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ABSTRACT 

Peak power in the countermovement jump is correlated with various measures of 

sports performance and can be used to monitor athlete training. The gold standard 

method for determining peak power uses force platforms, but they are unsuitable for 

field-based testing favoured by practitioners. Alternatives include predicting peak 

power from jump flight times, or using Newtonian methods based on body-worn 

inertial sensor data, but so far neither has yielded sufficiently accurate estimates. This 

thesis aims to develop a generalisable model for predicting peak power based on 

Functional Principal Component Analysis applied to body-worn accelerometer data. 

Data was collected from 69 male and female adults, engaged in sports at recreational, 

club or national levels. They performed up to 16 countermovement jumps each, with 

and without arm swing, 696 jumps in total. Peak power criterion measures were 

obtained from force platforms, and characteristic features from accelerometer data 

were extracted from four sensors attached to the lower back, upper back and both 

shanks. The best machine learning algorithm, jump type and sensor anatomical 

location were determined in this context. The investigation considered signal 

representation (resultant, triaxial or a suitable transform), preprocessing (smoothing, 

time window and curve registration), feature selection and data augmentation (signal 

rotations and SMOTER). A novel procedure optimised the model parameters based on 

Particle Swarm applied to a surrogate Gaussian Process model. Model selection and 

evaluation were based on nested cross validation (Monte Carlo design). The final 

optimal model had an RMSE of 2.5 W·kg-1, which compares favourably to earlier 

research (4.9 ± 1.7 W·kg-1 for flight-time formulae and 10.7 ± 6.3 W·kg-1 for 

Newtonian sensor-based methods). Whilst this is not yet sufficiently accurate for 

applied practice, this thesis has developed and comprehensively evaluated new 

techniques, which will be valuable to future biomechanical applications. 
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CHAPTER 1. INTRODUCTION 

1.1 Context 

1.1.1 Neuromuscular power 

The ability to generate high levels of neuromuscular power is a critical aspect of 

performance in many sports. Peak neuromuscular power is strongly correlated with 

sprint acceleration which is an important aspect of many team sports (Baker, 2002; 

Baker & Nance, 1999a, 1999b; Chelly & Denis, 2001; Young et al., 2005). Peak power 

output also serves as a useful indicator for signs of overtraining and fatigue and 

providing evidence of the efficacy or otherwise of a training programme (Cormack, 

Newton, & McGuigan, 2008; Gathercole et al., 2015; McLean et al., 2010; Twist & 

Highton, 2013). Consequently, an athlete’s peak neuromuscular power is monitored 

regularly in many elite and professional sporting environments to track progress in 

training, increase performance readiness, and help reduce injury and illness (T. Jones 

et al., 2016; Taylor et al., 2012). 

1.1.2 Traditional methods 

Many testing methods are based on a standing vertical jump, which has long been 

established as the preferred indicator of maximal neuromuscular power (Claudino et 

al., 2017). The jump can be quickly performed without residual fatigue, allowing jump 

testing to be performed typically at the start of a training session (J. McMahon et al., 

2019). The countermovement jump is a popular choice, although some coaches prefer 

a mix of jumps depending on the needs of the sport (T. Jones et al., 2016; Taylor et al., 

2012). Most coaches prefer jump height as their metric since it can be measured with 

minimal equipment, either based on flight time or, if arm swing is permitted, using a 

jump-and-reach test (T. Jones et al., 2016). Both methods are well-known to have their 

limitations (Hatze, 1998; G. Markovic et al., 2004), but the simple test of jump height 

is convenient for field-based testing, which may well be the reason why it remains 

popular.  
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Jump height is a useful proxy for peak power, but it is not the same as the criterion 

measure (G. Markovic et al., 2004). The gold standard method uses a force platform 

based on twice integrating the time-dependent vertical ground reaction forces (VGRF). 

However, the equipment is expensive and cumbersome and requires expertise to 

operate. Testing has to be confined to the laboratory or some other suitable facility, 

making it unsuitable for field-based use. The only other alternative for many years was 

to use a simple peak power prediction equation based on jump height and body mass 

(e.g. Amonette et al., 2012; Canavan & Vescovi, 2004; Sayers et al., 1999). Many such 

equations were proposed, but the same equation’s predictive error could vary 

considerably between different groups (e.g. Tessier et al., 2013). 

1.1.3 Methods based on inertial sensors 

In recent years, researchers have attempted to use inertial sensors worn on the body to 

estimate peak power output (Choukou et al., 2014; Giroux et al., 2014; Hojka et al., 

2018; Mauch et al., 2014). The estimates were based on using the sensor data to 

compute the body’s vertical acceleration and velocity, allowing the instantaneous 

power to be computed directly by factoring in the body mass. These Newtonian 

methods depended critically on knowing the sensor’s changing orientation in the 

global reference frame so the true vertical direction could be determined (Picerno, 

Cereatti, et al., 2011). While orientation-correcting algorithms have been developed 

with increasing sophistication, they lacked the necessary precision for this purpose. 

Consequently, the peak power estimates based on these methods were less accurate 

than the simple peak power equations above.  

Inertial sensors have received considerable attention in biomechanics over the last 

decade, finding applications in many situations, often in conjunction with a machine 

learning (ML) model (Claudino et al., 2017; Halilaj et al., 2018). Typically, a suitable 

method identifies certain features in the data that are used as inputs to the model or 

neural network. The aim is to identify which of the measures do have relevance to the 

outcome variable in question. The approach has been used widely in activity 

recognition (classification models, e.g. Attal et al., 2015; Burdack et al., 2019; Groh 

et al., 2017; McGrath et al., 2019; O’Reilly et al., 2017), but only to a limited extent 
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in predicting performance measures (regression models, e.g. Derie et al., 2020). 

However, when this approach was applied in the past to the gold-standard VGRF data, 

the models based on kinematic, kinetic or coordinative variables could only explain 

66–88% of jump height variance (Aragón-Vargas & Gross, 1997; Dowling & Vamos, 

1993; Oddsson, 1987). In light of this, it would be worth considering another method 

of extracting features from sensor data. Considering the practicalities of field-based 

testing, it would be preferable if the data came from a single sensor so that the jump 

test can be administered quickly with minimal setup time. It is worth noting that in 

elite team sports, players often wear a single inertial measurement unit (IMU) that is 

typically used for GPS tracking, but the unit may also include other sensors. 

1.1.4 Principal Component Analysis 

Principal Component Analsyis (PCA) is a popular technique for reducing the high 

dimensionality of large data sets, increasing their interpretability whilst minimising 

information loss (Jolliffe & Cadima, 2016). PCA involves projecting the data onto a 

lower dimensional orthogonal subspace where the variances are maximised, an 

interpretation first proposed by Hotelling in 1933 (Bishop, 2006). The subspace is 

defined by eigenvectors of the covariance matrix called principal components (PC). 

The projected data are the eigenvalues, usually called the PC scores, which are often 

referred to as features of the data in a machine learning context. The PC scores are 

often used as inputs in subsequent ML models (Bishop, 2006; Hastie et al., 2009). The 

original data may be reconstructed from a linear combination of these features, where 

the level of accuracy depends on the number of components used. Indeed, the features 

can often be interpreted in a meaningful way, especially after applying a suitable 

subspace rotation (Hastie et al., 2009). For example, Markovic et al. (2004) interpreted 

the first PC of their analysis of jump performance data as ‘explosiveness’. Hence, the 

participants could be rated for their explosiveness by using this component. In this 

respect, PCA has similarities with Factor Analysis, although they are fundamentally 

different techniques (Jolliffe, 2002).  

There are various adaptations of PCA arising from its widespread use across many 

disciplines. The biomechanics field has embraced Functional Principal Component 
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Analysis (FPCA) (Harrison, 2014; Ramsay & Silverman, 2005). FPCA identifies 

characteristic patterns in time series data called Functional Principal Components 

(FPCs). They describe modes of variation across a set of time series or curves, which 

when plotted, have an intuitive appeal. As with PCA, each functional component is 

orthogonal to the others, making them distinct and independent. Across a diverse range 

of applications, studies have reported that these types of features can be strongly 

associated with performance measures or injury risk in rowing, swimming, 

weightlifting, race walking and jumping (Coffey et al., 2011; Donà et al., 2009; 

Donoghue et al., 2008; Floria et al., 2014; Harrison et al., 2007; Kipp et al., 2012b, 

2012a; Kipp & Harris, 2015; Liebl et al., 2014; Mallor et al., 2010; Ryan et al., 2006; 

Sacilotto et al., 2015; Warmenhoven et al., 2017a, 2017b, 2017c). The curves 

described the time evolution of either VGRF data, kinematic or kinetic variables in 

these applications. 

It would appear that FPCA would be well-suited to sensor data but there is no previous 

instance of FPCA being used in this way. Moreover, it is notable that aside from simple 

regression models (Moudy et al., 2018; Richter et al., 2014a), FPCA has not been used 

as a feature extraction method for more sophisticated models that have become 

commonplace in the ML literature. In contrast, non-functional PCA is often the 

standard method for dimensional reduction. However, it is less well suited to time 

series analysis because its component scores would themselves become time-

dependent. For a time series, this means many predictors for the model, one for each 

sampling interval, which is usually handled more appropriately by a neural network. 

In FPCA, on the other hand, there are few component scores because each principal 

component fully describes the time evolution of the feature. FPCA is a more concise 

representation, offering an intuitive understanding gained from the patterns described 

by the FPCs. Therefore, it would seem reasonable to investigate using FPCA as the 

feature extraction technique for an ML model trained to predict peak power output 

from sensor data. It is an approach that has not been previously investigated, but it 

would appear to have promise. 
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1.1.5 Machine learning 

ML techniques have developed considerably over the last four decades thanks to 

advances in statistics and computer science. Supporting these developments has been 

an exponential growth in computing power with a commensurate reduction in cost. 

The so-called classical ML models depend on prior feature extraction, as alluded to 

above, while deep neural networks (DNNs) learn to recognise features themselves 

(Bishop, 2006; Hastie et al., 2009). Many applications are in activity recognition 

concerned with tracking everyday tasks (e.g. Hammerla et al., 2016; Ordóñez & 

Roggen, 2016; J. Wang et al., 2019), but there are examples of systems to recognise 

sports movements such as beach volleyball serve types, tennis strokes and 

snowboarding tricks (Cuspinera et al., 2016; Kautz et al., 2017; D. Yang et al., 2017). 

There is an opportunity to use ML for predicting performance measures more 

extensively in biomechanics. Vertical jumping would seem to be a suitable exemplar, 

as the CMJ is a controlled movement that has been studied extensively. Since FPCA 

has shown promise as a feature extraction technique, it would be sensible to take the 

classical ML route rather than to use deep neural networks. DNNs typically require 

substantial volumes of training data (Hastie et al., 2009), which does not lend itself to 

biomechanics, where it can be challenging to obtain large data volumes. The 

computational costs of training classical models are comparatively light, making it 

possible to apply more sophisticated validation methods. 

Cross validation is a fundamental part of selecting and appraising a model where the 

aim is to find a suitable model that performs well on previously unseen data drawn 

from the same distribution (Arlot & Celisse, 2010; Y. Zhang & Yang, 2015). It is also 

vital to have an unbiased estimate of the model’s generalised predictive error and so 

avoid making overly optimistic claims of its capabilities (Cawley & Talbot, 2010). 

Cross validation makes efficient use of the available data, repeatedly splitting the data 

at random into training and validation sets and then averaging the results. The K-fold 

design has become commonplace in machine learning for its simplicity and relatively 

low computational demands (Arlot & Celisse, 2010; Kohavi, 1995). However, by 

reusing the data, model selection bias becomes an issue leading to over-optimistic error 

estimates, which sometimes can be substantial (Cawley & Talbot, 2010; Krstajic et al., 
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2014; Vabalas et al., 2019). This situation can be avoided by using nested cross 

validation, which provides the structure to allow a series of independent validation 

checks (Stone, 1974; Varma & Simon, 2006). It comes at a substantially increased 

computational cost, but it yields unbiased estimates (Vabalas et al., 2019). Nested cross 

validation has scarcely been used before in biomechanics, but in light of a wide range 

of errors reported for the same peak power prediction equations (Section 1.1.2), it 

would be appropriate to take a more robust approach in this thesis. 

1.2 Statement of purpose 

The aim of this thesis is to develop a machine learning approach for predicting peak 

power in the countermovement jump based on accelerometer signals from a single 

body-worn sensor.  

1.3 Research questions 

1.3.1 Concerning accuracy 

Countermovement jumps without arm swing are often used to determine peak power 

output, partly because the jump is more controllable and hence reliable, and because it 

places emphasis on the lower extremity. However, for some practitioners, a 

countermovement jump with arm swing is a more natural athletic movement that is 

more relevant to the sport, such as volleyball. Therefore, it will be appropriate to assess 

how well the models perform for the CMJ, with and without arm swing. 

FPCA has been applied to models predicting CMJ jump height using VGRF data 

(Moudy et al., 2018; Richter et al., 2014a), but the same approach has not been applied 

to estimating peak power. Therefore, evaluating an FPCA-based model based on gold-

standard data would support the case for the FPCA approach before proceeding to use 

accelerometer data. Hence, the first research question is: how well does an FPCA-type 

model perform when predicting peak power and jump height in the CMJ, with and 

without arm swing, based on gold-standard VGRF data? Two performance measures 

are included to allow direct comparison with previous studies.  
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Assuming the FPCA-model performs well, such models can be developed for 

predicting peak power using data from accelerometers. The data will depend on where 

the sensor is attached to the body and the type of jump. The inertial accelerations 

recorded by sensors at different anatomical locations will have different 

characteristics. Hence, one sensor’s set of characteristics may be more conducive than 

others for predicting peak power output. Therefore, the second research question is, 

how does an FPCA-type model perform when predicting peak power in the CMJ, with 

and without arm swing, based on accelerometer data from sensors at different 

anatomical positions? This is an overarching question, as the answers will depend on 

the factors raised below. 

1.3.2 Concerning model function specification 

The term ‘model function’ is defined to encompass all the procedures involved in the 

modelling process, including data augmentation, data preprocessing, feature 

extraction, feature selection and model optimisation and fitting. It reflects the ideas of 

nested cross validation, which determines the generalised predictive error of the whole 

modelling procedure (Cawley & Talbot, 2010; Krstajic et al., 2014; Varma & Simon, 

2006). 

The model’s performance depends on the underlying algorithm, but there are no 

examples of FPCA-type models based on body-worn accelerometer data to provide a 

guide. Therefore, in keeping with standard practice, a wide variety of possible 

algorithms will need to be evaluated. Therefore, the third question is, which machine 

learning algorithms are better suited to predicting peak power in vertical jumping 

based on the FPCA characteristics of body-worn accelerometer data? Answering this 

question will require each algorithm to be optimised as its performance can vary 

considerably depending on the values chosen for its hyperparameters. 

The preprocessing of the accelerometer data may be expected to influence the model’s 

predictive accuracy. Consideration will need to be given to the time window that 

demarcates the accelerometer signal. The degree of smoothing is another factor as, 

depending on its severity, it will preserve or eliminate certain characteristics, which 

may or may not contain relevant information for the model. Curve registration 
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procedures may prove valuable as they improve the curve alignment, allowing the 

curve variance to be decomposed into its amplitude and temporal components (Kneip 

& Ramsay, 2008; Ramsay & Li, 1998). Thus, these preprocessing procedures have a 

bearing on the accelerometer characteristics serving as predictors in the model and will 

influence its accuracy. These considerations are encapsulated in the fourth research 

question, how should the accelerometer data be preprocessed to minimise the model’s 

predictive error?  

It will be valuable to understand which characteristics of the accelerometer signal are 

essential to the model. The features extracted will depend on the representation of the 

accelerometer signal itself, such as whether to take the resultant or to use the original 

triaxial data, or employ other transformations. Different representations of the data 

may bring to prominence certain aspects that could be conducive to the models. These 

techniques may be considered data preprocessing, but it will be more appropriate to 

examine them separately as they focus on changing what the features represent rather 

than simply making small adjustments to them, as above. All of these different 

approaches to feature extraction are incorporated in the fifth research question, what 

characteristics of the accelerometer signal are more important to the model in 

predicting peak power?  

In many fields of science, it can be difficult to obtain sufficient data to achieve the 

statistical power needed in hypothesis testing or to develop a model with the required 

predictive accuracy. The issue is arguably more acute in the human sciences where it 

can be challenging to recruit enough, suitably qualified volunteers. As a general rule, 

a model trained on a larger data set will make predictions with smaller errors on 

average as the training data provides more examples, while the model can afford to 

have more predictors to refine estimates without leading to overfitting (Bishop, 2006). 

Therefore, understanding how sensitive the model is to sample size is an important 

consideration for experimental design. It may be possible to improve accuracy with 

data augmentation techniques in certain ranges of the outcome variable where there 

are fewer training examples (Chawla et al., 2002; Torgo et al., 2015; Torgo & Ribeiro, 

2007). In terms of jump testing, that may translate to improving the model’s accuracy 

at the higher end of the jump performance scale, where there is likely to be more 
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interest from elite sport. So the final research question is, how does sample size and 

composition affect the model’s predictive error, and can data augmentation bring 

worthwhile improvements in accuracy? 

1.4 Structure  

Chapter 2 – Literature Review 

The chapter considers current practice in athlete monitoring regarding the use of jump 

testing, its validity and reliability, and its correlation with sports performance. 

Alternative methods for predicting peak power are examined based on simple 

regression equations and earlier attempts using wearable sensors. Methods of 

predicting other discrete VGRF-related measures are considered, many of which used 

machine learning, highlighting useful techniques and approaches. The review 

examines FPCA in more detail, setting out its principles and the definition of the FPCs 

as they will form the bedrock of the approach taken in this thesis. The chapter 

concludes by examining the methodological aspects essential to selecting and 

appraising a model, including cross-validation design, optimisation and enhancements 

from data augmentation. 

Chapter 3 – Data collection 

The investigation begins with a full description of the methods undertaken to gather 

the VGRF and accelerometer data that will be used throughout the thesis. Details are 

provided concerning the participants involved, the protocols followed, and the 

calculations of criterion jump performance. The jump height and peak power measures 

will allow comparisons with other studies, while peak power will serve as the ‘ground 

truth’ for the accelerometer models. Details on the selection and calibration of the 

sensors are presented in Appendices A and B. 

Chapter 4 – VGRF models of jump performance 

This chapter assesses the FPCA technique by extracting the features from the gold-

standard VGRF data. The key features are examined to understand how they contribute 
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to jump performance using the intuitive nature of FPCs rather than simply treating 

them as predictor variables. This also provides an opportunity to evaluate the 

effectiveness of using curve registration to improve model accuracy.  

Chapter 5 – Accelerometer model selection and optimisation 

The development of an accelerometer model begins with this chapter. It sets out a 

novel and comprehensive optimisation procedure for model selection and appraisal, 

based on cross validation that was developed to ensure robust and reliable results. The 

optimisation procedure will be used throughout the subsequent chapters. The analysis 

starts by identifying the combination of sensor attachment site and jump type that 

yields a more accurate model. As a result, only the data set with the most favourable 

combination of sensor and type will be taken forward, streamlining the investigation. 

The chapter also draws up a shortlist of ML models, tuning their hyperparameters to 

minimise prediction error using the new optimisation procedure. Over the following 

two chapters, this shortlist is whittled down to a final preferred algorithm.  

Chapter 6 – Data preprocessing 

This chapter seeks to improve the shortlisted models by optimising the preprocessing 

of the accelerometer signal to reduce the predictive error. It establishes the best time 

window demarcating the start and end of the time series with respect to either take-off 

or landing. New algorithms are introduced to detect these two events based on the 

accelerometer signal to free the model from any remaining dependency on the VGRF 

data, an essential step for a field-based system. The chapter also determines the 

appropriate level of smoothing to be applied to the signal and evaluates whether curve 

registration can reduce errors further.  

Chapter 7 – Feature selection 

The final chapter on accelerometer model development investigates whether FPCA 

applied to different data representations can improve accuracy, especially when the 

FPCs are chosen more selectively. Chapters 5 and 6 work with the resultant 

acceleration taking a set number of retained components as a consecutive block 
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without considering feature selection. In this chapter, models are evaluated based on 

the features extracted either from resultant or triaxial data, or from time derivatives 

and integrations of the curves, including a pseudo power representation. These new 

representations yield a much larger set of predictors for the models, emphasizing the 

need for feature selection to avoid overfitting. Two established feature selection 

methods are employed to compare the different representations. In light of this 

analysis, a final model is chosen. 

Chapter 8 – Sampling size and Data Augmentation 

This chapter determines the final model’s learning curve, which describes its 

predictive error as a function of sample size, using a resampling method. The analysis 

also assesses the benefits of participants performing multiple trials to enlarge the data 

set. The investigation then considers two data augmentation techniques to artificially 

increase the size of the data set by increasing the number of points in sparse regions of 

the peak power range. The first method is an established technique that interpolates 

between existing observations within the feature space. The second is a new technique 

that generates new curves with random signal rotations as if the sensor was attached 

at different angles.  

Chapter 9 – General discussion 

The thesis concludes with a review of the results obtained, formally answering the 

research questions posed above. It puts into context what has been achieved in this 

thesis, highlighting its value to both biomechanics and machine learning communities. 

It takes a critical view of the methods employed and notes the difficulties of using 

body-worn sensors to estimate performance measures. An illustration shows how 

model errors reduce the sensitivity of detecting worthwhile changes in peak power. 

The prospects for applying these techniques more widely to other biomechanical 

applications are considered. Directions are recommended for future research to 

overcome the limitations encountered. 
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1.5 Code repository 

The methods and procedures were implemented in Matlab R2020a (MathWorks, 

Natick, MA, USA) and SAS Studio 3.8, University Edition (SAS Institute Inc., Cary, 

NC, USA), as specified in the text. Custom scripts were developed for all the 

investigations, including the novel optimisation procedure and the new algorithms that 

were developed. The custom code is available for download from the GitHub 

repositories found at https://github.com/markgewhite. 

  

https://github.com/markgewhite
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

It is one hundred years since Sargent (1921) first developed his eponymous jump. He 

saw it as a measure of ‘physical efficiency’, but it would later be recognised as a 

measure of neuromuscular power (Adamson & Whitney, 1971). Since those early 

developments, the vertical jump has become one of the fundamental movements 

studied in biomechanics. Development in the field has gone hand in hand with 

advances in technology, improving the accuracy and reliability of jumping power 

measurement. For practitioners today, assessing neuromuscular power is often a key 

consideration in an athlete’s physical preparation (J. McMahon et al., 2019).  

Research has been dedicated to developing suitable, field-based alternatives to the gold 

standard force platform method. Early developments created simple formulae for 

predicting peak power output based on jump height and body mass, but their accuracy 

was highly variable. Attention shifted towards using wearable sensors based on a 

Newtonian approach to track the body’s jumping movement. However, the technology 

lacked sufficient precision to allow accurate estimates of peak power to be made. 

Despite significant developments in using machine learning elsewhere in 

biomechanics, such advanced methods have yet not been applied to predicting peak 

power in vertical jumping. 

This chapter begins by reviewing the current practice in athlete jump testing across 

many different sports (Section 2.2). It considers the validity and reliability of peak 

power and jump height, the two popular measures of jump performance. Those 

measures have strong associations with sports performance and can be used as 

indicators of fatigue. Section 2.3 summarises existing methods before examining 

different approaches that have been taken to estimate peak power, including the use of 

wearable sensors. Section 2.4 takes a broader view of machine learning in 

biomechanics, highlighting useful techniques and approaches that have been used in 

predicting VGRF-related measures. Section 2.5 then looks at functional principal 

components as they can capture the essential features in time series data, which has 
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been useful in a diverse range of applications. Section 2.6 considers cross validation 

for the distinct aims of model selection and model assessment. It also examines 

optimisation methods and data augmentation strategies to improve predictive 

accuracy. Section 2.7 summarises the key findings, drawing conclusions on the 

methods and approach that should be taken to fulfil the research aims of this thesis. 

2.2 Jump testing 

2.2.1 Current practice 

Jump testing is popular amongst coaches as it can be carried out quickly with minimal 

familiarisation for athletic populations who have acquired the necessary motor skills 

(Moir et al., 2004). The tests are easy to administer, cause minimal fatigue and have 

little or no adverse impact on subsequent training sessions (J. McMahon et al., 2019; 

Twist & Highton, 2013). In practice, there are many different protocols and measures 

that coaches are interested in. A recent comprehensive survey of elite rugby union 

reported that the vast majority of practitioners (36 out of 42 coaches and sports 

scientists who responded) used jumping as their preferred test of a player’s 

neuromuscular power (T. Jones et al., 2016). The most popular jump was the 

countermovement jump (CMJ), followed by broad jumps, drop jumps, squat jumps or 

‘triple-response jumps’. More practitioners favoured jump height as their preferred 

metric (19/36 or 53%), compared to the reactive strength index (RSI) or some 

quantities associated with specific jump types. An Australian survey across 14 sports 

reported that all respondents who provided more detailed information (11) used the 

CMJ with jump height as their chosen metric (Taylor et al., 2012). The CMJ is 

commonplace in academic research where it featured in thousands of articles (1886 

PubMed, 2866 Scopus and 2979 from the Web of Science), according to a 

comparatively recent systematic review (Claudino et al., 2017). The review, which 

focused on intervention studies with at least a 3-week duration in either men or women 

but not both, reported that most studies involved athletes (60%) with a strong emphasis 

on male participants (80%). Nearly half of the sport-related studies involved soccer 

players (49%), with other prominent sports including basketball (10%), track and field 
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(8%), volleyball (5%), handball (5%), judo (3%) and rugby union (3%). In summary, 

the CMJ is the most popular jump, and hence the jump would appear to be a good 

choice for this thesis as the findings would be of interest to the largest number of sports. 

However, the validity and reliability of the CMJ and related jumps should be 

considered first. 

