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Abstract

In this Ph.D. Thesis we consider two speci�c supergravities which are well-
established within the literature on holography, and which are known to provide
the low-energy e�ective description of either superstring theory or M-theory: the
six-dimensional half-maximal theory of Romans, and the maximal supergravity
in seven dimensions.

We implement their dimensional reduction by compactifying on an S1 and
T 2, respectively, to obtain a �ve-dimensional sigma-model coupled to grav-
ity. Spectra of bosonic excitations are computed numerically by considering
�eld �uctuations on background geometries which holographically realise con-
�nement. We furthermore propose a diagnostic tool to detect mixing e�ects
between scalar resonances and the pseudo-Nambu�Goldstone boson associated
with spontaneous breaking of conformal invariance: the dilaton. This test con-
sists of neglecting a certain component of the spin-0 �uctuation variables, ef-
fectively disregarding their back-reaction on the underlying geometry; where
discrepancies arise compared to the complete calculation we infer dilaton mix-
ing. For both theories this analysis evinces a parametrically light dilaton.

For each supergravity we uncover a tachyonic instability within their param-
eter space; motivated by these pathological �ndings we proceed to conduct an
investigation into their respective phase structures, reasoning that there must
necessarily exist some mechanism by which these instabilities are rendered phys-
ically inaccessible. We compile a comprehensive catalogue of geometrically dis-
tinct backgrounds admissible within each theory, and derive general expressions
for their holographically renormalised free energy F . Another numerical rou-
tine is employed to systematically extract data for some special deformation
parameters, and F is plotted in units of an appropriate universal scale.

Our analysis proves fruitful: each theory exhibits clear evidence of a �rst-
order phase transition which induces the spontaneous decompacti�cation of the
shrinking circular dimension before the instability manifests, favouring instead
a class of singular solutions. The aforementioned dilaton resonance appears only
along a metastable portion of the branch of con�ning backgrounds.
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Chapter 1

Introduction

1.1 Background

The non-perturbative nature of strongly interacting Quantum Field Theories

(QFTs) makes them particularly di�cult to study, since the methods of pertur-

bation theory are insu�cient to provide reliable results; its failure in this context

means that physical observables of interest cannot be computed. This is espe-

cially concerning given that the Standard Model, which to date provides our

best understanding of elementary particles and their fundamental interactions,

includes a Yang-Mills theory describing (at low energies) the strong-coupling

physics of quarks and gluons: Quantum Chromodynamics (QCD). Ab initio

calculations in this context are possible, though only by making use of lat-

tice numerical methods which are typically challenging and resource-intensive.

Complementary approaches to this problem which provide a more general under-

standing of similar strongly-coupled systems, without relying on expensive and

time-consuming calculations on a supercomputer, would certainly be desirable.

A major breakthrough in our understanding of these systems came with the

much celebrated and in�uential 1997 paper by J. Maldacena [5] in which the

so-called AdS/CFT correspondence was �rst proposed, providing a successful

realisation of the holographic principle earlier developed by G. 't Hooft [6] and

L. Susskind [7] in the context of string theory. In its original form, the AdS/CFT

correspondence is a conjectured relation between two apparently dissimilar the-

ories: type-IIB superstring theory (or its low-energy supergravity limit) formu-

lated on the product space geometry AdS5×S5, and the N = 4 superconformal
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Yang-Mills (SYM) theory in four dimensions with gauge group SU(Nc). They

have in common certain symmetry properties: the isometry group of AdS5 and

the conformal group of four-dimensional Minkowski space are isomorphic, both

being SO(4, 2), and moreover there is an isomorphism SO(6) ∼= SU(4) between

the isometry group of the �ve-sphere S5 and the R-symmetry group of N = 4

SYM [8]. The correspondence conjectures that a gravitational theory formu-

lated on the curved AdS5 bulk geometry, and a conformal �eld theory (CFT)

situated at the four-dimensional boundary (�at Minkowski space), should both

describe the same underlying physics; this would therefore be an example of

a holographic duality. What makes this dual description so powerful is that

it relates the strong-coupling regime on one side of the duality with the weak-

coupling regime on the other, so that otherwise unfeasible non-perturbative �eld

theory calculations at low energy scales could in principle be rendered as a com-

paratively simple perturbative computation in one additional dimension, with

gravity. The low energy classical supergravity description of the bulk side of the

duality is realised in the large Nc limit [9] (see also reviews in Refs. [10,11]) with

small string coupling gs → 0, holding the 't Hooft coupling λ ≡ Nc gs ≡ Nc g2
YM

large λ� 1 and �xed; here gYM is the gauge coupling of the corresponding �eld

theory.

The AdS/CFT correspondence saw further development shortly afterwards,

starting from Refs. [12,13] (see also Ref. [14]), wherein the relationship between

states propagating on the higher-dimensional geometry and properties of the

dual CFT was more precisely de�ned. It was postulated, for example, that each

supergravity �eld φ(xµ, z) (where z is the radial coordinate and xµ are the four

Minkowski dimensions of the UV boundary at z = 0) should correspond to a

gauge-invariant operator O(xµ) in the dual CFT, of which the scaling dimension

∆ is related to the bulk mass of φ. Furthermore, the asymptotic value assumed

by each supergravity �eld at the conformal boundary φ(xµ, 0) ≡ φ0 should be

understood to act as a source for this dual operator. An equivalence between

the generating functional of the boundary �eld theory and the partition function

of the bulk gravitation model was proposed (see Refs. [15�17] for discussion in

the context of holographic renormalisation, and Refs. [18�20] for more general

reviews):

ZM[φ0] =

∫
φ∼φ0

Dφe−S[φ] =
〈
e−

∫
∂M φ0O

〉
CFT

, (1.1)

where the left side is the supergravity partition function (here written in the Eu-

clidean signature) with boundary conditions (BCs) imposed on each bulk �eld φ
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at the UV boundary of the space ∂M, and the right side is the CFT generating

functional with corresponding sources φ0 and operators O. Using this prescrip-
tion, it became possible to compute important �eld theoretic quantities such as

correlation functions and condensates, by taking functional derivatives of the

supergravity action with respect to the appropriate sources. These innovations

laid the foundations for what is now referred to as the holographic dictionary,

a more general catalogue of associated quantities and parameters on either side

of the duality.

Despite the context of its original construction, the applicability of the

AdS/CFT correspondence is not restricted to holographic systems for which

the higher-dimensional geometry is AdS5. The complete classi�cation of possi-

ble supergravities�based on their underlying superalgebra�which admit super-

symmetric AdSD solutions was provided by Nahm [21] (see also Refs. [22, 23]);

although no such solutions exist for D > 7, their non-supersymmetric counter-

parts may yet be discovered in higher dimensions (see for example Ref. [24]).

Hence, the correspondence can be generalised to include geometries with other

numbers of non-compacti�ed dimensions. Furthermore, since its inception the

correspondence has been developed in order to be applicable to a broader class

of holographic systems; these include, for example, models in which the higher-

dimensional geometry deviates from Anti-de Sitter space as one travels radially

away from the UV boundary (breaking conformal invariance in the dual �eld

theory), in addition to models which preserve di�erent amounts of supersym-

metry (SUSY). It is due to these developments that AdS/CFT correspondences

have come to be known more generically as gauge/gravity dualities, although

these names are typically understood to be synonymous and are often used

interchangeably.

Gauge/gravity dualities have also been proposed as a tool with which one

may holographically model a four-dimensional �eld theory which exhibits con-

�nement at low energies, and the dictionary has been extended to facilitate the

calculation of appropriately renormalised 2-point functions [15�17] of relevance

to computing composite state (glueball) mass spectra. In the context of QCD,

the term `con�nement' refers to the phenomenon that quarks, antiquarks, and

gluons (which belong to the fundamental, antifundamental, and adjoint repre-

sentations of the gauge group SU(3)c, respectively) cannot be isolated below a

certain energy threshold, and must form colour-neutral composite states which

transform as singlets under the colour gauge group: hadrons (including glue-

balls, which are examples of exotic mesons). Furthermore, in real-world QCD, it

12



requires increasingly more energy to separate a quark-antiquark pair, and above

a certain length scale it becomes energetically favourable to instead generate a

new qq̄ pair from the vacuum (so-called hadronisation).

An alternative de�nition of con�nement exists for more general QFTs which

do not exhibit this hadronisation at low energies, and it is this de�nition which

we shall adopt throughout this Thesis. For a given QFT we can study the

interaction of two source particles by considering the static (time-invariant)

potential between them; in QED this is the Coulomb potential between two

electric charges, and in QCD it is the potential between two colour charges (a

quark-antiquark pair for example). For a generic strongly interacting QFT,

con�nement manifests as a static potential between a quark-antiquark pair

that increases linearly with separation, which can be deduced by studying

the behaviour of Wilson loops. A Wilson loop which encloses the �ux tubes

between the qq̄ pair scales with the area of the contour as separation is in-

creased; this is the �area law� of con�nement. Conversely, for a QFT which does

not exhibit con�nement�for example Quantum Electrodynamics�the Wilson

loop scales instead with the perimeter of the loop contour. In gauge/gravity

correspondences, the expectation value of rectangular Wilson loops of area

L × T (space×time)�which are localised at the UV boundary of the bulk�

can be computed using a standard holographic prescription [25, 26] (see also

Refs. [27�31]): in the uplifted ten-dimensional geometry one hangs an open

string with endpoints �xed to the loop contour at the boundary, and which is

allowed to explore the bulk geometry along the radial dimension. By minimising

the classical action of this con�guration in the T → ∞ limit, one can compute

the energy of the system as a function of the quark-antiquark separation L

and recover the expected linear behaviour for the static potential of a con�ning

theory.

On the gravity side of the duality, con�nement is manifested as a geometric

property of the bulk spacetime manifold, and there are known to exist at least

two realisations. As originally suggested by Witten in Ref. [32], one such method

is via the toroidal compacti�cation of a supergravity which admits AdSD back-

ground con�gurations, in such a way that one internal circle S1 of the torus

smoothly shrinks to zero volume at a �nite value of the radial coordinate; the

resultant tapering of the bulk manifold naturally introduces a low-energy limit

in the dual �eld theory which lives on the four-dimensional boundary, which in

turn may be intuitively interpreted as the con�nement scale of composite states

(see Ref. [33] for an early example of glueball spectra computed in this way).
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The alternative method to toroidal compacti�cation is related to what is

known in the literature as the conifold [34�42] (see also Refs. [43, 44]). Brie�y,

one can consider a product space geometry of the form [36] M10 = AdS5 ×
T 1,1, where T 1,1 describes the �ve-dimensional base of a special type of six-

dimensional manifold containing a conical singularity (a conifold), and which

has certain properties which make it particularly interesting to the holographic

study of four-dimensional �eld theories with unbroken supersymmetry [45]. The

base space T 1,1 of this cone is topologically equivalent to S2×S3, and the conical

singularity at the cone apex can be smoothed (or `repaired') by allowing either

the 2-sphere or 3-sphere to maintain a �nite non-zero volume at the end of

space in the radial direction [34]: the former case is referred to as the resolved

conifold and the latter as the deformed conifold, and both exhibit the same

UV asymptotic behaviour as the singular conifold. It was demonstrated by

I. Klebanov and M. Strassler in Ref. [38] that the type-IIB supergravity solution

propagating on the deformed conifold geometry exhibits certain behaviour near

to the IR end of space which, in the dual N = 1 non-conformal gauge theory,

can be interpreted as con�nement. A similar solution was constructed shortly

afterwards by J. Maldacena and C. Nuñez in Ref. [39], and it was later shown

that these are two limits of a one-parameter family of solutions referred to as

the baryonic branch [41]. It should be clari�ed that we mention the conifold

only for the sake of completeness, and much of the important underlying physics

and several technical aspects of this geometry have been omitted here; for our

purposes going forward we will always be referring to toroidal compacti�cation

when discussing con�nement within holography.

In this Thesis we will primarily focus our attention on two speci�c super-

gravity theories, both of which have been extensively studied in the context of

top-down holography (i.e. starting from a rigorously de�ned higher-dimensional

theory of quantum gravity), and each of which is known to represent the low-

energy limit of either superstring theory or M-theory. What makes them par-

ticularly interesting candidates for further investigation is that they are rel-

atively simple supergravity models, which nevertheless provide an interesting

framework within which to study the phenomenology of strongly-coupled �eld

theories. Both of them admit AdS background solutions, and may be toroidally

compacti�ed in order to geometrically realise con�nement in the dual �eld the-

ory. Furthermore, as we shall see, both theories admit unique supersymmetric

�xed point solutions which may be deformed to generate several physically dis-

tinct classes of background con�gurations.
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The �rst of these theories is the six-dimensional half-maximal N = (2, 2)

gauged supergravity with F4 superalgebra and SU(2) gauge group, the existence

of which was originally predicted in Ref. [23], and which was �rst constructed

and written explicitly by Romans [46]. It is known to be obtainable from massive

type-IIA supergravity [47] via the reduction of the ten-dimensional geometry on

a warped four-sphere: M10 → AdS6×S4, which preserves an SO(4) isometry of

the compacti�ed space (the warp factor appearing in the lift to ten dimensions

has a non-trivial dependence on one of the angles which parametrises the S4,

so that the internal geometry is topologically a foliation of 3-spheres, and hence

only the SO(4) ⊂ SO(5) isometry is preserved) and breaks half of the super-

symmetry [48,49]. Alternative lifts to type-IIB supergravity are known, see for

example Refs. [50,51]. The isomorphism SO(4) ∼= SU(2)× SU(2) contains two

copies of the SU(2) subgroup: one of these manifests the R-symmetry group

of the dual theory living on the boundary of the AdS6 space, while the other

provides the supergravity gauge group. This theory, widely known as Romans

supergravity, is an illustrative example of an interesting theory which presents a

rich topic for exploration despite its relative simplicity, and it has been applied

for many di�erent purposes in a variety of contexts in the literature [50�74].

These include, for example, to study somewhat atypical strongly-coupled �eld

theories in �ve dimensions via the AdS6/CFT5 correspondence [57�63], to inves-

tigate non-trivial renormalisation group (RG) �ows using holography [64�66],

and to compute the spectra of glueball masses in a four-dimensional con�ning

�eld theory by compactifying the dual of a �ve-dimensional �eld theory on a

circle [52�54]. As a �nal comment, and in anticipation of Section 4.1 where we

shall introduce the formalism of Romans supergravity, we here mention that it

is known in the literature that the scalar manifold of half-maximal non-chiral

supergravities in D = 6 dimensions can be extended by introducing vector mul-

tiplets which couple to the pure theory [55,56] (see also Refs. [75,76]). However,

for our purposes we shall neglect to include these additional multiplets, and will

instead consider only the minimal bosonic �eld content of the theory: one real

scalar coupled to gravity, four vectors, and a 2-form.

The second theory which we shall study is the seven-dimensional maximal

N = 4 gauged supergravity with gauge group Sp(4) ∼= SO(5), which was orig-

inally constructed in Refs. [77, 78] by compactifying the maximally supersym-

metric eleven-dimensional supergravity on a four-sphere M11 → AdS7 × S4;

the isometry group of the compact space manifests the SO(5) gauge group in

D = 7 dimensions. There is known to exist a related compacti�cation��rst
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predicted in Ref. [79], see also Refs. [80�85]�on a 7-sphereM11 → AdS4 × S7

which also retains maximal supersymmetry and for which the isometry group

of the S7 realises an SO(8) gauge group, but we will not be studying this the-

ory. It was shown in Ref. [86] that the spectrum of the AdS7 × S4 system

may be consistently truncated to neglect the massive Kaluza-Klein states of

the compact S4, retaining only the graviton supermultiplet (see Ref. [8] for a

review). The lift of the D = 7 supergravity back to eleven dimensions is known

to simplify if one further truncates the theory to retain only a single scalar φ

�eld [87], and it is this truncated model which we shall be investigating. The

scalar potential of this simpli�ed system admits two distinct critical point so-

lutions with exactly AdS7 background geometry, in addition to more general

solutions which interpolate between them [88]. A further dimensional reduction

to D = 5 can be performed by compactifying two of the external dimensions of

the AdS space on a torus T 2 = S1×S1, which introduces two additional spin-0

�elds to the model; solutions to the classical equations of motion (EOMs) may

be constructed in such a way that one of these circles always maintains a non-

zero volume, and the corresponding scalar which parametrises this volume can

be interpreted as the dilaton �eld of the uplifted type-IIA supergravity. For

the critical point solution φ = 0 this toroidally reduced system was �rst pro-

posed by Witten [32] in the context of studying con�ning �eld theories using

holography, and it has been used elsewhere in the literature, for example as the

dual of quenched QCD [89, 90] to geometrically realise spontaneously broken

chiral symmetry. We will introduce the necessary formalism for this model, and

perform the dimensional reduction on a torus, in Chapter 5.

We conclude this introductory section by brie�y describing the two main

objectives of the work which constitutes this Thesis. Firstly, we shall exploit

gauge/gravity dualities in order to compute the mass spectra of composite states

in four-dimensional strongly-coupled �eld theories, by considering �uctuations

of the higher dimensional supergravity �elds about their background con�gu-

rations. We will calculate these spectra numerically for the two theories intro-

duced above: Romans six-dimensional half-maximal supergravity compacti�ed

on a circle, and the seven-dimensional maximal supergravity compacti�ed on a

torus, for background solutions which admit a dual interpretation in terms of

con�ning �eld theories. For the spin-0 states, we will then proceed to repeat the

computation using what we henceforth refer to as the probe approximation, a

diagnostic `tool' with which it is possible to determine to what extent the phys-

ical scalar states mix with the dilaton of the theory; we will provide a proper
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introduction for these concepts in the following chapter. For both supergravity

models, in the process of extracting the spectra we will uncover the existence of

a tachyonic instability within a certain region of parameter space, which appears

as a result of a runaway direction in the scalar potential.

Secondly, motivated by our discovery of these instabilities, we will conduct

an energetics analysis for each of the models by computing the (appropriately

renormalised) free energy as a function of a set of universal deformation param-

eters, for several geometrically distinct classes of background solutions. In both

cases we will uncover the existence of a �rst-order phase transition which ensures

that the unstable branch of solutions is never energetically favoured, and we will

demonstrate that�beyond a certain critical value of a control parameter�the

system prefers to spontaneously decompactify the dimension wrapped on the

shrinking S1 to restore the maximum (D− 1)-dimensional Poincaré invariance.

1.2 Motivation: Conformality Lost

It was proposed in Ref. [91], and further discussed in Refs. [92, 93], that one

possible marker of the transition from a conformal regime to a non-conformal

regime within a QFT (of relevance to the study of the QCD conformal window) is

the merging of two beta function �xed points, resulting in the complexi�cation of

the scaling dimension of a �eld theory operator; in the context of the AdS/CFT

correspondence this is realised on the gravity side of the duality by a scalar �eld

acquiring a mass which falls below the Breitenlohner-Freedman (BF) stability

bound [95]. As a brief reminder of this mass bound, recall that in Refs. [12,

13] it was shown that the AdS/CFT correspondence predicts that the scaling

dimension ∆ of the gauge-invariant boundary operator dual to a scalar �eld φ

propagating on AdSd+1 (with curvature radius R) is given by:

m2R2 = ∆(∆− d) , (1.2)

which as a quadratic equation in ∆ admits two distinct solutions for the scaling

dimension:

∆± =
1

2

[
d±

√
d2 + 4m2R2

]
. (1.3)

We see that the necessary condition for ∆± to be real is given by the bound

m2 > m2
BF ≡ −

d2

4R2
, (1.4)
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which was originally derived for a massive free scalar �eld in Ref. [95], by de-

termining which asymptotic boundary conditions for the scalar ensure that the

system has �nite energy. It is worth noting that the BF bound de�ned in

Eq. (1.4) does not forbid the existence of �elds with negative mass squared;

while in Minkowski space such states would indicate the presence of a classical

instability in the theory, for scalar �elds propagating on AdS geometries the

energetic stability requirement is instead given by a lower bound on admissible

m2 < 0 values [13].

In a more recent study [94], this idea of relating the BF bound to conformal

invariance was tested within the framework of bottom-up holography, using a

simple AdS5 model with a �hard-wall� IR brane used to introduce by hand an

end of space and to generate a mass gap in the putative dual �eld theory. The

authors explored the dynamics of this system, and in particular investigated the

spectrum of resonances in the boundary theory as parameters were dialled to

approach the BF bound in the bulk. They observed that the dilaton was indeed

the lightest state in the scalar spectrum, although they furthermore concluded

that this state was not parametrically light and hence its mass could not be

tuned to be arbitrarily small compared to the other resonances.

Motivated by these �ndings we will adopt an alternative approach to study-

ing dilaton phenomenology, though instead in the context of supergravity within

the established framework of top-down holography. We shall pursue a line of

investigation which generalises the notion of proximity to the BF bound as a

signal of broken conformal invariance (applicable only to AdS geometries), and

will instead consider proximity to regions within the system parameter space

which introduce a tachyonic instability in the spectrum of �uctuations; in this

way we will be able to conduct a study of the spectra of resonances analogous

to that of Ref. [94], but for background solutions which model con�nement by

departing from Anti-de Sitter space. The objective of our research will never-

theless be similar: to ascertain to what degree the scalar states of the boundary

theory may be identi�ed with the dilaton, and to deduce whether or not the

dilaton is the (parametrically) lightest resonance.

1.3 Thesis overview

The Thesis is organised as follows. In Chapter 2 we shall introduce all of the

general formalism which is applicable to both of the supergravity models that
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we will be studying, and brie�y discuss the underlying methods of our investiga-

tion. In Sec. 2.1 we present the �ve-dimensional holographic formalism required

to compute the spectra of gauge-invariant states in a dual four-dimensional

�eld theory, and provide a descriptive outline of the numerical routine which we

employ to extract values for the physical masses. In Sec. 2.2 we discuss dila-

ton phenomenology in the context of holography, and describe in more detail

our implementation of the probe approximation. We then provide a schematic

overview of our investigation into the energetics and phase structure of the two

supergravity theories in Sec. 2.3.

Part I�which comprises Chapters 3, 4, and 5�is dedicated to presenting

and discussing the results of our numerical spectra computations. In Chapter 3

we extract the spectrum of excitations for an example toy model (the reduction

of a generic AdSD system on an n-torus), and then proceed to demonstrate

the aforementioned probe approximation by applying it �rst to this holographic

model as a proof of concept. Then, in Chapters 4 and 5 we present in detail all

of the necessary formalism required to describe the two supergravity theories,

perform the dimensional reduction of each via toroidal compacti�cation, show

explicitly the class of background solutions which geometrically realise con�ne-

ment, derive the equations satis�ed by the gauge-invariant �eld �uctuations,

compute the spectra of massive excitations, and then �nally compare these re-

sults to those obtained from the corresponding probe approximation. Chapter 4

focuses exclusively on Romans six-dimensional supergravity, while Chapter 5 is

dedicated to the maximal seven-dimensional theory.

Part II�which comprises Chapters 6 and 7�is dedicated to presenting and

discussing our exploration of the phase structure of the two supergravity the-

ories that we are considering, by conducting a numerical energetics analysis in

each case. In Chapter 6 we present this study for Romans six-dimensional su-

pergravity, introducing a classi�cation of several geometrically distinct types of

background solutions, and providing a thorough derivation of the holographi-

cally renormalised free energy. We furthermore introduce a scale setting scheme

which is necessary in order to compare these di�erent classes of solutions, and

then provide an outline of the numerical routine used to extract data for the

required parameters. We conclude by presenting the free energy as a function of

these parameters for each class of background within our catalogue, alongside a

few other interesting quantities. Chapter 7 repeats this entire analysis for the

seven-dimensional supergravity.

Finally for the main body of the document, Chapter 8 is dedicated to sum-
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marising our key �ndings and conclusions; we furthermore comment on some

interesting (and rather surprising) phenomenological similarities between the

two compacti�ed supergravity theories. We then conclude with a discussion on

some issues that our work leaves unresolved, and suggest some related topics�

building upon this Thesis�which future work may potentially seek to address.

In Appendix A we derive three equivalent formulations of a particular La-

grangian density which is of relevance to our spectra computation for the six-

dimensional supergravity, and in Appendix B we present tabulated numerical

masses that are obtained by considering �uctuations about some special back-

ground solutions. In Appendix C we implement an alternative normalisation of

the spectra plots for the two supergravity theories, by making use of a universal

energy scale which is introduced as part of our phase structure analysis. In Ap-

pendix D we provide expressions for some gravitational invariants which may

be derived using the metric ansätze that we adopt, and present some plots to

demonstrate explicitly the geometric di�erences between some of the solution

classes that we consider. Finally, Appendix E contains some additional plots

which highlight the non-trivial implicit relations between the various parameters

which are introduced in our energetics analysis of the two supergravity theories.
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Chapter 2

General formalism

2.1 Computing spectra

2.1.1 Holographic formalism in D=5 dimensions

According to the dictionary of gauge-gravity dualities, the mass spectrum of

composite bound states in a (D − 1)-dimensional strongly-coupled �eld the-

ory can be computed by studying the spectrum of small �uctuations around

an asymptotically-AdS background con�guration in the corresponding dual D-

dimensional supergravity model. For the purposes of this Thesis we are inter-

ested in obtaining the spectra of massive states for con�ning four-dimensional

�eld theories, and we are hence required to examine the bosonic �eld excitations

of their weakly-coupled �ve-dimensional gravitational duals.

We shall be considering the dimensional reduction of two well-known super-

gravities, and so we dedicate this introductory chapter to de�ning all of the

general holographic formalism which is common to each system that we study.

To start with, consider the �ve-dimensional geometry described by the following

line element ansatz:

ds2
5 = e2Adx2

1,3 + dr2 , (2.1)

where dx2
1,3 is the four-dimensional Minkowski metric with �mostly plus� sig-

nature ηµν ≡ diag (−1 , 1 , 1 , 1), A is the metric warp factor, and r is the

holographic coordinate which parametrises the radial dimension. In comput-

ing the spectra, we constrain the holographic coordinate to take values in the

closed interval r ∈ [r1, r2], where r1 is the infrared (IR) boundary and r2 is the
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ultraviolet (UV) boundary; these boundaries have no physical meaning, and are

introduced as regulators of the dual �eld theory with the understanding that the

physical spectrum results are recovered only after taking appropriate limits. We

de�ne indices to run over µ, ν ∈ {0, 1, 2, 3} andM,N ∈ {0, 1, 2, 3, 5}, so that the
determinant of the �ve-dimensional metric is given by det(gMN ) ≡ g5 = −e8A.

Finally, to ensure that Poincaré invariance is manifestly preserved along the

Minkowski xµ directions, we demand that all �elds of the gravitational model

are functions only of the holographic coordinate r, including the warp factor

A = A(r).

We next introduce the conventions which we shall adopt for classical gravity.

The Christo�el symbols (metric connection) are given by

ΓPMN ≡
1

2
gPQ

(
∂MgNQ + ∂NgQM − ∂QgMN

)
, (2.2)

so that the Riemann tensor is

R Q
MNP ≡ ∂NΓQMP − ∂MΓQNP + ΓSMPΓQSN − ΓSNPΓQSM , (2.3)

the Ricci tensor can be written as

RMN ≡ R P
MPN , (2.4)

and the Ricci curvature scalar as

R5 ≡ RMNg
MN = −8A′′ − 20(A′)2 . (2.5)

The radial coordinate r parametrises a bounded segment of the �ve-dimensional

bulk manifold, and hence an induced metric g̃MN is needed on each of the two

four-dimensional boundaries. We introduce the �ve-vector nM = (0, 0, 0, 0, 1)

which is de�ned to be orthonormal to the boundaries:

1 = gMNn
MnN , 0 = g̃MNn

M , (2.6)

so that the induced metric is given by

g̃MN ≡ gMN − nMnN = diag (e2Aηµν , 0) . (2.7)

We next de�ne the covariant derivative acting on a generic (1, 1)-tensor (which
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may be generalised for tensors of any rank):

∇MTPN ≡ ∂MT
P
N + ΓPMQT

Q
N − ΓQMNT

P
Q , (2.8)

which allows us to de�ne the extrinsic curvature K in terms of the following

symmetric tensor:

KMN ≡ ∇MnN = ∂MnN − ΓQMNnQ , (2.9)

so that the extrinsic curvature scalar is K ≡ gMNKMN = 4∂rA.

Now that we have characterised the underlying geometry of the �ve-dimensional

gravitational model, we next introduce the formalism (following the notation of

Refs. [96�100]) necessary to describe a sigma-model of n scalars coupled to

gravity in �ve dimensions. The general action may be written as

S5 =

∫
d5x

{√−g5

[R5

4
− 1

2
Gabg

MN∂MΦa∂NΦb − V(Φa)

]
+
∑
i=1,2

δ(r − ri)(−)i
√
−g̃
[K

2
+ λi(Φ

a)

]}
, (2.10)

where g5 is the determinant of the metric de�ned by Eq. (2.1), g̃ is the deter-

minant of the induced metric, R5 is the Ricci curvature scalar, and K is the

extrinsic curvature. The n scalars coupled to gravity are denoted by Φa (with

a = 1, . . . , n), V is the sigma-model scalar potential, and λi are boundary-

localised potentials (see Ref. [100] for details). The (−1)i term in the ac-

tion manifests an antiparallel orientation of the orthonormal vector nM at the

IR boundary. The kinetic term for the scalar �elds is contracted with Gab,

the sigma-model metric, with which we may de�ne quantities analogous to

those describing the spacetime geometry; the sigma-model connection on the

n-dimensional scalar manifold may be written as

Gabc ≡
1

2
Gad (∂bGcd + ∂cGdb − ∂dGbc) , (2.11)

while the sigma-model Riemann tensor is

Rabcd ≡ ∂cGabd − ∂dGabc + GaceGebd − GadeGebc . (2.12)

Finally, for a generic �eld which carries a sigma-model index Xa, we de�ne the
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sigma-model covariant derivative

DbX
a ≡ ∂bX

a + GabcXc , (2.13)

and the background covariant derivative

DMXa ≡ ∂MX
a + Gabc∂MΦbXc , (2.14)

and for the sigma-model derivative we adopt the notation Va ≡ Gab∂bV with

∂bV ≡ ∂V
∂Φb

. Note that for our purposes it is su�cient to only consider the

background covariant derivative DM acting on a sigma-model (1, 0)-tensor Xa,

as we will not encounter any dynamical �elds carrying more than one sigma-

model index (the one exception being Gab). With our conventions established,

and recalling that we will henceforth assume that the bulk �elds and warp factor

are functions only of the radial coordinate r, we can write down the classical

equations of motion which are derived from the variation of the general �ve-

dimensional action in Eq. (2.10) [96,100]:

0 = ∂2
rΦa + 4∂rA∂rΦ

a + Gabc∂rΦb∂rΦc − Va , (2.15)

0 = 3∂2
rA + 6(∂rA)2 + Gab∂rΦ

a∂rΦ
b + 2V , (2.16)

0 = 6(∂rA)2 − Gab∂rΦ
a∂rΦ

b + 2V , (2.17)

where Eqs. (2.15) are the equations of motion for the scalars, while Eq. (2.16)

and Eq. (2.17) come from the Einstein �eld equations.

As a brief aside, we here note that the task of �nding background solutions

to these equations of motion is somewhat simpli�ed for cases in which we are

able to identify a superpotential W(Φa), so that the scalar potential V(Φa) in

D dimensions satis�es the following condition [97]:

V =
1

2
GabWaWb −

D − 1

D − 2
W2 , (2.18)

where Gab is the sigma-model metric and Wa ≡ ∂aW, and where we adopt a

domain-wall (DW) metric ansatz of the form

ds2
D = e2Adx2

1,D−2 + dr2 , (2.19)

with warp factor A and radial coordinate r. In such a case where these criteria
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are met, one may solve instead the following system of �rst-order equations:

∂rΦ
a = Gab∂bW , (2.20)

∂rA = − 2

D − 2
W , (2.21)

to �nd a special set of solutions which are guaranteed to also satisfy the original

second-order equations of motion. We will make use of this superpotential

formalism in later chapters. To conduct our numerical analysis of the glueball

spectra, it is convenient to employ the gauge-invariant formalism developed in

Refs. [96�100], which we shall brie�y review here.

Having identi�ed a background solution to the classical equations of motion,

we proceed to expand the scalar �elds as

Φa(xµ, r) = Φ̄a(r) + ϕa(xµ, r) , (2.22)

where ϕa(xµ, r) represent small �uctuations about the background solution

Φ̄a(r). We furthermore parametrise the �uctuations of the metric by decompos-

ing the tensor gMN according to the Arnowitt-Deser-Misner (ADM) prescrip-

tion [101]: we consider the foliation of the �ve-dimensional bulk manifold into

four-dimensional hypersurfaces along the radial dimension, rewriting the D = 5

metric as follows:

ds2
5 = e2A

(
ηµν + hµν

)
dxµdxν + 2νµdx

µdr +
(

(1 + ν)2 + νσν
σ
)
dr2 , (2.23)

hµν =
(
hTT

)µ
ν

+ ∂µεν + ∂νε
µ +

∂µ∂ν
�

H +
1

3
δµνh ,

=
(
hTT

)µ
ν

+ iqµεν + iqνε
µ +

qµqν
q2

H +
1

3
δµνh , (2.24)

where � ≡ ηµν∂µ∂ν is the d'Alembert operator, hTT is the transverse and trace-

less component of the metric �uctuation, and εµ is transverse. The linearised

equations of motion for the �eld �uctuations {ϕa, ν, νµ, (hTT )µν , h,H, ε
µ} may

then be equivalently reformulated in terms of the following gauge-invariant (un-
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der in�nitesimal di�eomorphisms) physical variables:

aa ≡ ϕa − ∂rΦ̄
a

6∂rA
h , (2.25)

b ≡ ν − ∂r

(
h

6∂rA

)
, (2.26)

c ≡ e−2A∂µν
µ − e−2Aq2

6∂rA
h − 1

2
∂rH , (2.27)

dµ ≡ e−2AΠµ
νν
ν − ∂rε

µ , (2.28)

eµν ≡ (hTT )µν , (2.29)

with Πµ
ν ≡ δµν− q

µqν
q2 the transverse momentum projector satisfying Πµνqµ = 0,

so that the equations of motion for the �eld �uctuations decouple into sectors

according to spin. The equation of motion for the spin-1 �eld dµ is algebraic

and hence is not used to compute the spectra of vector composite states; the

equations of motion for b and c are also algebraic, and their solutions may be

written in terms of aa [100]. We are therefore left with the equations of motion

for two independent spin sectors. De�ning M2 ≡ −q2 as the four-dimensional

mass of the �uctuations, the tensorial �uctuations eµν(M, r) satisfy the bulk

equation

0 =
[
∂2
r + 4∂rA∂r + e−2AM2

]
eµν , (2.30)

and are subject to Neumann boundary conditions:

0 = ∂re
µ
ν

∣∣∣
ri
. (2.31)

Likewise, the equations of motion for the spin-0 �uctuations aa(M, r) may be

written as

0 =
[
D2
r + 4∂rADr + e−2AM2

]
aa + (2.32)

−
[
Va|c −Rabcd∂rΦ̄b∂rΦ̄d +

4(∂rΦ̄
aVb + Va∂rΦ̄b)Gbc

3∂rA
+

16V∂rΦ̄a∂rΦ̄bGbc
9(∂rA)2

]
ac ,

where we have introduced the notation Va|b ≡ ∂bVa +GabcVc, with correspond-

ing boundary conditions

∂rΦ̄
a∂rΦ̄bDrab

∣∣∣
ri

=

[
− 3

2
∂rA

M2

e2A
δab + ∂rΦ̄

a

(
4V

3∂rA
∂rΦ̄b + Vb

)]
ab
∣∣∣
ri
. (2.33)
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This procedure and the resulting equations of motion for the �eld �uctuations

are quite general, and for any physical system of interest which can be similarly

modelled as an n-scalar sigma-model coupled to gravity in �ve dimensions, it is

possible to compute the mass spectra for the spin-0 and spin-2 glueball sectors

of its corresponding dual strongly-coupled �eld theory, with some caveats [100].

The analogous formalism for an arbitrary number of dimensions is discussed in

Section 4 of Ref. [2].

We will make use of this same formalism throughout Chapters 3 - 5 while

conducting our numerical study of the spectra for three distinct holographic

systems. In Chapter 4�where we consider the six-dimensional supergravity�

we will generalise this procedure by supplementing the sigma-model action with

terms accounting for the contributions of 1- and 2-forms, and in so doing we will

be able to extract the complete spectra of bosonic excitations for the theory.

2.1.2 Numerical implementation

We conclude Section 2.1 by brie�y outlining the procedure used to compute

the mass spectra using the formalism of the previous chapter, and describe the

qualitative structure of a numerical routine which would allow one to most easily

employ these techniques in practice.

It is �rst necessary to identify background pro�les for the scalar �elds Φa

and warp factor A which solve the classical equations of motion, subject to

the simplifying assumption that the pro�les are functions only of the radial

coordinate; let us assume that the background solutions are generated over the

domain r ∈ [rnum1 , rnum2 ], where the superscript label denotes that these values

are the numerical endpoints of the backgrounds. Once the background solutions

have been obtained, we proceed to solve the �uctuation equations by employing

the mid-determinant method. For a chosen trial value of the massM , we impose

independently the boundary conditions for the �uctuations in the IR and UV�

at r1 and r2, respectively�and use the bulk �uctuation equation(s) to evolve

these solutions towards an intermediate value of the radial coordinate r∗ with

rnum1 < r1 < r∗ < r2 < rnum2 (note that the computation of the spin-0 spectrum

for an n-scalar sigma-model requires that we solve a system of n �uctuation

equations, and hence it is necessary to evolve n linearly independent solutions

towards the intermediate r∗). We then construct the 2× 2 matrix µ(M2) using

the evolved solutions and their radial derivatives, evaluated at the midpoint r∗
(for the �uctuations of n sigma-model scalars this matrix would instead have

27



dimensions 2n × 2n). Schematically, for a generic �eld �uctuation f(M, r) we

have

µ(M2) ≡
(
fI(r∗) fU (r∗)

f ′I(r∗) f ′U (r∗)

)
, (2.34)

where the subscript I denotes a solution generated by setting up boundary

conditions at the IR regulator, the subscript U represents a solution which

evolves backwards from the UV regulator, and primes here denote di�erentiation

with respect to the radial coordinate r. We compute the determinant of µ

and repeat this process by varying the trial (squared) mass M2, obtaining for

each iteration a single data point {M2, det(µ)}. The mass spectrum�for the

particular choice of the two regulators�is then given by the discrete set of M2

values for which det(µ) = 0, i.e. the set of trial mass values for which we can

construct linearly dependent �uctuations which evolve from the IR and UV and

smoothly connect at some intermediate midpoint (see for example Ref. [98] for

an outline of this midpoint determinant method).

Given the numerical nature of this algorithm, it is worth commenting on

a couple of technicalities which arise when computing the spectrum in this

way. We �rst remind the Reader that the parameters r1 and r2, which are

introduced as holographic regulators of the dual �eld theory, are unphysical,

and that the spectrum of physical masses would be obtained only in the limit

in which the e�ect of these regulators is removed: r1 → ro and r2 →∞, where

ro is the physical end of the bulk geometry which sets the scale of con�nement

at low energies. In practice, it is not numerically feasible to take these limits

when solving the equations of motion for the �uctuations, and so care should

be taken to ensure that the values assigned to the regulators are su�ciently

low (high) in the IR (UV) that the extracted tower of states is not subject

to any spurious cuto� e�ects or numerical artefacts. Typically the regulators

should be chosen as close to the numerical endpoints of the backgrounds as

possible, though this may be limited by the numerical precision being used.

Similarly, it is also necessary to check the convergence of the spectrum as a

function of the midpoint r∗, as this parameter may need to be tuned in order to

optimise the numerics. The second technicality concerns identifying the zeros of

the mass matrix determinant; det(µ(M2)) is a function which oscillates around

zero, and can only be obtained numerically using a �nite number of trial mass

values, limited by time and computational resources. As a result, in practice we

approximate the zeros of the function by the points at which the determinant
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changes sign, and hence the accuracy of the spectrum scales with the number

of trial masses that we iterate over.

2.2 Identifying the dilaton

Nambu�Goldstone Bosons (NGBs) are massless scalar particles that appear in

QFT models which exhibit a spontaneously broken continuous symmetry, where

the model would otherwise be exactly invariant under these symmetry transfor-

mations. For cases in which this spontaneously broken symmetry is not exact

(an approximate symmetry which is explicitly broken by the Lagrangian of the

theory) the corresponding spin-0 particles which are generated are referred to

as pseudo-Nambu�Goldstone Bosons (pNGBs), and have small non-zero masses.

As a speci�c example, the dilaton is a hypothetical scalar particle which appears

in models which manifest the spontaneous breaking of (approximate) scale in-

variance, and is the pNGB associated with the breakdown of dilatation in-

variance; in addition to invariance under the Poincaré and special conformal

transformations, dilatation invariance is a necessary requirement for a CFT.

The mass of the dilaton is controlled by the degree to which scale invariance is

explicitly broken, and is completely suppressed (i.e. the dilaton becomes mass-

less) in the limit in which the spontaneously broken scale symmetry is exact at

the level of the Lagrangian.

The dilaton has been studied in many di�erent contexts, and work dedi-

cated to understanding its phenomenology has produced a signi�cant number

of papers in the literature: these include, for example, early attempts to de-

scribe the dilaton in terms of a low-energy e�ective �eld theory [102,103], work

on modelling dynamical electroweak symmetry breaking with a composite dila-

ton [104�106], studies of near-conformal �eld theories and lattice data [107�119],

and extensions to the standard model which contain a composite Higgs parti-

cle [120�131]. The dilaton has also featured in the context of model building

using bottom-up holography [132�139], including within braneworld systems

which implement the Goldberger-Wise moduli stabilisation mechanism [140�

146]; other papers have instead explored dilaton phenomenology in the con-

text of top-down holography, in studies of certain special con�ning �eld theories

from the conifold [147�151]. The wide variety of papers on this topic is in part

explained by the relative simplicity of computing spectra in these models: the

relevant low-energy features of a system which is known to descend from su-
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perstring theory are often retained when one instead considers a sigma-model

coupled to gravity, in which high-energy degrees of freedom are neglected and

the spectra of �uctuations about the supergravity backgrounds may be calcu-

lated rigorously.

Despite this relative abundance of papers on the topic, however, the im-

portant question of how to actually deduce whether a light scalar state in a

given model is indeed a dilaton presents a non-trivial technical di�culty; the

spectrum of spin-0 states is typically sourced both by the �eld theory operators

dual to the scalar supergravity �elds, in addition to the dilatation operator it-

self. These physical states may arise as a result of mixing e�ects between these

operators, and it is hence natural to ask how one may distinguish a dilaton (or

a mass eigenstate which results from signi�cant mixing with the dilaton) from

other generic states with the same quantum numbers. To begin to address this

issue, we will next formally introduce the probe approximation which we earlier

alluded to, and which is discussed and implemented as a test for a variety of

models in Ref. [2].

We start by reminding the Reader of the gauge-invariant scalar combination

aa(M, r) which was introduced in Eq. (2.25) of Sec. 2.1.1:

aa(M, r) ≡ ϕa(M, r) − ∂rΦ̄
a(r)

6∂rA(r)
h(M, r)

≡ ϕa(M, r) − Γa(r)h(M, r) , (2.35)

where ϕa(M, r) are the leading order scalar �eld �uctuations about the back-

ground solutions Φ̄a(r), h(M, r) is the (four-dimensional) trace of the tensor

component of the �ve-dimensional ADM-decomposed metric, and we have rein-

stated the explicit dependences on M and the radial coordinate r. According

to the holographic dictionary, the bulk �elds ϕa are associated with the scalar

operators which de�ne the dual theory, while the metric perturbation h cou-

ples to the trace of the stress-energy tensor of the boundary theory and hence

sources the dilatation operator. We can therefore predict that a test intended to

determine the extent to which each spin-0 state mixes with the dilaton should

equivalently measure the mixing e�ects between the �uctuations of both the

sigma-model scalars and the metric.

Hence, the diagnostic tool which we propose (and which we call the probe

approximation) consists of computing the spectrum of scalar states for each

background solution in two separate ways: �rstly, by making use of the �uctua-
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tion equations and boundary conditions presented in Eqs. (2.32, 2.33), which are

satis�ed by the complete gauge-invariant scalar variables aa and which preserve

any dilaton admixture which may be present, and secondly by then implement-

ing the approximation h = 0, which has the e�ect of decoupling the �eld �uctu-

ations ϕa from the dilaton. This second calculation essentially `switches o�' any

back-reaction which the scalar �uctuations may induce on the bulk geometry,

and completely neglects the contribution to the mass eigenstates coming from

the metric perturbation. Any spin-0 states which are una�ected by this probe

approximation therefore cannot be interpreted as resulting from mixing with the

dilaton, since by de�nition the approximation should only be valid for the �uc-

tuations of the sigma-model scalar �elds. By contrast, if when comparing the

spectra for the two computations we observe signi�cant discrepancies between

one or more states, then we may infer that the metric perturbation component

of the gauge-invariant variable aa is not negligible, and furthermore that these

states are (at least partially) identi�able as the dilaton. For future reference,

we shall use the phrase approximate dilaton to refer to any state which is de-

termined to be a signi�cant admixture with the dilaton, even when the mass is

not necessarily light compared to other states in the spectrum.

The bulk equations and boundary conditions which are satis�ed by the probe

states aa|h=0 ≡ pa may be obtained by considering the series expansion of aa in

powers of the vanishingly small parameter Γa(r) � 1 as de�ned in Eq. (2.35),

which to leading order gives

0 =
[
D2
r + 4∂rADr + e−2AM2

]
pa −

[
Va|c −Rabcd∂rΦ̄b∂rΦ̄d

]
pc , (2.36)

for the bulk �uctuations, while the boundary conditions reduce to the simple

Dirichlet form:

0 = pa
∣∣∣
ri
. (2.37)

We conclude this section with a brief but nevertheless important clari�cation.

Although the probe approximation, as we have de�ned it, will prove to be an

invaluable tool when attempting to detect the presence of (partially) dilatonic

scalar states, we emphasise that the approximation is merely a convenient diag-

nostic test which does not by itself provide any meaningful information about

a given model, when removed from this context. The utility of this tool relies

on the comparison of its results to those obtained from the proper computation

of the complete gauge-invariant spectrum, and it does not otherwise provide us
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with any further physical insight.

2.3 Energetics analysis of phase structure

We propose an investigation into the phase structure of two particular super-

gravity models, chosen for their relative simplicity in the context of top-down

holography as examples of gravitational models which admit classical solutions

with con�ning four-dimensional �eld theories as their boundary duals: the cir-

cle compacti�ction of Romans six-dimensional half-maximal supergravity [46],

and the toroidal compacti�cation of the seven-dimensional maximal supergrav-

ity [77,78,86�88] admitting a background con�guration which provides the holo-

graphic description of con�nement in four dimensions, as proposed by Wit-

ten [32].

Each of these supergravity models admits several distinct classes of back-

ground solutions�with correspondingly di�erent bulk geometries�and the ques-

tion arises of how to use these various solutions in order to explore the phase

structure of the model and to ascertain the existence of a phase transition. As

we shall see in Chapters 4 and 5, our computation of the glueball mass spectra

reveals the presence of a classical instability in both systems (in the form of a

tachyonic scalar state), and hence we anticipate the existence of a phase transi-

tion by necessity: the models which we consider are well-de�ned and established

supergravities, and so there must be some mechanism by which the unphysi-

cal region of parameter space containing the instability is separated from the

physical region, and is not itself physically realised.

To this end, and with our motivation established, we intend to conduct an

energetics analysis of the various classes of solutions within these two theories,

predicting that the branch of solutions which contains the tachyonic state must

prove to be energetically disfavoured for choices of parameters which bring the

system in proximity of the instability. More speci�cally, we will compute the

holographically renormalised free energy density F of the system, taking care to

use a prescription which allows us to legitimately and unambiguously compare

background solutions belonging to di�erent classes.

A detailed derivation of the free energy density for the two models will

be provided in their respective Chapters 6 and 7, together with an explana-

tion of the various parameters upon which F depends; here we provide only a

schematic de�nition for the free energy, starting with the classical action of a D-
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dimensional system containing a single scalar �eld coupled to gravity, with two

boundaries situated at regulated values of the holographic coordinate ρ = ρi.

