution with CO2 by bubbling at 40 mL/min for 1 h prior to use. The pH of the
solution was measured at 6.8. The electrolysis cell was saturated with CO2 gas flowing
at 40 mL/min for 5 min before a cathodic potential (from −0.70 to −1.04 V vs. RHE) was
applied. Electrolysis was carried out by setting the voltage at reducing potentials for a
total of 35 min. Gas headspace samples were taken from the cell using a gastight syringe
for manual injection into the GC sampling loop on the 5th, 20th and 35th minute. The
electrolysis run was temporarily stopped after gas sample injection and the ohmic drop
remeasured before starting the next segment. Each set of gas-phase product measurements
was repeated at least three times. The CO2 electrolysis was performed using a three-
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electrode setup: a 3 mm diameter copper rod (99.99%, Goodfellow, London, UK) cut
into cylindrical pieces and embedded into a polycarbonate body with Araldite epoxy
(Huntsman Advanced Materials, Basel, Switzerland), an Ag/AgCl (3.4 M of KCl, +0.210 V
vs. SHE, Innovative Instruments Inc., Indian Trail, NC, USA) reference electrode and a
2.5 cm × 5 cm piece of platinum mesh electrode (Goodfellow, UK) as a counter electrode.
The set up consisted of a custom-made H-cell constructed from polypropylene body (1.6 cm
diameter, 7 cm length), with a Nafion window (Nafion NRE-212 membrane, 0.05 mm thick,
Alfa Aesar, Haverhill, MA, USA). The electrolyte volume inside the cell was 4 mL, the
headspace volume was 6.2 mL.

2.5. Electrocatalysis Product Analysis

Liquid phase products were quantified at the end of the 35 min run using a Bruker
AV-500 Nuclear Magnetic Resonance (NMR) instrument running a water suppression
experiment [49]. A DMSO standard was added to the NMR tube to make a 0.1 mM
concentration. Peak areas of the liquid products were then integrated and compared to
the standard to obtain concentrations. Gaseous products were quantified using an Agilent
7820A gas chromatograph (Agilent Technologies, Cheadle, UK), equipped with a thermal
conductivity detector and flame ionization detector coupled to a methanizer. A dual
column setup was utilized, HP-PLOT Q and HP-PLOT 5A (Agilent Technologies), for the
separation of hydrocarbons and permanent gases, respectively. For full details see the
supporting information.

3. Results
3.1. Effect of HCl on the Copper Foams

We decided to vary the hydrochloric acid (HCl) concentration and look at the effects
of the different foams on CO2 reduction. In our experiments, the sulfuric acid (H2SO4)
concentration was fixed at 1.5 M and the copper sulphate concentration was 0.2 M. The
HCl concentration was varied from 4 to 73 mM. These experimental conditions differ from
those previously reported by Kim et al. (0.4 M CuSO4/0.7 M H2SO4 [42]) and Shin et al.
(0.4 M of CuSO4/1.5 M of H2SO4/1–50 mM of HCl [41]).

Scanning electron microscopy (SEM) was used to image the foams (SI Figure S1).
The concentration of hydrochloric acid added to the electrodeposition bath affected the
morphology of the copper foams. Shin et al. reported that increasing the concentration
of HCl in the deposition bath from 1 to 50 mM altered the morphology of the foam walls,
making them higher density [41]. Our copper foams, formed in the presence of small
amounts of HCl, had thin wall widths and small pore diameters; large amounts of HCl led
to thicker wall widths and larger pore diameters. This is summarized in SI Table S1.

Closer inspection of the structure of CF-18H foam (Figure 1) reveals that the top
surface comprises thousands of cube-like structures, technically termed cuboctahe-
dra [55]. Although the electrodeposition of various copper foams has previously been
reported [14,40–42,49,50,56], to the best of our knowledge, no foams primarily consisting
of cuboctahedra agglomerates have previously been observed. The edges of the pores com-
prise the same type of cuboctahedra interspersed with dendritic structures. Cuboctahedra
were also found at the base of the pores. There are two different sizes of cuboctahedra; the
majority are large, approximately 450 × 750 nm (width × height) in size, interspersed with
smaller cuboctahedra of about 250 × 250 nm. The smaller cuboctahedra are predominantly
near the bottom of the pore, whereas the larger ones dominate the top of the pores.
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were analyzed, using NMR spectroscopy, to observe which foam was best at converting 
CO2 to n-propanol. The effect of changing HCl content of copper foam deposition solution 
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tically the same (within the experimental error) faradaic efficiency of n-propanol, 2.3%, 

Figure 1. SEM images of CF-18H at various magnifications. (a) ×300, (b) ×15,000 and (c) ×35,000 magnifications. These
images are taken of the top portion of the foam.