2.2.2 Validity and reliability 

Validity and reliability depend on the jump type and the chosen measure of jump 

performance. One of the most comprehensive studies was undertaken by Markovic et 

al. (2004), who evaluated seven ‘explosive power tests’, including five vertical and 

two horizontal jumps. The CMJ and squat jump (SJ) tests achieved the highest levels 

of reliability (Cronbach’s α = 0.97 and 0.98, respectively, compared 0.93–0.96 for the 

other jumps) based on jump height. The coefficients of variation (CVs) were also the 

lowest for these two vertical jumps, 2.8% and 3.3%, respectively. The sample was 

much larger than in previous investigations, involving 93 male physical education 

students, making it one of the most comprehensive studies. Other studies that typically 

involved fewer than 20 participants reported CVs of 4.3% and 5.0% for CMJ and SJ, 

respectively (Arteaga et al., 2000), 2.4% for both jump types (Moir et al., 2004), and 

6.3%, also for both types (Viitasalo, 1985). Myers et al. (1993) found that the CMJ 

and the broad jump were the tests most strongly associated with ‘explosive strength’ 

using factor analysis compared to a wide range of exercise assessments. Markovic et 

al. (2004) also demonstrated the similarity of jump height across jump types using a 

factor analysis in which the first principal component explained 66.4% of the shared 

variation. The CMJ jump height had the highest correlation with this component, 

which they called ‘explosive power’. Hence, CMJ jump height has good factorial 

validity, which suggests it could be used as a practical alternative measure of 

neuromuscular power for field testing where a direct measurement of peak power with 

a force platform is not available. However, jump height would only serve as a surrogate 

indicator of neuromuscular power and may respond in a different way to peak power. 

Confounding factors such as fatigue or training-induced changes in countermovement 
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depth could potentially de-couple the link with peak power (Cormack, Newton, & 

McGuigan, 2008; G. Markovic et al., 2011; S. Markovic et al., 2013). 

Vertical jumps produce good intra-day and inter-day reliability across a range of 

kinetic and kinematic parameters, making them suitable for regular athlete monitoring 

and testing (Cormack, Newton, McGuigan, et al., 2008). Relative peak power and 

jump height were reported to have inter-day CVs of 3.0% and 5.0%, respectively, 

which was slightly lower than their corresponding intra-day reliability of 5.2% and 

3.6%. In comparison, mean power (absolute and relative) had a higher inter-day CV 

of 5.5% and 5.7%, respectively, while peak force had a lower CV of 2.2%. Taylor et 

al. (2010) also found that peak power was a more reliable measure than jump height 

based on intra-day CV’s (3.4% vs. 6.6%, respectively), combined with a smaller 

worthwhile change (SWC = 3.9% and 4.3%, respectively). Hence, an individual’s 

peak power varied less from jump to jump than it did for jump height. Peak power had 

a smaller CV than the SWC, which was not the case for jump height.  

What becomes clear from these studies is that peak power has marginally better 

reliability than jump height. Practitioners may consider jump height to be a convenient 

proxy for neuromuscular power in field-based testing, based on the methods currently 

available. However, jump height only explains between 72% and 86% of the variance 

in peak power (Dowling & Vamos, 1993; Harman et al., 1990; Perrine et al., 1978). 

Jump height is the outcome of the whole jumping movement through its direct relation 

with impulse, assuming the flight-time definition. In contrast, peak power specifies the 

maximum output achieved during the jump, which has a more complicated relationship 

with VGRF, being the product of instantaneous force and velocity (proportional to 

impulse). Hence, the two measures are of a different nature, so jump height cannot 

serve well as a proxy of peak power. If a more convenient way can be found to measure 

peak power, then practitioners may wish to adopt it instead. Practitioners may tolerate 

a modest error in return for a cheaper, more convenient field-based test. If so, then a 

suitable target for this new method would be predictive errors below 1.75 W·kg-1, the 

intra-day variance averaged over four studies (Cormack, Newton, McGuigan, et al., 

2008; Hori et al., 2007; McLellan et al., 2011; Taylor et al., 2010). This predictive 
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error will add to the natural variation in an individual’s performance from jump to 

jump. Hence, ideally the model’s error should be much lower than this.  

2.2.3 Monitoring athlete training status 

Jump testing often plays an essential role in athlete monitoring, as part of a battery of 

tests which typically also include sprint tests, self-administered questionnaires and 

tests for biochemical markers taken from samples of blood or saliva (Cormack, 

Newton, & McGuigan, 2008; McLean et al., 2010; Twist & Highton, 2013). If an 

athlete does not recover adequately from heavy training or a busy competition 

schedule, their performance may be impaired, or they may become more prone to 

overuse injuries (Barnett, 2006). Jump performance measures may be more sensitive 

to fatigue than other tests. For instance, fatigue was still evident in the suppressed jump 

heights of elite female soccer players up to 69 hours after a match, unlike other 

measures, including sprint performance, perceived muscle soreness and biochemical 

markers (Andersson et al., 2008). CMJ performance metrics (flight time and relative 

peak power) and psychometric tests were found to be more suitable for monitoring 

professional rugby league players’ training status than perceived muscle soreness and 

tests for testosterone and cortisol levels (McLean et al., 2010). In that same study, there 

was evidence that relative peak power may be suitable for monitoring ‘long term, low-

frequency fatigue.’ Through a series of CMJ tests before and after an Australian Rules 

Football match, Cormack, Newton & McGuigan (2008) reported substantial drops in 

relative peak power and mean power immediately after the match and for a prolonged 

period afterwards (up to -12.4% and -13.0%, respectively), only recovering after 96 

hours. In contrast, jump height dropped more modestly (-3.6%) and had returned to 

normal after 72 hours (Cormack, Newton, & McGuigan, 2008). This finding suggests 

that athletes can adapt their jumping action to achieve the same jump height outcome 

as before, despite their neuromuscular output still being compromised. In summary, 

peak power is more sensitive to fatigue than jump height, although other measures 

related to movement strategy could be more sensitive. 
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2.2.4 Associations with sports performance 

CMJ performance measures have a strong relationship with sprint performance, a 

critical aspect of many different sports (Cronin & Sleivert, 2005). Significant 

correlations between jump height and sprint times have been reported over various 

distances (10 m, 30 m, 60 m and 100 m) for elite rugby and football players and young 

male sprinters, ranging from r = -0.56 to -0.72 (Cronin & Hansen, 2005; Smirniotou 

et al., 2008; Wisloff, 2004). Stronger correlations were seen in elite male sprinters, 

from r = -0.77 to -0.93 (Loturco et al., 2015; Young et al., 1995). The findings are not 

always consistent for peak power as some studies employed different exercises to 

measure peak power. For instance, absolute and relative peak power in loaded squat 

jumps were significantly correlated with 40 m sprint times (-0.76 ≤ r ≤ -0.52), but for 

10 m sprint times only relative peak power had a significant association (Baker & 

Nance, 1999a). Relative peak power in hopping was significantly correlated with 

sprint acceleration (r = 0.80) but not maximal track running velocity (Chelly & Denis, 

2001). The authors believed power output was the more influential factor when 

overcoming the inertia at the start than later in the sprint when running speed was 

approaching maximum. 

While sprinting has a direct correlation with jump performance, there is weaker 

evidence linking jump performance with broader measures of success in sports. In 

judo, CMJ jump height and peak power output were able to discriminate clearly 

between advanced and novice judokas (Detanico et al., 2016). There was a significant 

difference in relative and absolute peak power between male elite and sub-elite 

volleyball players, but not in terms of jump height (Sheppard et al., 2008). However, 

CMJ jump height could not generally differentiate between soccer players from 

different age groups or between teams from other divisions (Arnason et al., 2004; 

Castagna & Castellini, 2013; Mujika et al., 2009). There was greater differentiation in 

motor coordination tests than in jump height between elite and sub-elite female 

volleyball players in a sport where there is a premium on motor skills (Pion et al., 

2015). Finally, American football teams see vertical jump performance as a good 

indicator of a player’s future potential given that it is a prominent factor dictating the 

draft order in the NFL Combine (Kuzmits & Adams, 2008; McGee & Burkett, 2003). 
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No one measure of athletic performance can be predictive of success in many diverse 

sports. Still, it is notable that vertical jump performance, in particular peak power, does 

appear over and over again in the literature as a means of testing athletes. Their ability 

to generate neuromuscular power play an important role in all sports to varying 

degrees, perhaps because jumping is a fundamental skill of human movement. 

2.2.5 Relevance of peak power to human movement 

The mechanical definition of power is the rate of doing work. This thesis is concerned 

with the estimation of external mechanical power generated by the body as a whole 

rather than internal muscular power, which flows from one joint to another in the 

course of a movement (Knudson, 2009). However, care should be taken when 

interpreting neuromuscular power as the body’s maximal capacity or an intrinsic 

attribute of the athlete. This notion comes from mechanics, where the power of an 

engine or motor defines its working capacity. This analogy is a reasonable one for 

sustained activities such as pedalling on a cycle ergometer or performing repeated 

jumps (Bosco et al., 1983). In those cases, power production and dissipation occur 

concurrently, as it does with a mechanical engine (Adamson & Whitney, 1971). 

However, it is not so apt for an impulsive movement, such as jumping, because power 

dissipation mainly occurs after power production (Adamson & Whitney, 1971). It is 

more appropriate to think of jump performance being defined by the impulse, which 

determines the take-off velocity (Knudson, 2009). In this respect, the vertical ground 

reaction forces (VGRF) characteristics are of prime interest. They represent the net 

result of coordinated muscular action that ‘explains rather than describes the 

performance’ (Winter, 2005). These characteristics of the VGRF curve or their 

corresponding features of the accelerometer signals may hold the key to predicting 

peak power using machine learning models. 

Several authors have questioned why there should be such emphasis on power when 

the impulse-momentum relationship determines jump performance (Knudson, 2009; 

Ruddock & Winter, 2016; van der Kruk et al., 2018; Winter, 2005). However, the 

relevance of peak power to impulsive actions becomes apparent when considering the 

principle of late force development proposed by Hochmuth & Marhold (1977). Their 
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paper showed that over a fixed distance, the best strategy for achieving the highest 

final velocity was to generate the highest force later rather than earlier in the 

movement. If force production peaked too soon, then the remaining distance would be 

covered too quickly without the body maximising its full capability. Their analysis 

was based on accelerating a point mass with different force-time profiles. It applies to 

vertical jumping as the point mass represents all the body’s mass concentrated at the 

centre of mass (CM), the final velocity is the take-off velocity, and the fixed distance 

is the push-off height. The coordinated jumping action can be seen as an optimal 

control problem subject to constraints where the objective is to maximise the vertical 

velocity at take-off (Mandic et al., 2016; van Ingen Schenau, 1989; van Soest et al., 

1994; Zajac, 1993). 

The fixed distance constraint plays a key role in jumping coordination. The body must 

control the proximo-distal sequence of joint rotations to avoid taking off prematurely 

before the leg extensors have released all their energy (Bobbert & van Ingen Schenau, 

1988; van Ingen Schenau, 1989; van Soest et al., 1994). As part of this, biarticular 

muscles ensure power is transported efficiently from joint to joint to maximise the 

external rate of work (i.e. maximise mechanical power) (van Ingen Schenau, 1989). 

The locomotor system appears to be specifically organised to generate high levels of 

force late on in the jumping movement (van Soest et al., 1994; van Soest & Bobbert, 

1993). By definition, generating the maximum force later in the movement when 

velocity reaches its highest level requires considerable power.  

If jump test performance is to be a useful surrogate measure of general sports 

performance, then the power-generating locomotor system is of prime interest. The 

jump height is insensitive to variations in countermovement depth, but peak power 

output is more dependent on this fixed distance (Mandic et al., 2015). A deeper 

countermovement would tend to reduce peak power output, but the jump height may 

be unaffected. Ultimately, it is not the ability to jump high that is of interest to 

practitioners but how much power is developed in doing so, except for sports such as 

volleyball where jump height is a critical factor in performance. The assumption being 

made is that this power-generating capacity has wider applicability, as shown in the 

correlations with sprint performance and general sports performance above. Thus, 
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peak power has relevance not just to jumping but to throwing, cutting manoeuvres and 

many other such sporting movements. 

2.2.6 Summary 

Jump testing is an important element of athlete monitoring programmes in many 

professional sports and in academic research. Jump height is a popular measure, yet 

peak power is more reliable and sensitive to residual fatigue and performance 

improvements. Given its advantages, if the measurement of peak power could be made 

more convenient, its benefits could be put in the hands of a broader range of 

practitioners, far beyond the well-funded professional teams in sports that can afford 

force platforms. Jumping may not always be a good indicator of overall sports 

performance, but it can provide insights into sprint acceleration and performance, 

which plays a critical role in many sports. 

2.3 Methods 

2.3.1 Gold standard methods 

Force platforms have long been recognised as the gold-standard for jump performance 

measures provided the correct procedures are followed (Owen et al., 2014; Street et 

al., 2001; Vanrenterghem et al., 2001). The body does work to raise its centre of mass, 

which is computed from the force platform’s measurement of the vertical component 

of the ground reaction force (VGRF). The peak vertical displacement of the body’s 

CM is regarded as the jump height in this thesis. This definition reflects the work done 

in raising the body’s mass by this height. Some authors use the flight time definition 

of jump height instead, which ignores the height gained prior to take-off. The external 

mechanical peak power determined from the VGRF is often normalised to the body 

mass and called the relative peak power. Henceforth, unless otherwise stated, peak 

power shall refer to relative peak power. Force platforms are expensive, cumbersome, 

and entirely unsuited to practical, field-based testing. Hence, a considerable amount of 

research has been devoted to alternatives. 



Section 2.3.2 

Page 22 

2.3.2 Power prediction equations 

Equations have been developed to predict peak and average power in vertical jumping 

that were typically based on the body mass and jump height (Table 2-1). Jump height 

was obtained from the flight time, which can be obtained with a contact mat or an 

optoelectronic system: 
21

8h gt= , where g is the acceleration due to gravity and t is 

the flight time. The calculation assumes the same degree of leg extension on take-off 

and landing (hip, knee and ankle), although video evidence shows that participants flex 

their legs more on landing (Aragón, 2000; Kibele, 1998). The computed jump height 

is less than the height obtained using the work done method as it does not take into 

account the rise in the body’s CM before take-off. The Sargent jump avoids this 

problem by measuring the gain in height directly with a jump-and-reach test where the 

participant makes chalk marks on a wall or displaces vanes of a Vertec device. 

Buckthorpe et al. (2012), among others, evaluated these different methods with 40 

healthy young adults against the criterion of a force plate embedded in the floor of 

their laboratory. Vertec had a bias of -2.4 ± 6.6 cm (mean ± limits of agreement), 

which the authors attributed to the skill needed in displacing the vanes at the highest 

point. The contact mat had the largest bias (-11.7 ± 6.4 cm), which mainly reflected 

the fundamental difference between the flight-time and work done methods.  

Harman (1991) was the first to develop equations to predict peak power from jump 

height and body mass. His validity measure was based on the Pearson correlation 

coefficient (r2 = 0.77 for peak power and r2 = 0.53 for average power). He dismissed 

the original Lewis formula (Fox & Mathews, 1974) for its mistaken assumptions and 

large underestimations of peak and average powers (by 70.1% and 12.4%, 

respectively). D. Johnson & Bahamonde (1996) investigated whether other predictors 

should be included in the equation, finding that the participant’s height was also a 

significant factor, but sex was not. However, later researchers would not have standing 

height in their models. Sayers et al. (1999) developed equations for average and peak 

power estimates in the CMJ and SJ based on a large sample size of 108 men and 

women to produce equations that would be more accurate and more widely applicable. 

Compared to Harman’s SJ peak power equation, the Sayers equation achieved a higher 
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correlation (r2 = 0.88 vs. 0.77) and set the benchmark for further research. As Table 

2-1 shows, later studies reported r2 ranging from 0.77 to 0.95, with one outlier of 0.53.  

Some of those studies also sought to evaluate previously published equations using 

their own data. The systematic bias in the peak power estimate for the Harman 

equation ranged from +4% to -37%; for the Sayers equation from +11% to -27%; for 

the Canavan equation from +2% to -39%; and for the Lara equation from +23% to -

21% (Amonette et al., 2012; Canavan & Vescovi, 2004; Lara et al., 2006; Lara-

Sánchez et al., 2011; Quagliarella et al., 2011). The wide variation in errors led some 

researchers to develop power prediction equations with the express intention of doing 

so for a specific population (Lara-Sánchez et al., 2011). However, such an approach is 

not foolproof because the source of the bias may be unknown. Bias may not lie in the 

participants’ sport, age or sex, but it could arise from many other factors. Tessier et al. 

(2013) concluded that the errors reported were generally too large for such equations 

to be practical. Knudson et al. (2009) were more critical, pointing out the limitations 

of such an approach and highlighting the confounding factors of variations in 

technique and differences in body size (echoing D. Johnson & Bahamonde, 1996). 

They also pointed out the weak association between power development and impulse, 

which would be partly addressed by Samozino et al. (2008) (Section 2.3.3). These 

confounding factors will have to be addressed by any system seeking estimates of peak 

power by indirect means, as is the intention of this thesis. The machine learning 

approach will have to be sensitive to different movement strategies, building in other 

factors beyond the flight time or impulse. 

 



 

Table 2-1. Power estimation equations from the literature. 

Authors N Sex (Age) Jump Type Arm Swing Equation 
2

r  SEE (W) 

Harman et al. (1991) 17 M (28.5 ± 6.9) SJ Yes 61.9 36.0 1822h m+ −  77% Not Reported 

Johnson & Bahamonde (1996) 118 M+F (19.6 ± 1.2) CMJ Yes 78.6 60.3 15.3 1245h m H+ − −  91% 462 

Sayers et al. (1999) 108 M+F (21.3 ± 3.4) SJ Yes 60.7 45.3 2055h m+ −  88% 372 

Sayers et al. (1999) 108 M+F (21.3 ± 3.4) CMJ Yes 19.3 48.9 2007h m+ −  78% 562 

Canavan & Vescovi (2004) 20 F (20.1 ± 1.6) CMJ No 65.1 25.8 1413.1h m+ −  92% 121 

Lara et al. (2006) 161 M (19.0 ± 2.9) CMJ No 62.5 50.3 2184.7h m+ −  N/A 247 

Quagliarella (2011) 117 M (13.6 ± 2.4) CMJ No 61.2 52.3 1707.7h m+ −  89% 415 

Lara-Sánchez et al. (2011) 456 M (14.1 ± 0.8)   SJ † Yes 61.8 37.1 1941.6h m+ −  N/A 323 

Lara-Sánchez et al. (2011) 465 F (14.1 ± 0.9)   SJ † Yes 31.0 45.0 1045.4h m+ −  N/A 257 

Amonette et al. (2012) 415 M (15.4 ± 2.6) CMJ No 63.6 42.7 1846.5h m+ −  92% 251 

Tessier et al. (2013) 80 M (29 ± 7) CMJ Yes Not Reported 95% 231 

Tessier et al. (2013) 20 M+F (23 ± 3) CMJ No Not Reported 53% 512 

Ache-Dias et al. (2016) 309 M (24.5 ± 5.1) CMJ No 59.5 45.8 2303.0h m+ −  81% 277 

h = vertical jump height (cm); m = body mass (kg); H = standing height (cm); SEE = standard error of the estimate; † Abalakov jump 
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It will be more appropriate to compare the models developed in this thesis with the 

Standard Error in the Estimate (SEE) reported in the above studies, which is equivalent 

to RMSE. However, all the equations above predicted absolute peak power. In keeping 

with the sports biomechanics literature reviewed above (Section 2.2), it would be 

preferable to have an equivalent estimate of the relative peak power from these studies 

to facilitate comparisons later in the thesis. A representative approximation of the 

relative peak power can be obtained by dividing the SEE by the mean peak power 

across the cohort. For the studies in Table 2-1, the approximate error in relative peak 

power ranged from 1.8 W·kg-1 (Canavan & Vescovi, 2004) to 7.8 W·kg-1 (Quagliarella 

et al., 2011), with a mean and standard deviation (between studies) of 4.9 ± 1.7 W·kg-1. 

The smallest error of 1.8 W·kg-1 came from a sample size of only 20 (Canavan & 

Vescovi, 2004), which could be heavily influenced by one or two results and may not 

represent that equation’s predictive error in general. This study was considerably 

smaller than the others (Table 2-1), where the largest involved 456 participants (Lara-

Sánchez et al., 2011). Therefore, it would be reasonable to give more weight to the 

reported errors from studies with larger samples. Rather than weight the studies by N, 

it would be more appropriate to use N  to reflect how uncertainty in a statistical 

measure (standard error) scales with sample size. Accordingly, the sample-weighted 

predictive error for relative peak power is 5.1 W·kg-1 across all the results listed in 

Table 2-1. Restricting the calculation to results for the CMJ without arm swing, the 

sample-weighted predictive error was slightly lower at 4.6 W·kg-1. This figure is a 

more appropriate benchmark for comparisons with the models developed in this thesis. 

2.3.3 Specialised power prediction equations 

The above power prediction equations were based on a simple linear statistical 

relationship and lacked a theoretical rationale. Recognising this, Samozino et al. 

(2008) derived equations from biomechanical principles for the average force, velocity 

and power during the propulsion phase of an SJ without arm swing. As with their 

predecessors, Samazino’s equations required the body mass and jump height, but they 

also included a third term, the push-off distance (the vertical distance travelled by the 

greater trochanter from the 90° squat position to the take-off position). It enabled the 
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equations to distinguish between jumpers with the same mass achieving the same 

height, as their jumps involved different push-off distances. Based on the 11 healthy 

male participants, the average power equation explained 96% of the variance with a 

random error of ± 39.8 W. Jiménez-Reyes et al. (2017) applied the equations to the 

CMJ by providing verbal feedback to the participants to ensure they reached a 

consistent countermovement depth. The average power’s random error was 22.5 W, 

equivalent to 1.0%, based on a sample of 16 national or international-level sprinters 

and jumpers. Compared to the results from the simpler equations above (Section 2.3.2), 

these estimates were more accurate, even after making allowance for peak values being 

larger than averages, although the samples were much smaller. However, the greater 

concern lies in controlling the push-off distance as it may depart from the individual’s 

preferred countermovement depth. This may not be an issue at one level since athletes 

can generally jump from different squat depths despite not having practised them 

(Bobbert et al., 2008). However, when participants intentionally alter their 

countermovement/squat depth, peak power output drops when jumps are performed 

from deeper positions (Kirby et al., 2011; Mandic et al., 2015, 2016). Conversely, jump 

height is relatively unaffected by such adjustments provided the jump is maximal 

(Bobbert et al., 2008; Domire & Challis, 2007; Mandic et al., 2015; Salles et al., 2011). 

In conclusion, Samozino et al. (2008) succeeded in improving the jump test’s 

accuracy, but in so doing the researchers had to switch from measuring peak power to 

average power. They also required the participants to adopt a controlled 

squat/countermovement depth that may differ from an individual’s preferred level, 

thereby undermining the test’s validity. 

2.3.4 Sensor-based methods 

The advent of wearable sensor technology prompted several studies into whether 

sensors could be used to provide accurate estimates of jump performance. Most studies 

of this sort sought to determine jump height. Although that is not the measure of 

interest for this thesis, it is worthwhile reviewing the efficacy of these methods as they 

face the same difficulties and depend on similar techniques that have also been used 

to estimate peak power output. The validity and reliability of jump height estimates in 
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the SJ or CMJ vary considerably between studies and the type of method used (Table 

2-2). Only in a few cases were random errors less than 10%, and in many cases, they 

were substantially larger. The systematic errors are not a concern as an appropriate 

adjustment can be made. Jump height was computed from the sensor’s determination 

of flight time using a proprietary algorithm. Three other papers from Table 2-2 

reported an alternative result based on the sensor’s estimate of the vertical take-off 

velocity. Close inspection of the methods described in each paper does not reveal any 

apparent differences that might account for the superior results in some cases but not 

others.  

The hip-mounted Myotest sensor was responsible for the two best results – random 

errors of 8.4% (Castagna & Castellini, 2013) and 8.6% (Casartelli et al., 2010) – but it 

could also produce highly inaccurate results: 22.5% (Monnet et al., 2014) and 71.3% 

(Choukou et al., 2014). The differences may be due to the precise experimental 

procedures, such as the tension applied to the Velcro belt holding the Myotest sensor 

to the body and the participants’ individual body composition. Compression strapping, 

pressing the accelerometer onto the body to hold it firmly in place, can reduce resonant 

oscillations from soft tissue (Ziegert & Lewis, 1979; Lafortune et al., 1995; Forner-

Cordero et al., 2008). Oscillations in the signal were present, as Monnet et al. (2014) 

reported, which may have been a factor affecting the jump height estimates. The belt 

would presumably not be adjusted between trials involving different jump types, which 

may account for the similar errors between SJ and CMJ. 



 

Table 2-2. Summary of studies reporting jump height estimates using accelerometer-based methods. 

Study Participants n Sex (Age) 
Accelerom

eter 

Anatomical 

Location  
Criterion Jump  Method 

Systematic bias ± 

random error † 

Reliability 

ICC 

Casartelli et al. (2010) Basketball players 44 M (15.3 ± 3.8) Myotest Hip OJ SJ V 19.2 ± 42.9% 0.64 (3,1) 

       CMJ T 22.0 ± 8.6% 0.98 (3,1) 

       SJ T 23.2 ± 8.4% 0.98 (3,1) 

       CMJ V 28.9 ± 36.4% 0.75 (2,1) 

Picerno et al. (2011) College students 28 M+F (25 ± 2) Sensorize LB MC CMJ T 1.7 ± 15.5% 0.89 (3,1) 

       CMJ V 35.8 ± 39.5% 0.83 (2,1) 

Requena et al. (2012) Professional soccer players 30 M (18.0 ± 2.8) Keimove LB FP CMJ T 1.6 ± 14.6% 0.93 (3,1) 

       CMJ V 1.2 ± 9.6% 0.94 (3,1) 

Castagna et al. (2013) Rugby players 20 M (15.5 ± 0.8) Myotest Hip FP CMJ T -12.4 ± 8.4% 0.88 (2,1) 

Monnet et al. (2014) Physical education students 30 n/a (23 ± 2) Myotest Hip FP CMJ T 15.7 ± 22.5% 0.67 (3,1) 

       SJ T 13.2 ± 23.8% 0.74 (3,1) 

       CMJ T* 1.6 ± 21.2% 0.92 (3,1) 

       SJ T* 4.0 ± 22.7% 0.89 (3,1) 

Choukou et al. (2014) Physical education students 20 M (27 ± 6) Myotest Hip FP CMJ T 10.0 ± 71.3% 0.84 (3,1) 

       SJ T 15.6 ± 63.6% 0.83 (3,1) 

Lesinski et al. (2016) Sub-elite soccer players 19 F (14.6 ± 0.6) Gyko LB FP CMJ T -2.6 ± 12.6% 0.87 (2,1) 

OJ = OptoJump; MC = Motion capture system; FP = Force platform; LB = Lower Back; V = Take-off velocity method; T = Flight time method; * bespoke method (see text); † 95% CI 

For comparison, all results were converted to percentages based on the mean jump height of the criterion where the study did not report results in percentage terms. 
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Table 2-3. Summary of studies reporting estimates of power using accelerometer-based methods. Peak power reported unless otherwise stated. 

