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Abstract

In this paper, we establish an averaging principle for neutral stochastic fractional differential equations with
non-Lipschitz coefficients and with variable delays, driven by Lévy noise. Our result shows that the solutions of
the equations concerned can be approximated by the solutions of averaged neutral stochastic fractional differential
equations in the sense of convergence in mean square. As an application, we present an example with numerical
simulations to explore the established averaging principle.
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1. INTRODUCTION

Stochastic differential equations driven by Brownian motion play an important role in many branches of
science and industry, such as biology, physics, economics, engineering and financial markets, cf. e.g., [16],
[15]. While, it is worthwhile pointing out that Brownian motion is a stochastic process with continuous
paths and it can not be used to describe certain discontinuous systems whose structures are subject to
stochastic abrupt changes, which may result from abrupt phenomena such as stochastic failures, repairs of
the components, changes in the interconnections and sudden environment changes. For such discontinuous
systems, stochastic differential equations driven by Lévy noise are recognised to cope with the feature of
discontinuity. Many excellent investigations have been done, see e.g., [5], [26], [11], [13] and references
therein. On the other hand, fractional calculus becomes more and more interested in link with stochastic
calculus, creating hot topics such as fractional Brownian motion, stochastic fractional differential equations,
fractional Laplacian as Markov generators, and so on, just mention a few. Stochastic differential equations
combining with fractional calculus provide suitable models for many systems and evolutionary processes,
such as viscoelastic system (see [6], [17]). Since then, it becomes an active research topic in the study
of stochastic dynamic systems (see [1], [2], [3], [12], [24]).

The averaging principle, initiated by Khasminskii in [10], is a very efficient and important tool in study
of stochastic fractional differential equations for modelling problems arising in many practical research
ares. It in fact provides a powerful tool for simplifying dynamical systems, and obtains approximate
solutions to differential equations. The averaging principle enables us to study complex equations with
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related averaging equations, which paves a convenient and easy way to study many important properties
(see, e.g., [20], [21], [22], [7], [2], [23], [18]).

Inspired by the aforementioned works, in this paper, we are concerned with an averaging principle for
neutral stochastic fractional differential equation driven by Lévy process with variable delay, that is, on a
given complete filtered probability space (Ω,F , {Ft}t≥0,P), for 0 < α < 1, we consider the following

d(X(t)−D(X(t− δ(t))))
= u(X(t−), X(t− δ(t)), t)dt+ b(X(t−), X(t− δ(t)), t)dB(t)

+ σ(X(t−), X(t− δ(t)), t)(dt)α +

∫
|y|<c

h(X(t−), X(t− δ(t)), y, t)Ñ(dt, dy), t ∈ [0, T ]

(1.1)

with initial condition ξ(0) ∈ Rn and initial value X(0) = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} being an F0-
measurable C([−τ, 0];Rn)-valued random variable such that E‖ξ‖2 <∞, where τ > 0 and C([−τ, 0];Rn)

is the totality of continuous Rn-valued function ϕ defined on [−τ, 0] with norm ‖ϕ‖ := sup−τ≤θ≤0 |ϕ(θ)|, δ :

[0, T ]→ [0, τ ] and the mappings D : Rn → Rn, u, σ : Rn×Rn× [0, T ] −→ Rn, b : Rn×Rn× [0, T ] −→
Rn×m, h : Rn×Rn×Rn\{0}× [0, T ]→ Rn are continuous functions, B(t) = (B1(t), B2(t), · · · , Bm(t))T

is an m-dimensional {Ft}t≥0-Brownian motion, Ñ(dt, dy) := N(dt, dy) − ν(dy)dt is the compensated
martingale measure associated with the {Ft}-adapted Poisson random measure N : R+× (Rn \ {0}) with
density measure dtν determined by a given Lévy measure ν on (Rn \ {0},B(R \ {0})), i.e., satisfying∫
Rn\{0}(|y|

2 ∧ 1)ν(dy) < ∞, and the constant c is the maximum allowable jump size,. We suppose that
N(dt, dy) and Ñ(dt, dy) are independent of the Brownian motion B(t).

For simplicity throughout this paper, let C stand for positive constants and their value may be different
in different appearances.

The paper is organised as follows. In Section 2, we present some preliminaries and our assumptions
for this paper. In Section 3, we will prove an approximation theorem as an averaging principle for the
solutions of the considered stochastic fractional differential equations with Lévy noise. We end up our
study by providing an example with numerical simulations to explicate our obtained theory in Section 4.

2. PRELIMINARIES

In this section, we briefly recall the definitions of Riemann-Liouville fractional integrals and derivatives.