In order to investigate the crystal facets of the copper the foams, we have performed
an ex situ X-ray diffraction of the foams (XRD, Figure 2). XRD analyses of all of the
copper foams show that both Cu metal and Cu2O are present in the foam. The presence of
millimolar concentrations of HCl during foam deposition seems not to affect the crystalline
orientations of Cu0 formed. Compared to the Liu foams, ours contained more Cu2O peaks
corresponding to different crystalline phases. The same peaks were observed by Dutta et al.
in their copper foam electrocatalysts [56]. Our foams have a high surface roughness (vide
infra), which would have made them more prone to oxidation. The XRD patterns of
our foams show the preferred orientation of Cu(111), with appreciable contribution from
Cu(200) and Cu2O(111)/Cu2O(200). To preclude the Cu(111) phase coming only from the
copper disc upon which the foam was grown, we also carried out XRD on the copper foam
on a carbon tab. The Cu(111) peak is present in the pattern of the copper disc alone and
the copper foam on the carbon tab (SI Figure S2), confirming that the observed peak had
contribution from the foam.
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the top).

A preliminary CO2 electrocatalytic activity study of the different copper foams was
performed at −0.81 V vs. RHE. This potential was chosen as it was the minimum overpo-
tential required to produce appreciable quantities of n-propanol. The liquid products were
analyzed, using NMR spectroscopy, to observe which foam was best at converting CO2 to
n-propanol. The effect of changing HCl content of copper foam deposition solution on the
electrocatalytic performance of copper foams is shown in SI Figure S3. At −0.81 V vs. RHE,
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adding 7 mM of HCl into the copper foam deposition bath gave the best faradaic efficiency
for n-propanol, about 2.4%. However, the addition of 18 mM of HCl gave practically the
same (within the experimental error) faradaic efficiency of n-propanol, 2.3%, and greater
faradaic efficiency for ethanol production, about 3.3%. Therefore, the 18 mM of HCl copper
foam was used for further experiments. The gaseous products on 18 mM of HCl copper
foam were found to be carbon monoxide, ethylene, ethane and the by-product hydrogen
(SI Table S2).

3.2. Effect of Urea on the Copper Foams

The catalyst fabricated employing 18mM HCl CF-18H was modified by adding urea
in the foam electrodeposition bath to make CF-18H-xU (x represents the concentration,
in mM, of urea employed). The electrodeposited foams were submerged in deionized
water for 5 min to remove traces of the electrodeposition solution before electrochemical
measurements. The copper foam formed from solutions with added 100 mM of urea
(CF-18H-100U) has a flattened and less well-defined porous structure compared to CF-18H
(SI Figure S4). This indicates that urea affects the deposition of the foam possibly being
integrated to form urea-modified copper foams. The wall widths between the pores range
from 5.9 to 23.5 µm, with an average width of 18.2 µm. The pore diameters range from 29.4
to 58.8 µm, smaller than CF-18H by 10 µm (data are summarized in SI Table S1).

In Figure 3, the top layer of CF-18H-100U is made of cuboctahedra and the lower
layers comprise larger cuboctahedra interspersed with dendritic structures similar to what
observed for CF-18H (Figure 1). The cuboctahedra at the surface are about 180 × 185 nm
and the larger cuboctahedra at the bottom of the pores are around 300 × 300 nm. This is
a similar size to those reported by Grosse et al., who grew 222 ± 47 nm copper cubes on
carbon paper and copper foils [48]. The porous network spreads throughout the structure.
Small cracks are observed in the urea-modified copper foam structure and are shown in
detail in SI Figure S4. The structure around the crack comprises cuboctahedra interspersed
with dendrites and, therefore, no overall change in the foam is caused as a result of
the cracks.
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Figure 3. Morphology study of CF-18H-100U, displaying the different structures at the top, middle and bottom of the pore.