Study Participants n Sex (Age) Body Mass 
Accelero-

meter 
Location  Jump  

Reported  

Systematic bias ± 

random error 

For comparison 

Systematic bias ± 

random error 

Crewther et al. (2011) Weight trained 12 M (28.8 ± 6.8) 86.8 ± 9.2 kg Myotest Barbell  SJ 20kg † 141 ± 896 W 1.6 ± 10.3 W·kg-1 * 

       SJ 40kg † -180 ± 593 W -2.1 ± 6.8 W·kg-1 * 

       SJ 60kg † -122 ± 610 W 1.4 ± 7.0 W·kg-1 * 

       SJ 80kg † 23 ± 400 W 0.3 ± 4.6 W·kg-1 * 

Choukou et al. (2014) PE students 20 M (27 ± 6) 74.5 ± 7.2 kg Myotest Hip CMJ 1244 ± 1610 W·kg-1 * 16.7 ± 21.6 W·kg-1 

       SJ 872 ± 1259 W·kg-1 * 11.7 ± 16.9 W·kg-1 

Giroux et al. (2014) Trained/untrained 17 M+F (23.7 ± 3.7) 70.2 ± 11.5 kg Myotest Hip SJ 156 ± 342 W ‡ 2.2 ± 4.9 W·kg-1 ‡* 

Mauch et al. (2014) Border guards 43 M+F (46.7 ± 7.3) 87.7 ± 12.8 kg Myotest Hip SJ 158 ± 605 W·kg-1 * 1.8 ± 6.9 W·kg-1 

Hojka et al. (2018) PE students 33 M+F (21.8 ± 1.7) 69.3 ± 6.5 kg Myotest Hip CMJ 845 ± 1227 W·kg-1 * 12.2 ± 17.7 W·kg-1 

* Converted from the figures reported, based on the participants’ mean body mass. 

† Loaded SJ using a barbell with accelerometer attached; PE = physical education. 

‡ Average power. 

In all studies, the criterion calculation was based on VGRF recorded by a force platform. 
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There are fewer studies using sensors to estimate peak power in jumping, summarised 

in Table 2-3, in which the random errors varied considerably. The average predictive 

error was 10.7 ± 6.3 W·kg-1 across all those studies. Based on the sample-weighted 

calculation above (Section 2.3.2), the weighted predictive error was 11.2 W·kg-1, for 

all results in Table 2-3, and 19.4 W·kg-1 for the two studies involving the CMJ. The 

best result – 4.6 W·kg-1 (Giroux et al., 2014) – pertained to the mean power rather than 

peak power, which is inherently a smaller value. Excluding the loaded squat jumps 

results, which tend to be more accurate with heavier loading, the best result relevant 

to this thesis is an error of 6.9 W·kg-1 ~ 605 W (Mauch et al., 2014). This error is 

bigger than all of the peak power prediction equations above (Table 2-1). The SJ peak 

power estimates tended to be less error prone than the CMJ because the velocity could 

be specified as zero at the start of the propulsion phase. As with jump height estimates, 

the prediction errors were substantial to the extent that these methods could not be 

considered for practical use. 

2.3.5 Sensor orientation 

The difficulty of estimating peak power (or jump height) based on the take-off velocity 

is in determining the acceleration and velocity in the true vertical direction. It requires 

transforming sensor measurements from the device’s local frame of reference to the 

global reference frame, which implies having an accurate estimate of the sensor’s 

orientation. A sensor with only an accelerometer onboard cannot do this except when 

it is stationary, as only then can it determine the gravitational vector (Veltink et al., 

1996). It can find its orientation with respect to a reference position using angular 

velocity data if the sensor also incorporates a gyroscope. The most straightforward 

procedure is integrating the noisy gyroscopic data over time, but this quickly leads to 

drift, curtailing the usable time window significantly (Sabatini, 2011). Instead, various 

techniques have been developed and refined over the years that use the accelerometer 

and magnetometer readings (if available) to make corrections continually to the 

orientation estimate.  

Kalman filters correct for drift by estimating the direction of gravity from the 

accelerometer data, but this only works well in quasi-static conditions (Sabatini, 2011). 



Section 2.3.5 

Page 31 

Filters that also factor in the direction of the Earth’s magnetic field make more accurate 

estimates of the sensor’s orientation, but they are prone to localised distortions in the 

magnetic field from ferromagnetic materials and electrical sources (Bachmann et al., 

2004; de Vries et al., 2009). Extended Kalman Filters (EKFs) use a stochastic 

algorithm that predicts the future state of the system, adjusting the emphasis placed on 

the accelerometer and magnetometer data for each time interval (Mazzà et al., 2012; 

Roetenberg et al., 2007; Sabatini, 2006; Yun & Bachmann, 2006). EKFs are well-

suited to human movement studies because their limitations are not generally 

considered a concern in those situations (Sabatini, 2011). The other leading technique 

is a quaternion-based, complementary filter, which has achieved similar levels of 

accuracy at low computational cost (Bergamini et al., 2014; Madgwick et al., 2011; 

Tian et al., 2013).  

Validation studies report that Kalman-type filers have an orientation RMSE generally 

in the region of 1–5° averaged over the recording period for measurements including 

trunk sway and hip and knee joint angles in walking, and limb orientations in everyday 

manual tasks (Bergamini et al., 2014; Cooper et al., 2009; Favre et al., 2008; Godwin 

et al., 2009; Luinge & Veltink, 2005; Mazzà et al., 2012; Shull et al., 2014). Notably, 

errors increased for faster movements, such as when stacking crates faster or walking 

more quickly (Cooper et al., 2009; Luinge & Veltink, 2005). Estimates of attitude 

(inclination angles) had smaller errors than for heading (direction) (Bergamini et al., 

2014). This would be more favourable for the CMJ as it is performed in the sagittal 

plane with attitude changes. Most of the movements studied were moderate activities 

performed at relatively slow speeds compared to fast, sporting movements (e.g. the 

fastest treadmill speed was 2.4 m·s-1 or 8.6 km·h-1; Shull et al., 2017). The one paper 

that studied vigorous movements (sweeping and table washing) reported substantial 

errors in the range of 10–20°, with peak errors amounting to 23% of the task's angular 

range (Godwin et al., 2009).  

All such filters work by anticipating future movements, and so there is always a 

noticeable lag in response to a change of direction as the filter responds (Figure 2-1). 

Hence, more dynamic movements with higher inertial accelerations can be expected 

to incur larger errors. This matters for a system that seeks to quantify performance in 
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a short, dynamic and discrete movement such as the countermovement jump, which 

involves a rapid change of direction. Computing the vertical velocity to estimate the 

jump height or peak power requires the integration of true vertical acceleration. Even 

with small errors, estimated orientation can lead to substantial error in the jump 

performance metric. Testament to the precision required comes from the gold standard 

method where great care must be taken in determining bodyweight and the times of 

jump initiation and take-off (Owen et al., 2014; Street et al., 2001). Although the best 

orientation algorithms could achieve an RMSE of ~1° in moderate activities, when 

applied to jumping, they could not reach the level of accuracy needed to estimate 

sensor orientation (Picerno, Camomilla, et al., 2011). In conclusion, these Newtonian 

approaches that compute peak power directly do not appear to be a potentially viable 

solution as they are overly sensitive to measurement errors. 

 

 

Figure 2-1. Sensor-based orientation lag of magneto-gyro algorithm estimating trunk sway 

in walking (dashed line) compared to a Vicon motion capture system (solid line). Shading 

indicates one standard deviation. ©2017 IEEE. Reprinted with permission from Shull et al. 

(2017). 
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2.4 Predicting VGRF-related variables 

There is a wider body of research into methods to predict the VGRF profile or related 

discrete measures using wearable sensors as a low-cost, convenient alternative to force 

platforms. Much of this research relates to gait analysis, where interest focuses on 

determining peak ground reaction forces or initial loading rates in walking and running 

related to injury risk (Ancillao et al., 2018). Since peak power is also computed from 

the VGRF, these studies reveal a wide range of approaches to estimating kinetic 

variables from sensor data. Moreover, certain aspects of the machine learning methods 

or their findings have relevance to this thesis as they will help inform the choice of 

methods. Other techniques using kinematics data from motion capture systems or 

based on two-segment biomechanical models do not have direct relevance to this thesis 

and are beyond the scope of this review. 

2.4.1 Models predicting discrete VGRF measures 

It will be appropriate to consider the studies predicting discrete measures first, as peak 

power is such a variable (Table 2-4). The early studies in this field established 

correlations between peak VGRF and the peak resultant acceleration in the CMJ (on 

landing) with a sensor worn on the upper back (r = 0.55, p < 0.05) (Tran et al., 2010), 

or on the shank (r = 0.90, p < 0.01) (Elvin et al., 2007). Similar correlations were 

reported for hops, drop landings, and rebound jumps performed by gymnasts 

(r = 0.71–0.83, p < 0.05) (Simons & Bradshaw, 2016). The activity tracking studies 

obtained higher correlations, most likely because they compared values averaged 

across multiple ground contacts rather than predictions for individual steps 

(Neugebauer et al., 2012, 2014). Including participant characteristics in the models 

(e.g. body mass, sex, age), in addition to the sensor data, did not improve their accuracy 

(W. Johnson et al., 2017; Meyer et al., 2015; Neugebauer et al., 2012, 2014). This 

finding is consistent with D. Johnson & Bahamonde (1996), who found sex was not a 

significant covariate in their peak power prediction equation (Section 2.3.2).  

 



 

Table 2-4. Summary of the key studies predicting GRF-related discrete measures. The text may refer to other studies as this list is not exhaustive. 

Study Sample † Activity Measure 
Source 

Data 

Sensor 

Location 

Feature 

Extraction 
OT ‡ Model CV §  r / rRMSE * 

Elvin et al. (2007) 
6 / 18 

108 

Countermovement 

Jumps 
PVGRF, JH 1A TB Peak N Correlation N 0.90, 0.94 

Neugebauer et al. 

(2014) 

44 / (6+6)×30s 

528×30s 
Walking & Running 

PVGRF* 

PBGRF* 
3A, SC HP 

Mean Axis 

Peaks 
N 2 × GMM Y 0.97, 0.66 

Simons & Bradshaw 

(2015) 

12 / (10+3+3) 

192 

Hop, Drop Landing, 

Rebound Jump 
PVGRF RA LB, UB Peak N Correlation N 0.83, 0.73, 0.76 

Guo et al. (2017) 
9 / 2 

18 
Walking Tasks PVGRF 3A LB, UB, FH None N NARMAX N 3.8%, 5.0% ¹ 

Ngoh et al. (2018) 
7 / (1+1+1) 

21 

Walking  

(10 km·h-1) 

IVGRF 

PVGRF 
1A FT None N ANN N 15.3%, 5.5% 

Wouda et al. (2018) 
3 / 3×3mins 

9×3 mins 
Running 

KJA, LDRT, 

PVGRF 
3 × 3AGM XSens None Y 2 × ANN Y 0.85, 0.75, 0.79 

Gurchiek et al. (2019) 
15 / (1+1) 

30 

Sprint Start/ 

Change Direction 
VGRF 3AGM LB None Y Ridge Y 0.50, 0.66 

Derie et al. (2020) 
93 / 16 

4037 
Running LDRT 2 × 3A 2xTB Statistical N XGB Y 0.86, 0.88, 0.97 ² 

Pogson et al. (2020) 
15 / 40 

600 
Running 

IMP, PVGRF, 

LDRT 
RA UB PCA N MLP N 0.36, 0.86, 0.79 

† Top line: Number of participants / Trials per participant separated in brackets if more than one activity. Trial duration is stated, if relevant. Bottom line: Total sample size. 

‡ Signal orientation transformation to global reference frame; § Cross validation; * Correlation or relative RMSE with criterion in order of the measures listed, except where noted. 

¹ RMSE for Controlled speed, Freely-chosen speed; ² Subject-independent (no subject features), Subject-independent (with subject features), Subject-dependent.  

Discrete Measures: IMP = Impulse; IVGRF = Initial Peak VGRF (rearfoot strike); JH = Jump Height; KJA = Peak Knee Joint Angle (Flexion Extension); LDRT = Peak Loading Rate; 

MVGRF = Mean VGRF; PVGRF = Peak VGRF; PBGRF = Peak Braking GRF; * indicates the measure was averaged over the trial. 

Source Data: RA = Resultant Acceleration; 1A = Uniaxial Acceleration; 3A = Triaxial Accelerations; 3AGM = Triaxial Accelerometer, Gyroscope and Magnetometer (i.e. IMU); 

XSens = Full-body suit incorporating 17 IMUs (Roetenberg et al., 2013); Underline indicates location that produced best results in study. 

Sensor Locations: FH = Forehead; HP = Hip; LB = Lower Back; LPF = Low Pass Filtering; SC = Subject Characteristics; UB = Upper Back (Trunk). 

Models: ANN = Artificial Neural Network; MM = Mixed Linear Model; GMM = Generalised Mixed Linear Model; MLP = Multi-Layer Perceptron Neural Network; Ridge = Ridge Linear 

Regression; NARMAX = Non-linear Auto-Regressive Moving Average model with exogenous inputs; XGB = Gradient-Boosted Tree. 
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Later studies employed more sophisticated machine learning approaches for walking 

and running, but the fit was not necessarily better, which may be due to the activities 

themselves being more dynamic and variable (Derie et al., 2020; Pogson et al., 2020; 

Wouda et al., 2018). Certain variables may also be harder to predict than others, such 

as impulse and the peak loading rate compared to the peak VGRF (Pogson et al., 2020). 

Those kinetic metrics were derived from the predicted VGRF curve that achieved a 

reasonably good fit, but the plots show large errors (Figure 2-2). The impulse 

predictions were much less accurate than the other two measures because error 

accumulated across the time domain. Therefore, it may be better to calculate the 

measure directly rather than infer it from a predicted curve. This observation has 

relevance to the aims of the current thesis as peak power is attained immediately 

following a rapid rise in force production before the propulsion phase. 

Given the previous discussion on sensor orientation (Section 2.3.5), it is notable that 

only two studies chose to reorientate their sensor data to the global reference frame 

(Gurchiek et al., 2019; Wouda et al., 2018). The study by Wouda et al. (2018) is 

significant because the authors used the XSens whole-body suit incorporating 17 

IMUs, which some authors consider the gold standard for measuring body-segment 

dynamics with wearable sensors (Shull et al., 2017). They used one neural network to 

predict joint angles from the XSens orientation data. A second neural network was 

used to estimate the knee flexion/extension angle, peak VGRF and peak loading rate 

from the predicted joint angles and the XSens vertical acceleration data. Despite this 

sophisticated approach using two linked networks, the results (Figure 2-3) were no 

better than those from a simpler gradient-boosted tree model (Derie et al., 2020) or a 

perceptron network (Pogson et al., 2020), both of which did not employ a signal 

orientation transformation.  
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Figure 2-2. Estimation of discrete measures obtained from the predicted VGRF curve for 

three different activities: steady running (black pluses); running accelerations (blue 

circles); running decelerations (red triangles). VGRF curves estimated using multi-layered 

perceptron neural network based on trunk inertial acceleration. Reproduced from Pogson 

et al. (2020) under open access guidelines. 

 

 

Figure 2-3. Predictions of peak VGRF for each running ground contact-based where the 

colours identify different participants. Left plot: prediction vs. criterion vGRF. Right plot: 

residuals (errors) vs. mean of prediction and criterion. The estimates were obtained from 

two neural networks working in series based on orientation angles and vertical 

accelerations provided by XSens IMUs. Reproduced from Wouda et al. (2018) under open 

access guidelines. 

 

2.4.2 Neural networks predicting GRF Profiles 

Other studies aimed to estimate the GRF-time profile rather than discrete values, where 

errors were averaged over the ground contact period. Such reported errors can 

understate much larger variances seen in certain regions of the curve. A good example 

of this can be seen in the study by W. Johnson et al. (2019), in which convolutional 

neural networks (CNNs) predicted VGRF curves for a running sidestepping 

manoeuvre (Figure 2-4). The overall correlations were high (GRF r = 0.97, 0.96, 0.87, 
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respectively for the vertical, anteroposterior and mediolateral axes), but there are 

evidently large variances in the initial loading phase (W. Johnson et al., 2019). The 

reported overall correlations would have been enhanced by the subsequent longer 

portion of the signal where the curves were smooth and slowly changing. Moreover, 

these results were the best achieved with this approach, which was applied to various 

data subsets. The overall curve fits varied considerably (r = 0.70–0.96 for vertical, 

r = 0.57–0.95 for anteroposterior and r = 0.25–0.87 for mediolateral) for data sets 

covering running only, sidestepping only, different running speeds, or running with 

acceleration or deceleration. W. Johnson et al.’s (2019) correlation method averaged 

out errors, whereas Pogson et al. (2020) effectively reported a cumulative error.  

 

 

 

Figure 2-4. VGRF profiles for orthogonal axes predicted by two CNNs using actual triaxial 

accelerometer data as input (blue = prediction; red = criterion). The networks were trained 

on synthetic inertial accelerations from motion capture systems. The correlation figures in 

each of the graphs refer to the range of possible fits obtained with different data subsets. 

Reproduced from W. Johnson et al. (2019). 

 

It should be noted that the CNNs were trained on synthetic accelerometer data 

computed from motion capture data drawn from a large database of over 1200 trials. 

The test data used to produce the plots above (Figure 2-4) were actual accelerometer 

data provided by another laboratory. The CNNs trained on the resultant acceleration 

were more accurate than those using acceleration vectors aligned to the principal axis 
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(anterior direction). Predictions of the Ground Reaction Moment (GRM) were less 

accurate than GRF with the best correlation of r = 0.65, which lends more weight to 

the notion that measures, such as peak power, derived from the VGRF data may be 

harder to predict.  

Deep neural networks often require substantial volumes of data due to the complexity 

of their design, the signal-to-noise ratio, and the difficulty of the problem. Across 

multiple layers and nodes, their numerous parameters amount to a giant regression 

model with a very large number of degrees of freedom (Hastie et al., 2009). W. 

Johnson et al. (2019) took advantage of transfer learning to reduce the data set required 

by using one of two pre-trained networks. Transfer learning is a technique in which 

pre-trained networks can be re-purposed to new applications (Pan & Yang, 2010). W. 

Johnson et al. (2019) employed CaffeNet and ResNet-50, two state-of-the-art networks 

trained on 1.4 million images (1000 classes) from the ImageNet database 

(Russakovsky et al., 2015). The accelerometer time series were converted into RGB 

images with a suitable coding scheme, a transformation technique to allow researchers 

to harness the power of image recognition networks (Z. Wang & Oates, 2015). 

An alternative approach would be to use Long Short-Term Memory (LSTM) neural 

networks, which are specifically designed for time series (Hochreiter & Schmidhuber, 

1997). LSTMs were recommended for short activities with a ‘natural order’, such as 

stepping manoeuvre, based on 4000 experiments with public human-activity data sets 

(Hammerla et al., 2016). The same study found that CNNs were better for inferring 

long-term repetitive activities, such as walking or running. LSTMs would appear to be 

better suited than CNNs to modelling side or discrete movements like a vertical jump. 

However, pretrained networks are not available because the task itself is quite 

specialised, limiting any potential gains from transfer learning. LSTMs would 

typically have to be trained on the data collected in the study. Even the data archive 

used in W. Johnson et al. (2017, 2018, 2019), which is exceptionally large by 

biomechanics standards, appears small compared to the ImageNet database. In an 

earlier study, W. Johnson et al. (2017) trained a partial least squares model (PLS) on 

the same motion capture data rather than using a CNN. The model produced slightly 

higher levels of accuracy for the sidestep movement than the CNN for the sidestep 
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manoeuvre, the only movement considered (GRF r = 0.99, 0.98, 0.97, respectively, as 

above). The model was considerably simpler, but it still required substantial amounts 

of data. Individual predictors in the model were mapped to time series points. This 

arrangement significantly increased the model’s degrees of freedom, necessitating a 

large data set.  

It should be remembered that the training data were synthetic accelerometer signals 

derived from motion capture data, so it was not a true representation. In reality, sensor 

data is not so extensive as it depends on attachment points. In contrast, motion capture 

data provides an external view of the activity in the global reference frame. Moreover, 

if the intended application relates to professional or elite sport, the pool of available 

high-performing athletes meeting these requirements may be quite limited. That is the 

case in this thesis as regular athlete monitoring is carried out in professional and elite 

sport. Therefore, it would be necessary and appropriate to seek an alternative to deep 

learning networks. A typical machine learning model would have far fewer degrees of 

freedom as it would depend on a more concise representation. 

2.4.3 Feature extraction 

It is often necessary to employ data reduction techniques, such as mapping the data 

onto a lower-dimensional space or computing the various statistical measures, hoping 

that some of those characteristics may be useful to the model. Finding the right set of 

features or an effective feature extraction method is vitally important in machine 

learning (Halilaj et al., 2018). Although activity recognition systems use feature 

extraction (Cust et al., 2019), only Derie et al. (2020) used statistical measures from 

the VGRF-related studies listed in Table 2-4. The features extracted from the triaxial 

acceleration time series in each dimension included the mean, maximum, number of 

peaks and their timing, as well as more complex features such as coefficients for 

continuous wavelets, Fourier transforms and an autoregressive model.  

These features have similarities with those identified in research conducted in the 

1980s and 1990s when scientists sought to identify the VGRF curve characteristics in 

vertical jumping. They hoped the VGRF curves could become a diagnostic tool 

providing insights into the temporal and kinetic aspects of jumping so that specific 
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training programmes could be devised (Oddsson, 1987). Early research was promising 

as ten force-time parameters were identified explaining 73% of the jump height 

variance, including the first and second VGRF peak values and their relative and 

absolute timing (Oddsson, 1987). Dowling & Vamos (1993) undertook a more 

comprehensive investigation, developing a linear model of jump height with kinetic, 

kinematic and temporal variables as predictors. Only six of the 19 variables considered 

were significantly related to jump height: peak force, peak positive and negative 

power, the ratio of positive to negative impulse, and the timings of peak force and peak 

positive power. Peak power explained the highest proportion of the jump height 

variance (86%), which on its own was greater than that for any combination of two or 

three other variables.  

Aragón-Vargas & Gross (1997) took the approach a stage further by devising a 

comprehensive list of 27 variables (kinetic, kinematic and coordinative) relating to 

jump execution characteristics. The kinematic variables included joint angles at take-

off and peak joint angular accelerations (hip, knee and ankle) and average vertical 

acceleration. The kinetic variables were external peak and mean power, peak joint 

moments, peak joint powers, and net joint torques (peak values and at the time of joint 

reversal). Other variables captured certain aspects of coordination including the 

relative timing of joint reversals, the time difference between the first and last peak net 

joint torques and the relative timing of the peak velocity differences between proximal 

and distal joints for each segment. Crucially, all these variables were discrete, many 

of which came from motion capture data, not just from the force platform. In certain 

respects, these variables have more in common with inertial sensor data, which detect 

movement from its net effect on the body’s CM. 

The models were limited to three variables to prevent overfitting, so several possible 

jump height models were presented. The best models included various combinations 

of external peak and mean power, body mass or the average vertical acceleration, 

explaining up to 91% of the jump height. On one level, the findings demonstrate the 

importance of external mechanical power in achieving a movement outcome, whether 

it be jump height or some other sport-related objective. In another respect, the 

inclusion of the average vertical acceleration is significant for this thesis as it supports 
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the idea of using an inertial sensor. The other variables relating to joint powers, 

moments and the timing of joint reversals were weakly correlated with jump height. 

The body appears to exploit the degrees of freedom available represented by these 

variables to achieve the same performance outcome. Such movement variability will 

be an issue for a model based on inertial accelerations as such additional movements, 

although intrinsic to human movement, could become a confounding factor in the 

model. On this point, Dowling & Vamos (1993) concluded that the high degree of 

variability in the VGRF curves’ shape made them impractical as a diagnostic tool. 

However, the nuances in the VGRF curves may reflect localised elements of the 

locomotor system, such as co-contraction and other self-organising mechanisms 

(Davids et al., 2003; Glazier et al., 2006). Hence, they may not have a critical bearing 

on the performance outcome. 

2.4.4 Summary 

The studies reviewed above achieved moderate to high levels of accuracy, but none 

stands out. It is difficult to establish which techniques perform better than others (i.e. 

sensor attachment location, feature extraction method, model or neural network, etc.) 

because the interaction between such factors is unknown. There are also differences in 

sample size, population and experimental design. Nevertheless, this review has 

revealed that inertial accelerations from body segments do have reasonably high 

correlations with VGRF measures. Hence, machine learning methods could be applied 

to body-worn sensor data with some success, as the studies above demonstrated. 

Transformation of the sensor signal was not necessarily beneficial, nor was the 

inclusion of participant characteristics in the model. Estimating a discrete measure 

such as peak power should be done directly rather than via a predicted VGRF curve. 

Despite the considerable attention they receive, deep neural networks do not always 

outperform classical machine learning models. They also require large volumes of 

training data which can be challenging to obtain, particularly in the biomechanics field.  

The early research with discrete VGRF measures indicates that discrete measures 

(kinematic, kinetic or coordinative) might not be the best way to characterise the data 

because they may discard potentially valuable information (Harrison, 2014). They may 
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also be inadequate for describing coordinated movement that is inherently variable 

(Glazier et al., 2006). There are other more efficient data reduction methods that 

capture the essential characteristic features in the data, including Functional Principal 

Component Analysis. FPCA yields continuous measures that are statistical in nature, 

describing the modes of variation across a set of curves.  

2.5 Functional Data Analysis 

FPCA is a popular technique from functional data analysis, a branch of mathematics 

that represents time-series data as functions, allowing patterns in the data to be 

analysed as entities in their own right (Ramsay & Silverman, 2005). It has become 

increasingly relevant to biomechanics research thanks to new technologies producing 

greater volumes of time series data (Harrison, 2014; Ullah & Finch, 2013). The data 

points may be discrete, but the values reflect an underlying biomechanical variable 

that is continuous. Functional Principal Components (FPCs) describe the time-

dependent modes of variation about the cross-sectional mean (e.g. Figure 2-5). The 

associated FPC scores indicate the degree to which each variation mode is present in 

each curve. FPCA implicitly assumes a mutual interdependence between neighbouring 

time points, unlike non-functional PCA, which treats each point as being independent 

of the others (Section 2.5.5). As such, FPCs describe the time-ordered relationships 

considered so crucial for LSTMs, but without needing to represent the data as long 

time series or use such neural networks. 
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Figure 2-5. Example of a Functional Principal Component: the pin force of a rowing stroke 

reproduced from Warmenhoven et al. (2017b). (A) FPC function multiplied by twice the SD 

(pluses) and the negative value (minuses). (B) FPC added to the mean force showing the 

positive and corresponding negative ranges.  

