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Abstract

In 2017 a truss was defined. Thus one can say that the theory of trusses is new
and not yet well-established. In recent years trusses start to gain attention due to
their connections to ring theory and braces. Braces are closely related to solutions
of set-theoretic Yang-Baxter equations, which can lead to applications of trusses in
physics. In this thesis, we study connections among groups, heaps, rings, modules,
braces and trusses. In the beginning, one can find a description in details of free
heaps and coproducts of Abelian heaps. Both constructions are applied to describe a
functor from the category of heaps to the category of groups. We establish a connection
between unital near-trusses and skew left braces. We show that for a specific choice
of congruence on a unital near-truss the quotient is a brace. We also prove that if
one localises a regular unital near-truss without an absorber, the result is a skew left
brace. In this thesis, one can find many small results on categories of heaps, trusses
and modules over a truss. Methods to extend trusses to unital trusses and rings are
presented. Then first one allows us to show that a category of modules over a truss is
isomorphic with the category of modules over its extension to the unital truss. The
second method establishes a deep connection between rings and trusses, i.e. every truss
is an equivalence class of some congruence on some specific ring. We present the ring
construction. Using this result, we introduce the definition of a minimal extension
of a truss into a ring. We construct tensor product and free modules over trusses.
The Eilenberg-Watts theorem for modules over trusses is stated and proven. Thus
the Morita theory for modules over trusses is developed. The thesis is concluded with
results on projectivity and decompositions through a product of the modules.
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Introduction

The thesis is written to be as autonomous as possible. It consists of 3 parts: Heaps,

Trusses and Modules. To understand the idea behind the truss theory one should be

familiar with groups, rings, heaps and braces. First two are well-known by potential

readers, so let us introduce heaps and braces.

Heaps and groups

In the 1920s, H. Prüfer [1], R. Baer [2] and A.K. Suskievic [3] introduced heaps. A

heap is a set H together with ternary operation [≠, ≠, ≠] : H ◊ H ◊ H æ H such that

for all ai œ H,

[a1, a2, [a3, a4, a5]] = [[a1, a2, a3], a4, a5] and [a1, a1, a2] = [a2, a1, a1] = a2. (0.0.1)

The first equality is called associativity, and the second one is called Mal’cev identities.

There is a deep connection between heaps and groups. To every group (G, ·) we can

assign a heap H(G) in a functorial way by defining ternary operation by [a, b, c] = ab≠1c,

for any a, b, c œ G. This heap is called a heap associated with group G. It is also possible

to assign a group G(H; e) to every heap H and any e œ H. We achieve this by fixing

the middle element in the ternary operation, i.e. a ·e b = [a, e, b] is a group operation

on H with a neutral element e. This assignment is not functorial. To understand why,

let us first introduce homomorphisms of heaps. A homomorphism of heaps is a map

f between heaps that preserves ternary operations, i.e. f([a, b, c]) = [f(a), f(b), f(c)].

Every group homomorphism is a heap homomorphism of associated heaps. The opposite

is not true. For example, if we consider a constant map from a group into itself, then

that map is a group homomorphism if and only if the constant is the neutral element of

the group. But it is always a homomorphism of associated heaps by Mal’cev identities.
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Thus heaps, in some sense, have more homomorphisms. Observe that lack of a unique

choice of an element preserved by homomorphisms is the cause why the assignment of

a group to a heap is not a functor. A sub-heap is a subset of a heap closed under the

ternary operation. By preceding connection with groups, one can translate normality

to heaps, see Definition 1.2.6. In [4, Theorem 1] J. Certaine (see Theorem 1.2.14)

observed that since we do not have a particular choice of an element in a heap, there

is a correspondence between sub-heaps and equivalence relation classes. Besides, any

preimage of a single element of a heap homomorphism is a normal sub-heap. That

implies two things, that we can take quotient by any congruence class in a heap and

that the choice of a sub-heap is not unique, i.e. there exist more than one sub-heap

such that the quotient is the same heap. All this sums up to a conclusion that a heap is

an a�nization of a group. We forget the neutral element of a group. That is not wrong

since every heap gives a free transitive action on a set, and every free transitive action

of a group on a set makes the set a heap.

Around 80 years later...

Braces

In 2007 W. Rump in [5] introduced definition of a brace. A two-sided brace B is a

set with two group operations +, · : B ◊ B æ B such that for all a, b, c œ B,

a + b = b + a, a(b + c) = ab ≠ a + ac and (b + c)a = ba ≠ a + ca. (0.0.2)

The second equality is called left distributivity, and the third is right distributivity. If

only left distributivity holds, we say that B is a left brace. In the same paper, W. Rump

established connections among left braces, radical rings and non-degenerate involutive

solutions of a set-theoretic Yang-Baxter equation. A map R : X ◊ X æ X ◊ X is a

solution of a set-theoretic Yang-Baxter equation if

(R ◊ 1)(1 ◊ R)(R ◊ 1) = (1 ◊ R)(R ◊ 1)(1 ◊ R),

where 1 is an identity map on X. To every set-theoretic solution, one can associate

a solution of a quantum Yang-Baxter equation. Those solutions have applications
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in noncommutative geometry, see [6]. Since Rump paper appeared, the subject has

been very intensively researched, e.g. [7], [8], [9], [10], [11], [12], [13], [14]. In 2017 L.

Guarnieri and L. Vendramin introduced a method to produce a non-degenerate solution

of a set-theoretic Yang-Baxter equation from a skew left brace, a left brace for which

a + b = b + a does not hold. We will omit the adjective left, and we will write skew

brace for a skew left brace. The solution R : B ◊ B æ B ◊ B associated with a skew

brace B is given for any a, b œ B by

R(a, b) = (≠a + ab, (≠a + ab)≠1ab),

where a≠1 is an inverse of a with respect to ·. We will focus on the algebraic properties

of skew braces, omitting but keeping in mind their applications to quantum physics.

A two-sided brace is an interesting algebraic object due to its similarity to fields. In

both structures, we have two groups. The di�erence is that in a field, multiplication is

not a group operation on a whole set as we do not have an inverse of zero. The left

distributivity of a skew brace implies that neutral elements of both group operations

are the same, i.e. 0=1, and 0a=a, for all a œ B. One would suspect that there are only

trivial congruences on braces, similarly to fields, but it is not correct. In contrast to the

case of fields, one can consider non-trivial congruences on braces. The easiest example is

to consider a group (G, +), then (G, +, +), i.e. · = +, is a brace. All normal subgroups

of G are ideals in the sense of Definition B.2.29 in the brace (G, +, +). One of the goals

of this thesis is to study connections between unital near-trusses (See Definition 2.1.1)

and skew braces. That will lead us to new constructions of skew braces, and therefore

constructions of solutions of a set-theoretic Yang-Baxter equation.

Around 10 years after W. Rump introduced braces...

Trusses

In 2017 in a preprint of [15], T. Brzeziński introduced trusses. A truss is an

Abelian heap T with an additional associative binary operation · : T ◊ T æ T , called

multiplication, which distributes from both sides over the ternary operation, i.e. for all
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a, b, c, d œ T ,

a[b, c, d] = [ab, ac, ad] & [b, c, d]a = [ba, ca, da].

The first equality is left distributivity, and the second is right distributivity. By the

Abelian heap, we mean that [a, b, c] = [c, b, a], that is, the heap associated with an

Abelian group. A truss homomorphism is a map f between trusses that preserves both

operations, i.e. for all a, b, c,

f([a, b, c]) = [f(a), f(b), f(c)] & f(ab) = f(a)f(b).

On every Abelian heap, we can build multiplication in at least two ways. First, commu-

tative, choose a constant c œ T , then for all a, b œ T , ab = c. Second, noncommutative,

for all a, b œ T consider ab = b. Analogously one can define multiplication ba = b.

Similarly to heaps, the first assignment is not a functor since we choose a constant,

but the noncommutative assignment is functorial. The idea behind trusses is to unify

both rings and braces in one distributive law of trusses. Therefore, with every ring

(R, +, ·), we can associate a truss T(R) = (H(R), ·), i.e. we take a heap associated with

an additive group of a ring R and consider the same multiplication of a ring. This

assignment T is a functor from the category of rings to the category of trusses since

every ring homomorphism will preserve ternary operation. The interesting fact is that

if we start with a truss and we have an element, called an absorber, a œ T such that

for all b œ T , ab = ba = a, then a is unique and by taking retract (G(T ; a), ·), we get a

ring. That is not a functor as homomorphisms of trusses do not necessarily preserve

absorbers. But one can see that category of rings is isomorphic with some subcategory

of trusses with an absorber. We choose all morphisms which preserve absorbers. The

same reasoning leads to building analogous functor T from braces to unital trusses, i.e.

trusses with an element, called identity, 1 œ T such that 1a = a1 = a. Unital trusses,

which 1-retracts are braces, will be called brace-type or associated with braces. Since

morphisms of unital trusses preserve identities, it will be a full subcategory. We see that

rings and braces are trusses, but there are more, for example, truss with multiplication

ab = b. Thus trusses provide us with the environment to study both rings and braces

in a more general setting. Due to the a�ne nature of heaps, one can think of trusses
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as an a�ne version of rings and braces. Since we have this generalisation of rings, it

is natural to consider modules over trusses. T. Brzeziński introduced modules over

trusses in [16]. A module over a truss is a heap together with an action of truss by the

endomorphisms of the heap. Two things motivate us to consider those modules. First,

a module M over a ring R is a module H(M) over a truss T(R). Thus every vector

space is a module over a truss. But not every module over a truss associated with a

field is a vector space. Therefore, we have more objects when we consider modules over

trusses. Second is the a�ne nature of H(M). As the thesis is write down, the second

motivation is still a mystery to the author, and research on this matter continues.

There are three main results of this thesis:

• We establish a relationship of unital near-trusses and skew braces. In Proposition

3.1.5, Theorem 3.1.11, Corollary 3.3.5, Corollary 5.1.6, we present methods of

acquiring new skew braces from near-trusses .

• In Proposition 5.1.11 and Proposition 5.1.10, we introduce new ways to extend

trusses to unital trusses and trusses associated with rings. That leads to charac-

terisation of extensions of trusses into rings by size, i.e. we introduce classes of

locally small, small, and minimal extensions. See definitions 5.2.5, 5.2.18, 5.2.22.

In Lemma 5.2.10, we have shown that every truss is a congruence class of some

ring. The ring is in Proposition 5.1.10. In Remark 5.2.28, we point out possible

further applications of minimal extensions to essential extensions in ring theory.

• The last main result is the Eilenberg-Watts theorem for trusses 7.1.3. That allows

us to consider the Morita theory for trusses.

Even though there are three main results, many of the other lemmas and theorems in

the thesis have their particular value and meaning.
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Contents

Heaps

Chapter 1

We start with an introduction to heaps. See Definition 1.1.1. Next, we describe a

relationship between heaps and groups, i.e. we discuss the functor H : Grp æ Heap,

see Lemma 1.1.9 and Corollary 1.1.11, and e-retract G(H; e) for any heap H and e œ H,

see Lemma 1.1.12. To define a quotient heap, in Definition 1.2.6, we define a normal

sub-heap. Further, in Corollary 1.2.15, we show a one-to-one correspondence between

normal sub-heaps and all congruence classes of any retracted group. In Lemma 1.1.21,

we introduce an importnat automorphism of heaps · f

e
: H æ H. For a particular

choice of e, f œ H, restriction of · f

e
to a normal sub-heap is the heap isomorphism

between classes of the congruence. Let us fix a retract of H and consider a normal

subgroup G, then · f

e
is the isomorphism of e + G and f + G. See Lemma 1.2.13.

In Section 1.3, we describe in detail the construction of free heaps. For any set X,

H(G(X)) ”= H(X), i.e. that heap associated with a free group over a set X is not

the free heap over X, see Lemma 1.3.3. In Section 1.4, we construct a coproduct of

Abelian heaps as the quotient of the free heap. By proposition 1.4.1, we managed

to describe elements of a coproduct of two heaps by choosing two arbitrary elements,

one of each coproduct component. That allows us to construct an isomorphism from

Proposition 1.4.4 between coproduct A � B and A ◊ B ◊ Z for any heaps A and B.

Existence of coproduct for non-Abelian heaps is provided by the universal algebra as

heaps form a variety of algebras, see Theorem C.0.16. In the non-Abelian case, the

choice of relations generating the normal sub-heap of the free heap complicates due to

the weaker associativity. Compare associativity in Definition 1.1.1 and equality (1.1.1).

The assignment of a retract to a heap is not a functor. We cannot uniquely choose

an element in every heap that homomorphisms preserve. In the last section, we use

coproduct to extend heap by a singleton set, i.e. we take a coproduct with the terminal

heap. The universal property of coproduct assures that the unique extension of heap

homomorphism maps the singleton element of the extension into the singleton element
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of the extension of the codomain, see Lemma 1.5.1. Attaching the terminal heap with

coproduct and taking retract in the element of the terminal heap is a functor see Lemma

1.5.4. Moreover, this functor is left adjoint to the functor H, see Theorem 1.5.5. We

conclude the chapter with an observation that the composition of the free heap functor

and attachment of the terminal heap is a free group functor, Corollary 1.5.6, and we

leave some thoughts on the free group construction.

Trusses

Chapter 2

In this chapter, we introduce a generalisation of a truss, called pre-truss. A pre-truss

is a heap with an associative binary operation. If this operation distributes over the

ternary operation from the left, the pre-truss is a near-truss. See Definition 2.1.1. In

the same way, as braces and rings are examples of trusses, near-rings and skew braces

are examples of near-trusses. See Lemma 2.1.9 and Lemma 2.1.11. For a quotient heap

of a pre-truss to be a pre-truss, one needs to assume something more than just the

normality of a sub-heap. We postulate that the normal sub-heap is a paragon that is all

the congruence classes of heaps, and therefore normal sub-heaps of the congruence are

closed, see Definition 2.2.1. Thus given any subset of a pre-truss, we can check if it is a

congruence class. By Corollaries 2.2.8 and 2.2.11, there is a one-to-one correspondence

between all congruences classes in skew braces (or near-rings) and paragons in the

associated near-truss. Thus, we have an isomorphism of the category of skew braces

and a full subcategory of unital near-trusses by Lemma 2.2.12. The invertible elements

U(R) of a ring R never form a subring of R, as 0 ”œ R. But U(R) is a subgroup of (R, ·).

Thus we can ask when U(R) is a sub-heap of T(R), therefore a brace-type truss. In

Proposition 2.3.2 and Theorem 2.3.5, we present some necessary conditions for a set of

units to be a brace. In Corollary 2.3.6, we show that U(Z/nZ) is a brace if and only

if n = 2k for any k œ N. The Abelian cyclic brace is a commutative brace with the

underlying cyclic additive group. We conclude the chapter with Proposition 2.3.9 with

a derivation of Abelian cyclic braces of the form Z/2mZ as a quotient of a commutative

truss by a paragon.
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Chapter 3

In this chapter, we focus on the relationship between near-trusses and skew braces.

We show that a near-truss T with exactly one left ideal, i.e. a normal sub-heap I such

that for all t œ T and i œ I, ti œ I, is a skew brace, see Proposition 3.1.5. That leads to

a question when the quotient of a truss has only one left ideal. The answer is Theorem

3.1.11. Sadly, the condition given in this theorem is not practical. The next goal is

to localise near-trusses to skew braces. To perform localisation, one need to consider

regular near-trusses (Definition 3.3.1), i.e. domains with the Ore conditions. A domain

is a near-truss T in which right and left cancellation properties hold. Cancellation

properties state that for all a, b, c œ T , ab = ac =∆ b = c and ba = ca =∆ b = c.

See Definition 3.2.5 and Lemma 3.2.6. We show that one can acquire a domain from a

truss T as the quotient by a completely prime paragon, see Definition 3.2.7 and Lemma

3.2.11. We conclude the chapter with a detailed description of localisation in Theorem

3.3.2 and Corollary 3.3.5, which states that the localisation of a near-truss without an

absorber is a skew brace.

Chapter 4

In this chapter, we introduce the basics of modules over trusses. This chapter is

technical. Its main aim is to familiarise the reader with modules over trusses and

develop tools for further chapters. In Definition 4.2.2 and Lemmalem:induced action,

one can find the definition of an induced action and an induced module. As in heaps

and trusses, induced submodules correspond to congruence classes. See Theorem 4.2.13.

As in the previous structures, a module M over a ring R is a module H(M) over a

truss T(R) with the action given by the action of R on M . Not every module M over

a truss T(R) is a module over a ring. A heap M is a T(R)-module with the action

given for all r œ R and m œ M by rm = m. That is not a module over a ring R. Thus,

modules over a truss associated with a ring are more general than modules over rings.

In Section 4.3, we show that a coproduct of T -modules, as heaps, can be endowed with

T -action, which makes it a coproduct of T -modules. We conclude this chapter with

some results on monomorphisms and epimorphisms, e.g. Proposition 4.4.1, Proposition
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4.4.2, Lemma 4.4.6.

Modules

Chapter 5

In this chapter, we consider extensions of trusses, mainly into braces and rings.

For a truss T and a T -module M , we can define a truss on the product T ◊ M , see

Theorem 5.1.2. This construction gives us a truss associated with a ring if and only if

the module is a singleton set and truss T is associated with a ring, see Lemma 5.1.3.

In Corollary 5.1.6, we show that the extension by a module is a brace if and only if

the truss is brace-type and the module is unital. Thus any unital module over a truss

associated with a brace can be extended to a brace. In Remark 5.1.6, we observe that

due to the construction of the extension, we can drop the right distributivity of T .

The coproduct of a truss T with a singleton T -module can be equipped with two truss

multiplications. First makes a singleton element an identity. See Proposition 5.1.11.

Thus the extended truss is unital. The second makes a singleton element an absorber.

See Proposition 5.1.10. Thus the extended truss is associated with a ring. Attaching an

absorber has a particular universal property. Any truss homomorphism from a truss

to a truss associated with a ring uniquely extends to a ring homomorphism from a

retract of a truss with an attached absorber R0(T ) = (G(T � 0; 0), ·), see Lemma 5.2.1.

This universal property ensures that R0 is a functor from the category of trusses to the

category of rings, which is a left adjoint to T, see Proposition 5.2.4. Let us consider

truss T and any ring extension R, i.e. we have injective homomorphism of trusses

Ï : T æ T(R). By the universal property of the extension by an absorber, we have

that Ï uniquely extends to ‚Ï : R0(T ) æ R. Thus, for any ring extension of T , we can

find an ideal in R0(T ), namely ker( ‚Ï). That allows us to introduce criterium of size

to extensions into rings. A locally small extension of a truss T is a ring R such that

R0(T )/I ≥= R for some ideal I. See definition 5.2.5 and Proposition 5.2.6. An image

ÿT (T ) of a canonical injection into R0(T ) is a paragon in R0(T ). See Lemma 5.2.10.

Thus we can choose an ideal I(T ), see Remark 5.2.11, for which ÿT (T ) is a congruence

class. That allows us to introduce a small extension as an extension in which ‚Ï(I(T ))
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is essential, see Definition B.2.10. A small extension is not unique. For some trusses,

there exists a particular universal choice of a small extension. This extension is called

minimal. See Definition 5.2.22. We conclude this chapter with Remark 5.2.28, which

points out possible future applications of minimal extensions to ring theory.

Chapter 6

In this chapter, we focus on categories of modules over trusses. Consider the

extension of a truss to a unital truss from the previous chapter. Then the category

of modules over a truss and the category of modules over the truss extended by the

identity are isomorphic. See Theorem 6.1.2. Keeping in mind the isomorphism, we

introduce a free T -module for a unital truss T as a coproduct of T ’s, see Definition

6.2.2. In Lemma 6.2.4 we show that freeness is equivalent for a module to admit the

basis. Since there exist modules over T(R) that are not modules over a ring R, one

expects that free modules over rings are not free over trusses associated with them.

The di�erence is in the number of absorbers, i.e. elements m of the module such that

for all t œ T , tm = m. Thus we introduce a functor (≠)Abs : T(R)-mod æ R-mod,

which glues all the absorbers together. This functor is a left adjoint to the functor T,

which assigns to every R-module a T(R)-module. See Lemma 6.2.6. If M is a free

T(R)-module with a basis B, then MAbs is a free R-module with the same basis, see

Theorem 6.2.7. The problem which highlights the di�culty of dealing with trusses

without an absorber is to prove that a free T -module, for a truss T without an absorber,

has no absorbers. It is confirmed in Corollary 7.2.12 of Chapter 7 using projectivity. In

Theorem 6.3.4, we introduce the tensor product of modules over trusses. In the rest

of the chapter, we prove the basic properties of the tensor product, analogous to the

tensor product of rings. For example, tensoring ≠ ¢ M is a left adjoint to HomT (M, ≠),

Proposition 6.3.9; the free module with basis X is isomorphic to the tensor product of

heaps T ¢ A(X), of a truss T and a free heap over X, A(X), see Proposition 6.3.13.

We conclude the chapter with the observation that every module is a quotient of a free

one.
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Chapter 7

In the last chapter, we develop the Morita theory for trusses. We say that two rings

R, S are Morita equivalent if there is an equivalence of their left module categories.

The crucial tool of Morita theory is the Eilenberg-Watts theorem, which identifies all

cocontinuous functors F : R-mod æ S-mod, i.e. functors which preserve small colimits,

with tensoring by some S, R-bimodule M , i.e. F ≥= M ¢R ≠, naturally. We present the

analogous theorem for trusses, see Eilenberg-Watts theorem for trusses 7.1.3. In the

modules over rings, F is an equivalence if M is projective and finitely generated. Then

HomS(M, ≠) is the other functor of the equivalence. Two rings R and S are Morita

equivalent if and only if S ≥= EndR(P ), for some finitely generated projective R-module

P . The crucial part of the proof uses the fact that the dual module HomR(P, R) admits

a dual basis. For trusses, it is not clear when HomT (P, T ) fulfils condition similar to

the existence of a dual basis. We introduce this property in Definition 7.1.8 and name

it a dual basis property. Modules satisfying dual basis property are called tiny. See

Definition 7.1.12 and Theorem 7.1.11. Observe that by Theorem 7.1.11, HomS(M, ≠)

preserves colimits if and only if M is tiny, so for F to be equivalence, M must be

tiny. This theory coincides with the Morita theory for rings as every projective finitely

generated R module is tiny in the sense of the T(R)-module. In contrast to the theory

of rings, in this case, free T -modules are not tiny. In Proposition 7.2.8, we show that

every tiny module is projective and finitely generated. Next, we consider splittings of

short exact sequences. Since the category of T -modules is not Abelian, it is not obvious

how to define an exact sequence. Thus we introduce the definition at the beginning of

Section 7.2. In Proposition 7.2.2 and Proposition 7.2.5, we observe that the existence

of section (retraction) of a sequence

0 // G(M ; eÕ) „
// G(N ; ‡(e)) Â

// G(P ; e) //

‡

gg

0.

leads to a decomposition of the module N into M ◊ P ≥= N (M (e)
◊ P ≥= N) as

T -modules. We conclude this chapter with di�erent results on a decomposition of

modules. By Theorem 7.2.18, T -module M is projective if and only if M is a direct
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factor of free T -module such that the complementary factor is a module with the

absorber. In Proposition 7.2.19, we observe that every tiny module is a factor of a

T -module T s = T ◊ . . . ◊ T.

Appendix A

This appendix contains basic definitions and theorems on category theory.

Appendix B

This appendix contains basic definitions and theorems on groups, near-rings and

skew braces.

Appendix C

This appendix contains basic definitions and theorems on universal algebras.

Enjoy the thesis.
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Chapter 1

In the world of heaps

Heaps were defined in the 1920s by H. Prüfer (see [1]) and R. Baer (see [2]) as an

algebraic system consisting of a set with a ternary operation which fulfils conditions

called associativity and Mal’cev identities, see Definition 1.1.1. This chapter is devoted

to heaps, as heaps are for trusses the same as groups are for rings. All the categories

discussed in this section, that is categories of heaps, Abelian heaps, groups and Abelian

groups are varieties of algebras (in the sense of the universal algebra), hence they have

free objects, limits, coproducts, euqalisers, coequalisers etc., see appendices A and

C or [17] and [18]. The aim of this section is to give explicit constructions of free

heaps, free Abelian heaps, coequalisers of heaps and coproduct of Abelian heaps. The

complementary literature for this chapter is [16], [19], [20] and [21].

First and second sections consist of basic definitions and properties of heaps and

quotient heaps.

In the third section a construction of a free heap is described in details. Fourth

contain a construction of a coproduct of Abelian heaps. Third and fourth sections are

a third section from [19].

In the fifth section we present a new construction of a free groups through con-

struction of free heaps by constructing a left adjoint functor to the functor H between

category of groups and heaps. This functor allows us to decompose a free group functor

through the category of heaps. This highlights how identity and inverses naturally

29
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appears in the free construction of a free group. Fifth section is based on [22].

1.1 Groups and heaps

The aim of this section is to introduce reader with the term of a heap and describe

connection between heaps and groups.

Definition 1.1.1. A heap is a set H together with a ternary operation,

[≠, ≠, ≠] : H ◊ H ◊ H ≠æ H,

such that, for all a1, a2, a3, a4, a5 œ H,

(1) [a1, a2, [a3, a4, a5]] = [[a1, a2, a3], a4, a5], (Associativity)

(2) [a1, a1, a2] = a2 = [a2, a1, a1]. (Mal’cev identities)

We say that H is an Abelian heap if, for all a, b, c œ H, [a, b, c] = [c, b, a].

Definition 1.1.2. Let H1 and H2 be heaps. A map f : H1 ≠æ H2 is a heap homomor-

phism if, for all a, b, c œ H1,

f([a, b, c]) = [f(a), f(b), f(c)].

Example 1.1.3. The integer numbers Z with the ternary operation [≠, ≠, ≠] given by

[k, l, m] := k ≠ l + m, for all k, l, m œ Z, form a heap.

Example 1.1.4. A set of odd integer numbers 2Z + 1 := {2k + 1 | k œ Z} with the

ternary operation given by [k, l, m] := k ≠ l + m is a heap.

Corollary 1.1.5. Heaps as objects and heap homomorphisms as arrows form a category,

which is denoted by Heap. The full subcategory of the category of heaps consisting of

only Abelian heaps is denoted by Ah.

Proof. Observe that since every heap homomorphism is a function between underlying

sets it is enough to check that a composition of heap homomorphisms is a heap
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homomorphism. Let f : H1 æ H2 and g : H2 æ H3 be a heap homomorphisms among

heaps H1, H2 and H3, then for all a, b, c œ H1,

g ¶ f([a, b, c]) = g([f(a), f(b), f(c)]) = [g ¶ f(a), g ¶ f(b), g ¶ f(c)].

Therefore composition of heap homomorphisms is a heap homomorphism, so Heap

and Ah are categories. By the definition of a heap homomorphism Ah(H1, H2) =

Heap(H1, H2), therefore Ah is a full subcategory of Heap.

Remark 1.1.6. A singleton set with the (unique) ternary operation is the terminal object

in categories Heap and Ah, we denote this heap by {ú}.

Remark 1.1.7. As the definition of a heap uses only universal quantifiers, the empty

set with the unique ternary operation given by ÿ ◊ ÿ ◊ ÿ ≠æ ÿ is a heap, which is the

initial object in categories Heap and Ah.

Lemma 1.1.8. Let Ï œ Heap(H1, H2), then

(1) Ï is a monomorphism if and only if Ï is injective,

(2) surjectivity of Ï implies that Ï is an epimorphism.

Proof. First observe that every homomorphism of heaps is a function between under-

lying sets, thus every injective (surjective) homomorphism is a monomorphism (an

epimorphism), respectively. Now, assume that Ï : H1 æ H2 is a monomorphism and

r, z œ H1, Ï(r) = Ï(z), then for any heap H3 we can consider two heap homomorphisms

f1, f2 : H3 æ H1 given by f1(h) = r and f2(h) = z for all h œ H3. Since Ï is a

monomorphism and Ï ¶ f1 = Ï ¶ f2 we get that f1 = f2. Thus r = z and Ï is an

injection.

Lemma 1.1.9. Let G be a group. Then a pair (G, [≠, ≠, ≠]), where [a, b, c] := ab≠1c

for all a, b, c œ G, is a heap. This heap will be called a heap associated with a group

G and denoted by H(G). Moreover if f : G æ GÕ is a homomorphism of groups, then

a map H(f) : H(G) æ H(GÕ) given by H(f)(x) = f(x), for all x œ H(G), is a heap

homomorphism.
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Proof. The ternary operation is well-defined as it is given by the group operation and

inverse, both of which are well-defined on G. Let a, b, c, d, e œ G, then

[[a, b, c], d, e] = [ab≠1c, d, e] = ab≠1cd≠1e = [a, b, cd≠1e] = [a, b, [c, d, e]],

[a, a, b] = aa≠1b = b = ba≠1a = [b, a, a].

Thus (G, [≠, ≠, ≠]) is a heap. Now, if f : G æ GÕ is a group homomorphism then for

all a, b, c œ H(G),

H(f)([a, b, c]) = f(ab≠1c) = f(a)f(b)≠1f(c) = [H(f)(a), H(f)(b), H(f)(c)].

Therefore H(f) is a heap homomorphism.

Corollary 1.1.10. Let G be a group. Then G is an Abelian group if and only if H(G)

is an Abelian heap.

Proof. Let G be Abelian. Then for all a, b, c œ G

[a, b, c] = ab≠1c = cb≠1a = [c, b, a],

so H(G) is Abelian. Now, Assume H(G) is Abelian, then for all a, b œ G and neutral

element e œ G,

ab = ae≠1b = [a, e, b] = [b, e, a] = be≠1a = ba.

Thus, G is Abelian.

Corollary 1.1.11. The assignment H : Grp æ Heap of a heap to a group, defined as

in Lemma 1.1.9, is a functor. Moreover, the restriction HAb : Ab æ Ah of a functor

H to Abelian groups is a functor between Abelian groups and Abelian heaps.

Proof. Let G, GÕ, GÕÕ be groups and f : G æ GÕ, g : GÕ
æ GÕÕ be group homomorphisms,

then

H(g ¶ f) = g ¶ f = H(g) ¶ H(f)
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by the definition of H. For an identity homomorphism 1G : G æ G and all x œ H(G),

H(1G)(x) = 1G(x) = x, so H(1G) = 1H(G). Thus H is a functor. Second statement

follows by Corollary 1.1.10.

Lemma 1.1.12. Let H be a heap. Then for all e œ H a pair (H, +e), where +e :=

[≠, e, ≠] : H ◊ H æ H, is a group. The group will be denoted by G(H; e) and called a

retract of H in e or an e-retract of H.

Proof. The operation +e is a well-defined binary operation, since [≠, ≠, ≠] is a well-

defined ternary operation. Associativity follows by the associativity of ternary operation.

Now, e is a neutral element as for all a œ H,

e +e a = [e, e, a] = a = [a, e, e] = a +e e,

where second and third equalities follows by Mal’cev identities. The inverse to an

element a œ H is [e, a, e], indeed as

a +e [e, a, e] = [a, e, [e, a, e]] = [[a, e, e]a, e] = [a, a, e] = e,

[e, a, e] +e a = [[e, a, e], e, a] = [e, a, [e, e, a]] = [e, a, a] = e,

where in both cases the second equality follows by associativity and the third by Mal’cev

identities. Therefore G(H; e) is a group.

Corollary 1.1.13. A heap homomorphism f : H æ H Õ is a group homomorphism

between retracts G(H; e) and G(H; eÕ) if and only if f(e) = eÕ.

The following corollary is a special case of Proposition 4.4.1. We present another

proof using the fact that every group epimorphism is surjective.

Corollary 1.1.14. If f is a heap epimorphism, then f is surjective.

Proof. Let f : H æ H Õ be a heap epimorphism. We will show that f is an epimorphism

of groups. Let e œ H, then f : G(H; e) æ G(H Õ; f(e)) is a group homomorphism.

Moreover, for any group homomorphisms g, h : G(H Õ; f(e)) æ G such that g ¶ f = h ¶ f ,
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H(g) ¶ f = H(h) ¶ f , and since f is an epimorphism of heaps we get that H(g) = H(h).

Thus, since H(g) = g and H(h) = h as functions, we get that g = h. Therefore f is an

epimorphism of groups and in consequence it is surjective, see B.1.4.

Example 1.1.15. A 1-retract G(2Z + 1; 1) is isomorphic to Z.

Remark 1.1.16. In contrast to the assignment H of a heap to a group, the assignment of

a group to a heap H ‘æ G(H; e) is not a functor as it depends on the element e œ H, and

therefore not every heap homomorphism can be interpreted as a group homomorphism

of specific retracts, so the assignment is not a well-defined functor on morphisms.

Remark 1.1.17. The category of heaps is equivalent to a category of pointed heaps, i.e.

a category of which objects are pairs of a heap and its element and homomorphism are

homomorphisms between heaps which map a chosen element into a chosen element.

Corollary 1.1.18. Let H be a heap and e œ H, then

H (G (H; e)) = H.

Proof. As underlying sets of H (G (H; e)) and H are the same, the statement follows by

the following equality,

a1 +e a≠1

2
+e a3 = [[a1, e, a≠1

2
], e, a3] = [[a1, e, [e, a2, e]], e, a3] = [a1, a2, a3].

Lemma 1.1.19. If H is a heap then for all a1, a2, a3, a4, a5 œ H,

(1) [[a1, a2, a3], a4, a5] = [a1, [a4, a3, a2], a5],

(2) [a1, a1, a1] = a1,

(3) [a1, a2, a3] = a1 ≈∆ a2 = a3 ,

(4) [[a1, a2, a3], a4, a5] = [[a1, a4, a5], [a2, a4, a5], [a3, a4, a5]].

Proof. (1) Let e, a1, a2, a3, a4, a5 œ H, then

[[a1, a2, a3], a4, a5] = a1 +e a≠1

2
+e a3 +e a≠1

4
+e a5
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in the e-retract G(H; e). On the other hand side

[a1, [a4, a3, a2], a5] = a1 +e (a4 +e a≠1

3
+e a2)≠1a5 = a1 +e a≠1

2
+e a3 +e a≠1

2
+e a5,

thus, by the Corollary 1.1.18 both sides are equal, and equality in (1) holds.

(2) The idempotency of the ternary operation follows by any of Mal’cev identities.

(3) For the third statement, observe that

[a1, a2, a3] = a1 =∆ [a3, [a1, a2, a3], a1] = [a3, a1, a1] =∆ a2 = a3,

where the first equality follows from the fact that [a3, ≠, a1] is a function and the second

equality follows by (1) and Mal’cev identities. Opposite implication is trivial.

(4) Observe that by (1), associativity and Mal’cev identities one gets,

[[a1, a4, a5], [a2, a4, a5], [a3, a4, a5]] = [[[a1, a4, a5], a5, a4], a2, [a3, a4, a5]]

= [[a1, a4, [a5, a5, a4]], a2, [a3, a4, a5]]

= [a1, a2, [a3, a4, a5]] = [[a1, a2, a3], a4, a5],

therefore (4) holds.

If heap is Abelian, then (1) in Corollary 1.1.18 implies the following associative

property,

[a1, a2, [a3, a4, a5]] = [a1, [a2, a3, a4], a5] = [[a1, a2, a3], a4, a5], (1.1.1)

which allows one to simplify the notation by omitting brackets. In this case we write

[a1, . . . , a2n+1] or by imitating the sum notation [ai]2n+1

i=1
, a1, . . . , a2n+1 œ H,

for the result of applying the Abelian heap operation n-times in any possible way.

Lemma 1.1.20. In an Abelian heap H,

Ë
[ai,j]2n+1

i=1

È
2m+1

j=1
=

Ë
[ai,j]2m+1

j=1

È
2n+1

i=1
. (1.1.2)

for all n, m Ø 0 and for all ai,j œ H, i = 1, . . . , 2n + 1, j = 1, . . . , 2m + 1.
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Proof. Firstly, let us prove by induction that

[ai, bi, ci]2n+1

i=1
=

Ë
[ai]2n+1

i=1
, [bi]2n+1

i=1
, [ci]2n+1

i=1

È
, (1.1.3)

for all n Ø 0. For n = 0 (1.1.3) is trivial. If n = 1,

[[a1, b1, c1][a2, b2, c2][a3, b3, c3]] = [a1, b1, c1, a2, b2, c2, a3, b3, c3] = [a1, a2, c1, b1, a3, c2, b2, b3, c3]

= [a1, a2, a3, b1, c1, b3, b2, c2, c3]

= [[a1, a2, a3], [b1, b2, b3], [c1, c2, c3]],

and (1.1.3) holds for n = 1. Let us assume the induction hypothesis that (1.1.3) holds

for any n œ N, then

[ai, bi, ci]2n+3

i=1
= [[ai, bi, ci]2n+1

i=1
, [a2n+2, b2n+2, c2n+2], [a2n+3, b2n+3, c2n+3]]

=
ËË

[ai]2n+1

i=1
, [bi]2n+1

i=1
, [ci]2n+1

i=1

È
, [a2n+2, b2n+2, c2n+2], [a2n+3, b2n+3, c2n+3]

È

=
ËË

[ai]2n+1

i=1
, a2n+2, a2n+3

È
,
Ë
[bi]2n+1

i=1
, b2n+2, b2n+3

È
,
Ë
[ci]2n+1

i=1
, c2n+2, c2n+3

ÈÈ

=
Ë
[ai]2n+3

i=1
, [bi]2n+3

i=1
, [ci]2n+3

i=1

È
,

where the third equality follows by the case for n = 1. Therefore the induction hypothesis

holds for all n œ N. Now, let us fix an arbitrary m œ N, then (1.1.2) holds for n = 0

trivially and for n = 1 we get

[a1,j, a2,j, a3,j]2m+1

j=1
=

Ë
[a1,j]2m+1

j=1
, [a1,j]2m+1

j=1
, [a1,j]2m+1

j=1

È
,

which follows by (1.1.3). Since (1.1.2) holds for n = 0, 1 let us assume the induction

hypothesis that (1.1.2) is true for any n œ N. Then

[[ai,j]2n+3

i=1
]2m+1

j=1
=

Ë
[ai,j]2n+1

i=1
, a2n+2,j, a2n+3,j

È
2m+1

j=1

=
5Ë

[ai,j]2n+1

i=1

È
2m+1

j=1
, [a2n+2,j]2m+1

j=1
, [a2n+3,j]2m+1

j=1

6

=
5Ë

[ai,j]2m+1

j=1

È
2n+1

i=1
, [a2n+2,j]2m+1

j=1
, [a2n+3,j]2m+1

j=1

6

=
Ë
[ai,j]2m+1

j=1

È
2n+3

i=1
,

where second equality follows by (1.1.3) and third by the induction hypothesis. Therefore

(1.1.2) holds for all n, m œ N.
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Lemma 1.1.21. Let H be a heap. The endomaps, defined for all e, f œ H,

· f

e
: H ≠æ H, a ‘≠æ [a, e, f ], · e

f
: H ≠æ H, a ‘≠æ [a, f, e] (1.1.4)

are mutually inverse heap isomorphisms.

Proof. Let a, b, c œ H, then

[· f

e
(a), · f

e
(b), · f

e
(c)] = [[a, e, f ], [b, e, f ], [c, e, f ]] = [[a, b, c], e, f ] = · f

e
([a, b, c]),

where the second equality follows by (4) of Lemma 1.1.19. Thus · f

e
is a heap homomor-

phism. Now, by Mal’cev identities for all a œ H

· f

e
(· e

f
(a)) = [[a, f, e], e, f ] = [a, f, [e, e, f ]] = [a, f, f ] = a

and the composition · e

f
¶ · f

e
follows analogously. Therefore · f

e
and · e

f
are mutually

inverse heap isomorphisms.

Lemma 1.1.22. Let f : H1 æ H2 be a function between heaps. Then the following are

equivalent:

(1) A function f : H1 æ H2 is a heap homomorphism.

(2) For all e1 œ H1 and e2 œ H2 there exists a group homomorphism

f̂ : G(H1; e1) æ G(H2; e2) such that f = · f(e1)

e2 ¶ f̂ .

(3) There exist e1 œ H1 and e2 œ H2 such that f = · f(e1)

e2 ¶ f̂ , for some group

homomorphism f̂ : G(H1; e1) æ G(H2; e2).

Proof. (1) =∆ (2) Let f : H1 æ H2 be a heap homomorphism. For any e1 œ H1

and e2 œ H2 let us consider f̂ := · e2
f(e1)

¶ f . Now, since f̂(e1) = (· e2
f(e1)

¶ f)(e1) =

[e2, f(e1), f(e1)] = e2 and f̂ is a heap homomorphism, Corollary 1.1.13 implies that f̂ is

required group homomorphism.

(2) =∆ (3). Follows trivially, as universal quantifier implies existential one.

(3) =∆ (1). If f = · f(e1)

e2 ¶ f̂ , then f is a composition of two heap homomorphisms,

as group homomorphism between retracts is a homomorphism between heaps. Thus f

is a heap homomorphism.
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Lemma 1.1.23. The set Ah(H1, H2) is a heap with the point-wise operation, i.e. for

all Ï, ÏÕ, ÏÕÕ
œ Ah(H1, H2), the function

[Ï, ÏÕ, ÏÕÕ] : H1 ≠æ H2, a ‘≠æ [Ï(a), ÏÕ(a), ÏÕÕ(a)], (1.1.5)

is a homomorphism of heaps.

Proof. Let Ï, ÏÕ, ÏÕÕ
œ Ah(H1, H2) and a, b, c œ H1, then

[Ï, ÏÕ, ÏÕÕ]([a, b, c]) = [[Ï(a), Ï(b), Ï(c)], [ÏÕ(a), ÏÕ(b), ÏÕ(c)], [ÏÕÕ(a), ÏÕÕ(b), ÏÕÕ(c)]]

= [[Ï(a), ÏÕ(a), ÏÕÕ(a)], [Ï(b), ÏÕ(b), ÏÕÕ(b)], [Ï(c), ÏÕ(c), ÏÕÕ(c)]]

= [[Ï, ÏÕ, ÏÕÕ](a), [Ï, ÏÕ, ÏÕÕ](b), [Ï, ÏÕ, ÏÕÕ](c)],

where the second equality follows by Lemma 1.1.20. Therefore [Ï, ÏÕ, ÏÕÕ] is a heap

homomorphism, and one can easily check that Ah(H1, H2) is a heap, since ternary

operation is given point-wise.

Proposition 1.1.24. Let H be a heap and e, f œ H. Then e-retract G(H; e) is

isomorphic to f -retract G(H; f) as groups.

Proof. The isomorphism is given by the map · f

e
. Since · f

e
is an isomorphism of heaps,

it is enough to show that · f

e
as a function is a group homomorphism of retracts. Let

g, h œ H, then

· f

e
(g +e h) = · f

e
([g, e, h]) = [[g, e, h], e, f ] = [[g, e, f ], [e, e, f ], [h, e, f ]]

= [[g, e, f ], f, [h, e, f ]] = · f

e
(g) +f · f

e
(h),

thus · f

e
is a group homomorphism of retracts, and therefore also an isomorphism.

Corollary 1.1.25. Let H1, H2 be heaps. Then H1, H2 are isomorphic as heaps if and

only if for all e œ H1 and g œ H2, G(H1; e) and G(H2; g) are isomorphic as groups.

Proof. If Ï : H1 æ H2 is an isomorphism of heaps, then it is an isomorphism of theirs

retracts G(H1, e) and G(H2, Ï(e)), as for all f, h œ H1

Ï(f +e h) = Ï([f, e, h]) = [Ï(f), Ï(e), Ï(h)] = Ï(f) +Ï(e) Ï(h).
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Since all retracts are isomorphic, we have that groups G(H1; e) and G(H2; g) are

isomorphic for all g œ H2.

Opposite direction, if Ï : G(H1; e) æ G(H2; f) is an isomorphism of groups, then

by Lemma 1.1.9 and Corollary 1.1.18, Ï is an isomorphism of heaps H1 and H2.

Remark 1.1.26. For all groups G the following holds,

G (H (G); e)) ≥= G (H (G); f)) . (1.1.6)

In the Abelian case one can introduce an exponent of a heap.

Definition 1.1.27. Let H be a heap. We say that heap has an exponent N œ N if

there exists e œ H such that G(H; e) has exponent N .

Observe that the preceding definition is well-defined. Since by Proposition 1.1.24,

all retracts are isomorphic, and an isomorphism of groups preserves exponents.

Lemma 1.1.28. The product of heaps H1 and H2 is the set H1 ◊ H2 with operation

defined component-wise, i.e.

[(h1, h2), (hÕ
1
, hÕ

2
), (hÕÕ

1
, hÕÕ

2
)] := ([h1, hÕ

1
, hÕÕ

1
], [h2, hÕ

2
, hÕÕ

2
]),

for all h1, hÕ
1
, hÕÕ

1
œ H1 and h2, hÕ

2
, hÕÕ

2
œ H2.

Proof. Let K be a heap, Ï1 : K æ H1 and Ï2 : K æ H2 be heap homomorphisms.

Then we can define a map Ï : K æ H1 ◊ H2 given by k ‘æ (Ï1(k), Ï2(k)). Since ◊ is a

product of sets Ï is a well-defined function, moreover for any k1, k2, k3 œ K

[Ï(k1), Ï(k2), Ï(k3)] = [(Ï1(k1), Ï2(k3)), (Ï1(k2), Ï2(k2)), (Ï1(k3), Ï2(k3))]

= ([Ï1(k1), Ï1(k2), Ï1(k3)], [Ï2(k1), Ï2(k2), Ï2(k3)])

= (Ï1([k1, k2, k3]), Ï2([k1, k2, k3])) = Ï([k1, k2, k3]),

(1.1.7)

hence Ï is a heap homomorphism. Observe that canonical projections fi1 : H1◊H2 æ H1,

(e, g) ‘æ e and fi2 : H1 ◊ H2 æ H2, (e, g) ‘æ g are heap homomorphisms and that

fi1 ¶ Ï = Ï1 and fi2 ¶ Ï = Ï2.
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Thus from the universal property of a product for sets, we get that Ï is a unique

function and consequently a unique heap homomorphism. Therefore H1 ◊ H2 is the

product of heaps.

Corollary 1.1.29. Let H1 and H2 be heaps, then for all e œ H1 and g œ H2,

G(H1 ◊ H2; (e, g)) = G(H1; e) ◊ G(H2; g) & H1 ◊ H2 = H(G(H1; e) ◊ G(H2; g)).

(1.1.8)

Proof. Let us start with equality of groups and denote by +(e,g) group operation in

G(H1 ◊ H2; (e, g)) and by + group operation in G(H1; e) ◊ G(H2; g). Observe that

underlying set in both sides is H1 ◊ H2. Consider the identity function

1H1◊H2 : H1 ◊ H2 æ H1 ◊ H2, (e, g) ‘æ (e, g).

We will show that the identity is a group homomorphism. Let (e1, g1), (e2, g2) œ H1 ◊H2,

then

1H1◊H2((e1, g1) +(e,g) (e2, g2)) = [(e1, g1), (e, g), (e2, g2)] = ([e1, e, e2], [g1, g, g2])

= (e1 +e e2, g1 +g g2) = (e1, g1) + (e2, g2)

= 1H1◊H2(e1, g1) + 1H1◊H2(e2, g2),

and 1H1◊H2 is indeed a group homomorphism. Since identity is a bijection on H1 ◊ H2

we get that 1H1◊H2 is a group isomorphism.

The second equation of the corollary follows from the first and the Corollary

1.1.18.

1.2 Quotient of a heap

As heaps are universal algebras one can consider their quotients. In this section we

introduce a definition of a normal sub-heap of a heap and show that a quotient is given

by normal sub-heaps. One can also find here an interpretation of a normal sub-heap in

an associated group to the heap.
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Definition 1.2.1. A sub-heap S of a heap H is a subset S ™ H, which is closed under

the ternary operation of H.

Remark 1.2.2. If X is a subset of a heap H, then the sub-heap generated by X will be

denoted by ÈXÍ and it is equal to the intersection of all sub-heaps containing X.

Example 1.2.3. Let X = {x} be a singleton set. Then ÈXÍ = X and a singleton

subset of any heap is a sub-heap of that heap.

Example 1.2.4. The heap 2Z + 1, the set of odd integers, is a sub-heap of H(Z).

Example 1.2.5. Let K be a subgroup of a group G. Then H(K) is a sub-heap of

H(G).

Definition 1.2.6. A sub-heap S is said to be normal if there exists e œ S such that

for all a œ H and s œ S there exists t œ S such that

[a, e, s] = [t, e, a]. (1.2.1)

Lemma 1.2.7. In the definition of a normal sub-heap the existential quantifier standing

next to e can be substituted by the universal one. An equivalent statement of Definition

1.2.6 is that for all a œ H and e, s œ S there exists t œ S such that the equality (1.2.1)

holds.

Proof. Let us assume that S is a normal sub-heap as in Definition 1.2.6, then for any

f œ H

· f

e
([a, e, s]) = [[a, e, f ], f, [s, e, f ]] = · f

e
([t, e, a]) = [[t, e, f ], f, [a, e, f ]],

hence since · f

e
is an isomorphism or more precisely a bijection and · f

e
(s) œ S for all

s œ S, we get that (1.2.1) holds for all e œ S. For the opposite direction universal

quantifier, obviously, implies the existential one.

Lemma 1.2.8. Every sub-heap of an Abelian heap is normal.

Proof. Simply, as in any Abelian heap H, [a, e, s] = [s, e, a] for all a, e, s œ H. Then by

taking t = s in the definition one gets that any sub-heap is normal.
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Lemma 1.2.9. Let G be a group. Then a subgroup GÕ of a group G is normal if and

only if H(GÕ) is a normal sub-heap of a heap H(G).

Proof. Let e be a neutral element of GÕ. Then for all g œ G and gÕ
œ GÕ exists gÕÕ

œ GÕ

such that

[g, e, gÕ] = ge≠1gÕ = ggÕ = gÕÕg = gÕÕe≠1g = [gÕÕ, e, g],

where the third equality and existence of gÕÕ follows by the normality of GÕ. Thus H(GÕ)

is a normal sub-heap of H(G).