Definition 2.1. (Riemann-Liouville fractional integrals [19]) For any α ∈ (0, 1), and a function f ∈
L1([a, b];Rn), the left sided and right sided Riemann-Liouville fractional integrals of order α are defined
for almost all a < t < b respectively by

(Iαa+f)(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s)ds, t > a,

and

(Iαb−f)(t) =
1

Γ(α)

∫ b

t

(t− s)α−1f(s)ds, t < b,

where Γ(α) =
∫∞
0
sα−1e−sds stands for the Gamma function and L1[a, b] is the space of all Lebesgue

integrable functions on a finite interval [a, b] of the R.
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Definition 2.2. (Riemann-Liouville fractional derivatives [19]) For any α ∈ (0, 1) and any well-defined
absolutely continuous function f on an interval [a, b], the left sided and right sided Riemann-Liouville
fractional derivatives defined respectively by

(Dα
a+f)(t) =

1

Γ(1− α)
[
f(a)

(t− a)α
+

∫ t

a

(t− s)−αf ′(s)ds],

and

(Dα
b−f)(t) =

1

Γ(1− α)
[
f(b)

(b− t)α
−
∫ b

t

(s− t)−αf ′(s)ds].

Lemma 2.3. ( [9]) Let σ(t) be a continuous function, then its integration with respect to (dt)α, 0 < α ≤ 1,
is defined by ∫ t

0

σ(s)(ds)α = α

∫ t

0

(t− s)α−1σ(s)ds. (2.1)

Lemma 2.4. ( [14]) Let p ≥ 2, r > 0 and a, b ∈ R, then

|a+ b|p ≤
[
1 + r

1
p−1

]p−1(
|a|p +

|b|p

r

)
.

Definition 2.5. An Rn-valued stochastic process {X(t)}−τ≤t≤T is called a solution to equation (1.1) if it
has the following properties:

(i) {X(t)} is right continuous with a left limit and {Ft}-adapted and E(
∫ T
−τ |X(t)|2dt) <∞;

(ii) X(0) = ξ and for all t ∈ [0, T ], the equation

X(t) =ξ(0) +D(X(t− δ(t)))−D(ξ(−δ(t))) +

∫ t

0

u(X(s−), X(s− δ(s)), s)ds

+

∫ t

0

b(X(s−), X(s− δ(s)), s)dB(s) + α

∫ t

0

σ(X(s−), X(s− δ(s)), s)(t− s)α−1ds

+

∫ t

0

∫
|y|<c

h(X(s−), X(s− δ(s)), y, s)Ñ(ds, dy),

holds with probability 1.
(iii) for any other solution X(t), we have

P{X(t) = X(t), for any − τ ≤ t ≤ T} = 1.

In what follows, we impose some conditions on the coefficients of the equation (1.1) to get the existence
and uniqueness of solutions.

Assumption 2.6. For any fixed t ≥ 0 and x1, x2, y1, y2 ∈ Rn, the following inequalities hold

|u(x1, y1, t)− u(x2, y2, t)|2 + |b(x1, y1, t)− b(x2, y2, t)|2 + |σ(x1, y1, t)− σ(x2, y2, t)|2

+

∫
|y|<c
|h(x1, y1, t, y)− h(x2, y2, t, y)|2ν(dy) ≤ φ(t)κ(|x1 − x2|2 + |y1 − y2|2),

(2.2)

|u(x1, x2, t)|2 + |b(x1, x2, t)|2 + |σ(x1, x2, t)|2 +

∫
|y|<c
|h(x1, x2, y, t)|2ν(dy) ≤ λ(t)κ((x1)

2 + (x2)
2),

(2.3)
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where φ, λ are bounded functions, κ(z) : R+ → R+ be a continuous, concave, nondecreasing function.
Moreover, κ(0) = 0, κ(z) > 0 for z > 0,

∫
0+

dz
κ(z)

=∞.

Assumption 2.7. For all x1, x2 ∈ Rn, there exists a constant L3 ∈ (0, 1) such that

|D(x1)−D(x2)| ≤ L3|x1 − x2|, and D(0) = 0.

Under the Assumptions 2.6-2.7, one can show that there exists a unique solution X(t) to equation (1.1)
and E(sup0≤s≤t |X(t)|2) is bounded by positive constant C. The proof is pretty similar to the proof of
[3] and we omitted it here.

Remark 2.8. Let δ ∈ (0, 1) be sufficiently small, we can define the concrete examples for κ(z).
κ1(z) = Kz, z ≥ 0.

κ2(z) =

{
z log(z−1), 0 ≤ z ≤ δ;

δ log(δ−1) + κ′2(δ−)(z − δ), z > δ.

κ3(z) =

{
z log(z−1) log log(z−1), 0 ≤ z ≤ δ;

δ log(δ−1) log log(δ−1) + κ′3(δ−)(z − δ), z > δ.

where κ′ denotes the derivative of the function κ. They are all concave nondecreasing functions satisfying∫
0+

dz
κi(z)

= ∞. Furthermore, we observe that the Lipschitz condition is a special case of our proposed
condition.