 

2.5.1 Functional data analysis 

Functional data analysis aims to represent a set of discrete observations, jy , 

{1, ..., }j n= , according to the model, ( )j j jy x t = + , where j  are the measurement 

errors and ( )jx t  is the quantity of interest. The function x  is described by an expansion 

of K basis functions, ( )k t : 

 
1

( ) ( )
K

k k

k

x t c t
=

=
 

(2.1) 

where kc  are suitably chosen coefficients (Ramsay & Silverman, 2005). B-splines are 

the most commonly used basis function for non-cyclical data, owing to their flexibility 

and speed of computation (Ramsay & Silverman, 2005). B-spline functions are 

piecewise polynomials, defined over a narrow band of the time domain, that overlap 

with neighbouring b-splines. A b-spline of order n is a polynomial of degree n−1, 

which spans n time intervals. Flexibility can be enhanced by increasing the density of 

b-splines with more basis functions in the expansion or by using higher order b-splines. 

For datasets recorded using high sampling frequencies, such as in biomechanics, it is 

reasonable to use fewer numbers of basis functions than the number of sampling points 
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provided there remains flexibility to capture the features of interest (Ramsay & 

Silverman, 2005).  

Achieving a good fit for ( )x t  to the observations, jy , involves a trade-off between 

bias and sampling variance. An excessive reduction in bias would have ( )x t  passing 

too closely to every observation, making the function follow too closely the noisy 

deviations in the raw data. On the other hand, reducing sampling variance too far 

would result in an overly smooth ( )x t  that does not reflect the true variance in the 

data. The typical approach (so far as biomechanics is concerned) is to add a 

regularisation term to the fitting criterion, the residual sum of squares, which penalises 

high curvatures (second term). The criterion to be minimised, the penalised sum of 

square errors (PENSSE), is defined as: 

 ( )
22

PENSSE ; ( ) ( )m

j j

j

x y y x t D x d     = − +       (2.2) 

where   is the roughness penalty and mD  is a differential operator of order m.   is 

the time as a continuous variable in place of the discrete representation, jt . Usually, 

2m =  to obtain the curvature, but higher orders are sometimes required if the 

differentiated curve is not well-behaved (Ramsay & Silverman, 2005).   is 

determined by generalised cross validation (GCV), an efficient optimisation procedure 

in which a grid search (Section 2.6.3) is often performed to determine largest 

roughness penalty that does not induce a rise in the GCV criterion (Ramsay & 

Silverman, 2005). In defining ( )x t  as a continuous function whilst controlling 

curvature, FDA assumes that the underlying variable has regularity with no 

discontinuities, which is appropriate for VGRF and inertial acceleration, the two data 

sources in this thesis. 

The first FPC, 1( )  , is the eigenfunction that maximises the variance in the 

corresponding eigenvalues (FPC scores). The FPC scores are defined as the inner 

product: 

 1 1( ) ( )i is x d   =   (2.3) 
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where 1is  is the FPC1 score for the i-th curve. Each subsequent FPC (order m) is 

orthogonal to all previous FPCs (and by implication all subsequent ones). 

Orthogonality requires the inner product to be zero with the further requirement that 

all FPCs must be normalised: 

 0, 1,  m m m m m m   
= =    (2.4) 

Hence, the m-th order FPC scores are defined as:  

 ( ) ( )im m is x d   =   (2.5) 

This procedure leads to a progressive reduction in the explained variance associated 

with each successive FPC. The FPCs, together with the FPC scores, provide an 

approximation of the original function: 

 
1

( ) ( ) ( )
p

i im m

m

x t x t s t
=
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which can be made more accurate by retaining more FPCs (increasing p) from the 

FPCA procedure. Note that the FPCs define the variance about the cross-sectional 

mean function, ( )x t . Thus, through this data reduction technique, each curve is defined 

by a relatively small number of FPC scores, specifying its particular combination of 

characteristic features. The orthogonality constraint yields FPC scores that are 

uncorrelated with scores from all other FPCs. Mutual independence is a useful 

property for predictor variables in machine learning models as it ensures the explained 

variances in the outcome variable do not overlap. For investigators, interpretation can 

be made easier by applying a varimax rotation to the FPCs. Varimax rotations 

rebalance the variance distribution so that each FPC mainly describes a single feature 

rather than several. The FPCs still retain their orthogonality, but their associated FPC 

scores become correlated. This transformation is not helpful for statistical models as it 

introduces multicollinearity to the FPC scores, which becomes a concern when r > 0.9 

or VIF > 10 (Field, 2013).  
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2.5.2 Applications to biomechanics 

Biomechanical applications of FPCA cover a range of sports and include four 

investigations of the CMJ (Table 2-5). The articles give prominence to the FPC plots, 

which present the variance about the mean curve described by a given functional 

component, offering the non-specialist an immediate and intuitive understanding 

(Figure 2-5, above). Donoghue et al. (2008) discovered runners who had previously 

suffered from Achilles tendon-related injuries had movement patterns that were 

distinctive from those of healthy controls. The authors concluded that FPCA-based 

continuous kinematic patterns provided more important information than traditional 

techniques based on discrete variables, such as peak joint angles. Several studies found 

significant differences in the time-dependent characteristic patterns of the quantities 

under investigation between different performance levels and other categorical factors 

(Ryan et al., 2006; Warmenhoven et al., 2018a, 2018b). Bivariate FPCA proved useful 

as it revealed the interaction between two variables in an intuitive way (Warmenhoven 

et al., 2017a). 

The studies more relevant to this thesis concern regression rather than classification 

models. In this respect, there are comparatively few regression models in 

biomechanics, as with the field of machine learning generally. Conveniently, though, 

those models predicted jump height in the countermovement jump. Peak power has 

not served as an outcome variable in this context. Richter et al. (2014a) developed a 

model based on FPC measures computed from the VGRF curves’ propulsion phase. It 

explained 77.9% of the CMJ jump height variance with an RMSE of 2.49 cm. The 

model fit was much better than when discrete measures were used, similar to those of 

Dowling and Vamos (1993), where only 20.1% of the jump height variance could be 

accounted for with a predictive error of 5.03 cm. Moudy et al. (2018) also developed 

a model from VGRF data using a related technique called Analysis of Characterising 

Phases, which uses the FPCs as the starting point (Section 2.5.4). The model explained 

86% of the jump height with a mean absolute error of 1.39 cm. It was based on the full 

VGRF curves, from jump initiation to take-off, subject to curve registration (Section 

2.5.3). These results are promising, showing the benefit of representing the data in a 

more conducive form for the model and the outcome variable in question. 



 

Table 2-5. Summary of biomechanics studies using Functional Principal Component Analysis. 

Study Investigation Participants Data Basis 
Regist-

ration † 

FPCs 

retained 

Statistical 

model 

Donoghue et al. (2008) Chronic Achilles tendon injury 12 injured & 12 controls Ankle joint angles n/a * No 95% ‡ ANOVA 

Donà et al. (2009) Race walking technique 7 national/international Knee joint angle/ moment B-splines * No 95% ‡ None 

Ryan et al. (2006) Countermovement jumps 25 boys/ 24 girls Knee joint angle B-splines Yes 3 DA 

Kipp et al. (2012b) Power cleans 10 collegiate-level weightlifters 
Hip, knee, ankle angles / 

moments 
n/a No 4 ANOVA 

Jensen et al. (2013) Training intervention on CMJ 10 training/ 10 controls (F) VGRF n/a Yes n/a ACP 

Richter et al. (2014a) Countermovement jump 121 healthy male athletes VGRF & RFD B-splines No 99% ‡ ACP & LR 

Marshall et al. (2015) 
Asymmetries in hops and cutting 

manoeuvres  
20 Elite rugby union players (M) 

Joint angles, moments 

& VGRF  
n/a Yes n/a ACP 

Moudy et al. (2018) 
Landmark registration on 

countermovement VGRF 
53 active males VGRF B-splines Yes 7 + 3 ACP & LR 

Warmenhoven et al. (2017a) 
Sculling technique  

(bivariate analysis) 
2 scullers national/international (F) 

Propulsive pin force, 

oar angle 
B-splines No n/a None 

Warmenhoven et al. (2018a) Rowing technique 27 rowers national/international (F) Propulsive pin force B-splines No n/a ACP & ANOVA 

Warmenhoven et al. (2018b) Sculling (asymmetries) 40 scullers (M/F) Propulsive pin force n/a No 5 DA & ANOVA 

* Fewer basis functions than data points (where reported); † Landmark registration; ‡ FPCs required to explain the specified percentage of explained variance. 

ANOVA = Analysis of Variance; DA = Discriminant Analysis; ACP = Analysis of Characterising Phases; LR = Linear Regression. 

 



Section 2.5.3 

Page 48 

These studies show FPCA can be a useful feature extraction technique for 

discriminating between classes or predicting performance outcomes. FPC scores may 

be the type of predictors needed for such a predictive model that would take the place 

of the discrete measures employed in the past. Therefore, a model based on FPCA is 

worth investigating in this thesis as a feature extraction method for accelerometer data. 

It has not been applied to wearable sensor data previously in the biomechanics field. 

2.5.3 Curve alignment 

A requirement for FPCA and FDA, in general, is that the curves should be of equal 

length in the time domain. In practice, that usually means the times series having the 

same number of data points across all trials, but that is not a strict requirement as data 

from different sources may be sampled at different rates. When the data comes from 

the same source, as is usually the case, the time series from all trials need to be 

standardised to the same number of points. The simplest method is to use linear length 

normalisation (LLN), a simple interpolation method that resamples the time domain 

(Chau et al., 2005). However, such linear transformations can shift the temporal 

positions of features relative to those same features in other curves, increasing phase 

variance rather than reducing it (Page & Epifanio, 2007). Consequently, where features 

do not align, the cross-sectional standard deviations may be inflated over certain 

periods (Chau et al., 2005). The corresponding FPCs may not be sharply defined as 

their variance may include an element of phase variance as well as amplitude variance. 

This shortcoming can be addressed in FDA with curve registration which aligns 

common features (i.e. landmarks) using a suitable nonlinear function, ( )h t , that 

transforms the time domain: ( ) ( ( ))f t f h t→  (Ramsay & Li, 1998). Registration 

effectively separates the variation between curves into amplitude and phase variance 

so they can be analysed independently. The landmarks should be clear and 

unambiguous across all curves, such as maxima, minima or crossings of fixed 

thresholds, often the horizontal axis (Ramsay & Silverman, 2005). However, whilst 

registration may ensure the corresponding landmarks line up across the curve set, 

phase variance can still be in evidence away from the landmarks (Kneip & Ramsay, 

2008). Continuous registration can mitigate this when implemented after landmark 
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registration, but there are no applications in the biomechanics literature (Ramsay & Li, 

1998). Moudy et al. (2018) conducted the only biomechanics study into landmark 

registration, applying it to the VGRF curves from countermovement jumps. The 

authors reported that using a single landmark (VGRF maximum) was better than more 

landmarks or none, based on the total explained variance in jump height. From this 

limited evidence, landmark registration appears capable of marginally improving a 

linear model’s fit, but the number of landmarks should be kept to a minimum. 

Some researchers have questioned whether registration should be applied mainly in 

situations where the interest lies in the time domain (Preatoni et al., 2013). Preserving 

the time domain is essential for calculating peak power from the VGRF curve, so it 

may be appropriate to do the same with sensor data. On the other hand, it may be more 

important to achieve a high degree of alignment with registration if the temporal 

definition of sensor-based FPCs is less of a concern. There would be a direct 

association with impulse as there is with VGRF data. Some investigators have used 

registration to counteract the effects of LLN (e.g. Floría et al., 2016; Warmenhoven et 

al., 2017b; Moudy et al., 2018). Others have used padding to extend the shorter curves, 

so all curves were of the same length (Donoghue et al., 2008; Ryan et al., 2006). 

Vertical jump data (VGRF or sensor data) can be padded at the start without distorting 

the curves aligned at take-off. The propulsion phase closest to take-off has the least 

temporal variability, followed by the braking phase immediately preceding it (J. 

McMahon et al., 2017; Sole, 2015), ensuring a high degree of alignment without 

intervention. 

2.5.4 Analysis of Characterising Phases 

An FPC can often describe several features across the time domain, indicating some 

correlation between them. Interpretation can usually be enhanced with varimax 

rotations, but multicollinearity may be an issue for statistical models (Section 2.5.1, 

above). A non-rotation approach is Interpretable FPCA, which seeks to zero FPCs in 

the regions of the time domain where their respective variances are not significant (Lin 

et al., 2016). It improves interpretability at the expense of a slight reduction in 

explained variance, but it has few applications in the literature. Another approach is to 
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use the Analysis of Characterising Phases (ACP), developed by Richter et al. (2014a), 

which has become popular in biomechanics (Table 2-5, above). 

ACP can improve interpretability based on similarity scores instead of FPC scores, 

computed from key phases of varimax-rotated FPCs. The key phases are where the 

FPC is above a certain percentage of its peak value, usually specified by the 

investigator (e.g. > 90%; Moudy et al., 2018). The similarity scores (ACP scores) 

provide a measure of how closely aligned an individual curve is with a reference curve, 

which may be the cross-sectional mean curve (Richter et al., 2014b) or the curve 

associated with the best performance (Richter et al., 2014a). Taking the individual 

curve’s mean over the phase is a simpler alternative (Richter, personal 

communication). ACP has been used for classification models (Warmenhoven et al., 

2017b) or comparative analysis using t-tests (R. Jensen et al., 2013; Marshall et al., 

2015), but the prime interest in this thesis is with regression models.  

A linear model based on the ACP scores accounted for 98.8% of the jump height 

variance, compared to 77.9% achieved by the FPC model (Richter et al., 2014b). 

However, when ACP was applied in a separate study with 53 participants based on 

VGRF data from the CMJ, the model explained at best 86% of the jump height 

variance (Moudy et al., 2018). Richter et al. (2014a) only used the jump’s propulsion 

phase, whereas Moudy et al. (2018) included the whole curve from jump initiation to 

take-off, which may account for the disparity in model fit. Both studies defined jump 

height based on the take-off velocity, which is directly proportional to the area under 

the VGRF curve, but it does not take into account the rise in the body’s CM before 

take-off. The regression models amounted to a linear combination of predictors 

proportional to impulse, which is reflected in the definitions of FPC and ACP scores. 

Had the jump height been defined according to the work done definition, there would 

have been no direct correspondence with impulse. 

One of the advantages of ACP is its ability to identify variances in the time and time-

amplitude domains, thus providing temporal characteristics. The ACP scores included 

in the models above were based primarily on the amplitude-time domain, reflecting 

the time domain's importance in an impulse-dependent measure (Moudy et al., 2018; 

Richter et al., 2014b). However, these ACP scores may have figured prominently 
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because of how the VGRF curves had been aligned. Much of the temporal variance 

arose due to differences in jump execution time that is illustrated well in Figure 2-6, 

which is taken from another ACP study (R. Jensen et al., 2013), although Richter et al. 

(2014a) had a similar plot. Had the curves been aligned at take-off, then the temporal 

variances would have been much smaller, and consequently, the time-based ACP 

scores may not have been included in the model. This example highlights the 

importance of curve alignment (Section 2.5.3, above). 

 

 

Figure 2-6. Example of VGRF curve alignment at jump initiation, re-produced from R. 

Jensen et al. (2013). The jump takes longer to execute following a training intervention 

(black line) than before (red line). The dashed line indicates the start of the propulsion 

phase. 

 

In conclusion, ACP has outperformed FPCA where a direct comparison was made, 

and there is evidence that it more efficiently captures the features, requiring fewer 

ACPs than FPCs (Richter et al., 2013, 2014b). ACP achieved exceptional results in 

circumstances where the ACP scores corresponded closely to the outcome variable, 

being equivalent to impulse for a jump height model. However, it is unclear whether 

the good fit was an artefact of the data or a strength of the method itself. A similar 

situation would not likely arise if sensor data was used as the input, while peak power 

was obtained separately from the VGRF data. In conclusion, ACP does not appear to 

be a suitable choice for sensor data in this thesis. 
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2.5.5 PCA of waveforms 

The characteristics defined by FPCA are intuitive because they describe the shapes of 

the variation modes extending over the whole curve. An individual curve can be 

represented in practical terms by a handful of numbers, the FPC scores, that quantify 

the degree to which each feature is present. In contrast, the (non-functional) PCA of 

waveforms defines a curve as a full time series in which the PC scores vary as a 

function of time (i.e. a separate score for each data point) (Deluzio & Astephen, 2007). 

The modes of variation can still be plotted as a series of points, but no single 

mathematical entity represents each mode. Typically, a neural network would be 

required to handle so many inputs, which inevitably entails large volumes of training 

data that may not always be feasible (Section 2.4.2). However, the concise FPC 

representation allows classical ML models to be employed if so desired. 

FPCA and PCA are different ways of characterising the same data, so they can be 

expected to produce equivalent results  (Warmenhoven et al., 2021). The advantage of 

FPCA over PCA for machine learning lies in its efficient data representation, 

simplifying the model and avoiding complexity that may be unnecessary. Nuances in 

the data are not necessarily lost as they are abstracted into higher-order FPCs, but their 

relationships with other more prominent features would be lost. However, how the 

data is represented or how a question is posed can be crucial. In conclusion, FPCA is 

a useful tool in many applications for extracting essential characteristics from the data. 

Hence, it would be appropriate to adopt it for this thesis as the preferred method for 

feature extraction. It has the twin advantages of keeping models relatively simple and 

the sample size requirements moderate.  

2.6 Machine learning framework 

Having a model and a means of extracting features from the data are essential elements, 

although those two elements are not sufficient on their own. Attention should be paid 

to selecting the appropriate model (including optimisation). In addition, a robust 

estimate of the model’s predictive error is needed for when it is applied to new data. 

Cross validation (CV) can provide the framework in which model selection and 
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appraisal can be performed with rigour. However, it is not a procedure that has always 

been followed in the biomechanics literature, as Table 2-4 indicated.  

2.6.1 Cross Validation 

The acceptance of a proposed model (or neural network) depends on its ability to make 

accurate predictions when presented with previously unseen data (Stone, 1974). Cross 

validation is an empirical and versatile tool for estimating a model’s predictive error 

when applied to unseen data (Allen, 1974; Geisser, 1975; Stone, 1974). CV involves 

repeatedly splitting a data set in two, training the model on one portion of the data and 

then testing it on the remainder. Through repetition, a generalised (average) estimate 

of the model’s predictive error can be obtained. Its principal assumption is that test 

data should be drawn from the same distribution as the training data. It can be applied 

to a wide variety of models of many kinds as it makes minimal assumptions. As such, 

it places emphasis on the predictive error of the model rather than on the accuracy of 

parameter estimates that is a hallmark of traditional statistical inference (Geisser, 

1975). As an estimator of a model’s predictive performance, CV is one of the most 

commonly used criteria for model selection (Y. Yang, 2007). 

Early CV implementations were based on the Leave-One-Out (LOO) design in which 

the model is trained on all but one data point and then tested on that single case. The 

procedure is repeated N times. It has the apparent advantage of yielding almost 

unbiased error estimates, albeit with substantial variance, but this comes at a high 

computational cost (Efron, 1983). When evaluated against other estimators based on a 

logistic regression model, it was outperformed by bootstrap methods which produced 

errors estimates that had much lower variance with only moderate bias (Efron, 1983, 

1986).  

Bootstrapping involves randomly sampling from the whole data set with replacement, 

such that the same case could be selected more than once. The model error for the 

resampled data is averaged over a larger number of iterations, typically > 2N (Shao, 

1993). The best estimator was the ‘0.632 bootstrap’, which was a compromise between 

cross validation and maximum likelihood, albeit with an admittedly weak theoretical 

justification (Efron, 1986). An improved method (0.632+ bootstrap) outperformed 
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various CV methods (LOO and K-Fold) in a more comprehensive evaluation involving 

24 simulation experiments, although all were classification models (Efron & 

Tibshirani, 1997). This new bootstrap method was more computationally efficient than 

cross validation, although this is less of a concern today with the computational 

resources available on the desktop. However, when applied to real-world data sets for 

some problems, bootstrap estimates could be extremely biased (Kohavi, 1995). In 

contrast, the 10-fold and 20-fold CV designs produced more accurate and reliable 

estimates for the six classification models considered. The preference today for 10-

fold CV can be traced back to Kohavi’s 1995 influential paper. However, no 

substantive difference was reported in a later paper between 5-fold and 10-fold CV in 

simulations of three classifiers, although 10-fold was marginally the better one in terms 

of its combination of bias and variance (Braga-Neto & Dougherty, 2004). 

Model selection has different concerns to the model assessment above as the best 

estimator is the one that selects the optimal model with the highest probability. An 

estimator is said to be asymptotically consistent if the probability of selecting the 

optimal model tends to one in the limit as N →  (Shao, 1993). However, LOOCV is 

not asymptotically consistent, so there is a risk of choosing a suboptimal model that 

diminishes with increasing sample size (Shao, 1993). Shao (1993) showed that this 

shortcoming could be rectified by increasing the size of the validation set to at least 

half the data set. In 1000 simulation runs of regression models with up to five 

predictors, LOOCV was among the worst selectors, alongside other estimators of the 

same type: AIC (Akaike Information Criterion), Mallow’s PC  and GCV (Generalised 

Cross Validation) (Shao, 1997). LOOCV tended to be too conservative, selecting an 

unnecessarily complex model, or it could not distinguish between under-specified 

models (Shao, 1993). The best selector was the ‘delete-d’ CV with a validation set 

somewhat larger than the training set (25 cases to 15). Such a data split is at the 

opposite end of the spectrum from LOOCV, which has the smallest possible validation 

set. The discovery ran counter to conventional thinking at the time. Shao concluded 

that it was wiser to use a relatively small training set because the prediction error hardly 

changes for over-specified models. Conversely, if the validation set is too small, it is 

harder to distinguish between candidate models. He recommended a two-stage process 
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in which model selection is based on CV with a small training set, followed by the 

selected model being re-trained on a bigger data set to estimate its predictive error 

(Shao, 1993). 

Shao (1993) used a similar experimental simulation to show that CV designs with 

many data splits were much more likely to select the optimal model than LOOCV. The 

Monte Carlo technique (MCCV), which was first proposed by Picard & Cook (1984), 

was developed further with mathematical proofs and analysis by Zhang (1993), who 

called it multi-fold cross validation. MCCV involved resampling the data set without 

replacement, in contrast to the bootstrap that did employ replacement. Unlike the K-

fold designs, each resample (‘replicate’) is independent of the others. In all cases, 

MCCV had a success rate of > 0.9, whereas LOOCV achieved 0.5 for simple models, 

which improved with more predictors (Shao, 1993). The results were based on linear 

models, but the theorems apply to more complicated models, such as nonlinear 

regression and generalised linear models. MCCV has not been used widely in the 

literature, where it is also called Leave-Many-Out (K. Baumann, 2003). It has been 

applied in chemical engineering, where it was more likely than LOOCV to select a 

model with the correct number of predictors (Xu et al., 2004; Xu & Liang, 2001). It 

has been noted that there was little further improvement in error estimation from 

increasing the number of iterations from 20 to 50 to 1000 (Molinaro et al., 2005). An 

MCCV design at the lower end of this scale is comparable to the repeat K-fold designs 

that have become popular in recent years (Burman, 1989; P. Zhang, 1993). Such repeat 

K-fold designs have outperformed ordinary 10-fold CV (Braga-Neto & Dougherty, 

2004); and the 0.632+ bootstrap (Kim, 2009). Repeated K-fold CV reduced model 

internal sensitivity (an estimator’s inherent randomness) to an insignificant proportion 

of the variance (Rodríguez et al., 2013). Therefore, it is recommended as an efficient 

and reliable alternative for error estimation, even with 10 or 20 repetitions (Y. Zhang 

& Yang, 2015). However, as the number of repetitions increases, repeat K-fold 

becomes indistinguishable from MCCV since the distinct validation sets within each 

repetition increasingly overlap those from other repetitions.  

The rise of repeat K-fold designs is indicative of the increasing computing power that 

is available today. Resources may also be devoted to fitting models with increasing 
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complexity, such as in DNA microarrays typically with several thousand predictors 

but only a hundred or so samples (Ambroise & McLachlan, 2002; Braga-Neto & 

Dougherty, 2004; Simon et al., 2003). Neural networks can be orders of magnitude 

more complex and require substantial data sets to achieve good results (Section 2.4.2). 

In those circumstances, it is more common to see holdout validation employed instead 

in which a portion of the data, typically 10-20% is set aside to test the model 

independently. Training the network may still involve a limited cross validation 

design. However, such is the associated computational demands that it may not be 

feasible to use repeat K-fold, MCCV or bootstrapping. Thus, the CV methods 

described above tend to apply to machine learning models rather than neural networks. 

In the latter case, where the computational costs are substantial, a holdout set can be 

used to test the network independently. 

2.6.2 Nested cross validation 

Cross validation makes efficient use of the data by repeatedly splitting it into training 

and validation sets. However, such a procedure introduces selection bias because the 

overall evaluation is not made independently as the same data is used for training and 

validation. This influences the choice of features or parameters values, which in turn, 

biases the selection procedure (Stone, 1974). One approach was to adjust the error 

estimate, but using a statistical formula (e.g. shrinkage) was considered unsatisfactory 

(Mosteller & Tukey, 1968). Stone (1974) proposed his double-cross validation 

procedure in his seminal work, but it had a considerable cost that delayed its adoption 

for nearly thirty years (Ambroise & McLachlan, 2002; Simon et al., 2003; Varma & 

Simon, 2006). Today, it is more often known as nested cross validation (NCV), the 

term that will be used in this thesis. 

Nesting, as the name suggests, involves performing cross validation inside two nested 

programming loops. Model training, feature selection and parameter tuning are 

performed inside the ‘inner’ CV loop, which sub-divides the training set from the 

‘outer’ loop. The selected model that emerges from the inner loop is then re-trained 

and evaluated on the full training and validation sets at the outer level. The procedure 

then repeats for each outer iteration. This structure ensures model assessment is kept 
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separate from all aspects of model selection, but it results in a range of different 

models, one for each outer fold. However, a final aggregate model can be obtained 

using the bagging technique that averages the parameter values, producing a more 

generalised model (Breiman, 1996).  