This action is given by

S = SD +
∑
i=1,2

(−)i
∫
dD−1x

√
−˜̂g

[K
2

+ λi

]
ρ=ρi

, (2.38)

where SD is the classical bulk action which contains the D-dimensional Ricci

scalar RD and the kinetic and potential terms for the scalar �eld, ˜̂g denotes the

determinant of the pullback of the metric induced at each boundary, K is the

extrinsic curvature term of the Gibbons-Hawking-York (GHY) action which we

are required to include due to the presence of boundaries, and λi are boundary-

localised potentials which we presently neglect to specify for simplicity. We will

be more explicit in later chapters, but here it su�ces to state that the classical

equations of motion obtained from the bulk action, together with the large-ρ

asymptotic expansions for the scalar �eld and metric warp factor, may be used

to derive the required expression for the free energy:

F ≡ − lim
ρ1→ρo

lim
ρ2→+∞

S ≡
∫
dD−1xF , (2.39)

where ρo is the physical end of the geometry with ρo < ρ1, S is the complete

(appropriately renormalised) on-shell action, and F is the free energy density.

We will later show that F may be formulated as a function of a special set of

deformation parameters which characterise the UV (large ρ) asymptotic �eld ex-

pansions and that, in order to obtain any meaningful results from this analysis,

it is necessary to employ a numerical routine to extract physical values for these

parameters. This necessity arises because the evolution of the non-linear classi-

cal equations of motion into the bulk geometry, combined with the imposition

of boundary conditions in the IR, yields non-trivial implicit functional relations

between the UV parameters; this encodes the non-perturbative dynamics of the

dual �eld theory.

Brie�y, this numerical process is as follows: for each class of solutions within

the supergravity models, we use their IR (small ρ) �eld expansions to gener-

ate a family of numerical backgrounds which solve the classical equations of

motion, and then systematically match each of these backgrounds (and their

derivatives) to the general UV expansions, solving for each parameter in turn.

In this way we are able to extract a complete table of values for the various UV
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parameters, with each single set of values unambiguously identifying a unique

numerical background within the family. We will provide a more comprehensive

explanation of this procedure in Chapters 6 and 7.

As we earlier alluded to, it is insu�cient to simply plot the free energy

density using this acquired UV parameter data, as there exists a further subtlety

which must �rst be addressed. We will later demonstrate that it is necessary

to introduce an appropriate scale setting procedure by which we rescale all

physical quantities of interest to our study, including the free energy density

and its arguments. Only then are we able to plot the free energy density F as

a function of the numerically obtained UV parameter data for each branch of

solutions, and explore the phase structure for the two supergravity models.
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Part I

Spectra of composite states
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Chapter 3

Example application:

Tn-compacti�cation of

AdSn+5 system

3.1 Formalism of the D-dimensional model

As discussed in Chapter 1 this Thesis will focus primarily on the study of two

speci�c supergravities, both of which are well-known in the literature on top-

down holography; these are the six-dimensional half-maximal theory �rst writ-

ten by Romans [46] which we compactify on an S1, and the seven-dimensional

maximal theory [77, 78, 86�88] compacti�ed on a torus T 2, which admits the

AdS7 background solution constructed by Witten [32]. Although it is known

that no supersymmetric AdSD supergravity solutions exist for D > 7 (see

Refs. [21�23]), recent work has uncovered the existence of non-supersymmetric

AdS8 solutions within type-IIA supergravity [24]; similar solutions which do

not fall under the exhaustive classi�cation of Nahm [21] may yet be discovered.

Furthermore, higher-dimensional models have also proven to be of phenomeno-

logical interest in the context of the clockwork mechanism [152�154], where the

compacti�cation of a large number of dimensions may be used to generate mass

hierarchies without relying on the introduction of other small parameters [155].

We therefore �nd it instructive to begin by investigating a genericD-dimensional

system described by the Einstein�Hilbert action, supplemented by a constant
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potential term VD < 0. Such a model admits background solutions which realise

an AdSD bulk geometry. We discuss this model mainly as an example applica-

tion of the probe approximation introduced in Sec. 2.2, and we do not provide

any further justi�cation of its inclusion here; the results of our analysis will nev-

ertheless motivate a brief remark when we come to apply the same techniques

to our spectra computations for the two supergravity theories.

The simple pure gravity action in D = 5+n dimensions which we shall adopt

is de�ned as follows:

SD =

∫
dDx

√
−ĝD

(RD
4
− VD

)
, (3.1)

where ĝD is the determinant of the D-dimensional metric tensor,RD ≡ ĝM̂N̂RM̂N̂

with M̂, N̂ ∈ {0, 1, 2, 3, 5, . . . , D − 1, D} is the corresponding Ricci curvature

scalar, and VD is the constant potential. The AdSD geometry has a radius of

curvature given by

R2 ≡ − 1

4VD
(D − 1)(D − 2) , (3.2)

which can be �xed to unity by de�ning our potential as

VD = −1

4
(D − 1)(D − 2) = −1

4
(n+ 4)(n+ 3) . (3.3)

3.2 Toroidal reduction to D=5 dimensions

The metric

We start by assuming that n internal dimensions of the geometry each wrap

around a separate S1�together describing an n-torus Tn�and reduce the sys-

tem to �ve dimensions by compactifying on this torus. We furthermore assume

that the individual volumes of the n circles are parametrised by two scalar �elds

only, so that the n−2 additional scalars which would be introduced when D > 8

have been (consistently) truncated. Our adopted ansatz for the D-dimensional

line element (for n > 2) may hence be written as follows:

ds2
D = e−2δχ̄ds2

5 + e
6
n δχ̄

(
n−1∑
i=1

e

√
8

n(n−1)
ω̄
dθ2
i + e−

√
8(n−1)
n ω̄dθ2

n

)
, (3.4)

where ds2
5 is the metric for the �ve-dimensional domain-wall geometry as de�ned

in Eq. (2.1), and 0 6 θi < 2π for i = 1, . . . , n are the periodic coordinates which
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parametrise the Tn. The two aforementioned scalars are χ̄ and ω̄, where the

latter is here associated with the generator of the U(1)n ' SO(2)n symmetry of

the Tn. A natural choice for the free parameter δ = δ(n) will become apparent in

the process of dimensionally reducing the system. From this metric ansatz, and

assuming that the scalars and warp factor are dependent only on the holographic

coordinate r, we obtain√
−ĝD = e4A−2δχ̄ = e−2δχ̄√−g5 , (3.5)

which we note is independent of ω̄. For the Ricci scalar we derive the following

expression:

RD = −2e2δχ̄
[
4A′′ − δχ̄′′ + 10

(
A′
)2 − 4δA′χ̄′ + 3(D−2)

2(D−5)δ
2
(
χ̄′
)2

+
(
ω̄′
)2]

=− 2e2δχ̄
[
4A′′ − δχ̄′′ + 10

(
A′
)2 − 4δA′χ̄′ + 3(n+3)

2n δ2
(
χ̄′
)2

+
(
ω̄′
)2]

, (3.6)

so that the following useful relation is satis�ed:√
−ĝDRD =

√−g5

[
R5 + 2δχ̄′′ + 8δA′χ̄′ − 3(D−2)

D−5 δ2
(
χ̄′
)2 − (ω̄′)2]

=
√−g5

[
R5 + 2δχ̄′′ + 8δA′χ̄′ − 3(n+3)

n δ2
(
χ̄′
)2 − (ω̄′)2] . (3.7)

We conclude this subsection by observing that for background solutions which

have vanishing ω̄ = 0, the bulk geometry preserves an n-dimensional rotational

symmetry within the space spanned by the toroidal coordinates; in such a case

the metric takes the following form:

ds2
D = dρ2 + e2(A−δχ̄)dx2

1,3 + e
6
n δχ̄

n∑
i=1

dθ2
i , (3.8)

where we have also introduced the convenient reparametrisation of the radial

coordinate via dr ≡ eδχ̄dρ. For backgrounds which further satisfy the iden-

ti�cation An = (n + 3)δχ̄, Poincaré invariance is locally preserved within the

(n + 4)-dimensional subspace spanned by the Minkowski and toroidal coordi-

nates, and the metric ansatz simpli�es to

ds2
D = dρ2 + e2A

(
dx2

1,3 +

n∑
i=1

dθ2
i

)
, (3.9)

with A ≡ 3
n+3A = 9

2nδ
2A. We shall brie�y return to this remark in Sec. 3.3.
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The action

Having characterised the underlying geometry of the model, we next turn our

attention to reducing the action SD to �ve dimensions by compactifying on the

n-torus Tn; in performing this reduction we assume that none of the �elds have

any dependence on the torus angles. By direct substitution of Eq. (3.7) we �nd

that Eq. (3.1) may be rewritten as follows:

SD =

∫ n∏
i=1

dθi

∫
d5x
√−g5

(R5

4
+

1

2
δχ̄′′ + 2δA′χ̄′ − 3(n+3)

4n δ2
(
χ̄′
)2

− 1

2

(
ω̄′
)2 − e−2δχ̄VD

)
, (3.10)

where primes denote di�erentiation with respect to r. This can then be refor-

mulated solely in terms of �ve-dimensional dynamical quantities by postulating

equivalence to an expression of the form

SD =

∫ n∏
i=1

dθi

{
S̃5 + ∂S

}
= (2π)n

{
S̃5 + ∂S

}
, (3.11)

where the integrand measure simply gives the total volume of the n circles

internal to the Tn as a prefactor. Here S̃5 is the general �ve-dimensional action

presented in Eq. (2.10) (neglecting the boundary-localised contributions):

S̃5 =

∫
d5x
√−g5

(R5

4
− 1

2
Gabg

MN∂MΦa∂NΦb − V
)
, (3.12)

with Φa = {χ̄, ω̄}, while the total derivative term ∂S is given by

∂S =
δ

2

∫
d5x ∂M

(√−g5 g
MN
5 ∂N χ̄

)
. (3.13)

By comparing Eqs. (3.10) and (3.11) we therefore deduce that V must be related

to the constant potential appearing in SD by the relation

V = e−2δχ̄VD , (3.14)

and we furthermore �nd that Gω̄ω̄ = 1. The kinetic term for the scalar χ̄ may

be canonically normalised if we also choose Gχ̄χ̄ = 1 and hence �x the free
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parameter δ to be

δ2 =
2n

3(3 + n)
, (3.15)

so that the sigma-model metric of the dimensionally reduced system is simply

the identity matrix Gab = δab. The Ricci scalar simpli�es to

RD = 2
3

[
10VD + n(n+ 4)χ̄′

]
. (3.16)

3.3 Equations of motion and solutions

Equations of motion

The classical equations of motion which follow from the toroidal reduction to

�ve-dimensions are derived from the general results shown in Eqs. (2.15 - 2.17)

of Section 2.1.1; recalling that we assume �eld dependence only on the radial

coordinate (and hence no dependence on the Minkowski and torus coordinates),

these EOMs are given by:

∂2
r χ̄+ 4∂rχ̄∂rA =

∂V
∂χ̄

, (3.17)

∂2
r ω̄ + 4∂rω̄∂rA = 0 , (3.18)

3∂2
rA+ 6(∂rA)2 + (∂rχ̄)2 + (∂rω̄)2 = −2V , (3.19)

6(∂rA)2 − (∂rχ̄)2 − (∂rω̄)2 = −2V . (3.20)

This system of equations may then be conveniently rewritten in terms of the

D-dimensional potential VD by implementing the change of radial coordinate

∂r ≡ e−δχ̄∂ρ de�ned just after Eq. (3.8), so that we equivalently have

∂2
ρχ̄+

(
4∂ρA− δ∂ρχ̄

)
∂ρχ̄ = −2δVD , (3.21)

∂2
ρω̄ +

(
4∂ρA− δ∂ρχ̄

)
∂ρω̄ = 0 , (3.22)

3∂2
ρA+ 6(∂ρA)2 + (∂ρχ̄)2 + (∂ρω̄)2 − 3δ∂ρA∂ρχ̄ = −2VD , (3.23)

6(∂ρA)2 − (∂ρχ̄)2 − (∂ρω̄)2 = −2VD . (3.24)

As an aside we notice that the combined summation of Eq. (3.21), − δ2×Eq. (3.23),
and − δ2×Eq. (3.24) gives a vanishing quantity, and correspondingly that

3δ
2 A
′′ − χ̄′′ + 6δ(A′)2 + δ(χ̄′)2 −

(
4 + 3δ2

2

)
A′χ̄′ = 0 . (3.25)
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This expression may be reformulated as a total derivative with respect to ρ, so

that

e4A−χ̄
(

3δ
2 ∂ρA− ∂ρχ̄

)
= C (3.26)

represents a conserved quantity at all energy scales, for some background-

dependent constant C. We hence observe that by simultaneously imposing the

constraints An = (n + 3)δχ̄ and ω̄ = An − (n + 3)δχ̄, all equations of motion

are satis�ed and we recover the maximally symmetric geometry which locally

preserves (D−1)-dimensional Poincaré invariance as described by the metric in

Eq. (3.9). We mention this observation here merely in passing, though we shall

later see that analogous conserved quantities also exist for the two supergravity

theories, and these will play an important role in our energetics analysis of their

respective phase structures.

Con�ning solutions

In order to holographically compute the spectra of gauge-invariant �uctuations

aa and eµν as de�ned in Eqs. (2.25) and (2.29), respectively, we require that

our dimensionally reduced model is able to geometrically realise a low-energy

scale of con�nement within the dual �eld theory. This motivates us to here

introduce a class of background solutions for which one of the internal circles of

the n-torus (parametrised by θn) shrinks to a point at some �nite value of the

radial coordinate ρ = ρo in the deep IR, so that the bulk geometry tapers and

smoothly closes o�. As discussed in Chapter 1 we may naturally interpret this

geometric property as an intrinsic low-energy limit in the boundary theory, and

the spectra of gauge-invariant �uctuations about these background pro�les as

physical states which exhibit con�nement. Conversely, in the large-ρ limit we

asymptotically recover the AdSD geometry with unit curvature.

The family of analytical solutions to the classical equations of motion pre-

sented in Eqs. (3.21 - 3.24) which meet these requirements may be written as [2]

χ̄(ρ) = χ̄I +
√

n+3
6n(n+4)2

{
n(n+ 4) ln

[
2

n+4

]
+ n ln

[
1
2 sinh

(
(n+ 4)ρ

)]
− 4 ln

[
coth

(
1
2 (n+ 4)ρ

)]}
, (3.27)

ω̄(ρ) = ω̄I −
√

n−1
2n ln

[
tanh

(
1
2 (n+ 4)ρ

)]
, (3.28)

A(ρ) = n+3
3(n+4) ln

[
1
2 sinh

(
(n+ 4)ρ

)]
+ 1

3(4+n) ln
[

tanh
(

1
2 (n+ 4)ρ

)]
, (3.29)
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where an integration constant ρo which �xes the end of space has been set to

zero without loss of generality, and we have exploited the fact that an additive

shift to A(ρ) leaves the EOMs invariant to also set another constant AI to

zero. A third integration constant χ̄I is not a free parameter however, and

is constrained by the requirement that the D-dimensional geometry does not

contain a conical singularity. To demonstrate this point explicitly let us �rst

consider series expanding the exact solutions in proximity to the end of space

at ρ = ρo = 0, which yields the following IR expansions:

χ̄(ρ) = χ̄I +
√

n+3
6n

[
(n− 1) ln(2) + 6 ln(ρ)− 1

6 (n− 2)(n+ 4)ρ2 + . . .

]
, (3.30)

ω̄(ρ) = ω̄I −
√

n−1
2n

[
ln
(
n+4

2

)
+ ln(ρ)− 1

12 (n+ 4)2ρ2 + . . .

]
, (3.31)

A(ρ) =
1

3

[
ln
(
n+4

2

)
+ ln(ρ) + 1

12 (n+ 4)(2n+ 5)ρ2 + . . .

]
, (3.32)

where the unwritten subsequent terms are of order O
(
ρ4
)
. We restrict our

attention to the two-dimensional subspace spanned by ρ and θn (which has the

topology of a cylinder), and examine its behaviour when we impose that the

S1 parametrised by θn shrinks to zero volume by directly substituting in these

expansions. The following expression is obtained for the line element:

ds̃2
2 = dρ2 + e

6
n δχ̄−

√
8(n−1)
n ω̄dθ2

n

= dρ2 + e

√
24

n(n+3)
χ̄I−

√
8(n−1)
n ω̄Idθ2

n

= dρ2 + ρ2dθ2
n , (3.33)

where in going from the second line to the third we have made the necessary

identi�cation

χ̄I =
[

1
3 (n− 1)(n+ 3)

] 1
2

ω̄I , (3.34)

to ensure that we recover the standard metric of the plane in polar coordinates

and hence avoid an angular de�cit. The remaining integration constant ω̄I may

otherwise be freely assigned, and for simplicity we choose to �x ω̄I = χ̄I = 0

henceforth.
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Hyperscaling violating solutions

If we instead consider the large-ρ limit of the analytical solutions in Eqs. (3.27 -

3.29) in proximity of the UV boundary, we obtain the following exact solutions:

χ̄hv(ρ) =
[

1
6n(n+ 3)

] 1
2

ρ , (3.35)

ω̄hv(ρ) = 0 , (3.36)

Ahv(ρ) =
1

3
(n+ 3)ρ , (3.37)

which satisfy the relations ω̄ = An−(n+3)δχ̄ = 0 discussed just after Eq. (3.26),

corroborating our statement that the con�ning backgrounds asymptotically re-

alise an AdSD geometry in the far UV. They correspond to the hyperscaling

violating (HV) solutions studied in Refs. [139, 155] (see also Ref. [156] for a

general review of hyperscaling violation in the context of holography), and we

can brie�y demonstrate this behaviour�following the notation of Ref. [139]�by

de�ning

α(n) ≡ 1

3
(n+ 3) , γ(n) ≡

[
1
6n(n+ 3)

] 1
2

, (3.38)

so thatAhv = αρ and χ̄hv = γρ, and furthermore by introducing the reparametri-

sation of the holographic coordinate ρ→ z de�ned via

dρ ≡
(
γδ − α

)−1
z−1dz = −z−1dz . (3.39)

After substituting in for Ahv and χ̄hv and implementing this change of coordi-

nate, the �ve-dimensional metric may be reformulated as follows:

ds2
5 = e2Ahv(ρ)dx2

1,3 + e2δχ̄hv(ρ)dρ2

= z−2− 2n
3

(
dx2

1,3 + dz2
)
, (3.40)

which we see transforms as ds2
5 → σ−

2n
3 ds2

5 under a generic coordinate rescaling

xµ → σxµ and z → σz, exhibiting a hyperscaling coe�cient dependent on the

dimensionality of the n-torus.

In the next section we shall use these HV solutions�which approximate the

analytical con�ning backgrounds in the large-n limit�to highlight some inter-

esting properties of the �uctuation equations for the gauge-invariant scalars aa.

Although the mass spectra are computed using the exact solutions in Eqs. (3.27 -

3.29) we �nd that the simpler HV solutions nevertheless capture some important
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qualitative features of the results; in particular they provide an e�ective esti-

mate of an upper bound on the dimensionality of the n-torus, above which

the pχ̄ probe states acquire a spurious dependence on the imposed boundary

conditions.

Skewed solutions

As a concluding remark, we observe that the classical equations of motion

presented in Eqs. (3.21 - 3.24) are invariant under the transformation ω̄(ρ) →
−ω̄(ρ); the system hence admits an additional class of backgrounds which are

related to, but geometrically distinct from, the solutions which exhibit con-

�nement. Their behaviour at the end of space can be determined by again

examining the two-dimensional line element parametrised by ρ and θn:

ds̃2
2 = dρ2 + e

6
n δχ̄−

√
8(n−1)
n ω̄dθ2

n

= dρ2 +
(

2
n+4

)4− 4
n

ρ−2+ 4
n dθ2

n , (3.41)

from which we deduce that this geometry does not smoothly close o� in the

deep IR. Instead, the volume of the S1 spanned by θn converges to a non-zero

constant if the Tn saturates the dimensionality lower bound (n = 2) imposed

by our metric ansatz, and diverges in the ρ → ρo = 0 limit if n > 2; the name

skewed is chosen to re�ect this geometric property. Although these backgrounds

are mentioned here merely as an interesting aside, we will �nd that similar types

of solutions exist within the two compacti�ed supergravity theories; in each case

the equations of motion are found to be invariant under a transformation which

�ips the sign of a linear combination of �elds, while simultaneously leaving

another combination unchanged.

3.4 Fluctuation equations

Gauge-invariant states

To compute the spectra of physical resonances in the toroidally reduced system�

and ultimately to test our probe state analysis for detecting a dilaton admixture�

we consider �uctuations about the con�ning backgrounds introduced in Sec. 3.3,

and solve the corresponding equations presented in Eqs. (2.30 - 2.33) using the

numerical procedure described in Sec. 2.1.2. As earlier anticipated, in this sub-
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section we shall use the hyperscaling violating solutions instead to discuss some

important qualitative features of these spectra.

We start by considering the gauge-invariant �eld eµν(M,ρ) associated with

the tensor �uctuations of the ADM-decomposed metric, which satisfy the bulk

equation:

0 =
[
∂2
ρ +

(
4∂ρA− δχ̄

)
∂ρ + e2(δχ̄−A)M2

]
eµν (3.42)

=
[
∂2
ρ + (n+ 4)∂ρ + e−2ρx2M2

]
eµν , (3.43)

where the second line follows from the direct substitution of the HV back-

grounds, with δ = δ(n) as de�ned in Eq. (3.15). The parameter x ≡ e−AI

has been introduced to absorb any arbitrary constant which may be added to

Ahv(ρ). The simpli�ed Eq. (3.43) admits a general solution which comprises

linear combinations of Bessel functions Jα and Yα, given by

eµν(M,ρ) = e−(n+4) ρ2

[
cJJ2+n

2
(xMe−ρ) + cY Y2+n

2
(xMe−ρ)

]
, (3.44)

where cJ and cY are constants. By imposing the required Neumann boundary

conditions at ρ = 0 and ρ → ∞ (the latter necessitating cY=0), we determine

that solutions in the large-n limit correspond to the zeros of J1+n
2

(xM). Hence,

as discussed in Ref. [2] using approximations from Ref. [157], the spectrum of

spin-2 states asymptotes to a gapped continuum as the number of circles diverges

(see Fig. 3.1).

Turning our attention now to the gauge-invariant spin-0 �elds aa(M,ρ), con-

structed from the �uctuations of the sigma-model scalars and the trace of the

tensor component of the ADM-decomposed metric, we �nd that the (coupled)

bulk equations may be rewritten as follows:

0 =
[
∂2
ρ +

(
4∂rA− δ∂ρχ̄

)
∂ρ + e2(δχ̄−A)M2

]
aa

− e2δχ̄
[
δaχ̄∂2

χ̄V + 4
3∂ρA

∂χ̄V
(
∂ρΦ̄

a + δaχ̄∂ρχ̄
)

+ 16V
9(∂ρA)2 ∂ρΦ̄

a∂ρχ̄
]
aχ̄

− e2δχ̄
[

4
3∂ρA

δaχ̄∂χ̄V∂ρω̄ + 16V
9(∂ρA)2 ∂ρΦ̄

a∂ρω̄
]
aω̄ . (3.45)

These equations are simpli�ed signi�cantly after making the replacements us-

ing the HV solutions, and in particular the gauge-invariant scalars aχ̄ and aω̄
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completely decouple. We are left with:

0 =
[
∂2
ρ + (n+ 4)∂ρ + e−2ρx2M2

]
aa , (3.46)

which is identical to the corresponding equation for the tensor modes in Eq. (3.43).

The boundary conditions satis�ed by the scalar �uctuations were introduced in

Eq. (2.33), and are rewritten in a more convenient form below:

0 =
[

3
2M

2e−2A∂ρA
]
aa
∣∣∣
ρi
− ∂ρΦ̄a

[
∂χ̄V − e−2δχ̄∂ρχ̄∂ρ + 4V

3∂ρA
∂ρχ̄

]
aχ̄
∣∣∣
ρi

+ ∂ρΦ̄
a∂ρω̄

[
e−2δχ̄∂ρ − 4V

3∂ρA

]
aω̄
∣∣∣
ρi

(3.47)

=
[

1
2 (n+ 3)x2M2e−2ρ

]
aa
∣∣∣
ρi

+
√

n
6 (n+ 3)∂ρΦ̄

a∂ρa
χ̄
∣∣∣
ρi
, (3.48)

where once again the second equality follows from the substitution of the HV

solutions. We therefore see that aω̄ satis�es Dirichlet boundary conditions (re-

call that ω̄hv(ρ) = 0), while aχ̄ instead obeys the following (Robin) boundary

conditions:

0 =

[
n

3
∂ρ + x2M2e−2ρ

]
aχ̄
∣∣∣
ρi
. (3.49)

The general solution for aω̄(M,ρ) takes the same form as that in Eq. (3.44),

though the required Dirichlet BCs mean that solutions are instead given by

the zeros of J2+n
2

(xM); in the large-n limit this tower of states hence becomes

degenerate with the continuum spectrum of the spin-2 eµν states. The Robin

BCs obeyed by the aχ̄(M,ρ) �uctuations yield the same results in the large-n

limit, albeit with the presence of an additional isolated state with mass M < 1

(as shown in Fig. 3.1).

Probe states

Let us conclude this qualitative discussion by examining the equations and

boundary conditions satis�ed by the probe states pa; we remind the Reader

that the probe approximation is implemented by neglecting the component of

aa that is proportional to the metric �uctuation h, which is equivalent to assum-

ing that Γa(ρ) =
∂ρΦ̄a(ρ)
∂ρA(ρ) � 1. The general �uctuation equation is presented in

Eq. (2.36), and for the purposes of our toroidally reduced sigma-model we �nd

that it may be written as follows:

0 =
[
∂2
ρ +

(
4∂rA− δ∂ρχ̄

)
∂ρ + e2(δχ̄−A)M2

]
pa − e2δχ̄Gaχ̄

(
∂2
χ̄V
)
pχ̄ , (3.50)
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where we have taken advantage of the fact that ∂ω̄V = 0. Notice that the probe

approximation decouples the two scalars (since Gab = δab), but also introduces

an asymmetry; although the �uctuations of pω̄ obey the same equation as previ-

ously seen with the full gauge-invariant states in Eq. (3.46), the corresponding

equation for the pχ̄ states contains an additional contribution proportional to

the potential V of the dimensionally reduced model. We see that implementing

the probe approximation greatly simpli�es Eq. (3.45), but at the cost of spoiling

the exact cancellation between the three terms in the second line.

After substituting in once more for the hyperscaling violating backgrounds

we �nd that the pχ̄ equation is modi�ed to read:

0 =
[
∂2
ρ + (n+ 4)∂ρ + e−2ρx2M2 + 2

3n(n+ 4)
]
pχ̄ , (3.51)

which admits the following general solution of Bessel functions:

pχ̄(M,ρ) = e−(n+4) ρ2

[
cJJαχ̄(xMe−ρ) + cY Yαχ̄(xMe−ρ)

]
,

with αχ̄ ≡
√

(12−5n)(n+4)
12 . (3.52)

By imposing the required Dirichlet BCs at ρ = 0 and ρ→∞, we therefore �nd

that solutions for pχ̄ are given by the zeros of Jαχ̄(xM). More speci�cally, real

solutions exist only for n 6 12
5 , and we can predict that within theories obtained

by compactifying on higher-dimensional tori Tn>3, the probe approximation

will completely fail to capture the physical aχ̄ states. For clarity, we remind

the Reader that the HV solutions are obtainable from the analytical con�ning

solutions by taking the ρ→∞ limit of the latter. We hence anticipate that this

dimensionality bound should provide a reasonable estimate of the maximum

number of compacti�ed circles our model permits, before a subset of the probe

states (those governed by χ̄) acquire a spurious dependence on the UV boundary

conditions.

3.5 Mass spectra

Gauge-invariant states

Let us now return to the con�ning backgrounds. The results of our numerical

spectrum computation for the complete gauge-invariant scalar �uctuations aa,

together with the tensor modes eµν , are presented in Fig. 3.1; they are rep-
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resented by the blue disks and red squares, respectively. Our �ve-dimensional

sigma-model is obtainable via the toroidal compacti�cation of a higher-dimensional

gravity theory for integer n > 2 only (recall from Eq. (3.4) our D-dimensional

metric ansatz); nevertheless we �nd it worthwhile to simply extend our com-

putation to permit all n > 1, with the understanding that these additional

backgrounds do not admit a sensible interpretation in terms of a lift to the

higher-dimensional pure gravity theory.

As anticipated in Sec. 3.4 we see that both of the physical spin sectors

produce a spectrum which gradually approaches that of a continuum as the

number of compacti�ed dimensions is increased, so that in the n→∞ limit we

would expect to obtain an in�nitely dense band of resonances. This observation

is supplemented by the caveat that we also �nd an additional scalar state which

appears to remain light and separated from the other modes; this isolated state

(associated with χ̄) was not detected by the computation presented in Fig. 2 of

Ref. [155], though the spin-0 results are otherwise qualitatively similar.

The complete set of scalar modes comprises two separate towers of states,

one for each of the sigma-model scalars appearing in the dimensionally reduced

theory. As inferred from our analysis of the �uctuation equations using the hy-

perscaling violating solutions�which we remind the Reader approximate the

con�ning solutions for large n�these two towers eventually both become de-

generate with the spin-2 resonances as the dimensionality of the Tn increases.

Conversely, when the system contains relatively few circles the two scalar towers

are more easily distinguished; the ratio of the aω̄ and eµν masses is always of

order ∼ 1, while the aω̄ states are slightly lighter and separated from them both.

This e�ect is more pronounced with the lightest states in the spectrum, and in

particular the very lightest resonance for aχ̄ has mass M < 1 due to the Robin

boundary conditions shown in Eq. (3.49).

Probe states

Having discussed our spectra results for the physical �uctuations of the toroidally

reduced sigma-model, we now turn our attention to the corresponding results

for the probe computation. In Fig. 3.2 we reproduce the same tower of aa scalar

resonances as shown in Fig. 3.1 (denoted again by the blue disks), supplemented

by the probe states pω̄ (green squares) and pχ̄ (purple triangles). The analysis

has been analytically continued as before to permit all n > 1, though for n < 2

the �ve-dimensional system is not obtainable from the compacti�cation of the
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Figure 3.1: The spectra of masses M as a function of the number of n-torus
dimensions compacti�ed on circles, n ∈ [1, 15.5]. The action S̃5 is obtainable
from the toroidal compacti�cation of a higher-dimensional pure gravity theory
for integer n > 2 only, though we analytically continue our numerical compu-
tation to permit all n > 1. The blue disks represent the gauge-invariant scalar
�uctuations aχ̄ and aω̄, while the red squares denote the tensor states eµν . All
states are normalised in units of the lightest tensor mass, and the spectra were
computed using regulators ρ1 = 10−3 and ρ2 = 8.

pure gravity theory on a Tn; we do not attempt to provide a physically realistic

motivation for choices n /∈ Z.
Let us start by considering the probe resonances associated with the scalar

ω̄, which we observe approximate very e�ectively the tower of physical aω̄ reso-

nances for all values of n. While this behaviour was predicted when the number

of compacti�ed dimensions is large�we determined that the bulk equation and

boundary conditions for aω̄ and pω̄ are in agreement in this limit�the universal

success of the probe approximation (including at lower values of n) implies that

the gauge-invariant excitations associated with ω̄ contain a negligible h compo-

nent. Since the boundary value of the �eld �uctuation h is identi�ed via the

holographic dictionary with the source of the dilatation operator in the dual

�eld theory, we infer that this tower of states is not the result of any signi�cant

dilaton mixing e�ects.
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As anticipated in the paragraph following Eq. (3.52), the corresponding pχ̄

probe states are plotted only up to the dimensionality upper bound identi�ed

from the Bessel function index αχ̄ (at n = 12/5, here denoted by the dashed

line), and they unambiguously fail to capture the gauge-invariant aχ̄ resonances.

In particular, the lightest excitation in the physical spectrum is a spin-0 state of

mass M < 1 associated with the �uctuations of the sigma-model scalar χ̄. This

state evidently contains a signi�cant h component, in addition to the contribu-

tion coming from the scalar �eld �uctuation ϕχ̄, and it is hence reasonable to

interpret this excitation as being (at least partially) identi�able with the dila-

ton; a similar observation leads us to conclude that in fact the entire tower of

aχ̄ resonances, including the heavier states, are to some degree dilatonic.

The cause of this phenomenon, and of the modi�ed bulk equation for pχ̄ as

shown in Eq. (3.51), is the nature of the con�ning solutions themselves; we notice

that the analytical expressions for χ̄(ρ) and the warp factor A(ρ) which are in-

troduced in Eqs. (3.27, 3.29) yield a ratio which is always of order ∂ρχ̄/∂ρA ∼ 1.

Hence the probe approximation�which is implemented by assuming this ratio

to be negligibly small�is never justi�ed, and the pχ̄ probe states will necessar-

ily fail to capture the excitations of the complete gauge-invariant computation.

The �eld �uctuations of the scalar χ̄ and of the (trace of the) ADM-decomposed

metric governed by h are inseparable, and dilaton mixing is intrinsic to their

corresponding gauge-invariant combination aχ̄. An equivalent statement is that

the back-reaction induced in the underlying geometry by the �uctuations of χ̄

is always a considerable e�ect.

We conclude by observing another interesting feature of the pχ̄ probe states,

when the number of compacti�ed dimensions is small. Despite the fact that

these unphysical resonances provide in general a very poor approximation of

the complete scalar states associated with χ̄, we nevertheless notice that there

exists a privileged choice for n at which the two calculations are coincidentally

in agreement; for n ≈ 2 the towers of aχ̄ and pχ̄ excitations brie�y intersect,

and any appreciable dilaton mixing e�ects are hence suppressed. The rele-

vance of this observation will become apparent in Chapter 5 when we discuss

the spectra of composite states within �eld theories holographically dual to

the seven-dimensional supergravity discussed in Chapter 1, compacti�ed on a

Tn=2 = S1 × S1.
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Figure 3.2: The spectra of masses M as a function of the number of n-torus
dimensions compacti�ed on circles, n ∈ [1, 15.5]. The action S̃5 is obtainable
from the toroidal compacti�cation of a higher-dimensional pure gravity theory
for integer n > 2 only, though we analytically continue our numerical compu-
tation to permit all n > 1. The blue disks represent the gauge-invariant scalar
�uctuations aχ̄ and aω̄ (as shown also in Fig. 3.1). We here additionally include
the results of our probe computation for the pχ̄ states (purple triangles) and
pω̄ (green squares), with the former shown only for n 6 12

5 (denoted by the
vertical dashed line, see the discussion in Sec. 3.4 for details). All states are
normalised in units of the lightest tensor mass, and the spectra were computed
using regulators ρ1 = 10−3 and ρ2 = 8.
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Chapter 4

Six-dimensional half-maximal

supergravity

4.1 Formalism of the six-dimensional model

The action in D = 6 dimensions

We start by presenting the six-dimensional action for the model, which describes

32 bosonic degrees freedom (d.o.f.) organised within the following �eld content:

one real scalar φ (1 × 1), one vector AM̂ (1 × 4) transforming as a U(1) gauge

boson, three vectors Ai
M̂

(3 × 4) in the 3 representation of SU(2), one 2-form

BM̂N̂ (1× 6), and the six-dimensional metric tensor ĝM̂N̂ (1× 9); we have put

in parentheses the degrees of freedom carried by each individual �eld. Hatted

uppercase Latin indices M̂ ∈ {0, 1, 2, 3, 5, 6} represent the coordinates of the

six-dimensional spacetime, while i ∈ {1, 2, 3} is the gauge index of SU(2). The

complete action may be written as [46]

S6 =

∫
d6x

√
−ĝ6

(R6

4
− ĝM̂N̂∂M̂φ∂N̂φ− V6(φ)− 1

4
e−2φĝM̂R̂ĝN̂Ŝ

∑
i

F̂ iM̂N̂ F̂
i
R̂Ŝ

− 1

4
e−2φĝM̂R̂ĝN̂ŜĤM̂N̂ĤR̂Ŝ −

1

12
e4φĝM̂R̂ĝN̂Ŝ ĝT̂ Û ĜM̂N̂T̂ ĜR̂ŜÛ

)
, (4.1)

where ĝ6 is the determinant of the six-dimensional metric, R6 ≡ ĝM̂N̂RM̂N̂ is

the corresponding Ricci curvature scalar, and V6(φ) is the potential for the real

scalar �eld φ. Summation over repeated indices is implied. The tensors are
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de�ned as

F̂M̂N̂ ≡ ∂M̂AN̂ − ∂N̂AM̂ , (4.2)

F̂ i
M̂N̂
≡ ∂M̂AiN̂ − ∂N̂A

i
M̂

+ gεijkAj
M̂
Ak
N̂
, (4.3)

ĤM̂N̂ ≡ F̂M̂N̂ +mBM̂N̂ , (4.4)

ĜM̂N̂T̂ ≡ 3∂[M̂BN̂T̂ ] = ∂M̂BN̂T̂ + ∂N̂BT̂ M̂ + ∂T̂BM̂N̂ , (4.5)

where εijk is the three-dimensional Levi-Civita symbol. We follow the same

conventions as in Ref. [51], by �xing the gauge coupling as g =
√

8 with the mass

parameter given by m = g
3 . We furthermore adopt the conventional de�nition

for the complete anti-symmetrisation of a generic (0, 3)-tensor XABC using

X[ABC] ≡
1

3!

(
XABC +XBCA +XCAB −XACB −XBAC −XCBA

)
, (4.6)

which may easily be generalised for a tensor of any order.

Critical points of the D = 6 potential

The scalar potential V6(φ) appearing in the six-dimensional action is given by

V6(φ) =
1

9

(
e−6φ − 9e2φ − 12e−2φ

)
, (4.7)

which admits two critical points, each corresponding to a distinct �ve-dimensional

conformal �eld theory; these special values for φ are given by:

φUV = 0

(
V6(φUV ) = −20

9

)
, (4.8)

φIR = −1

4
ln(3)

(
V6(φIR) = − 4√

3

)
. (4.9)

We label the critical points with subscripts to re�ect the fact that one can con-

struct numerical solutions which interpolate between the two, which in the dual

theory corresponds to a renormalisation group (RG) �ow between two �xed

points, from high energies (short distance scales) at φUV to low energies (long

distance scales) at φIR. The former critical point is a global maximum of the

potential which preserves supersymmetry and is dual to a D = 5 supercon-

formal gauge theory [63], while the latter is a global minimum which breaks

supersymmetry [64]; a plot of V6(φ) is shown in Fig. 4.1.
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Figure 4.1: The potential V6(φ) as a function of the scalar φ in the sigma-model
coupled to gravity in D = 6 dimensions. The blue disk denotes the supersym-
metric critical point φ = φUV = 0, while the dark-red triangle represents the
non-supersymmetric critical point φ = φIR = − 1

4 ln(3).

For each of the two critical point values of the scalar �eld φ(r), the six-

dimensional bulk geometry is that of AdS6; following the same conventions as

in Ref. [54], the curvature radii are given by [66]

R2
UV ≡ −5

[
V6(φUV )

]−1
=

9

4
, (4.10)

R2
IR ≡ −5

[
V6(φIR)

]−1
=

5
√

3

4
. (4.11)

We can extract the mass of the scalar �eld φ by considering small perturbations

about each critical point, reading o� the mass in each case as the coe�cient of

the term quadratic in φ in the expansion of the potential. We obtain

V6(φUV ) = −20

9
− 8φ2

3
+O

(
φ3
)
, (4.12)

V6(φIR) = − 4√
3

+
8√
3

(
φ− φIR

)2
+O

(
(φ− φIR)3

)
, (4.13)
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and hence

m2
UV = −8

3
→ m2

UVR
2
UV = −6 , (4.14)

m2
IR =

8√
3
→ m2

IRR
2
IR = 10 . (4.15)

Finally, we can use the mass of the scalar supergravity �eld φ and the curvature

radius of the AdS geometry to compute the scaling dimension ∆ of the gauge-

invariant boundary operator which is dual to φ. From the required relation

shown in Eq. (1.2), we determine ∆ separately for each of the two critical points:

∆UV = 3 , ∆IR =
1

2

(
5 +
√

65
)
. (4.16)

4.2 Circle reduction to D=5 dimensions

The metric

To compute the spectra of composite states in a four-dimensional con�ning �eld

theory, it is �rst necessary to dimensionally reduce the gravitational model to

�ve dimensions. To this end we compactify one of the external dimensions�

parametrised by the coordinate η ∈ [0, 2π)�on a circle S1, by making use of

the �ve-dimensional metric introduced in Eq. (2.1) and the following ansatz:

ds2
6 = e−2χds2

5 + e6χ
(
dη + VMdxM

)2
= e−2χ

(
e2A(r)dx2

1,3 + dr2
)

+ e6χ
(
dη + VMdxM

)2
= e−2χ

(
e2A(ρ)dx2

1,3 + e2χdρ2
)

+ e6χ
(
dη + VMdxM

)2
, (4.17)

where the index M ∈ {0, 1, 2, 3, 5} labels the coordinates of the D = 5 system,

VM is a covariant �ve-vector (the graviphoton, or gravivector) coming from the

decomposition of the D = 6 metric tensor, and in going from the second to the

third line we have introduced a convenient rede�nition of the radial coordinate

via ∂r ≡ e−χ∂ρ (dr = eχdρ). The dynamical �eld χ is introduced to parametrise

the volume of the circle, and appears as an additional scalar in the sigma-model

coupled to �ve-dimensional gravity; a further three sigma-model scalars πi result

from the decomposition of the SU(2) adjoint vectors as Ai
M̂

= {Aiµ, Ai5, πi},
where µ ∈ {0, 1, 2, 3} labels the four Minkowski spacetime coordinates.

We remind the Reader of our assumption that the scalars {φ, χ} and the

55



warp factor A are functions only of the holographic coordinate ρ, and we em-

phasise that to ensure local Poincaré invariance is manifestly preserved along

the Minkowski directions for this metric ansatz, we must additionally assume

that only these three �elds are permitted to acquire non-zero radial pro�les;

furthermore, we observe that Poincaré invariance is extended to include the η

direction if we enforce the identi�cation A = 4χ.

Finally, we note the following useful relations which may be derived given

the metric ansatz in Eq. (4.17):

ĝMR = e2χgMR , (4.18)

ĝ6M = −e2χgMNVN , (4.19)

ĝ66 = e−6χ + e2χgMNVMVN , (4.20)

where ĝ denotes the D = 6 metric, gMN is the (inverse of the) D = 5 metric de-

�ned in Eq. (2.1), and uppercase Latin indices again run overM ∈ {0, 1, 2, 3, 5}.
The determinants of the �ve- and six-dimensional metric tensors are related by√−ĝ6 = e−2χ√−g5. The six-dimensional Ricci scalar, written in terms of the

holographic coordinate ρ, is given by

R6 = −2
(

4A′′ − χ′′ + 10(A′)2 + 7(χ′)2 − 8A′χ′
)
. (4.21)

The action

We next turn our attention to the six-dimensional action written in Eq. (4.1)

by compactifying on a circle and decomposing its constituent �elds and tensors,

reformulating the action in terms of their lower-dimensional analogues. We will

make the assumption that each supergravity �eld assumes a constant value along

the S1-compact dimension x6, so that ∂6f = 0 for any generic �eld or tensor f ,

and we hence neglect �uctuations along the circle to retain only its zero modes.

We start by considering only the contributions to the six-dimensional action

which are independent of the U(1) �elds AM̂ and BM̂N̂ , which amounts to ne-

glecting the �nal two terms in Eq. (4.1), and noting that with this simpli�cation

the action S6 may be conveniently rewritten as

S6 =

∫
dη

{
S̃5 +

1

2

∫
d5x ∂M

(√−g5 g
MN∂Nχ

)}
, (4.22)
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where the �ve-dimensional action S̃5 is given by

S̃5 =

∫
d5x
√−g5

(R5

4
− 1

2
Gabg

MN∂MΦa∂NΦb − V(φ, χ)

− 1

4
HABg

MRgNSFAMNF
B
RS

)
. (4.23)

Here the index a ∈ {1, 2, 3} represents the scalar �elds of the sigma-model

coupled to �ve-dimensional gravity so that Φa = {φ, χ, πi}, the indices A,B ∈
{1, 2} denote the �eld strength tensors for the vector �elds {VM , AiM}, and the

new scalar potential V is related to the original six-dimensional potential by

V(φ, χ) = e−2χV6(φ). The sigma-model metric Gab and the metric HAB for the

vector �eld strengths are given by

Gab = diag
(

2, 6, e−6χ−2φ
)
, (4.24)

HAB = diag
(

1
4e

8χ, e2χ−2φ
)
, (4.25)

while the vector �eld strengths FA = {FV , F i} are de�ned as follows:

FVMN ≡ ∂MVN − ∂NVM , (4.26)

F iMN ≡ ∂MAiN − ∂NAiM + gεijkAjMA
k
N + (VM∂Nπ

i − VN∂Mπi) . (4.27)

The total derivative contribution to Eq. (4.22) does not a�ect the equations of

motion and hence we disregard it, so that the dimensionally reduced action�

neglecting the U(1) �elds {AM̂ , BM̂N̂}�is given by Eq. (4.23).

We now consider the complementary action containing only the contributions

of the U(1) �elds:

SU(1)
6 =

∫
d6x

√
−ĝ6

(
− 1

4
e−2φĝM̂R̂ĝN̂ŜĤM̂N̂ĤR̂Ŝ

− 1

12
e4φĝM̂R̂ĝN̂Ŝ ĝT̂ Û ĜM̂N̂T̂ ĜR̂ŜÛ

)
, (4.28)

which can be decomposed in terms of �ve-dimensional quantities and rewritten:

SU(1)
6 =

∫
dη d5x

√−g5

{
− 1

4
H(2)gMRgNSHMNHRS

− 1

12
K(2)gMRgNSgTUGMNTGRSU − 1

2
G(1)gNSH6NH6S

− 1

4
H(1)gNSgTUG6NTG6SU

}
, (4.29)
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where the prefactors are given by H(2) = e2χ−2φ, K(2) = e4χ+4φ, G(1) =

e−6χ−2φ, and H(1) = e−4χ+4φ ; the superscript numbers describe the �eld con-

tent of each term, with a (2) denoting an expression containing the 2-form BMN ,

and (1) denoting an expression containing only 1-forms, independent of BMN .

The hatted tensors decompose into their �ve-dimensional analogues according

to the following de�nitions:

HMN ≡ F̂MN +mBMN + (VM∂NA6 − VN∂MA6) +m (B6MVN −B6NVM ) , (4.30)

H6N ≡ Ĥ6N = ∂6AN − ∂NA6 +mB6N = −∂NA6 +mB6N , (4.31)

GMNT ≡ 3∂[MBNT ] − 6V[M∂NBT ]6 , (4.32)

G6NT ≡ Ĝ6NT = ∂6BNT − ∂NB6T + ∂TB6N = ∂TB6N − ∂NB6T . (4.33)

By combining the contributions coming from the two reduced actions in Eq. (4.23)

and Eq. (4.29) we �nally obtain our complete �ve-dimensional action, written

as follows:

S5 =

∫
d5x
√−g5

(R5

4
− 1

2
Gabg

MN∂MΦa∂NΦb − V(φ, χ)− 1

4
HABg

MRgNSFAMNF
B
RS

−1

4
e2χ−2φgMRgNSHMNHRS − 1

12
e4χ+4φgMRgNSgTUGMNTGRSU

−1

2
e−6χ−2φgNSH6NH6S − 1

4
e−4χ+4φgNSgTUG6NTG6SU

)
,

(4.34)

where the original 32 physical degrees of freedom contained within Eq. (4.1) are

now carried by the following �ve-dimensional �elds: six scalars {φ, χ, πi, A6}
(6× 1), six vectors {AM , AiM , B6N , VM} (6× 3), one 2-form BMN (1× 3), and

the metric tensor gMN (1× 5).