3. AVERAGING PRINCIPLE

In this section, we will prove that the solution of the considered equations (1.1) can be approximated
by solutions of averaged neutral stochastic fractional differential equations in the sense of convergence in
mean square under non-Lipschitz coefficients.

For arbitrarily fixed T > 0, we investigate the following standard integral formulation of equation (1.1)

Xε(t) = ξ(0) +D(Xε(t− δ(t)))−D(ξ(−δ(t))) + ε

∫ t

0

u(Xε(s−), Xε(s− δ(s)), s)ds

+
√
ε

∫ t

0

b(Xε(s−), Xε(s− δ(s)), s)dB(s) + εα

∫ t

0

σ(Xε(s−), Xε(s− δ(s)), s)(t− s)α−1ds

+
√
ε

∫ t

0

∫
|y|<c

h(Xε(s−), Xε(s− δ(s)), y, s)Ñ(ds, dy) (3.1)

where ε ∈ (0, ε0] is a positive small parameter with ε0 ∈ (0, 1
2
) that is a fixed number and initial valued

Xε(t) = ξ = {ξ(θ) : −τ ≤ θ ≤ 0} ∈ C([−τ, 0];Rn), the coefficients have the same conditions as in
equation (1.1). Hence the equation (3.1) also has a unique solution Xε(t), we will examine whether the
solution process Xε(t) can be approximated by the solution process Zε(t) of the averaged equation

Zε(t) = ξ(0) +D(Zε(t− δ(t)))−D(ξ(−δ(t))) + ε

∫ t

0

u(Zε(s−), Zε(s− δ(s)))ds

+
√
ε

∫ t

0

b(Zε(s−), Zε(s− δ(s)))dB(s) + εα

∫ t

0

σ(Zε(s−), Zε(s− δ(s)))(t− s)α−1ds

+
√
ε

∫ t

0

∫
|y|<c

h(Zε(s−), Zε(s− δ(s)), y)Ñ(ds, dy). (3.2)

We assume that the following inequalities hold.
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Assumption 3.1. (Averaging condition) For any T1 ∈ [0, T ], then we have

(i)
∣∣∣ 1
T1

∫ T1
0
u(x1, x2, s)− u(x1, x2)ds

∣∣∣2 ≤ ϕ1(T1)κ(|x1|2 + |x2|2),
(ii) 1

T1

∫ T1
0
|b(x1, x2, s)− b(x1, x2)|2ds ≤ ϕ2(T1)κ(|x1|2 + |x2|2),

(iii) 1
T1

∫ T1
0
|σ(x1, x2, s)− σ(x1, x2)|2ds ≤ ϕ3(T1)κ(|x1|2 + |x2|2),

(iv) 1
T1

∫ T1
0
|h(x1, x2, y, s)− h(x1, x2, y)|2ν(dy)ds ≤ ϕ4(T1)κ(|x1|2 + |x2|2),

where ϕi(T1) are bounded positive functions with limT1→∞ ϕi(T1) = 0, i = 1, 2, 3, 4 and κ(·) is continuous
nondecreasing concave function. Moreover, κ(0) = 0, κ(z) > 0 for z > 0,

∫
0+

dz
κ(z)

=∞.

Remark 3.2. This condition
lim
T→∞

ϕi(T ) = 0, i = 1, 2, 3, 4,

is to ensure the existence and uniqueness of the solution to the averaged equation (3.2). For example, for
every x1, x2, y1, y2 ∈ Rn, we have

|b̄(x1, y1)− b̄(x2, y2)|2 ≤ 3
1

T

∫ T

0

|b̄(x1, y1)− b(x1, y1, s)|2ds+ 3
1

T

∫ T

0

|b̄(x2, y2)− b(x2, y2, s)|2ds

+ 3
1

T

∫ T

0

|b(x1, y1, s)− b(x2, y2, s)|2ds

≤ 3ϕ2(T )κ̄(|x1|2 + |y1|2) + 3ϕ2(T )κ̄(|x2|2 + |y2|2)
+ 3Cκ(|x1 − x2|2 + |y1 − y2|2).

By taking T tending to infinity, we see b̄ satisfies (2.2). Similarity, one can prove that b̄ satisfies (2.3).
Using the same method, we have u, σ, h satisfy the Assumption 2.6. Hence, there is a unique solution
Zε(t) to the averaged equation (3.2).

Theorem 3.3. Assume that the original and averaged equation (3.1) and (3.2) satisfy the Assumptions
2.6-2.7 and 3.1. Then for any small number δ1 > 0, there exist L > 0, β ∈ (0, 1) and ε1 ∈ (0, ε0] such
that for all ε ∈ (0, ε1],

E( sup
t∈[0,Lε−β(1−L3)2]

|xε(t)− Zε(t)|2) ≤ δ1.