The copper foam dip-coated in urea, CF-18H-DCU, exhibited a structure substantially
similar to that of CF-18H, confirming that no morphological changes were observed upon
wetting with the urea solution. Figure 4 depicts the top, edge and bottom of a pore in
CF-18H-DCU. The dendritic copper coats the copper disc electrode at the bottom of the
pore, but the cuboctahedra make up most of the pore edge. The cuboctahedra at the top
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of the pore are approximately 650 × 850 nm (height × width). At the bottom of the pore,
the cuboctahedra are smaller, about 500 × 500 nm. These cuboctahedra are comparable
in size with the largest of the copper cubes tested by Grosse et al. [48] (580 nm), who
demonstrated that a larger cube size leads to greater selectivity for the formation of CO2
reduction products over the competing hydrogen evolution reaction. The 580 nm cube
size also leads to the highest faradaic efficiency for n-propanol produced, compared to the
other two cube sizes tested (220 and 320 nm).
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The XRD analysis of urea-modified foams shows that peaks relating to Cu and Cu2O
are present in both the electrodeposited and dip-coated copper-urea foams (Figure 5). The
modified foams show the preferred orientation of Cu(111), with peaks corresponding to
Cu(200), Cu(311), Cu(222) and Cu2O(111) also present. Comparing the two urea concentra-
tion extremes (10 and 100 mM): the ratio of Cu(111):Cu(200) is 1:0.35, Cu(111):Cu(220) is
1:0.1 and Cu(111):Cu(311) is 1:0.1 for CF-18H-10U. The ratios are slightly lower for CF-18H-
100U, with ratios of Cu(111):Cu(200) 1:0.30, Cu(111):Cu(220) 1:0.03 and Cu(111):Cu(311)
1:0.06. This suggests that the crystal face of the copper foam does not change with the
increasing concentration of urea.
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The ratios of Cu(111) to Cu(200), Cu(311) and Cu(222) phases are unchanged between
CF-18H-100U and CF-18H-DCU, indicating that the method by which urea is impregnated
into the foam does not change the copper phases present in the foam. As expected, there
is little difference between the XRD of CF-18H and CF-18H-DCU. Cuprous oxide is also
present in the Cu-18H-xU (x = 10–100) foams with the main component being the Cu2O(111)
phase (Figure 5).

The presence of urea on the copper surface was confirmed using X-ray photoelectron
spectroscopy (XPS) and the spectra are presented in Figure 6. Nitrogen was detected in
both copper foams modified with urea. There was no nitrogen in the CF-18H sample,
which had no urea. The protonation state appeared to affect the binding of urea on copper.
The foam CF-18H-100U deposited from acidified urea solution showed a single nitrogen
signal at 400.0 eV (red dotted trace in Figure 6a), possibly corresponding to urea bound to
the copper foam through nitrogen. It is known that, in acidic media, the carbonyl oxygen
of urea is protonated [57], leaving the nitrogen free to interact with copper. This was also
observed in the case of CF-18H-DCU, though the XPS signal consisted of the convolution
of two peaks at 399.8 eV and 398.9 eV (blue dotted trace in Figure 6a). The peak at 399.8 eV
(purple trace) can be assigned to urea bound to copper through nitrogen, related to the
400.0 eV peak of CF-18H-100U.
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from CF-18H (bottom, black), CF-18H-100U (middle, red) and CF-18H-DCU urea (top, blue) and
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The peak at 398.9 eV (green trace) is tentatively assigned to urea bound to copper
through the carbonyl group [49]. The copper 2p signals are consistent for all samples and
confirm the presence of copper metal (Figure 6b). Weak satellite peaks are observed around
947 eV. These are consistent with the presence of Cu2O, which was also observed by XRD.
The most intense feature of the copper Auger signal of CF-18H-100U is found at 918.4 eV,
consistent with the CF-18H copper Auger (Figure 6c). However, the Auger of CF-18H-DCU
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shows a stronger feature at 916.1 eV compared to 918.4 eV. The peak at 916.1 eV is dominant
and indicates a surface richer in Cu2O over Cu in the case of the dip-coated foam [58].