4.3 Equations of motion and con�ning solutions

Equations of motion

Admissible background con�gurations for the model are found by solving the

classical equations of motion derived from the circle-reduced �ve-dimensional

action S5 written in Eq. (4.34). Using the general results presented in Eqs. (2.15 -

2.17) of Section 2.1.1, and recalling that all of the supergravity �elds are assumed
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to be functions only of the holographic coordinate, we obtain the following:

∂2
rφ+ 4∂rφ∂rA =

1

2

∂V
∂φ

, (4.35)

∂2
rχ+ 4∂rχ∂rA =

1

6

∂V
∂χ

, (4.36)

3∂2
rA+ 6(∂rA)2 + 2(∂rφ)2 + 6(∂rχ)2 = −2V , (4.37)

3(∂rA)2 − (∂rφ)2 − 3(∂rχ)2 = −V . (4.38)

This system of equations may be reformulated in terms of the six-dimensional

scalar potential V6(φ) = e2χV(φ, χ) by implementing the change of radial coor-

dinate r → ρ de�ned just after Eq. (4.17), so that we have

∂2
ρφ+ (4∂ρA− ∂ρχ)∂ρφ =

1

2

∂V6

∂φ
, (4.39)

∂2
ρχ+ (4∂ρA− ∂ρχ)∂ρχ = −V6

3
, (4.40)

3(∂ρA)2 − (∂ρφ)2 − 3(∂ρχ)2 = −V6 , (4.41)

3∂2
ρA+ 6(∂ρA)2 + 2(∂ρφ)2 + 6(∂ρχ)2 − 3∂ρA∂ρχ = −2V6 . (4.42)

We note that only the �rst three of these equations are independent; Eq. (4.42)

may alternatively be obtained by di�erentiating Eq. (4.41) with respect to ρ and

substituting for the two scalars φ(ρ) and χ(ρ) using their respective equations of

motion. Furthermore, we may compactly rewrite these equations by introducing

the following convenient quantities:

α ≡ 4A− χ , β ≡ A− 4χ (4.43)(
⇒ χ = 1

15

(
α− 4β

)
, A = 1

15

(
4α− β

))
,

so that we have

∂2
ρφ+ ∂ρα∂ρφ =

1

2

∂V6

∂φ
, (4.44)

∂2
ρα+ (∂ρα)2 = −5V6 , (4.45)

(∂ρα)2 − (∂ρβ)2 − 5(∂ρφ)2 = −5V6 , (4.46)

∂2
ρβ + ∂ρα∂ρβ = 0 . (4.47)
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Reformulated in this way, we can make two important observations: �rstly

that the equations of motion are invariant under the sign change β → −β (or

equivalently A − 4χ → 4χ − A) while holding α → α invariant, and secondly

that Eq. (4.47) may be rewritten as a vanishing total derivative, so that

−eα ∂ρβ = C ⇐⇒ e4A−χ
(

4∂ρχ− ∂ρA
)

= C , (4.48)

where C is some background-dependent integration constant; we will return to

these useful observations in Chapter 6 when we investigate the phase structure

for this supergravity model, but we note them here for convenience. We ob-

serve that the warp factor constraint A = 4χ which was introduced in Sec. 4.2

to ensure the local preservation of �ve-dimensional Poincaré invariance simply

corresponds to β = 0, and that the equations of motion satis�ed by background

solutions on such a domain-wall geometry may be rewritten as

4∂2
ρφ+ 15∂ρA∂ρφ = 2

∂V6

∂φ
, (4.49)

3∂2
ρA+ 4(∂ρφ)2 = 0 , (4.50)

45(∂ρA)2 − 16(∂ρφ)2 = −16V6 , (4.51)

or equivalently

∂2
ρφ+ ∂ρα∂ρφ =

1

2

∂V6

∂φ
, (4.52)

∂2
ρα+ (∂ρα)2 = −5V6 , (4.53)

(∂ρα)2 − 5(∂ρφ)2 = −5V6 . (4.54)

Finally, we note for future reference that we can solve Eq. (4.51) algebraically

for A′(ρ) and substitute back into Eq. (4.49) to obtain the following second

order di�erential equation written solely in terms of the scalar φ:

0 = 3φ′′+
√

5φ′
[(

3φ′
)2

+γ−3
(

9γ4 + 12γ2− 1
)] 1

2

+γ
(

3− 4γ−2 +γ−4
)
, (4.55)

where primes denote derivatives with respect to ρ, and we have here de�ned

γ ≡ e2φ(ρ). We will return to this useful equation later in order to visualise how

the various domain-wall solutions parametrically �ow away from the unique

supersymmetric �xed point φ = 0.
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Con�ning solutions

We are interested in computing the spectra of bosonic composite states (glue-

balls) in a con�ning �eld theory dual to our reduced �ve-dimensional e�ective

model, and hence we require that the geometric con�guration on the gravity

side is able to incorporate con�nement as a physical low-energy limit; with this

in mind, we here introduce a class of background solutions which we shall refer

to as con�ning.

The de�ning property of this class of solutions is that at some small but

�nite value of the holographic coordinate ρ = ρo, the S
1-compact dimension

(parametrised by the coordinate η, and with size governed by the scalar χ)

shrinks to a point so that the bulk geometry smoothly closes o� and ends; we

use this tapering property of the manifold to realise a physical low-energy limit

at which the corresponding dual four-dimensional �eld theory may be probed,

and interpret the spectra of �uctuations about these background pro�les as

physical states which exhibit con�nement at a certain low-energy threshold.

When φ is equal to either of the two critical point values {φIR, φUV } of the
six-dimensional potential, there exist exact analytical solutions for the scalar

�eld χ and the metric warp factor A which satisfy the equations of motion

in �ve dimensions; de�ning φp to be either one of these critical points and

v ≡ V6(φp), these solutions are given by [52�54]:

φ = φp , (4.56)

χ(ρ) = χI −
1

5
ln

[
cosh

(√−5v
2 (ρ− ρo)

)]
+

1

3
ln

[
sinh

(√−5v
2 (ρ− ρo)

)]
, (4.57)

A(ρ) = AI −
4

15
ln(2) +

4

15
ln

[
sinh

(√
−5v(ρ− ρo)

)]
+

1

15
ln

[
tanh

(√−5v
2 (ρ− ρo)

)]
, (4.58)

where χI , AI , and ρo are three integration constants. We note that ρo may

be freely chosen to �x the physical end of space for the solutions at small ρ,

and unless otherwise speci�ed we will always set this constant to zero. The

equations of motion in Eqs. (4.39 - 4.42) are invariant under an additive shift

to the warp factor A(ρ), and hence we are also free to choose AI = χI . The

remaining integration constant χI , however, is not a free parameter and must be
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chosen to ensure that the six-dimensional geometry is regular at the end of space

ρ = ρo. As stated earlier, the scalar �eld χ(ρ) is introduced in the dimensional

reduction procedure as an additional degree of freedom which controls the size of

the circular sixth dimension parametrised by the coordinate η; this coordinate is

periodic (with period 2π), and hence we must �x χI to avoid a conical singularity

at the end of space. In proximity of this point the geometry resembles a two-

dimensional plane described by the following line element:

ds̃2
2 = dρ2 + e6χdη2 (4.59)

= dρ2 − 5

4
ve6χI (ρ− ρo)2dη2 + . . . , (4.60)

where in going from the �rst line to the second line we have directly substituted

in for χ using Eq. (4.57). To put this metric into the form of standard Euclidean

polar coordinates it is hence necessary to make the identi�cation

χI =
1

6
ln

(−4

5v

)
. (4.61)

More generally, it is also possible to numerically construct background solutions

for cases in which φ is not equal to either of the two critical point values, but

rather smoothly interpolates between them. These solutions may be obtained

by solving the classical equations of motion and imposing boundary conditions

on the bulk �elds using the following IR (small (ρ− ρo)) expansions:

φ(ρ) = φI − 1

12
e−6φI

(
1− 4e4φI + 3e8φI

)
(ρ− ρo)2

− 1

324
e−12φI

(
4− 28e4φI + 51e8φI − 27e16φI

)
(ρ− ρo)4

+O
(
(ρ− ρo)6) , (4.62)

χ(ρ) = χI +
1

3
ln

(
5

3

)
+

1

3
ln(ρ− ρo)− 1

27
e−2φI

(
2 + sinh

(
4φI + ln(3)

))
(ρ− ρo)2

+
5

486
e−4φI

(
2 + sinh

(
4φI + ln(3)

))2

(ρ− ρo)4

+O
(
(ρ− ρo)6) , (4.63)

A(ρ) = AI +
1

3
ln

(
5

3

)
+

1

3
ln(ρ− ρo)− 7

324
e−6φI

(
1− 12e4φI − 9e8φI

)
(ρ− ρo)2

+
1

17496

(
108− 67e−12φI + 636e−8φI − 2124e−4φI − 1053e4φI

)
(ρ− ρo)4

+O
(
(ρ− ρo)6) , (4.64)

where the additional variable φI here parametrises an entire family of possible
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background solutions. The special choice φI = φp produces a solution equivalent

to one of the analytical solutions, while φI ∈ (φIR, φUV ) ensures that the re-

sultant generated background φ(ρ) interpolates between the two critical points,

with the exact choice determining at what energy scale the transition between

the two distinct CFTs occurs in the dual boundary theory. When computing

the spectra of excitations we will permit φUV < φI , however we will furthermore

impose the constraint φIR 6 φI so that φ(ρ) is bounded from below. Finally,

we note that by substituting the χ IR expansion into Eq. (4.59), the constraint

on χI to avoid a conical singularity at the end of space becomes

χI =
1

3
ln

(
3

5

)
. (4.65)

4.4 Physical mass spectra: graviton modes

This section is dedicated to presenting the results of our numerical mass spectra

computation, restricting attention to the �eld �uctuations which descend from

the six-dimensional graviton of the supergravity multiplet; the complementary

results obtained for the various other (bosonic) �elds which comprise the the-

ory are presented separately in Sec. 4.6, while the probe state analysis will be

discussed in Sec. 4.5.

As per our line element ansatz in Eq. (4.17), after dimensionally reducing

the system by compactifying on a circle, the 9 degrees of freedom carried by

the metric tensor ĝM̂N̂ of the six-dimensional supergravity action S6 may be

decomposed into a graviton gMN (propagating 5 d.o.f.), a graviphoton VM (3

d.o.f.), and a (gravi)scalar ĝ66 (1 d.o.f.) which governs the volume of the S1.

The �uctuations of these �elds may be reformulated in terms of the physical

gauge-invariant variables eµν (5 d.o.f.), Vµ (2 d.o.f.), and aa (2×1 d.o.f.), for

which we then compute the spectra of excitations.

Although we have already introduced the bulk equations and boundary

conditions which are satis�ed by the tensor and sigma-model scalar modes in

Eqs. (2.30 - 2.33), we have not yet provided the corresponding equations for

the graviphoton; we shall instead derive these (Eqs. (4.97, 4.98)) explicitly in

Sec. 4.6, when we consider generalised supplementary actions to describe the

remaining bosonic �elds of the supergravity multiplet in �ve dimensions. As

we shall see these derivations are rather non-trivial, and we therefore �nd it

convenient to simply present the graviphoton spectrum here �rst alongside the
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other constituents of the D = 6 graviton.

The results of our numerical analysis, normalised in units of the lightest

spin-2 state, are shown in the three panels of Fig. 4.2. We here widen the scope

of our previous computation in Ref. [1] by permitting φI > 0, corresponding to

backgrounds that are driven away from the non-supersymmetric critical point

solution and which `roll' down the runaway direction of the potential V6 (see

Fig. 4.1) as they evolve towards the end of the geometry in the deep IR. As a
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Figure 4.2: The spectra of masses M as a function of the one free parameter
which characterises the class of con�ning solutions, φI ∈ [φIR, 2.2]. From top
to bottom, left to right: the spectra of �uctuations for the tensors eµν (red),
the graviphoton Vµ (green), and the two scalars aa (blue). The orange disks
in the scalar spectrum represent masses for which M2 < 0, and hence denote
a tachyonic state. The vertical dashed lines mark a critical value of the IR
parameter φI = φ∗I > 0, which we shall formally introduce in Sec. 6.4. All
states are normalised in units of the lightest tensor mass, and the spectra were
computed using regulators ρ1 = 10−4 and ρ2 = 12.

consistency check, we veri�ed that for φI ∈ [φIR, φUV ] our results are in agree-
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ment with Ref. [1]. The numerical masses obtained by considering �uctuations

about the backgrounds which admit constant φ(ρ) = φp∀ρ are tabulated in

Appendix B for convenience.

We here brie�y remind the Reader that by varying the IR expansion param-

eter φI one may generate an entire family of inequivalent con�ning background

solutions, with the speci�c choice of φI determining the energy scale at which

the transition between the critical point solutions occurs; for φI ∈ (φIR, φUV )

the S1-compacti�ed dimension contracts to a point and the geometry smoothly

closes o� before the φ(ρ) background has had su�cient time to reach φIR. Still

restricting our attention to the φI 6 0 region of the plots in Fig. 4.2, we observe

that the complete towers of spin-2 and spin-1 states, in addition to a subset of

the spin-0 states (which are associated with �uctuations of χ), exhibit a uni-

versal nature; these resonances appear to be independent of the scale at which

the aforementioned interpolation occurs. The only source of scale-dependence

which characterises these physical excitations�and moreover which is common

to all three spin sectors�is that of the geometric con�nement mechanism. That

is to say, these states are sensitive only to the energy scale at which the dual

�eld theory con�nes, and are otherwise insensitive to the speci�c details of the

background pro�les which are being �uctuated; this phenomenon has previously

been discussed in Ref. [54], and we con�rm that our scalar spectrum (for both

aφ and aχ) agrees with the results of Figure 4 and Table 1 therein.

Similar investigations in the context of top-down holography are known to

exist already in the literature, and we now devote some time to quantitatively

comparing (where possible) our results to these previous studies.

In Ref. [52] C. Wen and H. Yang conducted an early glueball spectrum

analysis of (large-Nc) QCD4 by considering the bosonic �uctuations of a dual

AdS6-Schwarzschild black hole geometry, raising the `temperature' of a circle-

compacti�ed thermal coordinate to holographically realise con�nement. The

authors computed the spectra of glueball states which derive from �uctuations of

the higher-dimensional metric, however their study considered only the critical

φ = φUV background solution; hence, they did not allow for perturbations of

the supergravity �eld φ which correspond to deforming the boundary CFT to

realise an RG �ow towards the IR �xed point. Nevertheless, we may compare

our results to the data presented in Table 1 of their paper�normalising in units

of the lightest tensor state�and we observe very good agreement with all three

of our universal towers {eµν , Vµ, aχ} (see Table B.1 in Appendix B).

Another investigation was conducted shortly after by S. Kuperstein and
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J. Sonnenschein in Ref. [53], wherein the authors considered the �uctuations of

supergravity �elds propagating on a similar S1-compacti�ed AdS6 background

geometry (again restricting attention to the trivial φ = 0 solution). Their anal-

ysis supplemented the spectrum computation for excitations of the D = 6 gravi-

ton with those derived also from a Ramond�Ramond 1-form, which yielded two

additional towers of states compared to Ref. [52]; we shall postpone discussion of

these two towers until Sec. 4.6. For the modes which may be identi�ed with our

universal states in Fig. 4.2, we once again infer excellent agreement by compar-

ing our eµν data to that presented in Table 2, Vµ to Table 3, and our aχ data to

that in Table 4 (after normalising each in units of the lightest spin-2 excitation).

There does exist, however, one signi�cant discrepancy between our results and

those of Ref. [53]; the authors �nd an additional set of heavy scalar states in

their study which do not agree with our tower of aφ excitations, and�since φ

is the only spin-0 �eld which appears in the six-dimensional supergravity�it is

hence not clear how these states should be interpreted in this context.

As we have explained, our spectra calculations for the �eld �uctuations of

the six-dimensional supergravity are predicated on the application of gauge-

gravity dualities, and in particular the geometric implementation of con�ne-

ment; we interpret the masses extracted from our analysis as physical states

in the dual four-dimensional model, which at low energies resembles a typical

Yang-Mills theory. This correspondence lends itself to comparison with lat-

tice studies of gauge theories extrapolated to large-Nc, and in Refs. [158, 159]

the authors perform numerical computations on a cubic lattice for models ad-

mitting SU(N → ∞) and Sp(4) ∼= SO(5) gauge groups, respectively. Our

results presented in Fig. 4.2 for the background-dependent modes show qualita-

tive agreement with these two studies, and we direct the Reader's attention to

the discussion in Ref. [1] for further details and clari�cation of some technical

subtleties associated with the comparison.

We conclude this section by commenting on the complementary φI > 0 re-

gion of the spectra in Fig. 4.2, which extends our earlier results from Ref. [1].

Firstly, we notice that the universal background-independence phenomenon de-

scribed for solutions which dualise RG �ows between the two �xed points does

not continue to manifest as the transition parameter φI is dialled higher. In-

deed, we clearly see that the spectra for all three gauge-invariant modes which

descend from the D = 6 graviton become increasingly densely packed. In the

large-φI limit we deduce that the heavier excitations become asymptotically de-

generate, while a few of the lightest scalar states remain comparatively light and
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discrete; this gapped continuum phenomenon has also been observed in other

contexts in the literature�see for example Refs. [150, 151] and [160, 161]�and

we shall encounter a similar e�ect for the other �uctuation spectra presented in

Sec. 4.6.

Secondly, and perhaps most signi�cantly, we notice that the lightest reso-

nance in the spin-0 spectrum acquires a negative squared mass as the IR pa-

rameter φI is dialled above the trivial critical point solution, and hence corre-

sponds to a tachyonic instability. Since we are studying the �eld �uctuations

of a model obtained by dimensionally reducing an established and well-de�ned

supergravity theory from a top-down holographic perspective, we predict by

necessity the existence of a phase transition which would prevent these patho-

logical backgrounds from being realised. It is this observation which crucially

motivates our exploration of the theory phase space in later sections, by cata-

loguing several geometrically distinct classes of solutions which are admitted by

the S1-compacti�ed supergravity, and then proceeding to systematically com-

pute their (appropriately renormalised) free energy. We shall postpone further

discussion of this exercise until Chapter 6.

4.5 Probe spectrum analysis

As discussed in Sec. 1.2, we are interested in generalising the study of dilaton

phenomenology as presented in Ref. [94] to be applicable to non-AdS geometries.

Having now computed the mass spectrum of gauge-invariant scalar �uctuations

in Sec. 4.4 (in addition to the spectra of the two other universal graviton modes),

we next present the results of our probe state analysis using the formalism

introduced in Sec. 2.2.

As a brief review, our dilaton investigation is based primarily on the compar-

ison of two spectrum calculations: the �rst is for the complete, gauge-invariant

scalar �uctuations aa as de�ned in Eq. (2.25), while the second is for those same

states evaluated instead using the probe approximation aa|h=0 ≡ pa. In the lat-

ter case, the component of aa which corresponds to the scalar �uctuations of

the metric h (the boundary value of which sources the dilatation operator of the

dual �eld theory) is switched o� by hand. We anticipate that for any physical

states which di�er appreciably between the two computations, the contribu-

tion of the metric perturbation h is not insigni�cant, and those states exhibit

non-trivial mixing with the dilaton.
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The results of our probe state analysis are presented in Figures 4.3 and 4.4

(see also Fig. 4 of Ref. [2]), and from even a cursory examination it is clear that

the probe approximation does not accurately capture the physical spectrum for

any value of the IR parameter φI ; this is especially true for the two lightest

states. We see from Fig. 4.3 that for negative values of φI in proximity of the

IR critical point φI = φIR, the lightest state is completely missed by the probe

calculation while the second lightest state is well approximated. In this region of

parameter space we may infer that the former mass eigenstate has a signi�cant

dilaton contribution, while the latter does not.

As we increase φI to approach the UV �xed point at φI = 0, we notice a

reversal of this tendency: the probe approximation now begins to e�ectively

capture the lightest state, while the next-to-lightest state instead exhibits dila-

tonic behaviour. Further along still, within the shaded region of the plot, we

make another important observation: just before the appearance of the tachyon

at φI = φτI ∼ 0.25 the probe approximation again fails to capture the lightest

state, the mass of which becomes parametrically light compared to the rest of

the spectrum. From this observation we conclude that�at least in proximity to

the appearance of the tachyonic instability�we may legitimately identify the

lightest state as an approximate dilaton; we provide a magni�ed view of this plot

region in Fig. 4.4 for emphasis. We furthermore notice that even the heavier

states of the spectrum are not always captured well by the probe approximation,

and as φI is dialled higher we indeed see evidence of the probe states becoming

lighter, and eventually tachyonic. This highlights the fact that mixing e�ects

between the gauge-invariant spin-0 mass eigenstates and the dilaton are not

trivial, and are not restricted to the lightest states in the tower.

To summarise then, we have uncovered the existence of a tachyonic instabil-

ity in the mass spectrum for a class of regular background solutions to Romans

D = 6 supergravity. Moreover, we have provided evidence that this tachyonic

mode contains a signi�cant component coming from the scalar �uctuation of

the �ve-dimensional metric, and hence exhibits signi�cant mixing with the ap-

proximate dilaton of the theory. As we discussed in Sec. 2.3, these �ndings

will motivate our energetics analysis later in Chapter 6, since we anticipate by

necessity that a phase transition exists to prohibit the system from reaching the

unstable region of the theory parameter space. Our investigation into the phase

structure of the model will also provide us with some useful parameter relations,

which we shall use to elucidate the nature of the dilaton; we will return to these

spectra results later on in Sec. 6.5, and re-examine them in this context.
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Figure 4.3: The spectra of masses M as a function of the one free parameter
which characterises the class of con�ning solutions, φI ∈ [φIR, 2.2]. All states are
normalised in units of the lightest tensor mass, and the spectrum was computed
using regulators ρ1 = 10−4 and ρ2 = 12. As in Fig. 4.2, the blue disks represent
the two scalars of the model φ and χ, while the orange disks denote the tachyon.
We here additionally include the results of our mass spectrum computation using
the probe approximation for M2 > 0 (black triangles) and M2 < 0 (orange
triangles). The vertical dashed line marks a critical value of the IR parameter
φI = φ∗I > 0, while the shaded grey region denotes the region of parameter
space for which the con�ning solutions are metastable; we shall elaborate on
these points in Sec. 6.4.

4.6 Physical mass spectra: p-form modes

As we have discussed, the spectra of composite states are obtained by �uctu-

ating the supergravity �elds about their classical background con�gurations,

and determining which values of the mass parameter M allow for the �uctu-

ation equations to be simultaneously satis�ed over the entire domain of the

holographic coordinate ρ. In Sec. 2.1 we presented the equations and boundary

conditions which are obeyed by the gauge-invariant variables constructed from

the �uctuations of the metric and the sigma-model scalars, and in this section

we shall derive the corresponding equations for the various other �elds which

de�ne S6. We shall proceed by considering generic actions to describe gauge-

invariant 1- and 2-forms in �ve dimensions�supplementary to the action of a

sigma-model coupled to �ve-dimensional gravity�and then decomposing the

69



0.15 0.20 0.25 0.30

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3
M2√
|M2|

φI

Figure 4.4: A magni�cation of the plot shown in Fig. 4.3. The states are
normalised in units of the lightest tensor mass, and are computed with regulators
ρ1 = 10−9 and ρ2 = 15. We focus in particular on the lightest state of the
spectrum, in the plot region where the tachyonic states �rst appear. The dashed
red box is intended to enclose an important feature of the full spectrum, namely
a region of φI parameter space wherein the probe approximation completely
disagrees with the full gauge-invariant scalar computation. There exists a �nite
range of values for the IR parameter φI for which the squared massesM2 of the
physical scalars ab and the probes ab|h=0 ≡ pb di�er by a minus sign, and hence
the probe approximation unambiguously fails.

�elds into their constituent four-dimensional components. The required �uctu-

ation equations and boundary conditions are then obtained by demanding that

an in�nitesimal variation with respect to each �eld should vanish on-shell.

Before continuing however, we will �rst address an important point con-

cerning our treatment of the various p-forms and �elds. The �ve-dimensional

action of the reduced system, shown in Eq. (4.34), is invariant under a number of

gauge transformations: there are U(1) invariances associated with the gravipho-

ton VM , the vector B6N , and the pseudo-scalar A6, an SU(2) invariance of the

vectors AiN and the pseudo-scalars πi, gauge-invariances for the 2-form BMN

and the vector AM , in addition to di�eomorphisms of the �uctuations of the

sigma-model scalars and the metric tensor, which were considered in Sec. 2.1.1.

We here emphasise the fact that we may treat these various gauge-invariances

separately, since we assume that only the metric and the sigma-model scalars
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φ and χ acquire non-trivial background pro�les (we �uctuate every other �eld

about their trivial con�guration), and furthermore that to compute the mass

spectra it is su�cient to retain only terms which are up to second order in the

�eld �uctuations.

Vectors (1-forms) in D = 5 dimensions

Let us start by recalling the terms in the �ve-dimensional action of Eq. (4.34)

that contain a U(1)-invariant vector (1-form) contribution, which combine to

give:

S(1f)
5 =

∫
d5x
√−g5

(
− 1

4
H11g

MRgNSFVMNF
V
RS −

1

2
G(1)gNSH6NH6S

− 1

4
H(1)gNSgTUG6NTG6SU

)
. (4.66)

After substituting in for the tensors FVMN , H6N , and G6NT , this action may be

rewritten as follows:

S(1f)
5 =

∫
d5x
√−g5

(
− 1

4
H11g

MRgNS
(
∂MVN − ∂NVM

)(
∂RVS − ∂SVR

)
− 1

2
G(1)gNS

(
∂NA6 −mB6N

)(
∂SA6 −mB6S

)
− 1

4
H(1)gNSgTU

(
∂TB6N − ∂NB6T

)(
∂UB6S − ∂SB6U

))
.

(4.67)

We shall �nd that after decomposing the �ve-vectors which comprise this sub-

system into four-dimensional quantities, we will ultimately derive the �uctua-

tion equations and BCs satis�ed by the set of �elds {Vµ, Aiµ, B6µ, X(A6, B65)}.
More generally, let us instead consider the following action describing a sponta-

neously broken U(1) theory in �ve dimensions:

S(1)
5 =

∫
d4xdr

√−g5

{
− 1

4
H gMR gNS FMNFRS

− 1

2
GgMN

(
∂Mπ +mAM

)(
∂Nπ +mAN

)}
, (4.68)

where G = G(Φa) and H = H(Φa) are sigma-model geometric factors which

generalise G(1) and H(1), FMN ≡ 2∂[MAN ] is the �eld strength for the generic 1-

form AM , π is a pseudo-scalar (0-form), and the massm is a symmetry-breaking
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parameter; gauge-invariance of the terms ∂Mπ + mAM manifests ∀m via the

transformations AM → AM − ∂Mα and π → π + mα, where α is a function of

the spacetime coordinates xM . Similarly to our treatment in Sec. 2.1.1 of the

metric using the ADM decomposition, we will rewrite the �elds of the action in

terms of their constituent four-vectors.

As a brief aside, we here remind the Reader that the number of on-shell

degrees of freedom fm=0 for a massless p-form in D dimensions is given by [162]

fm=0 =

(
D − 2

p

)
=

(D − 2)!

(D − 2− p)! p! , (4.69)

while for a massive p-form in D dimensions the number of on-shell degrees of

freedom fm6=0 is

fm6=0 =

(
D − 1

p

)
=

(D − 1)!

(D − 1− p)! p! , (4.70)

so that in D = 5 dimensions a massless (massive) 1-form has 3 (4) on-shell de-

grees of freedom. The massless scalar �elds A5 and π present in Eq. (4.68) both

behave as Goldstone bosons, with the former coming from the Kaluza-Klein

dimensional reduction of the �ve-vector AM , and the latter resulting from the

spontaneous symmetry breaking of the global U(1) in D = 5; a combination

of these two �elds provides the additional degree of freedom required for the

longitudinal components of a in�nite tower of massive four-vectors Aµ (analo-

gous to the Higgs mechanism, here the vectors acquire mass after �eating� the

Goldstone bosons), while another combination forms the massive pseudo-scalars

X. We shall return to this point later.

After decomposing the �elds and rewriting the action S(1)
5 in terms of four-

vectors and (pseudo-)scalars, we Fourier transform according to the following

conventions:

ψ(xµ) ≡
∫

d4q

(2π)2
eiqµx

µ

ψ̃(qµ) , (4.71)

δ(4)(qµ) ≡
∫

d4x

(2π)4
eiqµx

µ

, (4.72)

and make use where necessary of the symmetrisation condition∫
d4q ψ(q)ϕ(−q) ≡

∫
d4q

1

2

[
ψ(q)ϕ(−q) + ψ(−q)ϕ(q)

]
, (4.73)
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where ψ and ϕ are generic �elds. After some algebra and integration by parts�

and neglecting to show tildes on transformed �elds�we �nd that the general

action of Eq. (4.68) may be written as follows:

S(1)
5 =

∫
d4q dr

{
−1

2
H Aµ(−q) q2PµνAν(q) − 1

2
He2Aq2A5(−q)A5(q)

−1

2
Aµ(−q)ηµν

[
− ∂r

(
He2A∂rAν(q)

) ]
+
∑
i=1,2

(−)iδ(r − ri)
[
−1

2
He2AAµ(−q)ηµν∂rAν(q)

]
−1

2

[
iqµAµ(−q)∂r

(
He2AA5(q)

)
+ (q ↔ −q)

]
+
∑
i=1,2

(−)iδ(r − ri)
[

1

2
iHe2AqµAµ(−q)A5(q) + (q ↔ −q)

]
−1

2
m2Ge4AA5(−q)A5(q)− 1

2
π(−q)∂r

[
−Ge4A∂rπ(q)

]
+
∑
i=1,2

(−)iδ(r − ri)
[
−1

2
Ge4Aπ(−q)∂rπ(q)

]
−1

2
π(−q)∂r

[
−mGe4AA5(q)

]
−1

2
A5(−q)

[
mGe4A∂rπ(q)

]
+
∑
i=1,2

(−)iδ(r − ri)
[
−1

2
mGe4Aπ(−q)A5(q)

]
−1

2
Ge2A

[
q2π(−q)π(q) +m2ηµνAµ(−q)Aν(q)

]
−1

2
mGe2A

[
− iqµπ(−q)ηµνAν(q) + (q → −q)

]}
, (4.74)

where Pµν(q2) ≡ ηµν − qµqν

q2 is the transverse momentum projector satisfying

Pµνqµ = 0 (with qµqν

q2 the longitudinal momentum projector). We have ne-

glected to show explicitly the radial coordinate dependences (i.e. Aµ(q) should

be understood to mean Aµ(q, r)), and terms containing a delta function δ(r−ri)
are contributions which are localised to the two endpoints of the radial segment

parametrised by r. The presence of these boundaries motivates our inclusion of
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the following generic boundary-localised kinetic terms for the vector Aµ:

S(1)
D =

∫
d4x dr

∑
i=1,2

(−)iδ(r − ri)
√−g5Di

{
−1

4
g̃MN g̃RSFMRFNS

}

=

∫
d4q dr

∑
i=1,2

(−)iδ(r − ri)
{
−1

2
Diq

2Aµ(−q)PµνAν(q)

}
, (4.75)

and for the pseudo-scalar π:

S(1)
C =

∫
d4x dr

∑
i=1,2

(−)iδ(r − ri)
√−g5

{
− 1

2
Ci

[
∂µπ +mAµ

]
g̃µν
[
∂νπ +mAν

]}

=

∫
d4q dr

∑
i=1,2

(−)iδ(r − ri)
{
− 1

2
Cie

2A
[
qµπ(−q) + imAµ(−q)

]
× ηµν

[
qνπ(q)− imAν(q)

]}
. (4.76)

The four constants Di and Ci are in general introduced as counter-terms in the

process of holographic renormalisation, however for our purposes it is justi�ed

to simply set them both to zero (see Appendix B.2 of Ref. [1] for details), which

we shall do after we have derived the �uctuation equations.

We notice that the action S(1)
5 contains unphysical mixing terms between

the vector Aµ and the Goldstone pseudo-scalar π, which must be removed by

hand. For this purpose we introduce a general Rξ gauge-�xing bulk action,

in addition to separate boundary expressions, so that each action contains the

terms required to exactly cancel the undesired contributions; the bulk term is

given by

S(1)
ξ =

∫
d4q dr

{
− H

2ξ

[
qµAµ(−q) + i

ξ

H
mGe2Aπ(−q) + i

ξ

H
∂r

(
He2AA5(−q)

)]
×
[
qνAν(q)− i ξ

H
mGe2Aπ(q)− i ξ

H
∂r

(
He2AA5(q)

)]}
, (4.77)
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while the boundary-localised gauge-�xing terms are

S(1)
M =

∫
d4q dr

∑
i=1,2

(−)iδ(r − ri)
{
− 1

2Mi

[
qµAµ(−q)− iMiHe

2AA5(−q)

+ imMiCie
2Aπ(−q)

]
×
[
qνAν(q) + iMiHe

2AA5(q)− imMiCie
2Aπ(q)

]}
. (4.78)

In general there is no reason to assume that the gauge-�xing parameter ξ is

independent of the radial segment parametrised by the holographic coordinate

r; in the case that ξ = ξ(r) the U(1) symmetry of the �ve-dimensional model

would generate an in�nite number of spontaneously broken U(1) gauge theories

in D = 4 dimensions, with each admitting an independent gauge-�xing choice.

We shall make the simplifying assumption that ξ is a scale-invariant constant,

however.

We are now ready to compute the equations for the �eld �uctuations of

this sub-system. For the sake of brevity we will show explicitly the derivation

of the Aµ equation only, with the understanding that the other equations are

obtained in much the same way. Our starting point is the total action S(1)
Tot ≡

S(1)
5 + S(1)

D + S(1)
C + S(1)

ξ + S(1)
M , from which we collect terms containing an Aµ

contribution:

S(1)
Aµ

=

∫
d4q dr

{
− 1

2
Hq2PµνAµ(−q)Aν(q) +

1

2
ηµνAµ(−q)∂r

(
He2A∂rAν(q)

)
− 1

2
m2Ge2AηµνAµ(−q)Aν(q)− 1

2ξ
HqµqνAµ(−q)Aν(q)

}
+

∫
d4q dr

∑
i=1,2

(−)iδ(r − ri)
{
− 1

2
He2AηµνAµ(−q)Aν(q)

− 1

2
Diq

2PµνAµ(−q)Aν(q)− 1

2
m2Cie

2AηµνAµ(−q)Aν(q)

− 1

2Mi
qµqνAµ(−q)Aν(q)

}
, (4.79)

and we remind the Reader that {Ci, Di, Mi} are constants, but H and G are

functions of the sigma-model scalars (and hence are r-dependent). The equa-

tions for the �uctuations are derived by considering an in�nitesimal variation of

the action with respect to its constituent �elds, and requiring that this variation

vanishes on-shell. For contributions to the bulk action which generically take the
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form γ(r)∂r
[
ζ(r)δAµ(−q)

]
(i.e. for terms in which the �eld variation appears

within a derivative) it is convenient to rewrite them using partial integration:

γ(r)∂r

[
ζ(r)δAµ(−q)

]
= ∂r

[
δAµ(−q)γ(r)ζ(r)

]
− ζ(r)δAµ(−q)∂rγ(r) , (4.80)

and then recasting the total derivative piece instead as a boundary term. After

taking the variation of the action, we �nd that the condition for δS(1)
Aµ

to vanish

is that its integrand must be trivial. From the bulk contribution to the action

we therefore have

0 = δAµ(−q)
[
− 1

2
Hq2PµνAν(q) +

1

2
ηµν∂r

(
He2A∂rAν(q)

)
− 1

2
m2Ge2AηµνAν(q)− 1

2ξ
HqµqνAν(q)

]
, (4.81)

and from the boundary contribution:

0 = δAµ(−q)
[
− 1

2
He2AηµνAν(q)− 1

2
Diq

2PµνAν(q)

− 1

2
m2Cie

2AηµνAν(q)− 1

2Mi
qµqνAν(q)

]∣∣∣∣
r=ri

. (4.82)

We remind the reader that ηµν = Pµν + qµqν

q2 , where Pµν and qµqν

q2 are the

transverse and longitudinal momentum projectors, respectively, and hence we

obtain distinct �uctuation equations for the two polarisations of Aµ(q). The

boundary-localised gauge-�xing parameters Mi are independent of the bulk dy-

namics and may be assigned an arbitrary value; we will conveniently choose to

�xMi = ξ
Di

so that the equations satis�ed by the longitudinal component of the

spin-1 �elds are identical to those for the transverse component, after making

the replacement q2 → q2

ξ . We shall only compute the spectrum for the trans-

verse polarisation of Aµ, the longitudinal polarisation retaining an unphysical

gauge dependence. Finally then, we obtain the following bulk equations and
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boundary conditions for the �eld �uctuations of the four-vectors Aµ(q, r):

0 =
[
q2H − ∂r

(
He2A∂r

)
+m2Ge2A

]
PµνAµ(q, r) , (4.83)

0 =
[
He2A∂r + q2Di +m2Cie

2A
]
PµνAν(q, r)

∣∣∣
r=ri

, (4.84)

0 =

[
q2

ξ
H − ∂r

(
He2A∂r

)
+m2Ge2A

]
qµqν

q2
Aµ(q, r) , (4.85)

0 =

[
He2A∂r +

q2

ξ
Di +m2Cie

2A

]
qµqν

q2
Aν(q, r)

∣∣∣
r=ri

. (4.86)

The corresponding equations for the pseudo-scalars A5 and π are similarly ob-

tained by varying the necessary contributions to S(1)
Tot, the result of which pro-

vides the following conditions:

0 = δA5(−q)
[
− 1

2
He2Aq2A5(q)− 1

2
m2Ge4AA5(q)

− 1

2
mGe4A∂rπ(q) +

1

2
mξHe2A∂r

(
G

H
e2Aπ(q)

)
+

1

2
ξHe2A∂r

(
1

H
∂r

(
He2AA5(q)

))]
, (4.87)

0 = δπ(−q)
[
− 1

2
Ge2Aq2π(q)− 1

2
mξ

G

H
e2A∂r

(
He2AA5(q)

)
+

1

2
∂r

(
Ge4A∂rπ(q)

)
− 1

2
m2ξ

G2

H
e4Aπ(q)

+
1

2
m∂r

(
Ge4AA5(q)

)]
, (4.88)

0 = δA5(−q)
[
− 1

2
mξGe4Aπ(q)− 1

2
ξe2A∂r

(
He2AA5(q)

)
− 1

2
MiH

2e4AA5(q) +
1

2
mCiMiHe

4Aπ(q)

]∣∣∣∣
r=ri

, (4.89)

0 = δπ(−q)
[
− 1

2
Ge4A∂rπ(q)− 1

2
Ciq

2e2Aπ(q)

+
1

2
mCiMiHe

4AA5(q)− 1

2
mGe4AA5(q)

− 1

2
m2C2

iMie
4Aπ(q)

]∣∣∣∣
r=ri

. (4.90)
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These expressions appear to be considerably more complicated than those for the

vector polarisations due to the mixing betweenA5 and π, however by introducing

the following convenient reparametrisations:

A5 ≡
1

m

(
mX

e4AG
− ∂rπ

)
, (4.91)

π ≡ Y +
m∂rX

q2e2AG
, (4.92)

and after some algebraic manipulation, we �nd that the equations and boundary

conditions for the two new scalars X and Y decouple, and we have the following

equivalent formulation:

0 =

[
∂2
r −

(
2∂rA+

∂rG

G

)
∂r −

(
e−2Aq2 +m2 G

H

)]
X(q, r) , (4.93)

0 =
[
Ci∂r + G

]
X(q, r)

∣∣∣
r=ri

, (4.94)

0 =

[
∂2
r +

(
2∂rA+

∂rH

H

)
∂r −

(
e−2A q

2

ξ
+m2 G

H

)]
Y (q, r) , (4.95)

0 =

[
He2A∂r +

(
Di

ξ
q2 +m2Cie

2A

)]
Y (q, r)

∣∣∣
r=ri

. (4.96)

We see that the equations for Y (q, r) are gauge-dependent, and hence we will

only compute the spectrum for the gauge-invariant scalar combinationX(q, r) =
G
me

4A
(
mA5 + ∂rπ

)
. We furthermore notice that the equations for this unphys-

ical scalar Y are identical to those satis�ed by the longitudinal polarisation of

the vectors qµqν

q2 Aµ(q, r), which manifestly corroborates our earlier claim that

although one combination of the pseudo-scalars A5 and π generates a physical

tower of massive spin-0 states, another combination Y instead supply the ad-

ditional degrees of freedom necessary to form the longitudinal components of a

tower of massive (but gauge-dependent) spin-1 states.

To summarise then, given the bulk equations and boundary conditions sat-

is�ed by the transverse polarisation of a generic vector Aµ shown in Eqs. (4.83)

and (4.84), we obtain the following �uctuation equations for the set of �elds

{Vµ, Aiµ , B6µ}:

0 = Pµν
[
e−χ∂ρ

(
e2A+7χ∂ρVν

)
+M2e8χVν

]
, (4.97)

0 = Pµν∂ρVν

∣∣∣
ρi
, (4.98)
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where we have replaced H = H11 = 1
4e

8χ from the �eld strength metric shown

in Eq. (4.25) (and with G = 0),

0 = Pµν
[
e−χ∂ρ

(
e2A+χ−2φ∂ρA

i
ν

)
+M2e2χ−2φAiν

]
, (4.99)

0 = Pµν∂ρA
i
ν

∣∣∣
ρi
, (4.100)

for H = H22 = 1
4e

2χ−2φ (and again with G = 0), and then for H = H(1) =

e−4χ+4φ with G = G(1) = e−6χ−2φ we have

0 =

[
M2 + e3χ−4φ∂ρ(e

2A−5χ+4φ∂ρ)−
8

9
e2A−2χ−6φ

]
PµνB6ν , (4.101)

0 = Pµν∂ρB6ν

∣∣∣
ρi
. (4.102)

In each expression we have reintroduced the convenient change of radial coor-

dinate ∂r = e−χ∂ρ, we have set Ci = Di = 0, and we remind the Reader that

with our conventions q2 = −M2 and m2 = 8
9 . Finally, from Eqs. (4.93) and

(4.94), with the replacements A5 → B65 and π → A6 and with H = H(1) =

e−4χ+4φ, G = G(1) = e−6χ−2φ, we obtain the equations satis�ed by the �uctu-

ations of the physical spin-0 combination X(M, r):

0 = ∂2
ρX +

(
5∂ρχ− 2∂ρA+ 2∂ρφ

)
∂ρX +

(
M2e−2A+2χ − 8

9
e−6φ

)
X , (4.103)

0 = X
∣∣∣
ρi
. (4.104)

2-forms in D = 5 dimensions

Analogously to our treatment of the 1-forms in the previous section we start by

considering a general action describing 2-forms in D = 5 dimensions, which is

supplementary to the action for a sigma-model coupled to gravity. To construct

such an action we �rst de�ne the 3-form �eld-strength tensor for a generic 2-form

BMN as follows:

GMNT ≡ 3∂[MBNT ] = ∂MBNT + ∂NBTM + ∂TBMN , (4.105)

which is invariant under the gauge transformation

BMN → BMN − 2∂[MαN ] = BMN − (∂MαN − ∂NαM ) , (4.106)
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for some arbitrary �ve-vector αM that depends on the coordinates of the �ve-

dimensional spacetime. By then introducing a 1-form AM which transforms up

to an additive shift:

AM → AM +mαM , (4.107)

with m a constant, we see that one can build the following gauge-invariant

2-form:

HMN ≡ ∂MAN − ∂NAM +mBMN ≡ FMN +mBMN . (4.108)

Using the �eld strength tensor GMNT and the 2-form HMN , we may therefore

construct the desired gauge-invariant action (see Appendix A for details):

S(2)
5 =

∫
d4x dr

√−g5

{
− 1

4
H gMRgNS HMNHRS

− 1

12
K gMR gNS gTUGMNTGRSU

}
, (4.109)

where H = H(Φa) and K = K(Φa) are general sigma-model geometric factors.

As with our treatment of the 1-form sub-system, we will decompose these �elds

into their four-dimensional constituents, and will eventually obtain the �uctua-

tion equations and boundary conditions obeyed by the set of �elds

{Bµν , Xµ(Aµ, B5µ), A5}. We proceed as before by Fourier transforming S(2)
5 ac-

cording to Eqs. (4.71 - 4.72), so that written out explicitly we have the following
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action formulated in momentum-space:

S(2)
5 =

∫
d4q dr

{
−1

2
He2A

[
∂rAµ(−q) +mB5µ(−q)

]
ηµν
[
∂rAν(q) +mB5ν(q)

]
−1

2
Hq2e2AA5(−q)A5(q)

−1

2
He2A

[
iA5(−q)

(
qµ∂rAµ(q) +mqµB5µ(q)

)
+ (q ↔ −q)

]
−1

2
HAµ(−q) q2PµνAν(q)

−1

4
Hm2Bµν(−q) ηµρηνσ Bρσ(q)

−1

2
Hηµν

[
imqρBρµ(−q)Aν(q) + (q ↔ −q)

]
−1

4
Bµν(−q) ηµρηνσ

[
−∂r

(
K∂rBρσ(q)

)]
+
∑
i=1,2

(−)iδ(r − ri)
[
−1

4
KBµν(−q) ηµρηνσ ∂rBρσ(q)

]
−1

2
KB5µ(−q) q2Pµν B5ν(q)

−1

2
Kηµν

[
− iqρ∂rBρµ(−q) B5ν(q) + (q ↔ −q)

]
−1

4
Ke−2ABµν(−q) q2 PµρP νσ Bρσ(q)

}
. (4.110)

where again Pµν(q2) ≡ ηµν − qµqν

q2 is the projector onto the transverse momen-

tum polarisation, and we have neglected to show explicitly �eld dependences

on the radial coordinate. Due to the presence of boundaries we supplement

the above action with generic boundary-localised kinetic terms for the 3- and

2-forms, which are written as follows:

S(2)
E =

∫
d4xdr

∑
i=1,2

(−)iδ(r − ri)
√−g5

{
− 1

12
EiK g̃µσ g̃ντ g̃ρωGµνρGστω

}

=

∫
d4q dr

∑
i=1,2

(−)iδ(r − ri)
{
− 1

4
e−2AEiKBµν(−q) q2 PµρP νσ Bρσ(q)

}
,

(4.111)

S(2)
D =

∫
d4x dr

∑
i=1,2

(−)iδ(r − ri)
√−g5

{
− 1

4
DiH g̃µσ g̃ντHµνHστ

}

=

∫
d4q dr

∑
i=1,2

(−)iδ(r − ri)
{
− 1

4
DiH

[
qµAν(−q)− qνAµ(−q) + imBµν(−q)

]
× ηµρηνσ

[
qρAσ(q)− qσAρ(q)− imBρσ(q)

]}
. (4.112)
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where the constants Ei and Di take the role of counter-terms in the process of

holographic renormalisation (analogously to Di and Ci in our treatment of the

1-forms), and we note for convenience that

PµρP νσ =
(
ηµρηνσ − 2

qµqρ

q2
ηνσ
)
. (4.113)

The bulk action S(2)
5 contains non-physical mixing terms between forms of dif-

ferent order, and hence it is necessary to introduce appropriately chosen gauge-

�xing terms to remove them by hand. To cancel mixing terms between the

2-form and the 1-forms B5ν and Aν we add to S(2)
5 the following expressions:

S(2)
Ξ,2 =

∫
d4q dr

{
− K

2Ξ
e2A
[
e−2AqρBρµ(−q) + i

Ξ

K
∂r
(
KB5µ(−q)

)
+ i

Ξ

K
mHAµ(−q)

]
× ηµν

[
e−2AqσBσν(q)− i Ξ

K
∂r
(
KB5ν(q)

)
− i Ξ

K
mHAν(q)

]}
, (4.114)

S(2)
N,2 =

∫
d4q dr

∑
i=1,2

(−)iδ(r − ri)
{

− K

2Ni
e2Aηµν

[
e−2AqρBρµ(−q)− iNiB5µ(−q) + im

Ni
K
DiHAµ(−q)

]
×
[
e−2AqσBσν(q) + iNiB5ν(q)− imNi

K
DiHAν(q)

]}
. (4.115)

The gauge-�xing parameter Ξ could in principle be dependent on the radial

coordinate r, however for simplicity we will assume that it is a constant. We also

make the convenient choice to �x the boundary-localised parameter Ni = Ξ
Ei
.

To remove the terms which mix the 1-forms with the 0-form A5, we furthermore

add the following expressions:

S(2)
ξ,1 =

∫
d4q dr

{
− K

2ξ

[
qµB5µ(−q)− iξ

K
mHe2AA5(−q)

][
qνB5ν(q) +

iξ

K
mHe2AA5(q)

]
− H

2ξ

[
qµAµ(−q) +

iξ

H
∂r
(
He2AA5(−q)

)]
×
[
qνAν(q)− iξ

H
∂r
(
He2AA5(q)

)]}
, (4.116)

S(2)
M,1 =

∫
d4q dr

∑
i=1,2

(−)iδ(r − ri)
{
− H

2Mi

[
qµAµ(−q)− iMie

2AA5(−q)
]

×
[
qνAν(q) + iMie

2AA5(q)
]}

. (4.117)

where the constants ξ and Mi here reprise their roles as bulk and boundary-

localised gauge-�xing parameters, respectively.