Proof. By equations (3.1) and (3.2), we obtain

Xε(t)− Zε(t) = D(Xε(t− δ(t)))−D(Zε(t− δ(t))) + Λ(t), (3.3)

with

Λ(t) =ε

∫ t

0

[u(Xε(s−), Xε(s− δ(s)), s)− u(Zε(s−), Zε(s− δ(s)))]ds

+
√
ε

∫ t

0

[b(Xε(s−), Xε(s− δ(s)), s)− b(Zε(s−), Zε(s− δ(s)))]dB(s)

+ αε

∫ t

0

(t− s)α−1[σ(Xε(s−), Xε(s− δ(s)), s)− σ(Zε(s−), Zε(s− δ(s)))]ds

+
√
ε

∫ t

0

∫
|y|<c

[h(Xε(s−), Xε(s− δ(s)), y, s)− h(Zε(s−), Zε(s− δ(s)), y)]Ñ(ds, dy).

(3.4)
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By Lemma 2.4, we have

|Xε(t)− Zε(t)|2 ≤ (1 + r)

(
|Λ(t)|2 +

|D(Xε(t− δ(t)))−D(Zε(t− δ(t)))|2

r

)
.

Letting r = L3

1−L3
and using Assumption 2.7, one can obtain

E
(

sup
0≤t≤v

|Xε(t)− Zε(t)|2
)

≤ L3E
(

sup
0≤t≤v

|Xε(t)− Zε(t)|2
)

+
1

1− L3

E
(

sup
0≤t≤v

|Λ(t)|2
)
.

That is

(1− L3)E
(

sup
0≤t≤v

|Xε(t)− Zε(t)|2
)
≤ 1

1− L3

E
(

sup
0≤t≤v

|Λ(t)|2
)
.

Therefore

E
(

sup
0≤t≤v

|Xε(t)− Zε(t)|2
)
≤ 1

(1− L3)2
E
(

sup
0≤t≤v

|Λ(t)|2
)
.

Using the simple inequality

|x1 + x2 + · · ·+ xm|2 ≤ m(|x1|2 + |x2|2 + · · ·+ |xm|2), (3.5)

we have

sup
0≤t≤v

|Λ(t)|2

≤ 4ε2 sup
0≤t≤v

(

∫ t

0

[u(Xε(s−), Xε(s− δ(s)), s)− u(Zε(s−), Zε(s− δ(s)))]ds)2

+ 4ε sup
0≤t≤v

(

∫ t

0

[b(Xε(s−), Xε(s− δ(s)), s)− b(Zε(s−), Zε(s− δ(s)))]dB(s))2

+ 4ε2α2 sup
0≤t≤v

(

∫ t

0

(t− s)α−1[σ(Xε(s−), Xε(s− δ(s)), s)− σ(Zε(s−), Zε(s− δ(s)))]ds)2

+ 4ε sup
0≤t≤v

(

∫ t

0

∫
|y|<c

[h(Xε(s−), Xε(s− δ(s)), y, s)− h(Zε(s−), Zε(s− δ(s)), y)]Ñ(ds, dy))2.

So,

E( sup
0≤t≤v

|Xε(t)− Zε(t)|2)

≤ 4ε2

(1− L3)2
E sup

0≤t≤v
(

∫ t

0

[u(Xε(s−), Xε(s− δ(s)), s)− u(Zε(s−), Zε(s− δ(s)))]ds)2

+
4ε

(1− L3)2
E sup

0≤t≤v
(

∫ t

0

[b(Xε(s−), Xε(s− δ(s)), s)− b(Zε(s−), Zε(s− δ(s)))]dB(s))2

+
4ε2α2

(1− L3)2
E sup

0≤t≤v
(

∫ t

0

(t− s)α−1[σ(Xε(s−), Xε(s− δ(s)), s)− σ(Zε(s−), Zε(s− δ(s)))]ds)2
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+
4ε

(1− L3)2
E sup

0≤t≤v
(

∫ t

0

∫
|y|<c

[h(Xε(s−), Xε(s− δ(s)), y, s)− h(Zε(s−), Zε(s− δ(s)), y)]Ñ(ds, dy))2

=:
4∑
i=1

Ii, (3.6)

where v ∈ [0, T ]. Now we present some useful estimates for Ii, i = 1, 2, 3, 4. First, we use inequality
(3.5) to obtain

I1 =
4ε2

(1− L3)2
E sup

0≤t≤v
(

∫ t

0

[u(Xε(s−), Xε(s− δ(s)), s)− u(Zε(s−), Zε(s− δ(s)))]ds)2

≤ 8ε2

(1− L3)2
E sup

0≤t≤v
|
∫ t

0

[u(Xε(s−), Xε(s− δ(s)), s)− u(Zε(s−), Zε(s− δ(s)), s)]ds|2

+
8ε2

(1− L3)2
E sup

0≤t≤v
|
∫ t

0

[u(Zε(s−), Zε(s− δ(s)), s)− u(Zε(s), Zε(s− δ(s)))]ds|2

=: I11 + I12.