Several studies have demonstrated that without nested cross validation, bias can 

sometimes be substantial. Varma & Simon (2006) showed non-nested CV error 

estimates could deviate from the true mean error of 50% by 8–12 percentage points on 

average in binary classification models. In one fifth of cases, the predictive error 

exceeded 20 points (Figure 2-7). Other investigators reported K-fold CV procedures 

could produce overly optimistic estimates that were little better than the training (re-

substitution) error (Ambroise & McLachlan, 2002; Simon et al., 2003). Cawley & 

Talbot (2010) presented a series of examples demonstrating selection bias, which 

could be severe in some problems, particularly for small sample sizes. The authors 

described selection bias as a form of overfitting, equivalent to overfitting an over-

specified model, but noted that in 2010 there were few examples of NCV in the 

literature. However, a recent survey of 55 ML papers in autism research revealed an 

inverse relationship between sample size and classification accuracy (Figure 2-8), 

suggesting selection bias led to overly optimistic estimates (Vabalas et al., 2019). In 

the same paper, Vabalas et al. presented a comprehensive analysis of NCV compared 

to K-fold CV based on high-dimensional classification models (SVM and logistic 

regression). They showed that selection bias was large, although it diminished with 

sample size (Figure 2-9). They concluded that although NCV was computationally 

demanding, it was necessary to prevent overfitting. However, in situations where the 

cost of NCV would be prohibitive, a single test set could be set aside to provide an 

independent test so overfitting may be diagnosed (Feurer & Hutter, 2019). It is 

essential that the holdout set is sufficiently large so the test error has meaningful 

confidence intervals (Simon et al., 2003). Despite the advances that have been made 

in cross validation methods, as discussed above, the holdout test still retains its 

attractions because it is demonstrably a truly independent test of the model. 
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(A) (B) 

  

Figure 2-7. Distribution of classifier accuracy for a shrunken centroids model in a cross 

validation (blue lines) compared to the true error (red lines), based on (A) 10-fold CV and 

(B) Nested CV. Reproduced with permission from Varma and Simon (2006). 

 

 

Figure 2-8. The inverse relationship between the reported classification accuracy and 

sample size from a survey of 55 machine learning papers in autism research. Reproduced 

from Vabalas et al. (2019) under open-access guidelines. 

 

 

Figure 2-9. Comparison of cross validation schemes for increasing sample size: K-fold CV 

(red), Nested CV (black), Holdout (orange). K-fold CV substantially over-estimates 

accuracy for small samples, but Nested CV shows no apparent bias. Reproduced from 

Vabalas et al. (2019) under open-access guidelines. 
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2.6.3 Optimisation 

Model selection is an optimisation problem in which the objective function is the loss 

(CV error) that needs to be minimised. In model selection, there is no distinction 

between hyperparameters governing the algorithm’s operation and other parameters 

having a role outside of the model, such as in data preprocessing (Engels & 

Theusinger, 1998). The most popular method is to perform a grid search. The 

algorithm iterates through a range of possible parameter values, evaluating the model 

at each step (usually CV error) to find the optimal parameter values (e.g. LeCun et al., 

1998). Its popularity has been attributed to its simplicity and reliability in one and two 

dimensions and because it typically finds a better solution than a manual, expert-led 

search (Bergstra & Bengio, 2012). A random search, on the other hand, has the same 

practical advantages, yet it is considerably more efficient than a grid search when 

working in higher dimensions (Bergstra & Bengio, 2012). 

A more sophisticated approach uses Bayesian optimisation, which undertakes a 

directed search based on a Gaussian Process (GP) surrogate model, balancing 

exploration of the parameter space with over-exploitation of promising regions (Bull, 

2011). It has outperformed other global optimisation algorithms in benchmark tests 

(Snoek et al., 2012). Bayesian optimisation is well suited to machine learning 

algorithms because they are expensive to evaluate, either by CV methods or by having 

to train a neural network according to new parameters. It was first proposed by Mockus 

(1977), but as with NCV, it only became more popular when sufficient computer 

power became available (D. Jones et al., 1998). The algorithm works best with 

categorical and few, if any, numerical parameters (Eggensperger et al., 2013). Its 

performance degrades in higher dimensional spaces, typically beyond 15–20 

dimensions, which can be mitigated by using tree-based rather than GP surrogate 

models or using dropout techniques that exploit the inherently low dimensionality of 

the parameter space (Eggensperger et al., 2013; Li et al., 2017; Z. Wang et al., 2013). 

Bayesian optimisers also perform poorly with noisy objective functions, such as CV 

estimators, but various solutions have been proposed. It remains an active research 

area that will need to be addressed in this thesis (Gramacy & Lee, 2011; Letham et al., 

2019; Picheny, Ginsbourger, et al., 2013; Picheny, Wagner, et al., 2013).  
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2.6.4 Data augmentation 

Machine learning models are limited in their scope and complexity by the availability 

of training data. A more extensive data set allows more variables to be included in the 

model, thereby refining model prediction and guarding against overfitting (Bishop, 

2006; Hastie et al., 2009). In machine learning, small data sets are those where there 

are not sufficient samples to support the likely number of predictors required in the 

model, such as in genetics, where there may be more genes than there are samples 

(Simon et al., 2003). Cross validation procedures are generally not suitable for small 

data sets because after splitting the data, the training set becomes too small to cover 

the variety of possible test data it may encounter. If the validation set is too small, a 

representative assessment cannot be made of how well the model would perform on 

unseen data (Shao, 1993). However, it can be challenging to obtain the sample size 

needed to achieve the accuracy desired in all fields of machine learning, if not more 

so, when relying on volunteers in the human sciences. Participants have to meet the 

requirements for the study and be willing to take part. Data collection itself can often 

be time-consuming, more so for the researcher than the participant, given the setup 

and subsequent data processing involved. The study itself must be first approved by 

the relevant authority concerned with the ethics of the investigation. One way to 

address this problem is to invite participants to perform multiple trials to increase the 

data set’s size, as shown in the studies into predicting VGRF-related measures (Table 

2-4). However, the number of trials that can be performed will be limited by practical, 

biological and ethical considerations. Instead, synthetic data can be generated to 

augment the training data based on manipulating the existing data set or using an 

alternative data source. This section highlights well-established augmentation 

techniques that can be applied in this thesis rather than offering a comprehensive 

review. 

Many data augmentation techniques based on the original data set were developed for 

classification problems with unbalanced data sets, such as in medicine, where 

identifying rare conditions was the aim. Training classifiers to identify the minority 

cases is problematic because there are so few of them, such as in cancer diagnosis 

(Chawla et al., 2002). The aim of augmentation for this purpose is to rebalance the 
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data set by generating artificial cases of the minority condition. The SMOTE algorithm 

(Synthetic Minority Oversampling TEchnique) is a well-established method 

developed to address this problem using linear interpolation between two real cases in 

feature space to generate a new synthetic case (Chawla et al., 2002). This idea was 

developed further with the ADASYN (Adaptive Synthetic) sampling algorithm, which 

used a weighted distribution to select cases for augmentation. It was extended to 

regression problems where the aim was to estimate the probability of rare events, such 

as volcanic eruptions (Torgo et al., 2015; Torgo & Ribeiro, 2007). Augmentation may 

also be applied directly to the raw data with an appropriate transformation. A key 

example is from the image recognition field, where a network can be trained on rotated 

or inverted images in addition to the originals. According to a systematic review, this 

approach has improved classification accuracy by several percentage points in many 

cases (Shorten & Khoshgoftaar, 2019). The same principle could be applied to three-

dimensional sensor data where small rotations would be equivalent to slight variations 

in the angle the sensor was attached to the body. 

Utility-based regression defines a relevance function for continuous outcome variables 

that corresponded to the cost-benefit matrices used in classification models (Torgo & 

Ribeiro, 2007). It can be used to target the synthetic case generation to ranges of the 

outcome variable where it is important to be accurate (the benefit, given the 

application) and where the model performs poorly (the cost) (Torgo et al., 2015). The 

model may be trained on data from participants across the performance range, but all 

things being equal, there will be fewer examples of jumps from the top end of the scale. 

Consequently, the model may be less accurate when tested on high performers.  

An alternative approach to augmentation is to draw on another data source that can be 

transformed into the form required for the model. Biomechanics research has a couple 

of instances of this where kinematic data has been transformed into inertial 

accelerations as if they had been generated by an accelerometer attached to the body. 

Mundt et al. (2020) developed this approach to estimate lower limb joint angles and 

moments for 93 participants walking on a treadmill from accelerometer data from five 

body-worn IMUs using a neural network trained on real and augmented data computed 

from a motion capture system. The simulated acceleration data correlated with the 
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measured inertial accelerations, ranging from r = 0.95 ± 0.08 for the pelvis sensor to 

r = 0.88 ± 0.12 for the right thigh. Without augmentation, the neural network 

estimated the joint angle and moments with correlations of 0.85 and 0.95, respectively. 

When the simulated data were included, the kinematic correlation rose slightly to 0.89, 

but there was no change in kinetics correlation. The RMSEs dropped slightly in both 

cases, from 4.8° to 4.3° for joint angles and from 13.0% to 11.6% for moments. Despite 

a large data set (for the kinematics, there were 3098 actual samples and 46437 

simulated), the improvement in prediction accuracy was only marginal. W. Johnson et 

al. (2019) also used kinematic data from motion capture to simulate sensor-based 

inertial accelerations for predicting GRF and GRM. However, the authors did not 

report the benefit of augmentation or break down the results in this way. 

More recently, augmentation methods have been developed using generative models 

including Variational Autoencoders (VAEs) (Kingma & Welling, 2014) and 

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014). These models 

are deep neural networks specifically designed to learn nonlinear representations of 

the data. VAEs randomly draw from the encoded features’ distributions to generate 

synthetic variations on the original data. In contrast, a GAN’s generator network has 

no direct access to the training data, but it learns to produce increasingly realistic 

synthetic data through a contest with the discriminator. The discriminator trains on real 

and synthetic data, learning to classify them correctly as real or fake. A minimax loss 

function incentivises the generator to increase the misclassification rate, while the 

discriminator tries to lower it. Hence, the generator learns to produce data that 

increasingly resembles real data, while the discriminator improves it ability to spot the 

difference. These generative models have achieved considerable success, such as 

producing fake images that a human observer would find it difficult to distinguish from 

the original pictures (Goodfellow, 2017). However, they require careful design and 

tuning to avoid overfitting and training instability (Creswell et al., 2018; Wiatrak et 

al., 2020). Although they have produced impressive results in image and natural 

language processing, in some problems they do not outperform SMOTE or ADASYN 

(Tanaka & Aranha, 2019). As complex deep neural networks, they represent a different 

approach to the problem of performance prediction, encoding their own features 
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directly without the need for FPCA, and as such they fall outside the scope of this 

thesis.  

In summary, data augmentation can potentially help improve the accuracy of machine 

learning models or neural networks, such as at the upper end of the performance range 

where fewer training data may be available. However, it may require substantial 

volumes of synthetic data to do so, and even then, the improvements may only be 

modest at best. It cannot change the fundamentals of the prediction problem, but it can 

potentially mitigate shortcomings in certain ranges of the outcome variable. 

2.7 Conclusion 

Jump testing is an important element of an athlete monitoring programme in elite and 

professional sport. Jump height in the CMJ appears to be the favoured metric rather 

than peak power based on the small number of surveys available, even though peak 

power is marginally the more reliable and sensitive measure. The ability to generate 

power is widely recognised as being vital for sports performance. Such considerations 

suggest jump height may be favoured for its convenience and intuitive appeal. Indeed, 

were an alternative method for estimating peak power to become available, one that 

could be administered easily in the field, then practitioners may welcome it for its 

practical advantages. However, previous attempts to provide such a solution have 

failed because they lacked sufficient accuracy, including simple equations based on 

jump height or Newtonian methods using body-worn sensors. A new approach is 

needed that will be introduced in this thesis. 

Machine learning methods have been employed to estimate VGRF profiles and related 

discrete measures, but there has been no concerted effort to estimate vertical jump 

performance. A new approach can be developed for estimating peak power in vertical 

jumping, drawing on the insights gained from reviewing this literature. Models based 

on IMUs were not necessarily superior to those using simple accelerometers, as 

orientation-correcting algorithms were not sufficiently accurate. Neural networks 

required large data sets but did not produce demonstrably better results than simpler 

models with smaller samples, as far as VGRF metrics and profiles were concerned. On 



Section 2.6.4 

Page 64 

the other hand, feature extraction based on FPCA has shown promise in various 

biomechanical applications, but it has never been employed in machine learning 

models in anything more than a simple linear regression model. Whilst non-functional 

PCA is regularly used in machine learning, FPCA’s ability to define continuous 

measures and represent complex patterns more efficiently could be advantageous. It is 

an approach that has not been tried before in biomechanics.  

In the many applications of machine learning, not least in this particular area, it is 

notable that cross validation methods are not always in evidence (e.g. Table 2-4). 

Where CV is employed, which is increasingly the case, the K-fold design often does 

not distinguish between the needs of model selection and model appraisal, even though 

statisticians have shown the importance of such considerations. Moreover, there were 

no identifiable examples in biomechanics of using nested cross validation to prevent 

selection bias. Biomechanics as a discipline is not alone in this regard. Nevertheless, 

when it comes to developing predictive models that should be expected to perform 

well on unseen data, a rigorous approach should be followed. 
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CHAPTER 3. DATA COLLECTION 

3.1 Introduction 

This chapter concerns the collection of data that will be used throughout this thesis to 

develop and assess a machine learning model for predicting peak power. The model 

requires a criterion measure of peak power to serve as the outcome variable that the 

model will attempt to predict from its various inputs. This will require computing peak 

power from VGRF data obtained from a force platform using the gold standard 

method. The jump height can also be determined from the same data to allow 

comparisons with other studies. 

The data set as a whole (VGRF and accelerometer data) should be representative of 

the intended target population, namely sportsmen and women of a moderate to a high 

standard. More formally, the data should be drawn from the same distribution (Bishop, 

2006; Hastie et al., 2009). Hence, it will be essential to analyse how well the data 

gathered for this research reflects the jump performances recorded in the literature 

from sports populations. This can be done by comparing outcome measures such as 

peak power or jump height, and other aspects, such as fatigue and the effect of arm 

swing. Checks should also be made for possible signs of bias as that could have a 

bearing on the models developed later in the thesis.  

The size of the data set will also be an important consideration because, all things being 

equal, a model trained on a larger data set will make smaller errors when applied to 

new data (Bishop, 2006; Varoquaux, 2018). Previous studies applying machine 

learning to biomechanical applications have involved relatively few participants, often 

with each participant performing several trials. For example, the median number of 

participants was 12 across the studies concerning VGRF-related measures (Table 2-4), 

while the median trial count was also 12. The single jumping study involved only six 

participants, but they performed 18 CMJs each (Elvin et al., 2007). Two investigations 

illustrated a different emphasis between the numbers of participants and the numbers 

of trials. Pogson et al. (2020) recruited 15 participants who performed 40 running 

trials, while Derie et al. (2020) sought many more volunteers (93) who carried out 
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fewer trials of a similar nature (16). In both cases, the total number of training 

examples was substantial (600 and 1488, respectively).  

In contrast, in many biomechanics studies typically only the best of three trials will be 

used for analysis, such as in vertical jumping where the focus is often on the maximal 

performance. The studies developing peak power prediction equations generally took 

this approach (Table 2-1), but they involved large numbers of participants (median 

113, range 17–465). So too did the investigations into sensor-based predictions of jump 

height and peak power, but with fewer participants (12–44; Tables 2-2 and 2-3). The 

best-of-three convention is usually ignored in ML studies because the overriding aim 

is to obtain the largest possible data set. The model should be capable of estimating 

peak power accurately (or any other such performance outcome) because in monitor 

programmes the jump may not always be performed to the best of the athlete’s ability. 

The data collection for this thesis will need to recruit a comparatively large number of 

participants for a biomechanics study. The trials will need to be split between the two 

different jump types to fulfil the research aims, namely the countermovement jump 

with and without arm swing, designated CMJA and CMJNA. The data collection can 

involve men and women as sex was not a significant covariate in the peak power 

prediction equations (D. Johnson & Bahamonde, 1996; Sayers et al., 1999) or in the 

sensor-based models of VGRF-related measures (W. Johnson et al., 2017; Meyer et 

al., 2015; Neugebauer et al., 2012, 2014). Different anatomical positions for the 

accelerometers should be considered to identify the best location for this application. 

Therefore, the aims of this chapter are: 

• To gather gold-standard VGRF data and obtain criterion measures of 

jump performance, specifically peak power and jump height, that will 

serve as the outcome variables in the models developed in this thesis;  

• To analyse the performance levels achieved, making comparisons with 

the literature to establish the validity of the data and its suitability for 

further analysis in this thesis; and 
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• To gather accelerometer data from multiple sensors attached to the body 

whose characteristic features will become predictors in the accelerometer 

models, although these data will not be examined in this chapter. 

3.2 Methods 

3.2.1 Participants 

A total of 69 physically active men and women volunteered for the study, giving their 

written informed consent. All but four were involved in sport, classifying themselves 

as either recreational, club standard or national level athletes (Table 3-1). All 

participants were required to be free of injury for at least three months prior to data 

collection to reduce the possibility of compensatory movement patterns influencing 

the results. For further details on the participants’ sporting backgrounds, their self-

declared performance level in their chosen sport, as well as other attributes, please 

refer to Appendix A.1. The Research Ethics and Governance Committee of Swansea 

University’s College of Engineering gave approval for the study.  

3.2.2 Data collection 

The data collection took place in two stages, with the second introduced to increase 

the sample size following initial modelling work. The first stage involved 55 

participants who performed 16 jumps split equally between countermovement jumps 

and broad jumps (‘jump types’). The requirement for broad jumps arose from a wider 

research project outside the scope of this thesis. Four jumps were performed for each 

combination of jump type and arm swing condition (e.g. 4 CMJA and 4 CMJNA for the 

countermovement jumps). The second stage involved 18 participants who only 

performed countermovement jumps: 8 CMJA and 8 CMJNA. Four athletes who had 

taken part previously only performed 4 CMJA and 4 CMJNA, so that over the two 

stages, they completed a total of 16 countermovement jumps. Although the second 

data collection made the experimental design unbalanced, this was not considered an 

issue for the mixed model (Section 3.2.7).  
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In total, 696 vertical jumps were recorded with equal numbers of CMJNA and CMJA. 

One jump was subsequently discarded from the training/validation set when an issue 

was discovered with the accelerometer data. The jumps from nine participants were 

assigned to a ‘holdout’ test set, with the remainder going to a training/validation data 

set. The nine were chosen randomly from the 14 volunteers who had taken part in the 

second data collection, specifically those who had no prior involvement in the first. 

The models introduced later in this thesis had already been partly developed prior to 

the second data collection. In this way, the test data was kept entirely separate from 

the investigation to preserve its independence. In summary, the training/validation set 

comprised 551 jumps (Table 3-2), and the holdout test set contained 144 (Table 3-3).  

3.2.3 Protocol 

The warm-up consisted of two minutes of jogging and any other self-directed 

preparatory exercises the participants preferred. The participants practised each jump 

type twice, with and without arm swing, using moderate-to-high effort, following a 

brief demonstration by the investigator. For the CMJNA, the participants kept their 

hands on their hips. No advice or feedback was given during the practice or at any 

other point. 

The participants were asked to jump with maximal effort for the data collection. They 

were given approximately one minute of rest between each jump. The order of jumps 

was randomised in advance for every participant to minimise potential learning or 

fatigue effects. The instructor informed the participants what jump they would perform 

next just before, as the recovery period drew to an end. A jump would be discarded if 

they landed on the edge of one of the force platforms or could not control the landing. 

In those cases, the instructor asked them to perform the same jump once the standard 

rest period was over. 
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Table 3-1. Combined data set summary (training/validation and testing). Mean ± SD shown 

for age, body mass and standing height. 

 Male Female Overall 

Number 45 24 69 

Age (yrs) 21.2 ± 3.3 22.4 ± 3.6 21.6 ± 3.4 

Body Mass (kg) 77.4 ± 12.1 65.2 ± 11.2 73.1 ± 13.1 

Standing Height (m) 1.79 ± 0.08 1.65 ± 0.08 1.74 ± 0.10 

 

Table 3-2. Training/validation data set summary. Mean ± SD shown. 

 Male Female Overall 

Number 39 21 60 

Age (yrs) 21.3 ± 3.3 22.1 ± 3.7 21.6 ± 3.5 

Body Mass (kg) 77.7 ± 12.8 63.9 ± 10.9 72.9 ± 13.7 

Standing Height (m) 1.80 ± 0.08 1.65 ± 0.08 1.74 ± 0.11 

 

Table 3-3. Testing data set summary. Mean ± SD shown. 

 Male Female Overall 

Number 6 3 9 

Age (yrs) 20.5 ± 2.9 24.7 ± 3.7 21.9 ± 3.2 

Body Mass (kg) 75.2 ± 6.3 73.9 ± 11.9 74.8 ± 7.8 

Standing Height (m) 1.75 ± 0.07 1.68 ± 0.01 1.73 ± 0.06 

 

3.2.4 Force Platforms 

The jumps were performed from two portable force platforms (9260AA, Kistler, 

Winterthur, Switzerland), 400 mm × 600 mm, placed on Everoll flooring, a composite 

rubberised surface (Regupol BSW, Bad Berleburg, Germany). The force platforms 

were placed adjacent to one another with only a slight gap between them so that the 

participants could stand with one foot on each plate. Two force platforms were 

employed to analyse bilateral asymmetries as part of the same wider project mentioned 

above that was outside the scope of this thesis. The force platforms were connected to 

a 16-bit analogue-to-digital converter (5691A, Kistler) with a sampling rate of 

1000 Hz. The Nexus v2.5 software (Vicon, Oxford, UK) synchronised the ground 

reaction force data with the accelerometer data (Section 3.2.5). The investigator used 

the VGRF trace presented in the Nexus software to determine when the participant 

was standing still, at which point he instructed them to “jump when ready.” The data 
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recording continued until they had regained a stationary upright position after landing. 

The force platforms were calibrated on each day of testing and zeroed immediately 

before the participant stepped onto them. (Please refer to Appendix A.2 for further 

details of the calibration procedure that ensured both force platforms registered the 

same VGRF for the same weight.)  

3.2.5 Wearable sensors 

Delsys Trigno sensors (Delsys Inc., Natick, MA, USA) were used in the present study 

as they had the best fit for the research requirements. The Delsys sensors had high 

validity and reliability, and they offered automatic synchronisation with other 

accelerometers and with force platforms. Appendix B discusses the steps taken to 

select the most appropriate sensors from the laboratory’s inventory. The Delsys 

sensors (dimensions 27 × 37 × 15 mm, mass 14.7 g) had onboard triaxial 

accelerometers with a stated maximum range of ± 9 g. However, the calibrated 

analogue signals recordings indicated that the devices could quantify inertial 

accelerations up to ~10.5 g. This range was sufficient to record the inertial 

accelerations of the trunk and lower limbs generated during take-off and landing. 

The sensors continuously transmitted their measurements to a Delsys Trigno base 

station, which relayed them via a multi-channel, analogue connector to a Vicon MX-

Giganet box. The Gigabit box was connected to a Windows PC via a 1 GHz Ethernet 

cable and controlled data communications from multiple devices in the Vicon Vantage 

system. The Vicon Nexus software imported the continuous accelerometer data 

streams, sampled at 250 Hz, synchronising them with the VGRF data. The Delsys 

system’s automatic synchronisation was a significant advantage over other products 

assessed in Appendix B.3.  

The sensors were attached directly to the participant’s skin using double-sided surgical 

tape at the following anatomical locations (Figure 3-2): the lower back over the L4 

vertebrae; the upper back over the C7 vertebrae; and the lower anterior medial aspect 

of the tibias located by taking 40% of the length of the shank, measured vertically from 

the medial malleolus. The shank length was measured using callipers from the medial 

malleolus to the medial epicondyle located by palpation with the participant standing. 
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Tiger Tape (Physique, Havant, UK), an elastic adhesive bandage, held the sensors 

firmly in position. Compressive attachments are recommended to minimise sensor 

oscillations due to soft-tissue movement (Forner-Cordero et al., 2008; Ziegert & 

Lewis, 1979).  

The four sensors were calibrated, one at a time, by placing them in six stationary, 

orthogonal orientations. One of the onboard accelerometers was aligned with gravity 

in each position, while the other two were perpendicular. One of the portable force 

platforms provided a convenient set of orthogonal surfaces for the purpose, as the 

platforms were perfectly level, having been checked using a spirit level (Figure 3-1). 

Taking each sensor in turn, they were first placed flat on the top surface of the force 

platform (position 1, where X = 0, Y = 0, Z = 1). The reverse orientation with the 

sensor upside down was not part of the calibration because it had a convex top. The 

sensor was then held in a vertical position at a corner of the force platform (positions 

2 and 3), using the corner’s right angles to ensure correct alignment. The sensor was 

held in four static orientations: 3’o clock (X = 0, Y = 1, Z = 0), 6’o clock (X = 1, Y = 0, 

Z = 0), 9’o clock (X = 0, Y = -1, Z = 0) and 12’o clock (X = -1, Y = 0, Z = 0). For all 

five orientations, an average was taken over a suitable static period in the 

accelerometer signal. 

Calibration equations were determined for each sensor’s axis for each day of data 

collection using a linear best fit of the criterion and averaged measurement 

accelerations. The best fits achieved 2r  = 1.000 to three decimal places in almost all 

cases (4 sensors × 3 axes × 24 days of testing = 288 cases), or otherwise, it was 

2r  = 0.999. The standard error in the calibration equations’ slopes averaged over all 

sensors, axes and days of testing was 0.011 g·V-1, equivalent to 0.33%. Similarly, the 

standard error in the calibration equation intercept was 0.006 g.  
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Figure 3-1. Sensor calibration setup employing the force platform's orthogonal surfaces for 

correct alignment with respect to gravity. The criterion values for the accelerometers were: 

for position (1), X = 0, Y = 0, Z = 1; for position (2), X = 0, Y = -1, Z = 0; and for position (3), 

X = -1, Y = 0, Z = 0. Positions (2) and (3) were also reversed so that Y = 1 and X = 1, 

respectively, with the other axial directions equal to zero. 