Following the same procedure as with the system of 1-forms, we derive the
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equations for the �eld �uctuations by summing together all contributions in the

bulk and at the boundaries:

S(2)
Tot ≡ S

(2)
5 + S(2)

E + S(2)
D + S(2)

Ξ,2 + S(2)
N,2 + S(2)

ξ,1 + S(2)
M,1 ,

and then taking an in�nitesimal variation of this total action to obtain δS(2)
Tot.

The �uctuation equations satis�ed by the �elds which comprise this sub-system

are derived in the same manner as previously: by demanding that this variation

vanishes on-shell, which amounts to ensuring that its integrand is equal to zero.

For the transverse components of the generic 2-form Bρσ we hence �nd the

following results:

0 =
[
Kq2e−2A − ∂r

(
K∂r

)
+Hm2

]
PµρP νσBρσ(q, r) , (4.118)

0 =
[
KEiq

2e−2A +K∂r +DiHm
2
]
PµρP νσBρσ(q, r)

∣∣∣
r=ri

, (4.119)

and we note that our convenient choice Ni = Ξ
Ei

ensures that the corresponding

equations for the longitudinal polarisation of Bρσ may be obtained by simply

replacing q2 → q2

Ξ , although we will only compute the gauge-invariant spectrum

of states for the transverse component.

The contributions of the vector �elds B5µ and Aµ couple non-trivially, and

we treat their polarisations separately. For the transverse components PµνB5µ

and PµνAµ we de�ne a generalised U(1) gauge-invariant �eld Xµ and its com-

plementary �eld Yµ via the relations

B5µ ≡
1

m

(
mXµ

e2AH
− ∂rAµ

)
, (4.120)

Pµ
νAν ≡ Yµ +

m∂rXµ

q2H
, (4.121)

so that after some algebra we �nd that Xµ and Yµ are completely decoupled in
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the reformulated equations, and satisfy the following:

0 =

[
∂2
r −

∂rH

H
∂r −

(
q2e−2A +m2H

K

)]
Xµ(q, r) , (4.122)

0 =

[
∂r +

1

Di

]
Xµ(q, r)

∣∣∣
r=ri

, (4.123)

0 =

[
∂2
r +

∂rK

K
∂r −

(
q2

Ξ
e−2A +m2H

K

)]
Yµ(q, r) , (4.124)

0 =

[
∂r +

q2

Ni
e−2A +Dim

2H

K

]
Yµ(q, r)

∣∣∣
r=ri

. (4.125)

We make the important observation that with our choice Ni = Ξ
Ei

the bulk and

boundary equations for the four-vector Yµ are manifestly gauge-dependent, and

hence the �uctuations of the transverse component of Yµ do not generate a phys-

ical tower of states; moreover, we notice that these same equations are identical

to those for the transverse component of the 2-form shown in Eqs. (4.118 - 4.119)

after making the replacement q2 → q2

Ξ . This evinces an underlying Higgs-like

mechanism analogous to that in our treatment of the 1-form sector, where the

spontaneous U(1) symmetry breaking caused a combination of 0-forms to act

as Goldstone bosons, consequently generating a mass for the longitudinal po-

larisations of a gauge-dependent 1-form. In this sub-system the two degrees of

freedom carried by the transverse component of the 1-form Yµ are �Higgsed�

into the massless 2-form Bµν (which is dual to a scalar, both having 1 degree of

freedom), transmuting it into a massive 2-form (dual to a massive vector, both

with three degrees of freedom).

Next let us consider the longitudinal components of the vectors BL5µ and

ALµ , which again mix non-trivially. We therefore introduce the longitudinally-

polarised �elds XL
µ and Y Lµ by de�ning

BL5µ ≡
1

m

(
mXL

µ

e2AH
− ∂rALµ

)
, (4.126)

ALµ ≡ Y Lµ + ξ
m∂rX

L
µ

q2H
, (4.127)
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so that we obtain the following decoupled equations:

0 =

[
∂2
r −

∂rH

H
∂r −

(
q2

ξ
e−2A +m2H

K

)]
XL
µ (q, r) , (4.128)

0 =

[
∂r +

1

Di

]
XL
ν (q, r)

∣∣∣
r=ri

, (4.129)

0 =

[
∂2
r +

∂rK

K
∂r −

(
q2

ξΞ
e−2A +m2H

K

)]
Y Lµ (q, r) , (4.130)

0 =

[
∂r +

q2

ξNi
e−2A +Dim

2H

K

]
Y Lµ (q, r)

∣∣∣
r=ri

, (4.131)

where we have conveniently �xed the boundary-localised constant Mi = ξ
Di

so

that these equations are identical to those for the transverse vectors Xµ and

Yµ, up to the replacement q2 → q2

ξ . Hence we see that none of the longitudinal

vectors are physical (being manifestly dependent on the gauge-�xing parame-

ters ξ and Ξ), and that the only physical spin-1 mass spectrum coming from

the decomposition of the generic �ve-dimensional 2-form action is that of the

transverse �eld Xµ(q, r) = H
me

2A
(
mB5µ + ∂rAµ

)
.

It only remains to consider the last degree of freedom within this sub-system,

which is carried by the scalar A5. The bulk equations and boundary conditions

for this �eld are completely decoupled from the other spin sectors, and are

written as follows:

0 =

(
q2

ξ
+m2e2AH

K

)
A5(q)− ∂r

[
1

H
∂r
(
He2AA5(q)

)]
, (4.132)

0 =
e2A

Di
A5(q) +

1

H
∂r

[
He2AA5(q)

]∣∣∣
r=ri

, (4.133)

where again we have replaced Mi = ξ
Di
, and hence note that the �uctuations

of A5 are gauge-dependent. A �nal noteworthy observation is that these equa-

tions may be reparametrised in terms of the new scalar Ã5 ≡ He2AA5, after

which they agree exactly with those equations for the longitudinal vector XL
µ ;

this is the same mechanism present for the 1-form sub-system, wherein a gauge-

dependent 0-form assumed the role of a Goldstone Boson to provide the addi-

tional degrees of freedom required to generate a mass for an otherwise massless

longitudinally-polarised spin-1 �eld.

This decomposition procedure, which we have described in detail for 1- and

2-forms in D = 5 dimensions, generalises the Higgs mechanism to generic p-

forms in an arbitrary number of dimensions, and ultimately results in a physical
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tower of massive states for the subset of �elds which exhibit gauge-independence.

Conversely no physical spectrum exists for those �elds which exhibit a spurious

gauge-dependence, and which are merely remnants of the Higgs mechanism in

the generic Rξ gauge.

To summarise then, after choosing to set Di = Ei = 0, implementing once

more the change of coordinate de�ned via ∂r = e−χ∂ρ, and substituting q2 =

−M2 and m2 = 8
9 , we have the following �nal results for the equations satis�ed

by the �uctuations of the �elds Bρσ(M, r) and Xµ(M, r):

0 =
[
M2e−2A + e−5χ−4φ∂ρ

(
e3χ+4φ∂ρ

)
− 8

9
e−2χ−6φ

]
PµρP νσBρσ , (4.134)

0 = PµτP νσ∂ρBτσ

∣∣∣
ρi

(4.135)

0 = Pµν
[
∂ρ

(
e−χ∂ρXν

)
− 2e−χ

(
∂ρχ− ∂ρφ

)
∂ρXν

+ eχ
(
e−2AM2 − 8

9
e−2χ−6φ

)
Xν

]
, (4.136)

0 = PµνXν

∣∣∣
ρi
. (4.137)

Mass spectra for p-forms

In Sec. 4.4 we presented the results of our numerical spectra computation for the

supergravity �eld �uctuations which descend from the six-dimensional graviton.

Having now derived the equations and boundary conditions which are satis�ed

by the �uctuations of generic 1- and 2-forms in D = 5 dimensions, we can

proceed to present the corresponding spectra plots for the remaining �elds of

the six-dimensional supergravity; we remind the Reader that these are the SU(2)

adjoint six-vectors Ai
M̂
, the U(1) six-vector AM̂ , and the U(1) 2-form BM̂N̂ .

The decomposition of these bosonic �elds into their constituent components�

and the subsequent reformulation necessary to decouple a subset of the four-

vectors and scalars�is non-trivial, and for convenience we provide a schematic

overview:

X︷ ︸︸ ︷x x
Ai
M̂
→
{
Aiµ,��A

i
5, π

i
}

; AM̂ →
{
Aµ,��A5, A6

}
; BM̂N̂ →

{
Bµν , B5µ, B6µ, B65

}y y︸ ︷︷ ︸
Xµ

where the coloured highlighting is intended to facilitate identi�cation with the
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corresponding spectra in Fig. 4.5. The strikethrough applied to the �fth com-

ponents of each 1-form represents the fact that�according to our analysis in

the previous section, in particular the general results derived in Eqs. (4.132 -

4.133)�these scalars do not produce physical (gauge-invariant) towers of states.

Rather, the one degree of freedom carried by each of these scalars is Higgsed

into a massless vector (2 d.o.f.) to provide its longitudinal polarisation with a

mass; hence we disregard them.

We emphasise that the bulk equation and boundary conditions which are

satis�ed by aπ�associated with the triplet of SU(2) pseudo-scalars πi�are

identical to those obeyed by the other spin-0 �uctuations {aφ, aχ} presented

in Eqs. (2.32 - 2.33), although there exists a slight technical subtlety which we

shall now address. We remind the Reader that these equations exhibit non-

trivial coupling between the three gauge-invariant �uctuations aa, and that in

general the physical spectra must be extracted by identifying the zeros of a 6×6

matrix (see Sec. 2.1.2 for details). However we furthermore remind the Reader

that we permit only the metric and the sigma-model scalars φ and χ to acquire

non-vanishing background pro�les, and hence after substituting for πi(ρ) = 0

we �nd that the equations conveniently separate into two decoupled subsystems

for {aφ, aχ} and aπ; the spectrum resulting from the former subsystem was

presented in Fig. 4.2. From Eq. (4.25) we note that the Gππ component of

the sigma-model metric Gab(Φ
c) is dependent on the other two scalars φ and

χ, and hence the corresponding aπ computation is somewhat complicated by

the fact that Rabcd (the Riemann tensor describing the scalar manifold of the

dimensionally reduced model) contains non-trivial components.

Let us now turn our attention to the spectra which descend from the 1-

and 2-form �elds of the six-dimensional supergravity, presented in Fig. 4.5. All

states are again normalised in terms of the lightest tensor mass, and for the

φI 6 0 region of the plots we con�rm agreement with our previous computation

in Ref. [1] (see also Tables B.1 and B.2). Our �rst observation pertains to the

spectra of the two modes which descend from the SU(2) vectors Ai
M̂
, the four-

vectors Aiµ and the pseudo-scalars πi, which are shown in the top panels of

Fig. 4.5. We notice that of the six �elds, these two towers are distinctive in the

sense that they exhibit the same universal (background-independent) behaviour

for negative φI as was also encountered with the graviton modes in Fig. 4.2 of

Sec. 4.4.

The spectrum of pseudo-scalar excitations is further distinguished by the

interesting observation that it is approximately degenerate with the tower of
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tensor eµν modes shown in Fig. 4.2, which is clearly demonstrated�at least for

the two critical point solutions�in Tables B.1 and B.2. Recall that in Sec. 4.4 we

compared to Ref. [53] the results of our numerical computation for modes which

descend from the D = 6 graviton, with which we found good agreement. The

authors of this paper furthermore considered the �uctuations of an RR 1-form,

from which they extracted two additional towers corresponding to pseudo-scalar

and spin-1 resonances; we verify that these results are in agreement with two

of our spectra, namely the πi and Aiµ modes which descend from the triplet of

SU(2) 1-forms. Perhaps more signi�cantly, we notice that the aforementioned

degeneracy between the pseudo-scalars and spin-2 metric excitations present

in our results is not a novel phenomenon, and was also observed in Ref. [53].

Our computation re�nes this �nding by demonstrating that it is not restricted

to the trivial supersymmetric solution, and indeed applies to an entire class of

con�ning backgrounds that are distinguished by the scale at which their duals

exhibit an RG �ow.

Let us conclude this discussion by considering the remaining plots of Fig. 4.5.

These are the modes {X,B6µ, Xµ, Bµν}, which all descend from the U(1) �elds

AM̂ and BM̂N̂ of the six-dimensional supergravity, and prior to the work in

Refs. [1, 3] the computation of their spectra had not been attempted in the

literature. We start by observing that these four towers of states are dissimilar

to those resulting from the decomposition of ĝM̂N̂ and Ai
M̂
, in that they do not

exhibit universal background-independence for φI 6 0. The resonances of these

modes instead become appreciably heavier as the IR parameter is dialled lower

towards φI = φIR, so that within this subset of solutions the lightest states are

extracted by �uctuating the �elds evaluated on the trivial φI = 0 background

(see also Fig. 3 of [1]).

Our �nal observation further divides the set of {X,B6µ, Xµ, Bµν}modes into

two subsets, based on their behaviour in the large-φI limit. The two spectra

which descend from the triplet of SU(2) six-vectors exhibit a mass gap, and in

the φI →∞ limit we anticipate that each will asymptotically approach a gapped

continuum; we remind the Reader that this phenomenon was also observed for

the three graviton modes presented in Fig. 4.2 (if we disregard the tachyonic

state). Of the four spectra which descend from the six-dimensional U(1) �elds,

we notice that only the composite modes X(A6, B65) and Xµ(Aµ, B5µ) show the

same behaviour, with their lightest masses converging to a �nite non-zero value.

Conversely, for the other two �elds {B6µ, Bµν} which descend from the 2-form

(the latter being dual to a massive vector propagating three d.o.f.), we observe
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that the lightest mass in each case appears to be parametrically suppressed in

the large-φI limit; it is not obvious whether this phenomenon is indicative of

any signi�cant underlying physical e�ects, and we mention it here merely as an

interesting feature of the spectra.
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Figure 4.5: The spectra of masses M as a function of the one free parameter
which characterises the class of con�ning solutions, φI ∈ [φIR, 2.2]. From top to
bottom, left to right: the spectra of �uctuations of the SU(2) adjoint pseudo-
scalars πi (pink), SU(2) adjoint vectors Aiµ (brown), U(1) scalar combination X
(grey), U(1) transverse vector B6µ (purple), U(1) transverse vector combination
Xµ (black), and the U(1) 2-form Bµν (cyan). The vertical dashed lines mark
a critical value of the IR parameter φI = φ∗I > 0, which we shall formally
introduce in Sec. 6.4. All states are normalised in units of the lightest tensor
mass. The spectra were computed using regulators ρ1 = 10−4 and ρ2 = 12 with
the exception of the U(1) scalar combination X, for which the choice ρ1 = 10−7

was used instead to minimise numerical cuto� e�ects which were present for the
lightest state at large values of φI .
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Chapter 5

Seven-dimensional maximal

supergravity

5.1 Formalism of the seven-dimensional model

The action in D = 7 dimensions

As anticipated in Section 1.1, the second theory which we shall be investi-

gating is the seven-dimensional maximal supergravity originally constructed

in Refs. [77, 78], which we truncate to retain only a single real scalar �eld

φ coupled to gravity. We start by de�ning hatted uppercase Latin indices

M̂ ∈ {0, 1, 2, 3, 5, 6, 7} to here represent the coordinates of the seven-dimensional

spacetime, so that the truncated action we will adopt may be written as fol-

lows [2, 54] (see also Refs. [77, 78]):

S7 =

∫
d7x

√
−ĝ7

(R7

4
− 1

4
ĝM̂N̂∂M̂φ∂N̂φ− V7(φ)

)
, (5.1)

where ĝ7 is the determinant of the seven-dimensional metric tensor, R7 ≡
ĝM̂N̂RM̂N̂ is the corresponding Ricci curvature scalar, V7(φ) is the scalar po-

tential, and summation over repeated indices is implied.
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Critical points of the D = 7 potential

The potential of the seven-dimensional sigma-model, which is plotted in Fig. 5.1,

may be written as

V7(φ) =
1

2

(
1

4
e
− 8√

5
φ − 2e

− 3√
5
φ − 2e

2√
5
φ

)
, (5.2)

and admits two stationary point solutions for the scalar �eld φ. Each of these

critical points realises a distinct AdS7 geometry in the gravitational theory, cor-

responding to two separate six-dimensional dual CFTs living on the boundary.

These critical values are as follows:

φUV = 0

(
V7(φUV ) = −15

8

)
, (5.3)

φIR = − 1√
5

ln(2)

(
V7(φIR) = − 5

27/5

)
, (5.4)

where, as with Romans six-dimensional supergravity, we have adopted the sub-

script labels to re�ect the fact one may construct numerical background solu-

tions which interpolate between the two extrema, realising a holographic RG

�ow from the φ = φUV supersymmetric �eld theory at high energies to the

(perturbatively unstable) φ = φIR non-supersymmetric theory at low energies.

-0.6 -0.4 -0.2 0.0 0.2 0.4

-2.00

-1.95

-1.90

-1.85

-1.80

-1.75

V7(φ)

φ

Figure 5.1: The potential V7(φ) as a function of the scalar φ in the sigma-model
coupled to gravity in D = 7 dimensions. The blue disk denotes the supersym-
metric critical point φ = φUV = 0, while the dark-red triangle represents the

non-supersymmetric critical point φ = φIR = − ln(2)√
5
.
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By adopting the same conventions as in Ref. [54], though noting that we have

here de�ned S7 (and hence also V7) with an additional factor of one half, the

(squared) curvature radii for the two AdS7 geometries are given by

R2
UV ≡ −15

[
2V7(φUV )

]−1
= 4 , (5.5)

R2
IR ≡ −15

[
2V7(φIR)

]−1
= 3 · 22/5 . (5.6)

As before, the mass of the scalar �eld φ propagating on the two inequivalent

AdS7 geometries may be extracted by considering small perturbations about

each extrema of the potential, with the coe�cient of the term quadratic in φ

providing m2/4. We �nd that

V7(φUV ) = −15

8
− φ2

2
+O

(
φ3
)
, (5.7)

V7(φIR) = − 5

27/5
+

1

22/5

(
φ− φIR

)2
+O

(
(φ− φIR)3

)
, (5.8)

and we therefore obtain the well-known results (see for example Ref. [88]):

m2
UV = −2 → m2

UVR
2
UV = −8 , (5.9)

m2
IR = 28/5 → m2

IRR
2
IR = 12 . (5.10)

Then, using Eq. (1.2) we can compute the scaling dimension ∆ of the boundary

operator dual to φ for each of the two critical points, keeping in each case the

largest quadratic root:

∆UV = 4 , ∆IR = 3 +
√

21 . (5.11)

5.2 Toroidal reduction to D=5 dimensions

The metric

We reduce the system to �ve dimensions by compactifying two of the external

directions, parametrised by η and ζ, on a torus T 2 ≡ S1 × S1; the volumes of

the two circles in the torus are controlled by the additional sigma-model scalars

χ and ω. Using the D = 5 line element as de�ned in Eq. (2.1), we adopt the
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following ansatz for the seven-dimensional metric:

ds2
7 = e−2χds2

5 + e3χ
(
e−2ωdη2 + e2ωdζ2

)
= e−2χ

(
e2A(r)dx2

1,3 + dr2
)

+ e3χ
(
e−2ωdη2 + e2ωdζ2

)
= e−2χ

(
e2A(ρ)dx2

1,3 + e2χdρ2
)

+ e3χ
(
e−2ωdη2 + e2ωdζ2

)
, (5.12)

where in the third line we have introduced the convenient change of coordinate

de�ned via dr ≡ eχdρ⇔ ∂r = e−χ∂ρ. We assume that the background pro�les

for the scalar �elds {φ, χ, ω} and the warp factor A are dependent only on

the holographic coordinate ρ, and are hence independent of the periodic T 2

coordinates 0 6 η, ζ < 2π.

We will mainly be considering background geometries in which the compact-

i�ed dimension parametrised by ζ always maintains a non-zero volume, while

the behaviour of the other circle (parametrised by η) depends on the speci�c

solution in question. For backgrounds which provide the holographic realisation

of con�nement, the η circle contracts to a point and vanishes at the end of space

so that the bulk geometry smoothly closes o�; conversely, there exist classes of

domain-wall backgrounds for which neither of the circles within the torus shrink

to zero size. These DW solutions (locally) preserve six-dimensional Poincaré in-

variance within the space of the Minkowski and toroidal dimensions, while the

tapered geometry inherent to the con�ning solutions reduces this symmetry to

�ve-dimensional Poincaré invariance within the subspace parametrised by the

coordinates {xµ, ζ}. We observe that by making the identi�cation A = 5
2χ+ ω,

the metric takes a form which manifestly shows this latter symmetry:

ds2
7 = dρ2 + e2A

(
dx2

1,3 + e−4ωdη2 + dζ2
)
, (5.13)

where the new warp factor is given by A = 3
2χ+ω = A−χ. Poincaré invariance

is extended to include the η dimension if we further impose ω = 0. Since the

less restrictive �ve-dimensional Poincaré symmetry will apply to all background

solutions that we consider, we shall henceforth always assume that the constraint

A− 5
2χ = ω is satis�ed, with the subset of solutions which admit the domain-wall

geometry satisfying ω = 0. We conclude this section by noting that the �ve-

and seven-dimensional metric determinants are related via
√−ĝ7 = e−2χ√−g5,
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and that the seven-dimensional Ricci scalar is given by

R7 = −2
(

4A′′ − χ′′ + 10(A′)2 + 19
4 (χ′)2 + (ω′)2 − 8A′χ′

)
, (5.14)

where primes denote derivatives taken with respect to the radial coordinate ρ.

The action

As we saw with Romans supergravity in Sec. 4.2, the de�ning action of the

theory may be dimensionally reduced to a D = 5 sigma-model coupled to grav-

ity, with one additional scalar introduced for each S1-compacti�ed direction

to parametrise their volume. We apply the same process here for the seven-

dimensional supergravity so that, after some algebra, it can be shown that the

action presented in Eq. (5.1) may be conveniently rewritten as

S7 =

∫
dη dζ

{
S̃5 +

1

2

∫
d5x ∂M

(√−g5 g
MN∂Nχ

)}
, (5.15)

where the �ve-dimensional action S̃5 takes a similar form to Eq. (4.23):

S̃5 =

∫
d5x
√−g5

(R5

4
− 1

2
Gabg

MN∂MΦa∂NΦb − V(φ, χ)

)
. (5.16)

The index a ∈ {1, 2, 3} labels the scalar �elds of the sigma-model so that

Φa = {φ, χ, ω}, while the scalar potential V is related to the seven-dimensional

potential via V(φ, χ) = e−2χV7(φ). The sigma-model metric Gab is given by

Gab = diag

(
1

2
,

15

4
, 1

)
. (5.17)

5.3 Equations of motion and con�ning solutions

Equations of motion

The classical equations of motion which follow from the toroidally reduced

�ve-dimensional action S̃5 are derived using the general results presented in

Eqs. (2.15 - 2.17) of Section 2.1.1. From the equations for the three scalars, and
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from the two Einstein �eld equations, we obtain the following:

∂2
rφ+ 4∂rφ∂rA = 2

∂V
∂φ

, (5.18)

∂2
rχ+ 4∂rχ∂rA =

4

15

∂V
∂χ

, (5.19)

∂2
rω + 4∂rω∂rA = 0 , (5.20)

12∂2
rA+ 24(∂rA)2 + 2(∂rφ)2 + 15(∂rχ)2 + 4(∂rω)2 = −8V , (5.21)

24(∂rA)2 − 2(∂rφ)2 − 15(∂rχ)2 − 4(∂rω)2 = −8V . (5.22)

By implementing the radial coordinate change de�ned just after Eq. (5.12),

the system of equations may be rewritten in terms of the seven-dimensional

potential:

∂2
ρφ+

(
4∂ρA− ∂ρχ

)
∂ρφ = 2

∂V7

∂φ
, (5.23)

∂2
ρχ+

(
4∂ρA− ∂ρχ

)
∂ρχ = − 8

15
V7 , (5.24)

∂2
ρω +

(
4∂ρA− ∂ρχ

)
∂ρω = 0 , (5.25)

3∂2
ρA+ 6(∂ρA)2 − 3∂ρA∂ρχ+ Σ = −2V7 , (5.26)

6(∂ρA)2 − Σ = −2V7 , (5.27)

where we have conveniently collected some terms together by introducing

Σ ≡ Gab∂ρΦa∂ρΦb = 1
2 (∂ρφ)2 + 15

4 (∂ρχ)2 + (∂ρω)2 . (5.28)

We notice that summing the combination −3×Eq. (5.24), 2
5×Eq. (5.26), and

2
5×Eq. (5.27) gives the following vanishing quantity:

2∂2
ρA− 5∂2

ρχ+ 8(∂ρA)2 + 5(∂ρχ)2 − 22∂ρA∂ρχ = 0 , (5.29)

which is satis�ed by the constraint A− 5
2χ = ω. By substituting for A→ 5

2χ+ω

in Eq. (5.25) and Eq. (5.29) we obtain identical expressions, which demonstrates

that our system of equations is overdetermined; we may therefore omit one of
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the equations to remove this redundancy, leaving us with the following:

∂2
ρφ+

(
4∂ρA− ∂ρχ

)
∂ρφ = 2

∂V7

∂φ
, (5.30)

∂2
ρχ+

(
4∂ρA− ∂ρχ

)
∂ρχ = − 8

15
V7 , (5.31)

∂2
ρω +

(
4∂ρA− ∂ρχ

)
∂ρω = 0 , (5.32)

6(∂ρA)2 − Σ = −2V7 . (5.33)

We furthermore notice that Eq. (5.29) may be reformulated as a vanishing total

derivative with respect to ρ, so that

e4A−χ
(

5∂ρχ− 2∂ρA
)

= −2e4A−χ∂ρω = C (5.34)

represents a conserved quantity at all energy scales, for some constant C which

depends on the speci�c background solution. We will make use of this obser-

vation in Sec. 7.2 when we derive the free energy density for this supergravity

theory. It is convenient to reformulate Eqs. (5.30 - 5.33) in terms of the following

linear combinations of the scalar χ and warp factor A:

α ≡ 4A− χ , Υ ≡ A− 5
2χ , (5.35)(

⇒ χ = 1
9

(
α− 4Υ

)
, A = 1

18

(
5α− 2Υ

))
,

so that the equations of motion take the more compact form:

∂2
ρφ+ ∂ρα∂ρφ = 2

∂V7

∂φ
, (5.36)

∂2
ρα+ (∂ρα)2 = −24

5
V7 , (5.37)

20(∂ρΥ)2 − 5(∂ρα)2 + 6(∂ρφ)2 = 24V7 , (5.38)

∂2
ρΥ + ∂ρα∂ρΥ = 0 , (5.39)

and the conserved quantity identi�ed in Eq. (5.34) is given by C = −2eα ∂ρΥ.

Rewritten as such, we observe that the system of equations is unchanged under

the sign �ip Υ → −Υ, while holding α → α invariant; as we shall see in

Sec. 7.1, this symmetry actually implies the existence of an additional branch

of solutions which are related to the class of regular backgrounds, though which

are geometrically distinct.
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As earlier mentioned, those solutions which realise a domain-wall geome-

try and hence which preserve six-dimensional Poincaré invariance within the

{xµ, η, ζ} subspace satisfy Υ = 0; the equations of motion therefore simplify for

these classes:

5∂2
ρφ+ 18∂ρA∂ρφ = 10

∂V7

∂φ
, (5.40)

3∂2
ρA+ (∂ρφ)2 = 0 , (5.41)

54(∂ρA)2 − 5(∂ρφ)2 = −20V7 , (5.42)

or in terms of the linear �eld combination α we equivalently have

∂2
ρφ+ ∂ρα∂ρφ = 2

∂V7

∂φ
, (5.43)

∂2
ρα+ (∂ρα)2 = −24

5
V7 , (5.44)

5(∂ρα)2 − 6(∂ρφ)2 = −24V7 . (5.45)

We conclude this section by observing that Eq. (5.45) may be solved alge-

braically for α′(ρ), and that this expression may subsequently be substituted

into Eq. (5.43) to derive a second-order non-linear di�erential equation written

in terms of the scalar φ(ρ) only. We obtain the following:

0 = 5φ′′ +
√

15φ′
[
2
(
φ′
)2

+ γ−
8
5

(
8γ + 8γ2 − 1

)] 1
2

+
√

20γ−
8
5

(
1− 3γ + 2γ2

)
, (5.46)

where primes denote di�erentiation with respect to ρ, and we have here de�ned

γ ≡ e
√

5φ(ρ). As with the analogous expression presented in Eq. (4.55) for Ro-

mans supergravity, we shall later use Eq. (5.46) to produce a parametric plot

of the underlying vector �eld governing φ for DW background solutions which

preserve six-dimensional Poincaré invariance.

Con�ning solutions

The mass spectra of bosonic composite states in a four-dimensional strongly-

coupled �eld theory can be computed holographically by considering �eld �uc-

tuations on backgrounds in the dual higher-dimensional theory which geometri-

cally realise con�nement. In this section we introduce a class of such solutions,
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for which one of the internal circles of the torus T 2 = S1 × S1 shrinks to a

point at some �nite value of the radial coordinate ρ = ρo, and consequently for

which the bulk spacetime smoothly closes o� and ends; this geometric prop-

erty naturally introduces a low-energy limit in the dual �eld theory living at

the boundary, which we remind the Reader may be interpreted as the scale of

con�nement.

In Sec. 5.1 we presented the two critical points of the seven-dimensional

scalar potential V7(φ), each of which realises a distinct AdS7 geometry. When

the scalar �eld φ is equal to either of these constant values φ = φp, with φp ∈
{φUV , φIR}, there are known to exist analytical solutions for the warp factor and
the two additional scalars which are introduced to control the volumes of the

compacti�ed dimensions in the toroidally reduced model; these special con�ning

solutions may be written as follows [54]:

φ = φp , (5.47)

χ(ρ) =
1

3
ln

[
2

x
sinh(y) cosh−

1
3 (y)

]
, (5.48)

ω(ρ) = −1

2
ln

[
2

x
tanh(y)

]
, (5.49)

where x ≡
(
− 12

5 v
) 1

2 , v ≡ V7(φp), and y ≡ x
2 (ρ− ρo); we shall not require these

exact solutions when computing the mass spectra for this theory, though we

nevertheless include them here for completeness.

As with the analogous class of con�ning backgrounds for the six-dimensional

supergravity it is possible to generalise the above solutions to allow for φ pro�les

which are ρ-dependent, in which φ interpolates between the two stationary point

values φUV and φIR. The �elds may be series expanded in proximity of the end

of space where the η-circle collapses to a point, so that the generalised solutions

are obtained by solving the EOMs subject to boundary conditions guided by
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the following IR expansions [4, 54]:

φ(ρ) = φI − 1
2
√

5
e
− 8φI√

5

(
1− 3e

√
5φI + 2e2

√
5φI
)

(ρ− ρo)2

− 1
80
√

5
e
− 16φI√

5

(
9− 44e

√
5φI + 57e2

√
5φI + 2e3

√
5φI − 24e4

√
5φI
)

(ρ− ρo)4

+O
(
(ρ− ρo)6

)
, (5.50)

χ(ρ) = χI + 1
3 ln(ρ− ρo)

− 1
6000e

− 16φI√
5

(
7− 32e

√
5φI + 56e2

√
5φI − 224e3

√
5φI − 32e4

√
5φI
)

(ρ− ρo)4

+O
(
(ρ− ρo)6

)
, (5.51)

ω(ρ) = ωI − 1
2 ln(ρ− ρo)− 1

40e
− 8φI√

5

(
1− 8e

√
5φI − 8e2

√
5φI
)

(ρ− ρo)2

− 1
8000e

− 16φI√
5

(
31− 8

(
32e
√

5φI − 81e2
√

5φI − 76e3
√

5φI − 68e4
√

5φI
))

(ρ− ρo)4

+O
(
(ρ− ρo)6

)
, (5.52)

where ρo is chosen to �x the end of space along the radial direction, and φI is

the free parameter which determines the energy scale at which the transition

from one �xed point to the other occurs. For the choice φI = φp we recover

the exact analytical solutions presented in Eqs. (5.48) and (5.49). For choices

φI ∈ (φIR, φUV ) we generate a family of backgrounds which interpolate from

φ = φUV at large ρ towards φ = φIR as one approaches the end of space,

however in these cases the pro�le φ(ρ) does not have su�cient time to reach

the IR �xed point before the geometry closes o� and the solution terminates.

Choosing φI > φUV is perfectly acceptable�and we will allow for such values

when computing the mass spectra in the next section�though we shall impose

that φIR 6 φI to ensure that φ(ρ) is bounded from below by the IR �xed point

solution.

The integration constant χI appearing in the IR expansion for the scalar χ

is a constrained quantity; the S1-compacti�ed dimension parametrised by η is

periodically identi�ed, and as a result χI is �xed by the requirement that we

avoid a conical singularity at the end of space. By restricting our attention to the

two-dimensional subspace spanned by ρ and η in the deep IR, and furthermore

by substituting in for χ and ω using their respective small-ρ expansions, we �nd
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that the bulk geometry is described by the following line element:

ds̃2
2 = dρ2 + e3χ−2ωdη2 (5.53)

= dρ2 + e3χI−2ωI (ρ− ρo)2dη2 + . . . , (5.54)

so that the necessary condition to avoid an angular de�cit is given by χI = 2
3ωI .

The value assigned to the constant ωI may otherwise be freely chosen.

5.4 Physical mass spectra

In this section we present and discuss the numerical results of our spectra com-

putation for the seven-dimensional gauged supergravity, focusing solely on the

physical modes corresponding to the spin-2 �uctuations eµν of the graviton, and

the scalar variables aa constructed from the �uctuations of the sigma-model

�elds ϕa and the spin-0 component h of the ADM-decomposed metric; the re-

sults of our probe approximation analysis will be discussed separately in Sec. 5.5.

As a brief digression, let us �rst comment on our choice not to retain the

higher p-form �elds of the supergravity multiplet in our investigation. We re-

mind the Reader that in the context of superstring theory and M-theory there

exists the well-known self-duality in odd dimensions phenomenon [163], wherein

a (2k + 1)-form �eld strength on a (4k + 2)-dimensional Riemannian manifold

is self-dual when acted upon by the Hodge star operator. As explained in (for

example) Refs. [164�166], this geometric property gives rise to the notion of

so-called chiral 2k-forms, and the self-duality constraint is associated with dif-

�culties in constructing an appropriate covariant theory action (and hence also

partition function); typical terms of the form C ∧ ?C are vanishing under the

constraint ?C = C.

Of particular relevance in the context of AdS7/CFT6 holography is the maxi-

mal eleven-dimensional supergravity, in which the six-dimensional world-volume

of the M5-brane contains a chiral 2-form whose �eld strength tensor is self-dual

(see for example Refs. [165, 167, 168] and references therein, and also earlier

work in Refs. [169�171]). As discussed in Sec. 1.1 the compacti�cation of this

theory on an S4 yields the desired gauged supergravity in seven dimensions,

whose bosonic sector contains a self-dual 3-form [86,87]. The requirement that

we additionally impose the self-duality constraint on this �eld would somewhat

complicate the spectra computation, and for this reason we choose to instead

consider the consistently truncated theory comprising one sigma-model scalar
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coupled to gravity; this simpli�cation is further justi�ed by the fact that we are

interested primarily in studying dilaton phenomenology, which only requires

that we retain the dynamical scalar φ.

With this clari�cation out of the way, let us now turn our attention to the

results of our numerical computation presented in Fig. 5.2. As with the anal-

ogous exercise for the six-dimensional supergravity in Chapter 4, we compute

the spectra as a function of the one parameter φI which characterises the con-

�ning backgrounds in the deep IR region of the geometry (after �xing the end

of space); this parameter encodes information about the ratio of two energy

scales: that at which φ(ρ) interpolates between the two critical point solutions

in the gravitational model, and the scale at which the dual �eld theory exhibits

con�nement. We here extend the analysis of Ref. [2] to include backgrounds

which admit φ > 0�corresponding to solutions which explore a runaway direc-

tion of the scalar potential V7(φ)�and as a consistency check we con�rm that

the spectra are in agreement for the φ ∈ [φIR, φUV ] region of the parameter

space common to the two computations.

For those backgrounds with φI 6 0, which include the two critical points

of the seven-dimensional potential and the family of solutions which interpo-

late between them, we observe in Fig. 5.2 the same universal behaviour as was

previously encountered in Chapter 4 for the half-maximal theory: the tower of

tensor states (eµν) and a subset of the scalar states (aχ) show no dependence

on the choice of background being �uctuated. Phrased another way, these mas-

sive resonances do not care about speci�c details of the dual RG �ow on the

boundary, and are a�ected only by the scale at which con�nement is imple-

mented geometrically in the gravitational model. We again refer the Reader to

Ref. [54], wherein the spin-0 spectrum for this class of interpolating backgrounds

has previously been obtained and the same phenomenon has been discussed; we

verify that our results for φI 6 0 agree with those shown in Fig. 10 and Table. 2

of this paper (after normalising appropriately), and in Table B.3 we present the

numerical masses that our computation yields for the critical point backgrounds

φ ∈ {φIR, φUV } to facilitate comparison.

Earlier studies of the glueball spectra for QCD4 using a top-down holographic

approach from similar supergravity backgrounds exist in the literature (see for

example Refs. [172�174]). In Ref. [33] the authors started by considering M-

theory formulated on the eleven-dimensional product space AdS7 × S4�dual

to the six-dimensional superconformal �eld theory living on Nc coincident M5-

branes�and compacti�ed two of the dimensions on a T 2 as prescribed byWitten
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in Ref. [32]. By raising the temperature of the thermal circle internal to this

torus and imposing appropriate boundary conditions they realised the so-called

AdS7 black hole geometry, which provides a holographic description of QCD4.

The authors' investigation primarily di�ers from our own numerical study in

that they retained additional �elds in their truncation, identifying six indepen-

dent towers of states: �ve modes which descend from the graviton and 3-form

of the supergravity in D = 11 dimensions, supplemented by spin-0 excitations

of the S4 metric; we refer the Reader to the paper for further details. Two of

these massive towers are comparable to the gauge-invariant �uctuations that

we consider; those states which the authors refer to as T4 and S4 correspond

respectively to the eµν and aa resonances of our T 2-compacti�ed model, with

the caveat that they restrict attention to the trivial supersymmetric solution

φ = 0. By comparing the results of our numerical computation to those in

Table 2 of Ref. [33] and normalising appropriately, we �nd excellent agreement

for the spin-2 tower and a subset of the spin-0 states (those corresponding to

�uctuations of χ); we again refer the Reader to Table B.3 of Appendix B in

which we provide numerical values for the masses that are extracted from the

critical point solutions.

Let us conclude this section by commenting on two signi�cant features of

the spectra presented in Fig. 5.2, both of which were also observed with the

analogous computation for Romans six-dimensional supergravity. We �rst no-

tice that the universal background-independence of the two graviton modes is

restricted to the φI 6 0 region of the parameter space, corresponding to solu-

tions which interpolate between the two critical points. As the IR parameter

φI is dialled higher and the scalar φ is permitted to explore further along the

runaway direction of the potential, we see that both towers of masses start to

converge and the spectra become increasingly dense; in the large-φI limit we

expect to �nd the `gapped continuum' behaviour discussed earlier in Sec. 4.4.

Our second observation pertains to the spin-0 spectrum, in which another

important phenomenon appears within the φI > 0 region of the plot. As was

encountered with the corresponding computation for the six-dimensional super-

gravity, at some special value of φI = φτI (∼ 0.45 in this case) we notice that

the lightest scalar resonance becomes tachyonic, and hence we infer that our

spectrum analysis uncovers an instability in the theory parameter space. This

is potentially problematic, as we are studying the �eld �uctuations of a consis-

tent truncation of an established supergravity which is known to be obtainable

from compacti�cations of superstring and M-theory in ten and eleven dimen-
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sions [77, 78, 86, 87]; indeed, the presence of such an instability necessitates the

existence of a phase transition which would prevent the system from realising

these pathological backgrounds. It is this physical requirement which motivates

our exploration of the theory phase space in Chapter 7, where we shall cata-

logue several classes of geometrically distinct background solutions which are

admitted by the T 2-reduced supergravity and systematically compute their free

energy. The scalar spectrum in Fig. 5.2 signals that a phase transition should

be uncovered, and that another branch of backgrounds must become energeti-

cally favoured before the system is able reach the tachyonic instability along the

branch of con�ning solutions. We shall return to this discussion in Chapters 6

and 7.
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Figure 5.2: The spectra of masses M as a function of the one free parameter
which characterises the class of con�ning solutions, φI ∈ [φIR, 2.4]. The left
plot shows the spectra of tensor �uctuations eµν (orange), while the right plot
shows the mass eigenstates of the scalar �uctuations aa associated with {φ, χ, ω}
(blue). The red disks in the scalar spectrum represent masses for whichM2 < 0,
and hence denote a tachyonic state. The vertical dashed lines represent the
critical value of the IR parameter φI = φ∗I > 0 at a �rst-order phase transition,
which we shall encounter in Sec. 7.4. All states are normalised in units of the
lightest tensor mass, and were computed using regulators ρ1 = 10−4 and ρ2 =
12. We acknowledge the existence of some small gaps in the scalar spectrum;
these are regions where the resonances were so close to degenerate in mass that
the numerical routine was unable to resolve and identify them separately, and
are hence not of any physical signi�cance.
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5.5 Probe spectrum analysis

As discussed in Sections 1.2, 2.2, and 4.5, the dilaton is the (massless) Nambu�

Goldstone Boson associated with the spontaneous breaking of exact dilatation

invariance. When this symmetry is not explicitly preserved either, for example

if the CFT is deformed by switching on a source, the dilaton acquires a small

non-zero mass and is instead referred to as a pseudo-Nambu�Goldstone Boson.

Our investigation into the phenomenology of this scalar �eld within the frame-

work of top-down holography generalises the methods employed in Ref. [94]�

wherein the breaking of conformal invariance is inferred from proximity to the

BF stability bound�and is predicated instead on the comparison of two distinct

spectra. We consider �uctuations about backgrounds which smoothly close o�

in the deep IR, and hence our dilaton study is necessarily also applicable to

geometries which depart from AdS.

We brie�y remind the Reader that our diagnostic test for detecting a dilaton

admixture is referred to as the probe approximation, and that it consists of two

steps: we �rst use Eqs. (2.32) and (2.33) to numerically compute the spectra

of complete gauge-invariant scalar �uctuations aa as de�ned in Eq. (2.25), and

we then compare these results to those obtained for the corresponding probe

states pa using Eqs. (2.36) and (2.37). In the latter case we switch o� by hand

the metric �uctuation h, the scalar supergravity �eld dual to the dilatation

operator in the boundary theory. Where discrepancies emerge between the two

computations we infer that the contribution of h to the mass eigenstates is

not negligible, and that those states are at least partially identi�able with the

dilaton.

In Fig. 5.3 we present a direct comparison of the gauge-invariant scalar

�uctuation aa spectrum shown in the rightmost panel of Fig. 5.2, to the new

results obtained from our probe state pa computation (see also Fig. 5 of Ref. [2]).

There are both similarities and di�erences when compared to the analogous plot

for the six-dimensional supergravity in Fig. 4.3, though once again it is evident

that the probe approximation fails to ever completely capture the complete

tower of physical states for any value of the tunable IR parameter φI .

Let us start by examining the φI < 0 region of the plot in proximity of the IR

critical point solution φ = φIR, where we notice that�contrary to Fig. 4.3�the

lightest resonance (associated with the scalar χ) is here well approximated by the

probe analysis; moreover this is also true for half of the heavier excitations that

show no discernible dependence on the choice of background, which correspond
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Figure 5.3: The spectra of masses M as a function of the one free parameter
which characterises the class of con�ning solutions, φI ∈ [φIR, 2.4]. All states are
normalised in units of the lightest tensor mass, and the spectrum was computed
using regulators ρ1 = 10−4 and ρ2 = 12. As in Fig. 5.2, the blue disks represent
the mass eigenstates for the three scalars of the model {φ, χ, ω}, while the
red disks denote the tachyon. We here additionally include the results of our
mass spectrum computation using the probe approximation for M2 > 0 (black
triangles) and M2 < 0 (red triangles). The vertical dashed line marks a critical
value of the IR parameter φI = φ∗I > 0, while the shaded grey region denotes
the region of parameter space for which the con�ning solutions are metastable;
we shall elaborate on these points in Sec. 7.4.

to the aω �uctuation associated with ω (with masses M ≈ 1.03, 1.61, 2.18).

The other heavy background-independent states correspond to the excitations

of χ, and these are not well approximated by the probes (see Table B.3). To

understand this observation, let us recall the results of our investigation for

the toroidal compacti�cation of a generic AdSD system shown in Figure 3.2 of

Chapter. 3. There we noticed that the probe states pχ̄ associated with the scalar

χ̄ (analogous to χ here) coincidentally provided an e�ective approximation of the

corresponding aχ̄ �uctuations, speci�cally for models obtained by compactifying

n ∼ 2 external dimensions on circles. Since we are considering �uctuations about

background geometries resulting from the reduction of a higher-dimensional

theory on a T 2, the success of the probe approximation here is perhaps not
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entirely unexpected.

As the parameter φI is dialled higher to approach the UV critical point

solution at φ = 0 we observe that the probes e�ectively approximate both the

lightest and next-to-lightest gauge-invariant states, however this is not the case

for the heavier resonances within the aχ tower (those withM ≈ 1.45, 2.06, 2.64);

we hence infer that only the latter excitations result from signi�cant dilaton

mixing e�ects.

Backgrounds which lie within the shaded grey region of the plot aremetastable

(we shall elaborate on this point in Sec. 7.4), and as with the six-dimensional

supergravity we notice that the probe approximation begins to deviate from

the proper computation; this e�ect becomes more pronounced just before the

lightest scalar aa turns tachyonic at φI = φτI ∼ 0.45. This implies that, at least

in proximity of the instability where the lightest state may be rendered para-

metrically light, it is legitimate to identify the lightest scalar excitation as being

dilatonic. As with Fig. 4.3 we here too notice that the failure of the probe ap-

proximation is not restricted to the lightest states in the spectrum, and that the

heavier excitations must therefore also contain non-negligible contributions from

the �eld which sources the dilatation operator at the boundary. This is most

apparent at large values of the IR parameter φI where, as we found with the

various spectra in Figs. 4.2 and 4.5 for the Romans theory, the physical states

asymptotically converge to a gapped continuum; we see early evidence that the

corresponding probes instead become lighter and eventually turn tachyonic.

To summarise the results of our spectra calculations for the toroidally re-

duced seven-dimensional supergravity, we have uncovered the existence of a

tachyonic instability which may be approached by dialling the one free param-

eter that labels a class of regular backgrounds. Furthermore, from our probe

approximation analysis we have determined that this tachyonic state contains

a signi�cant contribution coming from the metric �uctuation h, which sources

the dilatation operator in the dual �eld theory. Motivated by these �ndings, in

Chapter 7 we shall conduct an investigation into the phase space of the theory

by computing the holographically renormalised free energy density F for sev-

eral distinct classes of background solutions, with the expectation that a phase

transition must exist to prevent the unstable region of parameter space from

being accessed. In the process we will uncover some useful parameter relations,

which will allow us to more closely examine the nature of the putative dilatonic

states; we postpone further discussion on this topic until Section 7.5.
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Part II

Phase structure analysis
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Chapter 6

Six-dimensional half-maximal

supergravity

6.1 Classes of solutions

There are several distinct classes (or branches, we will use these two terms in-

terchangeably) of background solutions which satisfy the equations of motion

presented in Eqs. (4.39 - 4.42), with various geometric properties and boundary-

dual interpretations. We have already encountered the class referred to as con-

�ning in Sec. 4.3, where we used the fact that the circle-compacti�ed dimension

smoothly shrinks to a point at the end of space to model the gravitational dual of

a strongly-coupled con�ning �eld theory, and to then compute the mass spectra

of glueball states in such a �eld theory.

For the purposes of this chapter, in which we conduct an investigation into

the phase structure of Romans six-dimensional supergravity and (as we shall

see) uncover evidence for the existence of a �rst-order phase transition, it will

be insu�cient to consider only these regular solutions; to obtain a proper un-

derstanding of the physical phase space it is necessary to study the energetics

for all branches and moreover to compare them in an appropriate way. In this

chapter we provide a comprehensive classi�cation of solution types, several of

which were previously unidenti�ed prior to the work in Ref. [3].
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UV asymptotic expansions

The classes of solutions of interest to our investigation di�er primarily in their

geometric properties at small values of the holographic coordinate, and are

classi�ed according to their behaviour in proximity to the bulk end of space.

However, due to the fact that each class represents some form of parametric

deformation of the unique supersymmetric trivial �xed point φ = 0, they all

show the same convergent behaviour at large ρ (corresponding to UV energies in

the dual �eld theory); more precisely, we asymptotically approach the geometry

of AdS6 (locally) in the limit ρ→∞, irrespective of which speci�c backgrounds

we are considering.