For the term I11, by Hölder inequality and Assumption 2.6, we get

I11 ≤
8ε2

(1− L3)2
E
(

sup
0≤t≤v

t

∫ t

0

|u(Xε(s−), Xε(s− δ(s)), s)− u(Zε(s−), Zε(s− δ(s)), s)|2ds
)

≤ 8Cvε2

(1− L3)2
E
∫ v

0

κ(|Xε(s−)− Zε(s−)|2 + |Xε(s− δ(s))− Zε(s− δ(s))|2)ds

≤ 8Cvε2

(1− L3)2

∫ v

0

κ(2E( sup
0≤s1≤s

|Xε(s1)− Zε(s1)|2)ds

≤ 8Cvε2

(1− L3)2

∫ v

0

κ(2E( sup
0≤s1≤v

|Xε(s1)− Zε(s1)|2)dv.

For the term I12, by Assumption 3.1 (i), we get

I12 =
8ε2

(1− L3)2
E sup

0≤t≤v
t2
∣∣∣∣1t
∫ t

0

[u(Zε(s−), Zε(s− δ(s)), s)− u(Zε(s−), Zε(s− δ(s)))]ds
∣∣∣∣2

≤ 8v2ε2

(1− L3)2
sup
0≤t≤v

ϕ1(t)κ{ sup
0≤s≤t

[E( sup
0≤s1≤s

|Zε(s1)|2) + E|Zε(s− δ(s))|2]}

≤ 8v2ε2

(1− L3)2
sup
0≤t≤v

{ϕ1(t)κ(2E‖ξ‖2 + 2C)},

since

E( sup
0≤s≤t

|X(s− δ(s))|2) ≤ E( sup
−τ≤s≤t

|X(s)|2) ≤ E‖ξ‖2 + E( sup
0≤s≤t

|X(s)|2).

So we get

EI1 ≤
8Cvε2

(1− L3)2

∫ v

0

κ(2E( sup
0≤s1≤v

|Xε(s1)− Zε(s1)|2)dv

+
8v2ε2

(1− L3)2
sup
0≤t≤v

{ϕ1(t)κ(2E‖ξ‖2 + 2C)}.
(3.7)
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For the term I2, by (3.5), we get

I2 =
4ε

(1− L3)2
E sup

0≤t≤v

(∫ t

0

[b(Xε(s−), Xε(s− δ(s)), s)− b(Zε(s−), Zε(s− δ(s)))]dB(s)

)2

≤ 8ε

(1− L3)2
E sup

0≤t≤v

(∫ t

0

[b(Xε(s−), Xε(s− δ(s)), s)− b(Xε(s−), Xε(s− δ(s)), s)]dB(s)

)2

+
8ε

(1− L3)2
E sup

0≤t≤v

(∫ t

0

[b(Xε(s−), Xε(s− δ(s)), s)− b(Zε(s−), Zε(s− δ(s)))]dB(s)

)2

=: I21 + I22.

For the term I21, by Doob’s martingale inequalitiy, Itô isometry and Assumption 2.6, we get

I21 ≤
32ε

(1− L3)2
E sup

0≤t≤v
(

∫ t

0

φ(s)κ(|Xε(s−)− Zε(s−)|2 + |Xε(s− δ(s))− Zε(s− δ(s))|2)ds)

≤ 32Cε

(1− L3)2

∫ v

0

κ(2E( sup
0≤s1≤s

|Xε(s1)− Zε(s1)|2)ds

≤ 32Cε

(1− L3)2

∫ v

0

κ(2E( sup
0≤s1≤v

|Xε(s1)− Zε(s1)|2)dv.

For the term I22, by Assumption 3.1 (ii), we get

EI22 =
32ε

(1− L3)2
E sup

0≤t≤v
t(

1

t

∫ t

0

|b(Zε(s−), Zε(s− δ(s)), s)− b(Zε(s−), Zε(s− δ(s)))|2ds)

≤ 32vε

(1− L3)2
sup
0≤t≤v

ϕ2(t)κ{ sup
0≤s≤t

[E( sup
0≤s1≤s

|Zε(s1)|2) + E|Zε(s− δ(s))|2]}

≤ 32vε

(1− L3)2
sup
0≤t≤v

{ϕ2(t)κ(2E‖ξ‖2 + 2C)}.