 

(A) 

 

(B) 

 

(C) 

 

(D) 

 

Figure 3-2. Sensor attachments. (A) Lower back (L4); (B) Upper back (C7); (C) Left shank; 

(D) Right shank (tibial anterior medial aspect for each leg). The sensors were fixed to the 

skin using hypoallergenic double-sized tape, reinforced using Tiger Tape to hold the sensor 

in place firmly. This technique was impractical for the upper back sensor. 
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3.2.6 Calculation of jump performance 

All data processing was carried out by custom scripts in Matlab. The code calibrated 

the VGRF data from each force platform and then added them together to give a total 

VGRF. It did not apply any filtering in line with published recommendations when 

processing jump GRF data (Owen et al., 2014; Street et al., 2001). All calculations of 

jump performance were based on the vertical component of the GRF alone. 

According to Newton’s Laws of Motion, the vertical velocity, v(t), is given by the time 

integral of the net VGRF, Net ( )F t , with bodyweight subtracted: 

 
Net

1
( ) ( )v t F t dt

m
=    (3.1) 

where m is the body mass. The bodyweight (BW) was determined initially for each 

jump by taking the mean VGRF over the first second of recording when the participant 

was standing still. The BW estimates varied very slightly across all jumps for the same 

individual, where the standard error (SE) in BW across all participants was 

0.0021 ± 0.0018%.  

Since even small errors in BW estimates can lead to large jump height errors (Street et 

al., 2001), an algorithm was devised to improve the BW estimates. The algorithm 

searched for a period when the VGRF had the smallest standard error, from the start 

subject to a minimum duration of 250  ms and a maximum of 2000 ms. This algorithm 

reduced the SE in the BW estimate to 0.0014 ± 0.0005%. This marked a modest 

reduction of one third, but it eliminated outliers which had been a drawback of the 

standard method. Manual checks were made by inspecting the vertical displacement 

curves from the start of the recording to check there was no appreciable drift upwards 

or downwards (< 0.001 m) before the jump began. This observation was verified by 

overlaying the accelerometer signals, which also indicated when the movement 

started. Small manual corrections to the BW were made, if necessary, typically of the 

order of 0.1 or 0.2 N.  

The vertical displacement, s(t), is the time integral of the velocity: 

 ( ) ( )s t v t dt=   (3.2) 
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From equation (3.2), jump height was defined as the maximum value of s(t), the work-

done definition, corresponding to the total energy required to raise the body’s CM to 

this height from the standing position.  

The instantaneous power as a function of time, , is given by: 

  ( ) ( ) ( )P t F t v t=   (3.3) 

From equation (3.3), the peak power is the maximum value of , representing the 

maximal rate of production of external mechanical energy. For the analysis in this and 

subsequent chapters, the instantaneous power was normalised to the participant’s BW 

to obtain relative power. Hereafter, unless otherwise stated, the term peak power refers 

to the peak relative power. 

All numerical integrations were performed using the trapezoidal rule with a time 

interval of 1 ms, from jump initiation to take-off, defined as VGRF < 10 N. The jump 

initiation point was determined using an algorithm adapted from the method proposed 

by Owen et al. (2014), which starts by detecting the first sign of movement where the 

VGRF diverged from BW by more than 5 × SD. The algorithm searched backwards 

from this point to find an earlier point where the jump began, using stricter criteria, 

unlike the fixed 30 ms offset employed by Owen et al. (2014). This more adaptable 

approach was necessary to handle the greater variety of VGRF patterns seen across 

500+ jumps. Further details of the algorithm are presented in Appendix B.3. 

3.2.7 Statistical Analysis 

Mixed statistical models were developed with random intercepts to predict peak power 

and jump height using SAS Studio 3.8 (SAS Institute Inc., Cary, NC, USA). These 

outcome variables were log-transformed to enable percentage comparisons over a wide 

range of performances. The mixed models do not require independent observations, 

unlike traditional regression models. 

The mixed models were implemented using the MIXED procedure based on restricted 

maximum likelihood with the arm swing condition and sex as the fixed effects. Sex 

was included to facilitate comparisons with other studies. The possible impact of 

( )P t

( )P t
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fatigue was accounted for by the jump trial number as a fixed effect. Since the 

randomisation of the jump order could also produce potential biases – a string of 

repeated jumps of the same type or the switching between jump types – additional 

fixed effects were included as dummy variables. A jump repetition variable equalled 

one if the current jump was the same as the previous one, otherwise the variable was 

zero. A jump switching variable equalled one if there was a switch from vertical to 

horizontal jumps or vice versa (in the first data collection), otherwise it was zero. These 

covariates were retained in the model if their corresponding type-III F-statistic was 

significant (α = 0.01). The overall model fit was checked using the Bayesian 

Information Criterion (BIC), a conservative measure suitable for large datasets that 

penalises complexity. 

The estimates reported for the fixed effects on jump height and peak power were based 

on the model that included only the significant covariates. Those estimates were the 

least-squares means differences (also known as the marginal means differences), 

following the reverse log transformation. The results were interpreted using the 

standard effect size thresholds based on Cohen’s d of 0.2 (small), 0.5 (medium), 0.8 

(large) and 1.2 (very large) (Cohen, 1992). Where d < 0.2, the effect size is regarded 

as trivial. The confidence limits were set at 90%. 

The covariance matrix was specified with only the model intercept as the sole random 

effect, grouped by the participant ID. The covariances were unbounded. The variance 

in the model intercept accounted for the average variation in performance between 

individuals. The Smallest Worthwhile Change (SWC) was taken to be one-fifth of this 

value (W. G. Hopkins, 2004). The model residual represented the typical variation in 

an individual’s performance from jump to jump (W. Hopkins, 2016). The model was 

re-fitted for the jump-type subsets so that the random effects could be categorised for 

CMJNA and CMJA.  

3.3 Results 

Higher performance levels were achieved, on average, in jumps with arm swing 

compared to those without, and in men compared to women (Tables 3-1, 3-2, 3-3 and 
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3-4). There was a close similarity between the training/validation and testing data sets 

in terms of mean, standard deviation and the 10th and 90th percentiles. The distributions 

show skew towards higher peak power outputs in both arm swing conditions and skew 

towards lower jump heights (Figure 3-3). The distributions encompass a broader range 

of peak powers and jump heights, as indicated by a negative kurtosis (Figure 3-3). 

The best jump heights were achieved by some volleyball players and swimmers in 

both arm swing conditions (> 0.55 m for CMJNA and > 0.70 m for CMJA), but their 

corresponding peak power output was not at the same top end of performance (most 

were < 60 W·kg-1). The volleyball players’ jump performances were notable for 

having a bimodal distribution, unlike those from other sports. Football players had the 

widest spread of performances, while rugby players, netball and hockey players had 

narrower, localised ranges. Note that the results presented in this chapter are based on 

the VGRF data. The accelerometer data will be assessed later in the thesis, starting in 

Chapter 5, which will develop the first accelerometer models. 
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Table 3-4. Peak power outputs for the training/validation data set.  

Peak Power (W·kg-1) Mean ± SD 10th – 90th Percentile Min, Max 

Overall CMJNA 45.0 ± 7.3 35.2 – 54.1 27.2, 63.6 

 CMJA 51.5 ± 8.6 39.7 – 62.1 28.1, 72.5 

Males CMJNA 48.4 ± 5.4 41.4 – 54.9 36.6, 63.6 

 CMJA 55.6 ± 6.3 47.5 – 63.3 38.2, 72.5 

Females CMJNA 38.2 ± 5.7 31.3 – 43.6 27.2, 55.9 

 CMJA 43.3 ± 6.7 35.7 – 50.9 28.1, 62.0 

 

Table 3-5. Peak power outputs for the testing data set. 

Peak Power (W·kg-1) Mean ± SD 10th – 90th Percentile Min, Max 

Overall CMJNA 47.6 ± 8.1 33.0 – 55.9 29.4, 59.0 

 CMJA 53.4 ± 10.0 34.9 – 63.9 31.6, 67.0 

Males CMJNA 51.5 ± 4.1 45.8 – 56.5 44.8, 59.0 

 CMJA 58.4 ± 4.8 53.0 – 66.1 45.7, 67.0 

Females CMJNA 39.7 ± 8.3 30.9 – 51.2 29.4, 52.9 

 CMJA 43.3 ± 9.9 31.7 – 57.8 31.6, 58.5 

 

Table 3-6. Jump heights for the training/validation data set.  

Jump Height (m) Mean ± SD 10th – 90th Percentile Min, Max 

Overall CMJNA 0.400 ± 0.085 0.292 – 0.501 0.223, 0.636 

 CMJA 0.479 ± 0.099 0.364 – 0.604 0.244, 0.765 

Males CMJNA 0.441 ± 0.067 0.361 – 0.534 0.227, 0.636 

 CMJA 0.525 ± 0.083 0.415 – 0.631 0.261, 0.765 

Females CMJNA 0.317 ± 0.048 0.274 – 0.367 0.223, 0.483 

 CMJA 0.385 ± 0.050 0.343 – 0.444 0.244, 0.531 

 

Table 3-7. Jump heights for the testing data set. 

Jump Height (m) Mean ± SD 10th – 90th Percentile Min, Max 

Overall CMJNA 0.422 ± 0.088 0.280 – 0.543 0.246, 0.589 

 CMJA 0.497 ± 0.122 0.334 – 0.697 0.279, 0.738 

Males CMJNA 0.461 ± 0.063 0.394 – 0.569 0.356, 0.589 

 CMJA 0.546 ± 0.101 0.426 – 0.726 0.363, 0.738 

Females CMJNA 0.343 ± 0.078 0.249 – 0.448 0.246, 0.451 

 CMJA 0.400 ± 0.100 0.293 – 0.547 0.279, 0.562 

 



 

(A) 

 

 

(B) 

 

 

(C) 
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Figure 3-3. Distribution of jump performances stratified by primary sport, covering both sexes for each jump performance measure. (A) Distribution of 

peak power in the CMJNA showing a skew towards higher values, notably from rugby players (green). (B) Distribution of jump height in the CMJNA with a 

long upper tail that includes jumps from volleyball players (orange) and swimmers (deep blue). (C) Distribution of peak power in the CMJA also with a 

skew towards higher performances, including jumps from participants in several sports. (D) Distribution of jump height in the CMJA with a broader range 

of performances, with notable outliers at the top end featuring jumps from volleyball players and swimmers (orange and blue). Individual sports are 

identified where at least three participants stated this was their primary sport. All other sports are classified as ‘other’.  
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The mixed models revealed that arm swing, sex, and jump trial significantly affected 

peak power and jump height (Table 3-8). The possible confounding factors related to 

the jump order were trivial and non-significant. Arm swing had a similar effect on 

peak power and jump height, centred around the boundary between the categories of 

‘medium’ and ‘large’ effects. Sex had only a small effect on peak power but a medium 

effect on jump height. The fatigue effect, indicated by the jump trial number, was 

greater on peak power than jump height, a ‘small’ versus a ‘trivial’ effect, respectively. 

With the non-significant effects removed, the arm swing effects on peak power and 

jump height were approximately 13.7% and 19.2%, respectively (Table 3-9). In 

comparison, these percentage differences were smaller than those between men and 

women. 

 

Table 3-8. Effect sizes for all fixed effects for the full model (Type III tests). 

 Peak Power Jump Height 

Arm Swing 0.806 ** (L) 0.795 ** (M) 

Sex 0.329 ** (S) 0.735 ** (M) 

Jump Trial Number 0.266 ** (S) 0.106 ** (T) 

Jump Repetition 0.020 ** (T) 0.014 ** (T) 

Jump Type Switch 0.034 ** (T) 0.012 ** (T) 

** p < 0.0001. Effect sizes: L = Large; M = Moderate; S = Small; T = Trivial. 

 

Performance declined over multiple jumps, based on the jump trial number. The peak 

power dropped by 0.30% on average with each jump, while the jump height fell by 

0.16%. Over 16 jumps, this added up to a decline in peak power of approximately 

4.8% and a fall in jump height of 2.6%. When the jump trial number was treated 

alternatively as a random effect, the model fit (BIC) improved, and the residual error 

for peak power predictions reduced slightly from 5.1% to 4.7%. The error declined 

from 7.3% to 6.8% when the jump trial number was a random effect in the jump height 

model. Making arm swing a random effect did not improve the model. 
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Table 3-9. Fixed effects on performance measures for the compact model 

 Peak Power Jump Height 

Arm Swing Effect 13.7 ± 0.7% ** 19.2 ± 1.1% ** 

Sex Effect (M vs. F) 22.5 ± 3.7% ** 27.5 ± 4.3% ** 

Trial Effect (per jump) -0.30 ± 0.07% ** -0.16 ± 0.10% * 

Difference of Least Squared Means shown with 90% confidence intervals. 

* p < 0.001; ** p < 0.0001. 

 

The typical variation in an individual’s performance was lower in the CMJNA than the 

CMJA for peak power and jump height (Table 3-10). The smallest worthwhile change, 

calculated from the between-individuals variance, was 2.5% for peak power and 3.0–

3.1% for jump height.  

 

Table 3-10. Random effects for jump-type specific compact models. 

 Jump Type Peak Power Jump Height 

Within-Individual SD CMJNA 4.0 ± 0.3% ** 6.5 ± 0.5% ** 

 CMJA 5.3 ± 0.4% ** 7.3 ± 0.4% ** 

Smallest Worthwhile Change CMJNA 2.5 ± 0.4% ** 3.0 ± 0.5% ** 

 CMJA 2.5 ± 0.4% ** 3.1 ± 0.5% ** 

90% confidence intervals shown. 

* p < 0.001; ** p < 0.0001. 

3.4 Discussion 

This chapter described the collection of VGRF and accelerometer data and the 

calculation of the criterion performance measures, the so-called ‘ground truth’ in 

machine learning that will be used in models developed later in this thesis. The 

accelerometer data will be used from Chapter 5 onwards. Since the VGRF and 

accelerometer data will provide the inputs for subsequent extensive analysis 

throughout this thesis, it is essential to assess whether the results are representative by 

comparing them to those reported in the literature.  
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3.4.1 Comparisons of performance levels 

Studies reporting peak power for the CMJNA cover a wide range of performance levels 

for elite male athletes, ranging from 45.4 W·kg-1 for ‘elite rugby players’ (Marrier et 

al., 2017) to 54 W·kg-1 for ‘elite Australian rules football players’ (Cormack, Newton, 

& McGuigan, 2008), and 65.1 W·kg-1 for ‘male, college-level team-sport athletes’ 

(Gathercole et al., 2015). Compared to those standards, the mean power output of 

48.4 W·kg-1 for males in the current study was at the lower end of this range. The 

rugby players from the present study achieved higher performances in the 50-

55 W·kg-1 range, which compares well with the studies by Marrier et al. (2017) and 

Cormack, Newton & McGuigan et al. (2008). The female participants from the current 

study produced peak power outputs of 38.2 W·kg-1 on average in CMJNA, which is in-

between the 34.8 W·kg-1 achieved by ‘untrained female college students’ who played 

sports recreationally (Makaruk et al., 2011) and the 43.4 W·kg-1 recorded by female 

NCAA volleyball players (Newton et al., 2006). In one of the few studies looking at 

peak power in the CMJA, ‘physically active’ men, who were not resistance-trained but 

played Australian-rules football recreationally, achieved peak power outputs of 

58.9 W·kg-1 on average, which compares with 55.6 W·kg-1 for the males in the current 

study. These comparisons were based on group means, but it is also worth noting that 

the top performers in the present study achieved peak power outputs comparable to the 

elite athletes in the studies by Cormack, Newton & McGuigan et al. (2008) and 

Gathercole et al. (2015). In conclusion, the peak power outputs recorded in the present 

study are comparable to those in the literature, giving confidence that the current data 

set represents moderate to high performers. 

Several studies used the work-done definition of jump height, the method that was 

used to calculate the results in this chapter. The mean jump heights for CMJNA were 

0.54 m for ‘trained male volleyball players’ (Bobbert et al., 1987a), 0.52 m for 

‘physically active male college students’ (Aragón-Vargas & Gross, 1997), and 

0.495 m for a mixed cohort of ‘healthy young adults’ (31M: 9F) (Buckthorpe et al., 

2012). In general, these performances were higher than those in the present study 

(0.441 m for males, 0.400 m across both sexes). However, the four male volleyball 
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players from this cohort achieved a jump height of 0.527 m on average, comparable to 

the volleyball players in Bobbert’s (1987) study above. 

Other investigators have used the flight-time definition of jump height, which ignores 

the rise in the body’s CM before take-off. Consequently, the reported jump heights 

appear to be noticeably lower than those cited above. The jump heights in the present 

study were recalculated using the flight-time definition to allow comparison. 

Accordingly, the jump heights were 0.296 m and 0.339 m for the CMJNA and CMJA, 

respectively, averaged across both sexes. Comparable figures can be seen in a mixed 

group of physical education students (73M:33F), including ten elite athletes from 

volleyball and weightlifting, who attained jump heights of 0.29 m and 0.35 m, 

respectively (Oddsson, 1987). Similar results were seen in ‘moderately to highly 

trained’ men and women (0.30 m) (Dowling & Vamos, 1993). 

Comparisons can also be made with studies involving either exclusively men or 

women. Jump heights were reported of 0.35 m for ‘healthy college-age men’ (G. 

Markovic et al., 2004), 0.401 m for elite junior-level basketball players (Apostolidis 

et al., 2004), based on flight time, compared to 0.335 m in the current study. Using the 

same measure, professional female volleyball players registered jump heights of 

0.287 m (González-Ravé et al., 2011) compared to 0.217 m in the present study. 

Another investigation using the work-done definition reported jump heights of 

0.400 m for female volleyball players in the NCAA (Newton et al., 2006) versus 

0.317 m, as presented above.  

These comparisons reveal the present investigation’s performance levels were similar 

to those reported in the male-only and unisex studies but lower than in other female-

only cohorts. The female participants in the present study were from various sports 

and backgrounds, with only a few considering themselves to be of national standard. 

The female volleyball players were comparative novices with only 1-2 years’ 

experience, lacking the proficiency of their more experienced male counterparts. In 

contrast, the cited research involved professional or NCAA-level volleyball players. 

This example serves to underline the difficulties of making comparisons between 

studies, often with small samples. Setting aside elite-level comparisons, the women in 

the current investigation jumped similar heights to their female counterparts in the 
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literature. The jump height results support the preliminary conclusion that the present 

study’s jump performances are valid and representative. 

3.4.2 Arm swing effects 

Another way to assess the data’s validity is to see how the arm swing effect compares 

with other studies. The fixed arm swing effect on peak power production was smaller 

than it was on jump height (13.7 ± 0.7% vs. 19.2 ± 1.1%), suggesting the main 

contribution to neuromuscular power comes from the lower extremity. Comparisons 

can only be made with the literature concerning jump height. The arm swing effect 

above was in close agreement with most other studies, ranging from 18.5% in ‘healthy 

males’ (Domire and Challis, 2010), 19.3% in ‘athletic adult males’ (Lees et al., 2004) 

to 20.7% in ‘physical education students’ (Oddsson, 1987). Given how similar the 

figures are between studies, the effect of arm swing on jump height appears to be 

relatively constant despite differences of strength or skill. This finding was supported 

by a longitudinal study of volleyball players over two years (Borràs et al., 2011). There 

was only a marginal change in the arm swing effect from 20.2% to 20.7%, even though 

jump height increased in response to training (Borràs et al., 2011). In other words, arm 

swing helps raise jump height by approximately the same proportion in physically 

active individuals. This observation is reflected in the finding that the model fit was 

better when arm swing was treated as a fixed effect rather than a random effect. Hence, 

individual variations in arm swing technique may not have a significant bearing on the 

models. 

3.4.3 Fatigue 

The trial jump number, a proxy for fatigue, exerted a more sizable influence on peak 

power than on jump height. Over 16 jumps, peak power declined on average by 4.8% 

compared to a drop in jump height of 2.6%. Gathercole et al. (2015) reported that the 

jump performance variables, peak and mean power were among the variables that had 

not returned to baseline levels 24 hours after heavy exercise. Several other studies have 

found peak power and flight time (a proxy for jump height) to be valid indicators of 

impaired neuromuscular function in professional players in team sports (Andersson et 
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al., 2008; Claudino et al., 2017; Johnston et al., 2013; McLean et al., 2010). The fact 

that jump performances tended to decline across the test session is not a concern for 

this investigation and the subsequent development of an accelerometer model. Given 

the purpose of jumping testing is for monitoring athlete training status, some degree 

of participant fatigue would be desirable. 

3.4.4 Random effects 

The random effects divided the fixed model’s unexplained variance into the variance 

within and between individuals. The within-individuals variance represents the 

consistency of performances from jump to jump on average across the cohort. It was 

4.0% for peak power in the CMJNA, which for the mean performance would be 

equivalent to 1.8 W·kg-1. In absolute terms, this figure agrees with the CV figure 

averaged over four studies (1.75 W·kg-1) and falls within the range of percentages 

reported, 2.3%–5.2% (Cormack, Newton, & McGuigan, 2008; Gathercole et al., 2015; 

McLellan et al., 2011; Taylor et al., 2010). It is also notable that peak power exhibited 

lower variance within and between individuals than it did for jump height, as other 

studies have reported (Section 2.2.3). The smallest worthwhile change will be a factor 

to consider when reviewing the practical usefulness of the final model in the 

conclusion to this thesis (Section 9.4.1). 

3.4.5 Data set composition 

The results showed that sex had a significant effect on both performance measures. 

Men tended to jump higher or generate more power than women, as expected. 

However, sex was not a significant covariate in models predicting performance 

metrics, where it has been considered when using jump height or inertial accelerations 

as inputs (Sections 2.3.2 & 3.1). In sprinting, certain kinematic parameters were more 

strongly influenced by the sprinters’ performance level than by their sex (Ciacci et al., 

2017). More generally, a review into the differences between men and women in 

athletic movements found little support for sex-specific, lower limb kinematic patterns 

for landing and hopping, nor sex differences in muscle activation (Bruton et al., 2013). 

Whilst there are undoubted group differences in performance between men and 
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women, those differences do not appear to be due to sex, per se. In developing models 

based on inertial accelerations, the focus will be on how those performances were 

achieved rather than the outcomes themselves. Therefore, it would seem reasonable to 

assume that models for predicting peak power in vertical jumping can be developed 

using data from men and women.  

3.4.6 Possible confounding effects 

The mixed models proved to be powerful analytical tools, allowing checks for 

potential confounding factors. The participants performed broad jumps and 

countermovement jumps in the first data collection, but the jump switch effect was 

close to zero. Thus, the possibility that the horizontal jumps influenced the vertical 

jumps can be dismissed. The random order in the jumps (of whichever type and arm 

condition) could have been a confounding factor. Four participants repeated the same 

jump three times, two repeated the same jump four times, one did five repeats, and 

another participant repeated the same jump six times in a row. While such repetition 

may produce a learning effect, such consecutive series are rare. Hence, the overall 

effect was trivial, as the jump repeat effect showed.  

3.4.7 Conclusions 

This chapter described the collection of VGRF and accelerometer data that will be 

used throughout this thesis. The performance measures computed from the VGRF 

data, peak power and jump height, were the ‘ground truth’ and will serve as the 

outcome variables in subsequent models. Many of the participants were competent 

jumpers, with several coming from a background in volleyball and basketball. They 

produced jump performances that were comparable with those reported in the literature 

for moderate to high performers. The effects of arm swing and fatigue were also 

consistent with previous research, indicating these performances were representative 

of jump testing programmes. These comparisons also provided an indirect check on 

the validity of the methods described in this chapter. Therefore, this data can 

confidently be used for model development and further analysis in this thesis, starting 
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in the next chapter with models based on VGRF data. Models based on the 

accelerometer data will be developed from Chapter 5 onwards. 
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CHAPTER 4. VERTICAL GROUND REACTION 

FORCE MODELS 

4.1 Introduction 

In this chapter, models based on the VGRF data are developed to estimate peak power 

and jump height from features extracted using FPCA. It will address the first research 

question, which asked how well does an FPCA-type model perform when predicting 

peak power and jump height in the CMJ? The first models using FPCA to predict a 

performance outcome were developed by Richter et al. (2014a), who estimated CMJ 

jump height from VGRF data. As discussed in Section 2.5.4, the FPCA model had a 

fit of r2 = 0.79, but the corresponding ACP model in that study achieved r2 = 0.98. In 

comparison, Moudy et al. (2018) could only achieve a more modest fit with ACP of 

r2 = 0.86 with the benefit of curve registration. No previous study has used an FPCA-

based model to predict peak power in vertical jumping. If such a model proves 

effective with gold standard VGRF data, then this approach can be applied to 

accelerometer data with confidence that FPCA-based modelling is not a limiting 

factor. 

FPCA is dependent on the curves being in close alignment with one another (Section 

2.5.3). The peaks and troughs from different curves should broadly coincide so 

differences in their magnitudes can be recognised, otherwise, cross-sectional measures 

of amplitude variance, the so-called modes of variation, will be diminished (Ramsay 

& Silverman, 2005). However, there will be some misalignment due to different 

movement strategies, varying jump execution times and natural movement variability. 

Richter et al. (2014a) and Moudy et al. (2018) time-normalised the VGRF data to a 

standard duration, as have other investigators (e.g. Kennedy and Drake, 2018). There 

was already a high degree alignment in Richter’s case because the data were restricted 

to the propulsion phase, which has a duration that is the most consistent of all the jump 

phases (J. McMahon et al., 2017; Oddsson, 1987; van Ingen Schenau, 1989). 

Moudy et al. (2018) utilised registration to bring the curves into closer alignment, 

reporting that a single landmark was best, located at the start of the propulsion phase. 
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A similar approach can be taken for the present investigation in this chapter to 

determine which landmarks are appropriate for a peak power model. However, it 

would also be worth considering padding out the VGRF curves to a standard length 

rather than time-normalising them in order to preserve the time domain (Preatoni et 

al., 2013). Epifanio et al. (2008) found that an FPCA-based classification model was 

more accurate when padding rather than time-normalisation was used. With padding, 

it would be preferable to align the VGRF curves at take-off, as is often done in jumping 

studies (e.g. Bobbert & van Ingen Schenau, 1988; Dowling & Vamos, 1993). Curve 

registration may still be required as misalignment becomes more apparent when 

inspecting the curves further away from take-off.  

Therefore, the aim of this chapter is to: 

• Determine the efficacy of FPCA-based models for predicting peak power and 

jump height based on gold-standard VGRF data; and 

• Evaluate the techniques for achieving curve alignment by comparing padding 

versus time-normalisation and various landmarks for curve registration. 

4.2 Methods 

4.2.1 Data preprocessing 

The models developed in this chapter will be based on the VGRF training/validation 

data set, sampled every 1 ms (i.e. 1000 Hz). Each time series began at the jump 

initiation point (defined as when the VGRF first deviated from BW by > 5 × SD, 

subject to a time adjustment – Appendix A.3) and ended at take-off (VGRF < 10 N). 