The electrochemical properties of CF-18H and CF-18H-100U, in addition to the dip-
coated catalyst CF-18H-DCU, were also compared. The double-layer capacitance method
of determining the electrochemically active surface area was used [59]. As shown in Table 1,
the copper foams have similar electrochemically active surface areas (ECSA), meaning that
they are unaffected by the addition of urea in the deposition bath or dip-coating step. The
foam surface area is between 225 and 240 times larger than the electrode geometric surface
area for the sample prepared using 18 mM of HCl without and with urea, respectively. This
is double that observed in our previous work [49] and quadruple of that achieved by Dutta
et al. [56]. The cyclic voltammograms and corresponding current vs. scan rate plots are
provided in SI Figure S5, the current density calculations in SI Table S3.

Table 1. Summary of capacitance and surface area of copper foams electrodeposited with and
without urea. Applied potential of −0.81 V vs. RHE for CF-18H, −0.81 V vs. RHE for CF-18H-100U
and −0.79 V vs. RHE for CF-DCU. The geometric and ECSA normalized current densities of CO2

electrolysis at the corresponding applied potentials are also listed as jgeometric and jECSA, respectively.

CF-18-100U CF-18H-100U CF-18H-DCU

Capacitance (µF) 447 474 472

Electrochemically active
surface area (cm2) 16.0 16.9 16.9

Surface roughness factor 225 238 237

jgeometric (mA/cm2) 31.0 26.8 38.0

jECSA (mA/cm2) 0.14 0.11 0.17

3.3. CO2 Electrocatalytic Activity of Foams

The CO2 electrocatalytic activity of the copper foams deposited in the presence of
different amounts of urea (CF-18H-xU) was tested at −0.83 V vs. RHE. The liquid products
of the urea copper foams are depicted in SI Figure S6. The faradaic efficiency increases
with the concentration of urea until ~60 m; afterwards, a plateau is observed, making
CF-18H-100U the foam of choice for further study.

The three foams, CF-18H, CF-18H-100U and CF-18H-DCU, were then tested for their
activity as CO2 reduction catalysts at various potentials in a 0.1 M KHCO3 solution while
bubbling CO2 at 40 mL/min. All products of electrocatalysis for CF-18H and CF-18H-100U
are available in Figure 7 and SI Figure S7. We note that the CO2 electrolysis experiments
were affected by significant variability, as also observed in other studies [14,15,60]. In
some instances, the values of faradaic efficiency of one material fell within the error bars
of the other and vice versa. In such a case, no claim could be made for either of the
two catalysts, CF-18H and CF-18H-100U, performing better than the other, particularly
in the case of n-propanol production (Figure 7c). However, some significant differences
could be appreciated, such as the CF-18H foam promoting the electroreduction of CO2 to
ethylene more effectively than the CF-18H-100U foam at −0.93 V vs. RHE. Interestingly,
i-propanol was generated using the CF-18H foam, albeit in small quantities—the maximum
average faradaic efficiency is 0.87% at −0.93 V vs. RHE (SI Table S4). This was lower for
CF-18H-100U, 0.11%. A representative NMR spectrum is depicted in SI Figure S8 for CO2
electrolysis using CF-18H at −0.83 V vs. RHE.
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Figure 7. Faradaic efficiencies of (a) hydrogen (b) carbon-based gas products and (c) liquid products
versus potential, corrected to RHE, for copper foams CF-18H (solid lines) and CF-18H-100U (dashed
lines). Data for formate are provided in SI Figure S7.

The dip-coated catalyst CF-18H-DCU demonstrated a different catalytic trend with n-
propanol increasing with more negative potentials compared to CF-18H and CF-18H-100U.
For CF-18H and CF-18H-100U, the C1, C2 and C3 product distributions resulting from the
electrocatalytic reduction of CO2 are shown in Figure 8. As the potential became more
reductive, the overall faradaic efficiency for carbon-based products decreased progressively
in favor of hydrogen evolution (data are summarized in SI Table S4).
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However, at more negative potentials, there was also a trade-off in the production
of more C2 + C3 products (ethylene + propanol) in place of C1 products. At −0.70 V vs.
RHE, only C1 products were detected in the form of carbon monoxide and formate, but
no methane. C2 and C3 products were first observed at −0.75 V vs. RHE. At −0.83 V vs.
RHE, C2 + C3 products were dominant over C1 products, a trend which continued with
increasing potential. Trace amounts of methane and methanol were only observed at this
potential. n-Propanol was the dominant C3 product and production peaked at −0.83 V vs.
RHE. i-Propanol and trace amounts of acetone were the other C3 products observed.