So,

I2 ≤
32Cε

(1− L3)2

∫ v

0

κ(2E( sup
0≤s1≤v

|Xε(s1)− Zε(s1)|2)dv

+
32vε

(1− L3)2
sup
0≤t≤v

{ϕ2(t)κ(2E‖ξ‖2 + 2C)}.
(3.8)

For the term I3, by (3.5), we get

I3 =
4ε2α2

(1− L3)2
E sup

0≤t≤v
(

∫ t

0

(t− s)α−1[σ(Xε(s−), Xε(s− δ(s)), s)− σ(Zε(s−), Zε(s− δ(s)))]ds)2

≤ 8ε2α2

(1− L3)2
E sup

0≤t≤v
(

∫ t

0

(t− s)α−1[σ(Xε(s−), Xε(s− δ(s)), s)− σ(Zε(s−), Zε(s− δ(s)), s)]ds)2

+
8ε2α2

(1− L3)2
E sup

0≤t≤v
(

∫ t

0

(t− s)α−1[σ(Zε(s−), Zε(s− δ(s)), s)− σ(Zε(s−), Zε(s− δ(s)))]ds)2

=: I31 + I32.
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For the term I31, by Hölder’s inequality, Itô-isometry and Assumption 2.6, we get

I31 =
8ε2α2

(1− L3)2
v2α−1

2α− 1
E sup

0≤t≤v

∫ t

0

|σ(Xε(s−), Xε(s− δ(s)), s)− σ(Zε(s−), Zε(s− δ(s)), s)|2ds

≤ 8Cε2α2v2α−1

(1− L3)2(2α− 1)
E sup

0≤t≤v

∫ t

0

κ(|Xε(s−)− Zε(s−)|2 + |Xε(s− δ(s))− Zε(s− δ(s))|2)ds

≤ 8Cε2α2v2α−1

(1− L3)2(2α− 1)

∫ v

0

κ(2E( sup
0≤s1≤s

|Xε(s1)− Zε(s1)|2)ds

≤ 8Cε2α2v2α−1

(1− L3)2(2α− 1)

∫ v

0

κ(2E( sup
0≤s1≤v

|Xε(s1)− Zε(s1)|2)dv.

For the term I32, by Assumption 3.1 (iii), we get

I32 ≤
8ε2α2

(1− L3)2
v2α−1

2α− 1
E sup

0≤t≤v

∫ t

0

|σ(Zε(s−), Zε(s− δ(s)), s)− σ(Zε(s−), Zε(s− δ(s)))|2ds

≤ 8ε2α2v2α−1

(1− L3)2(2α− 1)
E sup

0≤t≤v
t(

1

t

∫ t

0

|σ(Zε(s−), Zε(s− δ(s)), s)− σ(Zε(s−), Zε(s− δ(s)))|2ds)

≤ 8ε2α2v2α

(1− L3)2(2α− 1)
sup
0≤t≤v

ϕ3(t)κ{ sup
0≤s≤t

[E( sup
0≤s1≤s

|Zε(s1)|2) + E|Zε(s− δ(s))|2]}

≤ 8ε2α2v2α

(1− L3)2(2α− 1)
sup
0≤t≤v

{ϕ3(t)κ(2E‖ξ‖2 + 2C)}.

So,

I3 ≤
8Cε2α2v2α−1

(1− L3)2(2α− 1)

∫ v

0

κ(2E( sup
0≤s1≤v

|Xε(s1)− Zε(s1)|2)dv

+
8ε2α2v2α

(1− L3)2(2α− 1)
sup
0≤t≤v

{ϕ3(t)κ(2E‖ξ‖2 + 2C)}.
(3.9)

For the term I4, by (3.5), we get

I4 =
4ε

(1− L3)2
E sup

0≤t≤v
(

∫ t

0

∫
|y|<c

[h(Xε(s−), Xε(s− δ(s)), y, s)− h(Zε(s−), Zε(s− δ(s)), y)]Ñ(ds, dy))2

≤ 8ε

(1− L3)2
E sup

0≤t≤v
(

∫ t

0

∫
|y|<c

[h(Xε(s−), Xε(s− δ(s)), y, s)− h(Zε(s−), Zε(s− δ(s)), y, s)]Ñ(ds, dy))2

+
8ε

(1− L3)2
E sup

0≤t≤v
(

∫ t

0

∫
|y|<c

[h(Zε(s−), Zε(s− δ(s)), y, s)− h(Zε(s−), Zε(s− δ(s)), y)]Ñ(ds, dy))2

=: I41 + I42.

For the term I41, by Doob’s martingale inequalitiy, Itô-isometry and Assumption 2.6, we get

I41 ≤
32Cε

(1− L3)2
E sup

0≤t≤v

∫ t

0

κ(|Xε(s−)− Zε(s−)|2 + |Xε(s− δ(s))− Zε(s− δ(s))|2)ds

≤ 32Cε

(1− L3)2

∫ v

0

κ(2E( sup
0≤s1≤s

|Xε(s1)− Zε(s1)|2)ds

≤ 32Cε

(1− L3)2

∫ v

0

κ(2E( sup
0≤s1≤v

|Xε(s1)− Zε(s1)|2)dv.
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For the term I42, by Assumption 3.1 (iv), we get

I42 ≤
32ε

(1− L3)2
E sup

0≤t≤v
t(

1

t

∫ t

0

∫
|y|<c
|h(Zε(s−), Zε(s− δ(s)), y, s)− h(Zε(s−), Zε(s− δ(s)), y)|2ν(dy)ds)

≤ 32vε

(1− L3)2
sup
0≤t≤v

ϕ4(t)κ{ sup
0≤s≤t

[E( sup
0≤s1≤s

|Zε(s1)|2) + E|Zε(s− δ(s))|2]}

≤ 32vε

(1− L3)2
sup
0≤t≤v

{ϕ4(t)κ(2E‖ξ‖2 + 2C)}.