In the opposite direction. Assume that H(GÕ) is a normal sub-heap of H(G). Then

for all g œ G and gÕ
œ GÕ exists gÕÕ

œ GÕ such that

ggÕ = ge≠1gÕ = [g, e, gÕ] = [gÕÕ, e, g] = gÕÕe≠1g = gÕÕg,

where the third equality follows by the normality of H(GÕ). Thus GÕ is a normal

subgroup of a group G.

Lemma 1.2.10. Let Ï : H1 ≠æ H2 be a heap homomorphism then for all g œ Im(Ï)

the set

kerg(Ï) := {a œ H1 | Ï(a) = g} (1.2.2)

is a normal sub-heap of H1. We will call this set a g-kernel.

Proof. Let a œ H1 and e, s œ kerg(Ï). Observe that

[a, e, s] = [t, e, a] ≈∆ t = [[a, e, s], a, e],

for some t œ H. Thus it is enough to check that t œ kerg(Ï),

Ï(t) = Ï([[a, e, s], a, e]) = [[Ï(a), Ï(e), Ï(s)], Ï(a), Ï(e)]

= [[Ï(a), g, g], Ï(a), g] = [Ï(a), Ï(a), g] = g,

therefore t œ kerg(Ï) and kerg(Ï) is a normal sub-heap of H1.
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Lemma 1.2.11. Every sub-heap S of a heap H yields an equivalence relation ≥S on a

heap H:

a ≥S b if and only if ÷s œ S, [a, b, s] œ S if and only if ’s œ S, [a, b, s] œ S.

(1.2.3)

Moreover if S is normal then ≥S is a congruence.

Proof. Let us assume that S is a sub-heap. Then for all a œ H and s œ S, [a, a, s] =

s œ S implies that a ≥S a, so the relation is reflexive. If a ≥S b, then [a, b, s] œ S and

[s, [a, b, s], s] = [[s, s, b], a, s] = [b, a, s] œ S, thus b ≥S a and the relation is symmetric.

If a ≥S b and b ≥S c, then

[[a, b, s], s, [b, c, s]] = [a, [s, s, b], [b, c, s]] = [[a, b, b], c, s] = [a, c, s] œ S,

therefore a ≥S c and the relation is transitive. Now, let us assume that S is a normal

sub-heap and consider elements x ≥S y, xÕ
≥S yÕ, xÕÕ

≥S yÕÕ, then there exist e, s, t, z œ S

such that

x = [s, e, y], xÕ = [t, e, yÕ], xÕÕ = [z, e, yÕÕ]

and
[[x, xÕ, xÕÕ], [y, yÕ, yÕÕ], s] = [[[x, xÕ, xÕÕ], yÕÕ, yÕ], y, s] = [[[x, xÕ, [z, e, yÕÕ]]yÕÕ, yÕ], y, s]

= [[x, xÕ, [z, e, yÕ]], y, s] = [[x, xÕ, [yÕ, e, zÕ]], y, s]

= [[x, [t, e, yÕ], [yÕ, e, zÕ]], y, s] = [[x, [yÕ, e, tÕ], [yÕ, e, zÕ]], y, s]

= [[x, tÕ, [e, yÕ, [yÕ, e, zÕ]]], y, s] = [[x, tÕ, zÕ], y, s] = [[zÕÕ, tÕ, x], y, s]

= [zÕÕ, tÕ, [x, y, s]] œ S,

where first equality follows by Lemma 1.1.19 (1), second is a substitution

xÕÕ = [z, e, yÕÕ], third follows form associativity and Mal’cev identitites, fourth fol-

lows by normality of S, i.e [z, e, yÕ] = [yÕ, e, zÕ] for some zÕ
œ S, fifth is the substitution,

sixth is normality applied to [t, e, yÕ], seventh and eighth follows by Lemma 1.1.19 (1),

associativity and Mal’cev identities combined, ninth is a normality property and last

is an associativity. Therefore [x, xÕ, xÕÕ] ≥S [y, yÕ, yÕÕ] and ≥S is a congruence if S is a

normal sub-heap.
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Theorem 1.2.12. Let H be a heap and S be a normal sub-heap, then H/S is a heap

with operation

[ā, b̄, c̄] = [a, b, c], (1.2.4)

where ā denotes the class of a œ H, and the canonical map fi : H æ H/S is a

heap epimorphism. Moreover if fi : H æ H/ ≥S is a canonical epimorphism of

heaps, for some congruence ≥S, then there exists a normal sub-heap S of H such that

H/S = H/ ≥S.

Proof. If S is a normal heap then by Lemma 1.2.11, there is the congruence ≥S and

therefore H/S := H/ ≥S is a well-defined heap with a canonical heap homomorphism

fi : H æ H/ ≥S. Now, if fi : H æ H/ ≥S is a canonical epimorphism for some

congruence ≥S, then for all a, b œ H and e œ H/ ≥S,

a ≥S b ≈∆ fi(a) = fi(b) ≈∆ a ≥kere(fi) b,

Thus both these relations are mutually equal. Moreover, since kere(fi) is a normal

sub-heap and H/ kere(fi) = H/ ≥kere(fi) we get that H/ kere(fi) = H/ ≥S

Lemma 1.2.13. Let S be a non-empty sub-heap of (H, [≠, ≠, ≠]), and consider the

sub-heap relation ≥S. Then:

(1) For all a, b œ H, consider the map from Lemma 1.1.21:

· b

a
: H ≠æ H, z ‘≠æ [z, a, b]. (1.2.5)

(i) The equivalence classes of ≥S are related by the formula:

b̄ = · b

a
(ā) = {[z, a, b] | z ≥S a}.

(ii) For all e œ S and a œ H, set Sa

e
:= ·a

e
(S). Then ā = Sa

e
.

(2) For all a œ H, the equivalence class ā is a sub-heap of H. Furthermore, if S is a

normal sub-heap of H, then so are the ā.
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(3) Equivalence classes of ≥S are mutually isomorphic as heaps.

(4) For all a œ H, the sub-heap equivalence relation ≥S coincides with the sub-heap

equivalence relation ≥ā. Consequently H/S = H/ā.

Proof. (1)(i) Let us assume that z ≥S a, that is, that [z, a, s] œ S, for all s œ S. If

zÕ = · b

a
(z) = [z, a, b], then [zÕ, b, s] = [z, a, s], by the associativity and the Mal’cev

property. Hence zÕ
≥S b, that is, · b

a
(ā) ™ b̄. On the other hand, if zÕ

œ b̄, then set

z = ·a

b
(zÕ) = [zÕ, b, a]. Since ·a

b
is the inverse of · b

a
, zÕ = · b

a
(z). Furthermore, for all

s œ S, [z, a, s] = [zÕ, b, s], and so [z, a, s] œ S, since zÕ
≥S b. This proves the second

inclusion b̄ ™ · b

a
(ā), and hence the required equality.

Assertion (1)(ii) follows by 1(i) and the fact that ē = S.

Statement (2) follows by (1), Lemma 1.1.21 and the observation that heap isomor-

phisms preserve the normality.

Statement (3) is a straightforward consequence of (1) and (2).

(4) Using (1)(ii) we can argue as follows: b ≥S c if, and only if, there exist s, sÕ
œ S

such that [b, c, s] = sÕ. This is equivalent to the equality [[b, c, s], e, a] = [sÕ, e, a], for any

a œ H and e œ S, which, by associativity, is equivalent to [b, c, [s, e, a]] = [sÕ, e, a]. The

fact that ā = Sa

e
implies that b ≥ā c.

The preceding lemma implies the following theorem of J. Certaine.

Theorem 1.2.14 (J. Certaine). The subset S of a heap H is closed under the ternary

operation if and only if S is a coset of some subgroup of some retract of H.

Proof. Let us assume that S is a sub-heap of a heap H. Let e œ H and s œ S, then

G(· e

s
(S); e) is a subgroup of G(H; e) by lemmas 1.1.12 and 1.2.13. Thus S is a coset.

In the opposite direction. If S = aH(GÕ) for some subgroup GÕ of a group G and

a œ G, then S is a sub-heap of H(G), since

[ag, agÕ, agÕÕ] := aggÕ≠1a≠1agÕÕ = aggÕ≠1gÕÕ = a[g, gÕ, gÕÕ],

for all g, gÕ, gÕÕ
œ GÕ.
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Corollary 1.2.15. Let G be a group, then S ™ H(G) is a normal sub-heap if and only

if S is an equivalence class for some congruence ≥S on G.

Proof. Let us assume that S is an equivalence class for some congruence ≥S on a group

G. Then a canonical epimorphism of groups fi : G æ G/ ≥S is an epimorphism of

associated heaps i.e. fi : H(G) æ H(G/ ≥S). Therefore S = kerS(fi) and by Lemma

1.2.10, S is a normal sub-heap of H(G).

In the opposite direction. Let e be a neutral element of a group G. If S is a normal

sub-heap of a heap H(G), then by Theorem 1.2.14 S = aH(GÕ), for a œ G and a

subgroup GÕ of a group G. Moreover, by Lemma 1.2.13 · e

a
(S) = ea≠1aH(GÕ) = H(GÕ)

is normal. Hence by Lemma 1.2.9 GÕ is a normal subgroup of a group G, and S is an

equivalence class for some congruence on G.

Example 1.2.16. Let us consider a heap H(Z) and its sub-heap 2Z + 1, since the

heap is Abelian we know that the sub-heap is normal. It is easy to check that

H(Z)/(2Z + 1) ≥= H(Z2) and 2Z + 1 is an equivalence class of relation given by a

subgroup 2Z.

Let Ï : A æ B be a homomorphism of heaps. Then by the Theorem C.0.9

Ker (Ï) = {(a, aÕ) œ A ◊ A | Ï(a) = Ï(aÕ)} is a congruence on A. Observe that in fact

≥Ker (Ï) and ≥kere(Ï), for any e œ Im(Ï), are equal. Indeed, for all a, aÕ
œ A, a ≥Ker (Ï) aÕ

if and only if (a, aÕ) œ Ker (Ï). Equivalently Ï(a) = Ï(aÕ), and [Ï(a), Ï(aÕ), e] = e if and

only if a ≥kere(Ï) aÕ, for any e œ Im(Ï). Therefore both relations ≥Ker (Ï) and ≥kere(Ï)

are equal.

Lemma 1.2.17. Let Ï : A ≠æ B be a morphism of Abelian heaps and S ™ A be a

sub-heap. Denote by fi : A ≠æ A/S, a ‘≠æ ā, the canonical projection. The sub-heap

relation ≥S is a sub-relation of the kernel relation ≥Ker (Ï) if and only if there exists a

unique morphism of Abelian heaps Ï̃ : A/S ≠æ B rendering the following diagram

A

Ï
��

fi
// A/S

Ï̃
}}

B
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commutative. In particular, if S ™ kere(Ï) for a certain e œ B, then the conclusion

follows.

Proof. If A is the empty heap, then there is nothing to prove. Thus, assume that A is

not the empty heap, which implies that B is non-empty as well.

Uniqueness of Ï̃ follows from the surjectivity of fi. Therefore, let us check that

Ï̃ : A/S ≠æ B, ā ‘≠æ Ï(a),

is a well-defined heap homomorphism. If ā = b̄, then a ≥S b and so a ≥Ker (Ï) b as well,

hence Ï(a) = Ï(b). Thus, Ï̃ is independent of the choice of the representative.

Furthermore, if there exists e œ B such that S ™ kere(Ï), then ≥S is a sub-relation

of ≥Ker (Ï), since ≥Ker (Ï)=≥kere(Ï).

In the opposite direction. If Ï = Ï̃ ¶ fi, then for any a ≥S b

Ï(a) = Ï̃(fi(a)) = Ï̃(fi(b)) = Ï(b).

Thus a ≥Ker (Ï) b and ≥S is a sub-relation of the kernel relation ≥Ker (Ï).

In the case of B = Im(Ï) and S = kere(Ï), the induced map Ï̃ is an isomorphism

that establishes the standard first isomorphism theorem for heaps: Im(Ï) ≥= A/ kere(Ï).

1.3 Free heaps

According to the title of this section, one can find in it a construction of a free heap,

and a description of a connection between a free heap and a free group.

Let X be a (non-empty) set. We define the set of reduced words in X as the set

W (X) of all odd-length words in elements of X such that no consecutive letters are the

same, i.e.

W (X) := {x1x2 . . . x2n+1 | xi ”= xi+1 œ X, n œ N}.
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Note that W (X) is an infinite set as long as X has at least two elements. Given a word

w œ W (x), we denote by w¶ the opposite word, i.e.

(x1x2 . . . x2n+1)¶ = x2n+1x2n . . . x1.

On the set W (X) we define a ternary operation [≠ ≠ ≠] by grafting and pruning:

given u, v, w œ W (X), the reduced word [u, v, w] is obtained by systematic removing

(or pruning) all pairs of consecutive identical letters from the word uv¶w obtained by

concatenation (or grafting) of u, v¶ and w. Thus, in particular and for instance if u is

any reduced word and w = x1x2 . . . x2n+1, then the step-by-step pruning process leading

to [u, w, w] is

uw¶w = ux2n+1x2n . . . x1x1x2 . . . x2n+1 ≠æ ux2n+1x2n . . . x2x2 . . . x2n+1

≠æ ux2n+1x2n . . . x3x3 . . . x2n+1 ≠æ . . . ≠æ ux2n+1x2n+1 = u.

Note that this process is not a�ected by whether the word u ends with any of the

letters xi. This shows that [u, w, w] = u. By similar arguments one verifies the

other Mal’cev identity. Since concatenation is an associative operation and removing

pairs of consecutive identical letters of several concatenated words yields the same

result irrespective of the order in which concatenated words are pruned, [≠ ≠ ≠] is an

associative operation. Thus (W (X), [≠ ≠ ≠]) is a heap, which we denote by H(X).

Lemma 1.3.1. The heap H(X) is the free heap on X, i.e., for any heap H and any

function Ï : X æ H, there exists unique filler ‚Ï in the category of heaps of the following

diagram:

X
ÿX

//

Ï

��

H(X)

÷! ‚Ï
||

H,

where ÿX is the inclusion of X into W (X).

Proof. Given a function Ï : X æ H, the required unique heap homomorphism
‚Ï : H(X) ≠æ H is defined by

‚Ï(x) := Ï(x), ‚Ï(x1x2 . . . x2n+1) := [ ‚Ï(x1x2 . . . x2n≠1), Ï(x2n), Ï(x2n+1)].
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Corollary 1.3.2. An assignment H : Grp æ Heap, given on sets A by A ‘æ H(A)

and on functions f : A æ B by H(f) = \ÿB ¶ f , is a functor. Moreover it is a left adjoint

to a forgetful functor.

Proof. Proof follows analogously to the proof of Lemma 1.5.4 and Theorem 1.5.5.

For further convenience let us denote a free group generated by the set X as G(X).

Lemma 1.3.3. Any free heap can be associated with a free group. Moreover

H(G(X \ {x})) ≥= H(X),

where X is a non-empty set and x œ X.

Proof. Let X be a non-empty set. The isomorphism needed to prove this statement is a

unique filler of the diagram in Lemma 1.3.1, where the function Ï is defined as follows:

Ï : X ≠æ H(G(X \ {x})), y ‘≠æ

Y
]

[
y, y ”= x

e, y = x,

where e is the neutral element of G(X \ {x}). The inverse to Ï is given by the group

homomorphism (seen as a heap homomorphism) arising from the universal property of

the free group G(X \ {x}) applied to the function

Â : X \ {x} ≠æ G(H(X); x), y ‘≠æ y.

Corollary 1.3.4. Any non-empty sub-heap of a free heap is free.

Proof. Let us suppose that a non-empty sub-heap S of the free heap H(X) is a non-free

heap, then from Lemma 1.3.3 G(S; e) is a non-free subgroup of G(H(X), e) ≥= G(X \{e})

for some e œ X. The Nielsen-Schreier theorem [23] states that every subgroup of a free

group is free, and thus we obtain a contradiction with the assumption that G(S; e) is

non-free, so S is a free heap.
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Example 1.3.5. Let X = {0, 1} so that H(X) consists of all odd-length sequences of

alternating digits 0 and 1. All such sequences are symmetric, hence w¶ = w and the

heap operation on H(X) is given by concatenation and pruning. By Lemma 1.3.3 H(X)

is isomorphic with the heap associated to a free group on a singleton set (i.e. on X with

one element removed), so H(X) is the heap associated with Z.

The idea of the construction of free Abelian heaps is to consider symmetric words of

odd length in alphabet X,

w =:x1y1x2 . . . ynxn+1:, xi, yi œ X, n œ N, (1.3.1)

that are defined as classes, each class of a word consists of all words created by permuting

letters in the word in such a way that parity of the position of the letter in the word is

preserved i.e. x1x2x3 is in the same class as x3x2x1 but it is not in the same class as

x1x3x2 . Each w in (1.3.1) is a set

:x1y1x2 . . . ynxn+1: = {x‡(1)y‡̂(1)x‡(2) . . . y‡̂(n)x‡(n+1) | ‡ œ Sn+1, ‡̂ œ Sn}. (1.3.2)

A symmetic word is said to be reduced if it contains only reduced words. For example,

:abacd: is a symmetric reduced word, while :abcad: is not, since it contains the unreduced

word aacbd. The set of all symmetric reduced words of odd length on X is denoted by

W (X). Obviously, if :w: œ W (X), then :w¶: =:w:. From any unreduced symmetric

word one can obtain a unique symmetric reduced word by pruning. Starting with any

word x1y1x2 . . . ynxn+1 we look at all permuted words x‡(1)y‡̂(1)x‡(2) . . . y‡̂(n)x‡(n+1). If

any of these permuted words is not reduced, we prune it by removing pairs of consecutive

identical letters. The shortest remaining word will yield the required reduced symmetric

word. The heap operation on W (X) is obtained by concatenations of representatives of

symmetric reduced words followed by symmetric pruning. We use notation (1.3.1) for

both an unreduced word and the one to which it can be reduced. The resulting heap is

the free Abelian heap on X and is denoted by A(X).

Remark 1.3.6. One can easily employ the same isomorphism as in the proof of Lemma 1.3.3

to observe that the free Abelian heap on a non-empty set X is isomorphic to the heap

associated with the free Abelian group on X \ {x}, for any x œ X.
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1.4 Coproduct of Abelian heaps

In this section we construct a coproduct of Abelian heaps.

Given Abelian heaps A, B, their direct sum or coproduct A�B can be constructed as

follows. Start with the free Abelian heap on the disjoint union of sets A Û B, A(A Û B),

and apply the ternary operations of A and B whenever possible to reduce words further

to the point when no reduction is possible. In other words, we fix e œ A(A Û B) and

take the sub-heap Ce of the A(A Û B) generated by

[[a, aÕ, aÕÕ], [a, aÕ, aÕÕ]A, e], [[b, bÕ, bÕÕ], [b, bÕ, bÕÕ]B, e],

where a, aÕ, aÕÕ
œ A, b, bÕ, bÕÕ

œ B, and [≠≠≠], [≠≠≠]A, [≠≠≠]B are ternary operations in

A(AÛB), A and B, respectively, and consider the quotient heap A�B = A(AÛB)/Ce.

One can prove that this defines a congruence on A(A Û B) the equivalence classes of

which are denoted by :s1s2 . . . s2n+1:, si œ A Û B, and which form the Abelian heap

A � B. More explicit ways of describing the elements of A � B are possible.

Proposition 1.4.1. Let A and B be Abelian heaps.

(1) The direct sum A � B contains only the following (types) of symmetric words in

A and B:

(a) Elements a œ A and b œ B.

(b) Three letter words :abbÕ: and :aaÕb:, with a ”= aÕ
œ A and b ”= bÕ

œ B.

(c) Alternating words :a1b1a2 . . . anbnan+1: and :b1a1b2 . . . bnanbn+1:, where ai œ

A and bi œ B.

(2) Fix any eA, eB œ B. Then any of the multi-letter words in statement (1) can be

written as

:abeB:, :baeA:, :abeAeB . . . eAeBeA:, :baeBeA . . . eBeAeB:, a œ A, b œ B.

Proof. (1) It is clear that A � B contains words listed in (a) and (b) and that such

words cannot be reduced any further. It is also clear that there could be no clusters of
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more than two consecutive letters from either A and B. We will show that any cluster

of two letters from the same alphabet can be removed from a word of length at least

five. Taking into account the A-B symmetry su�ces it consider clusters abbÕaÕ with

a, aÕ
œ A, b, bÕ

œ B within a symmetric word. If this word has more than five letters,

then it contains an additional element of B. Depending on the parity of its position, it

can be swapped with either a or aÕ to form a cluster of three letters in B in-between a

and aÕ, which then is reduced to a single element by using the heap operation in B. In

case the word has five letters, by swapping and using heap operations it can be reduced

to an at most three letter word of type abbÕ or aaÕb.

This completes the proof.

(2) Using the axioms of an Abelian heap and the definition of A�B, we can compute

:abbÕ: = [ :abbÕ:, eB, eB] = :a[bbÕeB]eB: = :abÕÕeB:,

with bÕÕ = [b, bÕ, eB] as required. The case of :aaÕb: is dealt with in a similar way. Words

in alternating letters can be transferred to the prescribed form by consecutive applying

of the above procedure. Explicitly, for w = a1b1 . . . an≠1,

:wbn≠1anbnan+1: = [ :wbn≠1anbnan+1:, eA, eA] = :wbn≠1anbnan+1eAeA:

= :wbn≠1aneAan+1bneA: = :wbn≠1aÕ
n
bneA:

= :wbn≠1aÕ
n
bneBeBeA: = :wbn≠1eBbnaÕ

n
eBeA: = :wbÕ

n≠1aÕ
n
eBeA:,

etc., with aÕ
n

= [an, eA, an+1] and bÕ
n≠1

= [bn≠1, eB, bn].

We refer to sequences of the alternating eA and eB as to tails.

Proposition 1.4.2. Let A and B be Abelian heaps. Together with the inclusions

ÿA : A ≠æ A � B, a ‘≠æ a, and ÿB : B ≠æ A � B, b ‘≠æ b, A � B is a coproduct in

the category of Abelian heaps.

Proof. We need to prove that given an Abelian heap H and heap morphisms f : A ≠æ H
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and Â : B ≠æ H, there is a unique filler Ï � Â in the diagram:

H

A
ÿA

//

Ï

77

A � B

Ï�Â

OO

B.
ÿB

oo

Â

hh

(1.4.1)

It is clear that the unique way of defining a heap homomorphism Ï�Â that fits diagram

(1.4.1) is to set (Ï � Â)(a) = Ï(a) and (Ï � Â)(b) = Â(b), for all a œ A, b œ B, and

then extend it to words in A � B letter-by-letter. We need to assure, however, that

this definition is independent on the choice of representatives in the equivalence classes

of symmetrised reduced words listed in, say, statement (1) of Proposition 1.4.1. Two

classes can be equal if and only if they are of the same type (i.e. starting with an

element of A or starting with an element of B as in Proposition 1.4.1 (1)(c), or with

two elements of A or two elements of B as in Proposition 1.4.1 (1)(b)), as there is no

way of joining elements in the same heap to produce a single element and thus reduce

the length of the word or change its type. We look at these possibilities in turn.

If :ab1b2: = :aÕbÕ
1b

Õ
2:, then using the Mal’cev identity, symmetry and the definition of

heap operation in A � B we find

aÕ = :aÕab1b2ab1b2: = :aÕaÕbÕ
1b

Õ
2ab1b2: = :bÕ

1b
Õ
2ab1b2: = :abÕ

2[bÕ
1, b1, b2]:,

since A and B are disjoint in A�B and relation is given by symmetrisation and pruning

this implies that aÕ = a and bÕ
2

= [bÕ
1
, b1, b2]. Therefore,

(Ï � g)( :aÕbÕ
1b

Õ
2:) = [Ï(aÕ), g(bÕ

1
), g(bÕ

2
)] = [Ï(a), g(bÕ

1
), [g(bÕ

1
), g(b1), g(b2)]]

= [Ï(a), g(b1), g(b2)] = (Ï � g)( :ab1b2:),

where we used that g is a heap morphism and the Mal’cev identity. The other case in

Proposition 1.4.1 (1)(b) follows by the A-B-symmetry.

To treat the words listed in Proposition 1.4.1 (1)(c) we first claim that if

:a1b1a2 . . . anbnan+1: = :aÕ
1b

Õ
1a

Õ
2 . . . aÕ

n
bÕ

n
aÕ

n+1:, (1.4.2)

then

aÕ
n+1

= [a1, aÕ
1
, . . . , aÕ

n
, an+1] and bÕ

n
= [b1, bÕ

1
, . . . , bÕ

n≠1
, bn]. (1.4.3)
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We prove this assertion by induction on n. The case of n = 1 follows by similar reasoning

as in the case already studied (simply replace a by a1, aÕ by aÕ
1
, b2 by a2 and bÕ

2
by aÕ

2
,

and use the corresponding arguments). Assume that the statement holds for some n,

and assume that

:a1b1a2 . . . an+1bn+1an+2: = :aÕ
1b

Õ
1a

Õ
2 . . . aÕ

n+1b
Õ
n+1a

Õ
n+2:.

Then, first by using the Mal’cev identities, and then by the symmetry and the definition

of operation in A � B,

:aÕ
2b

Õ
2a

Õ
3 . . . aÕ

n+1b
Õ
n+1a

Õ
n+2: = :a1b1a2 . . . an+1bn+1an+2aÕ

1b
Õ
1:

= :a1b1a2 . . . bn[an+1, aÕ
1, an+2]bn+1bÕ

1:

= :a1b1a2 . . . an[bn, bÕ
1, bn+1][an+1, aÕ

1, an+2]:.

As the length of the word is 2n + 1, the inductive assumption can be applied, so that

aÕ
n+2

= [a1, aÕ
2
, a2, . . . aÕ

n+1
, [an+1, aÕ

1
, an+2]] = [a1, aÕ

1
, . . . , aÕ

n+1
, an+2],

where the fact that A is an Abelian herd has been used. The formula for bÕ
n+1

can be

derived using the second part of the conjunction in the inductive assumption. This

proves that (1.4.3) holds for all n œ N.

In the situation (1.4.2), using (1.4.3), that both f and g are heap morphisms, Mal’cev
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identities and the Abelian nature of A and B, one can compute

(Ï � Â)
1

:aÕ
1b

Õ
1 . . . bÕ

n
aÕ

n+1:
2

=

= [Ï(aÕ
1
), Â(bÕ

1
), . . . , Ï(aÕ

n
), Â([b1, bÕ

1
, . . . , bÕ

n≠1
, bn]), Ï(aÕ

n+1
)]

= [Ï(aÕ
1
), Â(bÕ

1
), . . . , Ï(aÕ

n
), Â(b1), Â(bÕ

1
), . . . , Â(bÕ

n≠1
), Â(bn), Ï(aÕ

n+1
)]

= [Ï(aÕ
1
), Â(bÕ

1
), Â(bÕ

1
), Ï(aÕ

2
) . . . , Â(b1), Ï(aÕ

n
), . . . , Â(bÕ

n≠1
), Â(bn), Ï(aÕ

n+1
)]

= [Ï(aÕ
1
), Ï(aÕ

2
), . . . , Â(b1), Ï(aÕ

n
), . . . , Â(bÕ

n≠1
), Â(bn), Ï(aÕ

n+1
)]

= . . . = [Ï(aÕ
1
), Â(b1), Ï(aÕ

2
), . . . , Ï(aÕ

n
), Â(bn), Ï([a1, aÕ

1
, . . . , aÕ

n
, an+1])]

= [Ï(aÕ
1
), Â(b1), Ï(aÕ

2
), . . . , Ï(aÕ

n
), Â(bn), Ï(a1), Ï(aÕ

1
), . . . , Ï(aÕ

n
), Ï(an+1)]

= [Ï(aÕ
1
), Ï(aÕ

1
), Â(b1), Ï(aÕ

2
), . . . , Ï(aÕ

n
), Ï(a1), Â(bn), . . . , Ï(aÕ

n
), Ï(an+1)]

= [Â(b1), Ï(aÕ
2
), . . . , Ï(aÕ

n
), Ï(a1), Â(bn), . . . , Ï(aÕ

n
), Ï(an+1)]

= . . . = [Ï(a1), Â(b1), . . . , Ï(an), Â(bn), Ï(an+1)]

= (Ï � Â)
1

:a1b1 . . . bnan+1:
2

Thus the definition of Ï � Â is independent on the choice of the representatives in this

case. The case of the alternating words starting with elements in B is dealt with in a

symmetric manner (or follows by the A-B symmetry). This completes the proof of the

proposition.

Remark 1.4.3. Note that although Abelian heaps A and B can be made into Abelian

groups by fixing neutral elements, say eA œ A and eB œ B, the direct sum of Abelian

heaps A�B is not the same as the heap associated to the direct sum of the corresponding

groups, i.e. A � B ”= H(G(A; eA) ü G(B; eB)). Since Ï and Â are heap morphisms in

the diagram (1.4.1), there is no need for eA and eB to be mapped to the same element

of H that could serve for the neutral element of the induced group structure.

As in the case of Abelian groups, the explicit description of the direct sum of two

Abelian heaps in Proposition 1.4.1 can be extended to families of Abelian heaps. In

case of the family (Ax)xœX , the direct sum �
xœX

Ax, in addition to single and three letter

words :axaÕ
x
ay:, with ax ”= aÕ

x
œ Ax and ay œ Ay, x ”= y, consists of words of finite odd

length in which neighbouring letters come from di�erent heaps, and in which letters
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from the same heap, say Ax, are separated by odd number of letters from heaps not

labelled by x.

The following proposition provides one with a group-theoretic description of the

coproduct of Abelian heaps.

Proposition 1.4.4. Let A and B be Abelian heaps, then

A � B ≥= H(G(A; eA) ü G(B; eB) ü Z).

Proof. The functions

ÏA : A ≠æ H(G(A; eA) ü G(B; eB) ü Z), a ‘≠æ (a, eB, 0) = a,

ÏB : B ≠æ H(G(A; eA) ü G(B; eB) ü Z), b ‘≠æ (eA, b, 1) = b + 1,

with understanding that whenever terms are written additively in the codomain eA =

eB = 0, are heap homomorphisms. By the universal property of coproducts (cf. the

diagram in proof of Proposition 1.4.2) there exists a unique homomorphism

Ï : A � B ≠æ H(G(A; eA) ü G(B; eB) ü Z),

which restricts to ÏA on A and ÏB on B. In terms of words in Proposition 1.4.1 (2) the

homomorphism Ï comes out as

Ï
1

:abeB:
2

= a ≠ b, Ï
1

:abeAeB . . . eAeBeA:
2

¸ ˚˙ ˝
eA appears n≠times

= a ≠ b ≠ n,

Ï
1

:baeA:
2

= b ≠ a + 1, Ï
1

:baeBeA . . . eBeAeB:
2

¸ ˚˙ ˝
eB appears n≠times

= b ≠ a + n + 1.

The inverse of Ï is the filler of the coproduct diagram in the category of groups and

is determined by

Ï≠1 : G(A; eA) ü G(B; eB) ü Z ≠æ G(A � B; eA),

0 ‘≠æ eA, 1 ‘≠æ eB, a ‘≠æ a, b ‘≠æ :beBeA: ,

for all a œ A and b œ B. Therefore, since any homomorphism of groups is a homomor-

phism of heaps, we conclude that Ï≠1 is a homomorphism of heaps. Clearly, compositions

of Ï and Ï≠1 give identities so Ï is an isomorphism of heaps as required.
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Observe that even the coproduct of Abelian heaps is no longer a sub-heap of the

product of heaps in contrast to what happens in the categories of groups.

Since the coproduct is an associative operation on a category, the identification of

Proposition 1.4.4 can be iterated and transferred easily to coproducts of any finite (or

infinite) number of heaps. In particular, we obtain

Remark 1.4.5. Even though we know that a coproduct of non-Abelian heaps exists and

intuitively we can expect what it is, the detailed construction of it is not that easy as

one need to deal with much more complicated associative law.

Corollary 1.4.6. Let X = {x1 . . . xn} be a finite set. Then

H({x1}) � H({x2}) � . . . � H({xn}) ≥= H(Zn≠1) ≥= A(X).

Proof. The free heap on a singleton set is the singleton set itself, and thus the associ-

ated (Abelian) group is the trivial group 0. The first isomorphism thus follows from

Proposition 1.4.4. The second isomorphism follows by Remark 1.3.6.

Example 1.4.7. Let us take heaps A = {0A, 1A} and B = {0B, 1B} each associated

with the group C2, and choose 0A and 0B as distinguished elements of statement (2) in

Proposition 1.4.1. Proposition 1.4.4 implies that A � B ≥= H(C2 ü C2 ü Z). Moreover,

by choosing G(A � B; 0A) and looking at the elements from Proposition 1.4.1 we can

deduce that tails of the form 0B0A . . . 0A0B and 0A0B . . . 0B0A represent numbers of Z

in the direct sum.

1.5 Construction of a free group by heaps

The main goal of this section is to construct a left adjoint functor to the functor

H : Grp æ Heap.

Let {ú} be a singleton heap. For any heap H, one can consider the group Grú(H) :=

G(H � {ú}; ú). The following lemma shows that this group has a very interesting

universal property, which will be essential in the construction of the adjoint.
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Lemma 1.5.1. Let H be a heap, S be a group and f : H æ H(S) be a heap homomor-

phism. Then there exists a unique group homomorphism Grú(f) : Grú(H) æ S such

that f = H(Grú(f)) ¶ ÿH , where ÿH is a canonical injection into coproduct. In other

words, diagram

H
ÿH

//

f

##

H(Grú(H))

÷! H(Grú(f))

✏✏

H(S)

(1.5.1)

commutes, where ÷! H(Grú(f)) reads “there exists exactly one homomorphism of

groups Grú(f)”. The pair (Grú(H), ÿH) is a universal arrow, see [24, Section III.1].

Proof. Observe that by the universal property of coproduct for all groups S and

homomorphisms of heaps f : H æ H(S), g : {ú} æ H(S) diagram

H(S)

H
ÿH

//

f

66

H(Grú(H))

H(Grú(f))

OO

{ú}
ÿú

oo

g

hh

(1.5.2)

commutes. Every homomorphism of groups is a homomorphism of associated heaps.

Moreover, a homomorphism of heaps is a homomorphism of retracts if, and only if it

maps a neutral element to a neutral element. Hence, H(Grú(f)) is a homomorphism of

retracts if and only if g(ÿú(ú)) is a neutral element of S. Observe that g is unique, since

{ú} is a singleton heap. Therefore H(Grú(f)) is a unique homomorphism of heaps such

that it is also a homomorphism of groups to which heaps were associated. Thus, the

preceding diagram commutes.

Another important observation is that a canonical injection ÿH has some sort of

cancellation property.

Lemma 1.5.2. Let H, L be heaps and f, g : H(Grú(H)) æ L be homomorphisms of

heaps such that f(ÿú(ú)) = g(ÿú(ú)), then f ¶ ÿH = g ¶ ÿH implies f = g.
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Proof. Let us consider a homomorphism of heaps f : H(Grú(H)) æ L. One can easily

observe that by the uniqueness of a coproduct map f = (f ¶ ÿH) � (f ¶ ÿú). Thus,

because f(ÿú(ú)) = g(ÿú(ú)) and f ¶ ÿH = g ¶ ÿH , we get that

f = (f ¶ ÿH) � (f ¶ ÿú) = (g ¶ ÿH) � (g ¶ ÿú) = g.

Therefore, f(ÿú(ú)) = g(ÿú(ú)) and (f ¶ ÿH) = (g ¶ ÿH) implies f = g.

Corollary 1.5.3. Let e œ L. If f, g : Grú(H) æ G(L, +e), are homomorphisms of

groups, then f ¶ ÿH = g ¶ ÿH implies f = g.

Proof. This follows by Lemma 1.5.2 since a homomorphism of heaps H(f) is equal to a

homomorphism of groups f as functions.

Now, we are ready to describe the functor. Let us consider an assignment

Gr : Heap æ Grp given on a heap H by H ‘æ Grú(H). One can easily see that

it is a well-defined function. The assignment is given for all homomorphisms of heaps

f : H æ H Õ by f ‘æ Grú(ÿHÕ ¶ f) and is well-defined, since ÿÕ
H

¶ f is a composition of

homomorphisms of heaps, so it is a homomorphism of heaps. Therefore by the universal

property of Grú, Grú(ÿHÕ ¶ f) is a homomorphism of groups.

Lemma 1.5.4. The assignment Gr : Heap æ Grp is a functor.

Proof. In the previous discussion, we explained that both assignments are well-defined

functions. Thus, we have to show that functor preserves identity and composition.

Obviously Grú(ÿH ¶ 1H) = 1Grú(H).

For the composition let us assume that f : H æ H Õ is a homomorphism of heaps,

then ÿHÕ ¶f is a composition of homomorphisms of heaps, hence ÿHÕ ¶f : H æ H(Gr(H Õ)))

is a homomorphism of heaps. If f : H æ H Õ and g : H Õ
æ H ÕÕ are homomorphisms of

heaps, then

Gr(g ¶ f) ¶ ÿH = Grú(ÿHÕÕ ¶ g ¶ f) ¶ ÿH = ÿHÕÕ ¶ g ¶ f = Gr(g) ¶ ÿHÕ ¶ f

= Gr(g) ¶ Gr(f) ¶ ÿH ,
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where all the equalities follow by Lemma 1.5.1 applied multiple times. Now, since

Gr(g ¶ f) ¶ ÿH = Gr(g) ¶ Gr(f) ¶ ÿH and Gr(g ¶ f), Gr(g), Gr(f) are homomorphisms of

groups, applying Corollary 1.5.3, one gets that Gr(g ¶ f) = Gr(g) ¶ Gr(f). Therefore

an assignment Gr preserves composition, hence Gr is a functor.

The following theorem confirms that Gr is a desirable functor.

Theorem 1.5.5. The functor Gr is a left adjoint to the functor H.

Proof. For all heaps H and groups G let us consider functions between sets of morphisms:

ÏH,G : Grp(Gr(H), G) ≠æ Heap(H, H(G)), f ‘≠æ H(f) ¶ ÿH ,

Ï≠1

H,G
: Heap(H, H(G)) ≠æ Grp(Gr(H), G), f ‘æ Grú(f).

To show that ÏH,G is a bijection let f œ Heap(H, H(G)) and g œ Grp(Gr(H), G),

then

ÏH,G ¶ Ï≠1

H,G
(f) = ÏH,G(Grú(f)) = H(Grú(f)) ¶ ÿH = f,

where the last equality follows by Lemma 1.5.1, and

Ï≠1

H,G
¶ ÏH,G(g) = Grú(H(g) ¶ ÿH) = g,

where the last equality follows by the uniqueness of the morphism Grú(H(f) ¶ ÿH).

Hence, Ï≠1

H,G
is an inverse to ÏH,G. Thus, ÏH,G is a bijection.

To check naturality conditions, let G, S be groups, H, L be heaps and consider

homomorphisms f : Gr(H) ≠æ G, – : L ≠æ H and g : G ≠æ S. Then

ÏL,G(f ¶Gr(–)) = H(f ¶Gr(–))¶ÿL = H(f)¶H(Gr(–))¶ÿL = H(f)¶ÿH ¶– = ÏH,G(f)¶–,

by applying Lemma 1.5.1 multiple times. Similarly,

ÏH,S(g ¶ f) = H(g ¶ f) ¶ ÿH = H(g) ¶ ÏH,G(f).

Therefore Ï is a natural isomorphism and the functor Gr is a left adjoint to the

functor H.
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To underline the meaning of the preceding theorem in the context of groups let us
consider the following diagram

Grp
H

&&

UGrp

✏✏

Heap ,

UHeap
xx

Gr

ff

Set

G

OO

H
88

where UGrp is a forgetful functor and G is its left adjoint, the free functor.

The first observation is that all the opposite arrows are adjoints to each other.

The second observation is that a composition of functors,

Grp H
//Heap

UHeap
// Set

is the forgetful functor UGrp since for any group G, H(G) and G are equal sets, and

every homomorphism of groups f is the same function as H(f). These two observations

leads to the following corollaries.

Corollary 1.5.6. The functor Gr ¶ H : Set æ Grp is a free functor, i.e. it is a left

adjoint to the functor UGrp : Grp æ Set.

Proof. Observe that for any group G and set S,

Grp(Gr(H(S)), G) ≥= Heap(H(S), H(G)) ≥= Set(S, UHeap(H(G))) = Set(S, UGrp(G)).

Thus Gr ¶ H ‰ UGrp.

Corollary 1.5.7. For any set X, (Gr ¶ H)(X) ≥= G(X).

Proof. Since both functors Gr ¶ H and G are left adjoints to the forgetful functor, they

are naturally isomorphic, see [24, Corollary 1, page 85].

To summarise, we have shown that a free functor from the category of sets to the

category of groups is decomposable into two functors, through the category of heaps.

The description of the free functor provides a method to construct a free group.
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Sadly, in general, it is not an easy task to describe a coproduct of heaps. One

intuitively knows it is a quotient of a free heap over the disjoint union. The choice of

generators for the normal sub-heap is at least tricky, because one must at the same

time deal with the allocations of a ternary operation in elements of the free heap, see

the associativity rule Lemma 1.1.19(1).

Fortunately, since we are interested in a composition of functors Gr ¶ H, we only

need to consider the coproduct of two heaps, the singleton heap and a free heap H(X),

for any set X. Observe that a heap described on the singleton set is unique up to

isomorphism. Thus, we can identify a singleton heap with a free heap H({ú}). Now,

by definition of Gr ¶ H, (Gr ¶ H)(X) = G(H(X) � H({ú}); ú), but H is a left adjoint

functor to the forgetful functor, so it preserves coproducts. Therefore, we have that

H(X) � H({ú}) ≥= H(X Û {ú}). Hence, we start with taking a set X, then consider a

disjoint union with {ú}, construct a free heap over X Û {ú} and take a retract of that

heap in ú. The obtained retract is a free group. Even though one can argue that we

still add a disjoint element ú, in this setup, it has a proper algebraic interpretation in

the category of heaps, i.e. taking a coproduct of a free heap with a singleton heap. In

contrast to Construction B.1.5, we do not add artificially the set X≠1 to get inverses,

as inverses in the retract are words of the form [ú, w, ú], for any w œ H(X Û {ú}).
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Chapter 2

In the world of trusses

In this chapter we generalise the definition of a truss from [15] by forgetting distributive

laws. The generalisation is called a pre-truss. Next, we identify special cases of pre-

trusses with near-rings and skew braces. In Section 2.2, we describe the congruences

of pre-trusses in terms of algebraic structure of paragons, which in the case of rings

are congruence classes. The last section is mainly an investigation when units of a ring

form a congruence class. All the sections of this chapter can be found in Section 3 of

[26]. All the basic definitions and facts about near-rings and skew braces necessary to

understand this chapter can be found in Appendix B.

2.1 Pre-trusses, near-trusses and trusses

The aim of this section is to introduce heaps with an additional semigroup operation

and describe their relations with well-known algebraic structures.

Definition 2.1.1.

(1) A pre-truss is a heap (T, [≠, ≠, ≠]) together with an associative binary operation

called a multiplication (denoted by a juxtaposition or ·).

(2) A pre-truss T satisfying the left distributive law:

a[b, c, d] = [ab, ac, ad], for all a, b, c, d œ T ,

is called a near-truss.

65
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(3) A near-truss T satisfying the right distributive law

[b, c, d]a = [ba, ca, da], for all a, b, c, d œ T ,

is called a skew truss.

(4) A skew truss such that the underlying heap is Abelian is called a truss.

Every one of the above notions is said to be unital provided the binary operation has

an identity (denoted by 1) and commutative if for all a, b œ T , ab = ba.

Definition 2.1.2. A homomorphism of (pre-, near-, skew) trusses is a homomorphism

of heaps that is also a homomorphism of semigroups (or monoids in the unital case).

It is clear from this definition that the image of a homomorphism of (pre-, near-,

skew) trusses is itself a (pre-, near-, skew) truss.

Definition 2.1.3. A left (resp. right) absorber is an element a of a pre-truss T such

that, for all t œ T , ta = a (resp. at = a). We say that a is an absorber if it is a left and

right absorber.

Lemma 2.1.4. It is worth noting that if a pre-truss T has both a left and a right

absorber, then they necessarily coincide, in particular an absorber is unique.

Proof. Let us assume that l œ T is a left absorber and r œ T is a right absorber. Then

l = r · l = r,

so l is a unique two-sided absorber.

Lemma 2.1.5. Furthermore, since homomorphisms of pre-trusses preserve multiplica-

tion, if f : T ≠æ T Õ is a morphism and e is a left (resp. right) absorber in T , then f(e)

is a left (resp. right) absorber in the pre-truss f(T ).

Proof. Let l œ T ba a left absorber, then for all t œ T

f(t) · f(l) = f(t · l) = f(l),

and therefore f(l) is a left absorber in f(T ).
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Now let us introduce a set of lemmas which will provide a plenty of examples of

pre-trusses.

Lemma 2.1.6. Let T be a truss. Then e œ T is an absorber if and only if R =

(G(T ; e), ·) is a ring. We call such T a truss associated with a ring R or a ring-type

truss, and denote it by T(R).

Proof. If R is a ring, then obviously e is an absorber.

In the opposite direction. If e is an absorber, then it is enough to check the

distributivity as G(T ; e) is a group and · is associative. For all a, b, c œ T ,

a(b +e c) = a[b, e, c] = [ab, ae, ac] = [ab, e, ac] = ab +e ac,

(b +e c)a = [b, e, c]a = [ba, ea, ca] = [ba, e, ca] = ba +e ca,

so distributivity holds and therefore R = (G(T ; e), ·) is a ring.

Remark 2.1.7. Observe that an absorber is unique, therefore assignment of a ring to a

truss through retract is unique.

Corollary 2.1.8. A ring R is unital if and only if T(R) is unital.

Lemma 2.1.9. Let T be a near-truss. Then e œ T is a left absorber if and only if

N = (G(T ; e), ·) is a near-ring. We call such T a truss associated with a near-ring N

or a ring-type near-truss and denote it by T(N).

Proof. Proof is almost the same as proof of Lemma 2.1.6, the only di�erence is that we

need to show only left distributivity.

Remark 2.1.10. Observe that in a near-truss there can be more than one left absorber,

therefore the assignment of a near-ring to a truss is not necessarily unique.

Another class of examples of near-trusses is given by skew braces, see Definition

B.2.26. The following lemma gives a full characterisation of near-trusses that can be

associated with a skew brace by taking a retract.
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Lemma 2.1.11. Let T be a unital near-truss. Then B = (G(T ; 1), ·) is a skew brace

if and only if (T, ·) is a group with neutral element 1. We call such T a brace-type

near-truss and denote it by T(B).

Proof. If B is a skew brace, then it is obvious that (T, ·) is a group with neutral

element 1.

Now, let us assume that (T, ·) is a group, it is enough to show that the left distributive

law holds. Indeed, as for all a, b, c œ T ,

a(b +1 c) = a[b, 1, c] = [ab, a, ac] = [[ab, 1, 1], a, [1, 1, ac]] = [[ab, 1, 1], [1, 1, a], ac]

= [ab, [1, [1, a, 1], 1], ac] = [[ab, 1, [1, a, 1]], 1, ac] = ab ≠1 a +1 ac,

where all the equalities follows by the one of distributivity, associativity, Mal’cev

identities or Lemma 1.1.19(1). Thus B is a skew-brace.

Corollary 2.1.12. A brace-type near-truss T is associated with two-sided brace if and

only if T is a truss.

Remark 2.1.13. Observe that since the identity is a unique element in a truss, the

assignment of a skew brace to a truss is unique.

Now, let us focus on trusses. Let us start with examples.

Example 2.1.14. A fundamental example of a (unital) truss is the endomorphism

truss of an Abelian heap, E(H) = Ah(H, H), which has the pointwise defined heap

operation and multiplication given by the composition of morphisms.

Lemma 2.1.15. Trusses form a category with trusses as objects and homomorphisms

as arrows. We will denote this category by Trs. Moreover, unital trusses form a

subcategory of Trs with unital trusses as objects and homomorphisms which preserve

identities as arrows. We will denote this subcategory by Trs1.

Proof. This is a simple observation that composition of two truss homomorphisms is

a truss homomorphism and that, if both homomorphisms preserve identity then the

composition preserves the identity too.
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Remark 2.1.16. Observe that Trs1 is not a full subcategory of Trs as

Trs({0}, T(Z)) = {fk : {0} æ T(Z) | f(0) = k, k œ {0, 1} µ Z}

is not equal to

Trs1({0}, T(Z)) = {f | f(0) = 1}.

In an obvious way, the terminal object {ú} (that is, the singleton set with the unique

ternary operation) of the category Ah is also the terminal object of the category Trs

of trusses and the zero object (both initial and terminal) of the category Trs1 of unital

ones. The empty set is a initial object in Trs.

Remark 2.1.17. The category Trs1 has kernels as every object has an identity and a

homomorphism Ï of unital trusses preserves identity, we have a unique choice of a

kernel, i.e. ker1(Ï), which is a unital truss and a sub-truss of an object.

Lemma 2.1.18. An assignment T : Ring æ Trs given by R ‘æ T(R) and T(Ï) = Ï,

for all rings R and all Ï œ Ring(R, RÕ), is a functor.

Proof. Let Ï œ Ring(R, S), then for all a, b, c œ R,

T(Ï)[a, b, c] = Ï(a ≠ b + c) = Ï(a) ≠ Ï(b) + Ï(c) = [Ï(a), Ï(b), Ï(c)]

= [T(Ï)(a), T(Ï)(b), T(Ï)(c)],

thus T(Ï) œ Trs(T(R), T(S)). Now, let Ï œ Ring(R, S) and Â œ Ring(S, S Õ), then for

all a œ R,

T(Â) ¶ T(Ï)(a) = T(Â)(Ï(a)) = (Â ¶ Ï)(a) = T(Â ¶ Ï)(a),

so an assignment T preserves composition and in consequence T is a functor.

It is worth to mention that analogous categories and functors can be constructed

for pre-trusses and near-trusses but to keep some kind of common sense, I decided to

limit my categorical considerations to trusses.
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2.2 Congruences on pre-trusses

In this section we will focus on the interpretation of congruences on pre-trusses as

algebraic structures. This part is a natural extension of Section 1.2 into pre-trusses.