The CF-18H and CF-18H-100U catalysts are compared to literature catalysts in Table 2.
The urea-modified foam has an overall higher current density in total, compared to previ-
ously reported catalysts.

Table 2. A comparison of the best faradaic efficiencies (FE) and geometric current densities reported in the literature for the
electroreduction of CO2 to n-PrOH (entries ordered by n-propanol partial geometric current density).

Work Potential versus
RHE (V) FE n-PrOH (%)

Total Geometric
Current Density

(mA/cm2)

n-Propanol Partial
Geometric Current
Density (mA/cm2)

Ref.

Rahaman −0.9 13.1 −19.5 −2.56 a [61]

Rahaman −0.85 8.2 −30.5 −2.50 [62]

CF-18H-100U −0.83 4.93 −37.6 −1.85 This work

Dutta −0.87 7.1 −24.2 −1.72 [33]

Ren −0.85 10.6 −14.2 −1.50 [47]

Wang −0.80 7.5 −20.0 −1.5 [63]

Wang −0.64 10.0 −12.0 −1.2 [63]

Rahaman −0.65 13.7 −8.4 −1.15 [62]

CF-18H −0.83 3.34 −29.4 −0.98 This work

Kim −0.81 5.9 −12.7 −0.75 [46]

Han −1.10 11.8 −1.0 −0.12 [45]

Grosse −1.05 1.0 −10.0 −0.10 [48]
a Value reported in reference [62].
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3.4. Post-Catalysis Characterization

The CF-18H and CF-18H-100U foams were characterized after catalysis to look at their
response to the applied potential. The analysis in this section is based on results gained
from ex situ measurements, including SEM, XRD and XPS. SEM revealed that multiple
cracks had formed both on the surface and further into the porous network of CF-18H. The
cuboctahedra observed before electrolysis (Figure 1) were no longer present after 35 min
of electrolysis (Figure 9). The dendrites, a minor component in the as-prepared foams,
became the only component of the foam after electrolysis, as shown in Figure 9b. However,
the microstructure of the foam did not show apparent changes in the absence of CO2 under
the same reduction conditions.
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0.1 M of KHCO3 and 40 mL/min CO2.

This same phenomenon was observed for CF-18H-100U. The cuboctahedra, present
as the major component of the foam before electrolysis (Figure 3), are no longer present
after 35 min (Figure 9f). Therefore, we hypothesize that the copper foam responded to the
process conditions of CO2 electrolysis by re-arranging in situ during catalysis.

XRD analysis of the copper foams after electrolysis corroborated the findings in the
SEM of less crystalline materials (Figure 10). For CF-18H, the peak intensity was reduced
and, as can be observed in Figure 10a, the peaks are generally broader, indicative of smaller
crystallite size. The rise of baseline at low diffraction angles suggests that an amorphous
phase was also formed upon catalysis. Post-catalysis, there was a significant increase in
the relative peak intensity for Cu(200); pre-catalysis, the Cu(111):Cu(200) ratio was 1:0.14,
while, post-catalysis, it was 1:0.39 with a significant loss of Cu(111) domains. There is
also a small yet detectable peak at 47.5◦, tentatively assigned to the presence of trace
amounts of CuCl(220) phase [64] (Figure 10a), which is localized on the surfaces of the
foam, as seen from the Cu LMM Auger spectra discussed later. Although care was taken to
avoid any contamination in the CO2 electrolysis cell, there appears to have been a trace
amount of chloride ions in solution to form insoluble Cu2O-derived CuCl [64]. It follows
that chloride contaminations were introduced during the electrolysis possibly due to the
Ag/AgCl reference electrode and the small solution volume in the cathodic compartment
(3.5 mL). Comparable changes were observed for CF-18H-100U (Figure 10b). In line with
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the transition of the copper from cuboctahedra to dendrites, there is also a decrease in
the Cu2O(311) facet and an increase of Cu2O(222). CF-18H-100U displays an increased
orientation of the Cu(220) phase and a more equal spread of orientations post-electrolysis.
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The presence of chloride contaminations was also observed in the XPS spectra of the
foams after electrolysis (Figure 11). Before electrolysis, the Auger signal of CF-18H is typical
for copper metal, with its most intense feature centered at 918.7 eV [65]. After 35 min of
electrolysis, the main feature is found at 915.6 eV, which is attributed to CuCl [66,67]. The
Cu Auger of CF-18H-100U displays similar behavior, although it retains a higher Cu metal
content post-electrolysis, compared to CF-18H. Corresponding peaks were observed in
the Cl 2p spectra. Comparatively, more CuCl is present in the post-catalysis XPS spectra
of CF-18H than for CF-18H-100U. For CF-18H and CF-18H-100U, the Cu 2p peaks were
unchanged before and after 35 min of electrolysis (SI Figure S9, to be compared with
Figure 6b). For CF-18H-DCU, both Cu2O and copper metal are present on the surface of
the foam before electrolysis, with the Cu2O Cu(LMM) becoming dominant after 35 min
(Figure 11c).
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A key concern of the work was whether the urea would withstand the electrolysis
conditions and remain bound to the copper foam surface. XPS analysis after 35 min
of electrolysis was carried out to verify this. The dip-coated and non-dip-coated foams
behaved differently. CF-18H-100H started with all the nitrogen in one environment at
400.3 eV (Figure 12). However, after electrolysis, there were two nitrogen environments,
398.9 eV and 400.3 eV. As stated earlier in the paper, we ascribe the peak at 398.9 eV to
urea bound to the copper through the carbonyl, whereas the peak at 400.3 eV is assigned
to urea bound through the amine. We assume that the acid present in the formation of
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CF-18H-100U protonates the carbonyl oxygen of the urea [57], forcing urea to coordinate
through the amine groups (giving rise to the single peak at 400.3 eV pre-catalysis).
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figure and color-coded with XPS fittings.