So,

I4 ≤
32Cε

(1− L3)2

∫ v

0

κ(2E( sup
0≤s1≤v

|Xε(s1)− Zε(s1)|2)dv

+
32vε

(1− L3)2
sup
0≤t≤v

{ϕ4(t)κ(2E‖ξ‖2 + 2C)}.
(3.10)

Taking (3.7)-(3.10) and Jensen inequality into account, we obtain

E( sup
0≤t≤v

|Xε(t)− Zε(t)|2)

≤ 8v2ε2

(1− L3)2
sup
0≤t≤v

{ϕ1(t)κ(2E‖ξ‖2 + 2C)}+
32vε

(1− L3)2
sup
0≤t≤v

{ϕ2(t)κ(2E‖ξ‖2 + 2C)}

+
8ε2α2v2α

(1− L3)2(2α− 1)
sup
0≤t≤v

{ϕ3(t)κ(2E‖ξ‖2 + 2C)}+
32vε

(1− L3)2
sup
0≤t≤v

{ϕ4(t)κ(2E‖ξ‖2 + 2C)}

+ (
8Cvε2

(1− L3)2
+

32Cε

(1− L3)2
+

8Cε2α2v2α−1

(1− L3)2(2α− 1)
+

32Cε

(1− L3)2
)

∫ v

0

κ(2E( sup
0≤s1≤v

|Xε(s1)− Zε(s1)|2)dv.

Because κ(z) is concave, there exist a ≥ 0, b ≥ 0 such that (see Mao [15])

κ(z) ≤ a+ bz, z ≥ 0. (3.11)

Then,

E( sup
0≤t≤v

|xε(t)− Zε(t)|2)

≤ 8v2ε2

(1− L3)2
sup
0≤t≤v

{ϕ1(t)κ(2E‖ξ‖2 + 2C)}+
32vε

(1− L3)2
sup
0≤t≤v

{ϕ2(t)κ(2E‖ξ‖2 + 2C)}

+
8ε2α2v2α

(1− L3)2(2α− 1)
sup
0≤t≤v

{ϕ3(t)κ(2E‖ξ‖2 + 2C)}+
32vε

(1− L3)2
sup
0≤t≤v

{ϕ4(t)κ(2E‖ξ‖2 + 2C)}

+ (
8Cvε2

(1− L3)2
+

32Cε

(1− L3)2
+

8Cε2α2v2α−1

(1− L3)2(2α− 1)
+

32Cε

(1− L3)2
)va

+ (
8vε2

(1− L3)2
+

32ε

(1− L3)2
+

8ε2α2v2α−1

(1− L3)2(2α− 1)
+

32ε

(1− L3)2
)Cb

∫ v

0

2E( sup
0≤t≤v

|xε(t)− Zε(t)|2)dv

≤ 8vε

(1− L3)2
[vεR1 + 4R2 + εR3R5 + 4R4 + (vε+ 8 + εR5)aC] +R6

∫ v

0

E( sup
0≤t≤v

|xε(t)− Zε(t)|2)dv,

where constants

R1 := sup
0≤t≤v

{ϕ1(t)κ(2E‖ξ‖2 + 2C)}, R2 := sup
0≤t≤v

{ϕ2(t)κ(2E‖ξ‖2 + 2C)},
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R3 := sup
0≤t≤v

{ϕ3(t)κ(2E‖ξ‖2 + 2C)}, R4 := sup
0≤t≤v

{ϕ4(t)κ(2E‖ξ‖2 + 2C)},

R5 :=
α2v2α−1

2α− 1
,

R6 := 2(
8vε2

(1− L3)2
+

64ε

(1− L3)2
+

8ε2R5

(1− L3)2
)Cb,

here we have used the concavity of the function κ(·).
In terms of Gronwall’s inequality, we obtain

E( sup
0≤t≤v

|Xε(t)− Zε(t)|2)

≤ 8vε

(1− L3)2
[vεR1 + 4R2 + εR3R5 + 4R4 + (vε+ 8 + εR5)aC] exp(vR6).

Choose β ∈ (0, 1) and L > 0 such that for every t ∈ [0, Lε−β(1− L3)
2] ⊆ [0, T ], we have

E( sup
t∈[0,Lε−β(1−L3)2]

|Xε(t)− Zε(t)|2) ≤ R8Lε
1−β,

where
R8 = 8[Lε−β(1−L3)

2εR1+4R2+εR3R5+4R4+(Lε−β(1−L3)
2ε+8+εR5)aC] exp(Lε−β(1−L3)

2R6).
Consequently, for any number δ1 > 0, we can choose ε1 ∈ (0, ε0] such that for every ε ∈ (0, ε1] and

t ∈ [0, Lε−β(1− L3)
2], the inequality

E( sup
t∈[0,Lε−β(1−L3)2]

|Xε(t)− Zε(t)|2) ≤ δ1,

holds. This completes the proof.