Therefore, after introducing a convenient new radial coordinate de�ned via

z ≡ e−2ρ/3, we are able to write down a set of general asymptotic expansions

for φ, χ, and A which are valid at large ρ (small z) near the UV boundary and

which are universally applicable to all branches of solutions. We present these

expansions below:

φ(z) = φ2z
2 + φ3z

3 − 6φ2
2z
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A(z) = AU − 4 ln(z)

3
− φ2

2z
4

3
+

(
χ5

4
− 3φ2φ3

5

)
z5 +

(
32φ3

2

9
− φ2

3

3

)
z6 +

128

21
φ2

2φ3z
7

+

(
3φ2φ

2
3 −

77φ4
2

4

)
z8 +

1

2160

(
− 69508φ3

2φ3 + 375χ5φ
2
2 + 1280φ3

3

)
z9

+
1

3600

(
− 3375χ2

5 + 275200φ5
2 − 78936φ2

2φ
2
3

)
z10

+
1

18480

(
2932864φ4

2φ3 − 28000χ5φ
3
2 − 135324φ2φ

3
3 + 2625χ5φ

2
3

)
z11

+O
(
z12
)
, (6.3)

and we also show explicitly the corresponding expansions for the two useful

linear combinations α = 4A − χ and β = A − 4χ which were introduced in

Section. 4.3:
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We observe that these general asymptotic expansions�which govern the UV

behaviour of a wide variety of distinct background con�gurations�may be for-

mulated in terms of only �ve UV parameters {φ2, φ3, χ5, χU , AU}. As discussed
earlier in Sec. 2.3 these parameters play a vital role in our energetics analysis,

and in Sec. 6.3 we will describe in detail the numerical routine which we employ

to extract meaningful data for each class of solutions using these expansions.

Supersymmetric (SUSY) solutions

The �rst class of solutions we will consider are obtained by making use of the

superpotential formalism which was introduced in Sec. 2.1.1, and for convenience
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we here reproduce the system of �rst-order equations that must be solved:

∂ρΦ
a = Gab∂bW ,

∂ρA = − 2

D − 2
W ,

where we have made the coordinate replacement r → ρ. We remind the Reader

that these solutions have as a prerequisite the condition that the bulk geometry

takes the form of the domain-wall metric ansatz given in Eq. (2.19), so that

Poincaré invariance is locally preserved within the �ve-dimensional subspace

described by the Minkowski and η directions; as previously mentioned, this geo-

metric property translates into the requirement that the warp factor constraint

A = 4χ (or equivalently A = 3
4A = 3χ) is satis�ed.

In D = 6 dimensions the scalar potential V6 presented in Eq. (4.7) is a

function solely of φ, and hence the �rst-order equations reduce to

∂ρφ = Gφφ∂φW =
1

2
∂φW , (6.6)

∂ρA = −1

2
W , (6.7)

where in the second line we have substituted in for the φ component of the

(diagonal) sigma-model metric. These equations admit as a solution [64] the

superpotential W =W1 given by:

W1 = −eφ − 1

3
e−3φ , (6.8)

with which we have

∂ρφ =
1

2

(
e−3φ − eφ

)
, (6.9)

∂ρA =
1

6

(
3eφ + e−3φ

)
. (6.10)

We therefore see that the trivial supersymmetric solution with constant φ = 0,

for which the bulk geometry is that of AdS6, has a metric warp factor which

scales linearly with the radial coordinate: A = 2
3ρ.

Let us here make a brief, though important, observation. In addition to the

exact superpotential W1 presented above, the �rst-order equations presented in

Eqs. (6.6) and (6.7) also admit a second choice for W, albeit one that we are

only able to write as a power expansion in φ for small perturbations about the
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supersymmetric �xed point φ = 0. This expansion is given by

W2(φ) = −4

3
− 4

3
φ2 +

16

3
φ3 +

86

3
φ4 +

848

3
φ5 +

988658

315
φ6 + O(φ7) , (6.11)

and�as we shall later demonstrate�it will play a crucial role in our energetics

analysis by providing the exact counter-terms required in our computation of

the holographically renormalised free energy.

More generally, there exist solutions to this same system of �rst-order equa-

tions for which φ = φ(ρ) is not a constant, but rather evolves monotonically

from the trivial supersymmetric �xed point in the UV towards a good singular-

ity φ→∞ at the end of space. As an aside, we here clarify that when referring

to background con�gurations in which the scalar �eld φ exhibits singular (non-

convergent) behaviour, we shall adopt the prescription of Gubser in Ref. [175]:

classifying singularities as either good or bad depending on whether the super-

gravity scalar potential (evaluated on the singular solution) is bounded from

above, or not, respectively.

We proceed by introducing the convenient change of coordinate ∂ρ ≡ e−φ∂τ ,
so that Eqs. (6.9, 6.10) may be rewritten as

∂τφ = − sinh(2φ) , (6.12)

∂τA =
1

6

(
3e2φ + e−2φ

)
, (6.13)

which admit the following exact solutions [64]:

φ(τ) = arccoth
(
e2(τ−τo)

)
, (6.14)

A(τ) = Ao +
1

3
ln
[

sinh(2
(
τ − τo)

)]
+

1

6
ln
[

tanh(τ − τo)
]
, (6.15)

where Ao and τo are integration constants. By series expanding these analytical

solutions we obtain the following IR (small τ) expansions:

φ(ρ) = −1

2
ln(τ − τo) +

1

6
(τ − τo)2 − 7

180
(τ − τo)4 + . . . , (6.16)

A(ρ) = Ao +
1

2
ln(τ − τo) +

1

90
(τ − τo)4 + . . . , (6.17)

and by making use of the τ → ρ coordinate change de�ned above, we therefore

113



also �nd

φ(ρ) = ln(2)− ln(ρ− ρo) +
1

80
(ρ− ρo)4 + . . . , (6.18)

A(ρ) = AI + ln(ρ− ρo) +
1

120
(ρ− ρo)4 + . . . , (6.19)

where AI = Ao − ln(2) and ρo are two new integration constants, the latter

representing the radial position of the singularity in the deep IR. Recalling that

A = 4
3A = 4χ, we hence equivalently have for χ and A:

χ(ρ) = χI +
1

3
ln(ρ− ρo) +

1

360
(ρ− ρo)4 + . . . , (6.20)

A(ρ) = AI +
4

3
ln(ρ− ρo) +

1

90
(ρ− ρo)4 + . . . , (6.21)

where AI = 4
3

(
Ao − ln(2)

)
and χI = AI

4 .

IR-conformal (IRC) solutions

As with the SUSY solutions, the second class of solutions locally preserve �ve-

dimensional Poincaré invariance by obeying the domain-wall constraint A =

4χ ⇔ β = 0. However they are not singular, nor are they supersymmetric,

instead interpolating between the two critical point solutions φ = φUV and

φ = φIR for which the bulk background geometry is exactly AdS6; this class

therefore provides the gravitational dual description of a renormalisation group

�ow between two distinct �ve-dimensional CFTs. The circle-compact dimension

parametrised by η maintains a non-zero volume at all scales (in contrast to the

con�ning solutions), and hence the �eld theories dual to this class do not exhibit

a physical low-energy limit; the name IR-conformal re�ects this fact.

The IR expansions for this branch are conveniently formulated in terms of

the quantity e
−(5−∆IR) ρ

RIR which is vanishingly small in the ρ → −∞ limit

(recall from Eq. (4.16) that 5−∆IR < 0), and are given by [3, 54]

φ(ρ) = φIR +
(
φI − φIR

)
e
−(5−∆IR) ρ

RIR + . . . , (6.22)

χ(ρ) = χI +
ρ

3RIR
− 1

12

(
φI − φIR

)2
e
−2(5−∆IR) ρ

RIR + . . . , (6.23)

A(ρ) = AI +
4ρ

3RIR
− 1

3

(
φI − φIR

)2
e
−2(5−∆IR) ρ

RIR + . . . , (6.24)

where RIR is the curvature radius of the AdS6 geometry associated with the
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IR critical point solution (see Eq. (4.11)), and the integration constants χI and

AI may be chosen arbitrarily. The one remaining parameter φI > φIR may

be varied to generate an entire family of solutions, and making a choice for its

value amounts to choosing at which energy scale in the dual boundary theory

the transition between the two CFTs occurs. However, since any one solution

within this class may be obtained from any other via an additive shift of the

holographic coordinate, they are all physically equivalent; we will return to this

point in Sec. 6.3 when discussing the scale setting procedure by which we may

compare the free energy of the various classes.

Con�ning solutions

We introduced in Sec. 4.3 the branch of solutions which provide the geometric

realisation of con�nement, and which are used to compute the glueball mass

spectra of the dual �eld theory. In this section we need only to take note of

the following results, which are obtained by substitution of the φ = 0 analytical

critical point solution of Eqs. (4.57 - 4.58):

eα(ρ) = e4A(ρ)−χ(ρ) =
1

2
e4AI−χI sinh

(
10

3
(ρ− ρo)

)
, (6.25)

eβ(ρ) = eA(ρ)−4χ(ρ) = eAI−4χI coth

(
5

3
(ρ− ρo)

)
, (6.26)

and similarly by substituting for χ and A using instead the generalised IR

expansions in Eqs. (4.63 - 4.64) we have

eα(ρ) = e4A(ρ)−χ(ρ) = e4AI−χI f
(
φI , (ρ− ρo)

)
, (6.27)

eβ(ρ) = eA(ρ)−4χ(ρ) = eAI−4χI g
(
φI , (ρ− ρo)

)
, (6.28)

where f and g are known (though here unspeci�ed) numerical functions. The

purpose of bringing these results to the Reader's attention will become apparent

in the next subsection.

Skewed solutions

Recall from Sec. 4.3 that the classical equations of motion Eqs. (4.44 - 4.47),

which are obtained from the �ve-dimensional action S5, are invariant under

the sign change β → −β ⇔ A − 4χ → 4χ − A. This symmetry actually

implies the existence of a distinct class of solutions to the dimensionally reduced
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theory which are related to the con�ning class, though admit a rather di�erent

background geometry: in this case the compact dimension parametrised by η

does not shrink to a point at the end of space to close o� the bulk manifold,

but rather increases in volume without bound as one approaches the IR region

of space; the background solutions for χ(ρ) are all non-monotonic functions

which diverge as ρ becomes small. As with the con�ning class there exist exact

analytical solutions for the UV �xed point φ = 0, given by [3]:

φ = 0, (6.29)

χ(ρ) = χI +
1

3
ln

[
cosh

(√−5v
2 (ρ− ρo)

)]
− 1

5
ln

[
sinh

(√−5v
2 (ρ− ρo)

)]
, (6.30)

A(ρ) = AI −
4

15
ln(2) +

4

15
ln

[
sinh

(√
−5v(ρ− ρo)

)]
− 1

15
ln

[
tanh

(√−5v
2 (ρ− ρo)

)]
, (6.31)

where again χI , AI , and ρo are integration constants, and ρo may be freely

chosen to �x the end of space (i.e. the value of the radial coordinate at which the

χ→∞ singularity is located). Just as with the con�ning class, we can generalise

these exact solutions in order to generate a family which admit arbitrary values

of φ by series expanding for small (ρ − ρo). The corresponding IR expansions

then read as follows [3]:

φ(ρ) = φI − 1

12
e−6φI

(
1− 4e4φI + 3e8φI

)
(ρ− ρo)2

− 1

324
e−12φI

(
4− 28e4φI + 51e8φI − 27e16φI

)
(ρ− ρo)4

+O
(
(ρ− ρo)6) , (6.32)

χ(ρ) = χI − 1

5
ln

(
5

3

)
− 1

5
ln(ρ− ρo)− 1

54
e−6φI

(
1− 12e4φI − 9e8φI

)
(ρ− ρo)2

− 1

9720
e−12φI

[
23 + 3e4φI

(
− 88 + 9e4φI (38 + 24e4φI + 21e8φI )

)]
(ρ− ρo)4

+O
(
(ρ− ρo)6) , (6.33)

A(ρ) = AI +
1

5
ln

(
5

3

)
+

1

5
ln(ρ− ρo)− 1

36
e−6φI

(
1− 12e4φI − 9e8φI

)
(ρ− ρo)2

− 1

29160
e−12φI

[
131 + 3e4φI

(
− 436 + 3e4φI (508 + 84e4φI + 261e8φI )

)]
(ρ− ρo)4

+O
(
(ρ− ρo)6) , (6.34)
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where φI is the free parameter which may be dialled to generate the entire

family of solutions.

As a slight digression, we can deduce the deep IR behaviour of the bulk

geometry evaluated on the con�ning and skewed branches of solutions by again

considering the six-dimensional metric ansatz presented in Eq. (4.17). Substi-

tuting in for χ and A using the small ρ expansions for the con�ning solutions

given in Eqs. (4.63, 4.64) implies that in the ρ → ρo limit the Minkowski sub-

space maintains a constant non-zero volume at the end of the bulk, while the

size of η dimension compacti�ed on the S1 vanishes (as is required). This con-

trasts with the behaviour of the skewed solutions: substituting instead using

the IR expansions in Eqs. (6.32 - 6.34) we �nd that the Minkowski dimensions

scale as (ρ − ρo)2/5 while the compacti�ed η dimension scales as (ρ − ρo)−3/5,

so that in the deep IR limit ρ → ρo the Minkowski volume vanishes while the

size of the circle diverges. It is this characteristic scaling of the spacetime met-

ric components, and the drastically di�erent background geometry compared

to those solutions which model con�nement, that motivates our choice of the

name skewed. We conclude the aside by emphasising this rather interesting ob-

servation, namely that by simply �ipping the sign of a linear combination β of

the metric warp factor and the scalar parametrising the volume of the circular

dimension (holding another linear combination α unchanged), one is able to

construct an entirely distinct branch of new solutions to the model.

We next return to the four relations which were introduced in the previous

subsection, and here present the analogous results for the skewed solutions as a

consistency check. From the exact analytical solutions we obtain

eα(ρ) = e4A(ρ)−χ(ρ) =
1

2
e4AI−χI sinh

(
10

3
(ρ− ρo)

)
, (6.35)

eβ(ρ) = eA(ρ)−4χ(ρ) = eAI−4χI tanh

(
5

3
(ρ− ρo)

)
, (6.36)

which we thus con�rm are in agreement with Eqs. (6.25) and (6.26) with the

replacement β(ρ) → −β(ρ) (up to the contribution of an additive constant to

β). Likewise, we can substitute in for the skewed IR expansions to �nd

eα(ρ) = e4A(ρ)−χ(ρ) = e4AI−χI f
(
φI , (ρ− ρo)

)
, (6.37)

eβ(ρ) = eA(ρ)−4χ(ρ) = eAI−4χI
[
g
(
φI , (ρ− ρo)

)]−1

, (6.38)
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where the (unspeci�ed) f and g are the same numerical functions as those which

appear in Eqs. (6.27) and (6.28) for the con�ning class, so that we again �nd

agreement after changing the sign of β(ρ) while leaving α(ρ) unchanged. We

furthermore conclude that provided the conditions φcI = φsI and ρco = ρso are

satis�ed, where the superscripts c and s denote quantities associated with the

con�ning and skewed classes of solutions respectively, then we also obtain the

relation

0 = ∂ρβ
c(ρ) + ∂ρβ

s(ρ) , (6.39)

which in turn implies that the following useful relation also holds, up to the

contribution of an additive integration constant:

0 =
3

5

[
χc(ρ) +Ac(ρ)

]
+ χs(ρ)−As(ρ) . (6.40)

Finally then, by substituting into the above relation using the universal UV

expansions (writing explicitly the superscripts which distinguish the two classes)

and comparing, we extract the following parameter identities:

φs2 = φc2 , (6.41)

φs3 = φc3 , (6.42)

χs5 = −χc5 −
8

25
φc2φ

c
3 , (6.43)

which�as we shall see�will prove to be invaluable in our analysis of the theory

phase structure.

General singular solutions

As we saw when introducing the supersymmetric branch of solutions, the equa-

tions of motion derived from the action of this model admit background pro�les

for the scalar �eld φ which are somewhat pathological in the deep IR region of

the bulk geometry, in that φ becomes divergent as one approaches the end of

space. We remind the Reader that we adopt Gubser's criterion [175] in classi-

fying these solutions, so that φ → ∞ is described as a `good' singularity and

the alternative φ→ −∞ is labelled as a `bad' singularity; while one would oth-

erwise disregard this latter case on the basis of them being unphysical, we will

�nd they that play a pivotal role in our investigation of the theory phase space.

A broad class of these divergent solutions, irrespective of the nature of their

singularity, can be parametrised by the following expansions in proximity of the
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end of space at ρ = ρo:

φ(ρ) = φI + φL ln(ρ− ρo) +

∞∑
n=1

2n∑
j=0

cnj(ρ− ρo)2n+2nφL−4j φL , (6.44)

χ(ρ) = χI + χL ln(ρ− ρo) +

∞∑
n=1

2n∑
j=0

fnj(ρ− ρo)2n+2nφL−4j φL , (6.45)

A(ρ) = AI +AL ln(ρ− ρo) +

∞∑
n=1

2n∑
j=0

gnj(ρ− ρo)2n+2nφL−4j φL , (6.46)

where φI and φL are the two free parameters which characterise the space of

solutions�the latter controlling the type of logarithmic singularity encountered

by φ(ρ) in the deep IR�and where cnj = cnj(φI , φL), fnj = fnj(φI , φL, ζ), and

gnj = gnj(φI , φL, ζ) are term coe�cients which additionally depend on a third

(discrete) parameter ζ = ±1. To leading order (see Appendix B of Ref. [3]

for the rather unwieldy sub-leading corrections) we therefore �nd the following

small-ρ expansions:

φ(ρ) = φI + φL ln(ρ− ρo) + . . . , (6.47)

χ(ρ) = χI +
1

15

[
4ζ
√

1− 5φ2
L + 1

]
ln(ρ− ρo) + . . . , (6.48)

A(ρ) = AI +
1

15

[
ζ
√

1− 5φ2
L + 4

]
ln(ρ− ρo) + . . . , (6.49)

where the system is parametrised by the �ve integration constants

{φI , φL, χI , AI , ρo}, supplemented by the discrete choice of ζ. It is worth

noting that for the choice φL = 0 we recover the IR expansions for the con�ning

and skewed classes of solutions, when ζ = +1 and ζ = −1 respectively. We

observe that the singularity parameter φL is not entirely unconstrained; from

the above expansions it can be seen that to ensure χ and A are real we must

impose that φL > − 1√
5
, and by saturating this bound (and choosing AI = 4χI)

one recovers the warp factor constraint A = 4χ satis�ed by all domain-wall

background solutions.

We furthermore observe from the complete expansion presented in Eq. (6.44)

that, for any given value of n and with φL > 0, the most rapidly diverging expo-

nent at ρ = ρo is the sub-leading correction with j = 2n given by 2n(1− 3φL);

we hence deduce that to ensure the IR singularity of φ is logarithmic in ρ we

require that all sub-leading exponents in the expansion are positive, or equiv-
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alently that φL <
1
3 . If we instead consider the case of φL < 0 then the most

singular contribution comes from the j = 0 exponent, and the corresponding

bound is φL > −1; this is less stringent than the requirement that χ and A be

real, and is hence of no consequence. Combining these two bounded constraints

then, we have the following allowed interval for the parameter φL:

− 1√
5
6 φL <

1

3
. (6.50)

Finally, we observe that the limit φL → 1
3 is completely pathological and renders

the general series expansions for this class unusable; for every one of the in�nite

values of n there are additive contributions to the expansions which all scale as

(ρ − ρo)p for p = 0, 4
3 ,

8
3 . . ., and hence no truncation is possible. This issue

brings us to the one remaining branch of solutions which we shall require for

our analysis, and which we will introduce in the next section.

φL = −5−
1
2 −5−

1
2 < φL < 0 φL = 0 0 < φL <

1
3

ζ = +1 Good, DW Good Con�ning Bad
ζ = −1 Good, DW Good Skewed Bad

Table 6.1: Parametrisation of the solutions obtainable from Eqs. (6.47 - 6.49):
here Good and Bad refer to which type of singularity is present at the end of
space. For φL = −5−

1
2 both choices of ζ = ±1 correspond to the same family

of good singularity domain-wall backgrounds.

Badly singular domain-wall (BSDW) solutions

As anticipated, there exists one additional class of solutions which provide the

non-trivial limiting case of the more general singular solutions presented in

the previous section, and as their name suggests they satisfy the domain-wall

constraint A = 4χ which ensures that �ve-dimensional Poincaré invariance is

locally preserved. Their series expansions in proximity to the end of space at

ρ = ρo are given by [3]

φ(ρ) =
1

3
ln

(
3

2

)
+

1

3
ln(ρ− ρo) + φb(ρ− ρo)4/9 +

∞∑
j=2

fj (ρ− ρo)
4j
9 , (6.51)

χ(ρ) = χI +
1

27
ln(ρ− ρo) +

2

5
φb (ρ− ρo)4/9 +

∞∑
j=2

gj (ρ− ρo)
4j
9 , (6.52)
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where χI is an integration constant which may be �xed arbitrarily, and φb

assumes the role of the one free parameter which may be dialled to generate

an entire family of distinct background solutions. The sub-leading terms have

as coe�cients the polynomial functions fj = fj(φb) and gj = gj(φb), speci�c

details of which may be found in Appendix C of Ref. [3].

Recall from Sec. 4.3 that with some simple algebraic manipulation we derived

from the equations of motion in Eq. (4.49) and (4.51) a second-order di�erential

equation dependent only on the scalar φ, and which is satis�ed by all classes

of solutions which obey the DW constraint A = 4
3A = 4χ. For convenience we

reproduce this equation below:

0 = 3φ′′ +
√

5φ′
[(

3φ′
)2

+ γ−3
(

9γ4 + 12γ2 − 1
)] 1

2

+ γ
(

3− 4γ−2 + γ−4
)
,

and we remind the Reader that here γ ≡ e2φ(ρ). Now that we have �nished

our classi�cation of admissible solution types, we �nd it illustrative to compare

how those branches of solutions which satisfy the DW constraint �ow away from

the unique supersymmetric �xed point φ = 0; these DW-type solutions are the

SUSY and IRC classes, the subset of the general singular solutions which have

φL = −1/
√

5, and the BSDW solutions of this subsection. To this end, in

Fig. 6.1 we present the results of parametrically plotting
(
φ, ∂ρφ

)
for each of

these classes, and for completeness we use the second-order di�erential equation

above to also generate the underlying constrained vector �eld.
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Figure 6.1: Parametric plot of ∂ρφ as a function of φ for solutions which
satisfy the warp factor constraint A = 4

3A = 4χ. The blue disk and dark-red
triangle respectively denote the UV and IR critical points of the six-dimensional
potential V6, the purple line represents the class of IRC solutions with duals
which �ow between these two critical points, and the light-grey line represents
the analytical SUSY solutions. The dark-grey arrows exhibit the underlying
vector �eld appearing in the �rst-order di�erential equation for (φ, ∂ρφ). We
also show two representative examples of the (good) singular solutions obeying
the IR expansion in Eq. (6.44), for φL = −1/

√
5 and φI = −0.3, 0.1 (long-

dashed dark blue), and two examples of the BSDW solutions with φb = −0.06, 40
(dashed, dark green). We observe that the SUSY solutions form the separatrix
between numerical backgrounds which �ow to good (φ → ∞) and bad (φ →
−∞) singularities for positive φ, while the IR-conformal solutions play the same
role when φ is negative.
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We conclude Sec. 6.1 by acknowledging that we are unable to state de�ni-

tively that our classi�cation of solutions as presented here is exhaustive, and

that there may exist other types of singular solutions with more complicated

IR behaviour which were omitted by our analysis. However, as a consistency

check we carried out a complementary exercise which entails scanning the space

of perturbations of the supersymmetric �xed point (controlled by the �ve uni-

versal UV parameters) and generating backgrounds which evolve back towards

the end of space (note that this alternative method of constructing solutions is

not numerically reliable as one approaches the small ρ region near to the end of

space, and is hence not otherwise used); in so doing we did not �nd any evidence

that additional classes of solutions exist in the theory.

6.2 Free energy derivation

Our energetics analysis of this model and investigation into its phase space

structure requires that we identify a method by which we are able to legitimately

and unambiguously compare the stability of the various solution branches that

we have presented; as earlier alluded to, this method will be the numerical

computation of the free energy density as a function of the �ve universal UV

expansion parameters, holographically renormalised and appropriately rescaled.

Our starting point is the six-dimensional de�ning action of the theory pro-

vided in Eq. (4.1), truncated to retain only the scalar φ; the other supergravity

�elds do not a�ect the classical equations of motion and hence we set them to

zero for simplicity. Regulating boundaries are introduced in the deep IR and far

UV regions of the bulk geometry (at ρi for i = 1, 2, respectively), and we must

therefore supplement the bulk action SB with two types of general boundary-

localised contributions: SK,i are the Gibbons-Hawking-York terms and Sλ,i are
boundary-localised potentials. In addition to the usual UV regulator�which

is a requisite in the process of holographic renormalisation [15�17]�we include

the IR regulator due to the fact that a subset of solutions contain a singularity

at the end of space; we regulate the bulk by restricting the space to the open

interval ρ ∈ (ρ1, ρ2) with the understanding that physical results for the free

energy are obtained by removing the regulators, by taking the limits ρ1 → ρo

and ρ2 →∞ (where ρo is the end of the geometry).
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The action we shall adopt is written as follows:

S = SB +
∑
i=1,2

(
SK,i + Sλ,i

)
=

∫
d4x dη dρ

√
−ĝ6

(R6

4
− ĝM̂N̂∂M̂φ∂N̂φ− V6(φ)

)
+
∑
i=1,2

(−)i
∫
d4x dη

√
−˜̂g

(K
2

+ λi

)∣∣∣∣
ρ=ρi

, (6.53)

where ĝM̂N̂ is the metric tensor for the six-dimensional line element in Eq. (4.17)

(for VM = 0), ĝ6 = −e8A−2χ is its determinant, R6 is the corresponding Ricci

scalar, ˜̂gM̂N̂ is the metric induced on each boundary, K is the extrinsic cur-

vature scalar, and λi are the boundary-localised potentials. As we discussed

for a generic �ve-dimensional system in Sec. 2.1.1, to construct the analogous

boundary-induced metric ˜̂gM̂N̂ here for our six-dimensional model we must �rst

introduce the six-vector nM̂ = (0, 0, 0, 0, 1, 0) so that the following de�ning re-

lations are satis�ed:

1 = ĝM̂N̂n
M̂nN̂ = nM̂nM̂ , (6.54)

0 = ˜̂gM̂N̂n
M̂ , (6.55)

which together ensure that nM̂ is orthonormal to each �ve-dimensional regulat-

ing boundary. We therefore de�ne the induced metric tensor as

˜̂gM̂N̂ ≡ ĝM̂N̂ − nM̂nN̂ . (6.56)

The covariant derivative acting on a generic (0,1)-tensor fM̂ is written in terms

of the metric connection as

∇M̂fN̂ ≡ ∂M̂fN̂ − ΓQ̂
M̂N̂

fQ̂ , (6.57)

ΓP̂
M̂N̂
≡ 1

2
ĝP̂ Q̂

(
∂M̂ ĝN̂Q̂ + ∂N̂ ĝQ̂M̂ − ∂Q̂ĝM̂N̂

)
, (6.58)

so that we have the following expression for the extrinsic curvature:

K ≡ ĝM̂N̂KM̂N̂ ≡ ĝM̂N̂∇M̂nN̂ (6.59)

= −ĝM̂N̂Γ5
M̂N̂

= 4∂ρA− ∂ρχ . (6.60)

As anticipated in Sec. 2.3, we must evaluate the complete on-shell action in

124



order to obtain our result for the free energy density F . Let us �rst consider the
bulk contribution SB , which may be rewritten as a total derivative by making

use of Eq. (4.47); recalling our de�nitions α ≡ 4A − χ and β ≡ A − 4χ, the

six-dimensional Ricci scalar is given by

R6 = −2
(
α′′ + 10(A′)2 + 7(χ′)2 − 8A′χ′

)
, (6.61)

while Eq. (4.47) provides us with the following relation:

17A′χ′ = β′′ + 4
[
(A′)2 + (χ′)2

]
, (6.62)

where primes denote di�erentiation with respect to ρ. After some algebraic

manipulation we �nd

SB ≡ SB,1 + SB,2 = −3

8

∫ ρ2

ρ1

d4x dη dρ ∂ρ

(
eα∂ρA

)
. (6.63)

We can also write explicitly the boundary-localised actions SK,i and Sλ,i as
follows:

SK,1 = −1

2

∫
d4x dη eα

(
∂ρα

)∣∣∣
ρ=ρ1

, (6.64)

Sλ,1 = −
∫
d4x dη eα

(
λ1

)∣∣∣
ρ=ρ1

, (6.65)

SK,2 =
1

2

∫
d4x dη eα

(
∂ρα

)∣∣∣
ρ=ρ2

, (6.66)

Sλ,2 =

∫
d4x dη eα

(
λ2

)∣∣∣
ρ=ρ2

. (6.67)

The free energy F and the free-energy density F are de�ned in terms of the

complete action S via the relation

F ≡ − lim
ρ1→ρo

lim
ρ2→+∞

S ≡
∫
d4x dηF , (6.68)

so that after summing the various contributions to S, we obtain the following

general result:

F = lim
ρ1→ρo

1

8
eα
(

13∂ρA− 4∂ρχ+ 8λ1

)∣∣∣
ρ1

− lim
ρ2→+∞

1

8
eα
(

13∂ρA− 4∂ρχ+ 8λ2

)∣∣∣
ρ2

. (6.69)
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For this expression to be of any use, it is necessary that we next specify the

two boundary-localised potentials λi. The choice for the IR potential λ1 is

determined by the requirement that the variational principle be well de�ned,

and that we recover the classical equations of motion (supplemented by ρ = ρ1

boundary conditions for φ, χ, and A) when taking the variation of SB together

with the IR boundary actions; this requisite condition selects λ1 = − 3
2∂ρA (see

Ref. [100] for details).

Before we discuss the UV boundary potential, let us �rst make an important

observation. We noted when introducing S that we need to include a regulatory

boundary in the deep IR region of the bulk geometry, despite the fact that some

of the solutions we are considering (the con�ning class) are completely regular

and smooth at small ρ. If we consider the sum contribution of the two IR

boundary-localised actions SK,1 and Sλ,1, with λ1 now de�ned above, we have

SK,1 + Sλ,1 = −1

2

∫
d4x dη

(
eα(∂ρA− ∂ρχ)

)∣∣∣
ρ1

, (6.70)

which, by direct substitution of the IR expansions presented in Eq. (4.63) and

(4.64), we see has a vanishing integrand in the ρ→ ρo limit. Hence, in this limit

the free energy for the class of regular solutions is una�ected by the presence of

boundary-localised terms in the deep IR, and our inclusion of an IR regulator

(necessary for singular backgrounds) is justi�ed.

Our prescription for the boundary potential λ2 is dictated by the require-

ments that our choice is covariant, and that it ensures the cancellation of all

divergences for our asymptotically (locally) AdS6 background solutions in the

far UV. By substituting in for χ and A using the UV expansions, and imple-

menting the coordinate change de�ned by ρ = − 3
2 ln(z) ⇒ ∂ρ = − 2

3z∂z, we

have the following boundary contributions:

SB,2 =

∫
d4x dη

eαU

z5

(
−1

3
+
φ2

2

12
z4 +

1

80

(
4φ2φ3 + 25χ5

)
z5 + . . .

) ∣∣∣∣
ρ2

, (6.71)

SK,2 =

∫
d4x dη

eαU

z5

(
5

3
− 5

12
φ2

2z
4 + 0× z5 + . . .

) ∣∣∣∣
ρ2

, (6.72)

Sλ,2 =

∫
d4x dη

eαU

z5
λ2

(
1− 5

4
φ2

2z
4 − 12

5
φ2φ3z

5 + . . .

) ∣∣∣∣
ρ2

, (6.73)

where we have de�ned αU ≡ 4AU − χU and have truncated to show only terms

up to zeroth order in z. We see that all three contributions contain diver-
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gences in the physical z → 0 limit, and that a subset of these divergent terms

are proportional to the (squared) deformation parameter φ2 which sources the

operator dual to φ in the boundary �eld theory. As anticipated with our in-

troduction of the SUSY branch of solutions, we notice that the superpotential

expansion W2(φ) which was presented in Eq. (6.11) provides exactly the neces-

sary counter-terms to ensure that all divergences in the combined contributions

of the UV-localised actions cancel; moreover it is su�cient to retain terms in

W2(φ) up to quadratic order in φ, and sub-leading power corrections are not

necessary to ensure that F is appropriately renormalised. We can demonstrate

this explicitly by substituting λ2 =W2(φ) ≈ − 4
3 (1 + φ2) into Sλ,2 to obtain:

Sλ,2 =

∫
d4x dη

eαU

z5

(
−4

3
+

1

3
φ2

2z
4 +

8

15
φ2φ3z

5 + . . .

) ∣∣∣∣
ρ2

, (6.74)

and then summing the ρ = ρ2 boundary actions. The integrand divergences

exactly cancel, the z → 0 limit becomes well de�ned, and we are left with a

�nite contribution to the free energy.

It is important to clarify, however, that although our prescription of λ2 =

W2(φ) is convenient and physically motivated, it is not necessarily a unique

choice. Indeed, the freedom to add �nite counter-terms to the renormalised

action means that the potential λ2 and its second derivative with respect to

the source φ2 are scheme-dependent, and hence the same is also true for the

free energy. While this dependence on the implemented subtraction scheme is a

well-documented feature of free energy calculations in the context of holography

(see for example the discussion in Ref. [176]), it does consequently mean that the

concavity theorems typical of classical statistical mechanics can not intuitively

be applied to our energetics analysis of this system.

With our prescription for the boundary-localised potentials λi speci�ed, from

Eq. (6.69) we now have the following expression for F :

F = lim
ρ1→ρo

eα

8

(
∂ρA−4∂ρχ

)∣∣∣∣
ρ1

− lim
ρ2→+∞

eα

8

(
13∂ρA−4∂ρχ+8W2

)∣∣∣∣
ρ2

. (6.75)

The �nal step in our derivation of the free energy starts with the observation

that the �rst term of Eq. (6.75) is proportional to the conserved quantity de�ned

in Eq. (4.48), and is hence equal to some background-dependent constant which

is invariant with respect to the radial coordinate. Rather conveniently, this

implies that we are free to evaluate the conserved term at the UV boundary�
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rather than in the IR�where we �nd that it provides a �nite contribution to

F . Reformulated in this way, we have

F = − lim
ρ2→+∞

eα
(

3

2
∂ρA+W2

)∣∣∣∣
ρ2

. (6.76)

Equivalently, by treating the two terms separately and simply substituting in

for the UV expansions, we �nd that

F =
1

16
eαU

(
4φ2φ3 + 25χ5

)
− 1

48
eαU

(
28φ2φ3 + 15χ5

)
(6.77)

= − 1

12
eαU

(
4φ2φ3 − 15χ5

)
, (6.78)

where the �rst term of Eq. (6.77) comes from the evaluation at the UV boundary

of the conserved quantity in Eq. (6.75). As we earlier anticipated, our �nal result

for the free energy density is a function solely of the deformation parameters

{φ2, φ3, χ5, χU , AU} which characterise the asymptotic �eld expansions in the

far UV, and is therefore universally applicable to every branch of solutions

that we have discussed. For those backgrounds which locally preserve �ve-

dimensional Poincaré invariance by satisfying the domain-wall constraint A =

4χ, we �nd from the UV expansions that the deformation parameters further

satisfy

AU = 4χU , (6.79)

χ5 = − 4

25
φ2φ3 , (6.80)

so that

F (DW ) = − 8

15
e15χUφ2φ3 . (6.81)

We conclude this section by stating that, in order to facilitate the comparison

of F between the various classes, we will henceforth always choose to set χU = 0

and AU = 0; the former identi�cation may be implemented by rescaling the

holographic coordinate via z → ze3χU , while the latter is permitted since the

classical equations of motion describing the system are invariant under a simple

additive shift of the warp factor A→ A−AU .
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6.3 Scale setting and numerical implementation

Scale setting

Having derived our expression for the free energy density F from the holograph-

ically renormalised on-shell action, we proceed by introducing the scale setting

procedure which was brie�y mentioned in Sec. 2.3, and which will be a crucial

component of our energetics analysis.

To appreciate the necessity of this procedure, we remind the Reader that two

of the branches of solutions that were discussed in Sec. 6.1, those which we refer

to as con�ning and skewed, are related to one another via the transformation

β → −β (where β represents the linear combination β = A − 4χ). As we saw,

this condition is encoded by the identities of Eqs. (6.41 - 6.43), however we also

remind the Reader of the caveat that these parameter relations are satis�ed

only up to an additive constant. To demonstrate this point, for the con�ning

solutions we can consider evaluating the conserved quantity Eq. (4.48) using the

IR expansions for χ and A in the ρ → ρo limit, and using the UV expansions

in the z → 0 limit, and then equating the two expressions. We can repeat this

exercise instead for the skewed class of solutions, and we obtain the following

parameter relations:

−10

3
= eα

c
U−αcI

(
4φc2φ

c
3 + 25χc5

)
, (6.82)

10

3
= eα

s
U−αsI

(
4φs2φ

s
3 + 25χs5

)
, (6.83)

where we have de�ned αU ≡ 4AU −χU and αI ≡ 4AI−χI , and the superscripts

c and s denote evaluation using the IR expansions for the con�ning and skewed

classes, respectively. We notice that by making the substitutions dictated by

the identities Eqs. (6.41 - 6.43) we are able to recover one of these relations given

the other, assuming that the exponential terms are identical. As earlier stated,

we can always rescale the radial coordinate to set AU = χU = 0 and we are free

to choose AI = χI , though we are still left with the requirement that χcI = χsI .

This is precisely the issue that we seek to address: while in the case of the

con�ning solutions the IR parameter χcI takes a �xed value determined by the

necessity of avoiding a conical singularity at the end of space, no such constraint

is imposed on χsI for the skewed solutions. In the latter case the geometry does

not smoothly close o� at the end of space�since the size of the circle diverges�

and hence χsI is a free parameter. We therefore deduce that the space of free
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parameters for the con�ning and skewed classes have di�erent dimensionality,

and that in order to properly compare them we must implement an appropriate

scale setting procedure with which the ambiguity in choosing χI for the skewed

solutions is resolved.

To this end, and motivated by the discussion in Ref. [177], we introduce a

universal energy scale Λ which we conveniently de�ne via the time taken by a

massless particle to reach the end of space from the UV boundary:

Λ−1 ≡ t ≡
∫ ∞
ro

dr̃

√
grr
|gtt|

=

∫ ∞
ro

dr̃ e−A(r̃) =

∫ ∞
ρo

dρ̃ eχ(ρ̃)−A(ρ̃) , (6.84)

where the absolute value of the metric component gtt ensures that Λ ∈ R ir-

respective of which Minkowski metric signature is adopted, and where χ and

A are evaluated on the numerical backgrounds. Let us now examine how this

energy scale may actually be used, by �rst considering the trivial rescaling of

the coordinates xµ → σxµ and η → ση. We see from the six-dimensional

metric in Eq. (4.17) that this transformation is equivalent to the rigid shifts

χ → χ + 1
3 ln(σ) and A → A + 4

3 ln(σ), and from the UV expansions in

Eqs. (6.2, 6.3) we observe that these shifts should be supplemented by the ra-

dial rescaling z → σz ⇔ ρ → ρ − 3
2 ln(σ) to ensure that AU = χU = 0.

Consequently, the remaining non-zero UV parameters are rescaled as

φ2 → σ2φ2 , (6.85)

φ3 → σ3φ3 , (6.86)

χ5 → σ5χ5 , (6.87)

while the energy scale Λ undergoes the transformation Λ → σΛ. We may

therefore construct dimensionless UV parameters by rescaling {φ2, φ3, χ5} with
appropriate powers of Λ as follows:

φ̂2 ≡ φ2Λ−2 , (6.88)

φ̂3 ≡ φ3Λ−3 , (6.89)

χ̂5 ≡ χ5Λ−5 , (6.90)

and we can also de�ne F̂ ≡ FΛ−5. Henceforth, we shall adopt this hatted

notation to denote physical quantities which have been rescaled in this manner.

In the next subsection we shall provide a thorough description of the numerical

130



procedure with which we extract the UV parameter data for the various classes

of solutions, and in so doing we will also clarify how exactly this scale setting

method implements the aforementioned χcI = χsI constraint.

Numerical implementation

At this stage we have derived a general expression for the free energy density as a

function of a set of universal UV deformation parameters {φ2, φ3, χ5, χU , AU},
and have now introduced a physically motivated energy scale which will allow

us to compare F for all branches of solutions. It only remains that we provide

a description of how exactly we may obtain the necessary parameter data, and

the numerical techniques that we employ in the process.

We start by reiterating the general outline provided in Sec. 2.3, with some

elaboration; the numerical routine is implemented for each class of solutions as

follows.

1. For any given choice of the free parameters which characterise the IR

expansions, and having �xed the physical end of space by assigning ρo = 0,

we construct numerical backgrounds for φ(ρ), χ(ρ), and A(ρ) by setting up

boundary conditions near to the end of space and evolving the solutions

towards the UV using the equations of motion.

2. We match these numerical backgrounds (and their �rst derivatives) to

the general UV expansions at some value ρ = ρm, solving for each UV

parameter in turn to extract the set {φ2, φ3, χ5, χU 6= 0, AU 6= 0}. The
value of the holographic coordinate ρm at which the matching is performed

should be chosen carefully; one must ensure that numerical noise e�ects

are minimised, while also ensuring that ρm is su�ciently large that the

background φ(ρ) has closely converged to the UV �xed point φ = 0.

3. We rescale the radial coordinate z → ze3χU and then shift the warp factor

background A(ρ)→ A(ρ)− AU , using the values of χU and AU obtained

in the previous step, to set χU = AU = 0. We match the resulting rescaled

background pro�les to the UV expansions again to extract the new set of

parameter data {φ̄2, φ̄3, χ̄5, χ̄U = 0, ĀU = 0}, where we use bars here

to emphasise that the other parameters have also been rescaled in the

process.

4. Finally, we compute the scale parameter Λ de�ned in Eq. (6.84) by substi-

tuting in for the rescaled background solutions χ(ρ) and A(ρ), integrating
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over their entire domain. For each numerical background we hence obtain

the parameter data {φ̂2, φ̂3, χ̂5} and compute F̂ using Eq. (6.78).

While this schematic overview of the numerical procedure is fairly general, there

are some subtle technicalities associated with some of the classes of solutions

which we shall now address individually.

We start with the family of supersymmetric solutions, for which we notice

that the IR expansion for φ in Eq. (6.18) contains no free parameters once the

end of space has been �xed; for this class we �nd that all backgrounds have

φ2 = 0 when matched to the UV expansions, and hence from Eq. (6.81) we see

that they have exactly vanishing free energy. Furthermore, we observe that the

integral of Eq. (6.84) diverges when evaluated on these solutions (Λ → 0), and

hence the scale setting of F̂ = FΛ−5 is poorly de�ned; this is not problematic

however, as the vanishing free energy F = 0 would remain so irrespective of any

rescaling we might apply.

We remind the Reader that any one numerical background within the IRC

class of solutions may be used to generate any other by simply shifting the radial

coordinate ρ→ ρ−δ for some arbitrary δ, and that ρ is not bounded from below

(hence the dual �eld theories described by this class are scale invariant at low

energies). As a consequence of this, the integral de�ning Λ−1 is also divergent

for this class. We may nevertheless compute the free energy for these solutions

by observing that the following parameter ratio is an invariant quantity under

a generic z → σz rescaling:

κ ≡ |φ3|
|φ2| 32

, (6.91)

so that we may reformulate the free energy as

F (DW ) → F (IRC) = − 8

15
κφ2|φ2|

3
2 . (6.92)

We then need only match a single numerical background φ(ρ) to the UV expan-

sions in order to extract {φ2, φ3} (and hence κ), and then simply plot F (IRC)

for φ2 < 0. We determined that κ ' 2.87979.

There are no speci�c numerical subtleties to mention for the class of con�ning

solutions, and the parameter extraction is carried out as outlined above to obtain

{φc2, φc3, χc5, Λc}. As we have discussed, the parameter data for the related

skewed solutions can be obtained using the identities Eqs. (6.41 - 6.43) without

ever needing to match skewed numerical backgrounds to the UV expansions.

Moreover, using Eq. (6.40) we may compute Λ for the skewed solutions by
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substituting instead for the con�ning backgrounds as follows:

(Λs)−1 =

∫ ∞
ρo

dρ̃ eχ
s(ρ̃)−As(ρ̃) =

∫ ∞
ρo

dρ̃ e−
3
5

[
χc(ρ̃)+Ac(ρ̃)

]
, (6.93)

so that in fact we are not required to even generate the numerical background

solutions for the skewed class; the complete set of data {φs2, φs3, χs5, Λs} may be

derived from the table of data for the con�ning class. This elucidates how the

scale setting procedure e�ectively reduces the dimensionality of the space of free

parameters for the skewed branch: by calculating Λs in terms of the numerical

background χc(ρ), the requirement that χsI = χcI is manifestly satis�ed.

The general singular numerical backgrounds are constructed using the IR

expansions presented in Eqs. (6.47 - 6.49), and each is uniquely identi�ed by

the choice of ζ, φI , and φL; the parametrisation of this class is summarised in

Table 6.1. The procedure of matching to the UV expansions is just as described

above, with one important caveat: we noticed that for the choice ζ = +1 we

were not able to reliably generate smooth numerical backgrounds, and hence

the extracted parameter data could not be trusted. This issue is resolved by

observing that the same relation which exists between the con�ning and skewed

classes is more generally applicable to solutions with φL 6= 0 which di�er by the

choice of ζ = ±1. For any given value of φL, we �nd that the following relation

is satis�ed:

0 =
3

5

[
χ∓(ρ) +A∓(ρ)

]
+ χ±(ρ)−A±(ρ) , (6.94)

where the + and − superscript labels denote the choice ζ = +1 and ζ = −1

respectively. As a result, we see from the UV expansions that the parameter

identities in Eqs. (6.41 - 6.43) also hold true for backgrounds which di�er only

by the choice of ζ:

φ+
2 = φ−2 , (6.95)

φ+
3 = φ−3 , (6.96)

χ±5 = −χ∓5 −
8

25
φ∓2 φ

∓
3 . (6.97)

Just as we obtained the parameter data for the skewed solutions from the con�n-

ing ones, we may carry out the matching procedure for the ζ = −1 backgrounds

for various choices of φL, and then simply use the above identities to extract

the corresponding set of data {φ+
2 , φ

+
3 , χ

+
5 , Λ+}.

For completeness, we conclude by stating that for the branch of badly sin-
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gular domain-wall (BSDW) solutions there are no speci�c numerical subtleties

which need to be addressed, and the parameter matching process is carried out

as described in the schematic outline above. A summary of the parametrisa-

tion of each class of backgrounds that we have discussed, together with any

constraints which we are required to impose, is provided in Table 6.2; the UV

parameters χU and AU are omitted as they are always rescaled to zero.

Class φ2 φ3 χ5 Scale setting

SUSY 0 Free A = 3χ None
IRC < 0 φ3 = κφ2|φ2|1/2 A = 4χ None

Con�ning Free Curvature sing. Conical sing. Λ
Skewed Free αs = αc βs = −βc Λ

Good sing. Free Free Free Λ
Bad sing. Free Free Free Λ
BSDW Free Free A = 4χ Λ

Table 6.2: Summary of parametrisation, constraints, and scale setting proce-
dure for each class of solutions in our energetics analysis of the circle-reduced
supergravity.

6.4 Phase structure

Free energy plots

In computing the mass spectrum of scalar �uctuations in Sections 4.4 and 4.5

we uncovered the existence of a tachyonic state, which is symptomatic of a

classical instability in the theory parameter space. As we have discussed, this

observation leads us to conclude that there must by necessity exist a phase

transition away from the unstable region of the branch of con�ning solutions to

one of the other classes introduced in Sec. 6.1. Using the numerical procedure

described in Sec. 6.3 we systematically compute the free energy for each class

of solutions, and in so doing we demonstrate that our energetics analysis indeed

reveals evidence of such a phase transition; we dedicate this section to presenting

these results.

We start by reminding the Reader that each class of solutions in our anal-

ysis exhibits the same asymptotic behaviour in the far UV, and that they all

correspond to deformations of the unique trivial solution φ = 0. This solution
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corresponds to a background geometry that is AdS6, and there are two such

deformations which may be introduced to the dual �ve-dimensional theory.