In the alkaline environment during catalysis (due to proton consumption), the urea
carbonyl group is de-protonated, allowing the urea to bind to copper in its preferential
form, through the carbonyl group, giving rise to the peak at 398.9 eV. Some urea must
continue to bind through the amine groups to leave the minor peak at 400.3 eV. In contrast,
for CF-18H-DCU, urea is coated onto the copper foam from a pH 7 aqueous solution. Urea
in water hydrates on both carbonyl and amine sides [68], leading to a mixture of nitrogen-
bound and carbonyl-bound urea on the copper surface before electrolysis (Figure 12).
After catalysis, most of the urea seems instead to be predominantly carbonyl-bound. We
tentatively suggest that the difference in reactivity between CF-18H-100U and CF-18H-
DCU could in part be due to the binding modes of the urea at the start and during catalysis.
The complex and numerous changes observed upon electrolysis have a significant impact
on the catalytic activity of the copper foams. CF-18H showed no catalytic activity for
n-propanol after 2 h of electrolysis, whereas CF-18H-100U was still active with a faradaic
efficiency of about 1%.

4. Conclusions

This work describes a procedure for the fabrication of cuboctahedral porous copper
electrodes under various conditions. The formation of the foams was analyzed using
different concentrations of HCl during electrodeposition. It was confirmed that the concen-
tration of HCl affects the average wall width and pore size of the foam, thereby making
them, respectively, thicker and larger at higher HCl concentrations. The addition of urea
did not significantly change the crystalline structure of the resulting urea-modified foams.
Correspondingly, we did not observe a significant change in the faradaic efficiency of CO2
conversion to n-propanol between plain and urea-modified foams.

After CO2 electrolysis, the foam changed from a cuboctahedral to a dendritic mor-
phology, suggesting that the copper responded to CO2 electrolysis by re-arranging in situ
during catalysis. The re-arrangement of the copper has been characterized ex situ using
SEM and corroborated with XRD. The presence of urea and its method of binding to the
copper seems to have affected the catalyst response and structure–activity relationships.
Indeed, pristine foams showed no catalytic activity for n-propanol after 2 h of electrolysis,
while urea-modified foams continued showing faradaic efficiencies of about 1%.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/chemistry3030048/s1, Experimental details including chemical reagents and electrocatalysis
procedures. Figure S1 and Table S1 contains SEM images, wall and pore sizes, of copper foams.
Figure S2 presents the XRD of a copper foam on carbon. Table S2, S4 and Figure S7 show the
faradaic efficiencies of CO2 reduction to liquid and gaseous products. Figure S5 contains the cyclic
voltammetries and current vs. scan rate plots to determine ECSA of copper foams. Figure S8 presents
the NMR spectrum showing the formation of i-propanol upon CO2 reduction. XPS spectra Cl 2p and
Cu 2p of copper foams.
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