Remark 3.4. Let δ(t) = τ, τ a positive constant, then equation (1.1) will reduce to the fractional neutral
stochastic equation with poisson jumps ( [24]). Noting that our results generalize and improve those of
[24].

Remark 3.5. Let δ(t) = τ, and ignore the Lévy noise and neutral term, then equation (1.1) will reduce
to the fractional stochastic differential equation with time delays( [12]). On the other hand, let δ(t) = τ,

and ignore the fractional and neutral term, then equation (1.1) will reduce to the stochastic differential
equation with Lévy noise ( [20]). Hence our results also generalize and improve those of [12], [20].

Remark 3.6. Let δ(t) = 0, and ignore the Lévy noise and neutral term, then equation (1.1) will reduce to
the fractional stochastic differential equation without time delays( [25]). Hence our results also generalize
and improve those of [25].

Remark 3.7. Theorem 3.3 means the convergence in probability of the original solution Xε(t) and the
averaged solution Zε(t).
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4. EXAMPLE

Example 4.1. Consider the following one-dimensional neutral stochastic fractional differential equation
driven by Lévy process with variable delay

d[Xε(t)−
1

2
sin(Xε(t− 1))] =ε[−Xε(t) +

1

2
Xε(t− 1) cos(t)]dt

+
√
ελdB(t) + ε(dt)α +

√
ε

∫
|y|<1

y2ν(dy)dt,

with initial value Xε(t) = t+ 1, t ∈ [−1, 0], Lévy measure ν satisfies ν(dy) = 1
1+y2

dy and λ ∈ R, here

u(x, z, t) = −x+
1

2
z cos(t), b(x, z, t) = λ, σ(x, z, t) = 1, h(x, z, y, t) = y2.

Let
u(x, z) =

1

π

∫ π

0

u(x, z, t)dt = −x, b(x, z) = λ, σ(x, z) = 1, h(x, z, y) = y2.

Hence, we have the corresponding averaged neutral stochastic fractional differential equation driven by
Lévy process with variable delay as follows

d[Zε(t)−
1

2
sin(Zε(t− 1))] =−εZε(t)dt+

√
ελdB(t)

+ ε(dt)α +
√
ε

∫
|y|<1

y2ν(dy)dt.

When t ∈ [0, 1], we have

d[Zε(t)−
1

2
sin(t)] = −εZε(t)dt+

√
ελdB(t)

+ ε(dt)α +
√
ε

∫
|y|<1

y2ν(dy)dt

= −εZε(t)dt+
√
ελdB(t) + ε(dt)α +

(4− π)
√
ε

2
dt.

Obviously, Zε(t) is nothing but the following well-known mean-reverting Ornstein-Uhlenbeck process

Zε(t) = Zε(0)e−εt +
(4− π)

√
ε

2

∫ t

0

e−ε(t−s)ds+
1

2

∫ t

0

e−ε(t−s) sin(s)ds

+
√
ελ

∫ t

0

e−ε(t−s)dB(s) + αε

∫ t

0

(t− s)α−1e−ε(t−s)ds,

Repeating this procedure over the intervals [1, 2], [2, 3], etc, we obtain the solution on the entire interval
[0, T ]. Noting that ∣∣∣∣ 1

T

∫ T

0

u(x, z, t)− u(x, z)dt

∣∣∣∣2 =

∣∣∣∣ 1

T

∫ T

0

cos(t)dt

∣∣∣∣2 ∣∣∣∣14z
∣∣∣∣2 ,

and ∣∣∣∣ 1

T

∫ T

0

cos(t)dt

∣∣∣∣2 =
sin2(T )

T 2
≤ 1

T 2
.

It is easy to see that Assumptions 2.6-2.7 and 3.1 are satisfied, so Theorem 3.3 holds. Let Er =

[|Xε(t)−Zε(t)|2]
1
2 . Figure 1 and 2 demonstrate a good agreement between solutions of the original equation
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and the averaged equation, hence, the averaging principle for the considered equation is successfully
established.
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Figure 1: Comparison of the original solution Xε(t)
with the averaged solution Zε(t) with

ε = 0.0001, λ = 1.5, α = 2/3
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Figure 2: Comparison of the original solution Xε(t)
with the averaged solution Zε(t) with

ε = 0.001, λ = −2, α = 0.7
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[10] R. Khasminskii, On the principle of averaging the Itô stochastic differential equations, Kibernetika, 4 (1968) 260-279.
[11] M. Li and F. Deng, Almost sure stability with general decay rate of neutral stochastic delayed hybrid systems with Lévy noise, Nonlinear
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