As shown in Eq. (4.16) the �rst of these corresponds to the insertion of a

relevant (∆ = 3) operator O3; the source for this operator is identi�ed with

the leading order coe�cient φ2 in Eq. (6.1), while its vacuum expectation value

(VEV), or condensate, is provided by the sub-leading coe�cient φ3 (see for

example Ref. [16] for a review). The second possible deformation is that of

the compacti�cation of one space-like dimension on a circle, the size of which

is controlled by the additional scalar χ introduced in the gravity theory; the

boundary operator dual to this �eld is sourced by χU , and its VEV is encoded

by the parameter χ5.

As we brie�y mentioned in Sec. 2.3, the non-perturbative physics of the

boundary theory manifests through non-trivial functional relations between the

various UV parameters. From our numerical routine we �nd that φ3 = φ3(φ2)

and χ5 = χ5(φ2) behave as non-linear response functions to the source φ2, and

are themselves determined within each branch of solutions, for each distinct

background, by the value of φ2. Hence, in the following plots we shall present

the free energy F̂ for each class as a function of the UV parameter φ̂2, and we

remind the Reader that here hatted quantities have been rescaled by appropriate

powers of the scale parameter Λ de�ned in Eq. (6.84). Given the number of

solution classes which play a role in our analysis we �nd that the results are

more conveniently portrayed using multiple plots, and we shall comment on

some of their general features before discussing the phase transition itself.

Let us �rst consider the plot of Fig. 6.2, in which we present the free energy

for all classes except for the φL > 0 general singular solutions, and the BSDW

backgrounds. We start with the simple case of the SUSY solutions, in which

the scalar �eld φ evolves monotonically towards a good singularity at the end

of space, controlled by the formation of a non-zero condensate φ3 associated

with the ∆ = 3 operator dual to φ. All of these solutions yield φ̂2 = 0 when

matched to the UV expansions (with φ̂3 an unconstrained parameter), and hence

their free energy F̂ is always exactly vanishing. This entire class is therefore

represented by a single grey point at the origin of the phase space.

As we discussed when clarifying some numerical technicalities in Sec. 6.3, the

IR-conformal solutions are parametrised solely by the scale-invariant ratio κ in

Eq. (6.91), which is de�ned in terms of the source φ2 and VEV φ3 associated with

the O3 operator on the boundary. The free energy in this case is straightforward

to compute: we determined that κ ' 2.87979 and then used Eq. (6.92) to plot
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Figure 6.2: The free energy density F̂ as a function of the deformation param-
eter φ̂2 for the IR-conformal solutions (longest-dashed purple line), the con�ning
solutions (solid black and short-dashed orange lines), and the skewed solutions
(dashed red line), compared to a few representative choices of (good) singular
solutions (thin blue lines). For the latter, we generated the numerical solu-
tions from the IR expansions, by setting (φL, ζ) = (−0.02,−1), (−0.04,−1),
(−0.08,−1), (−0.15,−1), (−0.2,−1), (−0.25,−1), (−0.3,−1), (−0.35,−1),
(−0.35, 1), (−0.3, 1), (−0.25, 1), (−0.2, 1), (−0.15, 1), (−0.04, 1), (−0.02, 1), re-
spectively (top blue line to bottom blue line), and varied the value of φI . The
darker blue line, separating the cases ζ = ±1, corresponds to the domain-wall
solutions obtained with φL = −1/

√
5 and varying φI . The SUSY solutions are

represented by a grey point at the origin. The short-dashed orange line shows
the region within the branch of con�ning solutions for which a tachyonic state
appears in the scalar mass spectrum. (Note that the very top blue line crosses

the red one for large negative values of φ̂2. We expect this to be a purely
numerical artefact that could be removed with higher numerical precision.)

FIRC (note that the scale-invariant nature of these solutions guarantees that

FIRC = F̂IRC would be identical for any other de�nition of Λ). This class

is represented by the longest-dashed purple line, in the φ2 < 0 region of the

parameter space.

The class of con�ning solutions, generated by varying the free IR parameter

φI , are depicted in Fig. 6.2 by the solid black line and the short-dashed orange

line; the latter denotes those background solutions for which the corresponding

spectrum of scalar �uctuations contains a tachyonic state (see Figs. 4.2 and
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4.3), and hence highlights the region of the con�ning branch that contains an

instability. The skewed solutions, which we repeat are related to the con�ning

ones via the transformation β → −β, are shown by the dashed red line.

Lastly for this plot, the general singular solutions with φL < 0 (those which

encounter a good singularity at the end of space) are represented by the set of

thin blue lines, for several representative values of φL and for ζ = ±1; these

lines are generated by varying the remaining IR parameter φI . The domain-wall

solutions obtained by setting φL = − 1√
5
(for either choice of ζ = ±1) are denoted

by the darker blue line which lies just above the purple one. For ζ = +1 we see

that these solutions approach the black-orange line of the con�ning branch in the

φL → 0 limit, and instead reach the red line of the skewed solutions for ζ = −1

in the same limit. Every other possible choice of {φL<0, ζ} generates a line

residing somewhere between the two extrema, and by varying these parameters

we are able to completely �ll the region of the parameter space which is delimited

by the con�ning and skewed classes of solutions.

Before proceeding we shall highlight a few important features of Fig. 6.2.

First and foremost, we observe that the free energy for each branch of solutions

connects to the supersymmetric class situated at the origin of the parameter

space, which corroborates our statement that all solutions correspond to di�er-

ent deformations of the unique �xed point φ = 0; our prescription for introduc-

ing a universal scale via Λ is hence su�cient for us to legitimately compare the

energetics for di�erent types of backgrounds.

We next observe that the energetically favoured branch of solutions (that

which minimises the free energy of the system) appears to be the class of reg-

ular solutions, for all φ̂2. Furthermore, we notice that there is a region of the

parameter space with φ̂2 > 0 within which the system apparently prefers to

realise a con�guration containing a tachyonic instability; we shall soon see that

this is not in fact the case, and that our investigation of the theory phase space

would be incomplete had we decided to neglect the badly singular backgrounds.

We now turn our attention to the plot in Fig. 6.3 which portrays all of

the information presented in Fig. 6.2, supplemented by the free energy for the

backgrounds with bad singularities: the general singular solutions with 0 <

φL <
1
3 for ζ = ±1 (thin green lines), and the domain-wall solutions obtained

in the φL → 1
3 limit (long-dashed dark-green line). We have also shaded in

blue the region of the parameter space enclosed by the con�ning and skewed

branches, which is covered by the subset of the general singular solutions that

encounter a good singularity in the deep IR.
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Figure 6.3: The free energy density F̂ as a function of the deformation pa-
rameter φ̂2 for the IR-conformal solutions (longest-dashed purple line), the con-
�ning solutions (solid black and short-dashed orange lines), and the skewed
solutions (dashed red line), compared to a few representative choices of (badly)
singular solutions (green). For the latter, we generated the numerical solutions
from the IR expansions, by setting (φL, ζ) = (0.05,−1), (0.1,−1), (0.15,−1),
(0.2,−1), (0.25,−1), (0.25, 1), (0.2, 1), (0.15, 1), (0.1, 1), (0.05, 1), respectively
(lighter green lines), and varied the value of φI . The long-dashed dark-green
line represents the domain-wall (badly) singular solutions, obtained by varying
the parameter φb. The SUSY solutions are represented by a grey point at the
origin. The short-dashed orange line shows the region within the branch of con-
�ning solutions for which a tachyonic state appears in the scalar mass spectrum.
We have shaded in light blue the region covered by the good singular solutions
shown in Fig. 6.2.

Our inclusion of the bad singularity backgrounds recontextualizes our initial

observation from Fig. 6.2, that the branch of con�ning solutions always minimise

the system free energy; crucially, we see from the complete plot in Fig. 6.3 that

the tachyonic region of the parameter space is never energetically favoured, and

that the system shows evidence of undergoing a �rst-order phase transition. We

will soon provide a more thorough description of this transition by characterising

it in terms of the behaviour of condensates and order parameters, but we �rst

summarise some important features of our results so far.

We re-emphasise that every class of solutions connects back to the super-

symmetric ones at the origin
(
φ̂2 , F̂

)
= (0 , 0), and that this still holds true
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also for the bad singularity backgrounds; moreover all solutions have a �nite,

computable free energy. If we consider only the φ̂2 6 0 region of the parameter

space we observe that the free energy of the system is bounded from below by

the branch of regular solutions, and from above by the related class of skewed

solutions; the various other classes, which include the supersymmetric solutions,

the scale-invariant IRC solutions, and the other classes of singular backgrounds

(for any permitted values of the parameters {φL, ζ}), lie within the region de-

limited by the two. In terms of energetic stability we see that the system favours

background geometries in which one of the external dimensions is compacti�ed

on a circle; these solutions are free from curvature and conical singularities and

have duals which can intuitively be interpreted as �eld theories which exhibit

con�nement at low energies.

In the complementary φ̂2 > 0 region of the parameter space we see evidence

of a �rst-order phase transition at some critical value of the source φ̂2 = φ̂∗2.

Over the interval 0 6 φ̂2 < φ̂∗2 the system prefers to maintain a compacti�ed

dimension as it did for negative φ̂2. However, as we continue to increase the

source in order to approach the tachyonic instability, at the critical value φ̂∗2
the badly singular domain-wall solutions abruptly assume the role of the class

which minimises F̂ , and hence are energetically favoured. This transition iden-

ti�es two distinct phases of the theory: the con�ning phase for φ̂2 < φ̂∗2, and

the domain-wall phase for φ̂∗2 < φ̂2, in which the system favours the sponta-

neous decompacti�cation of the circular dimension to realise a geometry which

(locally) restores the full �ve-dimensional Poincaré invariance. We also observe

that for φ̂2 > φ̂∗2 there is a �nite portion of the black line which, while not ener-

getically favoured, does not contain a tachyonic state in the spectrum of scalar

�uctuations; we refer to this as the metastable region of the con�ning branch,

and background solutions therein to be metastable. A magni�cation of these

features is provided in Fig. 6.4.

The approximate coordinates of the phase transition can be extracted nu-

merically. We �nd that the critical values of the source and free energy are given

by (
φ̂∗2 , F̂∗

)
'
(
0.169 ,−3.893

)
, (6.98)

which correspond to backgrounds generated using the IR parameter choices

φ∗I ' 0.027 , φ∗b ' 98.9 . (6.99)
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Figure 6.4: The free energy density F̂ as a function of the deformation param-
eter φ̂2 for the con�ning solutions (solid black and short-dashed orange lines),
and the BSDW solutions (long-dashed dark-green line). We focus in particular

on the region of the parameter space near to the phase transition at φ̂2 = φ̂∗2.
The metastable con�ning solutions lie along the φ̂2 > φ̂∗2 portion of the solid
black line.

We can furthermore determine the values of the condensate parameters φ3 and

χ5 on either side of the transition. By introducing the subscripts `<' and `>'

to denote quantities extracted in the con�ning phase and domain-wall phase,

respectively, we obtain the following:

φ̂∗3< ' −0.092 , φ̂∗3> ' 43.2 ,

χ̂∗5< ' −3.12 , χ̂∗5> ' −1.17 , (6.100)

and we notice in particular the enhancement of the condensate associated with

the dimension-3 operator dual to φ; we shall return to this observation in Sec. 6.5

when we re-examine the results of our probe spectrum computation in the con-

text of our newly acquired parameter data.

We conclude this subsection by observing that the results of our free en-

ergy analysis present two unexpected pathologies. The �rst of these is that the

parameter space of the theory seems to impose an upper bound on the permit-

ted values of the source φ̂2; despite our extensive classi�cation of admissible

background solutions, we were not able to �nd any class with which one is able

to explore the parameter space to arbitrarily large values of φ̂2. The second
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pathology is that for φ̂2 > φ̂∗2, when the system enters the domain-wall phase,

the background solutions which minimise the free energy are (badly) singular at

the end of space. The putative dual �eld theories living at the boundary would

hence exhibit unphysical behaviour at low energies, which we would be unable

to reasonably interpret. E�ectively then, from this second observation we infer

that a sensible holographic �eld theory interpretation of the system bulk dy-

namics only exists for φ̂2 below the upper bound given by the critical value at

the phase transition φ̂2 = φ̂∗2. Crucially, this limitation does not necessarily im-

ply the existence of a pathology in the underlying theory, but rather highlights

the fact that our analysis of the phase structure using an e�ective supergravity

description is likely to be neglecting other important contributions. We shall

return to this point in Chapter 8.

Characterising the phase transition

The results of our energetics analysis have revealed the presence of a �rst-order

phase transition, by which the system spontaneously decompacti�es the periodic

dimension at some critical value of the source φ̂2 in order to avoid a pathological

region of the parameter space. In this section we shall attempt to provide

a more detailed characterisation of the phase transition by introducing two

new dynamical quantities M̂ and ∆̂DW; these quantities will here assume an

analogous role to that of order parameters which are in general used to study

the properties of phase transitions, and we will therefore refer to them as such.

We de�ne the �rst of these order parameters M̂ to be the variation of the free

energy density F̂ with respect to the source φ̂2, holding �xed the universal scale

Λ and the leading order UV parameters χU = AU = 0; our choice of letter used

to denote this quantity is motivated by its similarity to the magnetisation of

a thermodynamical system, computed by di�erentiating the system free energy

with respect to an externally sourced magnetic �eld (holding other quantities

such as temperature �xed). The order parameter is de�ned for our purposes as

follows:

M̂ ≡ Λ−3 ∂

∂φ2
F(φ2,Λ) =

∂

∂φ̂2

F̂(φ̂2) . (6.101)

We remind the Reader that the three UV parameters {φ2, φ3, χ5} which are

used to compute the free energy are related by non-trivial functional depen-

dences which are not known analytically, and hence we must resort to calcu-

lating M̂ by taking the �nite-di�erence numerical derivative of the extracted
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data sets. We furthermore note that, while for the IRC, con�ning, skewed, and

BSDW classes of solutions M̂ is a well-de�ned quantity, the same is not true for

the general singular solutions; from Table 6.2 we see that for these backgrounds

the O3 VEV is a free parameter, and hence the derivative with respect to the

source is ambiguous.

Our second order parameter ∆̂DW provides a measure of to what degree �ve-

dimensional Poincaré invariance is broken for any given background geometry;

we de�ne this quantity as

∆DW ≡ χ5 +
4

25
φ2φ3 , ∆̂DW ≡ χ̂5 +

4

25
φ̂2φ̂3 . (6.102)

From Eq. (6.80) we note that for any solution which satis�es the domain-wall

constraint β = 0, and hence which preserves Poincaré symmetry in �ve di-

mensions, the order parameter ∆̂DW vanishes identically. In plotting the order

parameters we shall here restrict our attention to the con�ning and badly singu-

lar domain-wall classes of solutions only, as it is these branches which realise the

phase transition and give rise to the two distinct phases of the theory (though

in Fig. E.4 of Appendix E we show ∆̂DW for some other classes).

In Figure 6.5 we present four parameter plots, each focusing in particular on

the region of the phase space in proximity of the transition at φ̂2 = φ̂∗2 (denoted

in each plot by the vertical dashed line). The top-left panel shows the minimum

free energy density F̂ as a function of the source, while the top-right panel shows

its variation M̂; we see that the derivative of the free energy is discontinuous at

the critical value φ̂∗2, a feature which clearly evinces a �rst-order phase transition.

In the bottom-left panel we plot the order parameter ∆̂DW, and we see that

it too is discontinuous. In the con�ning phase φ̂2 < φ̂∗2 the system realises a

background geometry which smoothly closes o� at the end of space, breaking

Poincaré invariance along the dimension parametrised by η; the non-zero value

of ∆̂DW in this phase attests to this. Conversely, in the domain-wall phase φ̂2 >

φ̂∗2 the system prefers to (locally) preserve the full �ve-dimensional Poincaré

invariance, and we see that the order parameter ∆̂DW vanishes identically.

The �nal plot of Fig. 6.5 shows φ̂3, the VEV associated with the ∆ = 3

boundary operator dual to φ, as a function of the operator's source φ̂2. From

this panel we deduce that the spontaneous decompacti�cation of the dimension

parametrised by η in the domain-wall phase is associated with the signi�cant

enhancement of the condensate φ̂3, which is almost vanishing in the con�ning

phase. In the next section we will more closely examine the results of our probe
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spectrum computation by comparing the behaviour of this condensate for the

other branches of solutions.
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Figure 6.5: The minimum free energy density F̂ (top-left) and its derivative M̂
(top-right), as a function of the deformation parameter φ̂2, for solutions within
the con�ning (solid black), and badly singular domain-wall (dashed dark-green)
classes. The bottom panels show the order parameter ∆̂DW (bottom-left) and

the condensate φ̂3 (bottom-right), for the same solutions. The vertical (short-

dashed black) line in each plot denotes the critical value φ̂2 = φ̂∗2 ' 0.169 at the
phase transition.
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6.5 More about the dilaton

In Sec. 4.4 we presented the results of our mass spectra computation for the com-

plete set of �elds comprising Romans six-dimensional supergravity compacti�ed

on a circle, and in the subsequent Sec. 4.5 we analysed the spin-0 sector using

the probe approximation to investigate the phenomenology of the dilaton. Hav-

ing now completed our calculation of the free energy density�in the process

uncovering strong evidence of a �rst-order phase transition which energetically

disfavours the branch of regular solutions within a certain region of the param-

eter space�we now return to the probe spectrum to contextualise our previous

�ndings.

We remind the Reader that in computing the spectra of �uctuations we re-

strict our attention to the class of con�ning backgrounds, as these are the only

solutions for which the bulk geometry has a regular end of space. The entire

family of backgrounds within this class is generated by varying the IR expansion

parameter φI , and the various spectra are presented as a function of this pa-

rameter. In the following discussion we shall highlight some important features

of the UV deformation parameters which were used in our energetics analysis,

and compare their behaviour in certain limits to that of the spectra; plots of

the functional relations between these parameters are presented in Appendix E,

though these are not crucial for our discussion and we shall not need to directly

reference them here.

We start by considering the large-φI region of the probe spectrum plot shown

in Fig. 4.3. We observe that the lightest mass eigenstate is tachyonic, and more-

over that it must contain a signi�cant contribution from the dilaton due to the

fact that the probe approximation unambiguously fails to capture it. In the

limit of φI →∞ this state asymptotically approaches zero from below, a feature

which, for a pseudo-Nambu�Goldstone Boson, is associated with spontaneously

broken scale invariance being explicitly restored. If we examine the behaviour

of the UV parameters we indeed �nd evidence to corroborate this interpreta-

tion: the parameter φ̂2�which sources the boundary operator O3 and controls

explicit symmetry breaking in the dual �eld theory�vanishes in the φI → ∞
limit. Furthermore, we �nd that in this same limit the parameter φ̂3, the con-

densate associated with the spontaneous breaking of scale invariance, becomes

divergently large; this contrasts, however, with the behaviour of the other VEV

χ̂5, which instead approaches zero as φI is dialled larger. We therefore infer

that the probe approximation correctly identi�es a parametrically light dila-
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tonic state at large φI , a region of the theory parameter space in which scale

invariance is spontaneously broken by the enhancement of the VEV 〈O3〉. In

Fig. 6.6 we show how this condensate diverges also for the skewed and BSDW

classes of solutions as φ̂2 → 0, the limit in which they each converge to the

supersymmetric solution denoted by the grey disk in the free energy plots; we

also clearly see the enhancement of φ̂3 at the phase transition.
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Figure 6.6: The UV parameter φ̂3 as a function of the deformation parameter
φ̂2, for the con�ning (solid black and short-dashed orange), skewed (dashed red),
IR-conformal (longest-dashed purple), and singular domain-wall (long-dashed
dark-green) classes of background solutions. The vertical dashed line denotes

the critical value φ̂2 = φ̂∗2 ' 0.169 at the phase transition.

We must acknowledge, however, that the large φI (or equivalently, the diver-

gent φ̂3) region of the parameter space along the branch of con�ning solutions

is never energetically favoured, and hence the system does not realise a regular

background geometry which contains within its spectra of �uctuations the afore-

mentioned parametrically light dilatonic state. This becomes apparent when we

instead examine the small φI region of the probe spectrum, where we observe

that the critical value φ∗I at the phase transition (which we remind the Reader

is denoted by the vertical dashed line) is reached well before we are able to dial

the IR parameter φI high enough to reach the tachyonic instability.

As we discussed in Sec. 6.4 the critical value of φ̂2 = φ̂∗2 imposes an upper

bound on the O3 source, above which the bulk dynamics of the gravity side

does not admit a sensible holographic interpretation in terms of a dual �eld
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theory; the same is also true for the critical value of φ̂I = φ̂∗I . From Fig. 4.3

we see that just before the system undergoes the phase transition, the lightest

state is actually very well approximated by the probe computation and is hence

not to be identi�ed with the dilaton. By contrast, we also see that the probe

approximation shows an appreciable discrepancy when compared to the next-

to-lightest state, despite this state not being particularly light when compared

to the rest of the spectrum.

This phenomenon may be understood by more closely examining the be-

haviour of the condensate parameters. As the ∆ = 3 operator source φ̂2 ap-

proaches zero from below, the corresponding VEV φ̂3 is suppressed; conversely,

in the same limit we �nd that the parameter χ̂5�associated with the conden-

sate of the marginal operator dual to χ�is unsuppressed, and is ultimately

responsible for spontaneously breaking conformal invariance and introducing

dilaton mixing e�ects in this portion of the spin-0 spectrum. We hence deduce

that�at least in the region of parameter space which is energetically favoured

(and is thus accessible by the system)�it is the next-to-lightest scalar resonance

which may be identi�ed as an approximate dilaton, although this state is not

parametrically light.
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Chapter 7

Seven-dimensional maximal

supergravity

7.1 Classes of solutions

As with our exploration of the six-dimensional Romans supergravity in Chap-

ter 6, our investigation into the phase structure of the seven-dimensional maxi-

mal supergravity theory is predicated on the numerical computation of the free

energy for various distinct classes of solutions, all of which satisfy the classical

equations of motion Eqs. (5.30 - 5.33) derived from the seven-dimensional action

S7. We begin our energetics analysis by presenting a (non-exhaustive) catalogue

of these backgrounds.

UV asymptotic expansions

We categorise the branches of solutions according to their geometric properties,

and their characteristics near to the end of space. The classes of solutions which

we shall be considering each represent distinct deformations of the unique su-

persymmetric �xed point of the (seven-dimensional) theory φ = 0, so that in

the large-ρ limit all backgrounds exhibit the same convergent behaviour and the

bulk geometry asymptotically approaches AdS7.

This convergence of the various branches at large values of the holographic

coordinate allows one to generate UV expansions for the supergravity scalar

�elds and the warp factor, which are universally applicable and written in terms

of a small set of deformation parameters. By de�ning a new radial coordinate
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z ≡ e−ρ/2 so that the UV boundary is situated at z = 0, these expansions are

given by [2, 4]:

φ(z) = φ2z
2 +

(
φ4 − 18φ2

2 ln(z)√
5

)
z4 +

(
162

5
φ3

2 ln(z)− 637φ3
2

30
− 9φ2φ4√

5

)
z6

+
1

600

(
− 144 ln(z)

(
62
√

5φ4
2 − 45φ2

2φ4

)
− 11664

√
5φ4

2 ln2(z)

+ 2480φ2
2φ4 + 11921

√
5φ4

2 − 180
√

5φ2
4

)
z8

+
1

1200

(
− 72 ln(z)

(
588
√

5φ3
2φ4 + 3335φ5

2

)
+ 381024φ5

2 ln2(z)

+ 13340
√

5φ3
2φ4 − 22179φ5

2 + 5880φ2φ
2
4

)
z10

+O
(
z12
)
, (7.1)

χ(z) = χU − 2 ln(z)

3
− φ3

2

30
z4 +

1

675

(
75
(
9χ6 − 4ω6

)
+ 144

√
5φ3

2 ln(z)

− 12
√

5φ3
2 − 40φ2φ4

)
z6

− 1

1200

(
72 ln(z)

(
27φ4

2 − 4
√

5φ2
2φ4

)
+ 2592φ4

2 ln2(z)

− 108
√

5φ2
2φ4 − 1355φ4

2 + 40φ2
4

)
z8

+
1

281250
φ2

(
− 720 ln(z)

(
1800φ2

2φ4 + 1663
√

5φ4
2

)
+ 2332800

√
5φ4

2 ln2(z) + 332600φ2
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√
5φ4
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+ 5625φ2

(
9χ6 − 4ω6

)
+ 36000

√
5φ2

4

)
z10

+O
(
z12
)
, (7.2)
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A(z) = AU − 5 ln(z)

3
− φ2

2

12
z4 +

1

540

(
135χ6 − 60ω6 + 288

√
5φ3

2 ln(z)

− 24
√

5φ3
2 − 80φ2φ4

)
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(
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√

5φ2
2φ4

)
+ 2592φ4

2 ln2(z)
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√

5φ2
2φ4 − 1355φ4

2 + 40φ2
4

)
z8

+
1

225000
φ2

(
− 1440 ln(z)

(
1800φ2

2φ4 + 1663
√

5φ4
2

)
+ 4665600

√
5φ4

2 ln2(z) + 665200φ2
2φ4 − 559568

√
5φ4
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+ 1125φ2

(
9χ6 − 4ω6

)
+ 72000

√
5φ2

4

)
z10

+O
(
z12
)
, (7.3)

ω(z) = ωU + ω6z
6 +

9

50
φ2

2ω6z
10 + . . .

= AU − 5

2
χU +

(
ω6 − 9

4
χ6

)
z6 − 9

200
φ2

2

(
9χ6 − 4ω6

)
z10 + . . . , (7.4)

which are governed by the set of seven parameters {φ2, φ4, χ6, ω6, χU , ωU , AU}.
We remind the Reader that we choose to impose the constraint A = 5

2χ+ ω on

all background solutions, locally preserving �ve-dimensional Poincaré invariance

within the {xµ, ζ} subspace; the second line of Eq. (7.4) follows from the sub-

stitution of this constraint, supplemented by the identi�cation ωU = AU − 5
2χU .

We hence deduce that the parameter χ6 must always be exactly zero for consis-

tency, though we shall nevertheless leave any dependence on χ6 explicitly visible

in equations henceforth unless otherwise stated.

Supersymmetric (SUSY) solutions

In D = 7 dimensions the scalar potential V7 presented in Eq. (5.2) is a function

only of φ, and hence the de�ning equation of the superpotential formalism given

in Eq. (2.18) of Sec. 2.1.1 becomes:

V7(φ) =
(
∂φW

)2 − 6

5
W2 , (7.5)

which admits an exact superpotential solution W =W1 given by

W1 = −1

4
e
− 4φ√

5 − e
φ√
5 . (7.6)
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The �rst-order di�erential equations presented in Eqs. (2.20) and (2.21) reduce

to

∂ρφ = Gφφ∂φW = 2∂φW , (7.7)

∂ρA = −2

5
W , (7.8)

from which we see that, for the supersymmetric �xed point solution φ = 0

which realises an exactly AdS7 background geometry, the metric warp factor

is a linear function of the holographic coordinate A = 1
2ρ. There also exists a

class of more general solutions to this system of �rst-order equations for which

φ = φ(ρ) evolves monotonically from the trivial �xed point in the UV towards

a good singularity at the end of space in the deep IR. After substituting in for

W =W1 we obtain the following simpli�ed EOMs:

∂ρφ =
2√
5

(
e
− 4φ√

5 − e
φ√
5

)
, (7.9)

∂ρA =
1

10

(
e
− 4φ√

5 + 4e
φ√
5

)
, (7.10)

from which we may construct a family of exact solutions, formulated in terms

of a new radial coordinate de�ned via ∂ρ ≡ e−
3φ

2
√

5 ∂τ . These are given by

φ(τ) =
4√
5

arctanh
(
e−2(τ−τo)

)
(7.11)

A(τ) = Ao +
1

10
ln
[

cosh(τ − τo) sinh4(τ − τo)
]
, (7.12)

where τo and Ao are (real) integration constants, the former being used to �x

the end of space. By series expanding the above analytical solutions for small

τ we �nd

φ(ρ) = − 2√
5

ln(τ − τo) +
2

3
√

5
(τ − τo)2 − 7

45
√

5
(τ − τo)4 + . . . , (7.13)

A(ρ) = Ao +
2

5
ln(τ − τo) +

7

60
(τ − τo)2 − 19

1800
(τ − τo)4 + . . . , (7.14)

or equivalently, in terms of ρ (with ρo �xing the end of space):

φ(ρ) = −
√

5 ln
(

2
5 (ρ− ρo)

)
+

16

1875
√

5
(ρ− ρo)5 + . . . , (7.15)

A(ρ) = AI + ln(ρ− ρo) +
8

9375
(ρ− ρo)5 + . . . , (7.16)
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with AI = Ao + ln
(

2
5

)
. Recalling that A = 3

5A = 3
2χ, we therefore also have

the following for χ and A:

χ(ρ) = χI +
2

3
ln(ρ− ρo) +

16

28125
(ρ− ρo)5 + . . . , (7.17)

A(ρ) = AI +
5

3
ln(ρ− ρo) +

8

5625
(ρ− ρo)5 + . . . , (7.18)

where χI = 2
3AI and AI = 5

3AI .
We conclude by observing that the �rst-order equations of motion in Eqs. (7.7)

and (7.8) admit another superpotential solutionW =W2, albeit one which may

only be generated term-by-term as a perturbative expansion in φ; this additional

solution may be written as

W2 = −1

4

(
5 + φ2 − 3√

5
φ3 ln

(
φ2

κ

))
+ . . . , (7.19)

where here κ is a free parameter introduced to ensure that the logarithm ar-

gument is dimensionless. This second superpotential will later prove to be a

crucial component of our energetics analysis, by providing the counter-terms

required to cancel the divergent contributions to the UV boundary action; the

variable κ thus takes the role of a scheme-dependence parameter in the process

of holographic renormalisation.

IR-conformal (IRC) solutions

There also exist non-singular backgrounds within the seven-dimensional super-

gravity which also locally preserve the extended Poincaré invariance by realising

a domain-wall geometry. These backgrounds smoothly interpolate as a function

of the holographic coordinate between the two critical point solutions of the

potential V7, corresponding in the dual �eld theory to an RG �ow between

two distinct six-dimensional CFTs. The circle-compacti�ed dimensions inter-

nal to the torus T 2 maintain a non-zero volume for all (�nite) values of the

radial coordinate, in contrast to the class of con�ning solutions wherein the S1

parametrised by η eventually shrinks to a point and the bulk geometry closes

o�; as a result, the boundary �eld theories dual to solutions within this class

do not exhibit a low-energy limit. Once one of these interpolating backgrounds

has reached the constant IR critical point solution φ(ρ) = φIR, further evolv-

ing it towards yet lower values of the radial coordinate leaves φ(ρ) una�ected,

which hence motivates the name IR-conformal. As an aside, it is perhaps useful
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to note that these solutions are physically equivalent to the class of con�ning

backgrounds in the limit at which the scale of con�nement in the latter is sent

to in�nitesimal energies (ρo → −∞).

Recalling from Eq. (5.11) that the scaling dimension of the operator dual to

φ at the IR critical point satis�es 6−∆IR < 0, the small-ρ expansions for this

branch of solutions may be formulated in terms of the quantity e
−(6−∆IR) ρ

RIR

which is vanishingly small in the ρ → −∞ limit. These expansions are given

by [54]

φ(ρ) = φIR +
(
φI − φIR

)
e
−(6−∆IR) ρ

RIR + . . . , (7.20)

χ(ρ) = χI +
2ρ

3RIR
− 1

30

(
φI − φIR

)2
e
−2(6−∆IR) ρ

RIR + . . . , (7.21)

A(ρ) = AI +
5ρ

3RIR
− 1

12

(
φI − φIR

)2
e
−2(6−∆IR) ρ

RIR + . . . , (7.22)

where RIR as de�ned in Eq. (5.6) is the curvature radius of the AdS7 geometry

associated with the IR critical point solution, and the integration constants χI

and AI may be chosen arbitrarily. The remaining free parameter φI > φIR

sets the scale at which the transition between the two CFTs occurs in the dual

�eld theory, and its variation generates an entire family of backgrounds. Notice

however that this is the only tunable scale within the class due to the fact that

any one IRC background solution may be shifted by some ρ→ ρ− δ in order to

obtain any other, and hence they are all physically equivalent.

We shall revisit this class of solutions when we present a parametric plot

of all backgrounds which realise a domain-wall geometry and preserve Poincaré

symmetry within the {xµ, η, ζ} subspace, analogous to that shown in Fig. 6.1

for the six-dimensional supergravity. This will enable us to better visualise how

the various DW solution classes are related to each other, and moreover will

show clearly the interpolating nature of the IRC solutions.

Con�ning solutions

We have already encountered the branch of solutions which we refer to as con-

�ning in Sec. 5.3 and which were used to compute the spectra of bosonic �uctu-

ations in the toroidally reduced supergravity, the results of which are discussed

in Sec. 5.4. In this brief section we bring to the Reader's attention the following

results, which are obtained by substituting in for χ and A = 5
2χ + ω using the
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small-ρ expansions presented in Eqs. (5.51 - 5.52):

eα(ρ) = e4A(ρ)−χ(ρ) = e4AI−χI f̃
(
φI , (ρ− ρo)

)
, (7.23)

eΥ(ρ) = eA(ρ)− 5
2χ(ρ) = eAI−

5
2χI g̃

(
φI , (ρ− ρo)

)
, (7.24)

where f̃ and g̃ are known numerical functions which we neglect to write explicitly

for the sake of simplicity. We shall evaluate these same quantities using a

related (but geometrically distinct) class of solutions in the next subsection,

and compare the two sets of results.

Skewed solutions

The existence of a fourth class of solutions, which we shall refer to as skewed,

may be inferred from the observation that the classical equations of motion

derived from the seven-dimensional supergravity action are left invariant under

the sign change Υ→ −Υ⇔ A− 5
2χ→ 5

2χ−A (or equivalently ω → −ω), with
the linear combination α = 4A− χ left unchanged. This family of backgrounds

can be generated by solving the EOMs subject to boundary conditions imposed

on each bulk �eld using the following IR expansions:

φ(ρ) = φI − 1
2
√

5
e
− 8φI√

5

(
1− 3e

√
5φI + 2e2

√
5φI
)

(ρ− ρo)2

− 1
80
√

5
e
− 16φI√

5

(
9− 44e

√
5φI + 57e2

√
5φI + 2e3

√
5φI − 24e4

√
5φI
)

(ρ− ρo)4

+O
(
(ρ− ρo)6

)
, (7.25)

χ(ρ) = χI − 1
9 ln(ρ− ρo)− 1

45e
− 8φI√

5

(
1− 8e

√
5φI − 8e2

√
5φI
)

(ρ− ρo)2

− 1
375e

− 16φI√
5

(
83
48 − 38

3 e
√

5φI + 61
2 e

2
√

5φI + 34
3 e

3
√

5φI + 62
3 e

4
√

5φI
)

(ρ− ρo)4

+O
(
(ρ− ρo)6

)
, (7.26)

ω(ρ) = ωI + 1
2 ln(ρ− ρo) + 1

40e
− 8φI√

5

(
1− 8e

√
5φI − 8e2

√
5φI
)

(ρ− ρo)2

+ 1
8000e

− 16φI√
5

(
31− 8

(
32e
√

5φI − 81e2
√

5φI − 76e3
√

5φI − 68e4
√

5φI
))

(ρ− ρo)4

+O
(
(ρ− ρo)6

)
, (7.27)

where ρo again �xes the end of space, while φI is the free parameter which is

varied to generate the entire family. As with the branch of regular solutions,

by direct substitution of these expansions we may compute the exponential

quantities from the previous subsection to obtain the analogous results for this
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new class; we �nd

eα(ρ) = e4A(ρ)−χ(ρ) = e4AI−χI f̃
(
φI , (ρ− ρo)

)
, (7.28)

eΥ(ρ) = eA(ρ)− 5
2χ(ρ) = eAI−

5
2χI
[
g̃
(
φI , (ρ− ρo)

)]−1

, (7.29)

where f̃ and g̃ are exactly the same numerical functions as those appearing in

Eqs. (7.23) and (7.24). This veri�es that the branch of solutions obtained using

the expansions in Eqs. (7.26) and (7.27) are related to the class of solutions which

holographically realise con�nement (di�ering only by the sign of Υ, provided

that φI and ρo are chosen to be the same), though they nevertheless exhibit a

completely di�erent background geometry.

To demonstrate this point explicitly, it is instructive to consider the small-ρ

behaviour of the seven-dimensional metric provided in Eq. (5.13) by substitut-

ing in for χ, ω, and A using the above expansions. Let us �rst consider the case

of the con�ning solutions: we deduce that in the ρ→ ρo limit the Minkowski di-

mensions maintain a constant non-zero volume at the end of space, and the same

is true also for the S1 parametrised by the ζ coordinate; as is to be expected, the

volume of the other circle (parametrised by η) within the torus instead vanishes

in the same limit. By contrast, for the branch of skewed solutions we observe

that the Minkowski dimensions and the ζ-circle both scale as (ρ− ρo)1/3, while

the η-circle scales as (ρ−ρo)−2/3; as one approaches the end of space in the deep

IR, the volume of the subspace spanned by {xµ, ζ} therefore shrinks to a point

while the other S1 increases in size without bound. Although the con�ning and

skewed solutions are related by the simple relation Υ → −Υ, it is evident that

the two classes realise dissimilar geometries; this behaviour of the two internal

torus dimensions in the case of the latter compared to the former motivates our

choice of the name skewed.

On a slight digression we here make an important clari�cation: as earlier

stated we have chosen to restrict the classes of solutions that we consider by

adopting the constraint A = 5
2χ + ω, which is motivated solely by the conve-

nience that in doing so we ensure that Poincaré invariance is locally preserved

within the �ve-dimensional subspace parametrised by xµ and ζ; it otherwise has

no physical signi�cance. This constraint in turn leaves the equations of motion

presented in Eqs. (5.30 - 5.33) invariant under the transformation Υ→ −Υ, from

which follows our discussion on the class of skewed solutions. We emphasise the

fact that, were this constraint to be relaxed, other admissible classes of solutions
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(possibly including other singular backgrounds) may be discovered. We post-

pone this extended exploration of the theory to a potential future study, and

here remark that the skewed solutions presented in this section may prove to be

merely a subset of a wider branch of singular solutions in a more comprehensive

investigation of the model.

To conclude this subsection, let us observe�from their respective IR expansions�

that the con�ning and skewed classes are related via the following useful relation,

which is satis�ed up to an additive constant:

0 =
1

3

[
2χc(ρ) +Ac(ρ)

]
+ χs(ρ)−As(ρ) , (7.30)

where the superscript labels c and s denote con�ning and skewed background

solutions, respectively. By substituting into the above relation using the UV

expansions presented in Eqs. (7.2) and (7.3), and keeping written explicitly the

superscript labels which distinguish the two classes of solutions, we derive the

following parameter identities:

φs2 = φc2 , (7.31)

φs4 = φc4 , (7.32)

ωs6 − 9
4χ

s
6 = 9

4χ
c
6 − ωc6 ⇒ ωs6 = −ωc6 , (7.33)

which will later prove useful in our phase structure exploration of this theory.

General singular solutions

In Sec. 6.1 we provided a classi�cation of solutions within the circle-compacti�ed

six-dimensional supergravity system, which included φ(ρ) backgrounds that

monotonically interpolate towards a singularity in the deep IR region of the

bulk geometry; as we have already seen with our earlier introduction of the

supersymmetric solutions, similar divergent backgrounds are also admitted by

the T 2-compacti�ed seven-dimensional supergravity. It is possible to construct

generalised IR expansions�analogous to those presented in Eqs. (6.44 - 6.49)�

from which a broad class of these solutions may be obtained, encompassing both

good and bad types of singularities (according to Gubser's criterion [175]). The

expansions, valid near to the end of space at ρ = ρo, may be formulated as

155



follows:

φ(ρ) = φI +
√

5φL ln(ρ− ρo) +

∞∑
n=1

2n∑
j=0

cnj(ρ− ρo)2n+2nφL−5j φL , (7.34)

χ(ρ) = χI + χL ln(ρ− ρo) +

∞∑
n=1

2n∑
j=0

fnj(ρ− ρo)2n+2nφL−5j φL , (7.35)

A(ρ) = AI +AL ln(ρ− ρo) +

∞∑
n=1

2n∑
j=0

gnj(ρ− ρo)2n+2nφL−5j φL , (7.36)

where φI and φL are the two free parameters which characterise the space of

solutions, with φL controlling the type of logarithmic singularity present in the

deep IR. An additional (discrete) parameter Ω = ±1 is hidden within the various

terms of these expressions, and to leading order we obtain:

φ(ρ) = φI +
√

5φL ln(ρ− ρo) + . . . , (7.37)

χ(ρ) = χI +
1

18

[
4Ω
√

1− 6φ2
L + 2

]
ln(ρ− ρo) + . . . , (7.38)

A(ρ) = AI +
1

18

[
Ω
√

1− 6φ2
L + 5

]
ln(ρ− ρo) + . . . . (7.39)

The summation coe�cients cnj(φI , φL), fnj(φI , φL,Ω), and gnj(φI , φL,Ω) can

be systematically determined order-by-order, by direct substitution of the ex-

pansions into the equations of motion. We see that the complete space of solu-

tions accessible to these general expansions is parametrised by the �ve integra-

tion constants {φI , φL, χI , AI , ρo}, supplemented by the choice of Ω. Notice

that the logarithm coe�cients χL and AL, shown explicitly in Eqs. (7.38) and

(7.39), actually extend the applicability of these expansions to backgrounds

which do not encounter φ singularities at the end of space; for the unique choice

φL = 0 we also recover the IR expansions for the con�ning and skewed classes

of solutions, when Ω = 1 and Ω = −1 respectively.

Let us furthermore note that φL is a constrained parameter; the requirement

that χ and A both be real functions necessitates that we impose φL > − 1√
6
, so

that by saturating this bound (and �xing AI = 5
2χI) one recovers the geometric

constraint A− 5
2χ = ω = 0 satis�ed by all domain-wall backgrounds within this

model. From the general expansions in Eqs. (7.34 - 7.36) we also observe that, for

any given value of n when φL > 0, the most rapidly diverging exponent as ρ→ ρo

is the sub-leading correction which maximises j, given by 2n(1−4φL). To ensure
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that the singular behaviour of φ is governed by the leading-order logarithmic

term we hence require that all sub-leading exponents in the expansions are

positive, which yields our second constraint φL <
1
4 . If we instead consider the

complementary φL < 0 case, then the most rapidly diverging contribution for

any given n comes from the minimum j exponent and the corresponding bound

is φL > −1; this is less stringent than the requirement that χ and A be real,

and is hence of no consequence. The combination of our two bound constraints

therefore leaves the following allowed interval for the singularity parameter φL:

− 1√
6
6 φL <

1

4
. (7.40)

As with the analogous class of general solutions presented in Sec. 6.1, we observe

that the upper bound on φL represents a pathological limiting case; the general

series expansions are rendered unusable as φL → 1
4 since every one of the in�nite

values of n generates additive contributions which all scale as (ρ − ρo)
p for

p = 0, 5
4 ,

5
2 . . ., and hence no truncation is possible. This limiting case actually

represents the distinct branch of singular solutions that are introduced in the

next subsection, and which will manifest an important feature of the theory

phase structure.

We conclude by clarifying that�unlike with our exploration of Romans six-

dimensional supergravity�we shall neglect to compute the free energy density

for the class of generalised singular backgrounds described in this section. The

schematic IR expansions are presented for the sake of completeness, and to

demonstrate explicitly that admissible good singularity backgrounds do also

exist within this system. Both the task of determining the expansion coe�cients

cnj , fnj , and gnj , and the subsequent process of numerically extracting the

parameter data required to compute F̂ , are rather laborious and not necessary

for our current purposes. We therefore postpone this line of investigation to

a potential future study, wherein a more comprehensive survey of the space of

solutions (including the relaxation of our self-imposed constraint Υ = ω) can be

undertaken.

Badly singular domain-wall (BSDW) solutions

The �nal class of backgrounds which we shall consider admit the same domain-

wall geometry as with the supersymmetric solutions, however as their name

suggests they are characterised by the scalar �eld φ approaching a bad (φ →
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φL = −6−
1
2 −6−

1
2 < φL < 0 φL = 0 0 < φL <

1
4

Ω = +1 Good, DW Good Con�ning Bad
Ω = −1 Good, DW Good Skewed Bad

Table 7.1: Parametrisation of the solutions obtainable from Eqs. (7.37 - 7.39):
here Good and Bad refer to which type of singularity is present at the end of
space. For φL = −6−

1
2 both choices of Ω = ±1 correspond to the same family

of good singularity domain-wall backgrounds.

∞) singularity at the end of space; as earlier mentioned we adopt the same

terminology as Gubser [175] to describe singularities, with evaluation on a badly

singular background solution having the undesirable quality of leaving the scalar

potential unbounded from above. Nevertheless, as with our exploration of the

six-dimensional theory we will �nd that these otherwise pathological solutions

play a pivotal role in the phase structure of the theory.

The scalar �elds and warp factor are described by the following small-ρ

expansions in the deep IR [4]:

φ(ρ) =
√

5
4 ln

(
8
5 (ρ− ρo)

)
+ φb(ρ− ρo)5/8 +

√
5

135

(
37φ2

b − 3 2
15
4 5−

1
4

)
(ρ− ρo)5/4

+ 1
31050

(
18192 103/4φb − 162595φ3

b

)
(ρ− ρo)15/8

+ 1
11736900

(
90754487

√
5φ4

b − 59745768 23/4 4
√

5 φ2
b + 900864

√
2
)

(ρ− ρo)5/2

+O
(

(ρ− ρo)25/8
)
, (7.41)

A(ρ) = AI + 1
16 ln(ρ− ρo) + 4

3
√

5
φb(ρ− ρo)5/8

+ 1
2700

(
192 103/4 − 2155φ2

b

)
(ρ− ρo)5/4

− 2
√

5
46575

(
7008 2

3
4 5−

1
4φb − 12721φ3

b

)
(ρ− ρo)15/8

− 1
234738000

(
458724605 φ4

b − 64375824 103/4φ2
b + 2437632

√
10
)

(ρ− ρo)5/2

+O
(

(ρ− ρo)25/8
)
, (7.42)

where AI and ρo are integration constants (the latter �xing the end of space),

and φb is the free parameter that is varied to generate the family of backgrounds.

We remind the Reader that solutions which preserve six-dimensional Poincaré

invariance, which include this class, satisfy A = 3
5A = 3

2χ⇔ Υ = 0.

Having now introduced our catalogue of solutions to be analysed as part

of our supergravity phase structure investigation, we conclude this section by
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presenting the analogous parametric plot to that shown in Fig. 6.1 for the six-

dimensional theory. Recall that in Sec. 5.3 we derived the second-order di�eren-

tial equation Eq. (5.46) in terms only of φ, which is satis�ed by all backgrounds

which realise a domain-wall geometry by obeying the constraint Υ = A− 5
2χ = 0;

this equation is reproduced below for convenience:

0 = 5φ′′ +
√

15φ′
[
2
(
φ′
)2

+ γ−
8
5

(
8γ + 8γ2 − 1

)] 1
2

+
√

20γ−
8
5

(
1− 3γ + 2γ2

)
,

where primes denote derivatives with respect to ρ, and we remind the Reader

that in this expression we have de�ned γ ≡ e
√

5φ(ρ). Each class discussed in this

section represents a distinct deformation of the unique supersymmetric critical

point solution φ = φUV = 0, with the subset of solutions which locally preserve

six-dimensional Poincaré invariance admitting a φ(ρ) pro�le that satis�es the

above di�erential equation. For illustrative purposes it is useful to parametri-

cally plot a representative background from each of these classes, in order to

visualise how each one �ows away from the trivial solution; the results of this

exercise are shown in Fig. 7.1.

As a penultimate remark, we re-emphasise the fact that our classi�cation of

solutions in this section is by no means exhaustive. As discussed when introduc-

ing the branch of skewed solutions, our adopted constraint Υ = A− 5
2χ = ω to

locally preserve �ve-dimensional Poincaré invariance restricts our phase struc-

ture analysis to encompass only the subset of all backgrounds which satisfy it

(and hence for which χ6 = 0); were this constraint to be relaxed it is pos-

sible that other types of admissible solutions, which fail to preserve Poincaré

symmetry within the {xµ, ζ} subspace, may be discovered.