The only and most important theorem of this section is Theorem 2.2.6 which identifies

congruences with paragons and vice versa.

Definition 2.2.1. Let T be a pre-truss.

(1) A sub-heap S of T is said to be left-closed (resp. right-closed) if, for all s, sÕ
œ S

and t œ T ,

[tsÕ, ts, s] œ S (resp. [sÕt, st, s] œ S). (2.2.1)

(2) A sub-heap S that is left- and right-closed is said to be closed.

(3) A non-empty normal sub-heap P of T such that every equivalence class of the

sub-heap relation ≥P is a closed (normal) sub-heap of T is called a paragon.

Observe that Lemma 1.2.13 implies that if P is a paragon in a pre-truss T , then all

the equivalence classes of ≥P are mutually isomorphic paragons as well.

Remark 2.2.2. In the case of a non-empty sub-heap S the quantifier ‘for all s œ S’ in

the definition of the left or right closure property (2.2.1) can be equivalently replaced

by the existential quantifier. Indeed, assume that there exists q œ S such that, for all

sÕ
œ S and t œ T , [tsÕ, tq, q] œ S. Then, for all s œ S,

[tsÕ, ts, s] = [[[tsÕ, tq, q], q, tq], ts, s] = [[tsÕ, tq, q], [ts, tq, q], s] œ S,

by the associativity, Mal’cev’s identities, Lemma 1.1.19 (1), and the fact that S is a

sub-heap. Similarly, the right closure property follows.

Lemma 2.2.3. A non-empty normal sub-heap P of a pre-truss T is a paragon if and

only if, for all a, b œ T and p, e œ P ,

[a[p, e, b], ab, e] œ P & [[p, e, b]a, ba, e] œ P.
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Proof. By Lemma 1.2.13, the equivalence class of b œ T is b̄ = P b

e
= {[p, e, b] | p œ P},

for all e œ P . Hence b̄ is left-closed if and only if, for all p œ P and a œ T , there exists

q œ P such that

[a[p, e, b], ab, b] = [q, e, b],

that is, if and only if

[a[p, e, b], ab, e] = q œ P,

as required.

Corollary 2.2.4. A non-empty normal sub-heap P of a near-truss T is a paragon if

and only if P is left-closed and all equivalence classes of the induced sub-heap relation

are right-closed. In particular P is a paragon in a skew truss if and only if it is a closed

normal sub-heap.

Proof. Since in a near-truss the left distributivity law holds, the left-closure property

in Lemma 2.2.3 reduces to [ap, ae, e] œ P , that is, the left-closedness of P . In a skew

truss the right-closure property is treated symmetrically.

Corollary 2.2.4 shows that, in the case of skew trusses (and hence trusses) the notion

of a paragon introduced in Definition 2.2.1 reduces to the notion introduced in [16,

Definition 3.15].

Lemma 2.2.5. Let f : T ≠æ T Õ be a morphism of pre-trusses.

(1) For all z œ Imf , f≠1(z) is a paragon in T . In particular, if P Õ is a paragon in

Imf , then f≠1(P Õ) is a paragon in T .

(2) If P is a paragon in T then f(P ) is a paragon in Imf .

Proof. (1) By Lemma 1.2.10, f≠1(z) is a normal sub-heap which is non-empty (since

z œ Imf). For all a, b œ T and p, e œ f≠1(z),

f([a[p, e, b], ab, e]) = [f(a)[f(p), f(e), f(b)], f(a)f(b), f(e)]

= [f(a)[z, z, f(b)], f(a)f(b), z] = z,
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since f preserves multiplication and ternary operations, and by Mal’cev identities. Thus

[a[p, e, b], ab, e] œ f≠1(z). By the same arguments, [[p, e, b]a, ba, e] œ f≠1(z). In view of

Lemma 2.2.3 this means that f≠1(z) is a paragon.

Assume that P Õ is a paragon. That the pre-image of a normal sub-heap is a

normal sub-heap follows by the standard group-theoretic arguments. Since f preserves

multiplication and heap operation, for all a, b œ T and p, q œ f≠1(P Õ),

f ([a[p, q, b], ab, q]) = [f(a)[f(p), f(q), f(b)], f(a)f(b), f(q)] &

f ([[p, q, b]a, ba, q]) = [[f(p), f(q), f(b)]f(a), f(b)f(a), f(q)] .

Since P Õ is a paragon, and f(p), f(q) œ P Õ, both expressions are elements of P Õ.

Therefore, [a[p, q, b], ab, q], [[p, q, b]a, ba, q] œ f≠1(P Õ), and hence f≠1(P Õ) is a paragon.

Statement (2) is proven by similar arguments.

Theorem 2.2.6. Let P be a non-empty normal sub-heap of a pre-truss T . Then the

canonical heap map fi : T æ T/P is a homomorphism of pre-trusses if and only if P is

a paragon.

Proof. Assume that fi is a pre-truss homomorphism. Since P = fi≠1(fi(P )), P is a

paragon by Lemma 2.2.5.

For the proof of the opposite implication assume that P is a paragon. Then ≥P is a

congruence on the heap T , so we only need to show that this relation is a congruence

on the pre-truss T as well. Let a, b œ T be such that a ≥P b, so that a, b œ fi(b).

Since P is a paragon, for all t œ T , [ta, tb, b] œ fi(b). Hence, [fi(tb), fi(ta), fi(b)] = fi(b),

that is, fi(tb) = fi(ta) or, equivalently, ta ≥P tb. In the same way one can prove

that a ≥P b implies at ≥P bt for all t œ T . Assume that a ≥P b and c ≥P d. Then

ac ≥P bc, bc ≥P bd and ac ≥P bd, since ≥P is an equivalence relation. Therefore, ≥P is

a congruence and the canonical map fi : T æ T/P is a homomorphism of pre-trusses.

This completes the proof.

Corollary 2.2.7. If P is a paragon in a pre-truss T , then for all a, b œ T , · b

a
(P ) = P b

a

is a paragon in T and T/P = T/P b

a
.
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Proof. Since P is a normal sub-heap, the corollary follows by the Lemma 1.2.13 and

the definition of paragon.

Corollary 2.2.8. Let N be a near-ring. Then P ™ N is an equivalence class for a

congruence on N if and only if P is a paragon in T(N).

Proof. Let us assume that P is an equivalence class for a congruence on N , let N̄

be the quotient near-truss with canonical homomorphism fi : N ≠æ N̄ . Since fi is

also a homomorphism of associated near-trusses, that is, fi : T(N) ≠æ T(N̄), and

P = fi≠1(P ), P is a paragon in T(N) by Lemma 2.2.5.

In the opposite direction, assume that P is a paragon in T(N). Then there ex-

ists a near-truss homomorphism fi : T(N) æ T(N)/P . Observe that the triple

(T(N)/P, +fi(e), ·), where e is the neutral element of N , is a near-ring, since the image

of a left absorber through a surjective near-truss homomorphism is a left absorber.

Therefore fi is also a homomorphism of the retracted near-rings and P is an equivalence

class of a congruence given by fi as P = fi≠1(P ).

Corollary 2.2.9. Let R be a ring and P be a paragon in T(R). Then · 0

p
(P ) = P 0

p
is

an ideal in R, for all p œ P .

Proof. If P is a paragon in R, then for any p œ P , 0 œ P 0

p
. Observe that by lemmas

2.2.7 and 1.2.9 P 0

p
is a normal subgroup and for all a œ R and b œ P ,

[ab, a0, 0] = ab ≠ a0 + 0 = ab & [ba, 0a, 0] = ba ≠ 0a + 0 = ba.

Thus G(P ; 0) is an ideal in R.

Now, let us consider skew braces. All the basic definitions and facts about skew

braces reader will find in the Appendix B. For an equivalent characterisation of skew

braces in terms of near-trusses, check Lemma 2.1.11. A quotient of a skew brace is

given by an ideal, see Definition B.2.29 and Proposition B.2.30. It is easy to prove that

every homomorphism of skew braces, see Definition B.2.28, is also a homomorphism

of associated unital near-trusses. The opposite observation is not that simple. If
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we consider a surjective homomorphism of near-trusses associated to skew braces or

a homomorphism in Trs1 between near-trusses associated to skew braces, then this

homomorphism is also a homomorphism of corresponding skew braces. This follows by

the following lemma.

Lemma 2.2.10. Let T(B) be the near-truss associated to a skew brace B (with the

identity 1). Then P is a paragon in T(B) if and only if, for all p œ P ,

P 1

p
= · 1

p
(P ) = {[pÕ, p, 1] | pÕ

œ P}

is an ideal in B.

Proof. Assume that P is a paragon in T(B). Then 1 œ P 1

p
, (P 1

p
, +1) is a normal

subgroup of (B, +) as P 1

p
is a normal sub-heap and +1 = +, see Lemma 1.2.9. Since

P 1

p
is closed, for all a œ B and b œ P 1

p
,

ab ≠ a = [ab, a1, 1] œ P 1

p
& ba ≠ a = [ba, 1a, 1] œ P 1

p
.

Therefore, ba ≠ ab = c œ P 1

p
, and, using the brace distributive law,

a≠1ba = a≠1(c + ab) = a≠1c ≠ a≠1 + b œ P 1

p
,

since P 1

p
is left-closed. This implies that a≠1P 1

p
a = P 1

p
, that is, aP 1

p
= P 1

p
a, and

completes the proof that P 1

p
is an ideal in B.

Conversely, if P 1

p
is an ideal in B, then B/P 1

p
is a brace by [27, Lemma 2.3] (see

Lemma B.2.30), and the canonical brace epimorphism fi : B ≠æ B/P 1

p
induces a near-

truss morphism fi : T(B) ≠æ T(B/P 1

p
). Since P 1

p
= fi≠1(P 1

p
), P 1

p
and consequently also

P =
1
P 1

p

2
p

1
are paragons by Lemma 2.2.5.

Corollary 2.2.11. Let B be a skew brace, then P ™ B is an equivalence class for some

congruence on B if and only if P is a paragon in T(B).

Proof. The proof of the left to right implication is the same as in Corollary 2.2.8. The

other implication follows by Lemma 2.2.10.



2.2. CONGRUENCES ON PRE-TRUSSES 75

The next step is to prove that every near-truss homomorphism between near-trusses

associated with skew braces is a skew brace homomorphism.

Lemma 2.2.12. Let B1 and B2 be skew braces. Then a near-truss homomorphism

f : T(B1) æ T(B2) is also a skew brace homomorphism.

Proof. Observe that by the Lemma 2.2.10 a map f : B1 æ Imf ™ B2 is a brace

homomorphism. Now, the only di�culty is to show that the identity of Imf has the

same identity as B2. If x is an idempotent in Imf , then it is an idempotent in B2, but

there exists only one idempotent in B2, the identity. Thus map f preserves identity

and is a homomorphism of skew braces.

Remark 2.2.13. The category of skew braces is isomorphic to a full subcategory of the

category of near-trusses, i.e. the image of the functor T.

Example 2.2.14. View the ring Z as a truss with the heap operation [k, l, m]+ =

k ≠ l + m and the usual multiplication of integers. For any n œ N, consider the ideal

nZ. Then, for all m œ Z,

(nZ)m

0
= ·m

0
(nZ) = {kn + m | k œ Z} = {kn + r | k œ Z},

where r is a remainder of the division of m by n, is a paragon. In particular if n does

not divide m, or, equivalently, 0 < m < n then (nZ)m

0
is not an ideal. One easily checks

that

T(Z)/(nZ)m

0
≥= T(Z/nZ).

For example, (2Z)1

0
is the set of all odd integers but one can translate it to an ideal by

taking ((2Z)1

0
)0

1
= 2Z. In spite of the fact that (2Z)1

0
is not an ideal and that it contains

the identity of Z it is a paragon di�erent from Z, with corresponding quotient being a

non-trivial ring.

Example 2.2.15. Let B be a two-sided brace. Following [28, Section 4] (see Definition

B.2.31), the socle Soc(B) of B is defined as

Soc(B) = {a œ B | ab = a + b, b œ B}.
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The socle is an ideal of a two-sided brace that is non-trivial, i.e. di�erent from {1} if B

is non-trivial and finite (see [28, Proposition 3], [5] or Propostion B.2.33). For all c œ B,

c + Soc(B) = {c + a | a œ Soc(B)}

is an equivalence class of a congruence on B and hence it is a paragon in T(B). Indeed,

c + Soc(B) is a sub-heap of T(B), since for all a, aÕ, aÕÕ
œ Soc(B),

[c + a, c + aÕ, c + aÕÕ] = c + a ≠ c ≠ aÕ + c + aÕÕ = c + (a ≠ aÕ + aÕÕ) œ c + Soc(B).

Furthermore, for all b œ B,

[c, cb, (c + a)b] = c ≠ cb + cb ≠ b + ab = c + ab ≠ b œ c + Soc(B),

and

[b(c + a), bc, c] = bc ≠ b + ba ≠ bc + c = c + (bab≠1)b ≠ b œ c + Soc(B),

by the fact that Soc(B) is a normal subgroup of (B, ·). Therefore, c + Soc(B) is closed,

and hence it is a paragon in T(B).

Example 2.2.16. Let RG be a group ring for an arbitrary ring R and an arbitrary

group G. Let us observe that, for all r œ R, the sets

Ar := {
ÿ

gœG

rgg |
ÿ

gœG

rg = r}

are paragons in T(RG) as inverse images of r under the ring (and hence truss) homo-

morphism

fi : RG ≠æ R,
ÿ

gœG

rgg ‘≠æ
ÿ

gœG

rg.

In particular, each Ar is a sub-truss only if r is an idempotent. It can be easily checked

(or deduced from the fact that fi is an epimorphism combined with the first isomorphism

theorem for algebras) that, for all r œ R,

T(RG)/Ar
≥= T(R).
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2.3 Units from the perspective of trusses

In this section, we will investigate when the set of units of a unital ring R is a paragon

in T(R). Even though the question is relatively simple, we only managed to acquire

some necessary conditions. We conclude this section with Proposition 2.3.9, which

identifies units of Z(2)/2k+1Z with Abelian cyclic braces, i.e. brace-type near-trusses

which identity retracts are cyclic Abelian groups. All definitions and facts necessary to

understand this section can be found in the Appendix B.

Lemma 2.3.1. Let RG be a group ring. If the set of units U(RG) of a ring RG is a

paragon in T(RG), then U(R) is a paragon in T(R).

Proof. If e is the neutral element of G, then it is easy to check that re œ U(RG) if

and only if r œ U(R). In view of this observation and from the fact that U(RG) is a

paragon, if r, rÕ, rÕÕ
œ U(R), then [re, rÕe, rÕÕe] = [r, rÕ, rÕÕ]e œ U(RG), which implies that

[r, rÕ, rÕÕ] œ U(R). Hence U(R) is a sub-heap of T(R). Furthermore, for all r œ R, and

rÕ, rÕÕ
œ U(R),

U(RG) – [rrÕÕe, rrÕe, rÕe] = [rrÕÕ, rrÕ, rÕ]e,

which implies that [rrÕÕ, rrÕ, rÕ] œ U(R). Similarly, [rÕÕr, rÕr, rÕ] œ U(R). Therefore, U(R)

is a paragon in T(R).

Now, one can ask when units are a congruence class. Although at this stage we are

not able to provide su�cient conditions we still can provide some necessary conditions.

Proposition 2.3.2. Let R be a ring and assume that U(R) is a paragon in T(R). Then

(1) For all a, b œ U(R), a ≠ b ”œ U(R).

(2) Odd multiples of units in R are units while even ones are not.

(3) The quotient truss T(R)/U(R) corresponds to a ring of characteristic 2.

Proof. (1) If U(R) is a paragon in T(R) or, equivalently by Corollary 2.2.8 an equivalence

class for a congruence on R, then its translate U(R)0

b
is an ideal in R (see Corollary 2.2.9).
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Explicitly, U(R)0

b
consists of elements of the form a≠b where a œ U(R). Since 0 ”œ U(R),

U(R)0

b
fl U(R) = ÿ by Corollary 2.2.7 and hence a ≠ b ”œ U(R).

(2) Note that for any a œ U(R), ≠a œ U(R). We first prove by induction that

(2n + 1)a œ U(R), for all n œ N. If n = 0, then the statement is obvious. Now assume

that (2n + 1)a œ U(R), then

(2n + 3)a = [(2n + 1)a, ≠a, a] œ U(R),

so for all positive odd numbers and thus also the negative ones the assertion is true.

Since any even multiple is a di�erence of two odd multiples, the second assertion follows

by (1).

(3) The equivalence class of 1 œ R, 1 = U(R) is the identity in the quotient truss

T(R)/U(R). Since both 1 and ≠1 are units in R, ≠1 = 1, which implies that 1 + 1 = 0

in the ring corresponding to T(R)/U(R).

Corollary 2.3.3. Let R be a ring with a finite characteristic n œ N and U(R) be a

congruence class, then 2 divides n.

Example 2.3.4. Let us consider ring Z4 and its associated truss T(Z4). It is easy to

check that the set U(Z4) = {1, 3} is a paragon in T(Z4). Therefore, U(Z4) is an element

in the quotient of Z4 by the ideal U(Z4)0

1
= {1, 3}

0

1
= {0, 2}, i.e. Z2.

The following theorem classifies all rings in which the set of units is a paragon and

the quotient truss corresponds to the ring Z2.

Theorem 2.3.5. For a ring R, the following statements are equivalent:

(1) The units U(R) form a paragon in T(R) and T(R)/U(R) ≥= T(Z2).

(2) For all r œ R, either r œ U(R) or 1 ≠ r œ U(R).

Proof. Assume first that the statement (1) holds. Since T(R)/U(R) ≥= T(Z2) there are

two disjoint paragons in T(R), U(R) and J , covering the whole of T(R). Since 0 ”œ U(R),

0 œ J and hence J is an ideal. Since 1 œ U(R), U(R) = · 1

0
(J), by Proposition 4.2.15.
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Take any r œ R, then either r œ U(R) or r œ J , in which case also ≠r œ J (as J is an

ideal) and 1 ≠ r = · 1

0
(≠r) œ U(R). Hence the statement (2) holds.

In the converse direction, the assumption (2) means in particular that R is a local

ring, i.e. the set of non-units, say J , is an ideal in R. Note that if u œ U(R) and r œ J ,

then u + r œ U(R), for should u + r not be a unit, then 1 ≠ u ≠ r would be a unit, hence

not an element of J , which would contradict the fact that J is an ideal, as 1 ≠ u ≠ r œ J .

Take any u, v, w œ U(R). Then

[u, v, w] = u ≠ v + w = (u ≠ 1) + (1 ≠ v) + w œ U(R),

by the preceding discussion, as u ≠ 1, 1 ≠ v œ J and J is an ideal. Hence U(R) is a

sub-heap of T(R). Next, take any r œ R and u œ U(R). Then, by the same token

[ru, r, 1] = r(u ≠ 1) + 1 œ U(R).

Therefore, U(R) is a paragon in T(R).

Finally, take any r œ R. If r œ U(R), then its class r̄ œ T(R)/U(R) is equal to

U(R) = 1̄. If 1 ≠ r œ U(R), then also r ≠ 1 œ U(R), and

r = [r ≠ 1, ≠1, 0] = · 0

≠1
(r ≠ 1) œ · 0

≠1
(U(R)),

so that r œ 0̄. Thus there are two classes 0̄, 1̄ and the corresponding ring is Z2.

Corollary 2.3.6. The set U(Zn) is a paragon in T(Zn) if and only if n = 2k for some

k œ N.

Proof. Since the quotient truss T(Zn)/U(Zn) must correspond to a ring of characteristic

2, in the case studied it must correspond to Z2. Thus necessarily we are in the situation

of Theorem 2.3.5. Hence U(Zn) is a paragon in T(Zn) if and only if, for all m œ Zn

gcd(m, n) = 1 or gcd(1 ≠ m, n) = 1. This is equivalent to n having only even prime

factors as needed.

Example 2.3.7. (1) Let us consider the subring of Q of the form

Z
2Z + 1 :=

I
n

2p + 1

----- n, p œ Z
J

.
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Observe that the set of all invertible elements of Z
2Z+1

is

U

A
Z

2Z + 1

B

= O(Q) :=
I

2q + 1
2p + 1

--- q, p œ Z
J

.

Clearly, O(Q) is not a subring but one can easily check that O(Q) is a well-defined

sub-truss (and also a paragon) of T(Q). The elements x of Z
2Z+1

have either an odd

numerator, in which case they are invertible or an even numerator, in which case 1 ≠ x

has an odd numerator, hence invertible. Note in passing that O(Q) is an example of a

two-sided brace with operation ≠ +1 ≠ := [≠, 1, ≠].

(2) Let F be a field and consider the local ring R = F[x]/(xn). The polynomials

with root 0 are nilpotent hence not invertible. On the other hand polynomials with a

constant coe�cient are invertible. Explicitly, if p(x) = – + q(x), where q(x) is nilpotent

and – ”= 0, then

p(x)≠1 = –≠1
≠ –≠2

1
q(x) + q(x)2 + . . . + q(x)n≠1

2
. (2.3.1)

Hence R satisfies assumptions of Theorem 2.3.5 and so the set of polynomials with a

non-zero constant coe�cient is a paragon, and the quotient truss corresponds to the

ring Z2.

(3) The situation described in the preceding example can be adapted to polynomial

rings with coe�cients in general commutative rings. Consider R = Q[x]/(xn). If Q is

not an integral domain, then R does not necessarily have the property of Theorem 2.3.5,

so neither that the units of R form a paragon nor, in case they do, that the quotient

paragon will be associated to Z2 is guaranteed. By the arguments similar to those in

the proof of Lemma 2.3.1 one easily finds that if U(R) is a paragon, then so is U(Q).

Using this information, we now specify Q = Zm, and then by Corollary 2.3.6, necessarily

m = 2k. Units of Z2k [x]/(xn) are exactly all polynomials p(x) such that p(0) is coprime

with 2. Clearly, if p(x) is a unit, then p(0) must be a unit, hence coprime with 2. In

the converse direction, the formula (2.3.1) gives the inverse to any polynomial with

the constant term that is a unit in Z2k . Let p(x) be any element of Z2k [x]/(xn). If

p(0) is coprime with 2, then p(x) is a unit. Otherwise, 1 ≠ p(x) has a constant term
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coprime with 2, hence it is a unit. Thus assertions of Theorem 2.3.5 are satisfied and we

conclude that U(Z2k [x]/(xn)) is a paragon in T(R) and the quotient truss is associated

to Z2.

Lemma 2.3.8. Let T be a unital truss. If the set of units U(T ) is a sub-heap of T ,

then U(T ) is (the truss associated to) a two-sided brace.

Proof. Assume that U(T ) is a sub-heap and since U(T ) is a group with truss multipli-

cation, U(T ) is a brace-type truss in which every element is invertible, and hence is the

truss associated to a two-sided brace by Lemma 2.1.11.

We conclude this section with the derivation of Abelian cyclic braces of [29, Propo-

sition 4] as quotients of a commutative truss by a paragon.

Proposition 2.3.9. Let a be a positive integer and let Z(a) denote the commutative

unital truss with the heap operation derived from the addition in Z, and the multiplication,

m · n = amn + m + n, for all m, n œ Z; (2.3.2)

see [16, Corollary 3.53].

(1) For all N œ Z+,

NZ = {mN | m œ Z},

is a paragon in Z(a).

(2) For all k Ø 1, Z(2)/2k+1Z is a brace-type truss in which every element is a unit

(hence a two-sided brace) and

U
1
Z(2)/2k+1Z

2
= C2 ü C2k .

Proof. (1) NZ is an Abelian subgroup of Z, hence a sub-heap of Z. Note that 0 is the

identity in Z(a). Hence, for all m œ Z and nN œ NZ,

m ·0 (nN) = [amnN + m + nN, m, 0]

= amnN + m + nN ≠ m = (amn + n)N œ NZ.
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Since 0 œ NZ, the assertion follows.

(2) First, one easily proves by induction that, for all m œ Z and n œ N,

m·n = (am + 1)n
≠ 1

a
, (2.3.3)

where m·n means the n-th power with respect of the product (2.3.2) in Z(a). Using

formula (2.3.3) one proves that, for all k Ø 1,

m·2k

© 0 mod 2k+1, (2.3.4)

in Z(2). Indeed, if k = 1,

m·2 = (2m + 1)2
≠ 1

2 = 2m(m + 1) © 0 mod 4.

Next note that

m·2k+1 = (2m + 1)2
k+1

≠ 1
2 = (2m + 1)2

k

≠ 1
2 ((2m + 1)2

k + 1).

Hence if the first factor is divisible by 2k+1, then m·2k+1 is divisible by 2k+2, since the

second factor is even. Thus the stated congruence relation follows for all k by the

principle of induction.

Since 0 is the identity in Z(2), the congruence relation (2.3.4) implies that every

element in Z(2)/2k+1Z is a unit and that elements of U
1
Z(2)/2k+1Z

2
have order not

greater that 2k, hence U
1
Z(2)/2k+1Z

2
is not a cyclic group. We will show that 1 has

the maximal order 2k. Since

1·2k = 32
k

≠ 1
2 ,

this is equivalent to the statement that 3 is an order 2k element in the group of units

U(Z2k+2). This follows from the (inductively proven) fact that, for all k,

32
k = 1 + nk2k+2,

where nk is odd and the observation that the order of any element of U(Z2k+2) is a

power of 2.

Thus, U
1
Z(2)/2k+1Z

2
is an Abelian group of order 2k+1 that is not a cyclic group,

but contains an element of order 2k, hence it must be isomorphic to C2 ü C2k .



Chapter 3

From trusses to braces

The aim of this chapter is to describe a connection between skew braces and near-trusses.

A “perfect” structure for a ring, and therefore for a truss with an absorber, is a field, as

all elements besides absorber are invertible. In this chapter, we show that braces are

exactly the same for trusses without absorbers as fields are for trusses with an absorber.

It turns out that many results related to rings and fields can be rewritten without

relying on the property of absorber. We conclude this chapter with a localisation of

regular trusses. This chapter is a part of an article [26], Section 3.1 is a half of Section

3 of the paper, Section 3.2 is Section 4 and Section 3.3 is Section 5.

3.1 Near-trusses and braces

In this chapter we will investigate when a quotient of a unital near-truss can be

associated with a skew brace. To connect quotients of near-trusses with skew braces we

need to determine which paragons do not produce absorbers in the quotients. To this

end we introduce the notion of an ideal.

Definition 3.1.1. A normal sub-heap I of a pre-truss T is called a left (resp. right)

ideal if, for all t œ T and i œ I, ti œ I (resp. it œ I). If I is both left and right ideal,

then it is called an ideal. A left (resp. right) ideal is said to be maximal if it is not

contained in any left (resp. right) proper ideal.

Note that an ideal is a closed sub-heap, but this does not yet make it into a paragon

83



84 CHAPTER 3. FROM TRUSSES TO BRACES

(see Definition 2.2.1), since the equivalence classes of the corresponding sub-heap

relations need not be closed. Also note that if f : T æ T Õ is a homomorphism of

pre-trusses, then the pre-image of an ideal in Imf is an ideal in T and the image of an

ideal in T is an ideal in Imf .

Lemma 3.1.2. If a left-closed normal sub-heap of a pre-truss contains a left ideal, then

it is a left ideal.

Proof. Let P be a left-closed normal sub-heap of T , and let I be a left ideal such that

I ™ P . Then, for all p œ P , t œ T and i œ I, tp = [[tp, ti, i], i, ti] œ P , since [tp, ti, i] œ P

and ti, i œ I ™ P .

Lemma 3.1.3. Let T be a pre-truss and P be a paragon. Then T/P has a left absorber

(i.e. there exists a œ T/P such that for all b œ T/P ba = a) if and only if there exist

a œ P and t œ T such that P t

a
= · t

a
(P ) (see Lemma 1.2.13) is a left ideal.

Proof. The assertion follows from the fact that for every a œ P and t œ T , P t

a
= fi(t),

where fi is the canonical surjection onto the quotient T/P .

Corollary 3.1.4. If I is a paragon that is a right ideal in a pre-truss T , then for all

e œ T \ I and all a œ I, Ie

a
is not a left ideal.

Proof. We know from Lemma 1.2.13 that T/I = T/Ie

a
. Assume that I is a right ideal

and suppose that Ie

a
is a left ideal. Then, by Lemma 3.1.3, I is a right absorber in T/I

and Ie

a
is a left absorber in T/Ie

a
. Hence I = Ie

a
. But e ”œ I and e œ Ie

a
, which yields a

required contradiction and completes the proof.

Proposition 3.1.5. Let T be a unital near-truss.

(1) T is a truss associated with a skew brace if and only if T has exactly one left ideal.

(2) T is a truss associated with a near-field if and only if T has a left absorber and

exactly two left ideals.
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Proof. (1) Assume that T has exactly one left ideal. For all x œ T the left ideal

Tx := {tx | t œ T} has to be the whole of T (in particular if T has at least two elements,

then it has no left absorbers). Therefore, there exists y œ T such that yx = 1 and y

is a left inverse to x. As x is an arbitrary element there exists xÕ such that xÕy = 1.

Thus (xÕy)x = x and by associativity xÕ = x. The conclusion is that y is the two-sided

inverse of x and the monoid (T, ·) is a group. Therefore, the near-truss T is a brace-type

near-truss by Lemma 2.1.11.

Conversely, suppose that T = T(B) for a skew brace B and that there exists a

left ideal I ( T(B). Observe that if x œ I, then x≠1x = 1 œ I, therefore I = T . This

contradicts the assumption that I ”= T . Thus T has exactly one left ideal.

(2) Let us assume that T has a left absorber and exactly two left ideals. Then there

exists a near-ring R such that T = T(R), to be precise R is the retract (G(T(R); e), ·),

where e is the left absorber. Seeking contradiction, suppose that R is not a near-field.

Then there exists a left ideal {e} ”= I ( R; but I is also a left ideal of T(R), which

contradicts with the assumption that T has only two left ideals. Therefore, R is a left

near-field.

Assume that T = T(F ), where F is a left near-field, then 0 (the neutral element

for the addition in F ) is a left absorber in T . Suppose by contradiction that T(F ) has

a left ideal {0} ”= I ( T(F ). Consider, for any a œ I the ideal I0

a
:= {[b, a, 0] | b œ I}.

The ideal I0

a
is neither equal to {0} nor to T , since the map [≠, a, 0] is a bijection.

Furthermore, I0

a
is an ideal in F , and hence F is not a near-field. This contradicts with

the assumption that F is a near-field.

Lemma 3.1.6. Let T be a near-truss. If I is a paragon in T that is a left maximal

ideal, then T/I has no ideals di�erent from a singleton set and T/I.

Proof. Suppose that J ”= T/I is a left ideal in T/I that is not a singleton set. Since

I is a left absorber in T/I, for any element J œ J, JI

J
is a left ideal in T/I by the

left distributive law. Hence, fi≠1(JI

J
) is a left ideal in T , where fi : T ≠æ T/I is

the canonical surjection. Moreover, I µ fi≠1(JI

J
), since I œ JI

J
. Therefore, since I is
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left maximal, either I = fi≠1(JI

J
), and hence JI

J
= {I}, which implies that J = {J},

or fi≠1(JI

J
) = T , which implies in turn that J = T/I. Thus both cases lead to a

contradiction.

Although dividing by a paragon which is a left maximal ideal yields a near-truss

without proper left ideals, this near-truss always has an absorber. Therefore it is never

a brace-type near-truss. The most straightforward idea to generalise maximality to

paragons leads us to the following definition:

Definition 3.1.7. Let T be a pre-truss. A left-closed (resp. right-closed) normal

sub-heap P ( T is said to be maximal if it is not contained in any left-closed (resp.

right-closed) sub-heap other than T . A paragon P is said to be left maximal (resp.

right-maximal, maximal) if it is a maximal left-closed (resp. right-closed, left- and

right-closed) sub-heap.

Lemma 3.1.8. Let T be a near-truss or a skew-truss and P be a left-closed normal

sub-heap. Then P is maximal if and only if, for all a œ P and t œ T , P t

a
is a maximal

left-closed normal sub-heap.

Proof. Note that by the normality of P and the left distributive law, all the P t

a
are

left-closed normal sub-heaps. Seeking contradiction assume that P is maximal and there

exists a œ P and t œ T such that P t

a
is not maximal. Then there exists a left-closed

normal sub-heap Q such that P t

a
( Q ( T . Since · t

a
is an isomorphism with the inverse

·a

t
, this implies that P ( Qa

t
( T . Hence P is not maximal, contrary to the assumption.

The opposite implication is also easily deduced from the fact that P = (P t

a
)a

t
.

Remark 3.1.9. In the case of rings the notion of maximal ideals and maximal paragons

coincide as every paragon P in the ring can be associated with an ideal P 0

a
for any

a œ P and an absorber 0.

Lemma 3.1.10. Let T be a near-truss or a skew-truss and P ™ T a left maximal

paragon, then T/P has no proper (i.e. di�erent from singletons and the whole of T/P )

left ideals.
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Proof. By the definition of maximality of P , T/P has no proper left paragons. Therefore

it has no proper left ideals as a left ideal is a left paragon.

Observe that by dividing a near-truss without left absorbers by a paragon which is

left-maximal one obtains a near-truss associated with a skew brace. If the quotient is a

skew brace, then it is a simple brace, that is, it has no ideals in the sense of sub-braces

di�erent from the skew brace itself and singleton subsets of it. Maximal paragons do

not characterise all the quotients which are brace-type near-trusses (near-trusses which

identity retracts are braces), since there exist skew braces that are non-simple.

Theorem 3.1.11. Let T be a unital near-truss and P be a paragon, and let fiP : T ≠æ

T/P be the canonical epimorphism. Then T/P is a brace-type near-truss (see Lemma

2.1.11) if and only if, for all left ideals I ( T and a œ T/P , fi≠1

P
(a) ”™ I.

Proof. Let us assume that T/P is a brace-type near-truss. Observe that should fi≠1

P
(a) ™

I for a left ideal I, then fiP (I) would be a left ideal in T/P . Thus, fiP (I) = T/P , since

T/P is a brace-type near-truss. On the other hand, if c œ T \ I then fiP (c) ”œ fiP (I).

Indeed, should fiP (c) œ fiP (I), then there would exist i œ I and p œ P such that

[c, i, p] œ P . Thus, for all a œ fi≠1

P
(a), [c, i, a] = [[c, i, p], p, a] œ fi≠1

P
(a) µ I and c œ I.

Therefore, I = T .

Now, assume that, for all left ideals I ( T and a œ T/P , fi≠1

P
(a) ”™ I and T/P is

not a brace-type near-truss. Then there exists a left ideal J ( T/P . The pre-image

fi≠1

P
(J) ( T is a left ideal in T and, obviously, for any j œ J, fi≠1

P
(j) ™ fi≠1

P
(J). This

contradicts the assumption that, for all a œ T/P , fi≠1

P
(a) ”™ J, so T/P is a brace-type

near-truss. The proof is completed.

Example 3.1.12. Let B be a skew brace and R a ring. One can consider the prod-

uct near-truss T(B) ◊ T(R) with operation given by (b, r)(bÕ, rÕ) = (bbÕ, rrÕ), for all

(b, r), (bÕ, rÕ) œ T(B) ◊ T(R). It is easy to check that, for any ideal I in R, T(B) ◊ I

is an ideal in T(B) ◊ T(R) and that for any paragon P in T(B), P ◊ I is a paragon

in T(B) ◊ T(R). Every paragon of the form P ◊ T(R) fulfills conditions in Theorem

3.1.11 and one easily finds that (T(B) ◊ T(R))/(P ◊ T(R)) ≥= T(B)/P
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Example 3.1.13. Let T = 2Z + 1. The set P = {2nm + 1 | m œ T} µ T is a paragon

and the quotient T/P is a brace-type truss isomorphic to U(Z/2n+1Z), the sub-truss of

all units in the quotient ring Z/2n+1Z. To prove that this isomorphism holds it is first

of all helpful to notice that |T/P | = 2n = |U(Z/2n+1Z)|. Indeed, there are as many

classes in the quotient as the odd numbers between 2nm + 1 and 2n(m + 2) + 1 (it is

important to notice that, if m is odd, then m + 1 is even), so exactly 2n. Then the

isomorphism is given by sending 2m + 1 œ T/P to 2m + 1 mod 2n+1: this is evidently

injective, so also surjective since the two sets have the same size, and it is easily proven

to be a homomorphism.

3.2 From a near-truss to a domain

The aim of this section is to introduce the notion of a completely prime paragon. This,

in analogy to the case of rings, should lead to a quotient pre-truss that is a domain, i.e.

a pre-truss in which cancellation properties hold. After describing such paragons, the

next step is to consider the Ore localisation for pre-trusses. By inverting all elements of

a domain we should obtain a pre-truss without proper left ideals and with no absorbers,

so if the distributive law holds this will be a near-truss associated with a skew brace.

Let us start with the definition of a domain. When working with rings, there is always

an absorber which in many cases allows for simplification of some conditions. Not

all pre-trusses have an absorber (in fact, having brace applications in mind, we are

particularly interested in those that do not have absorbers), so many of the well-known

definitions need to be in some sense generalised or stated without involving any absorber.

We begin with the definition of a regular element:

Remark 3.2.1. We denote by T Abs a set of elements of a pre-truss T which are neither

left or right absorbers with tacit understanding that T Abs = T when T has no absorbers.

Definition 3.2.2. Let T be a pre-truss. A non-absorber element a œ T Abs is said to

be left regular (resp. right regular) if, for all b ”= c,

ab ”= ac (resp. ba ”= ca). (3.2.1)
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If a is both left and right regular element then it is said to be regular.

Observe that conditions (3.2.1) can be written in a way that makes them reminiscent

of the closedness conditions (2.2.1) used in the definition of a paragon. The statement

that ac ”= ab is equivalent to saying that [ac, ab, b] ”= b. Similarly, ba ”= ca is equivalent

to say that [ca, ba, b] ”= b. This indicates that these conditions are closely related to the

definition of paragon.

Lemma 3.2.3. Let T be a near-truss. Then a œ T is a left regular element if and only

if there exists an element c such that, for all b œ T \ {c},

ab ”= ac. (3.2.2)

Proof. If a is left regular then, for all c œ T and all b œ T \ {c}, the inequality (3.2.2)

holds, which implies the existence of c.

Assume that there exists c œ T such that, for all b ”= c, ab ”= ac. Thus [ab, ac, acÕ] =

a[b, c, cÕ] ”= acÕ, for all cÕ
œ T . Note that, for all c, cÕ

œ T , the map

[≠, c, cÕ] : T \ {c} ≠æ T \ {cÕ
}, b ‘≠æ [b, c, cÕ],

is a bijection. Therefore, for all t œ T \ {cÕ
}, at ”= acÕ. By the arbitrariness of cÕ, a is a

left regular element. This completes the proof.

Lemma 3.2.4. Let R be a ring. Then a œ R is a regular element (see Definition B.2.6)

if and only if a is a regular element in T(R).

Proof. The equivalence will be proven for left regularity only, the right regularity case in

symmetric. Let us assume that a œ R is a regular element. Then there is no b œ R \ {0}

such that ab = 0. Thus, by Lemma 3.2.3, if c = 0 in (3.2.2), then a is a regular element

in T(R), since a is regular in R.

Suppose that a is regular in T(R). Then ab ”= ac implies a(b ≠ c) ”= 0. Therefore, by

substituting b = t + c, at ”= 0 for all t œ R \ {0}, which completes the proof.
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Now we are ready to introduce the definition of a domain in clear analogy with the

usual notion for rings.

Definition 3.2.5. A pre-truss T is called a domain if all elements of T Abs are regular.

In view of Lemma 3.2.4, a ring R is a domain (see Definition B.2.7) if and only if

T(R) is a domain.

Lemma 3.2.6. A near-truss T is a domain if and only if it satisfies the cancellation

property, that is for all a œ T Abs and b, bÕ
œ T , each one of the equalities ab = abÕ or

ba = bÕa implies that b = bÕ.

Proof. This follows immediately for the definitions of a regular element and a domain.

Definition 3.2.7. Let T be a pre-truss. A non-empty paragon P ™ T is said to be

completely prime if, for all p œ P , a, b, c œ T ,

[ab, ac, p] œ P =∆ P a

p
is an ideal or [b, c, p] œ P

and

[ba, ca, p] œ P =∆ P a

p
is an ideal or [b, c, p] œ P.

Lemma 3.2.8. Let T be a pre-truss and P be a non-empty paragon. Then P is

completely prime if and only if, for all p œ P and t œ T , P t

p
is completely prime.

Proof. Let us assume that P is a completely prime paragon and let p œ P and t œ T .

We know that P t

p
is a paragon (see comment that follows Definition 2.2.1). Then, for all

a, b, c œ T and q œ P , [ab, ac, [q, p, t]] œ P t

p
implies [[ab, ac, [q, p, t]], t, p] = [ab, ac, q] œ P ,

since (P t

p
)p

t = P . Thus, P a

q
is an ideal or [b, c, q] œ P . In view of (P t

p
)a

[q,p,t]
= P a

q
, the

first option is equivalent to (P t

p
)a

[q,p,t]
being an ideal and the second to [b, c, [q, p, t]] œ P t

p
.

Hence P t

p
fulfils the left condition to be a completely prime paragon. Analogously one

can prove that P t

p
satisfies the right condition. Therefore, P t

p
is a completely prime

paragon.
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Unsurprisingly, the distributive laws yield simplification of the definition of a

completely prime paragon.

Lemma 3.2.9. Let T be a skew truss and P be a paragon. Then P is completely prime

if and only if there exists p œ P such that, for all a, d œ T ,

[ad, ap, p] œ P =∆ P a

p
is an ideal or d œ P

and

[da, pa, p] œ P =∆ P a

p
is an ideal or d œ P.

Proof. It is su�cient to observe that, for every b œ T , [b, c, p] can be substituted by

some d œ T since · p

c
= [≠, c, p] : T ≠æ T is a bijection with the inverse given by

· c

p
[≠, p, c] : T ≠æ T . Hence, if b = [d, p, c], d = [[d, p, c], c, p], and so

[ab, ac, p] = [a[d, p, c], ac, p] = [ad, ap, p] & [ba, ca, p] = [[d, p, c]a, ca, p] = [da, pa, p],

by the distributive laws and the axioms of a heap. This completes the proof.

Lemma 3.2.10. If P ( T is a completely prime paragon in a pre-truss T , then, for

all p œ P and for all left (right) absorbers a, aÕ
œ T , P a

p
= P a

Õ
p

.

Proof. Let a be a left absorber. For all b, c œ T and p œ P , [ba, ca, p] = [a, a, p] = p œ P ,

so P a

p
is an ideal or [b, c, p] œ P . The second option is equivalent to b ≥P c, for all

b, c œ T . Observe, though, that since P ”= T , there exist b, c œ T such that b ”≥P c.

Therefore, P a

p
is an ideal and a œ T/P is an absorber. From the fact that if a truss has

an absorber then it has only one left absorber one concludes that P a

p
= P a

Õ
p

, for all left

absorbers a, aÕ.

Theorem 3.2.11. Let T be a pre-truss. Then P is a completely prime paragon if and

only if T/P is a domain.

Proof. We write a for the class of a in T/P . The pre-truss T/P is a domain if and only

if, for all a, b, c œ T/P , ab = ac implies that b = c or a is an absorber. The equality
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ab = ac amounts to the existence of p œ P such that [ab, ac, p] œ P . Observe that b = c

if and only if [b, c, p] œ P , and a is an absorber if and only if P a

p
is an ideal. The proof

proceeds analogously for the right cancellation property.

Remark 3.2.12. Every paragon in a near-truss T(B) associated with a skew brace B is

completely prime.

Corollary 3.2.13. Let R be a ring. An ideal I is completely prime (see Definition

B.2.13) in R if and only if I is a completely prime paragon in T(R).

Proof. Let us assume that I is a completely prime ideal in R. Then, for all a, b œ R

and absorber 0 œ I,

[ab, a0, 0] = ab œ I =∆ a œ I or b œ I.

Thus, if a œ I, then Ia

0
= I is an ideal, and hence I is a completely prime ideal in T(R).

Conversely, assume that I is a completely prime paragon in T(R). For all a, b œ T(R),

ab = [ab, a0, 0] œ I =∆ Ia

0
is an ideal or b œ I.

Observe that Ia

0
is an ideal if and only if a œ I. Therefore, I is a completely prime ideal

in R. This completes the proof.

Lemma 3.2.14. Let f : T æ T Õ be a morphism of pre-trusses. If P is a completely

prime paragon in Imf , then f≠1(P ) is a completely prime paragon in T .

Proof. By Lemma 2.2.5, f≠1(P ) is a paragon. For all a, b, c œ T and p œ f≠1(P ), if

[ab, ac, p] œ f≠1(P ), then

f([ab, ac, p]) = [f(a)f(b), f(a)f(c), f(p)] œ P.

This implies that P f(a)

f(p)
is an ideal or f([b, c, p]) = [f(b), f(c), f(p)] œ P . Therefore,

[b, c, p] œ f≠1(P ) or P f(a)

f(p)
is an ideal. Let us assume that

z œ f≠1
1
P f(a)

f(p)

2
= {x œ T | ÷q œ P s.t. f(z) = [q, f(p), f(a)]}.
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Then f(z) = [q, f(p), f(a)], for some q œ P and f([z, a, p]) = [f(z), f(a), f(p)] = q œ P .

Hence z = [[z, a, p], p, a] œ f≠1(P )a

p
and f≠1(P f(a)

f(p)
) ™ f≠1(P )a

p
. Therefore, f≠1(P )a

p
™

f≠1(P f(a)

f(p)
) and by Lemma 3.1.2, f≠1(P )a

p
is an ideal. This completes the proof.

We conclude this section with an example of a completely prime paragon and the

corresponding quotient domain.

Example 3.2.15. Let O(x) be the set of all polynomials in Z[x] in which the sum of

coe�cients is odd. One can easily check that O(x) is a sub-monoid of the multiplicative

monoid Z[x] and a sub-heap of Z[x] with the standard operation [p, q, r] = p ≠ q + r.

All this means that O(x) is a (commutative) truss.

Take any t0, t1 œ O(x) and define

P (t0, t1) := {p œ O(x) | (t1 ≠ t0) divides (p ≠ t0)}.

Then P (t0, t1) is a paragon in O(x) and it is a completely prime paragon provided that

t1 ≠ t0 is irreducible in Z[x].

Proof. Clearly, if p≠ t0, q ≠ t0 and r ≠ t0 are divisible by t1 ≠ t0, then so is [p, q, r]≠ t0 =

p ≠ q + r ≠ t0. Hence P (t0, t1) is a sub-heap of O(x). Note that t0 œ P (t0, t1), and

hence, for all p œ P (t0, t1) and q œ O(x),

[qp, qt0, t0] ≠ t0 = qp ≠ qt0 = q(p ≠ t0).

Therefore, [qp, qt0, t0] = [pq, t0q, t0] œ P (t0, t1), which means that P (t0, t1) is a paragon.

Now assume that c = t1 ≠ t0 is irreducible in Z[x], and take a, b œ O(x) for which

there exists p œ P (t0, t1) such that [ab, ap, p] œ P , that is c | a(b ≠ t0). Since c is

irreducible, then either c | (b ≠ t0), in which case b œ P , or c | a, that is, there exists

q œ Z[x] such that a = cq. In this case,

P (t0, t1)a

p
= {r ≠ p + cq | r œ P (t0, t1)}.

Thus P a

p
contains all elements of O(x) divisible by c (since c | (r ≠ p), for all r, p œ

P (t0, t1)), and hence it is an ideal in O(x). Combined with the commutativity of O(x),

Lemma 3.2.9 yields that P (t0, t1) is a completely prime paragon.
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Note that in general in the situation described in Example 3.2.15,

a = b œ O(x)/P (t0, t1) if and only if (t1 ≠ t0) | (a ≠ b).

So, for example, take t0 = x and t1 = x2 + x + 1. Then c = t1 ≠ t0 = x2 + 1 is an

irreducible polynomial in Z[x] and O(x)/P (x, x2 + x + 1) is a domain that can be

identified with the sub-truss O(i) of the truss (ring) of Gaussian integers Z[i], defined as

O(i) = {m + ni | m + n is odd}.

3.3 A skew brace of fractions

To summarise, up to now we have introduced the notions of a domain and a completely

prime paragon, so that as long as we start with a pre-truss that has a completely prime

paragon we can quotient out by it and obtain a domain. The next, and most important

step, is to introduce localisation for pre-trusses. As the main goal of this chapter is to

produce braces from near-trusses we will consider near-trusses without left absorbers

and we will focus on localisation in the entire near-truss (to construct a “brace of

fractions”) following Ore’s classic construction [30]. More about Ore localisation one

can find in [31]. First observe that since not every ring can be localised the same is

true for trusses. Following [30] we start by defining a regular pre-truss.

Definition 3.3.1. A pre-truss T is said to be left regular if T is a domain and it

satisfies the left Ore condition, that is, for all x, y œ T Abs (see Remark 3.2.1), there

exist r, s œ T Abs such that rx = sy.

In other words, a pre-truss is left (resp. right) regular if and only if T Abs is a left

Ore set (see Definition B.1.3). Next, we define the fraction relation on T Abs
◊ T , by

(b, a) ≥ (bÕ, aÕ) if and only if there exist —, —Õ
œ T Abs, s.t. —b = —ÕbÕ and —a = —ÕaÕ.

This is an equivalence relation by the same arguments as in [30, Section 2]. The

equivalence class of (b, a) is denoted by a

b
and called a fraction, and the quotient set

T Abs
◊ T/ ≥ is denoted by Q(T ).
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Theorem 3.3.2. (Ore localisation for regular pre-trusses) Let T be a left regular

pre-truss. Then Q(T ) is a pre-truss with the following operations

(a) For all a

b
, a

Õ

bÕ ,
a

ÕÕ

bÕÕ œ Q(T ), the ternary operation is defined by
C

a

b
,
aÕ

bÕ ,
aÕÕ

bÕÕ

D

:= [—1a, —2aÕ, —3aÕÕ]
—1b

= [—1a, —2aÕ, —3aÕÕ]
—2bÕ = [—1a, —2aÕ, —3aÕÕ]

—3bÕÕ , (3.3.1)

where —1, —2, —3 are any elements of T Abs such that —1b = —2bÕ = —3bÕÕ.