The distribution of jump execution times was strongly skewed towards shorter times 

with a median of 1.283 s (Figure 4-1), with 95% of the times falling within the interval 

[0.954 s, 2.269 s]. 
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Figure 4-1. Distribution of jump execution times measured from the jump initiation point 

to take-off. 

 

Two methods were used to standardise the curve duration. The first method was linear 

time normalisation (LTN), where each time series is re-sampled to a fixed number of 

points using cubic interpolation. The LTN window size was set to 1280 points, the 

rounded median number of points, so adjustments to the timeframe were kept to a 

minimum. The second method padded out the time series (PAD) by inserting a series 

of 1’s at the beginning (bodyweight for the normalised VGRF data), equivalent to the 

participant standing still before the jump. The PAD curves’ standard length was 2250 

points, equivalent to 2.25 s. Jumps longer than this were excluded in both methods (28 

jumps or 5.1% of the total) to make for a fairer comparison by not disadvantaging LTN 

unduly since some jumps took considerably longer than others because some 

participants rehearsed their arm swing. Consequently, the data set was reduced to 520 

jumps, comprising 254 CMJA and 266 CMJNA. Although the LTN and PAD data sets 

had different lengths (1280 points for LTN and 2250 points for PAD), they had roughly 

the same density of points per unit time. For LTN, this density varied slightly between 

jumps, whereas for PAD it was constant. 
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4.2.2 Functional smoothing 

The LTN and PAD data sets were converted into smooth continuous functions defined 

by a linear combination of b-spline basis functions. The number of basis functions, K, 

was chosen so the overlapping b-spline functions each spanned five data points 

(K = 256 for LLN and K = 450 for PAD). The b-splines were 5th-order to ensure the 

function had a smooth curvature with no discontinuities. Generalised cross-validation 

was used to determine the basis function density and the 3rd-order roughness penalty 

(λ = 10-1). The roughness penalty was high because the time domain was scaled as that 

one time unit was equivalent to one millisecond in reality. This scale was necessary to 

avoid numerical errors later in the analysis (Ramsay & Silverman, 2005). 

4.2.3 Registration 

The smoothed VGRF curves were brought into closer alignment with one another 

using landmark registration to warp each curve’s time domain appropriately (Ramsay 

& Li, 1998). The registration criterion was to minimise the mean square error between 

each curve and the cross-sectional mean curve computed before registration. The 

warped time domains were defined using a smooth, monotonic continuous function 

comprising ten 1st-order, b-spline basis functions (𝜆 = 101). The same four landmarks 

used by Moudy et al. (2018), which represent changes of phase or direction in the 

jump, were considered (all 16 combinations) along with the baseline case of no 

registration: VGRF minimum (designated ‘L1’), power minimum (‘L2’), the start of 

the propulsion phase (‘L3’) and peak power (‘L4’). The landmarks could be identified 

unambiguously using standard methods to locate axis-crossings and turning points. 

When applied to both LTN and PAD data sets, registration produced 32 data sets 

altogether for evaluation in the subsequent models (Section 4.2.5).  

4.2.4 Feature extraction 

The FPCA procedure defined the FPCs, describing the curves’ characteristic features, 

and computed the corresponding FPC scores. Fifteen FPCs were retained from the 

procedure, which was sufficient to explain > 99% of the variance in all the 32 data sets 

generated above (Section 4.2.3). Separately, 50 FPCs were retained to evaluate the 
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impact of retaining no more than 15 FPCs. When registration was used above, FPCA 

was run on the time-warp curves for each jump, where three ‘temporal’ FPCs were 

retained. The FPCs for the VGRF curves were called ‘amplitude’ FPCs for clarity. No 

varimax rotation was performed, so issues with multicollinearity could be avoided in 

the subsequent linear models. 

4.2.5 Regression models 

Linear regression models were developed to estimate peak power and jump height, 

respectively. Using the FPC scores as predictors, the linear models took the general 

form: 
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where jy  is the performance variable (peak power or jump height) for the ith jump, jb  

are the model parameters to be determined and ijx  are the FPC scores above. The SAS 

GLMSELECT procedure chose which components to retain in the model using 

stepwise ‘competitive’ selection. At each step, the procedure added the component that 

produced the largest improvement in the Schwarz-Bayesian information criterion 

(SBC). The competitive element meant that the procedure could remove a previously 

selected component if, in a later step, its continued inclusion was detrimental to the 

SBC statistic. Once the model was finalised, the standardised regression coefficients 

reflected its relative importance of each FPC. 

4.2.6 Classification model 

A logistic regression model classified the jumps into those performed with and without 

arm swing. This model tested how well FPCA could identify features that 

discriminated between the two jump types. This model was intended as a further test 

of the FPC’s ability to represent key movement characteristics that relate to an 

intentional change in movement strategy, which in this case involves arm swing. 

Although not directly related to the aim of predicting the performance outcome using 

a regression model, it was considered worthwhile to include a classification model 
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since those types of model are more widespread in the machine learning literature. 

Accordingly, the logistic model took the general form: 

 0

1

logit( )
J

i j ij

j

a a x
=

= +  (4.2) 

where j  is the probability the jump incorporated arm swing, based on the binomial 

distribution. As above, ijx  are the FPC scores, while ja  are the model coefficients to 

be determined using the statistical procedure. The SAS LOGISTIC procedure chose 

the components using a similar stepwise selection based on Fisher scoring. The 

competitive-type selection was based on the Wald chi-square test statistic. 

Components were selected when p < 0.001 and were retained, provided the p-value 

remained below this threshold. The model’s classification accuracy was given by the 

concordant rate, equivalent to the area-under-curve (AUC) of the ROC curve 

(Receiver-Operator Characteristic). 

4.2.7 Cross-validation procedures 

Monte Carlo Cross Validation (MCCV) provided robust estimates for the model 

parameters and fit statistics based on 1000 iterations. The data was divided randomly 

into training and validation sets of equal size (two-fold design) for model selection 

(Section 2.6.1). The data was split along participant lines rather than by individual 

jumps ensuring jumps from the same participant could not be in both the training and 

validation sets. The SBC statistic used above in selecting the regression models was 

evaluated on the validation set (Section 4.2.5). The standardised coefficients were 

averaged over all repetitions, allowing 90% confidence intervals to be determined 

without making assumptions about the distribution. A component’s frequency of 

occurrence in the final model indicated whether it was a generalisable characteristic. 

4.2.8 Computer processing 

The functional data analysis, including functional smoothing, registration, FPCA and 

VGRF curve re-construction, was implemented with custom-written code in Matlab 

R2020a, which called an FDA code library (Ramsay, 2017). The statistical procedures 

were carried out using SAS 3.8, which used the Matlab-processed data. 
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4.3 Results 

4.3.1 Time normalisation and registration techniques 

The smoothed VGRF curves had an RMSE of 7.60 × 10-4 BW with respect to the raw 

VGRF data when averaged across every point of every jump. The cross validation 

error was 3.75 × 10-4 BW, which is negligible when considering the calibration error 

was 5.99 × 10-4 BW (Appendix D). The jump height RMSE, the difference when 

calculated using smoothed data compared to raw data, was 2.96 × 10-5 m, which for 

all practical purposes is negligible.  

The models based on the PAD data sets were generally able to explain a higher 

proportion of the variance in peak power and jump height than the LTN models (Figure 

4-2). The LTN models tended to benefit more from curve registration overall, but this 

was not sufficient to produce a better fit than the PAD models. The registered PAD 

models gained more from the contribution made by the temporal FPCs, implying a 

corresponding drop in the contribution from the amplitude FPCs as the PAD models 

did not tend to benefit from registration.  

The best model for predicting peak power was based on the unregistered PAD data set 

(P1), explaining 98.4% of its variance. Table 4-1 presents the results for the best 

models. The best model for jump height (P2) benefited from curve registration, raising 

r2 from 91.4% in the unregistered case to 94.6%. The LTN models explained ≤ 89.4% 

of the variance in peak power and ≤ 74.8% of the jump height variance. The best 

classification model correctly distinguished between jumps with and without arm 

swing 87.0% of the time. This model was the same unregistered PAD model (P1) that 

produced the best peak power model. 

The landmark for the start of the propulsion phase (L3) was the best individual 

landmark across all PAD models, featuring prominently in the top four models (Table 

4-2). For the peak power models, the peak power landmark (L4) also appeared three 

times in the top four. A similar picture emerged for the LTN models (not shown).  



 

 

 

 

   

   

Figure 4-2. Fit of the models for the PAD and LTN data sets with different combinations of landmarks used in curve registration:  

(A) Peak power model; (B) Jump height model; (C) Classification model. The horizontal axis reveals the contribution made by the temporal FPCs towards 

the model’s overall fit on the vertical axis. The size of the bubble indicates how many landmarks were used in registration.   
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Table 4-1. Model fit for the selected models identified in Figure 4-2 for peak power, jump height 

and jump classification. 

      

Model Data Landmark Registration Peak Power Jump Height Classification 

 set L1 L2 L3 L4 r 
2 r 

2 Accuracy 

P1 PAD     98.4% 91.4% 87.0% 

P2 PAD     98.2% 94.6% 85.8% 

P3 PAD     97.4% 92.0% 83.7% 

P4 PAD     97.1% 92.0% 77.6% 

Q1 LTN     84.6% 66.2% 67.3% 

Q2 LTN     89.6% 72.6% 80.1% 

Q3 LTN     87.9% 74.8% 78.3% 

Q4 LTN     87.3% 73.1% 83.6% 

L1: VGRF minimum; L2: Power minimum; L3: Start of propulsion phase; L4: Power maximum 

The best models for PAD and LTN data sets are highlighted in bold. 

 

Table 4-2. Individual landmark contributions to model fit/accuracy averaged over all the 

registered PAD models. The number of times each landmark appears in the top 4 models is also 

shown in case averaging across poor models biases the results.   

   

  L1 L2 L3 L4 

Peak Power Mean Fit (r 2) 84.2% 94.5% 96.1% 84.3% 

Number of Top 4 Rankings 1 1 3 3 

Jump Height Mean Fit (r 2) 79.9% 88.5% 90.9% 79.7% 

Number of Top 4 Rankings 1 2 4 2 

Classification Mean Accuracy 65.5% 76.2% 80.5% 69.0% 

Number of Top 4 Rankings 1 1 2 3 

L1: VGRF minimum; L2: Power minimum; L3: Start of propulsion phase; L4: Power maximum 

The best fit / accuracy are highlighted in bold, along with the strongest presence in the top four models. 

 

In conclusion, the models based on the PAD method without curve registration (P1) 

explained the highest proportion of the peak power variance and the second highest in terms 

of jump height. Using the same data set, the classification model achieved the highest 

accuracy. Therefore, the P1 data set was selected for further analysis.  
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4.3.2 VGRF Components 

The first eight FPCs that make up these VGRF curves are presented in Figure 4-3, revealing 

each component's characteristic variation. The deviation from the mean curve shows the 

direction of increasing jump performance, or in the case of the classification model, the 

effect of arm swing. Jump performance includes peak power and jump height since they 

had the same signs as the FPC coefficients except for FPC1, which was usually excluded 

from the peak power model (section 4.3.3 below).  

FPC1 described a higher peak in VGRF at the start of a more prolonged propulsion phase 

associated with a greater jump height, but it did not contribute to peak power (Figure 4-3A). 

There was also a mixture of amplitude and phase variation that was only observed in this 

FPC. In the classification model, FPC1 was excluded, which explains the absence of a 

dotted line in this plot.  

FPC2 also described variations in the amplitude range associated with peak power and jump 

height (Figure 4-3B). In contrast, arm swing worked to diminish the amplitude range in 

VGRF. FPC3 described a final peak in the VGRF toward the end of the propulsion phase 

before take-off (Figure 4-3C) that was associated with both jump performance measures. 

For FPC4, the timings were similar to FPC2, but the directions reversed between the first 

and second fluctuations (Figure 4-3D). The next four components, FPC5 to FPC8, make 

various subtle changes to the VGRF curve that had a modest influence on jump 

performance. 
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Figure 4-3. Functional Principal Components, FPC1-FPC8, with deviations from the mean 

curves (solid black line). Solid red line = deviation when peak power in higher than the mean. 

Dashed blue line = deviation indicative of a jump performed with arm swing. Both lines overlap 

in several plots, indicating arm swing also contributes to peak power. Deviation 2 × SD. Vertical 

dotted lines indicate the phase boundaries between (from left to right) the unweighting phase, the 

braking phase and the propulsion phase.  
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4.3.3 Model fit 

The central estimates from cross-validation were almost identical to the original estimates 

from the models above (section 4.3.1). However, the lower confidence limit for peak power 

(10th percentile of models) dropped to 92.9% (Table 4-3). The confidence intervals were 

narrower for the jump height models, showing those models were less prone to overfitting. 

When making predictions based on the validation set, the RMSE central estimates were 

1.40 W·kg-1 and 0.033 m for peak power and jump height, respectively. These errors were 

slightly higher than the RMSE based on the training set (0.99 W·kg-1 and 0.027 m, 

respectively).  

 

Table 4-3. Model fits for the unregistered PAD models averaged over 1000 repetitions of cross-

validation. The central estimates are shown with 90% confidence intervals in brackets. 

Model 
† Explained Variance /  

‡ Accuracy 
Validation RMSE 

Peak Power † 98.3 [92.9, 98.6] % 1.40 [1.19, 1.61] W·kg-1 

Jump Height † 92.0 [90.3, 93.6] % 0.033 [0.030, 0.037] m 

Classification ‡ 88.8 [85.6, 91.9] % n/a 

† Explained variance is r 2. 

‡ Classification accuracy is the concordant rate. 

 

When the number of retained FPCs was increased from 15 to 50, the average validation 

RMSE for the peak power models only dropped slightly to 1.19 W·kg-1 (Table 4-4). In 

contrast, the average error for the jump height models was cut from 0.033 m to 0.015 m, 

whilst the classification accuracy rose from 88.8% to 95.0%. Using 50 FPCs minimised the 

approximation error of retaining 15 FPCs, providing an indication of how good the linear 

models could be.  
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Table 4-4. Model fits based on retaining 50 FPCs for the unregistered PAD models, averaged 

over 1000 repetitions of cross-validation. The central estimates are shown with 90% confidence 

intervals in brackets. 

Best Models 
† Explained Variance /  

‡ Accuracy 
Validation RMSE 

Peak Power † 99.3 [99.1, 99.5] % 1.19 [1.01, 1.39] W·kg-1 

Jump Height † 99.2 [98.9, 99.5] % 0.015 [0.013, 0.016] m 

Classification ‡ 95.0 [92.3, 97.6] % n/a 

† Explained variance is r 2 

‡ Classification is the concordant rate 

 

4.3.4 Model components 

The stepwise selection process produced a range of models over the 1000 cross-validation 

repetitions that comprised different sets of FPCs. Most of the FPCs appeared in the peak 

power models in every repetition (FPC2–FPC6, FPC8, FPC10 and FPC12: Figure 4-4A), 

whereas fewer and some different FPCs were always present in the jump height models 

(FPC1–FPC3, FPC5, FPC6, FPC8 and FPC9: Figure 4-4B). The classification models were 

sparse in comparison, with only FPC4 always being present (Figure 4-4C), while FPC2, 

FPC3 and FPC5 appeared almost every time (in ≥ 950 occasions). These are the FPCs that 

were strongly associated with arm swing. In contrast, for the performance models, multiple 

FPCs were linked to peak power or jump height. 
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Figure 4-4. Frequency that FPCs appear in the unregistered PAD models based on 1000 

iterations of 2-fold cross-validation. (A) Peak power; (B) Jump height; (C) Classification (arm 

swing). 

 

The proportion of the variance in the jump performance outcome variables showed that 

FPC3 accounts for by far the largest proportion of the variance in peak power and jump 

height (central estimates of 72.9% and 57.7%, respectively – Figure 4-5). The next best 

FPCs explained < 10% of the outcome variances (FPC8 and FPC5). In contrast, the curves’ 
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variance accounted for by FPC3 was only 8.6%, whilst FPC1, which always accounts for 

the largest curve variance, explained roughly half the variance (50.7%). 

 

 

 

Figure 4-5. Variance in the VGRF curves explained by the unrotated FPCs for the unregistered 

PAD data set compared to the variances in the two jump performance measures. Error bars 

indicate 90% confidence intervals estimated from cross-validation. FPC9–FPC15 are not shown 

for clarity as they made minimal contributions. 

 

The magnitudes of the standardised parameter estimates indicate the FPC's contribution, 

irrespective of the different scales involved (Figure 4-6). FPC3 had the largest parameter 

estimate of the performance models, with the positive sign indicating a higher FPC3 

improves jump performance. FPC4 had the largest magnitude in the classification model, 

and being negative indicated that arm swing tended to decrease the FPC4 score.  
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Figure 4-6. Standardised estimates for the FPC coefficients in the models based on the 

unregistered PAD data set. For clarity, the bars shown are only for FPCs appearing in models 

> 900 times out of 1000 repetitions of cross-validation. Error bars indicate 90% confidence 

intervals. 

 

No such comparisons can be made for the classification models because predictive accuracy 

is not additive. Instead, the standardised odds ratios revealed the relative importance of each 

FPC to arm swing (Table 4-5). A jump with an FPC4 score one standard deviation lower 

than that of another jump would indicate that the jump in question was 4.5 times more likely 

to have involved arm swing in comparison. (The standardised odds ratio was 0.22 for a one 

SD increase.) The likelihood worked in the opposite direction for FPC3 and FPC5 such that 

a score one SD higher would make it more likely that the jump incorporated arm swing. 

Overall, the variance in the FPC4 was the biggest indicator for the presence or otherwise of 

arm swing. 
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Table 4-5. Standardised odds ratios (OR) for selected FPCs in the classification model, which 

indicate how many times more likely the jump involved arm swing for every one-SD increase in 

the FPC score. Odds ratios < 1 indicates such an increase makes it more likely that the jump did 

not involve arm swing. In those cases, the inverted standardised OR is shown to allow 

comparison of the relative magnitudes. Central estimates are shown with 90% confidence 

intervals in brackets based on cross-validation. 

 Standardised OR Inverted Standardised OR 

FPC2 0.42 [0.30, 0.54] 2.37 [1.86, 3.31] 

FPC3 2.66 [1.80, 3.76]   

FPC4 0.22 [0.12, 0.32] 4.50 [3.12, 8.06] 

FPC5 2.90 [2.00, 4.09]   

FPC7 0.45 [0.34, 0.57] 2.20 [1.75, 2.92] 

FPCs selected appeared > 900 times in the model over 1000 repetitions of cross validation. 

The standardised (or inverted standardised) odds ratios > 1 are highlighted in bold to make it easier to 

compare their magnitudes. 

 

4.4 Discussion 

The aim of this chapter was to investigate the efficacy of FPCA-type models in vertical 

jumping based on gold-standard VGRF data before applying this approach to accelerometer 

data. Two different time normalisation techniques were considered to standardise the time 

series’ length by either resampling using interpolation (LTN) or by padding out the time 

series to the required length (PAD). In addition, curve registration was evaluated to 

determine if it could benefit the models. These methods were evaluated by considering: (1) 

the goodness of fit of the resulting models (explained variance or predictive accuracy); (2) 

how robust the models’ predictions were when applied to validation data over many sub-

samples; and (3) whether the characteristic features of the VGRF curves related to known 

neuromuscular factors. Although the prediction of peak power is of primary interest, models 

of jump height were developed as a useful comparator when interpreting the results. The 

findings from this investigation will help to determine the best methods to use on the 

accelerometer data. 
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4.4.1 Goodness of fit and predictive error 

The most obvious way to judge the quality of the model, and arguably the best, is to assess 

its predictive accuracy. If the model correctly captures the intrinsic qualities that govern the 

outcome, it should predict it with high fidelity. On this measure, the simple linear models 

based on the FPCs were able to explain a very high proportion of the variance in peak power 

(98.3%) and jump height (92.0%), which translated to validation RMSEs of 1.40 W·kg-1 

and 3.3 cm, respectively. The logistic regression model classified roughly 7 out of 8 jumps 

correctly (88.8%). The jump height model was more accurate than a model based on 

discrete ‘features’, which had an RMSE of 4.8 cm (Dowling & Vamos, 1993), as Richter 

et al. (2014a) had previously found for FPC-based models.  

Richter et al. (2014a) and Moudy et al. (2018) reported fits of 98.8% and 86.1%, 

respectively, for their ACP models. Those studies used the flight-time definition, making 

jump height easier to predict because the linear model becomes a sum of net impulses. In 

contrast, the current study used the work-done definition of jump height, which is more 

representative of active play in many sports such as volleyball and basketball. However, 

this jump height definition has a more complicated relationship with the impulse as it 

includes the so-called ‘stretch height’ at take-off, plus the height gained in flight. 

For a direct comparison with Moudy et al. (2018) and Richter et al. (2014a, 2014b), it is 

necessary to re-define jump height as the height gained after take-off, as those authors have 

done. The revised model explains 98.9% [98.7%, 99.0%] of the variance in this alternative 

measure, which is almost the same as Richter’s model. Richter et al. (2014b) and Moudy et 

al. (2018) quote predictive errors a mean average errors (MAE) of 0.59 cm and 1.37 cm, 

respectively. As they did not employ cross-validation, the more appropriate comparison is 

with the revised training RMSE, which for the current study was 0.9 cm [0.8 cm, 1.0 cm]. 

For reference, RMSE will always be equal to or larger than MAE. These comparisons 

demonstrate that it is possible to achieve a comparable level of accuracy in predicting jump 

height without employing ACP.  

However, it is the models’ predictions of peak power that is of interest in this thesis. The 

validation RMSE in the current study was 1.40 W·kg-1 (based on 15 FPCs). These 

predictive errors are below the typical intra-day CV of 1.75 W·kg-1, averaged across four 

studies (Section 2.2.2), although not substantially so. Unlike the jump height and the 
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classification models, the accuracy of peak power predictions did not improve markedly 

when 50 FPCs used in the model. The predictive error for this extended model was slightly 

lower at 1.19 W·kg-1. The differences with the training RMSE (0.99 W·kg-1 and 

0.70 W·kg-1, for 15 and 50 FPCs respectively) were not particularly large, suggesting that 

overfitting, while present, was not a big factor. Out of the 50 FPCs entered into the model, 

only 14 FPCs were selected more often than 900 out of 1000 iterations. This finding shows 

that the model did not prefer FPCs describing minimal VGRF variations. 

The above evidence suggests that peak power is harder to predict than jump height, perhaps 

because it depends on a narrower timeframe when the forces acting on the body vary 

rapidly. In contrast, jump height depends on the cumulative effect of force. Thus, the peak 

power model’s parameters were more sensitive to small variations in the data. In 

comparison, Bobbert et al. (1987) showed that peak power was sensitive to deliberate 

changes in drop jumping technique, while the total work done (proportional to the jump 

height) remained the same. Therefore, it may be more appropriate to develop a more 

sophisticated model than the linear model used in the current investigation. Therefore, the 

next chapter will consider a range of different machine learning models when applying the 

current FPCA techniques to the accelerometer data.  

4.4.2 Time normalisation and curve registration 

Time normalisation and curve registration had a pivotal effect on the models because they 

altered the VGRF curves’ shape and hence, the FPCs themselves. Padding out the start of 

the VGRF curve to reach a standard length always produced a better performance model 

compared to LTN. Rescaling the time domain through registration undermined the 

relationship with impulse, reducing the model’s predictive accuracy. In the classification 

case, no direct link with impulse exists, so the differences between the PAD and LTN 

models were much less apparent. For the unregistered PAD data set (P1), there could still 

have been misalignments between the VGRF curves, but relatively small amounts of phase 

variance may be tolerable when there is a need to preserve the time domain (Ryan et al., 

2006; Donoghue et al., 2008; Epifanio et al., 2008; Crane et al., 2010). Registration may 

have gone some way towards ‘correcting’ the distortions from time normalisation, given 
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that the LTN-based performance models benefited much more from registration than the 

PAD models (7 cases for peak power models and 11 for jump height models). 

The most efficacious landmark was located at the start of the propulsion phase (L4), as it 

appeared so often in the best models. Moudy et al. (2018) found that the same landmark 

produced the best jump height models. Other studies have reported that the propulsion 

phase duration is the least invariant (Oddsson, 1987; van Ingen Schenau, 1989), so it might 

be expected that the curves would need the smallest adjustment to align about this landmark. 

However, the plots in Figure 4-3 shows that the VGRF undergoes the highest rate of change 

during the latter part of the braking phase, making the model’s parameters more sensitive 

to small changes. Landmark registration helped improve the models’ fit by decomposing 

curve variance into its amplitude and temporal components. Using continuous time-

warping functions is more effective than traditional dynamic time-warping which depend 

on discrete measures (Marron et al., 2015). The current analysis shows that some benefit 

can be gained from registration in some circumstances. It should be considered when 

applying the FPCA technique to the accelerometer data (Chapter 6) once a satisfactory 

accelerometer model has been identified (Chapter 5).  

4.4.3 Cross validation 

Cross validation played an essential role in assessing the models as it provided robust 

estimates of predictive error. The FPCs appearing in the model every time were those 

predictors that were more likely to generalise well to unseen data, lessening the likelihood 

of overfitting. Conversely, the FPCs that explained only a very small proportion of the 

overall variance, describing nuanced characteristics, appeared infrequently illustrating how 

fitting to extraneous features does not generalise well to other data sets. These observations 

confirm the value of using cross validation to identify the predictors that generalise well 

across data sets. It should also be noted that the models’ predictors were based on FPCA, 

which treated all curves equally. The cross validation procedure in SAS was performed 

after FPCA was run in Matlab. Hence, the FPCs themselves were defined from training and 

validation data sets combined. This limitation will be addressed in the next chapter with a 

Matlab-only implementation.  
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4.4.4 Interpretation of the FPCs 

The usefulness of a model can extend beyond the accuracy of its predictions if it can provide 

insight to the investigator on how the predictions were made. The models based on FPCA 

can offer insights on the biomechanics of vertical jumping on two levels: (1) the relative 

importance of each FPC can be examined; and (2) the shapes described by the FPCs are 

intuitive, allowing meaningful interpretation. In terms of performance, FPC3 was the single 

most important feature, describing an initial variation in unweighting phase along with a 

peak in the propulsion phase, just before take-off. The FPC3 score explained most of the 

variance in peak power and jump height (72.9% and 57.7%, respectively), dwarfing the 

contributions made by the other FPCs (Figure 4-5). Oddsson (1989) also found that the peak 

VGRF immediately before take-off was the single best predictor in his jump height model 

for CMJA, explaining 44% of the variance. Notably, FPC3 from the current study accounted 

for a larger proportion of the variance than the absolute VGRF peak value. These results 

support the principle of late force production first proposed by Hochmuth & Marhold 

(1977). As discussed in Section 2.2.5, the highest final velocity is achieved (take-off 

velocity in jumping) when maximum force is applied toward the end of an explosive 

movement rather than at the beginning. A recent study reported similar findings, revealing 

the difference between low- and high-performing jumpers lay in the late propulsion phase, 

between 79% and 97% of the time-normalised VGRF curve (R. Kennedy & Drake, 2018). 