We furthermore remind the Reader that although we have successfully iden-

ti�ed good singularity backgrounds within the toroidally compacti�ed seven-

dimensional supergravity�these are given by the subset of the general singular

solutions for which φL < 0 (see Table. 7.1)�we make the decision not to include

them in our energetics analysis of the theory phase space. Based on the corre-

sponding results of our analogous investigation in Chapter 6 we anticipate that

these backgrounds would most likely simply �ll out the plot region delimited by

the branches of con�ning and skewed solutions, though we postpone the testing

of this hypothesis to a future investigation. Likewise, we opt not to compute F̂
for the complementary badly singular solutions (with general φL > 0) either.
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Figure 7.1: Parametric plot of ∂ρφ as a function of φ for solutions which satisfy
the warp factor constraint A = 5

3A = 5
2χ. The cyan disk and dark-red trian-

gle respectively denote the UV and IR critical points of the seven-dimensional
potential V7, the orange line represents the class of IRC solutions with duals
which �ow between these two critical points, and the grey line represents the
class of good-singularity SUSY solutions. The arrows exhibit the underlying
vector �eld de�ned via the second-order di�erential equation for φ shown in
Eq. (5.46). A representative example of the BSDW solutions for the special
choice φb = φ∗b ' 33.54 (the critical value at the phase transition, to be dis-
cussed in Sec. 7.4) is shown with the dashed blue line. We observe that the
SUSY solutions form the separatrix between numerical backgrounds which �ow
to good (φ → ∞) and bad (φ → −∞) singularities for positive φ, while the
IR-conformal solutions play the same role when φ is negative.

7.2 Free energy derivation

As with our investigation into the phase structure of Romans six-dimensional

supergravity in Chapter 6, the quantity of interest to us is the free energy density

of the system as a function of the universal expansion parameters which govern

the asymptotic UV behaviour of the various bulk �elds. The general procedure

is similar to as before; we employ a numerical routine to extract sets of physical
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parameter data, and then explore the phase space of the theory by plotting

the appropriately renormalised and rescaled free energy as a function of the

parameter which sources the ∆ = 4 boundary operator O4.

We begin by de�ning the seven-dimensional action which we shall adopt,

noting again that�since a subset of the background solutions we are consider-

ing exhibit singular behaviour at the end of space�we include an IR regulating

boundary in addition to the UV regulator necessary for holographic renormal-

isation. We are therefore required to supplement the bulk action of Eq. (5.1)

with GHY terms and boundary-localised potentials, so that our complete action

is given by

S = SB +
∑
i=1,2

(
SK,i + Sλ,i

)
=

∫
d4x dη dζ dρ

√
−ĝ7

(R7

4
− ĝM̂N̂∂M̂φ∂N̂φ− V7(φ)

)
+
∑
i=1,2

(−)i
∫
d4x dη dζ

√
−˜̂g

(K
2

+ λi

)∣∣∣∣
ρ=ρi

, (7.43)

where ĝM̂N̂ is the seven-dimensional metric tensor for the seven-dimensional line

element in Eq. (5.12), ĝ7 = −e8A−2χ is its determinant, R7 is the corresponding

Ricci scalar as provided in Eq. (5.14), and ˜̂gM̂N̂ is the metric induced on each

six-dimensional boundary. The extrinsic curvature scalar coming from each

GHY term is K, while λi are the boundary-localised potentials.

To construct the boundary-induced metric ˜̂gM̂N̂ we introduce the covari-

ant seven-vector nM̂ = (0, 0, 0, 0, 1, 0, 0), so that the orthonormality condi-

tions presented in Eqs. (6.54) and (6.55) are satis�ed (though note for the

purposes of this model the hatted uppercase Latin indices instead take val-

ues M̂ ∈ {0, 1, 2, 3, 5, 6, 7}). We reproduce these de�ning conditions here for

convenience:

1 = ĝM̂N̂n
M̂nN̂ = nM̂nM̂ ,

0 = ˜̂gM̂N̂n
M̂ ,

so that the induced metric tensor is again de�ned as

˜̂gM̂N̂ ≡ ĝM̂N̂ − nM̂nN̂ .

Our de�nitions for the covariant derivative and the metric connection are identi-
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cal to the expressions provided in Eqs. (6.57) and (6.58), though we also present

them here for reference:

∇M̂fN̂ ≡ ∂M̂fN̂ − ΓQ̂
M̂N̂

fQ̂ ,

ΓP̂
M̂N̂
≡ 1

2
ĝP̂ Q̂

(
∂M̂ ĝN̂Q̂ + ∂N̂ ĝQ̂M̂ − ∂Q̂ĝM̂N̂

)
,

while our result for the extrinsic curvature scalar is again given by

K ≡ ĝM̂N̂KM̂N̂ ≡ ĝM̂N̂∇M̂nN̂
= −ĝM̂N̂Γ5

M̂N̂
= 4∂ρA− ∂ρχ .

Our derivation of the free energy density starts with a reformulation of the bulk

contribution SB to the complete action of Eq. (7.43) as a total derivative; by

making use of the result for the seven-dimensional Ricci scalar in Eq. (5.14),

and of the conserved quantity presented in Eq. (5.29), we observe that SB may

be conveniently rewritten as

SB ≡ SB,1 + SB,2 = − 3

10

∫ ρ2

ρ1

d4x dη dζ dρ ∂ρ

(
eα∂ρA

)
, (7.44)

where we have reintroduced α ≡ 4A − χ. For the sake of clarity we may also

write explicitly the boundary-localised actions SK,i and Sλ,i, as follows:

SK,1 = −1

2

∫
d4x dη dζ eα

(
∂ρα

)∣∣∣
ρ=ρ1

, (7.45)

Sλ,1 = −
∫
d4x dη dζ eα

(
λ1

)∣∣∣
ρ=ρ1

, (7.46)

SK,2 =
1

2

∫
d4x dη dζ eα

(
∂ρα

)∣∣∣
ρ=ρ2

, (7.47)

Sλ,2 =

∫
d4x dη dζ eα

(
λ2

)∣∣∣
ρ=ρ2

. (7.48)

We adopt an analogous de�nition of the free energy density F to that presented

in Eq. (6.68) for the case of the six-dimensional theory,

F ≡ − lim
ρ1→ρo

lim
ρ2→+∞

S ≡
∫
d4x dη dζ F , (7.49)

so that, by summing the contributions to the complete action S, we obtain the
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following universally applicable result:

F = lim
ρ1→ρo

1

10
eα
(

17∂ρA− 5∂ρχ+ 10λ1

)∣∣∣
ρ1

− lim
ρ2→+∞

1

10
eα
(

17∂ρA− 5∂ρχ+ 10λ2

)∣∣∣
ρ2

. (7.50)

As before, the value assumed by the IR boundary-localised potential λ1 =

− 3
2∂ρA is �xed by the requirement that the variation of the complete action is

well de�ned, and we again direct the Reader's attention to Ref. [100] for further

details on this point. We notice that the sum of the two IR boundary-localised

terms SK,1 and Sλ,1, with λ1 de�ned above, gives the following contribution to

the complete action:

SK,1 + Sλ,1 = −1

2

∫
d4x dη dζ

(
eα(∂ρA− ∂ρχ)

)∣∣∣
ρ1

(7.51)

= −1

2

∫
d4x dη dζ

(
eα
(

3
2∂ρχ+ ∂ρω

))∣∣∣
ρ1

, (7.52)

which, by substituting in for the scalars χ and ω using the small-ρ expansions

presented in Eqs. (5.51) and (5.52), we see vanishes in the ρ→ ρo limit. Hence,

the free energy for the class of regular con�ning solutions is again una�ected by

our inclusion of boundary-localised terms in the deep IR, as is to be expected.

Let us now turn our attention to the UV boundary potential λ2 which,

as with the analogous derivation of F for the six-dimensional model, must be

chosen carefully to ensure the cancellation of all divergences in the far UV.

We proceed by substituting in for the scalar χ and the warp factor A using the

small-z expansions presented in Sec. 7.1, and implementing the radial coordinate

change ρ = −2 ln(z) ⇒ ∂ρ = − 1
2z∂z, to obtain the following terms localised at

the UV boundary:

SB,2 =
1

200

∫
d4x dη dζ

eαU

z6

(
− 50 + 5φ2

2z
4

+
(
ξ + 45χ6 − 20ω6

)
z6 + . . .

)∣∣∣
ρ2

, (7.53)

SK,2 =
3

100

∫
d4x dη dζ

eαU

z6

(
50− 5φ2

2z
4 − ξz6 + . . .

)∣∣∣
ρ2

, (7.54)

Sλ,2 =
1

150

∫
d4x dη dζ

eαU

z6
λ2

(
150− 45φ2

2z
4

−
(

3

2
ξ + 80φ2φ4 − 18ξ ln(z)

)
z6 + . . .

)∣∣∣∣
ρ2

, (7.55)
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where we have de�ned ξ ≡ 16
√

5φ3
2, and have reintroduced αU ≡ 4AU − χU .

As anticipated, we see that all three contributions contain multiple types of

divergences in the z → 0 limit, including terms proportional to the (squared)

UV deformation parameter φ2 which sources the ∆ = 4 boundary operator

dual to φ, and a term which is logarithmic in z. We furthermore observe that,

just as with Romans supergravity, there exists a convenient choice for λ2 which

provides the exact counter-terms required to cancel all of these divergences, and

allows us to de�ne our properly renormalised free energy; for this model the

appropriate identi�cation is λ2 =W2(φ), withW2(φ) the small-φ superpotential

expansion of Eq. (7.19). By substituting in for the UV potential, and noting

that the sub-leading terms in the power expansion of W2 are inconsequential in

the renormalisation procedure, we obtain

Sλ,2 =
1

4

∫
d4x dη dζ

eαU

z6

(
− 5 +

1

2
φ2

2z
4

+

(
ξ

20
+

2

3
φ2φ4 +

3

80
ξ ln

(
φ2

2

κ

))
z6 + . . .

)∣∣∣∣
ρ2

, (7.56)

with which one may verify that the total UV contribution SB,2 + SK,2 + Sλ,2 is

�nite in the z → 0 physical limit.

As a brief aside, let us here make two observations. Firstly, we notice that the

divergences present in the UV-localised actions render the free energy density F
and its second derivative with respect to the source φ2 scheme-dependent; conse-

quently, the familiar concavity theorems for classical thermodynamical systems

are not applicable to this holographic model. Secondly, we note that our choice

of W2 to cancel divergences at the UV boundary has the e�ect of introducing

an additional scheme-dependence in the form of the free parameter κ; we shall

specify our assigned value for this parameter soon.

Having established our prescriptions for the two boundary-localised poten-

tials, we may substitute directly for λ1 and λ2 into Eq. (7.50) to obtain the

following expression for F :

F = lim
ρ1→ρo

eα

10

(
2∂ρA− 5∂ρχ

)∣∣∣∣
ρ1

− lim
ρ2→+∞

eα

10

(
17∂ρA− 5∂ρχ+ 10W2

)∣∣∣∣
ρ2

. (7.57)

As was previously observed with our analysis of Romans supergravity, we here
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too notice that the IR contribution to the free energy density is proportional to

a conserved quantity; the expression in the �rst line of Eq. (7.57) is equal to the

ρ-invariant quantity de�ned in Eq. (5.34) (ignoring an immaterial factor of ten),

and hence we may evaluate this IR-localised term at the UV boundary instead

without a�ecting our results. Gathering together terms, we therefore obtain

F = − lim
ρ2→+∞

e4A−χ
(

3

2
∂ρA+W2

)∣∣∣∣
ρ2

, (7.58)

which we note is identical to the analogous result for Romans supergravity,

shown in Eq. (6.76). If we instead keep the two UV contributions separate and

proceed to substitute in for χ and A using their respective UV expansions, we

�nd

F =
1

20
eαU

(
27χ6 − 12ω6

)
− 1

120
eαU

(
20φ2φ4 + 27χ6 − 12ω6 −

ξ

8

(
12− 9 ln

(
φ2

2

κ

)))
(7.59)

= − 1

120
eαU

(
20φ2φ4 − 135χ6 + 60ω6 −

ξ

8

(
12− 9 ln

(
φ2

2

κ

)))
, (7.60)

where the �rst line of Eq. (7.59) is obtained by evaluating the conserved quantity

at the UV boundary. Our adopted constraint Υ = A− 5
2χ = ω (which is satis�ed

by all classes of solutions) imposes that χ6 = 0, and we select a renormalisation

scheme by making the convenient assignment κ = e−
4
3 , so that our �nal result

for the free energy density is

F = − 1

120
eαU

(
20φ2φ4 + 60ω6 +

9

8
ξ ln

(
φ2

2

))
. (7.61)

Backgrounds which realise a domain-wall geometry and locally preserve six-

dimensional Poincaré invariance furthermore require that ω = 0 ⇒ ωU = ω6 =

0, and the same expression then becomes

F (DW ) = − 1

120
e9χU

(
20φ2φ4 +

9

8
ξ ln

(
φ2

2

)))
. (7.62)

As with our analysis of the six-dimensional supergravity, we shall here too choose

to always set χU = AU = 0 in order to simplify the comparison of F between

di�erent backgrounds. The parameter χU vanishes if we implement a rescaling

of the holographic coordinate via z → ze
3
2χU , while the parameter AU may be
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cancelled by a simple additive shift of any given background solution for the

warp factor, A→ A−AU .

7.3 Scale setting and numerical implementation

Scale setting

We have classi�ed the various solution branches of interest to our investigation,

and have now derived a general expression for the free energy density F as a

function of the deformation parameters which characterise all solutions in the

far UV. As with our energetics analysis of the six-dimensional supergravity in

Chapter 6, it is convenient to introduce a universal energy scale in order to

facilitate comparison between the di�erent classes; this also ensures that their

respective parameter spaces have the same dimensionality. In Eqs. (7.31 - 7.33)

we presented identities which relate the UV parameters for the con�ning and

skewed classes of solutions, which are obtained as a consequence of the relation

shown in Eq. (7.30). This relation is satis�ed only up to an additive constant,

which is a constrained parameter in the case of the con�ning solutions (�xed by

the requirement that no conical singularity exists at the end of space) though

may be freely chosen for the skewed solutions.

Recall from Sec. 5.3 that the combination de�ned in Eq. (5.34) represents a

conserved quantity which is invariant with respect to the radial coordinate; for

any given background within any class, this quantity may be evaluated at any

value of ρ and will yield the same result. We may therefore consider substituting

in for the IR expansions of any one branch of solutions and taking the ρ → ρo

limit, and then equating this result to the same expression evaluated instead

using the UV expansions presented in Eqs. (7.2, 7.3) in the z → 0 limit; this

exercise would hence provide us with a scale-independent relation between the

IR and UV expansion parameters, unique to each class of backgrounds. We

focus in particular on the con�ning and skewed solutions, for which we derive

the following:

−2

3
= eα

c
U−αcI

(
9χc6 − 4ωc6

)
, (7.63)

2

3
= eα

s
U−αsI

(
9χs6 − 4ωs6

)
, (7.64)

where we have reintroduced αU ≡ 4AU −χU and αI ≡ 4AI −χI , and where the

superscripts c and s denote evaluation using the IR expansions for the con�ning
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and skewed classes, respectively. As anticipated, these expressions are identical

after making the parameter replacement ω6 → −ω6 provided that χcI = χsI
(recall that χc6 = χs6 = 0 by necessity). The parameter χI is constrained for the

class of backgrounds which holographically model con�nement, while it may be

freely chosen for the related branch of skewed solutions; as with our exploration

of the D = 6 supergravity, we can reduce the dimensionality of the space of free

parameters for the latter by using the former to derive the free energy density

for both classes.

To facilitate this, and again inspired by the discussion in Ref. [177], we

reintroduce the universal energy scale Λ which allows us to legitimately compare

the energetics for the various branches of solutions listed in Sec. 7.1. We adopt

the same prescription for this universal scale as in Eq. (6.84), de�ning Λ to be

the reciprocal of the time taken by a massless particle to reach the end of space

at ρ = ρo from the UV boundary. This equation is reproduced below:

Λ−1 ≡ t ≡
∫ ∞
ro

dr̃

√
grr
|gtt|

=

∫ ∞
ro

dr̃ e−A(r̃) =

∫ ∞
ρo

dρ̃ eχ(ρ̃)−A(ρ̃) ,

and we remind the Reader that taking the absolute value of the metric com-

ponent gtt ensures that Λ is a real quantity, and that χ and A are evaluated

on the numerical backgrounds. Let us consider a simple coordinate rescaling of

the form xµ → σxµ, η → ση, and ζ → σζ, which we see from the constrained

seven-dimensional metric in Eq. (5.13) is equivalent to the linear �eld shifts

χ → χ + 2
3 ln(σ) and A → A + 5

3 ln(σ) (so that A → A + 2 ln(σ)). From the

UV asymptotic expansions presented in Eqs. (7.2, 7.3) we furthermore observe

that these shifts should be supplemented by the rescaling of the holographic

coordinate z → σz ⇔ ρ → ρ − 2 ln(σ) to ensure that AU = χU = 0. Under

such a transformation the remaining UV parameters are rescaled as

φ2 → σ2φ2 , (7.65)

φ4 → σ4
[
φ4 − 18√

5
φ2

2 ln(σ)
]
, (7.66)

ω6 → σ6ω6 , (7.67)

while the energy scale satis�es Λ→ σΛ. The more complicated scaling transfor-

mation of φ4 is due to the presence of a logarithmic term at order z4 in the UV

expansion for φ in Eq. (7.2), and we must account for this extra contribution

when extracting data for this parameter. By inspection of Eq. (7.61) we see that
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dimensional analysis demands that the combination φ2φ4 has the same units as

ω6, and hence we see that the following combinations represent dimensionless

(scaling-invariant) quantities:

φ̂2 ≡ φ2Λ−2 , (7.68)

ω̂6 ≡ ω6Λ−6 , (7.69)

F̂ ≡ FΛ−6 . (7.70)

In Sec. 7.4 we will present the results of our energetics analysis in terms of these

rescaled parameters, which we shall henceforth distinguish with hats.

We conclude this subsection with a brief but important clari�cation. From

the non-trivial scaling behaviour of φ4 shown in Eq. (7.66)�which is a conse-

quence of the additional logarithmic term present in the sub-leading coe�cient of

the expansion in Eq. (7.1)�we infer that the UV parameter φ4 does not directly

correspond to the VEV of the ∆ = 4 boundary operator O4 dual to φ. Were we

to conduct a more careful analysis, we would compute the operator one-point

function 〈O4〉 by functionally di�erentiating the holographically renormalised

on-shell action with respect to the source φ2 (see for example Refs. [15�17] for

details). Nevertheless, for our purposes it is su�cient to know that the deforma-

tion parameter φ4 is associated with the O4 condensate, and with some abuse

of terminology we shall refer to it as such from this point forward.

Numerical implementation

Our derived expression for the free energy density F , which plays a foundational
role in our energetics analysis of the theory phase structure, is formulated as a

function of the universal UV deformation parameters {φ2, φ4, ω6, ωU , χU , AU}.
To plot F we are therefore required to employ a numerical routine in order to

extract physical values for this set of parameters for each class of backgrounds,

and we now turn our attention to detailing this process.

Our numerical method is essentially the same as that described in Sec. 6.3,

though we nevertheless provide a separate outline here to highlight any di�er-

ences compared to the circle-compacti�ed theory:

1. For any given choice of the free parameters which characterise the IR �eld

expansions of the class in question, and having �xed the end of space

by assigning ρo = 0, we construct numerical backgrounds for φ, χ, ω,

and A by setting up boundary conditions in the deep IR and evolving
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the solutions towards the UV using the equations of motion. Note that

our adopted constraint Υ = ω ensures that any one of the backgrounds

{χ, ω,A} may be obtained as a linear combination of the other two.

2. We match the constructed backgrounds to the general UV expansions at

some choice of ρ = ρm, solving for each UV parameter in turn to extract

the set {φ2, φ4, ω6, ωU 6= 0, χU 6= 0, AU 6= 0}. The value of the radial

coordinate at which the matching is performed must be chosen to ensure

that any numerical noise is minimised, and should be su�ciently far into

the UV region of the geometry that the background φ(ρ) has had su�cient

time to reach the UV �xed point φ = 0 (or as close as is numerically

feasible).

3. Using the values of χU and AU obtained in the previous step, the holo-

graphic coordinate is rescaled according to z → ze
3
2χU and then the warp

factor background is shifted by A(ρ) → A(ρ) − AU , to set χU = AU = 0

(note that this consequently also sets ωU = 0). We match these rescaled

background pro�les to the UV expansions again to extract the new set of

parameter data {φ̄2, φ̄4, ω̄6, ω̄U = 0, χ̄U = 0, ĀU = 0}, where we use bars
here to emphasise that the other parameters have also been rescaled as a

result. We remind the Reader that φ4 (associated with the VEV of the

boundary operator O4 dual to φ) exhibits non-trivial rescaling behaviour

under the transformation of the radial coordinate shown above, so that

φ̄4 =
(
φ4 − 27√

5
χUφ

2
2

)
e6χU .

4. Finally we compute the universal scale Λ as de�ned in Eq. (6.84), by

substituting in for the rescaled background solutions χ(ρ) and A(ρ) and

integrating over their entire domain. For each numerical background we

are therefore able to extract the parameter data {φ̂2, φ̂4, ω̂6}, and can

compute F̂ using Eq. (7.61).

It is instructive to supplement the above schematic overview with a more speci�c

description of the numerical process for each class of solutions individually, to

clarify any numerical technicalities case-by-case. We now proceed to address

each class in the order that they were introduced in Sec. 7.1.

As with the analogous class for the six-dimensional Romans supergravity,

the supersymmetric background solutions all yield φ2 = 0 when matched to the

UV expansions since the IR expansion for φ shown in Eq. (7.15) contains no
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free parameters once the end of space has been �xed; from Eq. (7.62) we there-

fore deduce that this class has identically vanishing free energy. The integral

which de�nes the universal scale Λ is a divergent quantity when evaluated in

the deep IR for these backgrounds (veri�ed by simply substituting in using the

IR expansions for χ = 2
3A and A = 5

3A), though this is inconsequential for our

purposes.

From Eq. (7.66) we see that the existence of an additional logarithmic term

at order z4 in the φ UV expansion induces non-trivial scaling behaviour in

the parameter φ4. This subtlety slightly complicates our treatment of the IR-

conformal solutions in comparison to the D = 6 supergravity, due to the fact

that it is not obvious how one should de�ne an appropriate scale-invariant ratio κ

of the source φ2 and condensate parameter φ4 (analogously to that of Eq. (6.91)),

or even if such a ratio exists. Irrespective of this issue, we may still extract

parameter data for this class of backgrounds by taking a di�erent approach: a

set of numerical backgrounds is generated using the IR expansions presented in

Eqs. (7.20 - 7.22) by dialling the free parameter φI > φIR, and each background

is matched in turn to the UV expansions at some value ρ = ρm. The point at

which the matching is performed should be su�ciently high so as to ensure that

φ(ρ) has properly converged at the trivial �xed point φ = 0 in the UV, and

moreover that this is the case for all of the generated backgrounds (recall that

any one pro�le in this class may be shifted by ρ → ρ − δ to produce another

completely equivalent pro�le). The leading-order UV parameters AU and χU

may simply be set to zero by hand, and the extracted data {φ2, φ4} does not
require any further manipulation. We remind the Reader that no end of space

exists for this branch of solutions (i.e. ρ is not physically bounded from below),

and hence the integral de�ning Λ diverges; since these backgrounds exhibit scale-

invariance this observation is of no real importance, as F would be identical had

we adopted any other de�nition for Λ.

Parameter data for the class of con�ning solutions {φc2, φc4, ωc6, Λc} is ob-
tained by simply matching backgrounds to the UV expansions, and the nu-

merical procedure for this class does not present any technical issues which

must be speci�cally addressed. The identities presented in Eqs. (7.31 - 7.33) en-

able us to simultaneously extract the corresponding sets of UV parameter data

{φs2, φs4, ωs6} for the related class of skewed solutions; moreover, the universal

scale Λ may be computed by substituting instead for the con�ning backgrounds
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according to Eq. (7.30):

(Λs)−1 =

∫ ∞
ρo

dρ̃ eχ
s(ρ̃)−As(ρ̃) =

∫ ∞
ρo

dρ̃ e−
1
3

[
2χc(ρ̃)+Ac(ρ̃)

]
. (7.71)

By computing Λs for the skewed solutions in terms of the numerical backgrounds

which manifest a smoothly tapered geometry, we guarantee that χsI = χcI and

hence ensure that the parameter identities Eqs. (7.31 - 7.33) are satis�ed. We

therefore �nd that it is unnecessary to numerically generate backgrounds for the

branch of skewed solutions using Eqs. (7.25 - 7.27), and that the complete set of

data {φs2, φs4, ωs6, Λs} is obtainable from that of the regular backgrounds.

Finally, the required UV parameter data for the BSDW solutions is extracted

according to the numerical process outlined above, with no particular class-

speci�c subtleties to mention. In Table 7.2 we present a summary of how the

UV deformation parameters which characterise each branch of solutions are

constrained, omitting {χU , ωU , AU} since they are always rescaled to zero.

Class φ2 φ4 ω6 Scale setting

SUSY 0 Free 2A = 3χ (ω6 = 0) None
IRC < 0 φ4 = φ4(φ2) 2A = 5χ (ω6 = 0) None

Con�ning Free Curvature sing. Conical sing. Λ
Skewed Free αs = αc Υs = −Υc Λ
BSDW Free Free 2A = 5χ (ω6 = 0) Λ

Table 7.2: Summary of parametrisation, constraints, and scale setting proce-
dure for each class of solutions in our energetics analysis of the torus-reduced
supergravity. For the IRC solutions φ4 has a functional dependence on the
source φ2 and is not a free parameter, though as previously discussed this de-
pendence is not known analytically.

7.4 Phase structure

Free energy plots

In Sections 5.4 and 5.5 we computed the spectra of composite states for the

�eld theory living on the boundary of the D = 7 bulk spacetime, by considering

�uctuations about background solutions which realise a tapered geometry in the

deep IR. We uncovered the existence of a tachyonic state in a certain region of
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the parameter space, which is indicative of an instability in the theory; such

background pro�les for φ correspond holographically to unstable RG trajecto-

ries in the dual �eld theory. We therefore anticipate the existence of a phase

transition by necessity, whereby the system would prevent these unstable back-

ground con�gurations from ever being energetically favoured, and our analysis

mirrors that of the six-dimensional model: we systematically compute the free

energy density F̂ for the various branches of solutions discussed in Sec. 7.1 using

the numerical procedure detailed in the previous section, and present the results

of our investigation here.

Let us start by recalling that all distinct classes of backgrounds which are

admitted as solutions by the compacti�ed supergravity theory exhibit the same

asymptotically convergent behaviour in the far UV, and are obtainable as defor-

mations of the unique supersymmetric �xed point solution φ = 0 by the set of

UV parameters {φ2, φ4, ω6, ωU , χU , AU}. This �xed point solution realises an

AdS7 background geometry, and for the dual six-dimensional �eld theory living

on the boundary these deformations fall into one of two categories.

From Eq. (5.11) we see that the �rst of these corresponds to the insertion of

a relevant ∆ = 4 operator O4, the source for which is identi�ed as the lead-

ing order coe�cient φ2 in the asymptotic expansion Eq. (7.1). The vacuum

expectation value for this operator is associated with the sub-leading param-

eter φ4. The second type of possible deformation is the compacti�cation of

an external space-like dimension on a circle, the size of which is governed by

an additional scalar �eld introduced in the sigma-model coupled to gravity; as

previously discussed, for the toroidal compacti�cation on T 2 = S1 × S1 of the

D = 7 supergravity we extend the scalar manifold to include χ and ω. These

�elds are dual to marginal boundary operators sourced by the leading-order UV

parameters χU and ωU , respectively, and their VEVs are associated with the

sub-leading parameters χ6 and ω6. However, we remind the Reader that by

choosing to impose the constraint A− 5
2χ = ω in order to (locally) preserve �ve-

dimensional Poincaré invariance within the {xµ, ζ} subspace, we consequently

completely suppress the χ6 condensate for all backgrounds.

Although the asymptotic behaviour of the various classes in the far UV

may be described in terms of a �nite set of deformation parameters, the non-

perturbative dynamics of the dual �eld theory is encoded by the non-trivial

functional relations between them; as with the corresponding quantities of the

six-dimensional theory, the operator condensate parameters φ4 and ω6 behave

as non-linear response functions of the ∆ = 4 operator source φ2. For this
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reason we will show the free energy plotted as a function of φ̂2, so that the

dependence of F̂ on the other UV parameters is implicitly accounted for. With

these preambulatory comments out of the way, we shall now turn our attention

to discussing the results of our investigation into the theory phase space.

In Figure 7.2 we present the holographically renormalised free energy den-

sity F̂ as a function of the source φ̂2, rescaled with appropriate powers of Λ as

de�ned in Eq. (6.84), for �ve of the distinct classes of solutions listed in Sec. 7.1.

Starting with the simplest case, the branch of supersymmetric backgrounds cor-

responds to deforming the φ = 0 critical point solution with the development

of a non-zero condensate�associated with φ̂4�for the operator dual to φ (re-

ferred to as a VEV deformation, see Ref. [16]), which on the gravity side of the

duality drives the solutions monotonically towards a good singularity (φ→∞)

at the end of space. Every background within this family yields φ2 = 0 when

matched to the UV expansions, and hence according to Eq. (7.62) this class

always has identically vanishing free energy; they are denoted by the grey point

at the origin of the phase space (enlarged for visibility, they do not �ll a disk).

The backgrounds which we refer to as IR-conformal preserve local six-

dimensional Poincaré invariance within the subspace spanned by the coordinates

{xµ, η, ζ}, and their interpolation between the two critical point solutions of the

gravitational theory corresponds holographically to a stable RG �ow between

two distinct D = 6 CFTs. Technically there is only a single physically distinct

solution within this branch, as any one background may be shifted by ρ→ ρ−δ
to generate any other; the speci�c choice of the only tunable parameter φI sim-

ply determines at which energy scale the RG trajectory transitions from the

supersymmetric CFT to the other. Unlike with our treatment of the analogous

IRC class in the six-dimensional supergravity, a scale-invariant ratio κ of the

source and VEV of the ∆ = 4 operator O4 dual to φ was not identi�ed, and

hence the {φ2, φ4} parameter data for this class was extracted manually using

the numerical procedure described in Sec. 7.3. The results of this exercise are

shown with the solid orange line in the φ̂2 < 0 region of Fig. 7.2.

The regular backgrounds that holographically realise con�nement�for which

one of the circles internal to the torus shrinks to a point in the deep IR and

the geometry smoothly closes o��are represented in Figures 7.2 and 7.3 by the

short-dashed black, shortest-dashed grey, and solid red lines; this segmentation

denotes solution stability, as explained in the captions. Finally, the class of

skewed solutions which are related to the con�ning backgrounds via the trans-

formation Υ→ −Υ are denoted by the long-dashed magenta line, and the badly
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Figure 7.2: The free energy density F̂ as a function of the deformation param-
eter φ̂2 for the IR-conformal solutions (solid orange line), the skewed solutions
(long-dashed magenta line), and the badly-singular domain-wall (BSDW) solu-
tions (dashed blue line). The SUSY solutions are denoted by the grey point
at the origin. The con�ning solutions are separated into three regions: the
stable portion of the branch (short-dashed black line), the metastable portion
(shortest-dashed grey line), and the unstable portion (solid red line).

singular domain-wall (BSDW) solutions are represented by the dashed blue line.

Before proceeding to discuss the evident �rst-order phase transition in these

plots, let us �rst emphasise some other important features of Fig. 7.2. We start

by observing that all branches of solutions share a common point in the theory

phase space and that, as expected, they each connect to the supersymmetric so-

lutions at the origin; this corroborates our claim that each class of backgrounds,

irrespective of their dissimilar geometric properties, are obtainable as deforma-

tions of the trivial critical point solution. Furthermore all classes have a �nite,

computable free energy density.

Within the φ̂2 6 0 region of the parameter space we �nd that F̂ is bounded

by the only two branches of solutions which fail to (locally) preserve the max-

imum six-dimensional Poincaré invariance. The con�ning backgrounds, which

admit a sensible �eld theory interpretation at all scales and are free from sin-

gularities, minimise the free energy of the system and hence provide the ener-

getically favoured geometric con�guration; the skewed backgrounds, for which
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the η-parametrised S1 diverges in volume rather than shrinking in the deep IR,

instead maximise it. The various other branches of solutions, which all realise a

domain-wall geometry with Poincaré invariance extended to include the circle-

compacti�ed dimension parametrised by η, lie within the region of the phase

space delimited by the Υ 6= 0 backgrounds.
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Figure 7.3: The free energy density F̂ as a function of the deformation pa-
rameter φ̂2 for the con�ning solutions, and the BSDW solutions (long-dashed
blue line). We focus in particular on the region of the parameter space near to

the phase transition at φ̂2 = φ̂∗2; we denote the stable portion of the con�ning
branch by the dashed black line, the metastable portion by the short-dashed
grey line, and highlight the unstable tachyonic region in solid red.

Turning our attention to the complementary φ̂2 > 0 region of the plots, we

observe similar evidence of a �rst-order phase transition as was encountered in

our investigation of Romans D = 6 supergravity. For small positive values of

φ̂2 we see that the con�ning backgrounds continue to be energetically favoured,

and the system prefers to maintain geometries which smoothly close o� in the

deep IR. As the source is dialled higher in order to approach the tachyonic in-

stability, however, we notice the existence of a critical value φ̂2 = φ̂∗2 at which

the badly singular solutions intersect the con�ning branch and the two classes

brie�y have identical free energy. Beyond this critical value it is instead the

BSDW solutions which minimise F̂ , and it becomes energetically favourable for

the system to locally restore six-dimensional Poincaré invariance by allowing
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the η-parametrised S1 to maintain a non-zero volume at all scales.

This feature is reminiscent of that identi�ed for the six-dimensional super-

gravity in Sec. 6.4, and we again infer the existence of a �rst-order phase tran-

sition which identi�es two distinct phases of the theory: when the source of the

∆ = 4 operator is su�ciently small
(
φ̂2 < φ̂∗2

)
the system is in the con�ning

phase, and beyond the critical value
(
φ̂2 > φ̂∗2

)
it enters the domain-wall phase.

The region of the parameter space which contains the tachyonic instability is

rendered inaccessible as a consequence of the system transitioning from the for-

mer phase to the latter, wherein energetic stability necessitates the spontaneous

decompacti�cation of the η-parametrised S1 internal to the torus. We further-

more notice that there are con�ning branch backgrounds within the φ̂2 > φ̂∗2
region of the plot which�while not energetically favoured�nevertheless do not

contain a tachyonic state within their spectra of �uctuations; we refer to these

backgrounds as metastable, and represent them by the shortest-dashed grey line.

In Fig. 7.3 we present a magni�ed view of Fig. 7.2, focusing in particular on the

region of the parameter space near to the phase transition.

We can be slightly more quantitative in our examination of the theory phase

space, by numerically extracting the values of the various parameters at the

phase transition. The coordinates of the point at which the con�ning and BSDW

classes of solutions intersect in Figures 7.2 and 7.3, corresponding to the critical

values of the source and free energy, are given by

(
φ̂∗2 , F̂∗

)
'
(
0.281 ,−25.54

)
, (7.72)

and the numerical backgrounds situated at this special point are generated using

the IR parameter choices

φ∗I ' 0.039 , φ∗b ' 33.54 . (7.73)

The values of the two condensate parameters φ4 and ω6 on either side of the

transition may also be determined numerically, though we remind the Reader

that ω6 is identically zero for all backgrounds which satisfy the domain-wall

constraint A = 5
2χ. By reintroducing the notation whereby subscripts `<' and

`>' are used to denote quantities extracted in the con�ning and domain-wall
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phases, respectively, we obtain the following:

φ̂∗4< ' −0.347 , φ̂∗4> ' 546 ,

ω̂∗6< ' 51.21 , ω̂∗6> = 0 , (7.74)

and we note the signi�cant enhancement of the parameter φ̂4 associated with

condensate of the dimension-4 operator O4 dual to φ. This point will be of

particular interest in Sec. 7.5 when we come to re-examine the results of our

probe spectrum analysis in the context of the theory phase space.

We conclude by observing that the free energy plots presented and discussed

in this section show many similarities to the analogous plots in Figures 6.2, 6.3,

and 6.4 for the six-dimensional theory, although unfortunately this resemblance

also includes the two pathologies that were identi�ed at the end of Sec. 6.4.

The �rst is that there once again appears to be a maximum admissible value

φ̂2 ' 2.50 (φ2 ' 0.55) to which the source may be dialled, and no branch

of solutions listed in our catalogue is able to explore the phase space beyond

this point; there is no physical reason a priori to predict that such an upper

bound should be imposed on this deformation parameter. The other reoccurring

pathology presents itself once the system has transitioned to the domain-wall

phase of the theory at the critical value φ̂2 = φ̂∗2. The backgrounds which

minimise F̂ in this region of the parameter space, and hence which would be

energetically favoured and physically realised, are those which evolve φ towards

a bad singularity at the end of space. These backgrounds do not admit a sensible

dual description in terms of a lower-dimensional �eld theory, and our ability to

interpret them holographically breaks down. As a consequence of this second

observation we infer that the phase transition identi�es an upper bound on

the source at φ̂2 = φ̂∗2. For deformations of the supersymmetric boundary

CFT which correspond to the insertion of the ∆ = 4 operator O4 dual to φ,

and furthermore for which the source of this operator is dialled beyond the

aforementioned upper bound, our dual formulation in terms of a sigma-model

coupled to gravity is ine�ective. We shall return to this discussion in Chapter 8.

Characterising the phase transition

At this stage we have conducted a systematic exploration of the phase space

for the toroidally reduced seven-dimensional supergravity, by numerically com-

puting the free energy density F̂ as a function of the universal deformation
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parameters which characterise the asymptotic behaviour of the bulk �elds in

the far UV. The results of our analysis are presented in Figures 7.2 and 7.3,

and they reveal clear evidence of a �rst-order phase transition which prevents

the system from accessing an unstable region of the theory parameter space as

the O4 source is dialled beyond the critical value φ̂2 = φ̂∗2. With the existence

of this transition established, we proceed in this subsection to provide a more

rigorous characterisation by studying the properties of some convenient order

parameters within each of the two phases of the theory.

We refer to the �rst of these order parameters as the magnetisation M̂, here

de�ned analogously to Eq. (6.101) in Sec. 6.4 for the six-dimensional supergrav-

ity:

M̂ ≡ Λ−4 ∂

∂φ2
F(φ2,Λ) =

∂

∂φ̂2

F̂(φ̂2) . (7.75)

That is, we consider the variation of F with respect to the source φ2 (measured

in appropriate units of Λ) while holding �xed χU = AU = 0. We remind the

Reader that our �nal expression for the free energy density as shown in Eq. (7.61)

is a function of the three UV parameters {φ2, φ4, ω6}, and that those associated
with the two operator VEVs (φ4 and ω6) are themselves implicitly dependent

on φ2; these functional dependences are not known in closed form, and hence

the derivative in Eq. (7.75) cannot be evaluated analytically. Nevertheless, we

can instead compute the derivative numerically by plotting the ratio of �nite

di�erences ∆F̂ and ∆φ̂2 for the extracted data.

Similarly to ∆̂DW de�ned in Eq. (6.102), we require that our second order pa-

rameter provides a convenient measure of to what degree any given background

solution fails to locally preserve Poincaré invariance along the S1-compact di-

mension parametrised by η. For the seven-dimensional supergravity we �nd that

the condensate ω6 of the boundary operator dual to the sigma-model scalar ω is

a suitable candidate for such an order parameter; from the constrained metric

ansatz in Eq. (5.13) we see that it is this VEV which is ultimately responsible

for controlling the volume of the S1 parametrised by η. Those backgrounds

which realise a DW geometry by satisfying Υ = A − 5
2 = ω = 0 (and hence

which preserve the full six-dimensional Poincaré invariance) have ω6 vanishing

identically, while we �nd that ω6(φ2) is some non-trivial function when deter-

mined for the con�ning and skewed branches of backgrounds.

In Figures 7.4 and 7.5 we present plots of the (minimum) free energy den-

sity F̂ and magnetisation M̂ as functions of φ̂2, restricting our attention to the

con�ning and BSDW classes of solutions only and focusing in particular on the
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Figure 7.4: The minimum free energy density F̂ as a function of the deforma-
tion parameter φ̂2, for the con�ning (solid black) and badly singular domain-wall
(dashed blue) classes of background solutions. The vertical dashed line denotes

the critical value φ̂2 = φ̂∗2 ' 0.281 at the phase transition.

region of the parameter space near to the phase transition. Figure 7.4 shows

that although the minimum free energy of the system is continuous, it is evi-

dently not di�erentiable at the critical value φ̂2 = φ̂∗2 (denoted by the vertical

dashed line). This observation is also clearly demonstrated in Figure 7.5, where

the two phases are demarcated by a discontinuity in the order parameter M̂ at

the critical value of the source.

The second of our two order parameters ω̂6 is plotted in Fig. 7.6, and as

predicted it too shows discontinuous behaviour as the theory transitions from

the con�ning phase to the domain-wall phase. In the former case, the energet-

ically favoured backgrounds geometrically realise con�nement by shrinking the

η-parametrised circle to a point in the deep IR; Poincaré invariance is preserved

only within the {xµ, ζ} subspace, and the operator dual to ω acquires a non-zero

VEV. Conversely, in the domain-wall phase it is the class of BSDW solutions

which instead minimise F̂ , and the full six-dimensional Poincaré invariance is

restored; this is re�ected by the fact that the condensate ω̂6 is completely sup-

pressed once the O4 source is dialled beyond the critical value φ̂2 > φ̂∗2.

Finally for this subsection, in Fig. 7.7 we present the parameter φ̂4 associ-

ated with the VEV of the operator dual to φ as a function of its source φ̂2. We

observe that the transition of the theory from the con�ning phase to the domain-

wall phase, and consequently the spontaneous decompacti�cation of the circular
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Figure 7.5: The magnetisation M̂ as a function of the deformation parameter
φ̂2, for the con�ning (solid black) and badly singular domain-wall (dashed blue)
classes of background solutions. The vertical dashed line denotes the critical
value φ̂2 = φ̂∗2 ' 0.281 at the phase transition.
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Figure 7.6: The UV parameter ω̂6 as a function of the deformation parameter
φ̂2, for the con�ning (solid black) and badly singular domain-wall (dashed blue)
classes of background solutions. The vertical dashed line denotes the critical
value φ̂2 = φ̂∗2 ' 0.281 at the phase transition.

dimension parametrised by η, is associated with the signi�cant enhancement of

the condensate 〈O4〉. As previously discussed, the supersymmetric CFT dual to

the trivial critical point solution φ(ρ) = 0 admits a deformation corresponding
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to the insertion of a ∆ = 4 operator O4; this operator is sourced by the UV

parameter φ2 (which controls the explicit breaking of scale invariance) and has

a VEV associated with φ4 (governing the spontaneous breaking of scale invari-

ance). We shall examine this phenomenon more closely in the next section,

when we revisit the results of our probe spectrum computation from Sec. 5.5.
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Figure 7.7: The UV parameter φ̂4 as a function of the deformation parameter
φ̂2, for the con�ning (solid black) and badly singular domain-wall (dashed blue)
classes of background solutions. The vertical dashed line denotes the critical
value φ̂2 = φ̂∗2 ' 0.281 at the phase transition.

7.5 More about the dilaton

In Sec. 5.4 we presented the numerical results of our spectra computation for

the gauge-invariant modes which descend from the maximal seven-dimensional

supergravity, truncated to retain only a sigma-model scalar coupled to grav-

ity. Subsequently, in Sec. 5.5 we conducted a probe state analysis of the spin-0

sector�implemented by `switching o�' the scalar �uctuation of the metric�

in order to determine how appreciably the excitations exhibit dilaton mixing.

Motivated by our discovery of a tachyonic instability within the class of con-

�ning solutions, we have furthermore computed the free energy density as a

function of a set of universal deformation parameters for several geometrically

distinct backgrounds; in the process we uncovered evidence of a �rst-order phase

transition which prevents the theory from accessing the unstable region of the

181



parameter space. In this section we shall use the extracted data to revisit and

contextualise the results of our probe state analysis, by examining the functional

relations between the various UV parameters and comparing their behaviour to

that of the spin-0 spectrum shown in Fig. 5.3; some supplementary plots are

presented in Appendix E, though we shall not �nd it necessary to refer to these

plots directly for our discussion here.

Let us start by considering the rightmost region of the plot in Fig. 5.3, where

we observe that the lightest gauge-invariant resonance�which we remind the

Reader is tachyonic�is gradually becoming massless in the large-φI limit. There

is a signi�cant discrepancy between this state and the probe approximation,

and we hence infer that it contains a substantial dilatonic component; since

the dilaton is the pNGB associated with the spontaneous breaking of scale

invariance, we additionally infer that its vanishing mass is indicative of scale

invariance being explicitly restored. We �nd evidence to support this inference

upon examining the behaviour of the UV parameter φ̂2�which sources the

operator dual to φ, and which is responsible for governing the explicit breaking

of conformal invariance�as a function of the tunable IR parameter φI . In

the limit φI → ∞ we �nd that φ̂2 → 0, signalling that the deformation of

the supersymmetric CFT which explicitly breaks dilatation invariance is being

suppressed and that the corresponding pNGB should asymptotically become

massless.

Similarly, we may consider the behaviour of the other UV parameters in

this same limit; we deduce that φ̂4 diverges as the source φ̂2 asymptotically

approaches zero, while the parameter ω̂6 instead vanishes. Since ω6 is identi-

�ed as the condensate of the marginal operator dual to the sigma-model scalar

ω�and moreover is ultimately responsible for governing the volume of the S1

parametrised by η�we should expect to �nd that it is suppressed in the limit

φI → ∞, for which F̂ along all branches of backgrounds converges to the su-

persymmetric solutions (realising a domain-wall geometry). The enhancement

of the UV parameter φ̂4 associated with the condensate 〈O4〉 of the ∆ = 4

operator instead implies that conformal invariance is spontaneously broken in

the dual �eld theory as φI →∞.

At large values of the tunable IR parameter φI we therefore have that the

explicit breaking of scale invariance is suppressed (since φ̂2 → 0), the sponta-

neous breaking of scale invariance is enhanced (as φ̂4 becomes large), and an

asymptotically massless scalar resonance is unambiguously missed by our probe

comparison; considered altogether, we may infer that this parametrically light
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Figure 7.8: The UV parameter φ̂4 as a function of the deformation parameter
φ̂2, for the con�ning (solid black, short-dashed grey, and dashed red), skewed
(longest-dashed magenta), and badly singular domain-wall (long-dashed blue)
classes of background solutions. The vertical dashed line denotes the critical
value φ̂2 = φ̂∗2 ' 0.281 at the phase transition.

spin-0 state experiences signi�cant mixing with the dilaton. In Fig. 7.8 we also

show φ̂4(φ̂2) for the branch of badly singular DW solutions, emphasising in

particular the enhancement of φ̂4 at the phase transition.

As with the six-dimensional theory discussed in Chapter 6 however, we

should interpret this interesting observation cautiously; our energetics analy-

sis of the theory phase structure uncovered the existence of a �rst-order phase

transition, which prevents the con�ning backgrounds within the large-φI region

of the parameter space (and hence also the aforementioned light dilatonic state)

from ever being energetically favoured. To clarify this point, we remind the

Reader of our discussion in Sec. 7.4 where we identi�ed two distinct phases

within the torus-reduced theory; it is the domain-wall phase�which does not

admit a sensible dual description in terms of a lower-dimensional QFT�that

is physically realised in the φI →∞ limit, and we must therefore concede that

our results can only be interpreted holographically for con�ning backgrounds

that are generated with φI below the critical value φ̂∗I at the phase transition.

As we have previously mentioned in Sec. 6.4 this limitation is not necessarily

indicative of a pathology in the theory, but rather highlights the fact that our

analysis of the phase structure using an e�ective supergravity approximation is
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most likely incomplete; we shall elaborate on this issue in Chapter 8.

Turning our attention now to the small-φI region of Fig. 5.3 we notice that�

in contrast to the analogous probe plot in Fig. 4.3, neither the lightest nor

next-to-lightest gauge-invariant resonances in the spectrum show any indication

of containing a signi�cant dilatonic component; they are well approximated by

the probe computation (refer back to Sec. 5.5 for a brief discussion of this phe-

nomenon as it pertains to the results of Chapter. 3). We instead observe that

in proximity of the phase transition, the lightest state which exhibits dilaton

mixing is a relatively heavy aχ excitation with mass M ≈ 1.45. As with the

corresponding region of the plot in Fig. 4.3, the reason for this interesting phe-

nomenon may be attributed to the behaviour of the marginal operator's VEV.