(b) For all a

b
, a

Õ

bÕ œ Q(T ),
a

b
·

aÕ

bÕ := “aÕ

“Õb
, (3.3.2)

where “, “Õ
œ T Abs are such that “bÕ = “Õa.

Furthermore, (Q(T )Abs, ·) is a group. We will call Q(T ) the pre-truss of (left) fractions

of T .

Proof. We follow closely the proof of [30, Theorem 1]. The multiplication of fractions

(3.3.2) is defined in such a way that a

b
can be interpreted as b≠1a. Since it relies entirely

on the properties of the semigroup (T, ·), the arguments of the proof of [30, Theorem 1]

(with no modification, apart from the conventions) yield that (Q(T ), ·) is a semigroup.

It remains to be proven that Q(T ) is a heap. In fact, by the Ore condition we may

assume that all fractions in the definition of the ternary operation (3.3.1) on Q(T ) have

common denominator, so that
C

a

b
,
aÕ

b
,
aÕÕ

b

D

= [—a, —aÕ, —aÕÕ]
—b

, (3.3.3)

since in this case we can choose — := —1 = —2 = —3. Thus su�ces it to prove that (3.3.3)

is well-defined, as then the heap axioms for T will imply the corresponding axioms

for the derived operation (3.3.3). We proceed in two steps. At first, we show that the

formula (3.3.3) does not depend on the choice of —; in the second stage we will prove

that it is also independent of the choice of the representatives a, b for the class a

b
.

Choose another element s œ T Abs such that
C

a

b
,
aÕ

b
,
aÕÕ

b

D

= [sa, saÕ, saÕÕ]
sb

.
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There exist g, gÕ
œ T Abs such that g—b = gÕsb, which implies

g— = gÕs,

since T is a domain. Therefore,

g[—a, —aÕ, —aÕÕ] = gÕ[sa, saÕ, saÕÕ], g—b = gÕsb.

Consequently,
[—a, —aÕ, —aÕÕ]

—b
= [sa, saÕ, saÕÕ]

sb
,

which shows the independence of the formula (3.3.3) of the the choice of —.

To prove that the ternary operation (3.3.1) does not depend on the choice of the

representatives in each equivalence class, let (b, a), (bÕ, aÕ), (bÕÕ, aÕÕ), (d, c), (dÕ, cÕ), (dÕÕ, cÕÕ) œ

T Abs
◊ T be such that

a

b
= c

d
,

aÕ

bÕ = cÕ

dÕ ,
aÕÕ

bÕÕ = cÕÕ

dÕÕ ,

and consider
C

a

b
,
aÕ

bÕ ,
aÕÕ

bÕÕ

D

= [—1a, —2aÕ, —3aÕÕ]
—1b

,

C
a

b
,
aÕ

bÕ ,
cÕÕ

dÕÕ

D

= [s1a, s2aÕ, s3cÕÕ]
s1b

, (3.3.4)

for suitable —1, —2, —3, s1, s2, s3 œ T Abs. Then there exist g, gÕ
œ T , such that

g—1b = g—2b
Õ = g—3b

ÕÕ = gÕs1b = gÕs2b
Õ = gÕs3d

ÕÕ,

and, since T is a domain,

g—1 = gÕs1, g—2 = gÕs2.

Thus both fractions in the equation (3.3.4) are equal if and only if g—3aÕÕ = gÕs3cÕÕ.

Observe, however, that since gÕs3dÕÕ = g—3bÕÕ, g—3aÕÕ = gÕs3cÕÕ as a
ÕÕ

bÕÕ = c
ÕÕ

dÕÕ . Therefore,
C

a

b
,
aÕ

bÕ ,
aÕÕ

bÕÕ

D

=
C

a

b
,
aÕ

bÕ ,
cÕÕ

dÕÕ

D

.

The remaining equalities
C

a

b
,
aÕ

bÕ ,
cÕÕ

dÕÕ

D

=
C

a

b
,

cÕ

dÕ ,
cÕÕ

dÕÕ

D

and
C

a

b
,

cÕ

dÕ ,
cÕÕ

dÕÕ

D

=
C

c

d
,

cÕ

dÕ ,
cÕÕ

dÕÕ

D

,
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are proven in a similar way. This completes the proof that the definition of the ternary

operation (3.3.1) does not depend on the choice of representatives.

Finally, observe that if a œ Abs(T ) then the class a

b
is an absorber and it is obviously

unique. One can easily check that the class b

b
for b œ T Abs is a neutral element of

(Q(T )Abs, ·) and that if a ”œ T Abs then a

b
is a two-sided inverse to b

a
. Thus (Q(T )Abs, ·)

is a group. This completes the proof of the theorem.

From the fact that one can find a common denominator to any system of fractions

one can observe that additional properties of T are carried over to Q(T ).

Proposition 3.3.3. Let T be a regular pre-truss.

(1) If T is Abelian, then so is Q(T ).

(2) If T is a near-truss, then Q(T ) is a near-truss.

(3) If T is a skew truss, then Q(T ) is a skew-truss.

Proof. It is su�cient to consider heap operations of fractions with a common denomi-

nator, that is, those given by the formula (3.3.3). Statement (1) follows immediately

from (3.3.3).

If T is a near-truss, then
C

a

b
,
aÕ

b
,
aÕÕ

b

D

= [—a, —aÕ, —aÕÕ]
—b

= —[a, aÕ, aÕÕ]
—b

= [a, aÕ, aÕÕ]
b

.

Take any c

d
, a

b
, a

Õ

b
, a

ÕÕ

b
œ Q(T ) and “, “Õ

œ T Abs such that “b = “Õc, and compute

c

d
·

C
a

b
,
aÕ

b
,
aÕÕ

b

D

= c

d
·

[a, aÕ, aÕÕ]
b

= “[a, aÕ, aÕÕ]
“Õd

= [“a, “aÕ, “aÕÕ]
“Õd

=
C

“a

“Õd
,
“aÕ

“Õd
,
“aÕÕ

“Õd

D

=
C

c

d
·

a

b
,

c

d
·

aÕ

b
,

c

d
·

aÕÕ

b

D

.

Hence the left distributive law holds, and this proves statement (2).

To prove (3) we take c

d
, a

b
, a

Õ

b
, a

ÕÕ

b
œ Q(T ) and “, “Õ

œ T Abs such that “d = “Õ[a, aÕ, aÕÕ].

Then C
a

b
,
aÕ

b
,
aÕÕ

b

D

·
c

d
= [a, aÕ, aÕÕ]

b
·

c

d
= “c

“Õb
.
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On the other hand, using the definitions (3.3.1) and (3.3.2) and the right distributivity

in T , we obtain
C

a

b
·

c

d
,
aÕ

b
·

c

d
,
aÕÕ

b
·

c

d

D

=
C

“1c

“Õ
1b

,
“2c

“Õ
2b

,
“3c

“Õ
3b

D

= [s1“1, s2“2, s3“3]c
s1“Õ

1b
,

where s1, s2, s3, “1, “2, “3, “Õ
1
, “Õ

2
, “Õ

3
œ T Abs are such that

“Õ
1
a = “1b

ÕÕÕ, “Õ
2
aÕ = “2b

ÕÕÕ, “Õ
3
aÕÕ = “3b

ÕÕÕ, s1“
Õ
1

= s2“
Õ
2

= s3“
Õ
3
. (3.3.5)

Let h, hÕ
œ T Abs be such that

h“Õ = hÕs1“
Õ
1
. (3.3.6)

Then, using the distributive laws in T , (3.3.5) and (3.3.6), we find

h“d = h“Õ[a, aÕ, aÕÕ] = [h“Õa, h“ÕaÕ, h“ÕaÕÕ] = [hÕs1“
Õ
1
a, hÕs1“

Õ
1
aÕ, hÕs1“

Õ
1
aÕÕ]

= hÕ[s1“
Õ
1
a, s2“

Õ
2
aÕ, s3“

Õ
3
aÕÕ] = hÕ[s1“1d, s2“2d, s3“3d] = hÕ[s1“1, s2“2, s3“3]d.

The right cancellation property yields

h“ = hÕ[s1“1, s2“2, s3“3],

which in view of (3.3.6) implies that

“c

“Õb
= [s1“1, s2“2, s3“3]c

s1“Õ
1b

.

Therefore, also the right distributive law holds in the near-truss Q(T ).

The construction of the truss of quotients is universal in the following sense.

Proposition 3.3.4. Let T be a regular pre-truss. Then

(1) For any b œ T Abs,

ÿb : T ≠æ Q(T ), a ‘≠æ
ba

b
,

is a monomorphism of semigroups, and it is a monomorphism of trusses provided

T is a near- or skew-truss.
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(2) If T is a unital pre-truss then ÿ1 is a monomorphism of unital trusses. Furthermore,

for any brace-type near-truss B and any unital truss homomorphism f : T ≠æ B,

there exists a unique unital truss homomorphism f̂ : Q(T ) ≠æ B rendering

commutative the following diagram:

T
ÿ1

//

f
��

Q(T )

f̂
||

B.

Proof. (1) Since T is regular, ÿb is an injective map. For all a, aÕ
œ T ,

ÿb (aaÕ) = baaÕ

b
& ÿb (a) · ÿb (aÕ) = ba

b
·

baÕ

b
= “baÕ

“Õb
,

where “, “Õ are such that “b = “Õba. Take any —, —Õ
œ T such that —b = —Õ“Õb. Then

—baaÕ = —Õ“ÕbaaÕ = —Õ“baÕ,

which means that ÿb (aaÕ) = ÿb (a) · ÿb (aÕ) as required.

In the case of a near- or skew-truss, that ÿb is a homomorphism of trusses follows by

(3.3.3) and the left distributive law.

(2) The monomorphism of semigroups ÿ1 preserves the heap operation since 1 is the

multiplicative identity in T .

Assume that f : T æ B is a unital homomorphism of trusses and, for all fractions
a

b
œ Q(T ), define

f̂ : Q(T ) ≠æ B,
a

b
‘≠æ f(b)≠1f(a).

This is well-defined since two fractions a

b
and a

Õ

bÕ are identical if and only if there are

—, —Õ such that —a = —ÕaÕ and —b = —ÕbÕ, in which case

f̂
3

a

b

4
= f(b)≠1f(a) = f(b)≠1f(—)≠1f(—)f(a)

= f(—b)≠1f(—a) = f(—ÕbÕ)≠1f(—ÕaÕ) = f(bÕ)≠1f(aÕ) = f̂

A
aÕ

bÕ

B

,

by the multiplicativity of f . By the same token, for all a

b
, a

Õ

bÕ œ Q(T ),

f̂

A
a

b
·

aÕ

bÕ

B

= f̂

A
“aÕ

“Õb

B

= f(“Õb)≠1f(“aÕ) = f(b)≠1f(“Õ)≠1f(“)f(aÕ),
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where “, “Õ
œ T are such that “bÕ = “Õa. Applying f to both sides of this equality and

using the multiplicative property to f we obtain

f(“Õ)≠1f(“) = f(a)f(bÕ)≠1,

and hence

f̂

A
a

b
·

aÕ

bÕ

B

= f(b)≠1f(a)f(bÕ)≠1f(aÕ) = f̂
3

a

b

4
f̂

A
aÕ

bÕ

B

,

that is f̂ is a homomorphism of multiplicative groups. To check that f̂ is a heap

morphism it is enough to consider fractions with a common denominator and then

f̂

AC
a

b
,
aÕ

b
,
aÕÕ

b

DB

= f(b)≠1 [f(a), f(aÕ)f(aÕÕ)]

=
Ë
f(b)≠1f(a), f(b)≠1f(aÕ)f(b)≠1f(aÕÕ)

È

=
C

f̂
3

a

b

4
, f̂

A
aÕ

b

B

, f̂

A
aÕÕ

b

BD

,

by the fact that f is a heap homomorphism and the left distributive law in B. That

f̂ ¶ ÿ1 = f follows by the unitality of f .

Suppose that there exists a unital truss homomorphism ĝ : Q(T ) ≠æ B such that

ĝ ¶ ÿ1 = f . Note that
a

b
= 1

b
·

a

1 . (3.3.7)

In particular,

1 = ĝ
31

1

4
= ĝ

A
1
b

·
b

1

B

= ĝ
31

b

4
f(b),

where the last equality follows by the splitting assumption ĝ ¶ ÿ1 = f . Hence ĝ
1

1

b

2
=

f(b)≠1 and the equality ĝ = f̂ follows by the multiplicativity of ĝ and equations

(3.3.7).

The following corollary provides one with the method of constructing skew braces,

which might be considered as one of the main results of this chapter.

Corollary 3.3.5. If T is a regular near-truss without an absorber, then Q(T ) is a

brace-type near-truss, that is, for all b œ T , the retract of Q(T ) at b

b
with the product

(3.3.2) is a skew brace.
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Proof. Observe that if T has no absorbers then Q(T ) has no absorbers either. Indeed,

suppose that there exists a

b
œ Q(T ) such that, for all c

d
œ Q(T ), c

d
·

a

b
= a

b
. Since T has

no absorbers, it has at least two elements, and hence, in particular we may consider

c ”= d. Then there exist “, “Õ
œ T , such that “a

“Õd = “a

“b
and “Õc = “b. Thus “a

“Õd = “a

“Õc , so

there exist —, —Õ
œ T such that —“Õd = —Õ“Õc and —“a = —Õ“a. By regularity, — = —Õ

and c = d, which is the required contradiction. Therefore, a

b
is not an absorber for all

a, b œ T . Now, since Q(T ) is a group with multiplication and identity b

b
, the retract of

Q(T ) in b

b
is a skew brace by Lemma 2.1.11.

Note in passing that if T satisfies the same assumptions as in Corollary 3.3.5, but

there exists an absorber in T , then Q(T ) is associated with a near-field.

Example 3.3.6. Let us consider 2Z + 1. It is a domain satisfying the Ore condition,

thus it is a regular truss and we can localise it in itself. Since 2Z + 1 is commutative,

the construction is much simpler than the one presented in the proof of Theorem 3.3.2.

One can easily check that Q(2Z + 1) = 2Z+1

2Z+1
:=

Ó
2p+1

2q+1
| p, q œ Z

Ô
. The two-sided brace

associated with this truss is the retract in 1, i.e. the triple (Q(2Z + 1), [≠, 1, ≠], ·).

Similarly, the truss O(x) of integer polynomials with coe�cients summing up to

odd numbers considered in Example 3.2.15 is regular with no absorbers, and hence it

can be localised to a brace-type truss of the following rational functions

Q(O(x)) = O(x)
O(x) :=

I
p(x)
q(x) | p(x), q(x) œ O(x)

J

.

As a yet another example we can consider the truss O(i) constructed as a special case

of Example 3.2.15. Again this is a commutative domain satisfying the Ore condition

and with no absorbers, and hence

Q(O(i)) =
I

m + ni

p + qi
| m + n and p + q are odd integers

J

=
I

m

2p + 1 + n

2q + 1i | p, q œ Z, m + n is an odd integer
J

.

The example of odd fractions described above is a special case of a more general

construction.
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Example 3.3.7. Let Tn(Z) denote the set of all n ◊ n-matrices over Z with odd entries

on the diagonal and even o� diagonal entries. That is,

Tn(Z) =
Ó
(aij)n

i,j=1
| aii œ 2Z + 1 & aij œ 2Z, i ”= j

Ô
.

(1) Tn(Z) endowed with the matrix multiplication and the standard heap operation

[a, b, c] = a ≠ b + c is a unital regular truss with no absorbers.

(2) The brace-type truss of fractions Q(Tn(Z)) can be identified with the set Tn(Q)

of n ◊ n-matrices over the rational numbers with diagonal entries made by the

odd fractions (that is, fractions of both the numerator and denominator odd,

Q(2Z + 1)) and with fractions with even numerator and odd denominator as

o�-diagonal entries. That is,

Q(Tn(Z)) ≥= Tn(Q) :=
I

(qij)n

i,j=1
| qii œ

2Z + 1
2Z + 1 & qij œ

2Z
2Z + 1 , i ”= j

J

.

It is clear that the set Tn(Z) is closed under the described heap operation. That it

is closed also under the matrix multiplication follows from an observation that in the

product formula for the o�-diagonal entries the sum involves the products of numbers

of which at least one is even, while for the diagonal entry there is a single odd summand

made out of the product of matching diagonal entries. Obviously Tn(Z) has no absorber,

as the zero matrix is not an element of Tn(Z). Since the identity matrix has the

prescribed form, Tn(Z) is unital. The other statements of Example 3.3.7 can be justified

by the following (elementary) lemma.

Lemma 3.3.8. For all a œ Tn(Z),

(i) The determinant det(a) is an odd number.

(ii) The matrix of cofactors ā of a and hence also its transpose āt are elements of

Tn(Z).

Proof. Let ai,j denote the matrix obtained from a by removing of the i-th row and the

j-th column. Note that ai,i œ Tn≠1(Z) and that ai,j , i ”= j has one row of even numbers.
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The first statement is proven by induction on the size n of matrices. For n = 1 the

statement is obviously true. Assuming that the statement is true for k we calculate

the determinant of a œ Tk+1(Z) by expanding by the first row. Since a1,1 is an element

of Tk(Z), det(a1,1) is odd by inductive assumption. In the expansion of det(a) this is

multiplied by the first entry a11 of a and thus it gives an odd number. All the remaining

summands involve products of other entries of the first row, which are even. Hence the

sum of all terms in the expansion is odd as required.

The diagonal entries of ā are given by det(ai,i) which are odd by statement (i).

O�-diagonal entries (≠1)i+j det(ai,j) are even since one row of each of ai,j , i ”= j consists

entirely of even numbers. The transposition statement is obvious.

With this lemma at hand we can now prove that Tn(Z) is a domain satisfying

the Ore condition. Since we can embed Tn(Z) into a ring of matrices, the statement

ab = ac, for some a, b, c œ Tn(Z) is equivalent to the statement that a(b ≠ c) = 0,

hence

0 = a(b ≠ c) = āta(b ≠ c) = det(a)(b ≠ c),

which implies that b = c, since det(a) ”= 0 by Lemma 3.3.8(i). The regularity of the

other side of each a œ Tn(Z) can be proven in a symmetric way.

To prove the Ore condition we take any a, b œ Tn(Z) and set

r = ab̄t & s = det(b)1.

Both these matrices are elements of Tn(Z) by Lemma 3.3.8, and they satisfy the Ore

condition sa = rb. Hence, Tn(Z) is a left regular (in fact also right regular by similar

arguments) truss.

For any element q œ Tn(Q) we write q for the product of all denominators in entries

of q. This is an odd number and thus obviously qq œ Tn(Z). In particular, in view of

Lemma 3.3.8, det(qq) is an odd number and its matrix of cofactors is an element of

Tn(Z). This in turn implies that the inverse of q is an element of Tn(Z) divided by an

odd number, hence an element of Tn(Q). Consequently, Tn(Q) is group with respect to
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multiplication of matrices. In order to identify Tn(Q) with the truss of fractions Q(Tn(Z))

we will explore the universal property described in Proposition 3.3.4(2). Thus consider

a brace-type skew truss B and a homomorphism of unital trusses f : Tn(Z) ≠æ B and

set

f̂ : Tn(Q) ≠æ B, q ‘≠æ f(q1)≠1f(qq).

Note that this definition does not depend on the way the fractions in q are represented,

as the multiplication of the numerator and a denominator of an entry by a common

(odd) factor results in multiplying both q and q by the same factor which will cancel

each other out in the formula for f̂ , by the multiplicative property of f . Since q1 is a

central element in Tn(Z), f(q1)≠1 is central in the image of f and, combined with the

multiplicative property of f this implies that f̂ is a homomorphism of (multiplicative)

groups. That f̂ is a homomorphism of heaps follows by the distributivity. Obviously,

f̂ ¶ ÿ1 = f and is a unique such morphisms. By the uniqueness of universal objects,

Tn(Q) is isomorphic to the truss of fractions Q(Tn(Z)).
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Chapter 4

In the world of modules

The purpose of this chapter is to introduce reader to modules over trusses. Every

module M over a ring R is an example of a module over the associated truss, i.e. H(M)

is a module over T(R) with action given by the action of R on M . This chapter has four

sections. In Section 4.1, we state basic properties of modules over trusses. In Section

4.2, we introduce notion of an induced module and investigate quotients modules over

trusses. In Section 4.3, we explain how to introduce a T -action on a coproduct of heaps

to obtain a coproduct of modules over trusses. In the last section, Section 4.4, we study

monomorphisms and epimorphisms of T -modules. All the results of this chapter can be

found in [19], [32], [33] and [16]. Most of the basic facts and definitions necessary for

this chapter are in Appendix A.

4.1 Modules over trusses

In this section, we introduce a definition of a module over truss, give examples, and

describe categories of modules over trusses.

Definition 4.1.1. Let T be a truss. A left (right) T -module is an Abelian heap M

together with an associative left (right) action ⁄M : T ◊M ≠æ M (ÍM : M ◊T ≠æ M)

of T on M that distributes over the heap operations. The action is denoted on elements

by t · m = ⁄M(t, m) (m · t = ÍM(m, t)), with t œ T and m œ M . Explicitly, the axioms

107
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of an action state that, for all t, tÕ, tÕÕ
œ T and m, mÕ, mÕÕ

œ M ,

t · (tÕ
· m) = (ttÕ) · m, ((m · t) · tÕ = m · ttÕ) (4.1.1a)

[t, tÕ, tÕÕ] · m = [t · m, tÕ
· m, tÕÕ

· m], (m · [t, tÕ, tÕÕ] = [m · t, m · tÕ, m · tÕÕ]) (4.1.1b)

t · [m, mÕ, mÕÕ] = [t · m, t · mÕ, t · mÕÕ], ([m, mÕ, mÕÕ] · t = [m · t, mÕ
· t, mÕÕ

· t]) (4.1.1c)

If T is a unital truss and the action satisfies 1 · m = m, then we say that M is a

unital module.

Definition 4.1.2. Let T and S be trusses. A T -S-bimodule is a heap M which is a

left T -module and a right S-module such that for all t œ T , s œ S and m œ M

t · (m · s) = (t · m) · s.

The T -T -bimodule M will be called a two-sided T -module.

Remark 4.1.3. Equivalently, a (unital) T -module can be described as an Abelian heap

M together with a homomorphism of (unital) trusses T ≠æ E(M), where E(M) is an

endomorphism truss.

Definition 4.1.4. A module homomorphism is a homomorphism of heaps between two

modules that preserves actions. As it is customary in the ring theory we often refer to

homomorphisms of T -modules as to T -linear maps or morphisms. The set of T -linear

homomorphisms between T -modules A and B will be denoted by HomT (A, B).

Example 4.1.5. Every Abelian heap H is a module over its endomorphism truss E(H).

Lemma 4.1.6. Left (right) T -modules form a category. We denote this category by

T -mod (mod-T ). Moreover, left (right) unital T -modules form a subcategory of T -mod

(mod-T ), which we denote by T1-mod (mod-T1).

Proof. Simply follows by the fact that a composition of T -module maps is a T -module

map.
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Corollary 4.1.7. Let T, S be trusses. Then T -S-bimodules form a category, which we

denote by T -mod-S.

The terminal heap {ú} and the initial heap ?, with the unique possible actions, are

the terminal and the initial object, respectively, in all the foregoing categories. It is

remarkable that, since {ú} ”= ?, all the categories do not have zero object.

Definition 4.1.8. An element e of a left T -module M is called an absorber, provided

t · e = e, for all t œ T , (4.1.2)

i.e. it is invariant under the T -action. The set of all absorbers of a module M is denoted

by Abs(M) = {m œ M | t · m = m, ’ t œ T}.

Lemma 4.1.9. A module homomorphism preserves absorbers.

Proof. Let M, N be T -modules, f : M æ N be a homomorphism of modules and

e œ M be an absorber. Then for all t œ T ,

t · f(e) = f(te) = f(e),

so f(e) is an absorber.

Example 4.1.10. An Abelian heap M is a module over any truss T with an action

given for all t œ T and m œ M by

t · m = m.

Example 4.1.11. A truss 2Z + 1 is a module over itself with action given by truss

multiplication. This module has no absorber.

Corollary 4.1.12. Let T be a truss with a left absorber 0 and M be a left T -module.

Then for all m œ M , 0m is an absorber.

Given a module M over a ring R, one can consider a heap H(M) and a truss

T(R). Observe that a truss H(M) is a T(R)-module as for all t, tÕ, tÕÕ
œ T(R) and

m, mÕ, mÕÕ
œ M ,

t[m, mÕmÕÕ] = t(m ≠ mÕ + mÕÕ) = tm ≠ tmÕ + tmÕÕ = [tm, tmÕ, tmÕÕ]
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[t, tÕ, tÕÕ]m = (t ≠ tÕ + tÕÕ)m = tm ≠ tÕm + tÕÕm = [tm, tÕm, tÕÕm].

Therefore every module over a ring can be associated to a module over an associated

truss. We will denote this module by T(M). Moreover, since every homomorphism of

modules over rings is a homomorphism of modules over associated trusses i.e. T(Ï) = Ï,

for any homomorphism of T -modules, the assignment T : R-mod æ T -mod is a functor

from the category of modules over a ring to a category of modules over an associated

truss. It is worth to mention that not every module over the truss associated with a

ring is a module over this ring, see Example 4.1.10

Corollary 4.1.13. Let M and N be T(R)-modules, for some ring R, with a unique

absorbers 0M , 0N , respectively. Then any T(R)-module homomorphism f : M æ N is

also a R-module homomorphism between retracts G(M, +0m
) and G(N, +0n

).

Proof. The only thing to check is distributivity. The distributivity easily follows by

Lemma 4.1.12.

Observe that a morphism of trusses Ï : T ≠æ S induces a change of scalars functor

S-mod ≠æ T -mod: an S-module M is a T -module with action t · m = Ï(t) · m. In

particular, any Abelian heap H is a module over any truss T through the action of {ú}

on H and the unique morphism T ≠æ {ú}. Due to the unital action of {ú} in the case

of modules, we will denote the terminal truss {ú} by {1}.

Given left T -modules M and N their product M ◊N has the left T -module structure

defined component-wise, that is,

[(m, n), (mÕ, nÕ), (mÕÕ, nÕÕ)] = ([m, mÕ, mÕÕ], [n, nÕ, nÕÕ]) , t · (m, n) = (t · m, t · n),

for all t œ T , m, mÕ, mÕÕ
œ M and n, nÕ, nÕÕ

œ N .

The category of left (right or two-sided) T -modules is enriched over the category

(Ah, ◊, {1}) of abelian heaps. In particular, HomT (M, M) ™ Ah(M, M) is a unital

sub-truss of the unital endomorphism truss E(M). We denote it by ET (M). We say that

a functor F : T -mod ≠æ T Õ-mod is a heap functor if it induces a heap homomorphism
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between the hom-sets, that is, if for all M, N œ T -mod, the induced function

FM,N : HomT (M, N) ≠æ HomÕ
T
(F(M), F(N)), Ï ‘≠æ F(Ï), (4.1.3)

is a homomorphism of Abelian heaps. Since functors preserve compositions and identities,

FM,M : ET (M) ≠æ ET Õ(F(M)) is a morphism of unital trusses for all M œ T -mod.

4.2 Congruences in modules

The aim of this section is to investigate a quotient structure of a module over a truss.

Definition 4.2.1. Let M be a left (right) T -module. Then a sub-heap N ™ M is a

left (right) submodule if for all t œ T and n œ N ,

t · n œ N, (n · t œ N).

If M is a T -S-bimodule, then a sub-heap N ™ M is a submodule if it is a left and right

submodule of M .

Definition 4.2.2. Let M be a left (right) T -module, N be a sub-heap of M and e œ N ,

then N is called a left (right) e-induced submodule, if for all t œ T & n œ N ,

t Ûe n = [tn, te, e] œ N, (n eÙ t = [nt, et, e] œ N).

We denote N together with the operation Ûe by N (e).

Lemma 4.2.3. Let N (e) be a left (right) e-induced submodule of a T -module, then for

all m, n œ N , t Ûmn œ N (n mÙ t œ N). The T -action Ûm (mÙ) is called a left (right)

induced action.

Proof. Let m, n œ N , then

t Ûmn = [tm, tn, n] = [tm, tn, te, te, n] = [t[m, n, e], te, n] = [t[m, n, e], te, e, e, n]

= [t Ûe[m, n, e], e, n] œ N,

as t Ûe[m, n, e], e, n œ N and N is a sub-heap of M . The proof for the right induced

action is the same.
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Definition 4.2.4. Let M be a T -S-bimodule. A left e-induced submodule N (e)
™ M

is an e-induced submodule if N (e) is also closed under a right induced action.

Lemma 4.2.5. Let M be a left (right or two-sided) T -module, then an induced module

M (e) is a left (right or two-sided) T -module.

Proof. Let t, tÕ, tÕÕ
œ T and m, mÕ, mÕÕ

œ M , then

t Ûe (tÕ Ûe m) = t Ûe [tÕm, tÕe, e] = [t[tÕm, tÕe, e], te, e] = [ttÕm, ttÕe, te], te, e]

= [ttÕm, ttÕe, e] = ttÕ Ûe m,

so (4.1.1a) holds. Furthermore,

[t, tÕ, tÕÕ] Ûe m = [[tm, tÕm, tÕÕm], [te, tÕe, tÕÕe], e] = [[tm, te, e], [tÕm, tÕe, e], [tÕÕm, tÕÕe, e]]

= [t Ûe m, tÕ Ûe m, tÕÕ Ûe m],

t Ûe [m, mÕ, mÕÕ] = [[tm, tmÕ, tmÕÕ], te, e] = [[tm, te, e], [tmÕ, te, e], [tmÕÕ, te, e]]

= [t Ûe m, t Ûe mÕ, t Ûe mÕÕ],

where in both equations second equalities follows by Lemma 1.1.19 4. Analogously one

can check that in the case of right modules similar result holds.

Now, let us show that M (e) is a two-sided T -module. Let t, tÕ
œ T and m œ M , then

(t Ûe m) eÙ tÕ = [tm, te, e] eÙ tÕ = [[tm, te, e]tÕ, etÕ, e] = [tmtÕ, tetÕ, e] = [[tmtÕ, tetÕ, te], te, e]

= [t(m eÙ tÕ), te, e] = t Ûe (m eÙ tÕ).

Therefore, indeed M (e) is a a left (right or two-sided) T -module.

Lemma 4.2.6. Let M be a T -module. For any e œ M , if there exists a œ M such that

a is absorber in M and M (e), then e is an absorber.

If there exists an element a œ M such that a is an absorber in M and M (e), then e

is an absorber in M .

Proof. Assume a is an absorber in M and M (e), then for all t œ T ,

t Ûe a = [ta, te, e] = a.

Now, since a is an absorber in M , we get that [a, te, e] = a. Therefore te = e, so e is an

absorber in M .
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Corollary 4.2.7. If e is not an absorber and a is an absorber in M , then a is not an

absorber in M (e).

Lemma 4.2.8. Let f : M æ N be a T -module map. Then for any g œ Im(f), kerg(f)

is an induced submodule.

Proof. Let g œ Im(f), then for all e œ M and m œ kerg(f),

f(t Ûe m) = f([tm, te, e]) = [tf(m), tf(e), f(e)] = [tg, tg, g] = g,

where the second equality follows by the property of T -module map and third by Mal’cev

identities. Thus kerg(f) is an induced submodule.

Theorem 4.2.9. Let M be a T -module. If N is a sub-heap of M , then the quotient

M/N has a T -module structure such that the canonical epimorphism fi : M æ M/N is

a module morphism if and only if N is an induced submodule of M .

Proof. Let us assume that fi is a canonical epimorphism, and g œ Im(fi) is such that

there exists e œ N and fi(e) = g. Then by Lemma 4.2.8, N = kere(fi) is an induced

submodule.

In the opposite direction, let us assume that N is an induced submodule, then

obviously N is a normal sub-heap. Now, we can consider relation ≥N given by a normal

sub-heap for all m, mÕ
œ M by

m ≥N mÕ
≈∆ ÷e œ N [m, mÕ, e] œ N.

If m ≥N mÕ, then

[tm, tmÕ, e] = [[tm, tmÕ, te], te, e] = [t[m, mÕ, e], te, e] = t Ûe[m, mÕ, e],

where second equality follows by Mal’cev identities and associativity, and third by the

fact that M is a T -module. Hence, as [m, mÕ, e] œ N and N is an induced submodule,

the relation ≥N is a congruence and fi is a canonical epimorphism of T -modules.
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Corollary 4.2.10. Any T -module homomorphism Ï : M ≠æ M Õ factorizes uniquely

as a T -linear map through the canonical epimorphism M ≠æ M/N for any induced

submodule N of M contained in kere(Ï) as in Lemma 1.2.17.

Proof. The proof follows the same way as the proof of Lemma 1.2.17.

Lemma 4.2.11. If N is a submodule of M , then N is an induced submodule.

Proof. Indeed as for all t œ T and n, e œ N ,

t Ûe n = [tn, te, e],

but tn, te, e œ N and N is a sub-heap, so t Ûe n œ N . Thus N is an induced submodule.

Lemma 4.2.12. If N is a submodule of M , then fi(N), where fi is a canonical epimor-

phism, is an absorber in the quotient module M/N .

Proof. Let fi : M æ M/N be a canonical epimorphism, then for all t œ T ,

t · fi(N) = fi(t · N) = fi(N),

where second equality follows by the fact that N is a submodule. Thus fi(N) is an

absorber in M/N .

Theorem 4.2.13. Let T be a truss, M a T -module and N a subset of M . Then the

following statements are equivalent:

(1) N is an induced submodule of M .

(2) N is a sub-heap of M and there is a congruence ≥ on M such that fiN = fi≥.

(3) N is an equivalence class of a congruence on M .

Proof. (1) =∆ (2): If N is an induced submodule of M , then the sub-heap relation

≥N is a congruence on M by (the proof of) Theorem 4.2.9.
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(2) =∆ (3): Every induced submodule is a sub-heap and every sub-heap is an

equivalence class for its sub-heap relation, see Lemma 1.2.11.

(3) =∆ (1): Assume that N is an equivalence class for a congruence on M , say

≥. In particular ≥ is a congruence for the heap structure of M , hence N is a sub-heap

by [4, Theorem 1] (see Theorem 1.2.14). Furthermore, for all t œ T and n, nÕ
œ N ,

t · n ≥ t · nÕ, i.e. fi≥(t · n) = fi≥(t · nÕ). Set m = [t · n, t · nÕ, nÕ]. Then

fi≥(m) = fi≥ ([t · n, t · nÕ, nÕ])

= [fi≥(t · n), fi≥(t · nÕ), fi≥(nÕ)] = [fi≥(t · n), fi≥(t · n), fi≥(nÕ)].

Hence, fi≥(m) = fi≥(nÕ), i.e. m œ N . Thus N is an induced submodule.

Theorem 4.2.13 can be applied to trusses associated to rings, thus yielding

Corollary 4.2.14. If M is a module over a ring R, then N ™ M is an equivalence

class for a congruence ≥ on M if and only if N is an induced submodule of T(M).

Proof. Su�ces it to observe that an equivalence relation is a congruence on M as an

R-module if and only if it is a congruence on M as a T (R)-module and then apply

Theorem 4.2.13.

Since every congruence relation of R-modules arises as the quotient by a submodule,

Corollary 4.2.14 gives interpretation of elements of quotients of R-modules M/N as

induced submodules of T(M) (M viewed as a module over the associated truss T(R)).

Furthermore, it provides one with the procedure of calculating the quotient of an

R-module M by the equivalence class of any element m of M : one simply needs to

interpret M as a heap and then take the quotient by the class of m which is a sub-heap

of M . In the same vein one obtains the following interpretation of elements of a quotient

and hence of any ring.

The following proposition explains how to recover the submodule from any equiva-

lence class in the quotient R-module M/N .
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Proposition 4.2.15. Let M be a module over a truss T and let N be a left (resp. right)

induced submodule of M . For all e œ N and m œ M , consider the sub-heap

Nm

e
= ·m

e
(N) = {[n, e, m] | n œ N}. (4.2.1)

Then:

(1) Nm

e
is a left (resp. right) induced submodule.

(2) Nm

e
is a left (resp. right) submodule if and only if, for all t œ T ,

t · m œ Nm

e
, (resp. m · t œ Nm

e
).

(3) If m ”œ N , then N fl Nm

e
= ÿ.

Proof. (1) First let us note that, as a consequence of Mal’cev idenities, m = ·m

e
(e) œ Nm

e
.

For all t œ T ,

[t · [n, e, m], t · m, m] = [[t · n, t · e, t · m], t · m, m]

= [t · n, t · e, m] = [[t · n, t · e, e], e, m] = ·m

e
([t · n, t · e, e]),

by the (left) distributive law, associativity and Mal’cev identities. Since N is a left

induced module, [t · n, t · e, e] œ N , and so

[t · [n, e, m], t · m, m] œ ·m

e
(N) = Nm

e
,

as required. The case of a right induced module is dealt with symmetrically.

(2) Obviously, if Nm

e
is a submodule and since m œ Nm

e
, t · m œ Nm

e
. Conversely, if

t · m œ Nm

e
, let nm œ N be such that

t · m = ·m

e
(nm) = [nm, e, m].

Then, for all n œ N ,

t · [n, e, m] = [t · n, t · e, t · m] = [t · n, t · e, [nm, e, m]]

= [[[t · n, t · e, e], e, nm], e, m] = ·m

e
([[t · n, t · e, e], e, nm]),

by the (left) distributive law, associativity and the Mal’cev identities. Since N is an

induced submodule, [t · n, t · e, e] œ N . Consequently, [[t · n, t · e, e], e, nm] œ N , and

therefore t · ·m

e
(n) œ ·m

e
(N) = Nm

e
, for all n œ N and t œ T , as required.
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(3) Suppose that n œ N is an element of Nm

e
, so that there is nÕ

œ N such that n =

[nÕ, e, m]. By the associativity of [≠, ≠, ≠] and the Mal’cev identities, m = [nÕ, e, n] œ N ,

which contradicts the assumption that m ”œ N .

Since Nm

e
is the image of N under the heap isomorphism ·m

e
, Nm

e
≥= N as heaps.

By the foregoing proposition this isomorphism is an isomorphism of induced modules,

therefore M/Nm

e
≥= M/N. Moreover, since for all a œ M , a œ M/Nm

e
and a œ M/N are

equal as sets, one gets that M/Nm

e
= M/N. In the case of a module M over a ring R,

an R-submodule is obtained from the element N of the quotient module by choosing

m = 0, the zero of M .

4.3 Coproduct of modules

In this section, we introduce the coproduct of T -modules as a coproduct of underlying

heaps with coordinatewise T -action. This section is a part of [19, Section 3].

Let (Ax)xœX be a family of left modules over a truss T . By the distributivity

of action, for each t œ T and x œ X the function ⁄t

x
: Ax ≠æ �

xœX

Ax, a ‘≠æ t · a,

is a homomorphism of heaps. For each t œ T , the family (⁄t

x
)xœX extends to the

homomorphism of heaps �
xœX

⁄t

x
: �

xœX

Ax ≠æ �
xœX

Ax, and thus there is a T -action

T ◊ �
xœX

Ax ‘≠æ �
xœX

Ax, (t, a) ‘æ �
xœX

⁄t

x
(a),

which makes �
xœX

Ax into a T -module. This action is defined letter-by-letter, so for

example in the case of a two-element family of T -modules A and B,

t · :a1b1a2 . . . akbkak+1: = :(t · a1)(t · b1)(t · a2) . . . (t · ak)(t · bk)(t · ak+1):,

where t œ T , ai œ A and bi œ B, etc.

For T -modules A, B we can explicitly write out what the module action looks

like on G(A; eA) ü G(B; eB) ü Z, by transferring it through the isomorphism Ï in

Proposition 1.4.4. The action is given by the formula t ı Ï(x) = Ï(t · x), x œ A � B,



118 CHAPTER 4. IN THE WORLD OF MODULES

and, for all a œ A, b œ B and n œ Z, it comes out as

t ı (a + b + n) = t · a ≠ n(t · eA) + t · b + (n ≠ 1)(t · eB) + n, (4.3.1)

where the use of the additive notation tacitly presupposes that eA = eB = 0 in the direct

sum of Abelian groups G(A; eA) ü G(B; eB) ü Z. In particular, in the case that both

t · eB = eB and t · eA = eA the action takes the simple form t ı (a, b, n) = (t · a, t · b, n).

4.4 Monomorphisms and epimorhpisms

Let T be a truss. It will be useful in Chapters 6 and 7 to know that epimorphisms

(respectively, monomorphisms) of T -modules are always e�ective, that is, that they are

coequalizers (respectively, equalizers) of their kernel pairs (respectively, cokernel pairs),

and that they coincide with surjective (respectively, injective) T -linear maps.

To this aim, recall that if f : M ≠æ N is a morphism of T -modules, its kernel pair

(respectively, cokernel pair) is the pullback (respectively, pushout) of the pair (f, f),

see Example A.0.25 and Example A.0.31.

Proposition 4.4.1. Every epimorphism of T -modules is surjective.

Proof. Assume that M and N are T -modules. If both M and N are the empty T -

module, the empty map is an epimorphism (by uniqueness) and it is also surjective

(trivially). If only N is the empty module, then we cannot have morphisms from a

non-empty to the empty module. If only M is the empty module, then the empty

map to N is not an epimorphism. Summing up, we may assume that both M and

N are non-empty and that Ï : M ≠æ N is an epimorphism of T -modules. Consider

the T -submodule Im(Ï) ™ N and the canonical projection fi : N ≠æ N/Im(Ï). For

p œ Im(Ï), consider also the constant morphism ·p̄ : N ≠æ N/Im(Ï), n ‘≠æ p̄ := fi(p).

For every m œ M , Ï(m) ≥Im(Ï) p and hence fi(Ï(m)) = fi(p) = p̄ = ·p̄(Ï(m)). Since Ï

is an epimorphism, fi = ·p̄ and hence every n œ N satisfies n ≥Im(Ï) p (that is, for all

Ï(m) œ Im(Ï), [n, p, Ï(m)] œ Im(Ï)). In particular, n = [n, p, p] œ Im(Ï) for all n œ N

and Ï is surjective.
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Proposition 4.4.2. Every epimorphism of T -modules is the coequalizer of its kernel

pair.

Proof. Assume that fi : M ≠æ P is an epimorphism of T -modules. The kernel relation

together with its coordinate projections

Ker (fi) = {(m1, m2) œ M ◊ M | fi(m1) = fi(m2)} ™ M ◊ M,

pi : Ker (fi) ≠æ M, (m1, m2) ‘≠æ mi, i = 1, 2,

yield the following fork of T -modules

Ker (fi)
p1
//

p2
//M fi

// P.

Assume that f : M ≠æ N is any other T -module map such that f ¶ p1 = f ¶ p2 and

consider f̄ : P ≠æ N given by f̄(fi(m)) := f(m). The map f̄ is well-defined because

if fi(m1) = fi(m2), then (m1, m2) œ Ker (fi) and hence f(m1) = (f ¶ p1)(m1, m2) =

(f ¶ p2)(m1, m2) = f(m2). It is a morphism of T -modules because fi and f are T -linear

maps. It is a unique morphism such that f̄ ¶ fi = f because fi is an epimorphism. Thus,

(P, fi) satisfies the universal property of the coequalizer of the pair (p1, p2). To conclude,

observe that (Ker (fi), p1, p2) is the kernel pair of f .

Proposition 4.4.3. Every monomorphism of T -modules is injective.

Proof. Let f : M ≠æ N be a monomorphism of T -modules. As before, there is a fork

diagram of T -modules

Ker (f)
p1
//

p2
//M

f
// N.

The fact that f is a monomorphism implies that p1 = p2 and hence (m, n) œ Ker (f) if

and only if m = n, which in turn entails that f(m) = f(n) if and only if m = n.

Lemma 4.4.4. Let M, N be T -modules, M � N their coproduct in T -mod and let

ÿM : M ≠æ M � N , ÿN : N ≠æ M � N be the structure maps of the coproduct. Then

ÿM(m) ”= ÿN(n) for all m œ M , n œ N .
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Proof. Endow the Abelian heap H(Z2) with the trivial T -module structure: t · x = x

for all t œ T and x œ Z2. The assignments

ÏM : M ≠æ H(Z2), m ‘≠æ 0, and ÏN : N ≠æ H(Z2), n ‘≠æ 1,

are well-defined T -linear morphisms and hence they induce, by the universal property of

the coproduct, a unique T -linear map � : M �N ≠æ H(Z2) such that �¶ ÿM = ÏM and

�¶ÿN = ÏN . If we suppose that there exist m œ M and n œ N such that ÿM (m) = ÿN (n),

then

0 = ÏM(m) = �(ÿM(m)) = �(ÿN(n)) = ÏN(n) = 1,

which is a contradiction.

Proposition 4.4.5. Every monomorphism of T -modules is the equalizer of its cokernel

pair.

Proof. Since the category of T -modules is cocomplete, i.e. it has all small colimits (by

[17, Theorem 9.4.14] or Theorem C.0.16, for example), it is enough to prove that every

monomorphism is regular, that is, that it is the equalizer of some pair of arrows.

Assume that M and N are T -modules. If M is the empty T -module, then the empty

map is a monomorphism (because there are no maps from a non-empty to the empty

module) and it is also the equalizer of the pair

N
ÿN

//

))

N � {ú}

{ú} ÿú

44

by Lemma 4.4.4. If M is non-empty, then N cannot be the empty module, since

we cannot have morphisms from a non-empty to the empty module. Summing up,

we may assume that both M and N are non-empty and that f : M ≠æ N is a

monomorphism of T -modules. Consider then eÕ
œ M , N ´ Im(f) – e = f(eÕ),

the quotient T -module N/Im(f), the absorber e = Im(f) therein and the canonical

projection fi : N ≠æ N/Im(f). Then there is a fork diagram of T -modules

M
f
// N

fi
//

·e

// N/Im(f), (4.4.1)
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where ·e denotes the T -linear morphism sending everything to e. Let us check that

(M, f) is the equalizer of the pair (fi, ·e). If P is another T -module and g : P ≠æ N is

a T -linear map such that fi(g(p)) = e for all p œ P , then this implies that there exists

f(m) œ Im(f) such that

[g(p), f(eÕ), f(m)] = [g(p), e, f(m)] œ Im(f).

In particular,

g(p) = [[g(p), f(eÕ), f(m)] , f(m), f(eÕ)] œ Im(f),

and hence there exists a (necessarily unique, in view of Proposition 4.4.3) element

mp œ M such that g(p) = f(mp). Since, in addition,

f(mt·p) = g(t · p) = t · g(p) = t · f(mp) = f(t · mp),

for all p œ P and t œ T , the assignment h : P ≠æ M, p ‘≠æ mp, is a T -linear morphism

such that f ¶ h = g and it is unique satisfying this property, because f is injective.

Summing up, (M, f) is indeed the equalizer of (4.4.1), as claimed.

Finally, since equalizers of Abelian heaps and T -modules are simply equalizers in

Set endowed with the sub-heap or T -submodule structure, let us describe explicitly a

construction of coequalizers in the categories of Abelian heaps and T -modules.

Lemma 4.4.6. Given a diagram

A
Ï

//

Â

//
B (4.4.2)

in Ah and any e œ B, define

N(e) = {[Ï(a), Â(a), e] | a œ A}. (4.4.3)

Then

1. The set N(e) is a sub-heap of B and, for di�erent choices of e, the heaps N(e)

are mutually isomorphic.
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2. Let N(e) := ÈN(e), eÍ be the sub-heap of B generated by N(e) and e. The quotient

heap C(e) = B/N(e) is the coequalizer of (4.4.2).

3. If (4.4.2) is a diagram in T -mod, where T is a truss, then C(e) is its coequalizer

in T -mod.

Proof. 1 That N(e) is a sub-heap of B follows by (1.1.2) and the fact that Ï, Â are

morphisms of heaps. Let f œ B. The isomorphism between N(e) and N(f) is given by

· f

e
of (1.1.4).

2 Let us check that the canonical projection fi : B ≠æ C(e) = B/N(e) coequalizes

Ï and Â. Since e œ N(e) and [Ï(a), Â(a), e] œ N(e), Ï(a) ≥
N(e)

Â(a), and hence

fi(Ï(a)) = fi(Â(a)). Therefore, there is the required fork

A
Ï

//

Â

// B fi
// C(e).

Now, let us assume that there exists another pair (h, H) such that h : B æ H and

h ¶ Ï = h ¶ Â. Observe that, for all a œ A,

h([Ï(a), Â(a), e]) = [h(Ï(a)), h(Â(a)), h(e)] = h(e),

where the second equality follows from h ¶ Ï = h ¶ Â and Mal’cev identity. Thus,

h(x) = h(e) for all x œ N(e) and so N(e) ™ kerh(e)(h). In view of Lemma 1.2.17, there

is a unique heap homomorphism f : C(e) æ H given by f(fi(b)) = h(b) for all b œ B.

3 To prove that C(e) is a coequalizer in the category of modules it is enough to

prove that N(e) is an induced T -submodule. Since

t ·e [Ï(a), Â(a), e] = [t · [Ï(a), Â(a), e], t · e, e] = [[t · Ï(a), t · Â(a), t · e], t · e, e]

= [t · Ï(a), t · Â(a), [t · e, t · e, e]] = [t · Ï(a), t · Â(a), e]

= [Ï(ta), Â(ta), e] œ N(e)

and t ·e e = e, it follows that C(e) is a well-defined quotient module and the proof that

C(e) is the coequalizer is analogous to 2.



Chapter 5

Extensions of trusses

There is a one-sided connection between rings and trusses given by the functor

T : Ring æ Trs. An analogous functor can be constructed from the category of braces

to the category of trusses. In this chapter we investigate possibilities of assigning a ring,

a brace or a unital truss to a truss. This chapter consists of two sections.

In Section 5.1, we introduce di�erent methods to extend a truss: we consider a

product with a unital module, and a coproduct with a terminal module. The first

approach allows us to extend a brace to a new brace, or dually, extend a unital module

over a brace to a brace. The new brace is not necessarily one that the module is over.

The coproduct approach allows us to extend a truss to a ring or a unital truss. This

depends on how we interpret a terminal module. If we assign it a role of an identity, we

get a unital module. If we assign it a role of an absorber, we get a ring. This section is

based on [19] and [32].

In Section 5.2, we further study connection between trusses and rings. A left

adjoint to the functor T is constructed. The universal property given by the adjunction

allows us to introduce three definitions of “smallness”: locally small extensions, small

extensions and minimal extensions. We conclude this section with a remark with a

possible application of minimal extensions of trusses to essential extensions of rings.

This section is based on [34].
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5.1 On extensions of a truss

In this section we study various ways to extend trusses to rings, braces and unital

trusses. We introduce two methods: one by taking a product of truss with a unital

module over the truss, and second, by taking a coproduct with a terminal module over

the truss.

5.1.1 Extension by a module

By the standard construction, given a ring R and an R-bimodule M one can define an

extension of R by M as a ring with the Abelian group structure RüM and multiplication

(r, m)(rÕ, mÕ) = (rrÕ, rmÕ + mrÕ). In this section we show that this construction can be

extended to one-sided modules, but then the result is a truss rather than a ring.

Let us start with the following motivating observations.

Example 5.1.1. Let G be an Abelian group. Then the ring of endomorphisms Ab(G, G)

acts on G by evaluation, i.e. Ab(G, G) ◊ G ≠æ G, (f, g) ‘æ f(g). One easily checks

that the following binary operation on Ab(G, G) ü G

(f, g)(f Õ, gÕ) = (f ¶ f Õ, g + f(gÕ)), for all f, f Õ
œ Ab(G, G), g, gÕ

œ G, (5.1.1)

is associative. However, the operation (5.1.1) does not distribute over the addition

Ab(G, G) ü G, since for all f, f Õ, f ÕÕ
œ Ab(G, G) and g, gÕ, gÕÕ

œ G, on one hand

(f, g)((f Õ, gÕ) + (f ÕÕ, gÕÕ)) = (f ¶ f Õ + f ¶ f ÕÕ, g + f(gÕ) + f(gÕÕ)),

while on the other

(f, g)(f Õ, gÕ) + (f, g)(f ÕÕ, gÕÕ) = (f ¶ f Õ + f ¶ f ÕÕ, g + g + f(gÕ) + f(gÕÕ)).

Notwithstanding, it is easy to check that the operation (5.1.1) distributes over the

ternary heap operation associated to the addition in Ab(G, G) ü G. In summary, the

extension of the endomorphism ring of a group by this group is a truss.
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Now we place Example 5.1.1 in a more general framework of extensions of trusses

by one-sided modules.

Theorem 5.1.2. Let T be a truss and let M be a left T -module. Then, for all e œ M,

T ◊ M is a truss with the Cartesian product heap structure and multiplication

(t, m)(tÕ, mÕ) = (ttÕ, [m, t · e, t · mÕ]), (5.1.2)

for all t, tÕ
œ T and m, mÕ

œ M . We denote this truss by T [M ; e] and call it an

extension of T by M .

Proof. That T ◊M with given operations is a truss can be checked by direct calculations.

We start with the associative law. For all t, tÕ, tÕÕ
œ T and m, mÕ, mÕÕ

œ M ,

(t, m)((tÕ, mÕ)(tÕÕ, mÕÕ)) = (t, m) (tÕtÕÕ, [mÕ, tÕ
· e, tÕ

· mÕÕ])

= (ttÕtÕÕ, [m, t · e, t · [mÕ, tÕ
· e, tÕ

· mÕÕ]])

= (ttÕtÕÕ, [[m, t · e, t · mÕ], ttÕ
· e, ttÕ

· mÕÕ])

= (ttÕ, [m, t · e, t · mÕ])(tÕÕ, mÕÕ) = ((t, m)(tÕ, mÕ))(tÕÕ, mÕÕ),

where the third equality follows by the distributive and associative laws for modules

over trusses and by the associativity of the heap operation. To prove the left distributive

law we compute, for all t, tÕ, tÕÕ, tÕÕÕ
œ T and m, mÕ, mÕÕ, mÕÕÕ

œ M :

(t, m)[(tÕ, mÕ),(tÕÕ, mÕÕ), (tÕÕÕ, mÕÕÕ)] = (t, m)([tÕ, tÕÕ, tÕÕÕ], [mÕ, mÕÕ, mÕÕÕ])

= (t[tÕ, tÕÕ, tÕÕÕ], [m, t · e, t · [mÕ, mÕÕ, mÕÕÕ])

= ([ttÕ, ttÕÕ, ttÕÕÕ], [[m, m, m], [t · e, t · e, t · e], [t · mÕ, t · mÕÕ, t · mÕÕÕ]])

= ([ttÕ, ttÕÕ, ttÕÕÕ], [[m, t · e, t · mÕ], [m, t · e, t · mÕÕ], [m, t · e, t · mÕÕÕ]])

= [(t, m)(tÕ, mÕ), (t, m)(tÕÕ, mÕÕ), (t, m)(tÕÕÕ, mÕÕÕ)].

The third equality follows by the distributive laws for trusses and modules over trusses

and by the Mal’cev identities (which imply that the heap operation is an idempotent

operation). The rearrangement of brackets leading to the fourth equality is possible
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since M is an Abelian heap. Similarly, for the right distributivity,

[(tÕ, mÕ),(tÕÕ, mÕÕ), (tÕÕÕ, mÕÕÕ)](t, m) = ([tÕ, tÕÕ, tÕÕÕ], [mÕ, mÕÕ, mÕÕÕ]) (t, m)

= ([tÕt, tÕÕt, tÕÕÕt], [[mÕ, mÕÕ, mÕÕÕ], [tÕ, tÕÕ, tÕÕÕ] · e, [tÕ, tÕÕ, tÕÕÕ] · m])

= ([tÕt, tÕÕt, tÕÕÕt], [[mÕ, mÕÕ, mÕÕÕ], [tÕ
· e, tÕÕ

· e, tÕÕÕ
· e], [tÕ

· m, tÕÕ
· m, tÕÕÕ

· m]])

= ([tÕt, tÕÕt, tÕÕÕt], [[mÕ, tÕ
· e, tÕ

· m], [mÕÕ, tÕÕ
· e, tÕÕ

· m], [mÕÕÕ, tÕÕÕ
· e, tÕÕÕ

· m]])

= [(tÕ, mÕ)(t, m), (tÕÕ, mÕÕ)(t, m), (tÕÕÕ, mÕÕÕ)(t, m)].

Here, as in the preceding computation, the third equality is obtained by the distributive

laws, while the fourth one follows from the fact that M is an Abelian heap. Since the

operation (5.1.2) is associative and distributes from both sides over the heap operation

in T ◊ M , T [M ; e] is a truss, as claimed.

A natural question that arises here is whether T [M ; e] can be a truss associated

with a ring.

Lemma 5.1.3. The truss T [M ; e] is ring-type if and only if M = {e} and T = T(R)

for some ring R.

Proof. Let T [M ; e] be a ring-type truss and (tÕ, mÕ) be an absorber in T [M ; e]. Then,

for all m œ M and t œ T ,

(tÕt, [mÕ, tÕ
· e, tÕ

· m]) = (tÕ, mÕ)(t, m) = (tÕ, mÕ) = (t, m)(tÕ, mÕ) = (ttÕ, [m, t · e, t · mÕ]),

which immediately implies that tÕ is the absorber in T . Therefore, T = T(R), where

R has the same multiplication as T and the Abelian group structure obtained as the

tÕ-retract of (T, [≠, ≠, ≠]).

Observe that [m, t · e, t · mÕ] = mÕ implies t · mÕ = [t · e, m, mÕ], so choosing m = t · e

we obtain t · mÕ = mÕ, for all t œ T , i.e. mÕ is an absorber in M . Hence mÕ = [t · e, m, mÕ],

for all m œ M . In particular, for m = e, t · e = e. Therefore, for all m œ M ,

[e, m, mÕ] = mÕ,

which implies that m = e. So if the truss T [M ; e] is ring-type, then M = {e}.
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The converse implication follows by the simple observation that T(R) ≥= T(R)[{e}; e].

Put di�erently, Lemma 5.1.3 asserts that the truss obtained by extension by a

non-trivial module is never a truss associated to a ring.

We now list properties of an extension truss.

Theorem 5.1.4. Let T be a truss, M be a left T -module and let e œ M .

(1) For any ē œ M , T [M ; e] ≥= T [M ; ē].

(2) M is a left T [M ; e]-module with the action, for all m, mÕ
œ M and t œ T ,

(t, m) · mÕ = [m, t · e, t · mÕ].

In particular, (t, m) · e = m.

(3) The induced actions of T [M ; e] on M coincide with the induced actions of T on

M , i.e. for all ē œ M

(t, m) Ûē mÕ = t Ûē mÕ.

In particular, if ē is an absorber in the T -module M , then (t, m) ·ē mÕ = t · mÕ.

(4) For all a œ T , the sub-heap Ma := {a}◊M is a paragon in T [M ; e]. Furthermore,

T [M ; e]/Ma
≥= T.

Ma is an ideal in T [M ; e] if and only if a is an absorber in T .

(5) The sub-heap Te := T ◊ {e} is a sub-truss and a left paragon of T [M ; e]. Further-

more,

T [M ; e]/Te
≥= M,

as left T [M ; e]-modules.

(6) The extension truss T [M ; e] is unital if and only if T is a unital truss and M is

a unital module. Furthermore, U(T [M ; e]) = U(T ) ◊ M .
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Proof. (1) Consider the heap automorphism:

� = 1T ◊ · ē

e
: T ◊ M ≠æ T ◊ M, (t, m) ‘≠æ (t, [m, e, ē]).

We will show that � is a truss isomorphism from T [M ; e] to T [M ; ē]. Let us take any

t, tÕ
œ T and m, mÕ

œ M , and compute
�(t, m)�(tÕ, mÕ) = (t, [m, e, ē]) (tÕ, [mÕ, e, ē])

= (ttÕ, [[m, e, ē] , t · ē, t · [mÕ, e, ē]])

= (ttÕ, [[m, e, ē] , t · ē, [t · mÕ, t · e, t · ē]])

= (ttÕ, [[t · mÕ, t · e, t · ē] , t · ē, [m, e, ē]])

= (ttÕ, [[t · mÕ, t · e, m] , e, ē])

= (ttÕ, [[m, t · e, t · mÕ] , e, ē]) = � ((t, m)(tÕ, mÕ)) ,

where the third equality follows by the left distributive law for actions. The fourth

and sixth equalities are consequences of the fact that M is an Abelian heap. The key

cancellation and rearrangement of brackets leading to the fifth equality result from the

associative laws for and Mal’cev properties of heap operations. Thus � is the required

isomorphism of trusses.

(2) The proof of the associative and distributive laws for M as a T [M ; e]-module

follow by the same chains of arguments as that in the proof of Theorem 5.1.2 for the

corresponding laws for the truss T [M ; e], and thus are left to the reader. The property

(t, m) · e = m follows immediately by the Mal’cev identity.

(3) For the first statement, observe that
(t, m) Ûē mÕ = [(t, m) · mÕ, (t, m) · ē, ē]

= [[m, t · e, t · mÕ], [m, t · e, t · ē], ē] = [t · mÕ, t · ē, ē] = t Ûē mÕ,

by the Mal’cev identities, associativity of the heap operation and by the fact that M is

an Abelian heap. The second statement follows immediately by the Mal’cev identity.

(4) For all t œ T , m, mÕ, mÕÕ
œ M ,

[(t, m)(a, mÕ), (t, m)(a, e), (a, e)] = [(ta, [m, t · e, t · mÕ]) , (ta, [m, t · e, t · e]) , (a, e)]

= ([ta, ta, a] , [[m, t · e, t · mÕ] , m, e])

= (a, [t · mÕ, t · e, e]) œ Ma,
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by the Mal’cev identities and the associativity of heap operations. Hence Ma is a left

paragon. The right paragon property of Ma is proven in a similar way.

Consider the following maps

Ï : T ≠æ T [M ; e]/Ma, t ‘≠æ (t, e),

Â : T [M ; e]/Ma ≠æ T, (t, m) ‘≠æ t.

The map Ï is the quotient of the heap map Ï̃ : T ≠æ T [M ; e], given by t ‘≠æ (t, e).

Note that, for all t, tÕ
œ T ,

Ï̃(t)Ï̃(tÕ) = (t, e)(tÕ, e) = (ttÕ, [e, t · e, t · e]) = (ttÕ, e) = Ï̃(ttÕ),

i.e. Ï̃ is a truss homomorphism, and thus so is Ï.

We need to check whether the map Â is well-defined. By the definitions of Ma and

the sub-heap relation, (t, m) ≥Ma
(tÕ, mÕ) if and only if there exist mÕÕ, mÕÕÕ

œ M such

that

(a, mÕÕÕ) = [(t, m), (tÕ, mÕ), (a, mÕÕ)] = ([t, tÕ, a], [m, mÕ, mÕÕ]) . (5.1.3)

Thus, in particular a = [t, tÕ, a] which implies tÕ = t. Therefore, the element t is fully

determined by the class of (t, m). This means that the function Â is well-defined. The

second consequence of (5.1.3) is that the class of (t, m) is fully determined by t, i.e. it

does not depend on the choice of m. This implies that the composite function Ï ¶ Â is

the identity. That the composite Â ¶ Ï is identity is obvious.

The fact that Ma is an ideal in T [M ; e] if and only if a is an absorber in T follows

immediately from the analysis of the first entries in the products (t, m)(a, mÕ) and

(a, m)(t, mÕ).

(5) It is obvious that Te is closed under the ternary heap operation. That Te is

closed under the multiplication as well follows immediately by the Mal’cev identity.

Let us take (tÕÕ, m) œ T [M ; e] and (tÕ, e), (t, e) œ Te, and use the definition of the truss

operations for T [M ; e] and Mal’cev identities to compute:

[(tÕÕ, m)(tÕ, e), (tÕÕ, m)(t, e), (t, e)] = [(tÕÕtÕ, [m, tÕÕ
· e, tÕÕ

· e]), (tÕÕt, [m, tÕÕ
· e, tÕÕ

· e]), (t, e)]

= ([tÕÕtÕ, tÕÕt, t], [m, m, e]) = ([tÕÕtÕ, tÕÕt, t], e) œ Te.
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Therefore, Te is a left paragon hence a left induced T [M ; e]-submodule of T [M ; e]. The

left T [M ; e]-module isomorphism T [M ; e]/Te ≠æ M is constructed in the similar way

to the isomorphism in part (4). In particular, one finds that, for all t, tÕ
œ T and

m, mÕ
œ M ,

(a) (t, e) ≥Te
(tÕ, e) and

(b) if (t, m) ≥Te
(tÕ, mÕ), then m = mÕ.

Hence we can fix a œ T and consider the following functions:

Ï : M ≠æ T [M ; e]/Te, m ‘≠æ (a, m),

Â : T [M ; e]/Te ≠æ M, (t, m) ‘≠æ m.

The map Ï is the quotient of a heap homomorphism m ‘≠æ (a, m) hence a heap

homomorphism. Furthermore, using observation (a) one can compute

(t, m) · Ï(mÕ) = (t, m)(a, mÕ) = (ta, [m, t · e, t · mÕ])

= (a, [m, t · e, t · mÕ]) = (a, (t, m) · mÕ) = Ï((t, m) · mÕ).

Hence Ï is a homomorphism of T [M ; e]-modules. That Â is well-defined follows by the

observation (b). Again (a) implies that Ï ¶ Â = id and the other inverse property is

obvious.

(6) If T has identity 1, then (1, e) is the identity for the extended truss T [M ; e] by

the Mal’cev properties and by the unitality of M . Conversely, if (a, ē) is the identity of

T [M ; e], then, for all (t, m) œ T [M ; e],

(t, m) = (a, ē)(t, m) = (at, [ē, a · e, a · m]), (5.1.4a)

(t, m) = (t, m)(a, ē) = (ta, [m, t · e, t · ē]). (5.1.4b)

Comparison of the first elements in each pair in equalities (5.1.4) yields that T is unital

with the identity 1 = a. Evaluation of (5.1.4a) at m = e produces the equality ē = e,

while its evaluation at m = 1 · e gives ē = 1 · e, and hence 1 · m = m, for all m œ M ,

again by (5.1.4a).
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Let u be a unit in T . Then, for all m œ M ,
(u, m)(u≠1, [e, u≠1

· m, u≠1
· e]) = (uu≠1, [m, u · e, u · [e, u≠1

· m, u≠1
· e]])

= (1, [[m, u · e, u · e], uu≠1
· m, uu≠1

· e])] = (1, e),
by the distributive and associative laws for modules, axioms of heaps and unitality of

M . In a similar way, by the axioms of a heap

(u≠1, [e, u≠1
· m, u≠1

· e])(u, m) = (u≠1u, [[e, u≠1
· m, u≠1

· e], u≠1
· e, u≠1

· m]) = (1, e).

Hence, if u is a unit in T , (u, m) is a unit in T [M ; e], for all m œ M . This proves the

inclusion U(T ) ◊ M ™ U(T [M ; e]). The converse inclusion follows immediately from

the definition of the product in T [M ; e].

Remark 5.1.5. Assertions (4) and (5) of Theorem 5.1.4 yield the following sequence, for

all a œ T ,

M �
� ÿa

// T [M ; e]
fi

// //

T,? _
j

oo

where ÿa : m ‘≠æ (a, m), j : t ‘≠æ (t, e) and fi : (t, m) ‘≠æ t. This sequence is a

split-exact sequence of trusses in the following sense. The map fi is a split epimorphism

of trusses (j is the splitting monomorphism) and the relation induced by the image of

ÿa is the kernel relation for fi. In summary, Theorem 5.1.2 describes a split extension

of trusses.

The assertion (6) of Theorem 5.1.4 implies the following

Corollary 5.1.6. An extension truss T [M ; e] is the truss associated to a two-sided

brace if and only if T is associated to a two-sided brace and M is a unital T -module.

Proof. By Theorem 5.1.4 (6) T [M ; e] is brace-type (unital) if and only if T is brace-

type. Furthermore, U(T [M ; e]) = T [M ; e] if, and only if U(T ) = T , i.e. T [M ; e] is a

multiplicative group (brace) if and only if T is as well.

It might be instructive to contrast Lemma 5.1.3 with Corollary 5.1.6. While only

trivial truss extension of a ring results in a ring (alas an extension in name only), an

extension of a two-sided brace by any unital module over the associated truss is a

two-sided brace.
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Example 5.1.7. (1) Let B be a two-sided brace. Then T(B) is a left module over

itself by multiplication, hence one can consider the extension truss T(B)[T(B); 1]. As a

heap,

T(B)[T(B); 1] = T(B) ◊ T(B).

The multiplication comes out as, for all b1, b2, bÕ
1
, bÕ

2
œ B,

(b1, b2)(bÕ
1
, bÕ

2
) = (b1b

Õ
1
, b2 ≠ b1 + b1b

Õ
2
). (5.1.5)

T(B)[T(B); 1] is the truss associated to the two-sided brace with additive structure

given by B ü B and multiplication given by the formula (5.1.5). Note that, even if the

brace B is Abelian (i.e. the truss T(B) is commutative), the extended brace need not

be so.

For an explicit example we may consider the brace obtained as the 0-retract of the

truss Z(2)/2k+1Z in Proposition 2.3.9. The multiplication in Z(2)/2k+1Z[Z(2)/2k+1Z; 0]

is given by

(m, s)(n, t) =
1
2mn + m + n mod 2k+1 , 2mt + s + t mod 2k+1

2
.

In particular, the multiplicative group of Z(2)/4Z[Z(2)/4Z; 0] is generated by elements

a = (0, 1), x = (1, 0), y = (2, 0),

which satisfy the following relations

a4 = x2 = y2 = (0, 0), xax = a3, xy = yx, ay = ya,

and hence it is isomorphic to the direct product of the dihedral group D8 and the cyclic

group C2. The additive structure of the two-sided brace associated to Z(2)/4Z[Z(2)/4Z; 0]

is that of C4 ü C4.

(2) Since the socle, Soc(B), is an ideal in a two-sided brace B, it is a left (induced)

T(B)-module. The multiplication on T(B)[Soc(B); 1] = T(B) ◊ Soc(B) derived from

(5.1.5) reduces to

(b, a)(bÕ, aÕ) = (bbÕ, a ≠ b + ba) = (bbÕ, a + bab≠1).
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Remark 5.1.8. In view of Theorem 5.1.4, since M is a module over the extended

truss T [M ; e], the extension procedure could be iterated. This, however, rather than

producing genuinely new examples boils down to the truss extension by the T -module

obtained as the product of T -modules.

We conclude this part with the following

Remark 5.1.9. By analysing the proofs of main statements of this section, that is

Theorem 5.1.2 and Theorem 5.1.4, one can easily convince oneself that the assertions

hold for left trusses and their left modules (and also for right trusses if left modules are

replaced by right ones). Since for a left truss T no right distributivity is assumed, one

does not assume that the action of T on a left module M right distributes over the heap

operation on T (otherwise T would not be its own module). But this right distributivity

is not needed neither for the associativity of the product in (5.1.2) in T [M ; e] nor for

its left distributivity. Thus, if T is a left truss and M is a left T -module, then T [M ; e]

with Cartesian product heap structure and with multiplication (5.1.2) is a left truss.

Main assertions of Theorem 5.1.2 stand if the words “truss” or “paragon” are qualified

by the adjective “left”. Most importantly, the one-sided version of Corollary 5.1.6, with

no changes in the formula for the multiplicative group structure, equips one with the

procedure of obtaining left braces from left braces.

5.1.2 Coproduct extensions

In general it is not known if a coproduct A � B of T -modules A, B can be endowed

with a non-trivial truss multiplication, i.e. di�erent than mÕ
· m = m, mÕ

· m = mÕ or

mÕ
· m = e, for all m, mÕ

œ A � B and a fixed e œ A � B. In this part we introduce two

ways of endowing a T -module coproduct T � {ú} with a structure of a truss. The first

one is a unital truss, while the second one is a truss associated with a ring.

Proposition 5.1.10. Let T be a truss and let Z be the truss on the singleton set {0}.

Then T � Z with multiplication · given by

0 · t = t · 0 = 0 and t · tÕ = ttÕ, (5.1.6)
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where t, tÕ
œ T and ttÕ is multiplication in truss T, is a ring-type truss, which we term

the ring extension of T and denote by T0.

Proof. First note that if a binary operation defined on the heap H generated by a

set X is associative on elements of X and distributes over the heap operation, then

it is associative on the whole of H. The operation (5.1.6) is associative on T Û {0}

and hence it is associative on all the generators of the heap T � Z. We need to show

that this operation as defined in (5.1.6) can be extended to the whole of T � Z as a

distributive operation. To this end, for all s œ T � Z consider two functions extending

multiplication (5.1.6) to elements of T � Z term-by-term, i.e.

⁄s

T
: T ≠æ T � Z,

t ‘≠æ t · s :=

Y
________]

________[

[t · s1, t · 0, . . . , t · 0, t · sn]
= [ts1, 0, . . . , 0, tsn], if s = [s1, 0, s2, . . . , 0, sn],

[t · 0, t · s1, . . . , t · sn, t · 0]
= [0, ts1, . . . , tsn, 0], if s = [0, s1, 0, . . . , sn, 0],

[t · s1, t · s2, t · 0] = [ts1, ts2, 0], if s = [s1, s2, 0],

where si œ T , and

⁄s

Z
: Z ≠æ T � Z, 0 ‘æ 0 · s = 0.

The latter of these functions is a well-defined homomorphism of heaps, for all s œ T �Z.

To see that the former is so as well, we first establish that its definition is independent

on the presentation of s. If

[s1, 0, . . . , 0, sn] = [sÕ
1
, 0, . . . , 0, sÕ

n
],

then the Mal’cev identities imply that

sÕ
1

= [s1, 0, . . . , 0, sn, sÕ
n
, 0, . . . , 0, sÕ

2
, 0],

Using the fact that T � Z is an Abelian heap and Mal’cev identities again, all the 0

can be eliminated and one finds that

sÕ
1

= [s1, sÕ
2
, s2, sÕ

3
. . . , sn≠1, sÕ

n
, sn].
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Therefore,

[tsÕ
1
, 0, . . . , 0, tsÕ

n
] = [t[s1, sÕ

2
, s2, sÕ

3
. . . , sn≠1, sÕ

n
, sn], 0, tsÕ

2
, . . . , 0, tsÕ

n
]

= [ts1, tsÕ
2
, ts2, tsÕ

3
. . . , tsn≠1, tsÕ

n
, tsn, 0, . . . , 0, tsÕ

n
]

= [ts1, 0, . . . , 0, tsn],

by the distributive law in T , the Mal’cev identities and the fact that T is an Abelian

heap. In the second case one notices that [0, s1, . . . , sn, 0] = [0, sÕ
1
, . . . , sÕ

n
, 0] if and only

if [s1, 0, . . . , 0, sn] = [sÕ
1
, 0, . . . , 0, sÕ

n
] and thus the same arguments apply. In the third

case, if [s1, s2, 0] = [sÕ
1
, sÕ

2
, 0], then sÕ

1
= [s1, s2, sÕ

2
] and again the distributive law and

the Abelian heap properties imply the independence of the definition of ⁄s

T
on the

representation of s. Thus ⁄s

T
is a well-defined function that is a heap morphism by the

distributive law in T . The universal property of coproducts provides us with the unique

fillers (in the category of heaps) in the following diagrams that can be considered for

all s œ T � Z:

T � Z

T //

⁄
s

T

77

T � Z

⁄
s

OO

Z.oo

⁄
s

Z

hh

In this way the map

µ : (T � Z) ◊ (T � Z) ≠æ T � Z, (sÕ, s) ‘≠æ ⁄s(sÕ),

which extends the multiplication (5.1.7) to the whole of T � Z has been constructed.

This map is a heap homomorphism in both arguments (in the first argument by the

universal construction described above, in the second one by the definition of ⁄s

T
and

⁄s

Z
), that is it distributes over the heap operation in T � Z . This completes the

proof.

Proposition 5.1.11. Let T be a truss and I be the truss on a singleton set {1}. Then

T � I with multiplication · given by

1 · 1 = 1, 1 · t = t · 1 = t and t · tÕ = ttÕ, (5.1.7)
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where t, tÕ
œ T and ttÕ is multiplication in T is a unital truss, which we term the unital

extension of T and denote by Tu.

Proof. The proof is analogous to that of Proposition 5.1.10. We only note in passing

that the maps ⁄s

T
: T æ T µ T � I, t ‘æ ts, and ⁄s

I
: I æ T � I, 1 ‘æ 1 · s, are

well-defined since ⁄s

I
is a constant map and ⁄s

T
is the heap homomorphism on the direct

sum of its modules (see [19, Proposition 3.12] for the direct proof).

Note that if T is a ring-type truss with absorber 0, then its unital extension Tu

remains to be a ring-type truss with (the same) absorber 0.

The construction in Proposition 5.1.11 may be followed by that of Proposition 5.1.10

thus extending any truss T to the unital ring-type truss T � {1} � {0} (or a unital

ring with the retract of the heap T � {1} by 0 as the additive group). Note that

any ring extension of a non-empty truss is an infinite ring, so while any ring can be

interpreted as a truss, only some (and necessarily infinite at that) rings can be obtained

as extensions of trusses. In particular one easily finds that G({1} � {0}; 0) together

with the multiplication of the ring extension of {1} is equal to the ring of integers.

Presently, we describe other examples of unital and ring extensions of trusses.

Example 5.1.12. Let us consider the ring Z2 = {i0, i1}, where i0 is the zero and i1 is

the identity, and the associated truss T(Z2). In view of the isomorphism Ï in the proof

of Proposition 1.4.4, the extension of T(Z2) by an absorber is

G(T(Z2) � {0}; 0) := {‡u + ki0 | k œ Z, ‡ œ Z2},

where u = [i1, i0, 0], ≠ + ≠ = [≠, 0, ≠] and the appearance of ‡ implies the presence or

absence of u. The formulae for addition and multiplication come out as:

(‡u + ki0) + (‡Õu + kÕi0) = (‡ +( mod 2) ‡Õ)u + (k + kÕ)i0,

(‡u + ki0) · (‡Õu + kÕi0) = ‡‡Õu + kkÕi0.

Since T(Z2) is a truss with identity, so is its extension T(Z2)0; the identity is i1 = u + i0.

Example 5.1.13. Let us consider the truss on the heap associated with Z, whose

multiplication is given by a constant c, i.e. mn = c for all m, n œ Z. We denote this
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truss as Zc and describe the ring extension of Zc. To distinguish elements of Z from the

integer multiplicities, we will use the symbols im, m œ Z for elements of Zc. In other

words,

Zc = {im | m œ Z}, [ik, il, im] = ik≠l+m, imin = ic.

By Proposition 1.4.4, the heap underlying Zc

0
= {0} � Zc is isomorphic to H(Z ü Z).

Following Proposition 1.4.1 we choose 0 and ic œ Zc as special elements eA and eB,

respectively, and look at the retract G({0} � Zc; 0) as the Abelian group underlying

the ring Zc

0
. In view of the isomorphism Ï in the proof of Proposition 1.4.4,

G({0} � Zc; 0) = {‡in + kic | n œ Z \ {c}, k œ Z, ‡ œ Z2},

where ≠ + ≠ = [≠, 0, ≠]. The appearance of ‡ simply indicates either the absence or

presence of in. The formulae for addition and multiplication in the ring (G({0}�Zc; 0), ·)

come out as:

(‡in + kic) + (‡ÕinÕ + kÕic) = ‡‡Õ(in≠c+nÕ + ic) + (1 ≠ ‡Õ)‡in

+ (1 ≠ ‡)‡ÕinÕ + (k + kÕ)ic,

(‡in + kic) · (‡ÕinÕ + kÕic) = (‡‡Õ + ‡kÕ + ‡Õk + kkÕ)ic.

The ring extension of Zc can be extended further to make it into a unital truss,

Zc

0,u
= {0} � Zc � {1} as in Proposition 5.1.11. The corresponding retract is

G(Zc

0,u
; 0) = {‡in + kic + l1 | n œ Z \ {c}, k, l œ Z, ‡ œ Z2}.

The binary operations are as follows

(‡in + kic + l1) + (‡ÕinÕ + kÕic + lÕ1) = ‡‡Õ(in≠c+nÕ + ic) + (1 ≠ ‡Õ)‡in

+ (1 ≠ ‡)‡ÕinÕ + (k + k)Õic + (l + lÕ)1,

(‡in + kic + l1) · (‡ÕinÕ + kÕic + lÕ1) = (‡‡Õ + ‡kÕ + ‡Õk + kkÕ + klÕ + lkÕ)ic

+ ‡lÕin + ‡ÕlinÕ + llÕ1.

The retract G(Zc

0,u
; 0) with multiplication · is a unital ring.

Example 5.1.14. Let us consider the cyclic group C2 = {a, b}, where a is the neutral

element, with multiplication given by addition i.e. a · b = a+ b = b, etc. One can observe
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that C2 with such operations is a brace, and so there is the associated truss, which we

denote by T(C2). This can be extended to T(C2)0 = {0}�T(C2) as in Proposition 5.1.10.

We choose 0 and a as distinguished elements and, as in the preceding example, we study

the ring structure on the retract G(T(C2)0; 0). Note that [b, a, b] = a in T(C2) yields

the following relation in G(T(C2)0; 0),

b + b = [b, 0, b] = [b, 0, b, a, a] = [[b, a, b], 0, a] = [a, 0, a] = a + a.

Taking this into account w set t = [b, a, 0] œ T(C2)0, and find that

G(T(C2)0; 0) = {‡t + na | ‡ œ Z2, n œ Z}.

The addition and multiplication in the ring G(T(C2)0; 0) come out as follows:

(‡t + na) + (‡Õt + nÕa) = (‡ +( mod 2) ‡Õ)t + (n + nÕ)a,

(‡t + na) · (‡Õt + nÕa) = 1 ≠ (≠1)‡
Õ
n+‡n

Õ

2 t + nnÕa.

We note in passing that since a is the multiplicative identity of the brace C2, the ring

G(T(C2)0; 0) also has identity a.

A few comments appear to be in order now. Examples 5.1.12 & 5.1.13 illustrate the

fact that if a truss T had an absorber, making the ring extension T0 does not increase the

number of absorbers (this would contradict the uniqueness of absorbers), but replaces

the existing absorber by a new one. The truss Zc has absorber ic which ceases to be an

absorber in Zc

0
as ic(‡in + kic) = (‡ + k)ic. Similar comment can be made about the

unital extension: if a unital truss T , with identity e, is extended to Tu, then u ceases to

be the identity in Tu, as 1e = e1 = e by the definition of the multiplication in Tu. One

can also notice that the unital extension of the truss generated by a brace is no longer

a truss generated by a brace (the fact that the ring extension is not a truss associated

to a brace is obvious, since 0 is never an invertible element of a non-trivial ring). The

easiest example is adding identity to the truss {ú} associated to the trivial brace {0};

{ú}u is a ring-type truss which as a ring can be identified with Z. Conceptually this

can be understood by observing that the results of multiplication of any element from
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the truss associated with a brace B and an element from the unital extension that does

not belong to B is an element of B so there are no inverses in T(B)u to elements in B.

Finally, let us observe that the ring obtained from the unital extension of the truss

T(R) associated to a ring R is the same as the Dorroh extension of R [35].

Indeed, we know that T(R)u = T(R)� {1} ≥= H(R üZ), we can choose 0 œ R and 1

to be distinguished elements and study the ring structure on the retract

G(T(R)u; 0) = {r + n | r œ R, n œ Z} = R ü Z.

Since 0 is an absorber in T(R) it remains an absorber in the unital truss T(R)u and we

can write down the multiplication formula as

(r + n) · (rÕ + nÕ) = [r, 0, n] · [rÕ, 0, nÕ] = [r[rÕ, 0, nÕ], 0[rÕ, 0, nÕ], n[rÕ, 0, nÕ]]

= [rrÕ, 0, rnÕ, 0, nrÕ, 0, nnÕ] = rrÕ + rnÕ + nrÕ + nnÕ.

This is precisely the multiplication rule for the Dorroh extension of the ring R.

5.2 Universal and minimal extensions to rings

The preceding section introduces the method of extending a truss into a ring. We

consider a coproduct of a truss with a singleton module over the truss, and define a

particular multiplication on the coproduct, see Proposition 5.1.10. This multiplication

coincides with the truss multiplication on elements of the truss and assign a role of an

absorber to the singleton. In this section, we further investigate this extension. This

section is based on Part 3 of [34].

5.2.1 Extending to a ring

Let us denote by R0(T ) a ring acquired by taking a zero retract of the truss extension

T0 of a truss T . The extension T0 is a heap T � {0}, where {0} is a unique T -module,

together with the multiplication. The multiplication on the heap is given on generators

T Û {0} by t · tÕ = ttÕ and t0 = 0t = 0, for all t, tÕ
œ T . Obviously, T(R0(T )) = T0. A

homomorphism of rings Ï : R ≠æ RÕ is also a homomorphism of corresponding trusses
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T(Ï) : T(R) ≠æ T(RÕ). Whenever we write a composition of a truss homomorphism

Â : T ≠æ T(R) with Ï : R ≠æ RÕ, Ï ¶ Â we think of T(Ï) ¶ Â.

Lemma 5.2.1. Let T be a truss. An extension R0(T ) has the following universal

property. For any ring R and a homomorphism of trusses Ï : T ≠æ T(R) there exists

a unique ring homomorphism Ï‚ : R0(T ) ≠æ R rendering commutative the following

diagram

T
ÿT

//

Ï

!!

T(R0(T ))

÷! T(‚Ï)
yy

T(R),

where ÿT : T ≠æ T(R0(T )) is given by t ‘≠æ t.

Proof. Let us consider the following commutative diagram of morphisms of trusses:

T(R)

T
ÿT

//

Ï

77

T(R0(T ))

ÂÏ
OO

{0},
T(ÿ0)

oo

T(j)

hh

(5.2.1)

where j and ÿ0 are unique ring homomorphisms from the zero object {0} in the category

of rings. The existence of the unique truss morphism ÂÏ : T(R0(T )) = T � {0} ≠æ T(R)

follows by the universal property of the coproduct. Since

ÂÏ ¶ T(ÿ0)(0) = ÂÏ(0) = T(j)(0) = 0R,

the function ÂÏ = T(Ï‚) for some (unique) ring homomorphism Ï‚ : R0(T ) ≠æ R.

Corollary 5.2.2. A pair (R0(T ), ÿT ) is a universal arrow, see [24, Section III.1].

The preceding corollary already implies that R0 is a left adjoint to the functor T .

Nevertheless, we present the full proof.

Lemma 5.2.3. Let T be a truss. The truss homomorphism ÿT : T ≠æ T0 has the

following cancellation property. For all truss homomorphisms Ï, Â : T0 ≠æ U such

that Ï(0) = Â(0),

Ï ¶ ÿT = Â ¶ ÿT implies Ï = Â.
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In particular, if U = T(R) for a ring R, then for all ring homomorphisms f, g : R0(T ) ≠æ R,

T(f) ¶ ÿT = T(g) ¶ ÿT implies f = g.

Proof. Let us consider a truss homomorphism f : T0 æ S. One can easily observe

that by the uniqueness of the coproduct map f = (f ¶ ÿT ) � (f ¶ ÿ0). Thus, because

f(ÿ0(0)) = g(ÿ0(0)) and f ¶ ÿT = g ¶ ÿT , we get

f = (f ¶ ÿT ) � (f ¶ ÿ0) = (g ¶ ÿT ) � (g ¶ ÿ0) = g.

Therefore, f(0) = g(0) and (f ¶ ÿT ) = (g ¶ ÿT ) implies f = g.

The universal property of the ring R0(T ) described in Lemma 5.2.1 gives rise to a

functor R0(≠) : Trs ≠æ Ring between categories of trusses and rings. The functor is

given for all trusses T by T ‘≠æ R0(T ), and for all morphisms Ï œ HomTrs (T, U) by

Ï ‘≠æ R0(Ï) := \ÿU ¶ Ï, where ‚ denotes the ring homomorphism induced from a truss

homomorphism via the diagram in Lemma 5.2.1. Observe that by Lemma 5.2.1 for all

Ï œ HomTrs (T, U) and Â œ HomTrs (U, V ),

T(R0(Â) ¶ R0(Ï)) ¶ ÿT = T(\ÿV ¶ Â) ¶ T(\ÿU ¶ Ï) ¶ ÿT = T(\ÿV ¶ Â) ¶ ÿU ¶ Ï

= ÿV ¶ Â ¶ Ï = T( \ÿV ¶ Â ¶ Ï) ¶ ÿT = T(R0(Â ¶ Ï)) ¶ ÿT .

Lemma 5.2.3 implies that

R0(Â) ¶ R0(Ï) = R0(Â ¶ Ï).

Thus the composition is preserved by the assignment. One can easily check that

identity morphisms are preserved. Hence, R0 : Trs ≠æ Ring is a functor.

Proposition 5.2.4. The functor R0 is a left adjoint to the functor T.

Proof. For all trusses T and rings R let us consider the functions



142 CHAPTER 5. EXTENSIONS OF TRUSSES

–T,R : HomRing (R0(T ), R) ≠æ HomTrs (T, T(R)), f ‘≠æ T(f) ¶ ÿT

We will show that these functions define a natural isomorphism of bifunctors – :

HomRing (R0(≠), ≠) ≠æ HomTrs (≠, T(≠)).

Let us consider a map –≠1

T,R
: HomTrs (T, T(R)) ≠æ HomRing (R0(T ), R), f ‘≠æ ‚f ,

then

–≠1

T,R
¶ –T,R(f) = \T(f) ¶ ÿT = f,

–T,R ¶ –≠1

T,R
(f) = T( ‚f) ¶ ÿT = f,

where both equalities follows by the Lemma 5.2.1. Thus –T,R is a bijection.

For naturality, take any rings R, S and trusses T , U and consider homomorphisms

f : R0(T ) ≠æ R, Ï : U ≠æ T and g : R ≠æ S. Then

–U,R(f ¶ ÿT ¶ Ï‚) = T(f ¶ ÿT ¶ Ï‚) ¶ ÿU = T(f) ¶ ÿT ¶ Ï = –T,R(f) ¶ Ï,

by Lemma 5.2.1.

Similarly,

–T,S(g ¶ f) = T(g ¶ f) ¶ ÿT = T(g) ¶ –T,R(f),

as T(g) = g as functions. Therefore – in a natural isomorphism and the extension to

rings functor R0 is the left adjoint to T.

5.2.2 Minimal extensions to rings

An extension of a truss T into a ring R is a triple (T, R, ÷T,R), where ÷T,R : T æ T(R) is

an injective homomorphism of trusses. The universal property in Lemma 5.2.1 allows us

to extend ÷T,R to the ring homomorphism from the extension R0(T ), ‰÷T,R : R0(T ) æ R.

Now, with a ring homomorphism we can consider a kernel. Since kernel is an ideal, we

can classify extensions of a truss T into rings by considering the ideals in R0(T ), i.e.

for all rings R, we can consider ker( ‰÷T,R). This observation is used to introduce a small

extensions of trusses into rings. Moreover, we identify a particular small extensions
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called minimal. Minimal extensions are universal in the sense that if minimal extensions

exist, then they are unique up to isomorphism.

Definition 5.2.5. Let T be a truss, R a ring and let ÷R : T ≠æ T(R) be an injective

homomorphism of trusses. We say that R is a locally small extension of T if there is no

subring S ( R such that ÷R(T ) ™ S.

Proposition 5.2.6. Let T be a truss and R be an extension of T into a ring with

injection ÷R : T ≠æ T(R). Then R is a locally small extension if and only if R =

Im(„÷R) ≥= R0(T )/ ker(„÷R).

Proof. Let us assume that R is a locally small extension of T with ÷R : T ≠æ T(R).

By Lemma 5.2.1 there exists a unique ring homomorphism ÷R‚ : R0(T ) ≠æ R such that

T(÷R‚) ¶ ÿT = ÷R. Consequently, S = Im(÷R‚) is a subring of R such that ÷R(T ) ™ S, and

hence S = R, by the local smallness of the extension R. The first isomorphism theorem

for rings yields the required isomorphism.

In the converse direction, let R = Im(÷R‚) (or, equivalently, R ≥= R0(T )/ ker(÷R‚))

and suppose that there is a subring S of R such that ÷R(T ) ™ S. Let j : S ‘≠æ R be

the inclusion ring homomorphism and let ÷S : T ≠æ S be given by T (j) ¶ ÷S = ÷R. All

these maps together with the corresponding ring homomorphisms „÷R and „÷S can be

fitted in the commutative diagram:

T
ÿT

//

÷S
!!

÷R

((

R0(T )

T( ‚÷S)
zz

T(„÷R)

uu

T(S)
T(j)

✏✏

T(R).

Hence j ¶ „÷S = „÷R, which implies that R = Im(÷R‚) ™ S, that is, S = R. Therefore, R

is a locally small ring extension of T .

Remark 5.2.7. Proposition 5.2.6 indicates that a locally small extension of a truss T

into a ring is not necessarily unique (not even up to isomorphism) and also provides
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one with a method of constructing such extensions. One needs simply to take any ring

R which embeds T as a sub-truss of T(R) via an inclusion map, say, ÷R, construct the

corresponding unique ring homomorphism „÷R : R0(T ) ≠æ R. The ring S = Im(„÷R) ™ R

together with the corestriction of ÷R to S is the required locally small extension (note

that ÷R(T ) ™ S, since „÷R ¶ ÿT = ÷R). The form of the ring map „÷R : R0(T ) ≠æ R can

be easily worked out by inductive arguments. Explicitly,

„÷R : ([a, 0, e, 0, e, . . . , 0, e]
¸ ˚˙ ˝

e appears k≠times

) ‘≠æ ÷R(a) + k÷R(e).

In particular, the map ÿT‚ corresponding to the canonical truss inclusion ÿT : T ≠æ R0(T )

is equal to the identity map, and hence R0(T ) is a locally small extension of T . In view

of Proposition 5.2.6 all other locally small extensions in T correspond to suitable ideals

in R0(T ).

Example 5.2.8. The pair (Q, ÿQ), where ÿQ : 2Z + 1 ≠æ Q, 2k + 1 ‘≠æ 2k + 1 is an

extension of 2Z + 1. The ring Q is not locally small because Im(ÿQ) µ Z and Z is a

subring of Q.

Example 5.2.9. For any integer r Ø 2 or r = ≠1 consider the sub-truss of T(Z),

Tr = r(r ≠ 1)Z + r = {r((r ≠ 1)k + 1) | k œ Z}.

Note that the multiplication in Tr is well-defined since r2 is congruent to r modulo

r(r ≠ 1). This truss naturally embeds in T(Z), with the embedding ÷ : n ‘≠æ n. The

map ÷ induces a homomorphism of rings ‚÷ : R0(Tr) ‘≠æ Z, which in view of Remark 5.2.7

reads
‚÷([r(r ≠ 1)k + r, 0, r, 0, r, . . . , 0, r]

¸ ˚˙ ˝
r appears l≠times

) = r((r ≠ 1)k + l + 1),

for all k, l œ Z,0 is the attached absorber (not zero of Z), and where l denotes the length

of the tails. A good choice for tails is to choose the zero of Z and the absorber. Hence

the ring rZ = Im(‚÷) is a locally small ring extension of Tr. Since Im(‚÷) ( Z, Z is not a

locally small extension of Tr for all r ”= ≠1.

Lemma 5.2.10. An image Im(ÿT ) is a paragon in T0.
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Proof. Since T0 is a two-sided truss spanned by T Û {0}, and Im(ÿT ) is a T -submodule

of T0, it is enough to check that Im(ÿT ) is closed under induced actions of 0. For all

t, tÕ
œ Im(ÿT ), we have that

0 Ût tÕ = [0tÕ, 0t, t] = [0, 0, t] = t œ Im(ÿT ) & tÕ
t Ù 0 = [tÕ0, t0, t] = [0, 0, t] = t œ Im(ÿT ).

Hence, Im(ÿT ) is a paragon in T0.

Remark 5.2.11. As indicated in Remark 5.2.7 locally small extensions of a truss T

correspond with ideals I in R0(T ). By Lemma 5.2.10 ÿT (T ) is a paragon in R0(T ) and

thus

I(T ) := · 0

t
(ÿT (T )) = {[s, t, 0] | s œ T}

is an ideal in the extension R0(T ). To ensure that the composite map

T �
�

// I(T ) � � // R0(T ) // // R0(T )/I ,

is an injective map, we need to require that I intersects trivially with I(T ). In summary,

we can state.

Remark 5.2.12. The definition of I(T ) does not depend on t, as [s, tÕ, 0] = [[s, tÕ, t], t, 0].

Lemma 5.2.13. Let T be a truss, I be an ideal in R0(T ) and fi : R0(T ) ≠æ R0(T )/I

be a canonical epimorphism. Then R0(T )/I is a locally small extension of T into a ring

with an injection

fi ¶ ÿT : T ≠æ R0(T )/I

if and only if I fl I(T ) = {0}.

Proof. Let us assume that R0(T )/I is a locally small extension of T with an injection

fi ¶ ÿT : T ≠æ R0(T )/I, and that I fl I(T ) ”= {0}. Then there exists a œ I fl I(T ) \ {0}

and there exist t, t œ T , t ”= tÕ, such that [t, tÕ, 0] = a by the definition of I(T ). Hence,

fi(0) = fi(a) = fi([tÕ, t, 0]) = [fi(tÕ), fi(t), fi(0)] & fi(t) = fi(tÕ)
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and fi ¶ ÿT (t) = fi(t) = fi(tÕ) = fi ¶ ÿT (tÕ), but fi ¶ ÿT is injective, so t = tÕ and a = 0.

Thus, I fl I(T ) = {0}.

In the opposite direction. Let us assume that I fl I(T ) = {0}. If fi ¶ ÿT (t) = fi ¶ ÿT (tÕ),

then [fi(t), fi(tÕ), 0] = fi([t, tÕ, 0]) = 0, by the injectivity of ÿT . This implies that

[t, tÕ, 0] œ I fl I(T ), so t = tÕ and fi ¶ ÿT is injective. The extension R0(T )/I is locally

small by Proposition 5.2.6, as fi ¶ ÿT‚ = fi ¶ ÿT .

Lemma 5.2.14. Let T be a truss, then R(T ; e) = (G(T, +e), •), where for all a, b œ T ,

a • b = [a Ûe b, e Ûe b, e] = [a eÙ b, a eÙ e, e] = ab ≠e ae ≠e eb +e e2, (5.2.2)

for a fixed e œ T , is a ring.

Proof. In order to avoid unwieldy expressions that are too hard to read with ease,

in what follows we will suppress the indexes e in expressions for products, sums and

actions, and keep them only in places where an action induced by a di�erent element

appears.

First we check the equality of two expressions for • in equation (5.2.2). This follows

by the fact that T is an Abelian heap,

[a Û b, e Û b, e] = [ab, ae, e, eb, e2, e, e] = [ab, eb, e, ae, e2, e, e] = [a Ù b, a Ù e, e].

As a consequence of this equality the operation • is a binary operation on T in both

cases; if T is left-closed we use the left actions and when T is right-closed we use the

right ones.

The distributive law for • over + follows by the distributive laws of actions, by the

absorption rules (4.1.2) and the fact that T is abelian. Explicitly, for all a, b, c œ T ,

a • (b + c) = a • [b, e, c] = [a Û [b, e, c], e Û [b, e, c], e]

= [a Û b, e, a Û c, e Û b, e, e Û c, e]

= [a Û b, e Û b, a Û c, e, e, e Û c, e]

= [a Û b, e Û b, e, e, a Û c, e Û c, e] = a • b + a • c.
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The right distributive law follows by symmetry through expressing the multiplication •

in terms of the right induced action. Finally, the associative law for • is a consequence

of the possibility of expressing of this operation in two di�erent ways in (5.2.2) and the

bimodule associative law in Definition 4.1. Explicitly, for all a, b, c œ T ,
a • (b • c) = [a Û (b • c), e Û (b • c), e]

= [a Û b Ù c, a Û b Ù e, a Û e, e Û b Ù c, e Û b Ù e, e Û e, e]

= [a Û b Ù c, a Û b Ù e, e, e Û b Ù c, e Û b Ù e]

On the other hand,
(a • b) • c = [(a • b) Ù c, (a • b) Ù e, e]

= [a Û b Ù c, e Û b Ù c, e Ù c, a Û b Ù e, e Û b Ù e, e Ù e, e]

= [a Û b Ù c, e Û b Ù c, e, a Û b Ù e, e Û b Ù e]

= [a Û b Ù c, a Û b Ù e, e, e Û b Ù c, e Û b Ù e] = a • (b • c),

as required.