As the source of the ∆ = 4 operator φ̂2 approaches zero from below, we �nd

that the UV deformation parameter φ̂4 (associated with the O4 operator con-

densate) is suppressed. In the same limit, we also observe that the condensate of

the marginal operator dual to ω�governed by the parameter ω̂6�instead takes

a comparatively large non-zero value; it is hence this VEV which is responsible

for the spontaneous breaking of scale invariance in the dual theory, and for the

mixing of a subset of the massive scalar states with the dilaton.
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Chapter 8

Discussion

We dedicate this short chapter to summarising the key results of this Thesis�

based on work contained within Refs. [1�4]�and emphasising the novel research

which it contributes to the literature on top-down holography.

Summary of research

In Chapters 4 and 5 we computed the spectra of massive excitations (dually cor-

responding to composite states) for two well-established and rigorously de�ned

supergravities, which are known to provide the low-energy e�ective description

of superstring theory and M-theory; these are the six-dimensional half-maximal

supergravity originally written by Romans [46] and the seven-dimensional maxi-

mal supergravity �rst constructed in Refs. [77,78], respectively. For both models

we considered the �eld �uctuations of a sigma-model coupled to �ve-dimensional

gravity, on background geometries which holographically realise con�nement by

smoothly shrinking a circle-compacti�ed dimension to zero volume at the end

of space.

Our numerical computations for these modes extend those which have pre-

viously been carried out in the literature by considering background which in-

terpolate between the two critical point solutions of each theory, in addition to

those which permit φ to explore a runaway direction of the scalar potentials. In

the case of the D = 6 theory we furthermore considered the physical excitations

which descend from the 1- and 2-forms of the complete action which de�nes the

theory, an exercise that had not previously been attempted prior to the work in

Ref. [1]. To tackle this issue we considered the �uctuations of generic p-forms
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(for p = 1, 2), and demonstrated explicitly the derivation of their corresponding

�uctuation equations using appropriate Rξ gauge-�xing terms; in the process

we addressed some technical subtleties associated with gauge-invariance and

Higgsing e�ects.

The other important result of these spectra computations was our discovery�

for both of the supergravity theories�of a tachyonic instability within their re-

spective scalar sectors. We found that in each case a tunable IR parameter φI

could be dialled in such a way that the mass of the lightest resonance is para-

metrically suppressed, until eventually the system is brought close enough to

the aforementioned instability that this state becomes tachyonic at some value

φI = φτI .

Motivated by previous work in Ref. [91] and Ref. [94], we tested a diagnostic

tool (discussed in Ref. [54] and �rst implemented in Ref. [2]) designed to de-

tect mixing e�ects between scalar resonances and the pseudo-Nambu�Goldstone

boson associated with the spontaneous breaking of conformal invariance: the

dilaton. This test consists of neglecting the contribution h to the gauge-invariant

variables aa�which corresponds to the spin-0 �uctuations of the decomposed

metric�(hence `switching o�' the back-reaction these states might otherwise

induce in the underlying geometry), and comparing the resultant probe spectra

to the proper complete computation; where appreciable discrepancies arise we

infer the presence of dilaton mixing e�ects.

We applied this probe analysis to the scalar sectors of the two supergravity

theories and found that�in proximity of their unique trivial solutions�the

lightest spin-0 resonance is not parametrically light, and nor does it exhibit

the features associated with being a dilaton admixture; some heavier states in

this region of the parameter space, however, did appear to contain a signi�cant

dilatonic component, and we referred to these states as approximate dilatons.

By dialling an IR parameter in order to explore beyond the trivial �xed point

solution�speci�cally, in proximity of the aforementioned tachyonic instability�

we furthermore found that the (parametrically) lightest scalar excitation in each

theory is not e�ectively approximated by its corresponding probe state pa, and

hence is identi�able with the dilaton. Finally, in the φI →∞ limit (well beyond

the appearance of an instability) we noticed that in both supergravity theories

the mass of the tachyonic state asymptotically converges to zero from below, a

phenomenon which we again attributed to dilaton mixing e�ects.

Having uncovered an instability in the spectra of the two theories we pro-

posed to investigate their respective phase structures, with the understand-
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ing that there must necessarily exist some mechanism by which the branch of

pathological con�ning backgrounds would be prohibited from being physically

realised. With this motivation established, we proceeded to compile a catalogue

of geometrically-distinct backgrounds which are admissible within each com-

pacti�ed supergravity; several of these branches of solutions were unknown in

the literature before Refs. [3, 4], and some within the seven-dimensional theory

(the skewed and general singular classes) are new to this Thesis. Interestingly,

these catalogues of solutions�while not exhaustive�show a remarkable degree

of commonality between the two supergravity theories.

Further to our proposed investigation, we proceeded to derive a general ex-

pression for the free energy density F from the holographically renormalised on-

shell action of each theory, as a function of a set of universal (class-independent)

deformation parameters. We additionally introduced a physically motivated

common energy scale Λ to facilitate comparison between the various types of

solutions, e�ectively ensuring that the space of free parameters within each class

has the same dimensionality. By implementing a numerical routine in order to

extract the required data for the aforementioned UV deformation parameters,

we were therefore able to explore the phase structure of the two supergravity

theories in Chapters 6 and 7.

Our next important result�and perhaps our most signi�cant�came from

this energetics analysis: we uncovered strong evidence within both models of

a �rst-order phase transition which prevents the theory from ever reaching the

tachyonic instability by moving in parameter space along the branch of regular

solutions. We found that beyond a certain critical value of a deformation param-

eter φ̂∗2 (which is associated in each case with the source of a relevant boundary

operator) the system energetically favours a branch of singular domain-wall

backgrounds, and the parameter space is divided into two distinct phases: the

con�ning phase for small source deformations φ̂2 < φ̂∗2, and the domain-wall

phase for φ̂2 > φ̂∗2. This crucial observation furthermore identi�es three sep-

arate regions along the branch of con�ning backgrounds: stable (φI < φ∗I),

metastable (φ∗I < φI < φτI ), and unstable (φI > φτI ).

Finally, by examining the numerical parameter data extracted from our

phase structure investigation we were able to contextualise the results of our

probe state analysis. Crucially, we deduced that the parametrically light dila-

tonic excitation�which appears in proximity of the tachyonic instability�actually

lies within the metastable portion of the con�ning branch, and is hence not phys-

ically realised. We furthermore discovered that the approximate dilaton states

187



within the stable portion of the branch arise due to the complicated inter-

play between enhanced operator condensates and the nearby instability. The

parametrically light dilaton�which emerges in the φI → ∞ limit due to the

eventual suppression of the source deformation which explicitly breaks confor-

mal invariance�is rendered inaccessible, as it resides within the region of the

parameter space well beyond a phase transition.

General observations

We next brie�y comment on some interesting general phenomena which have

proven to be recurrent within both of the toroidally compacti�ed supergravities

that we have studied, and which we expect may be more widely applicable to

other similar models.

The �rst such observation is regarding the spectra of a subset of the res-

onances which descend from the sigma-model coupled to gravity: speci�cally,

the spin-2 �uctuations eµν of the metric, and the spin-0 �uctuations aa asso-

ciated with χ. As discussed in Chapters 4 and 5, we noticed that for certain

choices of the IR parameter φI�corresponding to solutions which interpolate

between the two critical points of the scalar potential�these excitations ex-

hibit an interesting universality feature; the spectra show no dependence on

speci�c details of the background �elds being �uctuated within this region of

the parameter space, and appear sensitive only to the con�nement mechanism.

For the six-dimensional supergravity we demonstrated that this is also the case

for the spin-1 excitations corresponding to the graviphoton. While it is not

clear whether this feature of the spectra is indicative of some deeper underlying

physical phenomenon, it is nonetheless noteworthy.

Our second general observation also pertains to the mass spectra of each

supergravity, and we have already discussed it several times throughout this

Thesis; we have found that both of the theories encounter a tachyonic insta-

bility in their spin-0 sector for choices of an IR parameter which dials φ too

far beyond their respective trivial �xed point solutions, along a runaway direc-

tion of the potential. Since we were investigating the dimensional-reduction of

two well-de�ned and established supergravities, this discovery could have been

rather problematic. However, as we have demonstrated, each theory is protected

by the fact that this instability always resides within an inaccessible region of

the parameter space�owing to the presence of a �rst-order phase transition

which energetically disfavours the branch of regular solutions�and the system
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is prohibited from approaching arbitrarily close to the instability.

The third general feature that we have observed to be common to both the

six- and seven-dimensional theories, and which follows from our probe state

analysis, is that dilaton mixing e�ects are always present to some degree within

the scalar mass spectra; for all values of the tunable IR parameter φI , at least

some of the resonances are missed by the probe approximation. Furthermore we

�nd that the lightest spin-0 resonance can always be dialled in such a way that

its mass is parametrically suppressed compared to all other states within the

tower, and in proximity of the point at which this state becomes massless our

probe approximation unambiguously fails to capture it. The important caveat

to this observation is that this phenomenon occurs only along the metastable

portion of the con�ning branch, and no such parametrically light dilaton was

found to exist within the stable region of the parameter space.

For our �nal general observation, we notice that the catalogue of admissi-

ble backgrounds compiled for each of the two supergravity theories�while not

necessarily exhaustive�shows rather surprising similarities in both cases; we

�nd that every class of solutions within one model has an analogue exhibiting

the same geometric properties within the other. Moreover, each class of back-

grounds assumes a similar role within their respective phase structures: we �nd

that two related branches of solutions�those which we referred to as con�ning

and skewed�provide the delimitations of the free energy density F̂ within the

φ 6 0 region of the parameter space (the former minimising F̂ and hence being

energetically favoured, the latter instead maximising it), while for both theories

it is a branch of singular domain-wall backgrounds which instigate their respec-

tive phase transitions, rendering an instability inaccessible. There does not seem

to be any obvious reason that such remarkably similar phase structures should

have been predicted a priori, nor is it clear whether this compelling phenomenon

is attributable to some deeper underlying physical mechanism. What is evident

however, is that our study of these two theories must be incomplete; in both

cases we have uncovered a region of parameter space in which a class of badly

singular solutions provide the energetically stable background geometries, and

for which our ability to interpret the dynamics of the dual boundary theory

breaks down. We shall discuss this issue further in the next subsection.
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Outlook and open questions

We conclude this discussion by addressing some of the issues that our work has

left unresolved, and posing some interesting questions which future e�orts may

seek to address. Furthermore, we provide a brief summary of potential avenues

for future research which would build upon the foundational work presented

within this Thesis.

We remind the Reader that our investigation into the phase structure of each

supergravity yielded two rather unsatisfying results. The �rst of these was the

unexpected upper bound which was uncovered for the UV deformation param-

eter associated with the source of the operator dual to φ. Within both models

that we considered, the existence of a maximum permitted value for φ̂2 limited

our ability to fully explore the theory phase space. There is no obvious rea-

son that such an upper bound should be imposed on each supergravity, and we

must hence consider the possibility that other branches of solutions not listed

in our catalogue may yet be identi�ed. Perhaps a more thorough classi�cation

of admissible backgrounds�which may require that we either extend the model

�eld content, or consider more general ansätze for the backgrounds�would yield

solutions which permit one to explore regions of the phase space correspond-

ing to arbitrarily large operator deformations [16] of the holographically dual

supersymmetric CFT.

The other pathology which our work uncovered was the existence of a so-

called domain-wall phase within each compacti�ed supergravity. As we have

discussed, one of our major new �ndings is that a tachyonic instability is, in

both theories, rendered physically inaccessible due to the presence of a �rst-

order phase transition; a branch of badly singular domain-wall backgrounds are

energetically favoured for choices of the source parameter φ̂2 > φ̂∗2 which would

otherwise drive the system towards this instability. These badly singular solu-

tions do not admit a sensible dual interpretation in terms of a lower-dimensional

QFT, and hence we must concede that our holographic description of boundary

dynamics is applicable only to the stable portion of the con�ning branch, before

the phase transition. It is not clear whether the gravitational model may be

improved to overcome this limitation; perhaps a more complete analysis would

require that we also retain the Kaluza-Klein modes of the compacti�ed spaces in

each case. Moreover it is possible that an e�ective supergravity formulation is

insu�cient for the purposes of such a phase structure investigation, and that we

should instead seek to explore the two theories in terms of extended objects to
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capture physical e�ects which are omitted by the supergravity approximation.

Either way, we defer this challenging problem to future studies.

Let us conclude by brie�y discussing some potential avenues for further re-

search, which might entail either extending the work contained in this Thesis or

applying the tools and methods we have developed to other interesting models.

Firstly, a natural extension to our investigation of the seven-dimensional

maximal supergravity would be to relax our self-imposed geometrical constraint

Υ = A − 5
2χ = ω, and hence to conduct a similar exploration of the theory's

phase structure for a potentially much richer space of solutions. Although we

found it convenient to restrict our attention to a subset of backgrounds for the

purposes of this preliminary work, allowing for other�perhaps more exotic�

solutions might go some way to addressing the two pathologies that we have

encountered. Further building on this Thesis, a more complete study would

also include the branch of general singular backgrounds which were identi�ed

in Sec. 7.1, but which we neglected to include in our numerical free energy

analysis. We predict that these solutions would �ll the parameter space region

delimited by the con�ning and skewed branches�analogously to the case of

the six-dimensional theory�but nonetheless it would be worthwhile to test this

hypothesis.

Secondly, while our study of the two distinct supergravities has in both

cases uncovered evidence of a parametrically light dilaton, we have furthermore

demonstrated that this resonance exists only along a metastable portion of a

branch of con�ning solutions (beyond a phase transition). It is possible that

other models exist�perhaps involving alternative compacti�cations�which re-

alise a similar mechanism to avoid pathological regions of their parameter space.

Moreover, there is no reason to assume that such phase transitions should be

as strong as those discovered in Refs. [3, 4]; it would be of signi�cant interest

to �nd examples of models wherein such a phase transition is su�ciently weak

that�by dialling appropriate deformation parameters�the theory yields a dila-

tonic excitation with a parametrically suppressed mass, while still realising a

stable �eld con�guration.

The third and �nal potential line of research that we shall discuss is based

upon Nahm's classi�cation [21] of supersymmetric AdSD solutions within su-

pergravity. This Thesis has focused primarily on two of these cases: the six-

dimensional theory��rst constructed by Romans [46]�which is obtainable by

compactifying and reducing ten-dimensional massive type-IIA supergravity on

a warped four-sphere M10 → AdS6 × S4, and the seven-dimensional theory
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�rst constructed in Refs. [77, 78] by compactifying eleven-dimensional super-

gravity on a four-sphere M11 → AdS7 × S4. In a recent paper [178] we con-

ducted a similar investigation for the �ve-dimensional theory��rst constructed

in Refs. [179�181]�which is obtainable by compactifying ten-dimensional type-

IIB supergravity on a �ve-sphere [182,183]M10 → AdS5×S5 and (consistently)

truncating the Kaluza-Klein modes of the compacti�ed space [184, 185]. The

study restricted attention to a sub-truncation which preserves certain subgroups

of the �ve-sphere isometry group SO(6) (isomorphic to the SU(4)R symmetry

of the dual theory), and we refer the interested Reader to the paper itself for

further details.

Intriguingly, although this study was conducted within a lower-dimensional

gravitational model�including backgrounds which geometrically realise a dual

description of con�nement in a three-dimensional boundary theory�we nev-

ertheless found that remarkably similar phenomena to those discussed in this

Thesis emerged. A tachyonic instability was uncovered along a branch of regu-

lar backgrounds, and furthermore we demonstrated the existence of yet another

phase transition which rendered the pathological region of the parameter space

energetically inaccessible.

Based on these fascinating recurrent physical features, a �nal avenue for po-

tential future work�which promises to be fruitful and provides a natural exten-

sion of this Thesis�would be to conduct an analogous investigation for the last

remaining theory encompassed by Nahm's classi�cation: the four-dimensional

maximal supergravity [79�85] obtainable via the reduction on a seven-sphere of

eleven-dimensional supergravityM11 → AdS4 × S7, retaining an SO(8) gauge

group. It is reasonable to predict that similar phenomenological results might be

uncovered: a tachyonic instability along a branch of regular backgrounds which

geometrically realise con�nement, a �rst-order phase transition which protects

the theory by rendering the pathology inaccessible, and a parametrically light

scalar resonance which is identi�able with the dilaton, though which exists only

along a metastable portion of the solution branch. Observing these same physi-

cal features within otherwise distinct theories is rather exciting, and provides us

with the motivation to continue conducting similar investigations within other

models�the hope being that there is perhaps some deeper underlying physics

yet to be uncovered.
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Appendix A

Formulating 2-forms in four

dimensions

In this appendix we shall derive some convenient expressions for the Lagrangian

of a U(1)-invariant 2-form. These equivalent formulations naturally generalise to

higher dimensions, which we exploit in our derivation of the p-form �uctuation

equations in Sec. 4.6.

Let us start by considering the following generic action describing a four-

dimensional theory with a spontaneously-broken U(1) gauge symmetry, and

with Minkowski signature {−,+,+,+}:

So =

∫
d4xLo =

∫
d4x

{
− 1

4
FµνF

µν − 1

2

(
∂µπ +mAµ

)(
∂µπ +mAµ

)}
, (A.1)

where Fµν ≡ 2∂[µAν] is the �eld strength of the four-vector Aµ, π is a pseudo-

scalar �eld, and the massm is a symmetry-breaking parameter; gauge-invariance

of the term ∂µπ + mAµ is guaranteed ∀m under the transformations Aµ →
Aµ − ∂µα and π → π +mα, where α = α(xµ).

We can remove unphysical mixing between vector and scalar terms by sup-

plementing this action with the following gauge-�xing term:

Lξ = − 1

2ξ

(
∂µAµ + ξmπ

)2
, (A.2)
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so that we have

Lo + Lξ =− 1

4
FµνF

µν − 1

2
m2AµA

µ − 1

2ξ

(
∂µAµ

)2
− 1

2
∂µπ∂

µπ − ξ

2
m2π2 − ∂µ

(
mπAµ

)
. (A.3)

The total derivative term can be neglected, and hence we �nd that the classi-

cal equations of motion for the two �elds {Aµ, π} decouple. The unspeci�ed

gauge-�xing parameter ξ may be freely chosen. As usual, the computation of

correlation functions requires that we write the corresponding generating func-

tional; we introduce the partition function (or path integral) as follows:

Z[J ] ≡ No
∫
DAµDπ ei

∫
d4x
(
Lo+Lξ+LJ

)
with DAµ ≡

∏
x

dAµ(x) , (A.4)

and the integrand measure for π(x) is similarly de�ned. The prefactorNo is some

generic constant, while the supplementary Lagrangian density LJ collectively

represents source terms, which we do not specify. From this point onwards

we shall follow closely the derivation in Appendix A.2 of Ref. [1], which itself

generalises the discussion of Ref. [186] (see also Refs. [187,188]).

In four dimensions a massless 2-form is dual to a massless scalar �eld (both

propagating a single degree of freedom), while a massive 2-form is equivalent

to a massive vector �eld (each carrying 3 degrees of freedom). Motivated by

this observation, we shall demonstrate that the same physical theory described

by the action in Eq. (A.1) can be equivalently reformulated in terms of 2-forms

only, though di�ering by which gauge symmetries are manifested. To proceed,

we introduce the 2-forms Bµν and B̃µν by de�ning:

∂µπ +mAµ ≡
1

2
εµνρσ∂

νBρσ ≡ ∂νB̃µν , (A.5)

where εµνρσ is the four-index Levi-Civita tensor, and we note that this expression

is invariant under the following vectorial gauge transformation:

Bµν → Bµν − 2∂[µαν] , (A.6)

with αν dependent on the Minkowski coordinates xµ, leaving both the com-

bination ∂µπ + mAµ and the 2-form B̃µν una�ected; we shall return to this

observation later.
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To rewrite our partition function Z[J ] in terms of the new 2-form �eld B̃µν we

exploit the �insertion of one� functional identity introduced within the Faddeev�

Popov procedure [189], which is used to factor out divergent contributions to

a path integral coming from gauge redundancies. Schematically, this identity

reads:

1 =

∫
Dα δ

(
G
)
∆α

G =

∫
Dα δ

(
G (Aα)

)∣∣∣∣ δδαG (Aα)

∣∣∣∣ , (A.7)

which would be inserted into a theory that admits a gauge transformation send-

ing A→ Aα (where α denotes the transformed �eld) for some redundant gauge-

parameter α. The expression G appearing in the delta function argument is

chosen to enforce a gauge-�xing condition that constrains the functional inte-

gral to cover only physically distinct �eld con�gurations, by selecting a single

representative con�guration along each gauge orbit. The Faddeev�Popov deter-

minant ∆α
G is obtained by functionally di�erentiating G ; for Abelian theories

(such as our Eq. (A.1) theory) this quantity is independent of the gauge �eld A,

and may hence be factored out of the complete path integral. The non-Abelian

case is slightly more subtle as ∆α
G picks up a dependence on the gauge �eld and

the group structure constants, and one typically proceeds by representing the

determinant as a functional integral over a set of anti-commuting ghost �elds;

this will not be of any further relevance to our discussion, however.

With this brief aside out of the way, we introduce the following functional

identities:

1 = NI
∫
DĪµν ei

∫
d4x Īµν Īµν , (A.8)

1 = NB
∫
DB̃µν δ

(
Aµ + 1

m∂µπ − 1
m∂

νB̃µν

)
, (A.9)

for some unspeci�ed prefactor constants NI and NB . The new 2-form Īµν is a

generic auxiliary �eld, and the delta function in Eq. (A.9) is chosen to enforce

the equivalence from Eq. (A.5). By inserting these identities into Eq. (A.4) we

therefore have:

Z[J ] = N
∫
DAµDπDĪµνDB̃µν δ

(
Aµ + 1

m∂µπ − 1
m∂

νB̃µν

)
× ei

∫
d4x Īµν Īµν ei

∫
d4x
(
Lo+Lξ+LJ

)
, (A.10)

where now N = NoNINB . Next we perform the integration over Aµ, using the

δ-function to rewrite the vector �eld in terms of the pseudo-scalar π and the
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2-form B̃µν . All dependence of the Lagrangian density Lo on π disappears in

the process, so that Lo(Aµ, π) = Lo(B̃µν):

Lo(B̃µν) = − 1

4m2

[
∂µ∂

σB̃νσ − ∂ν∂σB̃µσ
] [
∂µ∂σ̄B̃ν σ̄ − ∂ν∂σ̄B̃µσ̄

]
− 1

2
∂σB̃µσ∂

σ̄B̃µσ̄

≡ −Fµν
[
B̃
]2 − 1

2
∂σB̃µσ∂

σ̄B̃µσ̄ . (A.11)

Conversely, the antisymmetry condition B̃µν = −B̃νµ implies that ∂µ∂νB̃µν is

vanishing; we therefore �nd that the gauge-�xing term retains a dependence on

π only, with Lξ(Aµ, π) = Lξ(π) given by:

Lξ(π) = − 1

2ξ

(
− 1

m
∂µ∂µπ + ξmπ

)2

. (A.12)

This further simpli�es our expression for the partition function Z[J ], since the

integral over π simply yields another constant Nπ ≡
∫
Dπ ei

∫
d4xLξ , which we

may absorb into the overall normalisation with yet another rede�nition:

Z[J ] = N ′
∫
DĪµνDB̃µν ei

∫
d4x
(
Īµν Īµν+Lo+LJ

)
. (A.13)

where N ′ = NπN . At this stage we have reformulated the path integral in

terms only of a 2-form �eld B̃µν , though we are still left with the pathology

that our Lagrangian density Eq. (A.11) contains kinetic terms with four space-

time derivatives; it is for this reason�and following Ref. [186]�that we earlier

introduced the auxiliary �eld Īµν , which we shall now exploit to address this

problem. By de�ning the change of variable:

Īµν ≡ µ̂Iµν + Fµν
[
B̃
]
, (A.14)

one �nds that the partition function may be rewritten as

Z[J ] = N ′
∫
DB̃µνD

(
µ̂Iµν

)
ei

∫
d4x
(
L̄o+LJ

)
, (A.15)

where we have now L̄o ≡ Lo + Īµν Īµν , which (neglecting an inconsequential

total derivative term) is given by the following:

L̄o = −1

2
∂νB̃µν∂

σB̃µσ + µ̂2IµνIµν +
2µ̂

m
∂νIµν∂σB̃µσ . (A.16)

The F 2
µν terms have cancelled, and we are left with a Lagrangian density describ-

196



ing two (mass) dimension-1 �elds B̃µν and Iµν . Hence we see that removing the

four-derivative kinetic terms in Eq. (A.11) comes at the expense of introducing

an additional dynamical �eld. Next, we diagonalise the kinetic terms of L̄o by
implementing a rotation according to:(

B̃µν

Iµν

)
≡
(

cos θ sin θ

− sin θ cos θ

)(
Gµν

Hµν

)
, (A.17)

with the rotation angle de�ned via the dimensionless ratio tan(2θ) = 4µ̂
m . The

resulting �elds are then further rescaled using the following rede�nitions:

G̃µν ≡ cos(θ)√
cos(2θ)

Gµν , (A.18)

H̃µν ≡ − sin(θ)√
cos(2θ)

Hµν , (A.19)

after which we �nd that the reparametrised Lagrangian density is given by

L̄o =− 1
2∂

νG̃µν∂
σG̃µσ + 1

2∂
νH̃µν∂

σH̃µ
σ (A.20)

+ µ̂2 cos(2θ)

(
G̃µν

H̃µν

)T(
tan2 θ 1

1 1
tan2 θ

)(
G̃µν

H̃µν

)
.

At this point we make two observations. Firstly, we see that the kinetic terms of

the 2-form �elds G̃µν and H̃µν have opposite signs. The correct (i.e. physical)

choice for the relative sign between the kinetic and mass terms is determined

according to which Minkowski metric signature has been adopted; since we are

using the �mostly plus� convention, we require that kinetic and mass terms have

the same sign. Hence, it is the kinetic term for H̃µν which is compatible with

causal propagation.

Our second observation is that the mass terms of L̄o must now also be

diagonalised, though we further require that the relative sign di�erence between

the kinetic terms for the two �elds be preserved in the process. To this end, we

next introduce another �eld rotation:(
G̃µν

H̃µν

)
≡
(

coshβ sinhβ

sinhβ coshβ

)(
Wµν

Kµν

)
, (A.21)

and we determine that the aforementioned condition for diagonalised mass terms
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is satis�ed by demanding that the rotation angle β is related to θ via

e2β = cos(2θ) , (A.22)

with which we obtain the following useful trigonometric identities:

∀θ, 0 =


tan2(θ) cosh2(β) + 2 cosh(β) sinh(β) + tan−2(θ) sinh2(β) ,

tan2(θ) cosh(β) sinh(β) + cosh(2β) + tan−2(θ) cosh(β) sinh(β) ,

tan2(θ) sinh2(β) + 2 cosh(β) sinh(β) + tan−2(θ) cosh2(β) − 4 cot(2θ) csc(2θ) .

After some algebraic manipulation, we �nd that L̄o may be written as follows:

L̄o = −1

2
∂σWµσ∂

σ̄Wµ
σ̄ +

1

2
∂σKµσ∂

σ̄Kµ
σ̄ +

1

4
m2KµνK

µν . (A.23)

Notice that any trace of the auxiliary mass parameter µ̂ has vanished, and the

two antisymmetric �elds have completely decoupled. The relative sign di�erence

between the two kinetic terms has been preserved, and the unstableWµν remains

as a massless artefact of the reformulation; nevertheless, we may once again

simply absorb its contribution to the path integral into a rede�nition of the

overall constant prefactor. The partition function is therefore given by

Z[J ] = N ′′
∫
DKµν e

i
∫
d4x
(
LK+LJ

)
, (A.24)

for some new constant N ′′, and where LK describes the massive 2-form Kµν :

LK =
1

2
∂σKµσ∂

σ̄Kµ
σ̄ +

1

4
m2KµνK

µν . (A.25)

This Lagrangian is indeed physically equivalent to our original U(1) theory

from Eq. (A.1), though it does not manifest any gauge invariance. We can

proceed to construct another equivalent theory which does admit vectorial gauge

transformations akin to those of Eq. (A.6), starting from the following �eld

rede�nition:

Kµν ≡ 1
2εµνρσ

(
Bρσ + 1

mFρσ
)
≡ 1

2mεµνρσHρσ , (A.26)

where Fρσ is the �eld strength of an Abelian gauge �eld Aρ:

Fρσ ≡ 2∂[ρAσ] = ∂ρAσ − ∂σAρ . (A.27)

Since this 2-form is exact, it is necessarily also closed. Hence we also �nd that
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the following identity is satis�ed:

∂αKµα =
1

2
εµαρσ∂

αBρσ . (A.28)

By making use of the Levi-Civita tensor identities:

εµνρσε
µν
ρ̄σ̄ =− 2

(
ηρρ̄ησσ̄ − ηρσ̄ησρ̄

)
, (A.29)

εµνρσε
µ
ν̄ρ̄σ̄ =− ηνν̄ηρρ̄ησσ̄ − ηνρ̄ηρσ̄ησν̄ − ηνσ̄ηρν̄ησρ̄

+ ηνρ̄ηρν̄ησσ̄ + ηνσ̄ηρρ̄ησν̄ + ηνν̄ηρσ̄ησρ̄ , (A.30)

and furthermore by de�ning the completely anti-symmetrised 3-form �eld strength:

Gµνρ ≡ 3∂[µBνρ] = ∂µBνρ + ∂ρBµν + ∂νBρµ , (A.31)

we obtain our third and �nal reformulation of the Lagrangian density:

LK(Aµ, Bµν) = − 1

12
GµνρG

µνρ − 1

4
HµνHµν , (A.32)

which is invariant under the simultaneous gauge transformations

Aµ → Aµ +mαµ , (A.33)

Bµν → Bµν − 2∂[µαν] , (A.34)

for some arbitrary four-vector αµ that depends on the Minkowski coordinates.

As a consistency check, we notice that for m = 0 the Lagrangian LK reduces

to kinetic terms for a massless 2-form Bµν (dual to a massless scalar π) and

a massless U(1) gauge boson Aµ. Conversely, in the case that m 6= 0, the

Lagrangian describes a massive 2-form Bµν (dual to a massive 1-form Aµ).

To summarise then, we have derived three completely equivalent formula-

tions of a Lagrangian density to describe the same underlying physical theory,

di�ering only by their gauge invariances; these are Eq. (A.1) which admits a

U(1) gauge transformation parametrised by the scalar α, Eq. (A.25) which does

not contain a gauge redundancy, and Eq. (A.32) which is invariant under trans-

formations parametrised by the vector αµ. We adapted this third formulation in

Sec. 4.6, to describe a U(1) theory of 2-forms in D = 5 dimensions. For a brief

discussion regarding the generalisation of this procedure to higher dimensions,

the interested Reader is directed to Appendix A.2 of Ref. [1].
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Appendix B

Spectra from critical point

solutions

Circle-compacti�ed D = 6 supergravity

Tabulated overleaf are the masses extracted from our numerical spectra compu-

tation, obtained by �uctuating the bosonic �elds of the S1-reduced six-dimensional

maximal supergravity discussed in Chapter 4. We show only the massive exci-

tations of the backgrounds which correspond to the critical points of the D = 6

scalar potential V6(φ) de�ned in Eq. (4.7). Both Tables B.1 and B.2 have been

adapted from those in Ref. [1].
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Spin-0 Spin-1 Spin-2 Spin-0 Spin-1 Spin-0 Spin-1 Spin-1 Spin-1
aa Vµ eµν πi Aiµ X B6ν Xµ Bµν

0.54 (p) 1.23 1.00 1.00 0.73 0.60 0.40 1.02 0.66
0.62 (p) 1.91 1.65 1.65 1.38 1.35 1.07 1.66 1.34
1.15 (p) 2.55 2.28 2.28 2.00 2.00 1.72 2.29 1.98
1.53 (p) 3.18 2.90 2.90 2.63 2.64 2.35 2.91 2.60
1.77 (p) 3.81 3.53 3.53 3.25 3.27 2.97 3.53 3.22
2.20 (p) 3.87 3.89 3.60 3.84
2.39 (p)
2.84 (p)
3.01 (p)
3.48 (p)
3.64 (p)

Table B.1: Numerical masses M of the lightest excitations within the ten
(a ∈ {1, 2}) towers of bosonic modes of the S1-compacti�ed D = 6 supergravity,
computed on backgrounds with φ = φUV = 0. All states are normalised in units
of the lightest tensor mass, and the spectra were computed using regulators ρ1 =
10−3 and ρ2 = 8. Our implementation of the midpoint determinant method used
the intermediate value ρ∗ = 4. We use bold font to denote aa excitations which
exhibit background-independence in Fig. 4.2, while those states labelled with a
p are captured e�ectively by the probe approximation.

Spin-0 Spin-1 Spin-2 Spin-0 Spin-1 Spin-0 Spin-1 Spin-1 Spin-1
aa Vµ eµν πi Aiµ X B6ν Xµ Bµν

0.62 (p) 1.23 1.00 1.00 0.73 1.08 0.82 1.48 1.10
1.44 (p) 1.90 1.65 1.65 1.37 1.82 1.54 2.13 1.80
1.53 (p) 2.55 2.28 2.28 2.00 2.49 2.19 2.77 2.45
2.11 (p) 3.18 2.90 2.90 2.62 3.13 2.83 3.40 3.08
2.20 (p) 3.81 3.53 3.53 3.25 3.76 3.46 3.71
2.76 (p) 3.87
2.84 (p)
3.39 (p)
3.48 (p)

Table B.2: Numerical masses M of the lightest excitations within the ten
(a ∈ {1, 2}) towers of bosonic modes of the S1-compacti�ed D = 6 supergravity,
computed on backgrounds with φ = φIR = − 1

4 ln(3). All states are normalised
in units of the lightest tensor mass, and the spectra were computed using regu-
lators ρ1 = 10−3 and ρ2 = 8. Our implementation of the midpoint determinant
method used the intermediate value ρ∗ = 4. We use bold font to denote aa ex-
citations which exhibit background-independence in Fig. 4.2, while those states
labelled with a p are captured e�ectively by the probe approximation.
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Torus-compacti�ed D = 7 supergravity

We present below the numerical masses extracted from our spectra computation

for the T 2-reduced seven-dimensional half-maximal supergravity discussed in

Chapter 5. We restrict attention to the massive excitations of the backgrounds

which correspond to the critical points of the D = 7 scalar potential V7(φ)

de�ned in Eq. (5.2).

Spin-0 Spin-2 Spin-0 Spin-2
aa Qa eµν Qe aa Qa eµν Qe

0.58 (p) - 1.00 - 0.58 (p) - 1.00 -
0.59 (p) 1.02 1.58 1.58 1.03 (p) 1.78 1.58 1.58
1.03 (p) 1.75 2.15 1.36 1.37 (p) 1.33 2.15 1.36
1.14 (p) 1.11 2.71 1.26 1.46 (p) 1.07 2.70 1.26
1.45 (p) 1.27 3.26 1.20 1.61 (p) 1.10 3.26 1.21
1.61 (p) 1.11 1.98 (p) 1.23
1.69 (p) 1.05 2.06 (p) 1.04
2.06 (p) 1.22 2.18 (p) 1.06
2.18 (p) 1.06 2.56 (p) 1.17
2.23 (p) 1.02 2.64 (p) 1.03
2.64 (p) 1.18

Table B.3: Numerical masses M of the lightest excitations within the four
(a ∈ {1, 2, 3}) towers of bosonic modes of the (truncated) T 2-compacti�edD = 7
supergravity, computed on backgrounds with φ = φUV = 0 (left) and φ =
φIR = − 1√

5
ln(2) (right). All states are normalised in units of the lightest

tensor mass, and the spectra were computed using regulators ρ1 = 10−4 and
ρ2 = 12. Our implementation of the midpoint determinant method used the
intermediate value ρ∗ = 4. We use bold font to denote aa excitations which
exhibit background-independence in Fig. 5.2, while those states labelled with a
p are captured e�ectively by the probe approximation. We additionally provide
the mass ratio of each state with its predecessor, for the spin-0 modes (Qa) and
spin-2 modes (Qe).
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Appendix C

An alternative normalisation

of spectra

Circle-compacti�ed D = 6 supergravity

In Figures C.1 and C.2 below we provide an alternative normalisation�in units

of the universal scale Λ introduced in Eq. (6.84)�for the spectra of bosonic

modes which descend from the six-dimensional maximal supergravity discussed

in Chapter 4. The previously applied normalisation which measures the spectra

in units of the lightest spin-2 mass is removed.
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Figure C.1: The spectra of masses M as a function of the one free parameter
which characterises the class of con�ning solutions, φI ∈ [φIR, 2.2], normalised
in units of the universal scale Λ. From top to bottom, left to right: the spectra
of �uctuations for the tensors eµν (red), the graviphoton Vµ (green), and the two
scalars aa (blue). The orange disks in the scalar spectrum represent masses for
which M2 < 0, and hence denote a tachyonic state. The vertical dashed lines
mark the critical value of the IR parameter φI = φ∗I > 0 at the phase transition,
discussed in Sec. 6.4. All states were computed using regulators ρ1 = 10−4 and
ρ2 = 12.
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Figure C.2: The spectra of masses M as a function of the one free parameter
which characterises the class of con�ning solutions, φI ∈ [φIR, 2.2], normalised
in units of the universal scale Λ. From top to bottom, left to right: the spectra
of �uctuations of the SU(2) adjoint (pseudo-)scalars πi (pink), SU(2) adjoint
vectors Aiµ (brown), U(1) scalar combination X (grey), U(1) transverse vector
B6µ (purple), U(1) transverse vector combination Xµ (black), and the U(1) 2-
form Bµν (cyan). The vertical dashed lines mark the critical value of the IR
parameter φI = φ∗I > 0 at the phase transition, discussed in Sec. 6.4. The spec-
tra were computed using regulators ρ1 = 10−4 and ρ2 = 12 with the exception
of the U(1) scalar combination X, for which the choice ρ1 = 10−7 was used
instead to minimise numerical cuto� e�ects which were present for the lightest
state at large values of φI .
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Torus-compacti�ed D = 7 supergravity

We present in Figure C.3 an alternative normalisation�in units of the universal

scale Λ introduced in Eq. (6.84)�for the spectra of bosonic modes which descend

from the seven-dimensional maximal supergravity discussed in Chapter 5. The

previously applied normalisation which measures the spectra in units of the

lightest spin-2 mass is removed.
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Figure C.3: The spectra of masses M as a function of the one free parameter
which characterises the class of con�ning solutions, φI ∈ [φIR, 2.4], normalised
in units of the universal scale Λ. The left plot shows the spectra of tensor
�uctuations eµν (orange), while the right plot shows the mass eigenstates of the
scalar �uctuations associated with {φ, χ, ω} (blue). The red disks in the scalar
spectrum represent masses for which M2 < 0, and hence denote a tachyonic
state. The vertical dashed lines represent the critical value of the IR parameter
φI = φ∗I > 0 at a �rst-order phase transition, discussed in Sec. 7.4. All states
were computed using regulators ρ1 = 10−4 and ρ2 = 12. We acknowledge the
existence of some small gaps in the scalar spectrum; these are regions where
the eigenstates were so close to degenerate in mass that the numerical routine
was unable to resolve and identify them separately, and are hence not of any
physical signi�cance.
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Appendix D

Gravitational invariants

We dedicate this Appendix to presenting some simpli�ed expressions for the

gravitational invariants of the two supergravity theories, and subsequently plot-

ting these quantities as a function of the holographic coordinate to demonstrate

explicitly the di�ering background geometries which are realised by the con�n-

ing, skewed, and badly singular domain-wall solutions. In addition to the Ricci

curvature scalar we shall also consider in each case the squared Ricci tensor, and

the squared Riemann tensor (also known as the Kretschmann scalar), de�ned

to be:

R2
(2) ≡ RM̂N̂RM̂N̂ (D.1)

R2
(4) ≡ RM̂N̂R̂ŜRM̂N̂R̂Ŝ . (D.2)

Circle-compacti�ed D = 6 supergravity

The following expressions are derived using the metric ansatz introduced in

Eq. (4.17), using the equations of motion presented in Eqs. (4.39 - 4.42). After
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some algebraic manipulation we obtain:

R6 = 6V6 + 4
(
φ′
)2

(D.3)

R2
(2) = 1

6

[
R2

6 + 80
(
φ′
)4]

, (D.4)

R2
(4) = 1

108

(
139R2

(2) − 13
(
R2

6 + 2R6V6 − 6V2
6

))
+ 4

3

[(
5R6 − 28V6 + 282

(
χ′
)2)

χ′′ +
(

35R6 − 256V6

)(
χ′
)2]

+ 4
[
11
(
χ′′
)2

+ 199
(
χ′
)4 − 16χ′

(
A′
)3]

, (D.5)

where primes denote di�erentiation with respect to ρ. Notice that the curvature

scalar and the (squared) Ricci tensor may be formulated in terms solely of the

potential V6(φ) and the one sigma-model scalar of the theory φ. From this

observation we infer that both of these gravitational invariants remain �nite at

all scales, provided φ is non-divergent; this condition is satis�ed by the con�ning,

skewed, and IR-conformal classes of solutions in our catalogue. For the skewed

backgrounds�in which the size of the η-circle blows up in the deep-IR region of

the geometry�we see that the volume divergence manifests in the Kretschmann

scalarR2
(4), which retains a dependence on the �eld χ and the metric warp factor.
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Figure D.1: Plots of the Kretschmann scalar R2
(4) as a function of the holo-

graphic coordinate ρ, for the six-dimensional metric. The left panel is evaluated
on the trivial background φ = 0, for the con�ning (solid dark grey line) and
skewed (dashed red line) classes of solutions. The right panel shows the in-
variant evaluated instead on the critical backgrounds at the phase transition:
the φI = φ∗I ' 0.027 con�ning background (solid dark grey line), and the
φb = φ∗b ' 98.9 BSDW background (dashed dark green line).
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Torus-compacti�ed D = 7 supergravity

The following expressions are derived using the metric ansatz introduced in

Eq. (5.12), using the equations of motion presented in Eqs. (5.23 - 5.27). After

some algebraic manipulation we obtain:

R7 = 28
5 V7 +

(
φ′
)2

(D.6)

R2
(2) = 1

7

[
R2

7 + 6
(
φ′
)4]

, (D.7)

R2
(4) = 7

6R2
(2) + 8

25

(
94V2

7 − 15R7V7

)
+ 2

15

(
55R7 − 528V7 + 960

(
A′
)2

+ 165
(
Υ′
)2)(

Υ′
)2

+
(

221
30

(
5R7 − 48V7

)
+ 416

(
A′
)2

+ 3515
8

(
χ′
)2

+ 887
3

(
Υ′
)2)(

χ′
)2

− 16
3

(
5R7 − 48V7 + 12

(
A′
)2

+ 150
(
χ′
)2

+ 88
(
Υ′
)2)

A′χ′ , (D.8)

where primes denote di�erentiation with respect to ρ. Notice again that the

curvature scalar R7 and the squared Ricci tensor may be formulated in terms

solely of the potential V7(φ) and the one sigma-model scalar �eld of the theory φ.

Hence both of these gravitational invariants remain �nite at all scales, provided

φ is non-divergent. As with the six-dimensional supergravity this condition is

satis�ed by the con�ning, skewed, and IR-conformal classes of solutions in our

catalogue. Again, for the skewed backgrounds we see that the volume divergence

�rst appears at the level of the squared Riemann tensor R2
(4), which retains a

dependence on the �eld χ and the metric warp factor A.

In the case of the six-dimensional theory we veri�ed that in lifting to ten-

dimensional massive type-IIA supergravity, both the con�ning and skewed classes

of solutions yield a �nite ten-dimensional Ricci scalar R10. Conversely the badly

singular domain-wall solutions cause R10 to become divergent, verifying that

they retain their singular nature even in the uplifted theory; the Reader is di-

rected to Appendix D of Ref. [3] for details.
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Figure D.2: Plots of the Kretschmann scalar R2
(4) as a function of the holo-

graphic coordinate ρ, for the seven-dimensional metric. The left panel is eval-
uated on the trivial background φ = 0, for the con�ning (solid dark grey line)
and skewed (dashed magenta line) classes of solutions. The right panel shows
the invariant evaluated instead on the critical backgrounds at the phase transi-
tion: the φI = φ∗I ' 0.039 con�ning background (solid dark grey line), and the
φb = φ∗b ' 33.54 BSDW background (dashed blue line).
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Appendix E

Additional parameter plots

Circle-compacti�ed D = 6 supergravity

In Figures E.1 - E.4 below we present some additional plots which help to elu-

cidate the non-trivial implicit relations between the various parameters which

characterise the con�ning, skewed, and IR-conformal branches of backgrounds

within the S1-reduced six-dimensional supergravity discussed in Chapter 4.

These plots are supplementary to our discussion of dilaton phenomenology in

Sec. 6.5.
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Figure E.1: Plots showing the relationship between the UV expansion param-
eter φ2 and the IR parameter φI , for the con�ning (solid black and short-dashed
orange) and skewed (dashed red) branches of solutions. The left plot shows the
bare extracted parameters: the con�ning and skewed branches conincide, as
φc2 = φs2, φ

c
I = φsI . The right plot shows the same parameters after rescaling

with the appropriate powers of Λ.
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Figure E.2: Plots showing the relationship between the two UV expansion
parameters φ2 and φ3 for solutions belonging to the con�ning (solid black and
short-dashed orange), skewed (dashed red), and IR-conformal (longest-dashed
purple) classes. The left plot shows the base parameters extracted by matching
to the UV expansions, with φc2 = φs2, φ

c
3 = φs3. The right panel shows the

same parameters after rescaling with the appropriate powers of Λ. (For φ2 6 0,
although the con�ning, skewed, and IR-conformal classes are not in complete
agreement, they are close enough that in these plots the black and red lines are
hidden behind the purple one.)
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Figure E.3: Plots showing the relationship between the two UV expansion
parameters φ2 and χ5 for solutions within the con�ning (solid black and short-
dashed orange), skewed (dashed red), and IR-conformal (longest-dashed purple)
classes. The left plot shows the parameters extracted by matching to the UV
expansions, with φc2 = φs2, φ

c
3 = φs3, and χ

s
5 = −χc5 − 8

25φ
c
2φ
c
3. The right panel

shows the same parameters after rescaling with the appropriate powers of Λ.
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Figure E.4: The order parameter ∆DW as de�ned in Eq. (6.102), for solutions
within the con�ning (solid black and short-dashed orange), skewed (dashed red),
and IR-conformal (longest-dashed purple) classes. The left plot shows the pa-
rameters extracted by matching to the UV expansions. The right panel shows
the same parameters after rescaling with the appropriate powers of Λ.
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Torus-compacti�ed D = 7 supergravity

In Figures E.5 - E.7 below we present some additional plots which help to elu-

cidate the non-trivial implicit relations between the various parameters which

characterise the con�ning, skewed, IR-conformal, and badly singular domain-

wall branches of backgrounds within the T 2-reduced seven-dimensional super-

gravity discussed in Chapter 5. These plots are supplementary to our discussion

of dilaton phenomenology in Sec. 7.5.
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Figure E.5: Plots showing the relationship between the UV expansion param-
eter φ2 and the IR parameter φI , for the con�ning (solid black, short-dashed
grey, and dashed red) and skewed (long-dashed magenta) branches of solutions.
The left plot shows the bare extracted parameters: the con�ning and skewed
branches coincide, as φc2 = φs2, φ

c
I = φsI . The right plot shows the same param-

eters after rescaling with the appropriate powers of Λ.
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Figure E.6: Plots showing the relationship between the two UV expansion
parameters φ2 and φ4 for solutions belonging to the con�ning (solid black, short-
dashed grey, and dashed red), skewed (long-dashed magenta), and IR-conformal
(solid orange) classes. The left plot shows the bare parameters extracted by
matching to the UV expansions, with φc2 = φs2, φ

c
4 = φs4. The right panel shows

the same parameters after rescaling with the appropriate powers of Λ.
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Figure E.7: The UV expansion parameter ω6, for solutions within the con�ning
(solid black, shortest-dashed grey, and short-dashed red), skewed (long-dashed
magenta), IR-conformal (solid orange), and badly singular domain-wall (dashed
blue) classes. The left plot shows the parameters extracted by matching to the
UV expansions. The right panel shows the same parameters after rescaling with
the appropriate powers of Λ. Although not evident from these plots, we remind
the Reader that there exists an upper bound on the ∆ = 4 operator source at
approximately φ̂2 ' 2.50 (φ2 ' 0.55) and hence the blue line will eventually
terminate.
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