Lemma 5.2.15. Let T be a truss. Then R(T ; e) ≥= I(T ).

Proof. Obviously, T(R(T ; e)) = T is a sub-heap of T0, · 0

e
: T(R(T ; e)) æ I(T ) is an

isomorphism of heaps and · 0

e
(e) = 0. Moreover, for all a, b œ T

· 0

e
(a) · · 0

e
(b) = [a, e, 0][b, e, 0] = [ab, eb, 0, ae, e2, 0, 0] = [ab, eb, e2, ae, 0]

= [ab, eb, e2, ae, e, e, 0] = [a • b, e, 0] = · 0

e
(a • b),

where the second equality follows by distributive laws, third and forth by Mal’cev

identities. Thus, since · 0

e
is an isomorphism of heaps which preserves neutral elements

of retracts and multiplications, · 0

e
is the isomorphism of rings.

Corollary 5.2.16. For all p, pÕ
œ T , R(T ; p) and R(T ; pÕ) are isomorphic rings.

Proof. Observe that for all p œ T R(T ; p) ≥= · 0

p
(T ), thus

R(T ; p) ≥= · 0

p
(T ) = · 0

pÕ(T ) ≥= R(T ; pÕ),

for all pÕ
œ T .
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Lemma 5.2.17. Let T be a truss with finite exponent N œ N, then the sub-heap

IN = {[0, e, 0, e, . . . , 0, e, 0]
¸ ˚˙ ˝

e appears k≠times

, [e, 0, e, 0, . . . , e, 0, e]
¸ ˚˙ ˝

e appears k≠times

| k = nN, n œ N fi {0}} ™ T0 is an

ideal.

Proof. It is easy to check that IN is a sub-heap of T0. Let [e, 0, . . . , e] œ IN be an

element of length 2hN + 1 for some h œ N. Then for all t œ T ,

0[e, 0 . . . , e] = 0 œ IN & [e, 0 . . . , e]0 = 0 œ IN ,

t[e, 0 . . . , e] = [te, 0, . . . , te] = [[te, 0, . . . , te], [e, . . . , e]
¸ ˚˙ ˝

2hN≠1

, e]

= [[te, e, . . . , te], [0, e, . . . , 0], e] = [e, 0, . . . , 0, e] œ IN ,

[e, 0 . . . , e]t = [et, 0, . . . , et] = [[et, 0, . . . , et], [e, . . . , e]
¸ ˚˙ ˝

2hN≠1

, e]

= [[et, e, . . . , et], [0, e, . . . , 0], e] = [e, 0, . . . , 0, e] œ IN .

Thus, elements of the form [e, 0 . . . , e] are closed under multiplication by generators of

T0. Now, since [0, e, 0, e, . . . , 0, e, 0] = [0, [e, 0, e, . . . , 0, e], 0] and IN is a sub-heap of T ,

IN is an ideal in T0. Thus G(IN ; 0) is an ideal in R0(T ).

In the hierarchy of locally small extensions of a truss T one can distinguish those

that are particularly close to T .

Definition 5.2.18. A locally small extension (S, ÷S) of a truss T is called a small

extension provided ÷S‚(I(T )) is an essential ideal in S, i.e. for all ideals {0} ”= I � S,

÷S‚(I(T )) fl I ”= {0}.

Corollary 5.2.19. Let T be a truss such that the (any) retract G(T ; e) has a finite

exponent. Then the extension R0(T )/IN is a locally small extension of T .

Proof. It follows straight forward by Lemma 5.2.13.

Taking into account the explicit form of the induced ring map ÷S‚ described in

Remark 5.2.7 one immediately obtains the following characterisation of small extensions.
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Lemma 5.2.20. Let T be a truss, e œ T and let (S, ÷S) be a locally small extension

of T . Then (S, ÷S) is a small extension if and only if, for all ideals {0} ”= J � S there

exists a œ T such that a ”= e and ÷S(a) ≠ ÷S(e) œ J .

Proof. Let (S, ÷S) be a small extension of T . Then for all {0} ”= J � S there exists

j œ I(T ) such that ÷S‚(j) ”= 0 and ÷S‚(j) œ J fl ÷S‚(I(T )). Thus there exists a œ T such

that j = [a, e, 0]. Hence,

÷S(a) ≠ ÷S(e) = ÷S‚(a) ≠ ÷S‚(e) = ÷S‚([a, e, 0]) = ÷S‚(j) œ J.

In the opposite direction. If a ”= e, ÷S is injective and ÷S(a) ≠ ÷S(e) œ J , then

÷S(a) ≠ ÷S(e) = [÷S(a), ÷S(e), 0] = [÷S‚(a), ÷S‚(e), ÷S‚(0)] = ÷S‚([a, e, 0]) ”= 0 œ J.

Thus, since ÷S‚([a, e, 0]) œ ÷S‚(I(T )), we get that ÷S‚([a, e, 0]) œ J fl ÷S‚(I(T )), and ÷S‚(I(T ))

is an essential ideal in S.

Example 5.2.21. Let Tr be the truss defined in Example 5.2.9. Consider the locally

small extension ÷ : Tr ≠æ T(rZ), n ‘æ n (with e = r). Since rZ is a principal ideal

domain, all ideals in rZ are of the form Iq = qrZ, for a non-negative integer q. Then

Iq – qr(r ≠ 1) = ÷(r(r ≠ 1)q + r) ≠ ÷(r),

and hence rZ is a small extension of Tr.

There exist locally small extensions which are not small extension. As we observed

in Remark 5.2.7 R0(T ) is a locally small extension of a truss T that usually is not

small. For example if T = T(R), for some ring R with a zero 0R, then ÿR(R)0

0R
™ R0(T )

and clearly ÿR(R)0

0R
is not an essential ideal in R0(T ). Similarly, if (R, +) has a finite

exponent N .

Finally we look at extensions which are at the bottom of the hierarchy of locally

small extensions.

Definition 5.2.22. Let T be a truss and (S, ÷S) be a locally small extension of T into

a ring S. Then we say that (S, ÷S) is a minimal extension if for all ideals I ™ R0(T )

such that I fl I(T ) = {0}, I ™ ker(÷S‚).
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Lemma 5.2.23. A minimal extension of a truss is unique up to isomorphism.

Proof. Let (S, ÷S) and (S Õ, ÷SÕ) be two minimal extensions of a truss T . Then ker(÷S‚) ™

ker(÷SÕ‚) and ker(÷SÕ‚) ™ ker(÷S‚), so ker(÷S‚) = ker(÷SÕ‚), and isomorphism is given by the

first isomorphism theorem for rings.

Example 5.2.24 (Minimal extensions exist). Let T = T(R) for a ring R, and let us fix

an element 0R œ T(R), then R is a minimal extension of T(R) to a ring. Observe that

the ring homomorphism ‚÷ : R0(T ) ≠æ R induced from the identity map ÷ : R ≠æ R is

onto. Moreover, the composition T(‚÷)¶ ÿT : T (R) æ T (R) is an isomorphism. Therefore

R is a minimal extension of itself to a ring.

Observe, that if (S, ÷S) is a small extension, then it is a locally small extension.

Analogously, every minimal extension is a small extension. This easily follows by the

definitions of locally small, small and minimal extensions.

Lemma 5.2.25. Let (S, ÷S) be an extension of a truss T with at least two elements

such that S is a domain. If (S, ÷S) is a small extension, then (S, ÷S) is a minimal

extension.

Proof. Let I be an ideal in R0(T ) such that I fl I(T ) = {0}, then 0 œ I. By Proposition

1.4.1 there are only three types of words in R0(T ) that can be in I,

[t1, t2, 0], [t10, t2, 0, . . . , tn] and [0, t1, 0, . . . , tn, 0] for n œ N and t1, . . . , tn œ T.

As the intersection is empty and [t1, t, 0] œ I(T ),

[t1, t, 0] œ I ≈∆ t1 = t.

Since 0 œ I fl ker(÷S‚),

[t1, 0, t2, 0, . . . , tn] œ ker(÷S‚) ≈∆ [0, t1, 0, . . . , tn, 0] œ ker(÷S‚),

[t1, 0, t2, 0, . . . , tn] œ I ≈∆ [0, t1, 0, . . . , tn, 0] œ I.
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Thus, if [t1, 0, t2, 0, . . . , tn] œ I, then for all t ”= tÕ
œ T ,

[t, tÕ, 0][t1, 0, t2, 0, . . . , tn] = [[tt1, tÕt1, tt2, tÕt2, . . . , ttn], tÕtn, 0] œ I fl I(T ) = {0}.

Hence,

÷S‚([t, tÕ, 0][t1, 0, t2, 0, . . . , tn]) = ÷S‚([t, tÕ, 0])÷S‚([t1, 0, t2, 0, . . . , tn]) = ÷S‚(0) = 0.

Since S is a domain, ÷S‚(t) = ÷S‚(tÕ) or ÷S‚([t1, 0, t2, 0, . . . , tn]) = 0. Therefore, since ÷S‚ is

injective on T , and t ”= tÕ, we get that [t1, 0, t2, 0, . . . , tn] œ ker(÷S‚). Thus I ™ ker(÷S‚),

and (S, ÷S) is a minimal extension.

Example 5.2.26. Let us consider the Tr = r(r ≠ 1)Z + r, for r = ≠1 or r Ø 2 of

Example 5.2.9. By Example 5.2.21 Tr Òæ T(rZ) is a small extension and since rZ is a

domain, rZ is a minimal extension of Tr by Lemma 5.2.25.

Example 5.2.27 (Small but not minimal extension). Let p be a prime number and

consider the truss

T =
A

1 Zp

0 1

B

with the usual matrix multiplication and the heap structure arising from the matrix

addition. For e =
A

1 0
0 1

B

, the extension R0(T ) can be identified with

R0(T ) =
IA

m a
0 m

B

| m œ Z, a œ Zp

J

,

a Dorroh extension of the ring Zp with zero multiplication. With this identification,

ÿT : T ≠æ R0(T ) is the obvious (set-theoretic) inclusion map, and the corresponding

ideal I(T ) of R0(T ) comes out as

I(T ) =
A

0 Zp

0 0

B

.

For all n œ N, let us define injective truss homomorphisms

÷n : T ≠æ T(Zpn+1),
A

1 a
0 1

B

‘≠æ (1 ≠ apn) (mod pn+1).
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The universally constructed ring homomorphisms are

‚÷n : R0(T ) ≠æ Zpn+1 ,

A
m a
0 m

B

‘≠æ (m ≠ apn) (mod pn+1).

Each of the maps „÷n is onto so the extensions ÷n : T ≠æ Zpn+1 are locally small.

Furthermore, since for all n, the ideals

‚÷n(I(T )) = {apn (mod pn+1) | a œ Zp},

are essential in Zpn+1 , all these extensions are small. By the uniqueness of the minimal

extensions at most one of them could be minimal. Thus we obtain an infinite family of

small extensions that are not minimal.

Remark 5.2.28. In [36, K.I. Beidar] introduced and investigated maximal essential

extensions of rings, see Definition B.2.12. In contrast, in this chapter we consider small

and minimal extensions of trusses. These can be interpreted as essential extensions

of rings if we consider ring-type trusses, see Lemma 2.1.6. We consider a truss T(R)

associated with a ring R. Then all extensions of a truss T(R) are extensions of a ring R.

Sadly, in this case minimality trivialises, as every ring is a minimal essential extension

of itself. The issue is how a truss is assigned to a ring. We introduce another approach.

Let us consider a ring S and its extension E. Let us assume that S is a subring of E and

that there exists an idempotent a œ E \ S, i.e. a2 = a, such that aS = S = Sa. For any

ring S we can consider such an extension, for example, by taking a Dorroh extension,

the unitalisation of a ring. Then with every S we can associate a truss a + S, a coset of

the underlying normal subgroup of S in E. This is a truss and R(a + S; a) ≥= S, see the

definition of the ring operation in Lemma 5.2.14. Now, by Proposition 5.1.10 we can

construct a ring R0(a + S). Since E is an extension of a + S into a ring, by Lemma

5.2.15, I(a + S) ≥= S. Thus for any extension of a truss a + S into a ring E Õ, we get

an extension of a ring I(a + S) ≥= S. If E Õ is a small extension, then E Õ is an essential

extension of I(a + S), see Definition B.2.11. Moreover, if we assume E Õ is minimal we

get some kind of a unique extension in some particular class of extensions of ring S, a

subclass of essential extensions. It seems that additional properties of the idempotent a

have a special meaning here. Observe that in the case of a truss associated with Dorroh
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extension, in this way, we get some kind of a “minimal essential unital extension”. This

approach works for any ring S. We conclude this remark with a small example, in this

setting, the minimal essential extension of a ring 2Z by Dorroh extension is Z.
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Chapter 6

On the categories of modules

This chapter is focused on the categories of heaps and T -modules. Let T be a truss

and R be a ring. We study functors among categories of Abelian heaps Ah, R-modules

R-mod, T -modules T -mod and unital T -modules T1-mod. Modules over rings will

only appear in Section 6.2. There are three aims of this chapter. First, to establish

connection between categories T -mod and (Tu)1-mod, where Tu is the unital extension

of a truss T from Proposition 5.1.11. Second aim is to describe a free object in T -mod.

Third aim is to construct a tensor product for appropriate bimodules, and heaps. By

accomplishing all the aims we will achieve a necessary background to introduce a Morita

theory for trusses.

In Section 6.1, we show that a category T -mod of modules over a truss T is

isomorphic with a category (Tu)1-mod of modules over a unital extension Tu.

In Section 6.2, we introduce the definition of a free unital T -module. Further,

we study connections between free modules over a ring R and free module over an

associated truss T(R).

In Section 6.3, we construct and study tensor product of bimodules over trusses.

Sections 6.1 and 6.3 are Sections 2.5 and 4 of [33], respectively. Section 6.2 is Section

4 of [19].

155
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6.1 Unital trusses and trusses

Recall from Proposition 5.1.11 that by Tu we denote the truss T � {1}.

Proposition 6.1.1. Let T be a truss. The heap homomorphism ÿT : T ≠æ Tu, t ‘≠æ t,

is a morphism of trusses. Furthermore, if S is a unital truss, then for every morphism

of trusses f : T ≠æ S there exists a unique morphism of unital trusses f̃ : Tu ≠æ S,

such that f̃ ¶ ÿT = f .

Proof. Let us assume that S is a unital truss and that f : T ≠æ S is a truss homo-

morphism. If we consider the heap map ÷ : {1} ≠æ S, 1 ‘≠æ 1S, then there exists

a unique morphism of Abelian heaps f̃ : T � {1} ≠æ S such that f̃ ¶ ÿT = f and

f̃ ¶ ÿ{1} = ÷. We claim that f̃ is a morphism of unital trusses. Unitality follows by

definition, since f̃(1) = ÷(1) = 1S. To check multiplicativity pick two symmetric words

[a1, a2, a3, . . . , a2k, a2k+1] and [b1, b2, b3, . . . , b2h, b2h+1] in T � {1}, where the symbols

ai, bj belongs to T Û {1} for all i, j. Since we have that

f̃
3

[a1, a2, a3, . . . , a2k, a2k+1] · [b1, b2, b3, . . . , b2h, b2h+1]
4

=

= f̃
3

[(a1 · b1), (a1 · b2), . . . , (a1 · b2h+1), (a2 · b1), . . . , (ai · bj), . . . , (a2k+1 · b2h+1)]
4

=
5
f̃(a1 · b1), f̃(a1 · b2), . . . , f̃(a1 · b2h+1), f̃(a2 · b1), . . . , f̃(ai · bj), . . . , f̃(a2k+1 · b2h+1)

6
,

it is enough to check that f̃ is multiplicative on a product a · b where a, b œ T Û {1}.

Now,

f̃(a · b) =

Y
_____]

_____[

f̃(1 · 1) = f̃(1) = 1S = 1S · 1S = f̃(1) · f̃(1) a, b œ {1}

f̃(t · 1) = f̃(t) = f̃(t) · 1S = f̃(t) · f̃(1) a œ T, b œ {1}

f̃(1 · t) = f̃(t) = 1S · f̃(t) = f̃(1) · f̃(t) a œ {1}, b œ T

f̃(t · tÕ) = f̃(ttÕ) = f(ttÕ) = f(t) · f(tÕ) = f̃(t) · f̃(tÕ) a, b œ T

,

that is, f̃(a · b) = f̃(a) · f̃(b) for all a, b œ T Û {1} and the proof is complete.

Theorem 6.1.2. Let T be a truss. Any T -module M is naturally a unital Tu-module.

This induces a functor E1 : T -mod ≠æ (Tu)1-mod which is the inverse of the restric-

tion of scalars functor ST : (Tu)1-mod ≠æ T -mod along the truss homomorphism

ÿT : T æ Tu. In particular, we have an isomorphism of categories (Tu)1-mod ≥= T -mod.
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Proof. Observe that to equip an Abelian heap M with the structure of a T -module is

the same as to define a truss homomorphism flM : T ≠æ E(M), see Example 2.1.14

and Remark 4.1.3. Since E(M) is unital with unit 1M , fl extends uniquely to a unital

truss homomorphism fl̃M : Tu ≠æ E(M) by Proposition 6.1.1, making of M a unital

Tu-module. Let f : M æ N be a morphism of T -modules. To check that it is Tu-linear

as well, observe that f is Tu-linear if and only if the following diagram commutes

M
ÍM
//

f

✏✏

Ah (Tu, M)
Ah(Tu,f)

✏✏

N
ÍN

//Ah (Tu, N) ,

where ÍM(m) : z ‘≠æ fl̃M(z)(m) and Ah (Tu, f) : g ‘≠æ f ¶ g. Therefore, we are led to

check that, for all m œ M ,

f ¶ ÍM(m) = ÍN(f(m)) (6.1.1)

as heap homomorphisms from Tu to N . However, since
1
f ¶ ÍM(m) ¶ ÿ{1}

2
(1) = f

1
ÍM(m)(ÿ{1}(1))

2
= f

1
fl̃M(ÿ{1}(1))(m)

2
= f(m)

= fl̃N(ÿ{1}(1))(f(m)) =
1
ÍN(f(m)) ¶ ÿ{1}

2
(1),

(f ¶ ÍM(m) ¶ ÿT ) (ÿT (t)) = f (ÍM(m)(ÿT (t))) = f (fl̃M(ÿT (t))(m)) = f (flM(t)(m))

= flN(t) (f(m)) = fl̃N(ÿT (t))(f(m)) = (ÍN(f(m)) ¶ ÿT ) (t),

for all t œ T , it follows by the universal property of the direct sum that (6.1.1) holds.

Summing up, there is a fully faithful functor

E1 : T -mod ≠æ (Tu)1-mod,

Y
]

[
M ‘≠æ M

f ‘≠æ f
.

Now, if (M, flM ) is a T -module and we consider its unital extension (E1(M), fl̃M), then

the restriction of scalars functor ST endows E1(M) with the T -module structure given

by the composition

T
ÿT

≠æ Tu

fl̃M

≠≠æ E(M)

which coincides with flM by definition of fl̃M . The other way around, if (N, fl̃N) is a

unital Tu-module and we construct the unital extension E1(ST (N)) of the T -module

(ST (N), flN ) obtained by restriction of scalars along ÿT , then this is given by the unique

unital extension of flN = fl̃N ¶ÿT and the latter has to coincide with fl̃N by uniqueness.
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As a matter of notation, in the future, we will often omit to specify the functors ST

and E1, unless their presence would increase the clarity of the exposition.

6.2 Free modules

Throughout this section T is a unital truss. By the preceding section we know that

the categories T -mod and (Tu)1-mod are isomorphic. Thus, we can narrow our

consideration to unital modules over unital trusses, keeping in mind the construction of

the functor ST : (Tu)1-mod æ T -mod.

Let X be a set. For every x œ X, let us define the unital left T -module

Tx := {tx | t œ T}, [tx, tÕx, tÕÕx] := [t, tÕ, tÕÕ]x, t · (tÕx) = (ttÕ)x,

i.e. Tx is a T -module generated by x that is obviously isomorphic to T (as a left module).

By convention 1x is identified with x, so that we may view x as an element of Tx. Now

we can consider the direct sum module

T
X := �

xœX

Tx.

From Proposition 1.4.1 and the construction of the coproduct of modules we observe

that every element of T
X can be written as

[t1x1, . . . , tnxn, ki1xi1 , . . . , ki
nÕ xi

nÕ ]

where {i1, . . . , inÕ} ™ {1, . . . , n}, tj œ T, kj œ Z, xj œ X, kjxj = [xj, e, xj, e, . . . , xj¸ ˚˙ ˝
xj appears kj≠times

] and

n +
i
nÕq

j=i1
kj is an odd number, for any fixed e œ X. Moreover one can observe that there

are isomorphisms of heaps

T
X ≥= H

Q

aG (Te; e) ü

Q

a
n

xœX\{e}
(G (Tx; x) ü G (H({x}); x))

R

b

R

b

≥= H
Q

aG (Te; e) ü

Q

a
n

xœX\{e}
(G (Tx; x) ü Z)

R

b

R

b ,
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analogous to those found in Proposition 1.4.4 and Corollary 1.4.6. Although the

T -module structure of T
X can be transferred to the right hand side through this

isomorphism, the form of the transferred action interacts nontrivially and often in a

not necessarily illuminating manner with the direct sum of groups (compare (4.3.1) in

the case of two modules).

Following the categorical idea of freeness (see e.g. the universal property in Lemma 1.3.1)

let us fix set X and consider inclusion ÿX : X æ T
X , given by ÿX(x) = 1x, for all

x œ X. Then, for any unital T -module N and any function Ï : X ≠æ N we obtain the

following commutative diagram

X
ÿX

//

Ï
  

T
X

÷! ‚Ï
}}

N,

,

where the unique T -module morphism ‚Ï is defined by

‚Ï : T
X

≠æ N,

[t1x1, . . . , tnxn, ki1xi1 , . . . , ki
nÕ xi

nÕ ]

‘≠æ [t1Ï(x1), . . . , tnÏ(xn), ki1Ï(xi1), . . . , ki
nÕ Ï(xi

nÕ )],

where kjÏ(xj) = [Ï(xj), Ï(e), Ï(xj), Ï(e), . . . , Ï(xj)]. Since this is the universal property

characterising a free object in the category of unital modules over T , T
X is the free

unital T -module on X, as expected.

Following the usual ring-theoretic conventions we can formulate

Definition 6.2.1. A unital T -module is said to be generated by a set X, if there exists

a T -module epimorphism T
X

≠æ M . It is said to be finitely generated if there exists

finite X that generates M . M is a (finitely generated) free T -module if it is isomorphic

to T
X , for some (finite) X.

As in the case of modules over a ring, one can try to characterise free modules by

the existence of a basis.
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Definition 6.2.2. Let M be a left T -module and let X be a non-empty subset of M .

Let, for all x œ X, ‡x denote the left T -module homomorphism

‡x : T ≠æ M, t ‘≠æ tx.

(1) We say that the set X is free if, for all finite subsets S of X, the map �
xœS

‡x is a

monomorphism.

(2) A free set B is said to be a basis for M if the map �
xœB

‡x is an epimorphism.

Lemma 6.2.3. If X is a free subset of M , then, for all finite non-empty proper subsets

Y of X and all x œ X \ Y ,

‡x(T ) fl

3
�

yœY

‡y

4
(�

Y

T ) = ÿ.

Proof. Set V = �
yœY

T and ‡Y = �
yœY

‡y, and suppose that there exist m œ M , t œ T and

v œ V such that ‡x(t) = ‡Y (v) = m. Take any vÕ
œ V . In view of Proposition 1.4.1 the

words :tvvÕ: and :vtvÕ: are di�erent, but

(‡x � ‡Y )( :tvvÕ:) = [‡x(t), ‡Y (v), ‡Y (vÕ)] = [m, m, ‡Y (vÕ)] = ‡Y (vÕ),

(‡x � ‡Y )( :vtvÕ:) = [‡Y (v), ‡x(t), ‡Y (vÕ)] = [m, m, ‡Y (vÕ)] = ‡Y (vÕ),

which contradicts the assumption that ‡x � ‡Y is a monomorphism.

The statement of Lemma 6.2.3 is in perfect categorical accord with what might

be expected of a free or a linearly independent set. Just as in the case of modules or

vector spaces, the intersection of the module spanned by any finite subset of a free set

with a cyclic module generated by an element from within the free set but without this

subset is the zero module, i.e. the initial object in the category of modules, so is the

corresponding intersection in the case of modules over a truss – the empty set, i.e. the

initial object in the category of such modules.

Lemma 6.2.4. Let M be a left module over a truss T . Then M is a free T -module if

and only if M has a basis.
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Proof. If M has a basis B, then �
xœB

‡x is an epimorphism. Since all elements of T
B

have finite length, i.e. every element belongs to �
S

T for a finite subset S of B, and for

all such subsets �
xœS

‡x is one-to-one, then so is �
xœB

‡x. Thus �
xœB

‡x is an isomorphism,

and hence M is free.

In the converse direction, since M is free there exist a set X and a left T -module

isomorphism � : �
xœX

Tx ≠æ M . For all x œ X, let ex = �(x) œ M , and let

B = {ex | x œ X}. Since � is a homomorphism of T -modules, for all t œ T ,

�(tx) = t�(x) = t · ex = ‡ex
(t).

Since X is isomorphic to B, by the universality of direct sums there is a T -module

isomorphism Ï : �
B

T ≠æ T
X and thus we obtain the following commutative diagrams,

for all ex œ B,

T //

‡ex

&&

�
B

T
Ï

//

�
exœB

‡ex

✏✏

T
X

�

xx

M.

Thus �
exœB

‡ex
is an isomorphism, and hence B generates M . Since �

exœB

‡ex
is a monomor-

phism on �
B

T , it is a monomorphism on each finitely generated submodule of �
B

T , in

particular �
exœS

‡ex
= �

exœB

‡ex
|�

S

T is a monomorphism for all finite subsets S of B. Hence

B is a basis for M .

The forthcoming Lemma 6.2.6 clarifies when a module over the truss associated

to a ring is a module over this ring. Before we state this lemma, however, we make

an observation about a striking di�erence between free modules over a ring and free

modules over the associated truss. We note, in particular, that the functor T does not

preserve freeness.

Example 6.2.5. Let us consider the module T(Zn ü Zn) over T(Zn), for any n > 1.

Suppose that T(Zn ü Zn) is a free module, i.e. that it is isomorphic to a direct sum of

k-copies of T(Zn). By Proposition 1.4.4, if k > 1 then such a direct sum would be an

infinite set, so it cannot be isomorphic to a module built on a finite set. Thus k = 1,
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and simple element counting forces n = n2, which contradicts the assumption that

n > 1. Thus T(Zn ü Zn) over T(Zn) is not free, despite that fact that Zn ü Zn is a free

Zn-module.

Recall that an element e of a T -module M is called an absorber, if t · e = e, for all

t œ T . The set of all absorbers of M is denoted by Abs(M).

Lemma 6.2.6. Let T be a (unital) truss and R a (unital) ring.

(1) The assignment:

Abs : T -mod ≠æ T -mod, M ‘≠æ Abs(M), Ï ‘≠æ Ï,

is a functor.

(2) Let M be a left module over T (R). Then:

(i) Abs(M) = {0 · m | m œ M};

(ii) M = T(N) for some module of N if and only if Abs(M) is a singleton set.

(3) Let N, N Õ be left R-modules. Then N is isomorphic to N Õ if and only if T(N) is

isomorphic to T(N Õ) as T(R)-modules.

(4) Let M be a (unital) T(R)-module. Then G(M/Abs(M); Abs(M)) is a (unital)

R-module. We denote this R-module by MAbs.

(5) The assignment

(≠)Abs : T(R)-mod ≠æ R-mod,

M ‘≠æ MAbs, (Ï : M æ M Õ) ‘≠æ (ÏAbs : m ‘æ Ï(m)),

is a functor such that, for all R-modules N , T (N)Abs
≥= N .

(6) The functor (≠)Abs is the left adjoint to the functor T.

(7) The functor (≠)Abs preserves monomorphisms.

Proof. (1) The distributive law over the heap operation in a T -module M ensures

that Abs(M) is a sub-heap of M . That Abs(M) is closed under the action follows
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immediately form the definition of an absorber. Since morphisms of T -modules preserve

the T -action they also map absorbers into absorbers.

(2) (i) Since r0 = 0 in T(R), all elements listed are absorbers. If e is an absorber,

then, by the absorption property 0 · e = e.

(2) (ii) If M = T(N), then, by distributive laws for modules over rings 0 is an

absorber in M and 0 · m = 0 œ M , for all m œ M , which implies that 0 is the unique

absorber of M . In converse direction, by (i) we know that the unique absorber is

e = 0 · m. Then one easily checks that G(M ; e) with the original action of T(R) on M

is a left R-module.

(3) Since T is a functor, if N ≥= N Õ, then T(N) ≥= T(N Õ). Conversely, since, by

statement (2) both T(N) and T(N Õ) have unique absorbers (they are neutral elements

for addition), and a morphism of modules over a truss maps absorbers into absorbers

(cf. statement (1)), any morphism of T(R)-modules T(N) ≠æ T(N Õ) is automatically a

morphism of Abelian groups and hence R-modules.

(4) Since Abs(M) is a submodule of M by assertion (1), M/Abs(M) is a T(R)-

module with an absorber Abs(M). There are no other absorbers in M/Abs(M), since

M/Abs(M) is a module of T(R), by statement (2)(i) all its absorbers have the form

0 · m̄ = 0 · m = Abs(M). Thus, by statement (2)(ii), G(M/Abs(M); Abs(M)) is a left

R-module. The unitality condition is provided by the unitality of the T(R)-module M .

(5) The function ÏAbs is well-defined by statement (1), as Ï maps absorbers to

absorbers. By the same arguments as in the proof of statement (3) ÏAbs is a homo-

morphism of R-modules. Since Abs(T(N)) = {0}. The elements of T(N)/{0} are all

singleton subsets of N , T(N)/{0} = {{n} | n œ N}, and the stated isomorphism is

simply {n} ‘≠æ n.

(6) Let N be a left R-module and M a left T(R)-module, and consider the maps:

�M,N : HomR (MAbs, N) ≠æ HomT(R) (M, T(N)), Ï ‘≠æ [m ‘æ Ï(m̄)],

�≠1

M,N
: HomT(R) (M, T(N)) ≠æ HomR (MAbs, N), Â ‘≠æ [m̄ ‘æ Â(m)],

that are clearly mutual inverses. While �M,N is obviously well-defined, we need to estab-



164 CHAPTER 6. ON THE CATEGORIES OF MODULES

lish whether the definition of �≠1

M,N
does not depend on the choice of the representative.

Suppose that mÕ and m belong to the same class. In view of the description on Abs(M)

in (2)(i) this means that there exist v, w œ M such that [m, mÕ, 0v] = 0w. Applying Â

to this equality and using the fact that Â is a homomorphism of T(R)-modules we find

that [Â(m), Â(mÕ), 0Â(v)] = 0Â(w). Both 0Â(v) and 0Â(w) are absorbers in T(N), but,

by (2)(ii) there is exactly one absorber in T(N), so 0Â(v) = 0Â(w), and we conclude

that Â(m) = Â(mÕ). Thus the definition of �≠1

M,N
does not depend on the choice of the

representative in the class of m. Checking the naturality of �M,N is straightforward.

(7) Let Ï : M æ M Õ be a monomorphism of T(R)-modules. Assume that ÏAbs(a) =

ÏAbs(b), then Ï(a) ≥Abs Ï(b), and there exist w, z œ Abs(M) such that

Ï(z) = [Ï(a), Ï(b), Ï(w)] = Ï ([a, b, w]) .

Since Ï is one-to-one, [a, b, w] = z œ Abs(M), i.e., a = b. Therefore, ÏAbs is a

monomorphism, as required.

With the help of Lemma 6.2.6 we can prove the main result of this section, which

explains the interplay between the freeness and the functor T.

Theorem 6.2.7. Let R be a unital ring.

(1) For a left R-module N , T(N) is a free T(R)-module if and only if N ≥= R.

(2) If M is a free module over T(R), then MAbs is a free R-module.

Proof. (1) If N ≥= R, then T(N) ≥= T(R) by Lemma 6.2.6 (3) (or simply by the fact that

T is a functor). In the opposite direction, assume that there exists a set X such that

T(N) ≥= �
xœX

T(R)x. By Lemma 6.2.6 (2)(ii), �
xœX

T(R)x must have exactly one absorber.

This is the case when X is a singleton set, which yields the isomorphism N ≥= R by

Lemma 6.2.6 (3). If X has more than one element, then there exist x, y œ X such

that x ”= y and thus 0x ”= 0y œ �
xœX

T(R)x are di�erent absorbers, which contradicts

statement (2)(ii) in Lemma 6.2.6.



6.2. FREE MODULES 165

(2) Assume that M ≥= �
xœX

T(R)x, for some set X. By Lemma 6.2.6 (6), (≠)Abs has

a right adjoint and thus it preserves coproducts, so that

MAbs
≥=

3
�

xœX

T(R)x
4

Abs

≥=
n

xœX

(T(R)x)Abs
≥=

n

xœX

Rx,

where the last isomorphism follows by Lemma 6.2.6 (5). Therefore, MAbs is a free

R-module as stated.

Although Theorem 6.2.7 states that the functor (≠)Abs preserves freeness the proof

neither gives an insight into the process of obtaining the free R-module nor does it explain

fully the idea behind the definition of a basis in Definition 6.2.2. Let us discuss this matter

further in the finitely generated case. Let X = {x1, . . . , xn} be such that M ≥= �
xœX

T(R)x.

First we describe the submodule Abs(M), freely identifying M with the direct sum of

n copies of T . By Lemma 6.2.6(2)(i), Abs(M) = {0 · m | m œ M}. Since T(R)xi =

{rxi | r œ R}, every element of M is of the form m = :(r1xi1)(r2xi2) . . . (r2k+1xi2k+1):

and hence 0 · m = :(0xi1)(0xi2) . . . (0xi2k+1):. Therefore Abs(M) is the submodule

of M , or, more precisely Abs( �
xœX

T(R)x), is a submodule of �
xœX

T(R)x generated by

{0x1, . . . , 0xn} as a heap. Choosing the 0xi as special elements in T(R)xi as in (the

multi-heap versions of) Proposition 1.4.1, Abs( �
xœX

T(R)x) is simply the sub-heap of

tails, i.e.

Abs(M) ≥= Abs( �
xœX

T(R)x) ≥= H({0x1}) � H({0x2}) � . . . � H({0xn}) ≥= H(Zn≠1);

see Corollary 1.4.6. By (the multi-heap extension of Proposition 1.4.4)

M ≥= �
xœX

T(R)x ≥= H
A

nn

i=1

G(T(R)xi; 0xi) ü Zn≠1

B
≥= H

1
Rn

ü Zn≠1
2

.

Since the Zn≠1-part arises from tails made of the absorbers 0xi, the action of T (R) on

this part is trivial, i.e. the T(R) action on M transfers to

r · (r1, r2, . . . , rn, k1, . . . , kn≠1) = (rr1, rr2, . . . , rrn, k1, . . . , kn≠1), r, ri œ R, ki œ Z.

Putting all this together yields an isomorphism of R-modules,

MAbs = G (M/Abs(M); Abs(M)) ≥=
1
Rn

ü Zn≠1
2

/Zn≠1 ≥= Rn,
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where the first isomorphism follows by Corollary 1.2.15, so that MAbs is a free module.

Now, assume that M is a free rank n module over T(R) with a basis B. To prove

that B is a basis for MAbs observe that, for all S µ B, ( �
sœS

‡s)Abs is a monomorphism

of R-modules(see Lemma 6.2.6 (7)), and by the discussion following Lemma 6.2.3,

appropriate intersections of ( �
sœS

‡s)Abs(�
S

T(R))Abs are no longer empty; they are now

the initial object of R-mod, i.e. {0}. Firstly, since B spans M, then it also spans MAbs.

Therefore, it is enough to show that the set B is linearly independent in MAbs. Suppose

to the contrary that B is linearly dependent, so that there exist ri œ R such that

r1b1 + . . . + rnbn = 0,

for bi œ B, and rn ”= 0. This implies that r1b1 + . . . + rn≠1bn≠1 = ≠rnbn. Furthermore

≠rnbn œ (
n≠1

�
i=1

‡bi
)Abs(

n≠1

�
i=1

T(R))Abs fl (‡bn
)Abs((T(R))Abs) = {0}.

Therefore, ≠rnbn = 0 and (‡bn
)Abs(0) = (‡bn

)Abs(≠rn), and since (‡bn
)Abs is a monomor-

phism, rn = 0. Now by recursion for all i = 1, . . . , n, ri = 0, and we arrive at a

contradiction with the assumption that B is a linearly dependent set. Therefore, B

is a basis for MAbs. To sum up, at least in the case of the truss associated to a ring,

Definition 6.2.2 of a free set is justified by the linear independence of its elements in

the associated module over a ring.

6.3 Tensor product

In this section, we will construct and investigate a tensor product of modules over

trusses. Now T is an arbitrary truss, not necessarily unital. Let us start with the

following definition of bilinear maps.

Definition 6.3.1. Let H, M, N be Abelian heaps. A function Ï : M ◊ N ≠æ H is

said to be bilinear if, for all m, mÕ, mÕÕ
œ M and n, nÕ, nÕÕ

œ N ,

Ï([m, mÕ, mÕÕ], n) = [Ï(m, n), Ï(mÕ, n), Ï(mÕÕ, n)], (6.3.1a)

Ï(m, [n, nÕ, nÕÕ]) = [Ï(m, n), Ï(m, nÕ), Ï(m, nÕÕ)]. (6.3.1b)
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In addition, if T is a truss, M is a right T -module and N is a left T -module, then Ï is

said to be T -balanced if, for all m œ M , n œ N , t œ T ,

Ï(m · t, n) = Ï(m, t · n). (6.3.2a)

Remark 6.3.2. We note in passing that, due to the Mal’cev conditions, any heap

homomorphism Ï : M◊N ≠æ H satisfies conditions (6.3.1a)–(6.3.1b) in Definition 6.3.1

(but, of course, a function satisfying (6.3.1a)–(6.3.1b) needs not be a homomorphism of

heaps).

The definition of the tensor product of modules over a truss is given by the following

universal property, reminiscent of that for the tensor product of modules over a ring.

Definition 6.3.3. Let M be a right T -module and N be a left T -module. Then a

tensor product (of M and N over T ) is a pair (M ¢T N, Ï) consisting of an Abelian

heap M ¢T N and a T -balanced bilinear map Ï : M ◊ N ≠æ M ¢T N such that for

any heap H and any T -balanced bilinear map f : M ◊ N ≠æ H there exists a unique

heap morphism f̂ rendering commutative the following diagram

M ◊ N
Ï

//

f
%%

M ¢T N

÷! f̂
yy

H.

As for tensor products of modules over rings, if a tensor product of M and N over

T exists, then it is unique up to a unique isomorphism. Thus, we will speak about the

tensor product M ¢T N , often omitting the structure map Ï as well.

Since any Abelian heap is a unital module over the terminal truss {1} in a unique

way, one can consider tensor product of heaps. In this case the balancing condition

(6.3.2a) is tautologically satisfied. The tensor product of heaps M and N viewed as

unital {1}-modules is denoted by M ¢ N . Observe that, di�erently from what happens

for modules over a ring, the fact that 1M◊N is bilinear entails that there exists a unique

morphism of heaps ‡ : M ¢ N æ M ◊ N such that ‡ ¶ Ï = 1M◊N (see Remark 6.3.2).

Next we give an explicit construction of tensor products, thus establishing their

existence.
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Theorem 6.3.4. Tensor product of T -modules exists.

Proof. Let M be a right T -module, N be a left T -module and let us consider the free

Abelian heap A(M ◊ N). Choose an arbitrary element e = (e1, e2) of the free heap

A(M ◊ N) and let ST (e) be the sub-heap of A(M ◊ N) generated by elements of the

form:
51

[m, mÕ, mÕÕ]M , n
2
,
Ë
(m, n), (mÕ, n), (mÕÕ, n)

È

A
, e

6

A
, (6.3.3a)

51
m, [n, nÕ, nÕÕ]N

2
,
Ë
(m, n), (m, nÕ), (m, nÕÕ)

È

A
, e

6

A
, (6.3.3b)

Ë
(m · t, n), (m, t · n), e

È

A
, (6.3.3c)

for all m, mÕ, mÕÕ
œ M, n, nÕ, nÕÕ

œ N and t œ T . Note that the transposition rule (1.1.2)

together with the idempotent property of a heap operation imply that every element of

ST (e) has the form [a, b, e], where a, b œ A(M ◊ N). Also note that e œ ST (e). For an

Abelian heap H, consider a T -balanced bilinear map f : M ◊ N ≠æ H. By treating f

as a function and by using the universal property of the free heap, we can construct the

following commutative diagram:

M ◊ N
ÿM◊N

//

f
''

A(M ◊ N)
÷! f̂

✏✏

fiST (e)
// A(M ◊ N)/ST (e)

÷!
ˆ̂
fuu

H,

(6.3.4)

where ÿM◊N is the canonical monomorphism and fiST (e) is the canonical epimorphism.

The left triangle is given by the free heap property. The existence of the map ˆ̂
f

is guaranteed provided that f̂ respects the sub-heap relation ≥ST (e). By using the

definition of f̂ and that f is a T -balanced bilinear map, we find

f̂

A51
m, [n, nÕ, nÕÕ]N

2
,
Ë
(m, n), (m, nÕ), (m, nÕÕ)

È

A
, e

6

A

B

=
C

f
3

m, [n, nÕ, nÕÕ]N
4

,
Ë
f(m, n), f(m, nÕ), f(m, nÕÕ)

È

H
, f(e)

D

H

(6.3.1b)=
5
f

1
m, [n, nÕ, nÕÕ]N

2
, f

1
m, [n, nÕ, nÕÕ]N

2
, f(e)

6

H

= f(e) = f̂(e).

By symmetric arguments,

f̂

A51
[m, mÕ, mÕÕ]M , n

2
,
Ë
(m, n), (mÕ, n), (mÕÕ, n)

È

A
, e

6

A

B

= f̂(e).
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Finally,

f̂
1
[(m · t, n), (m, t · n), e]A

2
=

Ë
f(m · t, n), f(m, t · n), f(e)

È

H

=
Ë
f(m · t, n), f(m · t, n), f(e)

È
= f(e) = f̂(e).

This means that ST (e) µ ker
f̂(e)

(f̂) and therefore, in view of Lemma 1.2.17, f̂ respects

the sub-heap relation ≥ST (e) as required. Consequently, the heap homomorphism ˆ̂
f

exists.

Define:

Ï :=
1
fiST (e) ¶ ÿM◊N

2
: M ◊ N ≠æ A(M ◊ N)/ST (e), (m, n) ‘≠æ (m, n).

Since e œ ST (e), by definition of ≥ST (e) and of [≠, ≠, ≠] on A(M ◊ N)/ST (e),
1
[m, mÕ, mÕÕ]M , n

2
=

Ë
(m, n), (mÕ, n), (mÕÕ, n)

È

A
=

Ë
(m, n), (mÕ, n), (mÕÕ, n)

È
,

1
m, [n, nÕ, nÕÕ]N

2
=

Ë
(m, n), (m, nÕ), (m, nÕÕ)

È

A
=

Ë
(m, n), (m, nÕ), (m, nÕÕ)

È
,

and (m · t, n) = (m, t · n)

hold in A(M ◊ N)/ST (e), that is to say, Ï is a T -balanced bilinear map. It remains to

prove that the map ˆ̂
f constructed in diagram (6.3.4) is a unique homomorphism such

that f = ˆ̂
f ¶ fiST (e) ¶ ÿM◊N . Suppose that there exists another homomorphism of heaps

h : A(M ◊ N)/ST (e) ≠æ H such that f = h ¶ fiST (e) ¶ ÿM◊N . Then

h ¶ fiST (e) ¶ ÿM◊N = ˆ̂
f ¶ fiST (e) ¶ ÿM◊N ,

and, since both h ¶ fiST (e) and ˆ̂
f ¶ fiST (e) are homomorphisms of heaps, the universal

property of the free (Abelian) heap implies that

h ¶ fiST (e) = ˆ̂
f ¶ fiST (e).

Since fiST (e) is an epimorphism, it follows that h = ˆ̂
f and the uniqueness is established.

Therefore, the pair (A(M ◊ N)/ST (e), Ï) is the tensor product of M and N .

We note in passing that, up to isomorphism, the construction of the tensor product

does not depend on the chosen element e. This independence can be seen as a conse-

quence of the universal property of tensor products, or it can be observed directly by

employing the swap automorphism (1.1.4).
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Following the ring-theoretic conventions we define, for all m œ M and n œ N ,

m ¢ n := (m, n) =
1
fiST (e) ¶ ÿM◊N

2
(m, n) œ M ¢T N (6.3.5)

and we refer to each of m ¢ n as to a simple tensor. As a rule, we do not decorate ¢

with a subscript T , but occasionally it might be useful to indicate an element e chosen

in the definition of ST (e), in which case we write m ¢e n. With this terminology and

notation at hand, M ¢T N can be understood as an Abelian heap freely generated by

simple tensors subject to relations:

[m, mÕ, mÕÕ] ¢ n = [m ¢ n, mÕ
¢ n, mÕÕ

¢ n], for all m, mÕ, mÕÕ
œ M , n œ N, (6.3.6a)

m ¢ [n, nÕ, nÕÕ] = [m ¢ n, m ¢ nÕ, m ¢ nÕÕ], for all m œ M , n, nÕ, nÕÕ
œ N, (6.3.6b)

m · t ¢ n = m ¢ t · n, for all m œ M , n œ N , t œ T . (6.3.6c)

Definition 6.3.5. An opposite truss T op of a truss T is a triple (T, [≠, ≠, ≠], •) such

that [≠, ≠, ≠] is the ternary operation of T , and • : T ¢ T æ T is given for all a, b œ T

by

a • b = ba,

where ba is a product in T .

Remark 6.3.6. T op is a truss.

The following technical result will be of significant importance for Morita theory in

chapter 7.

Proposition 6.3.7. Let T be a truss and Tu be its unital extension. Then for every

right T -module M , M ¢T Tu
≥= M ≥= Hom T (Tu, M) as right T -modules, where Tu has

the T -T -bimodule structure induced by the truss homomorphism ÿT : T æ Tu. Moreover,

for M a right T -module and N a left T -module

m · z ¢T n = m ¢T z · n,

for all m œ M , n œ N , z œ Tu.
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Proof. Consider the assignment

– : M ≠æ M ¢T Tu, m ‘≠æ m ¢T 1.

This is a heap homomorphism in view of (6.3.6a) and it is T -linear because for all

t œ T ,

–(m · t) = m · t ¢T 1 (6.3.6c)= m ¢T ÿT (t) · 1 (5.1.7)= m ¢T 1 · ÿT (t) = (m ¢T 1) · t.

The other way around, recall that the underlying Abelian heap of E1(M) is M itself,

which now is considered as a unital Tu-module via the bilinear morphism Í : M ◊Tu ≠æ

M uniquely determined by
Y
]

[
(m, t) ‘≠æ m · t, t œ T ,

(m, 1) ‘≠æ m.

The associativity of the T -action entails that Í is also T -balanced, whence it factors

through the tensor product over T giving

— : M ¢T Tu ≠æ M.

A straightforward check shows that – and — are inverses of each other. Concerning the

second isomorphism, consider the right T -linear morphism

Hom T (Tu, M) ≠æ M, f ‘≠æ f(1),

and the assignment M ≠æ Hom T (Tu, M), sending every m œ M to the right T -linear

morphism uniquely determined by
Y
]

[
t ‘≠æ m · t, t œ T,

1 ‘≠æ m.

Again, a straightforward check shows that they are inverses of each other. To prove

the last assertion, recall that an element z in Tu is of the form [a1, . . . , as], where

ai œ T Û {1}, for all i = 1, . . . , s and s odd. Therefore,

m · z ¢T n = m · [a1, . . . , as] ¢T n = [m · a1 ¢T n, . . . , m · as ¢T n]
(•)= [m ¢T a1 · n, . . . , m ¢T as · n] = m ¢T z · n,

where (•) follows from the fact that either m · ai ¢T n = m · t ¢T n = m ¢T t · n (if

ai œ T ) or m · ai ¢T n = m ¢T n = m ¢T ai · n (if ai = 1 œ {1}).
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In parallel to the ring-theoretic tensor product, tensoring with a fixed bimodule

defines a functor between categories of modules over trusses.

Proposition 6.3.8. Let T and S be trusses.

1. If M is a right T -module and N is a T -S-bimodule, then M ¢T N is a right

S-module with the action

(M ¢T N) ◊ S ≠æ M ¢T N, (m ¢ n, s) ‘≠æ m ¢ n · s.

If S admits a unit and N is unital, then M ¢T N is unital as well. Symmetrically,

if M is an S-T -bimodule (unital over S) and N is a left T -module, then M ¢T N

is a (unital) left S-module.

2. Let N be a T -S-bimodule and let Ï : M ≠æ M Õ be a homomorphism of right

T -modules. Then the map Ï ¢ N defined on simple tensors as

Ï ¢ N : M ¢T N ‘≠æ M Õ
¢T N, m ¢ n ‘≠æ Ï(m) ¢ n,

extends uniquely to a homomorphism of right S-modules. Symmetrically, if M is

an S-T bimodule, then any left T -module homomorphism Ï : N ≠æ N Õ gives rise

to a left S-module homomorphism,

M ¢ Ï : M ¢T N ‘≠æ M ¢T N Õ, m ¢ n ‘≠æ m ¢ Ï(n).

3. The constructions in items (1) and (2) yield functors ≠¢T N : mod-T ≠æ mod-S

and M ¢T ≠ : T -mod ≠æ S-mod. Furthermore, if S admits a unit and M, N

are unital (over S), then they yield functors ≠ ¢T N : mod-T ≠æ mod-S1 and

M ¢T ≠ : T -mod ≠æ S1-mod.

Proof. 1. Since N is a right S-module, for every s œ S we can consider the assignment

fls : M ◊ N ≠æ M ¢T N, (m, n) ‘≠æ m ¢ n · s.
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It satisfies

fls(([m, m,Õ , mÕÕ], n)) = [m, m,Õ , mÕÕ] ¢ n · s
(6.3.6a)= [m ¢ n · s, mÕ

¢ n · s, mÕÕ
¢ n · s]

= [fls(m, n), fls(mÕ, n), fls(mÕÕ, n)] ,

fls(m, [n, nÕ, nÕÕ]) = m ¢ [n, nÕ, nÕÕ] · s = m ¢ [n · s, nÕ
· s, nÕÕ

· s]
(6.3.6b)= [m ¢ n · s, m ¢ nÕ

· s, m ¢ nÕÕ
· s]

= [fls(m, n), fls(m, nÕ), fls(m, nÕÕ)] ,

fls((m · t, n)) = m · t ¢ n · s
(6.3.6c)= m ¢ t · (n · s) = m ¢ (t · n) · s = fls(m, t · n),

for all m, mÕ, mÕÕ
œ M , n, nÕ, nÕÕ

œ N, t œ T . That is to say, fls is a T -balanced bilinear

map and hence it factors uniquely through M ¢T N via the heap morphism

Ís : M ¢T N ≠æ M ¢T N, m ¢ n ‘≠æ m ¢ n · s.

Now, consider the assignment

Í : S ≠æ E(M ¢T N), s ‘≠æ Ís.

For all m œ M , n œ N , s, sÕ, sÕÕ
œ S,

Í[s,sÕ,sÕÕ](m ¢ n) = m ¢ n · [s, sÕ, sÕÕ] (4.1.1b)= m ¢ [n · s, n · sÕ, n · sÕÕ]
(6.3.6b)= [m ¢ n · s, m ¢ n · sÕ, m ¢ n · sÕÕ]

= [Ís(m ¢ n), ÍsÕ(m ¢ n), ÍsÕÕ(m ¢ n)]

= [Ís, ÍsÕ , ÍsÕÕ ] (m ¢ n),

ÍssÕ(m ¢ n) = m ¢ n · ssÕ = m ¢ (n · s) · sÕ = ÍsÕ(m ¢ (n · s))

= (ÍsÕ ¶ Ís)(m ¢ n).

Therefore, Í : Sop
≠æ E(M ¢T N) is a morphism of trusses and hence M ¢T N is a right

S-module. If S admits an identity 1 and N is a unital S-module, then Í(1) = 1M¢N

and hence Í (and M ¢T N) is also unital.

The other case is proven in a symmetric way.

2. Similarly to the proof of statement 1, one considers the assignment

ÏÕ : M ◊ N ≠æ M Õ
¢T N, (m, n) ‘≠æ Ï(m) ¢ n.
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Since Ï is a morphism of right T -modules, ÏÕ is a T -balanced bilinear map, and hence

it factors uniquely through

Ï ¢ N : M ¢T N ≠æ M Õ
¢T N, m ¢ n ‘≠æ Ï(m) ¢ n.

Since Ï ¢ N acts trivially on the elements in N , and the S-actions on M ¢T N and

M Õ
¢T N are defined using the S-action on N only, the resulting map is a homomorphism

of right S-modules. The other case is proven in a symmetric way.

3. This follows immediately from assertions 1 and 2.

Proposition 6.3.9. Let T , S be trusses and let M be a T -S-bimodule. Then the tensor

functor ≠ ¢T M : mod-T ≠æ mod-S is the left adjoint to the functor HomT (M, ≠).

Proof. The proof of this proposition follows the same arguments as the proof of the

corresponding statement for modules over rings. The only di�erence is that the

distributivity of the tensor product over the heap ternary operation (rather than over

a binary addition) should be employed whenever necessary (for example in showing

that the unit and counit of the adjunction are morphisms of heaps). The unit and the

counit of the adjunction are explicitly given by

÷X : XT ≠æ HomS(MS, X ¢T MS), x ‘≠æ [m ‘≠æ x ¢ m],

ÁY : HomS(MS, YS) ¢T MS ‘≠æ YS,
Ë
fi ¢ mi

È
2n+1

i=1
‘≠æ

Ë
fi(mi)

È
2n+1

i=1
,

for all right T -modules X and right S-modules Y . Now, one can easily show that the

functors, unit and counit fulfill assumptions of Theorem A.0.18. Therefore we have that

≠ ¢T M ‰ HomT (M, ≠).

Corollary 6.3.10. Let R, S, T, U be trusses and let A be an R-S-bimodule, B be an

S-T -bimodule and C be a T -U-bimodule. Then the map,

–A,B,C : (A ¢R B) ¢T C ≠æ A ¢R (B ¢T C),

(a ¢ b) ¢ c ‘≠æ a ¢ (b ¢ c).

is an isomorphism of R-U-bimodules.
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Proof. The assertion follows from Proposition 6.3.9 by standard arguments.

In view of the associativity of tensor products stemming from Corollary 6.3.10 we

no longer need to write brackets in-between multiple tensor products.

The distributive laws for a truss T mean that the multiplication map µ : T ◊T ≠æ T ,

(s, t) ‘≠æ st is bilinear. Hence, there is a unique heap homomorphism µ̂ : T ¢ T ≠æ T .

The associative law for µ is then reflected by the commutativity of the following diagram:

T ¢ T ¢ T
µ̂¢T

//

T ¢µ̂

✏✏

T ¢ T

µ̂

✏✏

T ¢ T
µ̂

// T.

(6.3.7)

The existence of a map µ̂ satisfying (6.3.7) can be taken as the definition of the truss,

provided that one carefully explains the meaning of ¢ (for example, by resorting

to relations (6.3.6a) and (6.3.6b)) without referring to trusses, in order to avoid the

ignotum per ignotius trap.

Similarly, if T is a truss and M a left T -module with action ⁄M , then conditions

(4.1.1b) and (4.1.1c) mean that ⁄M : T ◊ M ≠æ M is a bilinear map, so it induces a

unique map ⁄̂M : T ¢ M ≠æ M . Thus, exactly as in the case of modules over rings, a

left module over a truss T can be equivalently defined as an Abelian heap M together

with a heap homomorphism ⁄̂M : T ¢ M ≠æ M such that

T ¢ T ¢ M
µ̂¢T

//

T ¢⁄̂M

✏✏

T ¢ M

⁄̂M
✏✏

T ¢ M
⁄̂M

//M

commutes, where µ̂ is the multiplication in T . In a similar way, a right T -module

can be equivalently described as a heap M together with an associative right action

Í̂M : M ¢ T ≠æ M . Taking these equivalent definitions of modules into account, one

can interpret the tensor product as a coequalizer.

Proposition 6.3.11. Let T be a truss. For a right T -module M and left T -module N ,

the tensor product M ¢T N is the coequalizer of the following diagram of Abelian heaps

M ¢ T ¢ N
Í̂M ¢N

//

M¢⁄̂N

//
M ¢ N, (6.3.8)
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where Í̂M and ⁄̂N are the corresponding actions.

Proof. Consider the structural morphisms „ : M ◊ N ≠æ M ¢ N and Ï : M ◊ N ≠æ

M ¢T N , part of the tensor product data. By definition, Ï is a bilinear map and so it

factors uniquely through the morphism of Abelian heaps

Ï̃ : M ¢ N ≠æ M ¢T N,

such that Ï̃ ¶ „ = Ï. In addition, Ï̃ satisfies

Ï̃ ((Í̂M ¢ N) (m ¢ t ¢ n)) = Ï̃ (m · t ¢ n) = Ï̃ („ (m · t, n)) = Ï(m · t, n)

= Ï(m, t · n) = Ï̃
11

M ¢ ⁄̂N

2
(m ¢ t ¢ n)

2
,

for all m œ M , n œ N , t œ T , because Ï is T -balanced. Since every morphism involved

is a morphism of Abelian heaps, we conclude that Ï̃ coequalizes the pair (6.3.8). Now,

let (Q, q : M ¢ N æ Q) be a pair coequalizing (6.3.8) as well. The composition q ¶ „ is

bilinear because

(q ¶ „) ([m, mÕ, mÕÕ] , n) = q ([m, mÕ, mÕÕ] ¢ n) (6.3.6a)= q ([m ¢ n, mÕ
¢ n, mÕÕ

¢ n])

= [q (m ¢ n) , q (mÕ
¢ n) , q (mÕÕ

¢ n)]

= [(q ¶ „) (m, n) , (q ¶ „) (mÕ, n) , (q ¶ „) (mÕÕ, n)] ,

for all m, mÕ, mÕÕ
œ M , n œ N , and analogously on the other side. Furthermore, it is

also T -balanced because q coequalizes (6.3.8), and hence

(q ¶ „)(m · t, n) = q(m · t ¢ n) = q ((Í̂M ¢ N) (m ¢ t ¢ n))

= q
11

M ¢ ⁄̂N

2
(m ¢ t ¢ n)

2
= (q ¶ „)(m, t · n),

for all m œ M , n œ N , t œ T . Thus, there exists a unique morphism of Abelian heaps

q̃ : M ¢T N æ Q such that q̃ ¶ Ï = q ¶ „. In particular, q̃ ¶ Ï̃ ¶ „ = q ¶ „ (by definition

of Ï̃) and since both q and q̃ ¶ Ï̃ are heap homomorphisms, the uniqueness part of the

universal property of the tensor product entails that q̃ ¶ Ï̃ = q. Summing up, the pair

(M ¢T N, Ï̃) is the coequalizer of (6.3.8) in Ah.

Remark 6.3.12. We know from [17, Theorem 9.4.14] (see Theorem C.0.16) that the

category of modules over a truss is complete and cocomplete, see Definition A.0.33.
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Let T be a truss and Tu be its unital extension as in Section 5.1.2. By [24, Chapter

VII, Section 4], the functor Tu ¢ ≠ : Ah ≠æ (Tu)1-mod is left adjoint to the forgetful

functor UÕ : (Tu)1-mod ≠æ Ah (and hence it is called the free unital Tu-module functor).

Since the functor E1 : T -mod ≠æ (Tu)1-mod of Theorem 6.1.2 is the inverse of the

restriction of scalars ST : (Tu)1-mod ≠æ T -mod and since clearly UÕ
¶ E1 coincides

with the forgetful functor U : T -mod ≠æ Ah, the composition ST ¶ (Tu ¢ ≠) is left

adjoint to U. Once observed that ST ¶ (Tu ¢ ≠) is naturally isomorphic to tensoring by

the left T -module ST (Tu), we conclude that the functor ST (Tu) ¢ ≠ : Ah ≠æ T -mod is

left adjoint to the forgetful functor U and hence it is called the free T -module functor.

Proposition 6.3.13. Let X be a non-empty set and T be a unital truss. Denote

by A(X) the free Abelian heap over X and by T
X the free unital T -module over X.

Then T
X ≥= T ¢ A(X) as T -modules. In particular, the following diagram of functors

commutes

T1-mod
U

Õ

&&

Umod

✏✏

Ah .

UAh
xx

T ¢≠

ff

Set

T

OO

A
88

Proof. Fix e œ X. In view of Corollary 1.4.6 we know that

A(X) ≥= H
Q

a
n

xœX\{e}
Z

R

b ≥= �
xœX

A({x}),

and the isomorphism A(X) ≥= �
xœX

A({x}) is independent from the choice of e œ X.

Now, since T ¢ ≠ is cocontinuous (because it is the left adjoint of the forgetful functor),

we have the following chain of isomorphisms of left T -modules

T ¢ A(X) ≥= T ¢

3
�

xœX

A({x})
4

≥= �
xœX

(T ¢ A({x})) .

Consider A({x}). As a set, A({x}) = {x} with the ternary operation [x, x, x] = x. This

makes it clear that {1} ≠æ A({x}), 1 ‘≠æ x, is an isomorphism of (Abelian) heaps.

Therefore, T ¢ A(X) ≥= �
xœX

Tx ≥= T
X .
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Let us make explicit the foregoing isomorphism in an extremely easy example.

Example 6.3.14. Let X = {a, b} be a set with two elements. The free Abelian heap

A(X) on X can be realized as the set

{a, b, aba, bab, ababa, babab, abababa, bababab, . . .}

with bracket given by concatenation and (symmetric) pruning. Then, for instance,

t ¢ ababa Ωæ (ta)(tb)(ta)(tb)(ta) = ([t, 1, t, 1, t]a)([t, 1, t]b)(1a)(1b)(1a).

Corollary 6.3.15 (of Proposition 6.3.13). Let T be a truss and Tu its unital extension.

Denote by Umod : T -mod ≠æ Set the forgetful functor. In the following diagram of

adjunctions, the subdiagram involving only the right adjoints is commutative

(Tu)1-mod

ST
zz U

Õ

$$

T -mod

E1
::

Umod

$$

U
ÕÕ

++

Ah .

Tu¢≠

dd

Tu¢≠

kk

UAh
zz

Set

A
::

Tu¢A(≠)

dd

In particular, the free T -module over a set X is Tu ¢ A(X).

Concretely, when T is a not necessarily unital truss we can describe the free T -module

over a set X as the direct sum of Abelian heaps

T
X := �

xœX

Tux,

with the T -action given component-wise, that is,

t · [z1x1, . . . , z2k+1x2k+1] = [(ÿT (t)z1) x1, . . . , (ÿT (t)z2k+1) x2k+1] ,

for all x1, . . . , x2k+1 œ X, z1, . . . , z2k+1 œ Tu and t œ T . The canonical map ÿX : X ≠æ

T
X (that is, the unit of the adjunction Tu ¢ A(≠) ‰ Umod) sends every x œ X to
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1x œ Tux. The other way around, the counit ‘ of the adjunction Tu ¢ A(≠) ‰ Umod

realizes every T -module M as a quotient of a free one:

T
Umod(M) ≥= Tu ¢ A (Umod(M)) ‘M

≠æ M

(since F is faithful, every component of ‘ is full in view of [24, Theorem IV.3.1])(see

A.0.35)
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Chapter 7

Morita theory and projective
modules

In the final chapter, we introduce the Morita theory for trusses. In rings we say that

two rings are Morita equivalent if their categories of left modules are equivalent in

the categorical sense. We present an analogue of that theory for trusses. It is worth

mentioning that the lack of an absorber in modules complicates the theory significantly.

The important tools to study Morita theory for rings are provided by projective modules.

Therefore, further, we study projective modules over trusses.

In Section 7.1, we introduce the Morita theory for trusses. The main result of this

section is the Eilenberg-Watts Theorem for trusses. The Eilenberg-Watts Theorem

tells us that an equivalence between categories of modules over trusses is given by a

bimodule tensoring. Further, we discover that this bimodule must satisfy property

which we name the dual basis property. Modules that satisfy dual basis property are

called tiny.

In Section 7.2, we study projective modules over trusses. Projective modules are

of great importance for the Morita theory since every tiny module is projective. To

study projective modules we introduce exact sequences. Since category of modules over

a truss is not Abelian, it is not obvious how to define an exact sequence in general.

Further, we study when an exact sequence splits. We use splittings of sequences to

give conditions for a module to be projective or tiny in terms of decomposition into a

181
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product and coproduct od modules.

Both sections are part of [33].

7.1 Morita theory and modules over trusses

Given two trusses S, T and a T -S-bimodule M we already know that the functor

M ¢S ≠ : S-mod ≠æ T -mod is left adjoint to the functor HomT (M, ≠) : T -mod ≠æ

S-mod. Our aim in the present section is to show that, if T and S are (unital)

trusses, then any heap functor L : S-mod ≠æ T -mod which admits a right adjoint

is of the form P ¢S ≠ for a suitable (unital) T -S-bimodule P . Recall that a functor

F : S-mod ≠æ T -mod is a heap functor provided that, for all M, N œ S-mod, the

functions FM,N defined by equation (4.1.3) are morphisms of heaps. Recall also that

the unital extension Tu of a truss T is a T -T -bimodule via the truss homomorphism

ÿT : T ≠æ Tu.

Lemma 7.1.1. Let S, T be trusses and let F : S-mod ≠æ T -mod be a heap functor

between their categories of modules. Then P := F(SS(Su)) is a T -S-bimodule. Further-

more, if S is unital and F : S1-mod ≠æ T -mod is a heap functor, then P Õ := F(S) is

a T -S-bimodule which is unital as right S-module.

Proof. To simplify notation we write Su instead of SS(Su). For every s œ S, consider

the left S-module morphism

fls : Su ≠æ Su, z ‘≠æ z · ÿS(s).

Clearly, flssÕ = flsÕ ¶ fls and, by the right distributive law of the action of S on Su,

fl[s,sÕ,sÕÕ] = [fls, flsÕ , flsÕÕ ] in ES(Su) := HomS(Su, Su) for all s, sÕ, sÕÕ
œ S. Therefore the

map

fl : Sop
≠æ ES(Su), s ‘≠æ fls,

is a homomorphism of trusses, where Sop is the opposite truss from Definition 6.3.5.

Since F is a heap functor, the composite

Sop
fl

// ES(Su)
FSu,Su

// ET (F(Su)) = ET (P ),
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where FSu,Su
is defined by (4.1.3), is a morphism of trusses. As a consequence, P inherits

the structure of a T -S-bimodule. If S is unital, we may perform the same construction

using S instead of Su and P Õ = F(S) becomes unital as a right S-module.

Proposition 7.1.2. Let S, T be trusses. A heap functor L : S-mod ≠æ T -mod

admits a right adjoint if and only if it is naturally equivalent to P ¢S ≠ for a suitable

T -S-bimodule P . Namely, P := L(SS(Su)). If, in addition, S is unital then a heap

functor L : S1-mod ≠æ T -mod admits a right adjoint if and only if it is naturally

equivalent to P Õ
¢S ≠ for a suitable T -S-bimodule P Õ, unital as a right S-module. Namely,

P Õ := L(S).

Proof. We already know from Lemma 7.1.1 that P := L(SS(Su)) is a T -S-bimodule.

Let us denote by R : T -mod ≠æ S-mod the right adjoint to L and let us consider the

adjunction isomorphism

�Su,N : HomT (P, N) = HomT (L(SS(Su)), N) ≥= HomS(SS(Su), R(N))

for all N in T -mod. Then, for all s œ S and f œ HomT (P, N),

�Su,N(s · f) = �Su,N(f ¶ L(fls)) = (�Su,N ¶ HomT (L(fls), N)) (f)

= (HomS(fls, R(N)) ¶ �Su,N) (f)

= �Su,N(f) ¶ fls = s · �Su,N(f),

that is �Su,N is a left S-linear isomorphism natural in N œ T -mod. Since SS is the

inverse of E1, we have further

HomS(SS(Su), R(N)) ≥= SS (HomSu
(Su, E1(R(N))))

as left S-modules. Now, in view of the fact that both Su and E1(R(N)) are unital, the

assignment

HomSu
(Su, E1(R(N))) ≠æ E1(R(N)), f ‘≠æ f (1Su

) ,

is an isomorphism of heaps, natural in N , which is also left Su-linear. Therefore,

SS (HomSu
(Su, E1(R(N)))) ≥= SS(E1(R(N))) ≥= R(N)



184 CHAPTER 7. MORITA THEORY AND PROJECTIVE MODULES

and we conclude that R ≥= HomT (P, ≠) as functors from T -mod to S-mod. Being the

left adjoint to HomT (P, ≠), L ≥= P ¢S ≠ as desired, by the uniqueness of adjoints up to

isomorphism. Finally, in case S is unital one may mimic the same procedure starting

with P Õ = L(S) instead.

With Proposition 7.1.2 we have shown that any functor between module categories

over trusses which admits a right adjoint is naturally obtained by taking tensor products

with suitable bimodules. Now we prove an analogue of the Eilenberg-Watts theorem

for modules over trusses which, in turn, allows us to give an intrinsic characterisation

of when a functor is given by tensoring by a bimodule (and hence it is a left adjoint) in

terms of properties of the functor itself.

Theorem 7.1.3 (Eilenberg-Watts Theorem for trusses). Let T and S be trusses. If

F : T -mod ≠æ S-mod is a cocontinuous heap functor, then

F(≠) ≥= P ¢T ≠,

for an S-T -bimodule P. Namely, P := F(ST (Tu)). If, in addition, T is unital and

F : T1-mod ≠æ S-mod is a cocontinuous heap functor, then

F(≠) ≥= P Õ
¢T ≠,

for an S-T -bimodule P Õ, unital as right T -module. Namely, P Õ := F(T ).

Proof. We prove only the first claim and, for the sake of simplicity, we write Tu instead

of ST (Tu). Let X be a T -module. One can consider a coequalizer diagram

Ker (fi)
p1

//

p2
//
T

X fi
// X , (7.1.1)

as in the proof of Proposition 4.4.2, where T
X is the free T -module over the set underlying

X, fi is the canonical epimorphism, Ker (fi) = {(x, y) œ T
X

◊ T
X

| fi(x) = fi(y)} with

the component-wise T -module structure, and p1, p2 are the (restrictions of the) two

canonical projections. One can extend diagram (7.1.1) to
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T
Ker (fi)

p
Õ
1

//

p
Õ
2

//
T

X fi
// X , (7.1.2)

where fiÕ : T
Ker (fi)

≠æ Ker (fi), pÕ
1

= p1 ¶ fiÕ and pÕ
2

= p2 ¶ fiÕ. Since fiÕ is an epimorphism,

(7.1.2) is a coequalizer diagram as well. By Lemma 7.1.1, P := F(Tu) inherits the

structure of an S-T -bimodule from the fact that F is a heap functor. Since F is a

cocontinuous functor and in view of Proposition 6.3.7, there is the following chain of

natural isomorphisms:

F
1
T

X
2

= F
3
�

xœX

Tu

4
≥= �

xœX

F(Tu) ≥= �
xœX

(P ¢T Tu) ≥= P ¢T �
xœX

Tu = P ¢T T
X .

Moreover we can fill in a diagram

F(T ker(fi))
≥=
✏✏

F(p
Õ
1)

//

F(p
Õ
2)

// F(T X)
≥=
✏✏

F(fi)
// F(X)

Â

✏✏

P ¢T T
ker(fi)

P ¢T p
Õ
1

//

P ¢T p
Õ
2

//
P ¢T T

X
P ¢T fi

// P ¢T X,

where both horizontal diagrams are coequalizers obtained from (7.1.2), because F and

P ¢T ≠ preserve colimits, and Â is the isomorphism induced by their universal property.

It can be checked, by resorting to the uniqueness of the morphisms induced at the level

of the coequalizers, that Â is in fact natural in X.

Corollary 7.1.4. Let T, S be trusses. A functor F : T -mod ≠æ S-mod is a left

adjoint if and only if it is a cocontinuous heap functor. If, in addition, T is unital then

F : T1-mod ≠æ S-mod is a left adjoint if and only if it is a cocontinuous heap functor.

Proof. The statements follow from Proposition 7.1.2, Theorem 7.1.3 and the fact that

P ¢T ≠ is cocontinuous, heap and a left adjoint functor.

Assume that S and T are unital trusses. A key question related to the Morita

theory for trusses is what can be said when T1-mod ≥= S1-mod. Notice that this

covers the non-unital case as well, since in that case T -mod ≥= S-mod if and only if

(Tu)1-mod ≥= (Su)1-mod.



186 CHAPTER 7. MORITA THEORY AND PROJECTIVE MODULES

Theorem 7.1.5. Let T, S be unital trusses. The following statement are equivalent:

1. T1-mod ≥= S1-mod, where equivalence is a heap functor.

2. There exist unital bimodules SPT and T QS together with an S-bilinear isomorphism

ev : P ¢T Q ≠æ S and a T -bilinear isomorphism db : T ≠æ Q ¢S P such that

(Q ¢S ev) ¶ (db ¢T Q) = 1Q and (ev ¢S P ) ¶ (P ¢T db) = 1P . (7.1.3)

3. There exist unital bimodules SPT and T QS together with an S-bilinear isomorphism

dbÕ : S ≠æ P ¢T Q and a T -bilinear isomorphism evÕ : Q ¢S P ≠æ T such that

(P ¢T evÕ) ¶ (dbÕ
¢S P ) = 1P and (evÕ

¢T Q) ¶ (Q ¢S dbÕ) = 1Q.

Proof. Since the proofs of 1 ≈∆ 2 and of 1 ≈∆ 3 are similar, we will present explicitly

only the first one and leave the second one to the reader.

To show that 1 implies 2, assume that L : T1-mod ≠æ S1-mod and R : S1-mod ≠æ

T1-mod are inverse equivalences (or quasi-inverse functors). Equivalently, we may

assume that L is left adjoint to R and that the counit Á : L ¶ R ≠æ id and the unit

÷ : id ≠æ R¶L of this adjunction are natural isomorphisms. In light of Proposition 7.1.2,

there exists a unital S-T -bimodule P such that L ≥= P ¢T ≠. At the same time, we may

look at R as left adjoint to L with counit ÷≠1 : R ¶ L ≠æ id and unit Á≠1 : id ≠æ L ¶ R,

and hence there exists a unital T -S-bimodule Q such that R ≥= Q ¢S ≠. Consider the

following isomorphisms

db :=
3

T
÷T
// R(P ¢T T )

≥=
// Q ¢S P ¢T T

≥=
// Q ¢S P

4
,

ev :=
3

P ¢T Q
≥=
// P ¢T Q ¢S S

≥=
// P ¢T R(S) ÁS

// S
4

.

First, we are going to show that ÷ and Á can be written in terms of ev and db. Then, we

will see how the triangular identities for unit and counit reflect on ev and db. For every

left T -module M and for every m œ M , consider the left T -module homomorphism

flm : T ≠æ M , t ‘≠æ t · m. By naturality of ÷,

÷M(m) = (÷M ¶ flm) (1T ) = (Q ¢S P ¢T flm) (÷T (1T )) = db(1T ) ¢T m.
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Similarly, for every left S-module N and for every n œ N we consider the left S-module

homomorphism fln : S ≠æ N , s ‘≠æ s · n and, by naturality of Á,

ÁN (p ¢T q ¢S n) = (ÁN ¶ (P ¢T Q ¢S fln)) (p ¢T q ¢S 1S)

= fln (ÁS (p ¢T q ¢S 1S)) = ev(p ¢T q) · n.
(7.1.4)

Let us write explicitly db(1T ) = [qi ¢S pi]i and ev(p ¢T q) = q(p). By the triangular

identities (see diagrams in Theorem A.0.18), for every S-module N and for all q œ

Q, n œ N ,

q ¢S n = ((Q ¢S ÁN) ¶ ÷Q¢SN) (q ¢S n) = (Q ¢S ÁN)([qi ¢S pi]i ¢T q ¢S n)

= [qi · q(pi)]i ¢S n.

In a similar way, for every T -module M and for all p œ P and m œ M ,

p ¢T m = (ÁP ¢T M ¶ (P ¢T ÷M)) (p ¢T m) = ÁP ¢T M(p ¢T [qi ¢S pi]i ¢S m)

= [qi(p) · pi]i ¢T m.

In particular, for N = S, n = 1S, M = T , m = 1T , we find that

[qi · q(pi)]i = q and [qi(p) · pi]i = p, (7.1.5)

for all p œ P and q œ Q. Concerning bilinearity, on the one hand, for every t œ T ,

[qi ¢S pi]i · t = [qi ¢S pi · t]i = [qi ¢S [qj(pi · t) · pj]j]i = [qi · qj(pi · t) ¢S pj]i,j

= [[qi · qj(pi · t)]i ¢S pj]j
(ú)= [t · qj ¢S pj]j = t · [qj ¢S pj]j,

where (ú) follows from the fact that ev is a T -balanced map. Whence db is a T -bimodule

homomorphism. On the other hand,

ev(p ¢T q · s) = ÁS(p ¢T q ¢S fls(1S)) (7.1.4)= ev(p ¢T q)s,

and hence ev is an S-bimodule homomorphism. In view of this, (7.1.5) can now be

rewritten as (7.1.3).

Conversely, to prove that 2 implies 1 consider the functors P ¢T ≠ : T -mod ≠æ

S-mod and Q ¢S ≠ : S-mod ≠æ T -mod. If we define unit and counit by

÷M := db ¢T M : M ≠æ Q ¢S P ¢T M,

ÁN := ev ¢S N : P ¢T Q ¢S N ≠æ N,
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for every T -module M and every S-module N , then the zigzag identities (7.1.3) entail

that P ¢T ≠ is left adjoint to Q¢S ≠ and the fact that ÷ and Á are natural isomorphisms

implies in addition that these two functors define an equivalence of categories.

Remark 7.1.6. By checking closely the proof of Theorem 7.1.5, one may notice that

R ≥= HomS(P, ≠) as the right adjoint functor of L ≥= P ¢T ≠, and R ≥= Q ¢S ≠ since it

is a left adjoint functor itself. Therefore,

úP := HomS(SP, S) ≥= R(S) ≥= Q ¢S S ≥= Q

as T -S-bimodules. Analogously, P ≥= Qú := HomS(QS, S) as S-T -bimodules. Moreover,

we point out that any argument provided for left modules would hold symmetrically for

right modules.

A distinguished functor F : S-mod ≠æ T -mod is the restriction of scalars functor

F = f ú associated with a truss homomorphism f : T ≠æ S. This is the faithful functor

sending every left S-module M to the left T -module fM := f ú(M) having the same

underlying heap structure but action given by t · m = f(t) · m for all t œ T, m œ M , and

sending every S-linear morphism to itself, but now seen as a T -linear map. We already

saw examples of restriction of scalars functors in Theorem 6.1.2 and Proposition 6.3.13

(the forgetful functor Umod : T1-mod ≠æ Ah can be seen as a restriction of scalars

along the unital truss homomorphism ÷ : {1} ≠æ T ).

Proposition 7.1.7. The restriction of scalars functor F : S-mod ≠æ T -mod associ-

ated with a truss homomorphism f : T ≠æ S satisfies

HomS((Su)
f
, ≠) ≥= F ≥= f (Su) ¢S ≠.

In particular, there is an adjoint triple of functors:

(Su)
f

¢T ≠ ‰ F ‰ HomT (f (Su), ≠).
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Proof. For every left S-module M , consider the assignments

HomS((Su)
f

, M) oo //

fM

„ �
// „(1)

C
1 ‘≠æ m

s ‘≠æ s · m

D

m�oo

fM oo //

f (Su) ¢S M

m �
// 1 ¢S m

[zi · mi]2k+1

i=1
[zi ¢S mi]2k+1

i=1

�
oo

as in the proof of Proposition 6.3.7. They are T -linear isomorphisms, natural in M .

Let T be a truss. The conditions in Theorem 7.1.5 and the subsequent observations

in Remark 7.1.6 call for a closer analysis of T -modules admitting a dual basis db and

evaluation ev morphisms.

Definition 7.1.8. A module P over a truss T is said to satisfy the dual basis property

(DBP for short) if there exist an odd integer s = 2k + 1, an element (e1, . . . , es) œ P s

and an element („1, . . . , „s) œ HomT (P, T )s such that, for all p œ P ,

p = [„1(p) · e1, . . . , „s(p) · es]. (7.1.6)

We call the pair {(e1, . . . , es), („1, . . . , „s)} a dual basis for P .

Example 7.1.9.

1. The empty T -module ? never satisfies the DBP.

2. If T is unital, then P = T itself satisfies the DBP with e1 = 1T and „1 = 1T .

3. The singleton T -module {1} satisfies the DPB if and only if T admits a left

absorber. Indeed, if T admits a left absorber 0 then {1} satisfies the DBP with

e1 = 1 and „1 : {1} ≠æ T, 1 ‘≠æ 0. Conversely, if {1} satisfies the DBP then

„1(1) œ T is a left absorber.

4. If T is a unital truss with identity 1T and S is a truss with a left absorber a, then

T satisfies the DBP as an S ◊ T -module with e1 = 1T and „1 : T ≠æ S ◊ T, t ‘≠æ

(a, t). For example, if we take S = E(T )op with a : T ≠æ T, t ‘≠æ 1T , then T

satisfies the DBP as an (E(T )op
◊ T )-module.
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As usual, let Tu be the unital extension of T . Set úP := HomT (P, Tu). It is a right

T -module with (f · t)(p) := f(p)t for all f œ
úP , t œ T and p œ P .

Remark 7.1.10.

1. If P satisfies the DBP, then úP satisfies the DBP. For every i = 1, . . . , s, consider

the right T -linear morphism

evi : úP ≠æ Tu, – ‘≠æ – (ei) .

Then, for all – œ
úP ,

–(p) = – ([„k(p) · ek]s
k=1

) = [„k(p)– (ek)]s
k=1

= [„k · evk (–)]s
k=1

(p),

for all p œ P , whence – = [„k · evk (–)]s
k=1

.

2. If P satisfies the DBP, then for every T -module M and for every f : P ≠æ M ,

f = [„kf (ek)]s
k=1

in HomT (P, M), where „kf (ek) : P ≠æ M, p ‘≠æ „k(p)f (ek).

Theorem 7.1.11. Let T be a truss and P be a left T -module. The following properties

are equivalent

1. The functor HomT (P, ≠) : T -mod ≠æ Ah is right exact (that is, it preserves

finite colimits) and P is finitely generated.

2. The module P satisfies the DBP.

3. There exist a T -bilinear morphism ev : P ¢
úP ≠æ Tu and a morphism of Abelian

heaps db : {1} ≠æ
úP ¢T P (that is, a {1}-bilinear morphism) such that

(ev ¢T P ) ¶ (P ¢ db) = 1P and (úP ¢T ev) ¶ (db ¢
úP ) = 1úP ,

up to the canonical isomorphisms

P ¢ {1} ≥= P ≥= Tu ¢T P, úP ¢T Tu
≥= úP ≥= {1} ¢

úP .
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4. The functor HomT (P, ≠) is naturally isomorphic to the functor úP ¢T ≠.

5. The functor HomT (P, ≠) is cocontinuous (that is, it preserves small colimits).

Proof. 1 ∆ 2. Assume that the functor HomT (P, ≠) preserves finite colimits. Since

P is finitely generated, there exist a positive integer r and a T -module epimorphism

fi : T
{1,...,r}

≠æ P . For the sake of clarity and brevity, we denote by Ti the copy of

Tu in position i and by 1i œ Ti its unit, for i = 1, . . . , r. By Proposition 4.4.2, fi is a

coequalizer and, by hypothesis,

HomT (P, fi) : HomT (P, T
{1,...,r}) ≠æ HomT (P, P )

is a coequalizer of the corresponding morphisms, whence an epimorphism in particular.

Choose a pre-image in HomT (P, T
{1,...,r}) of 1P and call it ‡; it satisfies fi ¶ ‡ = 1P .

Moreover, T
{1,...,r} =

r

�
i=1

Ti is a finite colimit with structure maps

÷i : Tu ≠æ T
{1,...,r}, z ‘≠æ z1i œ Ti,

for all i = 1, . . . , r. By hypothesis again, the induced morphism
r

�
i=1

HomT (P, ÷i) :
r

�
i=1

HomT (P, Tu)i ≠æ HomT (P, T
{1,...,r})

is an isomorphism, where HomT (P, Tu)i denotes the copy of HomT (P, Tu) in position i.

Therefore, there exist elements „1, . . . , „s œ HomT (P, Tu) (possibly r ”= s) such that

[„1, . . . , „s] œ
r

�
i=1

HomT (P, Tu)i

satisfies
r

�
i=1

HomT (P, ÷i) ([„1, . . . , „s]) = ‡.

Concretely, this amounts to say that, for every p œ P ,

p = fi(‡(p)) = fi ([÷i1 ¶ „1, . . . , ÷is
¶ „s](p))

= [(fi÷i1„1) (p), . . . , (fi÷is
„s) (p)] = [„1(p) · fi(1i1), . . . , „s(p) · fi(1is

)],

where the ik are such that „k œ HomT (P, Tu)ik
, k = 1, . . . , s. Set ek := fi(1ik

) œ P for

k = 1, . . . , s. The foregoing relation says that, for every p œ P ,

p = [„1(p) · e1, . . . , „s(p) · es].
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We conclude that if P is finitely generated and if HomT (P, ≠) preserves finite colimits,

then P satisfies the DBP.

2 ∆ 3. Consider the assignment

e : P ◊
úP ≠æ Tu, (p, –) ‘≠æ –(p).

Then

e ([p, pÕ, pÕÕ] , –) = – ([p, pÕ, pÕÕ]) = [– (p) , – (pÕ) , – (pÕÕ)] = [e (p, –) , e (pÕ, –) , e (pÕÕ, –)]

and

e (p, [–, –Õ, –ÕÕ]) = [–, –Õ, –ÕÕ] (p) = [– (p) , –Õ (p) , –ÕÕ (p)] = [e (p, –) , e (p, –Õ) , e (p, –ÕÕ)] ,

whence there exists a unique heap homomorphism ev : P ¢
úP ≠æ Tu such that

ev(p ¢ –) = –(p), for all p œ P, – œ
úP . Moreover,

ev(t · p ¢ –) = –(t · p) = t–(p)

and

ev(p ¢ – · t) = (– · t)(p) = –(p)t,

for all p œ P, – œ
úP , t œ T , whence ev is T -bilinear. Consider also the assignment

db : {1} ≠æ
úP ¢T P, ú ‘≠æ [„k ¢T ek]s

k=1
.

A direct check shows that

((ev ¢T P ) ¶ (P ¢ db)) (p) = (ev ¢T P ) ([p ¢ „k ¢T ek]s
k=1

) = [„k(p) · ek]s
k=1

= p,

((úP ¢T ev) ¶ (db ¢
úP )) (–) = (úP ¢T ev) ([„k ¢T ek ¢ –]s

k=1
) = [„k · – (ek)]s

k=1
= –,

for all p œ P , – œ
úP .

3 ∆ 4. For every T -module M , consider

·̃ : úP ◊ M ≠æ HomT (P, M), (–, m) ‘≠æ [p ‘≠æ ev(p ¢ –) · m] .
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For all p œ P , –, –Õ, –ÕÕ
œ

úP , m, mÕ, mÕÕ
œ M , t œ T ,

·̃ ([–, –Õ, –ÕÕ] , m) (p) = [–, –Õ, –ÕÕ] (p) · m = [–(p), –Õ(p), –ÕÕ(p)] · m

= [–(p) · m, –Õ(p) · m, –ÕÕ(p) · m]

= [·̃(–, m)(p), ·̃(–Õ, m)(p), ·̃(–ÕÕ, m)(p)]

= [·̃(–, m), ·̃(–Õ, m), ·̃(–ÕÕ, m)] (p),

·̃ (–, [m, mÕ, mÕÕ]) (p) = –(p) · [m, mÕ, mÕÕ] = [–(p) · m, –(p) · mÕ, –(p) · mÕÕ]

= [·̃(–, m)(p), ·̃(–, mÕ)(p), ·̃(–, mÕÕ)(p)]

= [·̃(–, m), ·̃(–, mÕ), ·̃(–, mÕÕ)] (p),

·̃(– · t, m)(p) = (– · t)(p) · m = –(p)t · m = ·̃(–, t · m)(p).

Therefore, there exists a unique heap homomorphism ·M : úP ¢T M ≠æ HomT (P, M)

such that ·(– ¢T m) : p ‘≠æ –(p) · m. The other way around, write explicitly db(1) =

[„k ¢T ek]s
k=1

and consider the assignment

‡M : HomT (P, M) ≠æ
úP ¢T M, f ‘≠æ (úP ¢T f) (db(1)) = [„k ¢T f (ek)]s

k=1
.

A direct computation shows that

‡M·M(– ¢T m) = [„k ¢T – (ek) · m]s
k=1

= [„k · – (ek)]s
k=1

¢T m = – ¢T m,

for all m œ M , – œ
úP , and

·M‡M(f)(p) = [„k(p) · f (ek)]s
k=1

= f,

whence they are inverses of each other. Furthermore, if g : M ≠æ N is any T -linear

map, then

·N (úP ¢T g) (– ¢T m)(p) = –(p)g(m) = (HomT (P, g) ¶ ·M)(– ¢T m)(p),

for all p œ P , m œ M , – œ
úP , so that · is also natural in M .

4 ∆ 5. Obvious, since tensoring by a right T -module is a left adjoint.

5 ∆ 1. Clearly, HomT (P, ≠) is a right exact functor. Thus, we are left to show

that P has to be finitely generated. Since P is a set, we can consider the epimorphism
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fi : T
P

≠æ P uniquely determined by the assignments Tp æ P, z ‘≠æ z · p, for all p œ P .

Since epimorphisms are coequalizers, fiú : HomT (P, T
P ) ≠æ HomT (P, P ), Â ‘≠æ fi ¶ Â,

is still a coequalizer (whence an epimorphism), and since T
P is a small coproduct,

HomT (P, T
P ) ≥= �

pœP

HomT (P, Tu)p.

As in the proof of 1 ∆ 2, one can consider a pre-image of 1P via fiú and call it ‡. There

exist elements „1, . . . , „s œ HomT (P, Tu) such that

[„1, . . . , „s] œ �
pœP

HomT (P, Tu)p

satisfies

�
pœP

HomT (P, ÷p) ([„1, . . . , „s]) = ‡.

Concretely, this amounts to say that, for every q œ P ,
q = fi(‡(q)) = fi ([÷p1 ¶ „1, . . . , ÷ps

¶ „s](q))

= [(fi÷p1„1) (q), . . . , (fi÷ps
„s) (q)] = [„1(q) · fi(1p1), . . . , „s(q) · fi(1ps

)].
Set ek := fi(1pk

) œ P for k = 1, . . . , s. Since the foregoing relation says that for every

p œ P , p = [„1(p) · e1, . . . , „s(p) · es], we conclude that the ek form a finite family of

generators of P .

By taking inspiration from [37, §5.5] and in light of Theorem 7.1.11, we give the

following definition (see also [38, §3]).

Definition 7.1.12. A T -module P satisfying the equivalent conditions of Theorem

7.1.11 is called tiny (or small-projective).

Remark 7.1.13.

1. In the proof of the implication 1 ∆ 2 in Theorem 7.1.11, there is no need for s to

be exactly r.

2. The dual basis map db does not depend on the choice of the dual basis. In fact,

if {(e1, . . . , es) , („1, . . . , „s)} and {(f1, . . . , fr) , (Â1, . . . , Âr)} are two dual bases,

then

[„k ¢T ek]s
k=1

= [„k ¢T [Âh (ek) · fh]r
h=1

]s
k=1

(1.1.2)= [[„k · Âh (ek) ¢T fh]s
k=1

]r
h=1

= [[„k · Âh (ek)]s
k=1

¢T fh]r
h=1

= [Âh ¢T fh]r
h=1

.
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3. The implication from 5 to 4 in Theorem 7.1.11 follows also from the Eilenberg-

Watts theorem, since HomT (P, ≠) is a heap functor.

4. In the implication from 4 to 3 in Theorem 7.1.11, the dual basis map db corresponds

to the image of the identity morphism 1P via the isomorphism HomT (P, P ) ≥=
úP ¢T P .

5. In the present section, we always worked with a left T -module P , implicitly viewed

as a T -{1}-bimodule. Observe that there is nothing particular in considering the

distinguished truss {1} instead of any other truss. Therefore, the description and

the properties of a small-projective T -module developed so far can be adapted,

with no additional e�ort, to speak about a T -S-bimodule which is small-projective

over T on the left.

Example 7.1.14. If P is a finitely generated and projective module over a ring R,

then T(P ) is a tiny T(R)-module.

Example 7.1.15 (Free modules are not tiny). Let T be a unital truss and consider

the free T -module T � T . Assume, by contradiction, that T � T admits a dual basis

{(e1, . . . , es) , („1, . . . , „s)}. Denote by a = 1T the unit of the left-hand side copy of

T and by b = 1T the one of the right-hand side copy. Taking advantage of the heap

isomorphism in Proposition 1.4.4, we may construct the heap homomorphism that

“measures tails”

¸ : T � T ≥= H (G(T, a) ü G(T, b) ü Z) ≠æ H(Z).

Notice that, being composition of heap homomorphisms, ¸ is not influenced by the

reduction of a symmetric word w to one of the “canonical forms” t, s, tsb, sta, tsab · · · ba,

stba · · · ab. Therefore, the “length of tails” is well-defined and, in particular, it is not

influenced by the action of T , see (4.3.1) . Summing up, for all z œ T � T

¸ ([„1(z) · e1, . . . , „s(z) · es]) = [¸ („1(z) · e1) , . . . , ¸ („s(z) · es)] = [¸ (e1) , . . . , ¸ (es)].

However, if we set m := [¸ (e1) , . . . , ¸ (es)] (which does not depend on z) and we consider

z := bab · · · ab with |m| + 1 instances of b, then ¸(z) = |m| + 1, which is a contradiction.
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Example 7.1.16. Let T be a unital truss admitting a left absorber a œ T and consider

P := T ◊ T ◊ T . Set

e1 := (1T , a, a), e2 := (a, 1T , a), e3 = (a, a, 1T ) and

„1 : T ◊ T ◊ T ≠æ T, (x, y, z) ‘≠æ x,

„2 : T ◊ T ◊ T ≠æ T, (x, y, z) ‘≠æ [a, y, a],

„3 : T ◊ T ◊ T ≠æ T, (x, y, z) ‘≠æ z.

Then these form a dual basis for P as a left T -module.

Assume furthermore that a is a two-sided absorber. Denote by S the set of all

3 ◊ 3 matrices with coe�cients in T . They inherits an Abelian heap structure from

the identification S = T 9 (that is, the bracket is taken component-wise). Moreover, S

admits a truss structure with the row-by-column multiplication
Q

ca
t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

t3,1 t3,2 t3,3

R

db ·

Q

ca
s1,1 s1,2 s1,3

s2,1 s2,2 s2,3

s3,1 s3,2 s3,3

R

db =
1
ri,j

2
where ri,j =

Ë
ti,1s1,j, ti,2s2,j, ti,3s3,j

È
.

As for matrices over rings, P becomes a right S-module with row-by-column action

1
x y z

2
Q

ca
t1,1 t1,2 t1,3

t2,1 t2,2 t2,3

t3,1 t3,2 t3,3

R

db =
1Ë

xt1,1, yt2,1, zt3,1

È Ë
xt1,2, yt2,2, zt3,2

È Ë
xt1,3, yt2,3, zt3,3

È2

which makes of it a T -S-bimodule and

Q =

Y
_]

_[

Q

ca
x
y
z

R

db

-------
x, y, z œ T

Z
_̂

_\

becomes a S-T -bimodule analogously. Define the following morphisms

ev : Q ¢T P ≠æ S,

Q

ca
x
y
z

R

db ¢T

1
xÕ yÕ zÕ

2
‘≠æ

Q

ca
x
y
z

R

db ·

1
xÕ yÕ zÕ

2
=

Q

ca
xxÕ xyÕ xzÕ

yxÕ yyÕ yzÕ

zxÕ zyÕ zzÕ

R

db ,

db : T ≠æ P ¢S Q, 1T ‘≠æ

1
1T a a

2
¢S

Q

ca
1T

a
a

R

db .

They are invertible with inverses explicitly given by
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ev≠1 :
1
ti,j

2
‘≠æ

S

WU

Q

ca
t1,1

t1,2

t1,3

R

db ¢T

1
1T a a

2
,

Q

ca
t2,1

t2,2

t2,3

R

db ¢T

1
a [a, 1T , a] a

2
,

Q

ca
t3,1

t3,2

t3,3

R

db ¢T

1
a a 1T

2
T

XV ,

and db≠1 :
1
x y z

2
¢S

Q

ca
xÕ

yÕ

zÕ

R

db ‘≠æ

1
x y z

2
·

Q

ca
xÕ

yÕ

zÕ

R

db =
Ë
xxÕ, yyÕ, zzÕ

È
.

Therefore, T -mod is equivalent to S-mod by Theorem 7.1.5.

7.2 Projective modules over trusses

Let T be a truss (not necessarily unital) and let {0} denote the singleton T -module.

Recall from the Definition 4.2.2 that if (M, ·) is a non-empty T -module and e œ M ,

then we denote by M (e) = (M, Ûe) the T -module with the induced action

t Ûem = [t · m, t · e, e].

We say that a sequence of non-empty T -modules M
f
// N

g
// P is exact provided

there exists e œ Im(g) such that Im(f) = kere(g) as sets. Notice that, in this case,

Im(f) ≥= kereÕ(g) as induced submodules for any other eÕ
œ Im(g).

Lemma 7.2.1. Let M, N, P be T -modules and f : M ≠æ N and g : N ≠æ P be

T -linear maps. There exist exact sequences

M
f
// N

g
// P , {0} //M (e)

f
// N (f(e)) and N

g
// P // {0} (7.2.1)

if and only if

(a) f is injective and

(b) N/Im(f) ≥= P as T -modules,

where the module structure on N/Im(f) is the one for which the canonical projection

fi : N ≠æ N/Im(f) is T -linear.

Proof. Assume the sequences are exact. Then f is injective, by the exactness of the

second sequence, and

P = Im(g) ≥= N/Ker (g) ≥= N/Im(f),
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where the equality is a restatement of the third sequence, the second isomorphism

follows by the exactness of the first sequence, and the first one is simply the first

isomorphism theorem for T -modules.

Conversely, assume that there is an isomorphism h : N/Im(f) ≠æ P of T -modules,

and denote by fi : N ≠æ N/Im(f) the quotient map. The sub-heap Im(f) of N ,

as a kernel of fi, admits an additional induced submodule structure. Denote it by

Im(f)(e)
™ N (e) for a certain e œ Im(f). This entails that Im(f) is a submodule of N

with respect to two (in principle, di�erent) T -modules structures: Im(f) ™ N with

respect to the T -action for which f is T -linear and Im(f)(e)
™ N (e) with respect to the

induced action coming from the identification Im(f) = kerfi(e)(fi). Since f is injective,

we may transport the induced module structure on M . Denote it by M (e
Õ
) for eÕ

œ M

such that f(eÕ) = e. Consider the sequences

{0} //M (e
Õ
)

f
// N (e) , M

f
// N h¶fi

// P , N h¶fi
// P // {0} .

They are exact.

By abuse of notation, we will say that

{0} //M
f
//

// N
g
// P // {0}

is a short exact sequence of T -modules to mean that there exists e œ M such that all

three sequences (7.2.1) are exact.

Proposition 7.2.2. Let „ : M ≠æ N and Â : N ≠æ P be morphisms of T -modules.

Assume that Â is surjective, that „ admits a retraction “ (in particular, it is injective)

and that

M
„
// N

Â
// P (7.2.2)

is exact. Then N ≥= M ◊ P as T -modules. We will call such a sequence a split exact

sequence.

Proof. Since (7.2.2) is exact, there exists e œ P such that kere(Â) = Im(„). Consider

eÕ
œ N such that Â(eÕ) = e and consider “(eÕ) œ M . Since eÕ

œ kere(Â) = Im(„),
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„(“(eÕ)) = eÕ. Denote by G(P ; e), G(M ; “(eÕ)) and G(N ; eÕ) the retracts of the heaps P ,

M and N respectively. Observe that map „ induces an additive map of retracts,

‚„ : G(M ; “(eÕ)) ≠æ G(N ; eÕ), m ‘≠æ [„(m), „“(eÕ), eÕ] = [„(m), eÕ, eÕ] = „(m),

and, analogously, ‚Â = Â and ‚“ = “, which entail that

0 // G(M ; “(eÕ)) „
// G(N ; eÕ) Â

//

“

gg

G(P ; e) // 0

is a split short exact sequence of Z-modules. Thus,

G(N ; eÕ) ≥= G(M ; “(eÕ)) ü G(P ; e) ≥= G(M ; “(eÕ)) ◊ G(P ; e).

From G(N ; eÕ) ≥= G(M ; “(eÕ)) ◊ G(P ; e) and Corollary 1.1.29, it follows that

N = H(G(N ; eÕ)) ≥= H (G(M ; “(eÕ)) ◊ G(P ; e))

≥= H (G(M ; “(eÕ))) ◊ H (G(P ; e)) = M ◊ P.

Summing up, at the heap level there is a (unique) isomorphism N ≥= M ◊ P induced

by the universal property of the product and explicitly given by

� : N ≠æ M ◊ P, n ‘≠æ (“(n), Â(n)).

By T -linearity of “ and Â, � is T -linear as well.

For the sake of completeness, we point out that the inverse of � is explicitly given

by

�≠1 : M ◊ P ≠æ N, (m, p) ‘≠æ [np, „“(np), „(m)]

where np œ N is any element such that Â(np) = p.

Corollary 7.2.3. Let T be a truss and n œ N. Then for any k Æ n there exists a

T -module with absorber M such that T k
◊ M ≥= T n.

Proof. Observe that „ : T k
æ T n given by (t1, . . . , tk) ‘≠æ (t1, . . . , tk, tk, . . . , tk) is a

T -module homomorphism and clearly the sequence

T k
„

// T n
fiIm(„)

//

fik

oo T n/Im(„),



200 CHAPTER 7. MORITA THEORY AND PROJECTIVE MODULES

where fik is the projection on the first k coordinates, is a split exact sequence. Therefore

by Proposition 7.2.2, T n ≥= T k
◊ (T n/Im(„)) and T n/Im(„) is the requested module

with an absorber.

Example 7.2.4. Let T = 2Z + 1 and let us consider (2Z + 1)3 ≥= (2Z + 1) ◊ M for

some (2Z + 1)-module M as in Corollary 7.2.3. In this case, „ is the map given by

2k + 1 ‘≠æ (2k + 1, 2k + 1, 2k + 1) for all k œ Z. It is easy to check that H(M) ≥=

H((2Z+1)◊(2Z+1)) and that the heap isomorphism is a (2Z+1)-module homomorphism

for the (2Z + 1)-action given on (2Z + 1) ◊ (2Z + 1) by

(2k + 1) · (2l + 1, 2h + 1) = (2(2k + 1)l + 1, 2(2k + 1)h + 1),

for all k, l, h œ Z. The desired absorber is (1, 1).

Proposition 7.2.5. Let „ : M ≠æ N and Â : N ≠æ P be morphisms of T -modules.

Assume that „ is injective, that Â admits a section ‡ (in particular, it is surjective) and

that

M
„
// N

Â
// P (7.2.3)

is exact. Then there exists eÕ
œ M yielding an isomorphism of T -modules N ≥= M (e

Õ
)
◊P ,

where M (e
Õ
) denotes the eÕ-induced left T -module structure on M .

Proof. The argument for this proof follows closely that in the proof of Proposition 7.2.2.

Since (7.2.3) is exact, there exists e œ P such that kere(Â) = Im(„). Consider ‡(e) œ N

and let eÕ
œ M be the unique element such that

„(eÕ) = ‡(e). (7.2.4)

Similarly to before, the heap homomorphism ‡ induces an additive map of retracts

‚‡ : G(P ; e) ≠æ G(N ; ‡(e)), p ‘≠æ [‡(p), ‡(e), ‡(e)] = ‡(p),

and analogously for „ and Â. These yield the following split short exact sequence of

Z-modules

0 // G(M ; eÕ) „
// G(N ; ‡(e)) Â

// G(P ; e) //

‡

gg

0.
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Thus,

G(N ; ‡(e)) ≥= G(M ; eÕ) ü G(P ; e) ≥= G(M ; eÕ) ◊ G(P ; e).

From G(N ; ‡(e)) ≥= G(M ; eÕ) ◊ G(P ; e) and Corollary 1.1.29, it follows that

N = H(G(N ; ‡(e))) ≥= H (G(M ; eÕ)) ◊ H (G(P ; e)) = M ◊ P.

Explicitly, this isomorphism is given by the rule

�(m, p) = [„(m), ‡(e), ‡(p)] .

Now, consider M as a T -module with the induced structure t ÛeÕm = [t · m, t · eÕ, eÕ].

Then

�(t ÛeÕm, t · p) = �([t · m, t · eÕ, eÕ], t · p) = [„(t · m), „(t · eÕ), „(eÕ), ‡(e), ‡(t · p)]
(7.2.4)= [t · „(m), t · „(eÕ), t · ‡(p)] = t · �(m, p)

and hence it provides an isomorphism N ≥= M (e
Õ
)
◊ P as claimed.

Remark 7.2.6. Let us compute explicitly the projection N ≠æ M arising from Proposi-

tion 7.2.2. At the level of Z-modules,

G(N ; ‡(e)) ≠æ G(M ; eÕ), n ‘≠æ „≠1 (n ≠ ‡Â(n)) .

By recalling that the module structure is the one induced by the heap structure, we

conclude that

n ≠ ‡Â(n) =
Ë
n, ‡(e), ‡Â(n)≠1

È
= [n, ‡(e), [‡(e), ‡Â(n), ‡(e)]] = [n, ‡Â(n), ‡(e)] .

Therefore, the projection N ≠æ M is given by n ‘≠æ mn, where mn œ M is the unique

element such that „(mn) = [n, ‡Â(n), ‡(e)]. Notice that this is not necessarily T -linear

if e or ‡(e) are not absorbers. The inverse to � is given by �≠1(n) = (mn, Â(n)).

At this point a curious reader may wonder why we introduced the terminology

“split exact sequence” to refer to (7.2.2) and we did not use a more specific one instead,

in order to distinguish (7.2.2) from (7.2.3) (such as e.g. “left” and “right” split exact
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sequences). The reason is that if Â : N ≠æ P admits a section ‡ : P ≠æ N , then ‡

itself admits Â as a retraction. By applying Proposition 7.2.2 to the split exact sequence

P ‡
// N fi

//

Â

\\

N/P,

where N/P is the quotient T -module with respect to the submodule ‡(P ) ™ N and fi

is the canonical projection, we conclude that N ≥= P ◊ N/P as T -modules. Now, fi ¶ „

is an isomorphism of Abelian heaps, since Im(„) fl kerfi(‡(e))(fi) = {‡(e)} and for all

fi(n) œ N/P , (fi ¶ „)(mn) = fi(n).

Let T be a truss (not necessarily unital). Recall that epimorphisms in T -mod are

surjective T -linear maps by Proposition 4.4.1.

Definition 7.2.7. Let P be a T -module. We say that P is projective if the functor

HomT (P, ≠) : T -mod ≠æ Ah preserves epimorphisms. That is to say, if for every

surjective T -linear map fi : M ≠æ N and every T -linear map f : P ≠æ N there

exists a (not necessarily unique) T -linear map f̃ : P ≠æ M such that fi ¶ f̃ = f .

Diagrammatically,

M fi
// // N

P.
f̃

bb

f

OO

Proposition 7.2.8. A T -module P satisfying the DBP property is projective. In

particular, every tiny T -module is finitely generated and projective.

Proof. In view of Proposition 4.4.2, every epimorphism is a coequalizer. In particular,

it is a colimit. By Theorem 7.1.115, HomT (P, ≠) : T -mod ≠æ Ah is cocontinuous,

and so it preserves small colimits and, in particular, epimorphisms. The last claim is a

consequence of Theorem 7.1.111.

Remark 7.2.9. Proposition 7.2.8 should convince the reader that the terminology “small-

projective” from Definition 7.1.12 would also be very well-suited for tiny objects in

T -mod.

Lemma 7.2.10. Every projective T -module P admits a T -linear morphism f : P ≠æ T .
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Proof. The required morphism is a filler of the following diagram

T // {0}

P.

OO

f

cc

Proposition 7.2.11. Every free T -module is projective.

Proof. Let X be any set, fi : M ≠æ N be a surjective T -linear map and f : T
X

≠æ N

a T -linear map. Consider also the inclusion ÿX : X ≠æ T
X , x ‘≠æ 1x. For every

x œ X set nx := f(ÿX(x)) œ N . Since fi is surjective, by the axiom of choice, for every

x œ X, we may choose an mx œ M such that fi(mx) = nx. This defines a function

f̄ : X ≠æ M, x ‘≠æ mx. By the universal property of the free T -module, the latter

extends uniquely to a T -linear map f̂ : T
X

≠æ M which satisfies fi(f̂(1x)) = fi(mx) =

nx = f(1x). Since this implies that f ¶ ÿX and fi ¶ f̂ ¶ ÿX coincide, the uniqueness ensured

by the universal property of the free T -modules entails that f = fi ¶ f̂ as desired.

Corollary 7.2.12. Let T be a truss without absorbers. Then any T -module with absorber

cannot be projective. In particular, free T -modules over a truss without absorbers cannot

have absorbers.

Proof. Since T -linear maps preserve absorbers, a projective T -module P cannot have

absorbers in view of Lemma 7.2.10. In particular, Proposition 7.2.11 entails that free

modules over a truss without absorbers cannot have absorbers.

Remark 7.2.13. A truss T has no absorbers if and only if there exists a non-empty

T -module without absorbers. In fact, if T admits an absorber e then for every non-

empty T -module M and m œ M , e · m is an absorber in M . Conversely, T itself is a

T -module without absorbers. More precisely, a truss T admits an absorber if and only

if there exists a projective T -module admitting an absorber. Therefore, the hypothesis

of Corollary 7.2.12 is not particularly restrictive.

Let us recall from Section 6.2 that functor (≠)Abs : T(R)-mod æ R-mod is given

by M ‘æ M/Abs(M) and (Ï : M æ M Õ) ‘æ (ÏAbs : m ‘æ Ï(m)), see Lemma 6.2.6.
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Proposition 7.2.14. Let R be a ring and T(R) be the associated truss.

1. If P is projective over T(R) then PAbs is projective over R.

2. If P is finitely generated over T(R) then PAbs is finitely generated over R.

In particular,

1. If P is a tiny T(R)-module then PAbs is a finitely generated and projective R-

module.

2. P is a finitely generated and projective R-module if and only if T(P ) is a tiny

T(R)-module.

Proof. To prove 1, let fi : M ≠æ N be a surjective morphism of R-modules and assume

that f : PAbs ≠æ N is an R-linear map. Since the action of the functor T on morphisms

does not change the underlying mapping and since epimorphisms in T(R)-mod and

R-mod are exactly surjective maps (see Proposition 4.4.1), the functor T preserves

epimorphisms, and hence we can consider the diagram of T(R)-modules

T(M) T(fi)
// // T(N)

P
÷P

// T(PAbs),
T(f)

OO

where ÷P : P ≠æ T(PAbs) is the unit of the adjunction (≠)Abs ‰ T. Since P is projective

over T(R), there exists a filler f Õ rendering the following diagram commutative:

T(M) T(fi)
// // T(N)

P

f
Õ
OO

÷P

// T(PAbs).
T(f)

OO

By applying the functor (≠)Abs to the latter diagram, we find the commutative diagram

M fi
// // N

T(M)Abs

ÁM ≥=

OO

T(fi)Abs
// // T(N)Abs

ÁN
≥=
OO

PAbs

f

gg

PAbs

f
Õ
Abs

OO

(÷P )Abs
// T(PAbs)Abs

T(f)Abs

OO

ÁPAbs

BB
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and since ÁPAbs ¶ (÷P )Abs = 1P , we constructed a morphism of R-modules f̂ := ÁM ¶f Õ
Abs

:

PAbs ≠æ M such that fi ¶ f̂ = f .

To prove 2, pick an epimorphism fi :
n

�T(R) ≠æ P . Since (≠)Abs is a left adjoint

functor (see Lemma 6.2.6 ) and every epimorphism in T(R)-mod is a coequalizer (see

Proposition 4.4.2), (≠)Abs preserves epimorphisms and coproducts, and hence

Rn ≥=
nn

T(R)Abs
≥=

3
n

�T(R)
4

Abs

fiAbs
≠≠æ PAbs

is an epimorphism of R-modules, showing that PAbs is finitely generated.

Concerning the last claims, assume that P is tiny over T(R). Then it is finitely

generated and projective by Proposition 7.2.8, and hence PAbs is finitely generated and

projective over R, proving 1. Furthermore, in view of Example 7.1.14 we know that if

P is finitely generated and projective over R, then T(P ) is tiny over T(R). Conversely,

we have just seen that if T(P ) is tiny over T(R), then T(P )Abs
≥= P is finitely generated

and projective over R, thus showing 2.

Lemma 7.2.15. The empty T -module is projective.

Proof. For every T -module M , there exists a unique morphism ? ≠æ M which is the

empty morphism. Therefore, the following diagram is commutative and gives a lifting

of the empty morphism along the epimorphism fi:

M fi
// // N

?
?

cc

?
OO

Proposition 7.2.16. Let M be a non-empty projective T -module. Then M is a direct

factor of a free T -module. More precisely, there exist a set X and a T -module with

absorber P such that M ◊ P ≥= T
X as T -modules.

Proof. Since every T -module is a quotient of a free one (as we showed at the end of

Section 6.3), there exists a set X and a surjective T -linear morphism “ : T
X

≠æ M .

By projectivity of M , “ admits a T -linear section „ : M ≠æ T
X . Thus, „ is injective

and we may identify M with the T -submodule „(M) ™ T
X . Consider now

P := T
X/≥„(M)

≥= T
X/M,
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which is a T -module with absorber. Denote by Â : T
X

≠æ P the quotient map. As M

is non-empty, the sequence

M
„
// T

X
Â
//

“

^^

P

is split exact with Â surjective and so, by Proposition 7.2.2, T
X ≥= M ◊ P as T -

modules.

The converse of Proposition 7.2.16 holds as well.

Proposition 7.2.17. Let M be a T -module. If there exists a T -module P with absorber

and a set X such that T
X ≥= M ◊ P , then M is projective.

Proof. Let e œ P be an absorber. Then the assignment „ : M ≠æ M ◊P , m ‘≠æ (m, e),

is a well-defined injective T -linear morphism, providing a section for the canonical

projection “ : M ◊ P ≠æ M , (m, p) ‘≠æ m. As a consequence, for every surjective

morphism g : N ≠æ Q of T -modules and every T -linear map f : M ≠æ Q, we can

consider the diagram of T -linear maps

N
g

// Q

M ◊ P
“
//M.

f

OO

„

oo

By projectivity of T
X , there exists f̃ : T

X
≠æ N such that the diagram

N
g

// Q

T
X

≥=
·
//

f̃

OO

M ◊ P
“
//M

f

OO

„

oo

commutes, that is, g ¶ f̃ = f ¶ “ ¶ · . If we set f̂ := f̃ ¶ ·≠1
¶ „ then

g ¶ f̂ = g ¶ f̃ ¶ ·≠1
¶ „ = f ¶ “ ¶ „ = f,

whence f : M ≠æ Q can be lifted to a T -linear map f̂ : M ≠æ N along g, that

is, g ¶ f̂ = f , proving that M is projective.
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Theorem 7.2.18. A T -module M is projective if and only if there exists a T -module

with absorber P such that M ◊ P is a free T -module.

Proof. It follows from Propositions 7.2.16 and 7.2.17.

Proposition 7.2.19. Let P be a tiny T -module with dual basis {(e1, . . . , es), („1, . . . , „s)}.

Then there exists a T -module Q with an absorber, such that P ◊ Q ≥= T s.

Proof. By the universal property of the direct product, there exists a unique morphism

of T -modules „ : P ≠æ T s such that fik ¶ „ = „k, where fik : T s
≠æ T is the projection

on the k-th factor. The other way around, consider the assignment

fi : T s
≠æ P, (t1, . . . , ts) ‘≠æ [t1 · e1, . . . , ts · es] .

Since

fi
3Ë

(t1, . . . , ts),(tÕ
1
, . . . , tÕ

s
), (tÕÕ

1
, . . . , tÕÕ

s
)
È4

= fi
31

[t1, tÕ
1
, tÕÕ

1
], . . . , [ts, tÕ

s
, tÕÕ

s
]
24

=
Ë
[t1, tÕ

1
, tÕÕ

1
] · e1, . . . , [ts, tÕ

s
, tÕÕ

s
] · es

È

=
Ë
[t1 · e1, tÕ

1
· e1, tÕÕ

1
· e1], . . . , [ts · es, tÕ

s
· es, tÕÕ

s
· es]

È

(1.1.2)=
Ë
[t1 · e1, . . . , ts · es], [tÕ

1
· e1, . . . , tÕ

s
· es], [tÕÕ

1
· e1, . . . , tÕÕ

s
· es]

È

=
Ë
fi(t1, . . . , ts), fi(tÕ

1
, . . . , tÕ

s
), fi(tÕÕ

1
, . . . , tÕÕ

s
)
È
,

for all (t1, . . . , ts), (tÕ
1
, . . . , tÕ

s
), (tÕÕ

1
, . . . , tÕÕ

s
) œ T s and

fi (t · (t1, . . . , ts)) = fi ((tt1, . . . , tts)) = [tt1 · e1, . . . , tts · es]

= t · [t1 · e1, . . . , ts · es] = t · fi ((t1, . . . , ts)) ,

for all t œ T , fi is a morphism of left T -modules satisfying fi ¶ „ = 1P (because P

satisfies the DBP). Thus, „ is injective and we may identify P with the submodule

„(P ) ™ T s. As in the proof of Proposition 7.2.16, consider Q := T s/ ≥„(P )
≥= T s/P ,

which is a T -module with absorber, and the quotient map Â : T s
≠æ Q. By 1 of

Example 7.1.9, P is non-empty, and so the sequence

P
„
// T s

Â
//

fi

]]

Q

is split exact with Â surjective. By Proposition 7.2.2, T s ≥= P ◊ Q as T -modules.
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Di�erently from what we have seen for projective modules, it seems that the converse

of Proposition 7.2.19 requires stronger hypotheses.

Proposition 7.2.20. Let T be a unital truss with left absorber a œ T . If there exist

an odd positive integer s = 2k + 1 and T -modules P, Q such that T s ≥= P ◊ Q as left

T -modules, then both P and Q are tiny T -modules.

Proof. If T admits a left absorber a and “ : T s
≠æ P ◊ Q is an isomorphism as left T -

modules, then (a, a, . . . , a) œ T s is a left absorber and so aP := fiP (“((a, a, . . . , a))) œ P

and aQ := fiQ (“((a, a, . . . , a))) œ Q are absorbers as well.

Now, set 1i := (a, . . . , a, 1T , a, . . . , a) where 1T appears in the i-th position. Consider

the projection fi :=
1
T s “

≠æ P ◊ Q
fiP

≠æ P
2
, the elements ek := fi(1k) œ P and the com-

positions „k :=
3

P ≠æ P ◊ Q
“

≠1
≠æ T s fik

≠æ T
4

, p ‘≠æ fik“(p, aQ), for all k = 1, . . . , s.

For all p œ P , one finds that

[„1(p) · e1, . . . , „s(p) · es] = fi
1

[„1(p) · 11, . . . , „s(p) · 1s]
2

= fi
1

(„1(p), . . . , „s(p))
2

= p,

and so P satisfies the DBP. The proof for Q is analogous.



Appendix A

Categories

This appendix aims to familiarise or remind the reader of the basics of category theory.

We recall definitions of categories, functors, adjoints, limits and colimits. It is based

on [24],[39] and [40]. Another book worth recommendation is [17]. Let us start with a

definition of a category;

Definition A.0.1. A category C consists of

• a collection of objects, denoted by ob(C);

• for each A, B œ ob(C), a collection, denoted by C(A, B) or Hom(A, B), of maps

or arrows or morphisms from A to B;

• for each A, B, C œ ob(C), a function

C(B, C) ◊ C(A, B) æ C(A, C)

(g, f) ‘æ g ¶ f

called composition;

• for each A œ ob(C), an element 1A of C(A, A), called the identity on A,

satisfying the following axioms:

• associativity: for each f œ C(A, B), g œ C(B, C) and h œ C(C, D), we have

(h ¶ g) ¶ f = h ¶ (g ¶ f);

209
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• identity laws: for each f œ C(A, B), f ¶ 1A = f = 1B ¶ f .

Example A.0.2. Most common examples of categories are:

• category consisted of sets as objects and functions as morphisms, denoted by Set;

• category consisted of groups as objects and group homomorphisms as morphisms,

denoted by Grp;

• category consisted of Abelian groups as objects and group homomorphisms as

morphisms, denoted by Ab.

Observe that a collection is not defined. For our purpose, one can consider only

classes, so there exists a class of all sets. A class of all classes does not exist. For

the bigger picture, through Universes, I recommend reading Chapter 6 of [17]. In the

category theory, whenever one works with sets, one works with small objects. Therefore,

whenever the word small appears, and it refers to a category theory, it means that one

works with “something at most as big as” sets. For example, a locally small category

means that collections of morphisms are sets.

Definition A.0.3. An opposite or dual category Cop of a category C consists of ob(Cop) =

ob(C) and Cop(A, B) = C(B, A).

Definition A.0.4. A subcategory K of a category C consists of sub-collections of

ob(C) and C(A, B), for all A, B œ ob(K), and satisfy axioms of a category. If for all

A, B œ ob(K), C(A, B) = K(A, B), then K is called a full subcategory of a category C.

Example A.0.5. The category Ab is a full subcategory of the category Grp.

Definition A.0.6. Let C be a category and A, B œ ob(C). Then a morphism f œ

C(A, B) is

(1) a monomorphism if for all C œ ob(C) and g, gÕ
œ C(C, A), f ¶ g = f ¶ gÕ implies

g = gÕ,

(2) an epimorphism if for all C œ ob(C) and g, gÕ
œ C(A, C), g ¶ f = gÕ

¶ f implies

g = gÕ,
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(3) an isomorphism if there exists g œ C(B, A) such that g ¶ f = 1A and f ¶ g = 1B.

Definition A.0.7. Let C and D be categories. A functor F : C æ D consists of

• a function

ob(C) æ ob(D),

written as C ‘æ F(C);

• for each C, C Õ
œ ob(C), a function

C(C, C Õ) æ D(F(C), F(C Õ)),

satisfying the following axioms:

• F(f Õ
¶ f) = F(f Õ) ¶ F(f) for all f œ C(A, B) and f Õ

œ C(B, C);

• F(1A) = 1F(A) for all A œ ob(C).

Example A.0.8. Let us consider two categories Grp and Set. Then the assignment

U : Grp æ Set given by taking a group and forgetting the group structure on it, i.e.

taking an underlying set, is a functor that maps every group homomorphism into an

underlying function. This kind of functor that forgets the structure of objects is called

a forgetful functor. Analogously, one can assign to every set a group by taking a free

group over the set. Then every function between sets extends to a homomorphism

between free groups, and F : Set æ Grp is the functor given by free construction. A

functor given by a free construction is called a free functor.

Definition A.0.9. Let C, D be categories and let F : C æ D, G : C æ D be functors.

A natural transformation – : F æ G is a family of morphisms in D, –A : F(A) æ G(A)

iterated by A œ C such that for every morphisms f : A æ AÕ, the square diagram:

F(A)A
–A

✏✏

F(f)
// F(AÕ)

–
AÕ
✏✏

G(A) G(f)
// G(AÕ)

commutes. The maps –A are called the components of –.
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Definition A.0.10. A functor F : C æ D is faithful (respectively, full) if for all A, B œ

ob(C), the function: C(A, B) æ D(F(A), F(B)), f ‘æ F (f) is injective (respectively,

surjective).

Definition A.0.11. A functor F : C æ D is essentially surjective on objects if for all

B œ D, there exists A œ C such that F(A) ≥= B.

Definition A.0.12. We say that two functors F, G : C æ D are naturally isomorphic

if there exists a natural transformation between them such that all components are

isomorphisms in D. A natural isomorphism is a natural transformation for which all

components are isomorphisms.

Definition A.0.13. Given two functors F, G : C æ D, we say that

F(A) ≥= G(A) naturally in A,

if F and G are naturally isomorphic.

Definition A.0.14. An equivalence between categories C and D consists of a pair of

functors, F : C æ D and G : D æ C, together with natural isomorphisms

÷ : 1C æ G ¶ F, Á : F ¶ G æ 1D.

If there exists an equivalence between C and D, we say that C and D are equivalent.

Proposition A.0.15. A functor F : C æ D is an equivalence if and only if it is full,

faithful and essentially surjective on objects.

Definition A.0.16. Let C and D be categories. An adjunction from C to D is a triple

(F, G, Ï) : C æ D, where F : C æ D and G : D æ C are functors, while Ï is a function

which assingns to each pair of objects C œ ob(C) and D œ ob(D) a bijection

Ï = ÏC,D : D(F(C), D) æ C(C, G(D)),

which is natural in C and D, where naturality in C and D means that Ï assigns to

each arrow f : F(C) æ D, an arrow Ï(f) : C æ G(D), the right adjunct of f , in such

a way that following naturality conditions holds:

Ï(f ¶ F(h)) = Ï(f) ¶ h, Ï(k ¶ f) = G(K) ¶ Ï(f),



213

for all f and all arrows h : C Õ
æ C and k : D æ DÕ. Given such adjunction, the functor

F is said to be a left adjoint to G, while G is called a right adjoint to F . We denote by

F ‰ G that F is a left adjoint to G.

Example A.0.17. The free functor is a left adjoint to the forgetful functor.

Theorem A.0.18. (see [24], Theorem 1 and Theorem 2, pages 80-81) Each adjunction

(F, G, Ï) : C æ D is completely determined by functors F : C æ D, G : D æ C and

natural transformations ÷ : 1C æ GF , the unit, and Á : FG æ 1D, the counit, such that

composities

G ÷G
// GFG GÁ

// G , F F÷
// FGF ÁF

// F

are the identity transformations. In this case bijection Ï is given by Ï(f) = G(f) ¶ ÷C

for all f œ D(F(C), D), similarly Ï≠1(g) = ÁD ¶ F(g) for all g œ C(C, G(C)).

Definition A.0.19. Let C be a category and I be a small category, i.e. a category

such that collections of objects and morphisms are sets. A functor D : I æ C is called

a diagram in C of shape I.

Definition A.0.20. Let D : I æ C be a diagram in C.

(1) A cone on D is an object C œ ob(C) together with a family {fI : A æ D(I) | I œ

ob(I)} of maps in C such that for all maps u : I æ J in I, the triangle

A
fI

//

fJ
&&

D(I)
D(u)

✏✏

D(J)

commutes

(2) A limit of D is a cone {pI : L æ D(I) | I œ ob(I)} with the property that for any

cone {fI : A æ D(I) | I œ ob(I)} on D, there exists a unique map f : A æ L

such that pI ¶ f = fI for all I œ ob(I). The maps pI are called the projections of

the limit. If I is a small category then a limit of D is called a small limit of D.
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Example A.0.21. An object I of a category C is called an initial object if for all objects

C œ ob(C) there exists only one arrow f : I æ C. An initial object property is a limit.

Example A.0.22. Being a monomorphism is a limit.

Example A.0.23. A product of A, B œ C is a triple (P, pA, pB), where P œ ob(C),

pA : P æ A and pB : P æ B such that for any triple (L, fA, fB), where L œ ob(C),

fA : L æ A and fB : L æ B, exists a unique morphism f : L æ P such that fA = pA ¶f

and fB = pB ¶ f . A product property is a limit.

Example A.0.24. Let C be a category and s, t : X æ Y be morphisms in this category.

An equalizer of s and t is a pair (E, i), where E œ ob(C) and i œ C(E, X) such that

s ¶ i = t ¶ i and for any other pair (S, j) with the same property s ¶ j = t ¶ j, there

exists exactly one morphism f : S æ E such that i ¶ f = j. In groups a kernel is an

equalizer. An equalizer property is a limit.

Example A.0.25. A pullback is a limit of the following diagram

A

f
��

B

g
��

C

,

in C. Thus, a pullback of the preceding diagram in C is a cone (A ◊C B, pA, pB), where

A ◊C B is an object in C, pA : A æ C and pB : B æ C are morphisms such that

f ¶ pA = g ¶ pB.

Definition A.0.26. Let C be a category and I be a small category. Let D : I æ C be

a diagram in C and consider the coresponding functor Dop : Iop
æ Cop. A cocone on D

is a cone on Dop. A colimit D is a limit of Dop. If I is a small category then a colimit

of D is called a small colimit of D.

Example A.0.27. An object I of a category C is called a terminal object if for all

objects C œ ob(C) there exists only one arrow f : C æ I. A terminal object property is

a colimit.

Example A.0.28. Being an epimorphism is a colimit.
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Example A.0.29. Let C be a category and s, t : X æ Y be morphisms in this category.

A coequalizer of s and t is a pair (E, i), where E œ ob(C) and i œ C(Y, E) such that

i ¶ s = i ¶ t and for any other pair (S, j) with the same property j ¶ s = j ¶ t, there

exists exactly one morphism f : E æ S such that f ¶ i = j. A coequalizer property is a

colimit.

Example A.0.30. A coproduct of A, B œ C is a triple (C, iA, iB), where C œ ob(C),

iA :æ P and iB : B æ P such that for any triple (L, fA, fB), where L œ ob(C),

fA : A æ L and fB : B æ L, exists a unique morphism f : P æ L such that fA = iA ¶f

and fB = iB ¶ f . A coproduct property is a colimit.

Example A.0.31. A pushout is a colimit of the following diagram

A B

C
f

__

g

??

,

in C. Thus, a pushout of the preceding diagram in C is a cocone (A +C B, iA, iB),

where A +C B is an object in C, iA : A æ C and iB : B æ C are morphisms such that

iA ¶ f = iB ¶ g.

Theorem A.0.32. (see [24], Theorem 1, pages 114-115). A functor that has a left

adjoint preserves limits, analogously a functor that has a right adjoint preserves colimits.

Definition A.0.33. A complete category is a category in which all small limits exist.

Analogously, a cocomplete category is a category in which all small colimits exist.

Definition A.0.34. A functor is called continuous if it preserves all small limits.

Analogously, a functor is called cocontinuous if it preserves all small colimits.

Theorem A.0.35 ([24, Theorem IV.3.1]). For an adjunction (F, G, ‘, ÷) : C æ B :

1. A functor G : B æ C is faithful if and only if every morphism of counit ‘ is an

epimorphism.
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2. A functor G is full if and only if every morphism of counit ‘ is a split monic, i.e.

every component of counit is a monomorphism such that there exists a retraction

to this monomorphism.

Therefore G is fully faithful if and only if every component of counit ‘X : FG(X) æ X

is an isomorphism.



Appendix B

Structures with binary operations

In this appendix, we introduce basics related to sets with binary operations. The first

section focuses on a set with one binary operation, i.e. semigroup, monoid and group.

The second section consists of facts related to a set with two binary operations. For

example, near-rings and skew braces.

B.1 Semigroups, monoids and groups

Definition B.1.1.

(1) A semigroup is a pair of a set S and an associative binary operation · : S ◊ S æ S.

(2) A monoid is a semigroup S with an identity element, i.e. there exists an identity

1 œ S such that for all s œ S, 1 · s = s · 1 = s

(3) A group is a monoid in which every element has an inverse element, i.e. for all

s œ S exists an inverse s≠1
œ S such that s · s≠1 = s≠1

· s = 1.

Definition B.1.2. A map f : S æ S Õ between semigroups (groups) is called a semigroup

(group) homomorphism if for all s, h œ S,

f(s · h) = f(s) · f(h).

Moreover if f is a semigroup homomorphism between monoids such that f maps an

identity to an identity is called a homomorphism of monoids.
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Definition B.1.3. Let M be a monoid. A multiplicative closed subset S ™ M

containing a unit element in a monoid M is a left (right) Ore set if it satisfies the

• (left (right) cancellability) If for all n, m œ M and s œ S, ns = ms (sn = sm),

then there exists sÕ
œ S such that sÕn = sÕm (nsÕ = msÕ).

• (left (right) Ore condition) For any r œ R and s œ S there exists rÕ
œ R and

sÕ
œ S such that sÕr = rÕs (rsÕ = srÕ). A subset S of a monoid is called an Ore

set if it is left and right Ore set.

Lemma B.1.4. A group homomorphism is an epimorphism (a monomorphism) if and

only if it is surjective (injective).

Proof. Surjective and injective group homomorphisms are epimorphisms and monomor-

phisms. That follows as group homomorphism is a function. Every monomorphism is

injective is relatively easy and follows a similar way to the case of heaps. See proof of

Lemma 1.1.8. Every epimorphism is surjective can be found in [41].

Construction B.1.5. We will briefly discuss the construction of a free group. We

will omit to check that relations are congruences as this construction is standard and

well-known. Let X be a set. We construct a free group over a set X, G(X) as follows.

We take a disjoint union of three sets X, {e} and X≠1 := {x≠1
| x œ X}, where {e} is

a singleton set, X≠1 and X are bijective sets. Consider a set

W (X) = {x1 . . . xn | n œ N, xi œ X Û X≠1
Û {e}}

of all finite words constructed from letters of X Û X≠1
Û {e}. Now W (X) with a binary

operation given by juxtaposition, i.e. glueing words

x1 . . . xn + y1 . . . ym = x1 . . . xny1 . . . ym,

is a semigroup, i.e. a free semigroup over a set X Û X≠1
Û {e}. Now, let us generate a

congruence ≥ by

x1 . . . xiexi+1 . . . xn ≥ x1 . . . xn, for all n œ N, i œ {1, . . . , n} and xi œ X Û X≠1
Û {e}.
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Then W (X)/ ≥ with juxtaposition is a monoid, i.e. a free monoid over a set X Û X≠1.

Last step is to construct inverses, to do so let us generate another congruence ≥inv by

x1 . . . xixx≠1xi+1 . . . xn ≥inv x1 . . . xix
≠1xxi+1 . . . xn ≥inv x1 . . . xiexi+1 . . . xn,

for all n œ N, i œ {1, . . . , n} and x, x≠1, xi œ X Û X≠1
Û {e}.

Then G(X) := W (X)/ ≥ / ≥inv together with a juxtaposition is a free group with

a neutral element e.

Corollary B.1.6. Since G(X) is defined for all sets and every function between sets

uniquely extends to a homomorphism between free groups, an assignment G : Set æ Grp

is a functor. Moreover, it is a left adjoint to the forgetful functor UGrp : Grp æ Set.

Definition B.1.7. A sequence of Abelian groups

G0

f1
≠≠≠≠æ G1

f2
≠≠≠≠æ G2

f3
≠≠≠≠æ . . .

fn

≠≠≠≠≠æ Gn

is exact if for all i œ {1, . . . , n}, Im(fi) = ker(fi+1). A short exact sequence is an exact

sequence of the form

0 f1
≠≠≠≠æ G1

f2
≠≠≠≠æ G2

f3
≠≠≠≠æ G3

f4
≠≠≠≠æ 0.

Corollary B.1.8. Let sequence

0 f1
≠≠≠≠≠æ G1

f2
≠≠≠≠≠æ G2

f3
≠≠≠≠≠æ G3

f4
≠≠≠≠≠æ 0.

be exact, then f1 is a monomorphism and f2 is an epimorphism.

Definition B.1.9. We say that a short exact sequence

0 f1
≠≠≠≠æ G1

f2
≠≠≠≠æ G2

f3
≠≠≠≠æ G3

f4
≠≠≠≠æ 0.

is a split exact sequence if one of the following conditions holds:

1. There exists a group homomorphism s : G3 æ G2, called section, such that

f3 ¶ s = 1G3 .
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2. there exists a group homomorphism r : G2 æ G1, called retraction, such that

r ¶ f2 = 1G1 .

3. There is an isomorphism Ï : G2 æ G1 ü G3, such that Ï≠1
¶ r is the canonical

injection of G1 into coproduct G1 ü G3 and s ¶ Ï is a canonical projection of the

product G1 ü G3.

Lemma B.1.10 ([42, Proposition 4.3]). All the conditions in the Definition B.1.9 are

equivalent.

B.2 Near-rings, skew braces and braces

For more on near-rings, see [43]. A good introduction into braces one can find in [28].

Definition B.2.1. A near-ring is a set N with two associative binary operations +, ·,

such that (N, +) is a group and, for all n, m, mÕ
œ N ,

n(m + mÕ) = nm + nmÕ.

If N has an element 1 œ N , called an identity, such that for all n œ N 1n = n = n1,

then N is called a unital near-ring.

Definition B.2.2. Analogously to the case of rings a near-field is a near-ring such that

(N \ {0}, ·) is a group, where 0 is the neutral element for +.

Definition B.2.3. A homomorphism of near-rings is a function f : N æ N Õ that

commutes with both near-ring operations, that is, for all a, b œ N ,

f(ab) = f(a)f(b) & f(a + b) = f(a) + f(b).

Moreover, if N, N Õ are unital near-rings, then f is called a homomorphism of unital

near-rings if it preserves identities.

Definition B.2.4. A near-ring N is called a ring, if (N, +) is an Abelian group and

for all m, n, mÕ
œ N ,

(m + mÕ)n = mn + mÕn.
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Definition B.2.5. A ring homomorphism is a homomorphism of near-rings between

rings. Analogously, a homomorphism of unital rings is a homomorphism of near-rings

between unital rings that preserves identity.

Definition B.2.6. Let R be a ring. An element a œ R is called left (right) regular if

for all b œ R,

ab = 0 =∆ b = 0 (ba = 0 =∆ b = 0).

An element is regular if it is both left and right regular.

Definition B.2.7. A domain is a ring R such that for all a, b œ R,

ab = 0 =∆ a = 0 or b = 0.

Equivalently, for all a, b, c œ R,

(ab = ac =∆ b = c) and (ca = ba =∆ c = b).

Also, a domain is a ring such that all non-zero elements are regular.

Definition B.2.8. An Ideal of a ring R is a normal subgroup I of an additive group of

R such that for all a œ I and r œ R,

ra œ I & ar œ I.

If only the first (second) membership holds, we say that I is a left (right) ideal. We

write I � R, when I is an ideal of R.

Lemma B.2.9. Let I be an ideal of a ring R. Then R/I is a ring and a canonical

map fi : R æ R/I is a ring homomorphism.

Definition B.2.10. Let R be a ring. An ideal I � R is essential if for all non-zero

ideals J � S, I fl J ”= {0}.

Definition B.2.11. An essential extension of a ring S is a ring R such that there

exists an injective ring homomorphism i : S æ R, and i(S) is an essential ideal in R.
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Definition B.2.12 ([36, K.I. Beidar]). A ring R is said to be a maximal essential

extension of a ring S, if S is an essential ideal of R, and for any ring A which contains

S as an ideal, there exists a ring homomorphism h : A æ R such that h(s) = s for all

s œ S.

Definition B.2.13. A completely prime ideal of a ring R is an ideal P such that for

all a, b œ R,

ab œ P =∆ a œ P or b œ P.

Lemma B.2.14. If P is a completely prime ideal of ring R, then R/P is a domain.

Definition B.2.15. Let R be a ring and G be a group. A group ring is a ring

RG := {f : R æ G | ÷S ™ G s.t. |S| < Œ & ’x œ G \ S f(x) = 0},

with addition and multiplication given for all f, g œ RG by

f + g(x) = f(x) + g(x) f · g(x) =
ÿ

uv=x

f(u)g(v).

Definition B.2.16. Let R be a unital near-ring. The set

U(R) := {u œ R | ÷u≠1
œ R uu≠1 = u≠1u = 1}

is called the set of units and an element of U(R) is called a unit.

Remark B.2.17. A set U(R), for any unital near-ring R, is a group.

Definition B.2.18. A field is a ring which is also a near-field.

Remark B.2.19. A ring R is a field if and only if R \ U(R) = {0}, where 0 is a neutral

element of the additive group of R.

Definition B.2.20. The order of an element u œ U(R) of a ring R is the smallest

number n œ N such that un = 1.

Definition B.2.21. The characteristic of a ring R is a smallest number n such that

n · 1 = 0. If the number does not exists we say that ring has characteristic zero.
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Definition B.2.22. Let R be a ring. An R-module is an Abelian group G together

with a ring homomorphism Ï : R æ End(G), i.e. it is an Abelian group together with

an R-action · : R ◊ G æ G, (r, g) ‘æ rg such that for all r, s œ R and g, h œ G,

(rs)g = r(sg), (r + s)g = rg + sg & r(g + h) = rg + rh.

Definition B.2.23. An R-module homomorphism or R-linear map is a group homo-

morphism f : M æ N , between R-modules M, N , such that for all m œ M and

r œ R,

rf(m) = f(rm).

Definition B.2.24. Let M, N, P be R-modules. Then we say that P is projective if

for every surjective R-linear map fi : M ≠æ N and every R-linear map f : P ≠æ N

there exists a (not necessarily unique) R-linear map f̃ : P ≠æ M such that fi ¶ f̃ = f .

Diagrammatically,

M fi
// // N

P.
f̃

bb

f

OO

Lemma B.2.25. An R-module P is projective if and only if functor HomR(P, ≠)

preserves epimorphisms.

We will briefly introduce skew braces.

Definition B.2.26. A skew brace or a skew left brace is a set B with two binary

operations +, · : B ◊ B æ B such that (B, +), (B, ·) are groups and for all a, b, c œ B

the following distributivity holds

a(b + c) = ab ≠ a + ac,

where ≠a is an inverse in respect to the group operation +, not necessarily Abelian! A

skew brace in which (B, +) is an Abelian group is called a left brace. A left brace in

which analogous right distributivity rule holds is called a two-sided brace.

Remark B.2.27. In a skew brace B both neutral elements are equal. Let 0 be a neutral

element for + and 1 be a neutral element for ·, then 1 = 1 ·1 = 1 · (1+0) = 1≠1+0 = 0.
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Definition B.2.28. A skew brace homomorphism is a map between skew braces that

preserves both binary operations.

Definition B.2.29. An ideal of a skew brace B is a normal subgroup S of an additive

group of B, for all a œ B aS = Sa and for any b œ B, ab ≠ a œ S.

Proposition B.2.30 ([27, Lemma 2.3]). If S is an ideal of B then B/S is a skew

brace, and a canonical map fi : B æ B/S is a homomorphism of skew braces.

Proof. The fact that B/S is a skew brace follows by [27, Lemma 2.3]. The second

statement follows by the fact that S is a normal subgroup for both groups (B, +) and

(B, ·), so fi is a canonical map that is a homomorphism for both groups (B/S, +) and

(B/S, ·), and therefore a homomorphism of skew braces.

Definition B.2.31. Let B be a skew brace. A socle of B is a set

Soc(B) := {a œ B | a + b = ab, b + ba = ab + b for all b œ B}.

If B is a two-sided brace then

Soc(B) := {a œ B | a + b = ab for all b œ B}.

Lemma B.2.32 ([27, Lemma 2.5]). A socle of a skew brace B is an ideal.

Proposition B.2.33 ([28, Proposition 3]). If B is a finite non-trivial two-sided brace,

then Soc(B) ”= {1}.
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Universal algebra

This appendix is devoted to universal algebras and introduce the reader to the basics of

those algebras. For more on universal algebra, check [18] and [17]. In this part, we will

omit the adjective universal, but one should bear in mind that when we say an algebra,

we mean a universal algebra.

Definition C.0.1. Let A be a non-empty set and n a nonnegative integer. An n-ary

operation on A is a function f : An
æ A, where for n = 0, A0 = {ÿ} is a singleton

set. A number n is called the arity of f . We call f a nullary, unary, binary or ternary

operation if its arity is 0, 1, 2 or 3, respectively. If we do not specify the arity of f we

call it a finitary operation.

Definition C.0.2. A language of algebras is a set F of functions such that a positive

integer n is assigned to each member f of F . This integer is called the arity of f . The

subset of n-ary operations in F is denoted by Fn.

Definition C.0.3. If F is a language of algebras then an algebra A of type F is an

ordered pair (A, F ), where A is a nonempty set and F is a family of finitary operations

on A indexed by the language F such that corresponding to each n-ary function symbol

f in F there is an n-ary operation fA on A. If F is finite, let us say it has k elements,

then we write (A, f1, . . . fk) instead of (A, F ).

Example C.0.4. A group G is an algebra (G, ·,≠1 , 1), where · is a binary operation,
≠1 is a unary operation and 1 is a nullary operation such that for all x, y, z œ G, the
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following holds:

(1) (x · y) · z = x · (y · z),

(2) x · 1 = 1 · x = x,

(3) x · x≠1 = x≠1
· x = 1.

Example C.0.5. A ring R is an algebra (R, ·, +, ≠, 0), where · and + are binary

operations, ≠ is a unary operation and 0 is a nullary operation, which has the following

properties:

(1) (R, +, ≠, 0) is a group,

(2) x + y = y + x,

(3) (x · y) · z = x · (y · z),

(4) x · (y + z) = (x · y) + (x · z),

(5) (y + z) · x = (y · x) + (z · x),

for all x, y, z œ R.

Observe that a field is a quintuple (F, ·, +,≠1 , ≠, 1, 0) that consists two binary, unary

and nullary operations. On the other hand, the brace is a quadruple (B, ·, +,≠1 , ≠, 1)

with one nullary operation less.

Definition C.0.6. Let A and B be two algebras of the same language F . A mapping

– : A æ B is called a homomorphism if

–(fA(a1, . . . , an)) = fB(–(a1), . . . , –(an))

for each n-ary operation f in F and all ai œ A.

If a homomorphism of algebras – is surjective, injective or bijective, then – is an

epimorphism, a monomorphism or an isomorphism, respectively. Of course, not every

epimorphism is surjective. See Definition A.0.6.
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Definition C.0.7. Let A be an algebra with a language F and ≥� be an equivalence

class on A. Then ≥� is a congruence on A if for all n-ary functions f œ F and elements

ai, bi œ A, if ai ≥� bi holds for 1 Æ i Æ n then

fA(a1, . . . , an) ≥� fA(b1, . . . , bn)

holds.

Definition C.0.8. Let ≥� be a congruence on an algebra A. Then the quotient algebra

of A by ≥�, denoted by A/ ≥� is the algebra whose underlying set is A/ ≥� and

finitary operations satisfy

fA/≥�(a1/ ≥�, . . . , an/ ≥�) = fA(a1, . . . , an)/ ≥�,

where ai œ A and f is an n-ary function in F .

Theorem C.0.9. (see [18], Definition 6.7 and Theorem 6.8) Let – : A æ B be a

homomorphism of algebras with language F . Then the kernel of –, defined by

Ker (–) = {(a, b) œ A2
| –(a) = –(b)}

is a congruence on A. Moreover canonical map fi : A æ A/Ker (–) is an epimorphism.

Theorem C.0.10 (Homomorphism theorem). (see [18], Theorem 6.12) Let – : A æ B

be a surjective homomorphism. Then B is isomorphic with A/Ker (–).

Theorem C.0.11 (Second isomorphism theorem). (see [18], Theorem 6.15) If ≥„, ≥�

are congruences on A such that ≥„µ≥�, then an algebra A/ ≥„ is isomorphic to

(A/ ≥„)/(≥� / ≥„).

Remark C.0.12. Algebras with the same language F form a category with homomor-

phisms of algebras as morphisms. We will denote this category by F -Alg.

Proposition C.0.13 ([17], Proposition 9.1.6). Let F be a language. Then the category

F-Alg has small limits, which can be constructed by taking the limits of the underlying

sets and making them F-algebras under pointwise operations.
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Theorem C.0.14 ([17], Theorem 9.3.8). The category F-Alg has all small colimits.

Definition C.0.15. (see [17], Definition 9.4.6) A variety of F-Alg is a full subcategory

K of F -Alg for which objects are algebras which satisfies some set of identities I and

every object in F-Alg has an underlying structure of a set. A category is called a

variety of algebras if it is a variety of F -Alg for some language F .

Theorem C.0.16. (see, [17], Theorem 9.4.14) If K is a variety of F-Alg. then K has

small colimits, objects presented by generators and relations, and free objects on all

small sets.

The most common examples of the varieties are a category of groups Grp, a category

of rings, denoted by Ring, and a category of modules over a ring R denoted by R-mod.
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[28] F. Cedó, E. Jespers & J. Okniński, Braces and the Yang-Baxter equation, Commun.

Math. Phys. 327 (2014), 101–116.

[29] W. Rump, Classification of cyclic braces, J. Pure Appl. Algebra 209 (2007), 671–

685.

[30] O. Ore, Linear equations in noncommutative fields, Ann. Math. 32 (1931), 463–477.

Available online: https://www.jstor.org/stable/1968245.

[31] Z. Škoda, Noncommutative localization in noncommutative geometry,

Lond.Math.Soc.Lect.Note Ser. 330 (2006), 220-313, arXiv:math/0403276v2.
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