Moudy et al. (2018) also reported that the key phase for jump height was 84-100% of the 

time-normalised VGRF curve.  

It naturally follows that producing high VGRF at higher velocities requires considerable 

power. That is why FPC3 was also strongly associated with peak power, as well as with 

jump height. Moreover, the FPC3 peak was almost coincident with power production 

reaching its peak. It is reasonable to infer that neuromuscular factors may underlie the 

differences in the FPC3 score. FPC3 described the variation in the VGRF over roughly the 

final 280 ms before take-off, which is consistent with the period when the triceps surae 

contribute strongly to the jump (Bobbert et al., 1986). FPC3 may also be a consequence of 

the biarticular muscles’ action transferring power from the hip extensors to the ankle plantar 

flexors over this period (Jacobs et al., 1996; van Ingen Schenau, 1989). 
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Researchers have also observed how some force-time curves in jumping have one peak 

while others have two, often in connection with arm swing (Payne et al., 1968; Shetty & 

Etnyre, 1989; Miller & East, 1976). Interest was renewed recently in these patterns with 

studies reporting no clear advantage in terms of jump height between unimodal and bimodal 

curves (R. Kennedy & Drake, 2018), along with inconsistency in the VGRF curves’ 

modality in jumps from the same individual (Lake & McMahon, 2018). Cockcroft et al. 

(2019) proposed a method for the objective classification of modal curves based on a 

detailed analysis of discrete measures of maxima and minimum force levels over the 

propulsion phase. The current study offers an alternative framework based on continuous 

features described by the FPCs. It cannot classify curves as Cockcroft et al. (2019) does, 

but it offers a fresh perspective into the underlying movement characteristics behind curve 

modality.  

Finally, it is worth noting that FPC1 and FPC2 explained 73.0% of the VGRF variance but 

only accounted for 12.1% of the jump height variance and had almost no influence on peak 

power, accounting for just 1.5% of its variance. These observations illustrate that although 

there may be considerable variation in the VGRF curve, such variations may not impact the 

jump performance. Such variation may be attributed in part to the degrees of freedom 

available to the jumper in how they execute the jump (Dowling & Vamos, 1993; J. Jensen 

et al., 1989) and may reflect natural movement variability (Glazier et al., 2006; Button et 

al., 2003; Davids et al., 2003; Kelso, 1995). Such variability presents a challenge in 

estimating peak power and jump height from accelerometer signals. The results show that 

only a small proportion of the variance in the VGRF is relevant to performance, and it may 

be reasonable to suppose that the same will apply to the accelerometers signals. If so, the 

challenge will be to identify those features in the accelerometer data that are relevant to the 

generation of peak power. 

From the above discussion, it should be clear that FPCA allows meaningful qualitative 

interpretation of the FPCs in an intuitive way. Whilst other authors have used varimax 

rotation to aid interpretation, varimax was not necessary here, nor was it desirable as such 

rotations would introduce correlations between the previously independent FPC scores. 

Whilst linear models are generally tolerant of moderate correlations between the predictors, 

there were several instances of multicollinearity associated with the varimax FPCs when 
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they were tested. The multicollinearity reached such high levels that it would have cast 

doubt on the models’ robustness (r > 0.9 and VIF > 10).  

4.4.5 Conclusions 

FPCA has proven itself to be an effective means for extracting characteristic features from 

the VGRF data. The robust models could predict performance outcomes and classify jump 

types with a high degree of accuracy when tested on unseen validation data. The regression 

models demonstrated that FPCA could pick out characteristics related to peak power and 

jump height. The two measures served to test this capability in different ways. Although 

classification was not the aim of this thesis, the logistic model also showed that the FPCs 

could be used to distinguish between two different movement patterns. Hence, the FPCs 

describe biomechanically meaningful aspects of the jumping movement. These results 

indicate FPCA has the potential to be a useful technique for accelerometer data. As an 

unsupervised learning technique, FPCA has no a priori assumptions of what the key 

features should be, nor is it guided by the intended performance metric. Nevertheless, the 

FPCA-based models achieved high levels of accuracy, perhaps because these features 

explained many aspects of jumping so elegantly.  

This chapter also established that padding out the time series yields more accurate models 

than when using time normalisation. Padding at the start ensured the curves remained in 

reasonably close alignment near take-off, the critical period when peak power is achieved. 

Curve registration could not improve alignment much further. Registration marginally 

improved the jump height model, but otherwise, it was detrimental to the PAD models. It 

did assist the LTN models only because time normalisation had left the curves more 

misaligned with one another. Therefore, padding is preferable to time normalisation, while 

curve registration may benefit if padding is not sufficient to properly align the curves. Thus, 

with VGRF gold standard data, FPCA has proven itself to be an effective feature extraction 

method and can therefore be applied with confidence to accelerometer data. The remainder 

of this thesis will now seek to develop and investigate FPCA-based models based on 

accelerometer data. 
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CHAPTER 5. ACCELEROMETER MODEL SELECTION 

OPTIMISATION 

5.1 Introduction 

This thesis so far has focused on the VGRF data, using it to compute the criterion jump 

performances (Chapter 3) and evaluate FPCA as a feature extraction method (Chapter 4). 

As the previous chapter established, the FPCs can represent key characteristics related to 

the performance outcome. This approach can now be applied to answer the second research 

question, which machine learning algorithms are better suited to predicting peak power in 

vertical jumping based on the FPCA characteristics of body-worn accelerometer data? The 

accelerometer data will come from one of four sensors attached to either the lower back 

(LB), upper back (UB) or the shanks (LS/RS) (Section 3.2.4). One of those attachment sites 

may be better suited than the others for predicting peak power in vertical jumping. 

Similarly, higher accuracy may be achieved for one jump type over the other (CMJNA vs. 

CMJA). Hence, there are eight different data sets for each combination of anatomical 

location and jump type. Determining at this initial stage which data set is more likely to 

yield accurate predictions will streamline the investigation in subsequent chapters.  

Models based on accelerometer data may need to be more sophisticated than the linear 

model for VGRF data, given the inherent difficulties in using body-worn sensor data to 

predict athletic performance (Sections 2.3.4–2.3.5). Hence, the models considered in this 

chapter should encompass a range of possible algorithms, including parametric and non-

parametric models that take different approaches to controlling overfitting. They should be 

chosen based on their generalised predictive accuracy so the models can be applied with a 

reasonable level of confidence to new data that is gathered in the same way. Nested cross 

validation provides the framework to achieve this as it yields unbiased estimates of the 

model’s predictive error (Section 2.6.2). Operating inside the NCV inner loop, optimisation 

will play a central role in model selection (Section 2.6.3). As part of this process, it will 

help understand the key factors that influence model accuracy rather than treating it as a 

black box. Throughout this investigation, computation cost will be a consideration as many 
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thousands of subsamples will be needed to produce an unbiased estimate of the model’s 

generalised error.  

The aims of this chapter are therefore to: 

• Determine which combination of jump type and sensor location provides the data 

set best suited to making accurate peak power predictions; 

• Select and optimise suitable machine learning algorithms using the nested cross 

validation framework; and 

• Obtain generalised estimates of the selected model(s) predictive error from this 

first stage of accelerometer model development. 

5.2 Methods 

5.2.1 Overview 

The methods in this chapter will be applied throughout the rest of this thesis concerning 

accelerometer data. They begin by describing the data preprocessing needed to convert the 

accelerometer signals into smooth continuous functions and then extract the FPC-type 

features. A shortlist of promising models is drawn up based on K-fold cross validation 

before nested cross validation (NCV) is applied. A novel optimisation procedure is 

introduced based on a Bayesian surrogate model trained on observations from a random 

search, which is progressively constrained towards the optimal region. Particle Swarm 

Optimisation (PSO) finds the surrogate model’s global optimum, which corresponds 

directly to the optimal parameter values for the algorithm in question (J. Kennedy & 

Eberhart, 1995). A final model is determined for each of the shortlisted algorithms by 

aggregating the multiple models produced in the NCV procedure using the bagging 

technique (Breiman, 1996). The final models are then evaluated to determine the 

generalised predictive error using the Monte Carlo Cross Validation (MCCV). The final 

models are retrained on the full data set and then tested on the holdout set as a further 

independent check.  
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5.2.2 Data preprocessing 

The calibrated 3D accelerometers signals obtained from Chapter 3 comprised N = 275 

jumps without arm swing from 60 participants. The accelerometer signals, ( )n ta , were 

converted into resultant time series (L2-norm), denoted by 0 { ( ) }n t= a , where the index

{1, ..., }n N  identifies each jump. Using the resultant signal simplified the analysis at this 

initial stage by considering a single waveform for each jump, although in doing so, it 

removed information related to the sensor’s orientation. The accelerometer time series were 

time-shifted backwards 100 ms (25 time intervals) to synchronise them with the VGRF 

data, based on the study into the accelerometers’ temporal validation (Appendix B). The 

time series were then truncated to fit a prescribed time window covering the 2 s immediately 

before take-off [-2 s, 0 s]. Thus, each time series comprised 501 points, given the 250 Hz 

sampling frequency. 

The conversion into smooth continuous functions used the same method as before (Section 

4.2.2), employing 100 b-spline basis functions to obtain the same density of overlapping 

functions as the VGRF curve. Fourth-order basis functions were sufficient to avoid 

discontinuities in the second derivatives of the smoothed signals (i.e. a smooth curvature), 

one order lower than the VGRF basis functions. Accordingly, the roughness penalty was 

applied one level lower at the second order. The roughness penalty, λ = 102, was determined 

by Generalised Cross-Validation (GCV) (Ramsay & Silverman, 2005). With this level of 

smoothing, 100 b-splines was close to the optimal amount for efficiently retaining 

information from the accelerometer data: 94.8 degrees of freedom out of a possible 100 

(Ramsay & Silverman, 2005). Whilst more b-splines would have provided greater 

flexibility, the computational costs would have been much higher. Fifteen FPCs were 

retained from FPCA without varimax rotation, following the same approach as with the 

VGRF data, as they accounted for > 99% of the curve variance. Chapter 7 will determine 

the optimal number of retained components that minimises predictive error. 

The FPCs were defined based on the training set alone, unlike in the previous chapter, to 

ensure full separation between the training and validation sets in respect of the definition of 

the features themselves. The Matlab FDA code library does not support this procedure, so 

a custom function was developed to calculate the validation FPC scores using the training 
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FPCs. The calculation involved projecting each validation acceleration curve onto the 

training FPC using the inner product. 

5.2.3 Candidate accelerometer models 

The FPC scores served as the predictors in the models. The model algorithms covered 

parametric and non-parametric methods, neural networks and a tree ensemble (Table 5-1). 

Since feature definition was based on FPCA, more sophisticated deep neural networks with 

their convolutional layers designed to learn features in the data were not applicable, nor 

were Long/Short-Term Memory (LSTM) networks that take the raw time series as their 

input (Hochreiter & Schmidhuber, 1997). No feature selection methods were employed, as 

mentioned above, such as stepwise selection from the previous chapter. It was preferable to 

focus on the algorithms’ efficacy rather than introducing additional complexity at this stage.  

Many of these algorithms were available in Matlab’s Regression Learner App (R2020a), 

which offers a convenient way to evaluate several different types of models. However, the 

app did not support a form of grouped cross-validation that allowed the data to be split 

along participant lines, as was done in the previous chapter (Section 4.2.7). In addition, the 

app did not allow any form of optimisation, the absence of which may have disadvantaged 

some algorithms at this first stage of model selection. Instead, the values for the models’ 

hyperparameters were determined using Matlab’s hyperparameter optimisation (HPO) 

feature, the results of which are also presented in Table 5-1. The ‘auto’ option for HPO was 

chosen as it was designed to optimise the hyperparameters generally considered to be 

influential on model performance. The few hyperparameters omitted, including the GPR 

basis function and standardisation options, reverted to their Matlab default settings. No 

cross-validation was incorporated into the HPO for the same reason as above. It was 

preferable to adopt a lightweight approach at this stage, given the large number of models 

involved. The subsequent optimisation requiring considerable computational resources was 

reserved for a few shortlisted models.  
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Table 5-1. Machine learning models for evaluated in this chapter.  

Algorithm † Identifier  Key Hyperparameter Values ‡ 

Linear Regression: 

fitrlinear 

 

(Hastie et al., 2009; Hoerl & Kennard, 1970; 

Marquardt & Snee, 1975; R. Tibshirani, 1996) 

LR Lambda (λLR) = 0 

Solver = Least Squares 

LR-RDG Lambda (λLR) = 0.1 

Solver = Least Squares 

LR-LSS Lambda (λLR) = 0.01 

Solver = SVM 

Support Vector Machine: 

fitrsvm 

 

(Boser et al., 1992; Drucker et al., 1996; 

Smola & Schölkopf, 2004) 

SVM-L Kernel = Linear 

Box Constraint (BC) = 0.001 

Kernel Scale (KS) = 0.4 

Epsilon (ϵ) = 2.75 

SVM-G Kernel = Gaussian 

Box Constraint (BC) = 220 

Kernel Scale (KS) = 270 

Epsilon (ϵ) = 2.65 

Gaussian Process Regression: 

fitrgp 

 

(Bishop, 2006; Rasmussen, 1999; Rasmussen 

& Williams, 2006) 

GPR-SE Kernel = Squared Exponential 

Sigma (σ) = 2.1 

GPR-M52 Kernel = Matérn 5/2 

Sigma (σ) = 2.3 

Feedforward Neural Network:  

feedforwardnet 

 

(Hastie et al., 2009; Sapna, 2012) 

NN-5 Hidden Nodes = 5 

Training = Levenberg-Marquardt 

NN-10 Hidden Nodes = 10 

Training = Levenberg-Marquardt 

Tree Ensemble: 

fitrensemble 

 

(Dietterich, 2000a, 2000b) 

TR-ENS Method = Least Squares Boost 

Learning Cycles = 10 

Learning Rate = 0.4 

Minimum Leaf Size = 1 

† Associated Matlab command in bold. 

‡ Determined by Matlab Hyperparameter Optimisation with ‘auto’ method. 

 

5.2.4 Shortlisting Models 

The process to shortlist the accelerometer models (Figure 5-1) involved using a series of 

grid searches for every combination of algorithm, sensor and jump type (Table 5-2). The 

validation errors were subject to statistical analysis to identify the best data sets. The models 

were evaluated based on an estimate of their predictive error using two-fold MCCV with 

100 iterations (Molinaro et al., 2005; Xu & Liang, 2001; P. Zhang, 1993). With its equal-

sized training and validation sets, two-fold cross-validation minimised the variance in the 

loss between folds and is recommended for model selection (Breiman & Spector, 1992; 

Hall & Robinson, 2009; Shao, 1992, 1993; Y. Zhang & Yang, 2015). The standard error in 
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RMSE with 100 MCCV iterations was found to be 0.05 W·kg-1 for this arrangement when 

averaged across all models (AppendixE.1). As in previous chapters, the partitioning was 

done by participant rather than by trial. Had this not been done, it would have resulted in 

an under-estimation of the validation error by up to 0.65 W·kg-1 (Appendix E.2). Each 

subset (training and validation) comprised jumps from 30 participants, ranging from 120 to 

152 (137 ± 5) depending on the breakdown on jumps performed by participant (4 or 8) 

(Section 3.2.2). The small differences in sample size had no discernible effect on the 

models’ predictive errors because minor differences were averaged out over multiple folds.  

 

 

 
Figure 5-1. Process flow for the first stage of model selection using a grid search and subsequent 

statistical analysis to shortlist models for further analysis. AM = accelerometer model; GLM = 

Generalised Linear Model for statistical comparisons of model errors. 
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Table 5-2. Parameter search ranges for the grid search, which included every combination of 

sensor attachment site, jump type and algorithm shown below. 

Parameter Search Range 

Sensor attachment site † {LB, UB, LS, RS}  

Jump type {CMJNA, CMJA} 

Algorithm ‡ {LR, LR-RDG, LR-LSS, SVM-L, SVM-G, GPR-SE, GPR-M52, 

NN-5, NN-10, TR-ENS} 

† LB = Lower Back; UB = Upper Back; LS = Left Shank; RS = Right Shank. 

‡ See Table 5-1 for definitions. 

 

Statistical comparisons were made between the models using a generalised linear model 

(GLM) in preference to ANOVA because the RMSE values across the folds were not 

normally distributed. The factorial design included model, sensor and jump type with effect 

sizes determined using partial ω2, which explained the proportion of the variance not 

covered by the other variables. Three out of the five algorithm types with lower prediction 

errors were shortlisted and taken forward to the next stage. 

5.2.5 Nested Cross Validation 

Cross validation thus far has been used exclusively for model selection. However, in this 

second stage, cross validation must fulfil the twin objectives of model selection and model 

evaluation. The purpose of model evaluation is to estimate the model’s generalised 

predictive error to indicate how well the model can be expected to perform on new data sets 

drawn from the same distribution. Therefore, a nested cross validation design was 

introduced to separate model evaluation from model selection to guard against biasing the 

predictive error (Varma & Simon, 2006) (Figure 5-2). The outer cross validation had a 10-

fold design, recommended for model evaluation (e.g. Y. Zhang & Yang, 2015), without 

overlapping validation sets to ensure the validation sets were truly independent (Isaksson 

et al., 2008). All aspects of data processing, model training and selection were carried out 

within the outer training partition (Varma & Simon, 2006). The model that emerged was 

evaluated on the outer validation partition, which had played no part in selecting the model. 

This procedure was repeated for each outer fold, producing a set of 10 models with their 

associated independent validation errors. A more generalised model was obtained by 

aggregating the models using bagging (Breiman, 1996).  
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In order to accommodate a large number of observations required from the accelerometer 

model (AM), the number of MCCV iterations was reduced from 100 to 20. This brought a 

modest increase in the standard error of each CV estimate from 0.05 to 0.12 W·kg-1 

(AppendixE.1). Emphasis was placed on gathering more observations for greater coverage 

of the search space than on the precision of individual cross validation estimates. The 

standard error was effectively reduced during the optimisation when observations were 

made in the same vicinity. The reduction to 20 iterations of MCCV, a low number of 

repetitions for a Monte Carlo method, raised the possibility of switching to repeated k-fold 

CV, i.e. 10 ×2. However, comparisons between the two methods revealed no discernible 

differences between them in terms of error estimates across all algorithms (Appendix E.3). 

Therefore, MCCV was retained as the preferred cross validation method. It is a technique 

that will be used throughout this thesis. 

 

 

Figure 5-2. Nested cross validation design used in the optimisation procedure in this and 

subsequent chapters, showing model selection takes place inside the inner loop, producing a 

model for each outer fold, which are then aggregated using bagging. 
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5.2.6 Notation 

It will be helpful to adopt the following notation to clarify the difference between the data 

sets in a nested cross validation procedure. Let the k-th outer fold be represented by 
( )k

 

where the bracketed superscript identifies the fold, such that {1, , }k K , for which, 

K = 10 in this design. Using subscripts, let 
( )k

+
  and 

( )k

−
 refer to the training and 

validation sets, respectively. The bracketed superscripts may also identify the inner fold 

such that 
( , )k l

+
 and 

( , )k l

−
  denote the respective training and validation subsets for the 

outer training set, 
( )k

+
, where {1, , }l L  identifies the inner fold (L = 20).  

Thus, FPCA, which was performed on the inner training set (Section 5.2.2), may be defined 

as: 

 
( , ) ( , ) ( , )

,  )FPCA (k l k l k lf=
+ +

   
   

X   (5.1) 

where ( )f   represents functional smoothing. 
( , )k l

+
X  represents the training data used by 

the algorithm and 
( , )k l  defines the discretised wavefunctions of the associated FPCs, 

which applies to 
( , )k l

 as a whole, including training and validation sets. The validation 

set was generated by using the inner product to project the smoothed validation curves onto 

the FPCs (Section 5.2.2), which may be represented symbolically as: 

 
( , ) ( , ) ( , )

).(k l k l k lf=
− −

 
 

X   (5.2) 

The validation loss of the accelerometer model (Figure 5-2) :  

 ( )( ) ( ) ( )
AM ; , k k k

= X    (5.3) 

was a function of the data subsample, 
( )k

X , for k-th outer fold, which was conditional on 

the chosen algorithm, , and the parameters, 
( )k

 , which for this chapter comprised the 

algorithm’s hyperparameters (Table 5-1). The AM incorporated data preprocessing, FPCA, 

model training and model evaluation inside the inner CV loop. For a given algorithm, , 

and parameter set, 
( )k

 , the validation loss, ( )k , varied depending on the CV random splits 

defining for 
( , )k l

+
X  and 

( , )k l

−
X . The aim was to determine a suitable 

( )ˆ k
  for the k-th 

subsample, 
( )k

X , that minimised the outer validation loss: 
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 ( )( ) ( ) ( )
;ˆ arg min AM  , 

k k k
=  

 
X   (5.4) 

5.2.7 Optimisation 

The AM was computationally expensive to evaluate, primarily due to the multiple times 

FPCA and model training was performed in the CV loop. The AM also exhibited stochastic 

behaviour due to the random subsampling, which would appear as noise to an optimiser. 

Bayesian optimisation is well suited to finding the global minimum of such an objective 

function as the optimiser requires fewer function evaluations than other procedures (Brochu 

et al., 2010; D. Jones et al., 1998; Snoek et al., 2012). However, a preliminary investigation 

established that the Matlab Bayesian optimiser could not be relied upon to find the global 

optimum consistently (Appendix E.4). Even though Bayesian optimisation is specifically 

designed to handle such ‘noisy’ objective functions, inconsistent results is a known issue 

that remains the subject of research (Gramacy et al., 2016; Gramacy & Lee, 2011; Letham 

et al., 2019; Picheny, Ginsbourger, et al., 2013; Picheny, Wagner, et al., 2013). 

Bayesian optimisation works by constructing a surrogate model from the observations made 

of the objective function. The more observations it gathers, the more representative the 

surrogate model becomes. However, the number of observations that the Bayesian 

optimiser can realistically process is limited by the rising exponential cost associated with 

its acquisition function that directs the search. Preliminary investigations using the Matlab 

R2020a implementation confirmed that the optimiser overhead became the dominant factor, 

many times the original AM cost (Appendix E.5). 

The novel approach taken in this research was to train a separate surrogate model (SM) 

using observations gathered from a random search (Bergstra & Bengio, 2012). Particle 

Swarm Optimisation (PSO) was employed to find the SM global minimum (Escalante et 

al., 2010; J. Kennedy & Eberhart, 1995). Thus, without the overhead of an acquisition 

function, it was possible to gather more observations to build a comprehensive map of the 

search space. The random search was progressively constrained using a mechanism 

described below (Section 5.2.9) to concentrate observations in promising regions of the 

parameter space where SM loss predictions were comparatively low. PSO was configured 

with 100 particles to find the global optimum in the SM. The convergence criterion was 
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when the best objective function observed across the swarm did not improve by 0.01 W·kg-1 

over 20 consecutive iterations. Typically 10-30 iterations were required, and so the number 

of SM function evaluations could often exceed a thousand. Given the SM’s fast evaluation 

time (SM < 0.001 s vs. AM ~ 1.3 s), this was not an issue, and the optimisation was 

typically completed in a few seconds.  

 

 
Figure 5-3. Optimisation procedure for model selection based using a random search to develop 

a surrogate model (SM) for predicting the validation loss, 
( )ˆ k

m  for the accelerometer model 

(AM) at the m-th step, using the optimal parameters, 
( )ˆ k

m . 

 

5.2.8 Surrogate model 

The SM took the same form as the surrogate model used by the Matlab Bayesian optimiser, 

which was based on a Gaussian Process (GP) (fitrgp Matlab function). The GP used a 

constant basis function, no prior standardisation of the parameters and an anisotropic 

Automatic Relevance Determination (ARD) Matérn 5/2 kernel. The noise level parameter, 

σ, was fitted to the data rather than being held constant. Thus, as a GP posterior function 



Section 5.2.8 

Page 121 

with adaptive noise fitting, it could model stochastic functions such as the AM validation 

loss. 

For each k-fold, the SM was trained on the AM validation loss observations, 
( )k

Z , 

comprising the parameters employed and the resultant loss: 

  
T

( ) ( ) ( ) ( )
 ,  i 1, , ,  i i i

k k k k
I =  

 
Z    (5.5) 

where for this chapter, I = 500 observations were gathered for each fold and model. The 

aim of the optimisation was re-defined as finding the global minimum of the SM: 

 ( )( ) ( )ˆ arg min SM
k k =

 
    (5.6) 

The resulting optimal hyperparameters, 
( )ˆ k

 , could then be applied to the original AM, 

Equation (5.3).  

The parameter vector, 
( )

i

k
 , was composed of purely numeric elements generated at 

random according to constraints defined below (Section 5.2.9), so the SM would be 

compatible with PSO, which operates with real variables (Table 5-3). The categorical 

parameters were assigned integer values (Unler & Murat, 2010) and explicitly identified as 

such to the SM so they would be treated as nominal rather than ordinal parameters 

(‘CategoricalPredictors’ name-value pair for the fitrgp function in Matlab). Numerical 

parameters spanning several orders of magnitude were log-transformed. The SM could not 

be made the objective function directly because PSO passed arguments as real numbers. 

Hence, an intermediate function served as the objective function, which rounded the values 

for categorical and integer parameters to the nearest whole numbers (Figure 5-4). The SM 

needed to appear to the optimiser as a stepped function for these variables across the PSO 

variables’ continuous range. For the PSO search, the lower bounds of the categorical and 

integer parameters were set at 0.50, while the respective upper bounds were 0.49 above the 

highest integer value (Table 5-3, final column). These boundaries ensured each parameter 

value had equal ‘width’ in the PSO continuum. 
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Table 5-3. Hyperparameter ranges defining the random search space for the shortlisted 

accelerometer models (AM) and the corresponding initial PSO search ranges. 

Model Parameter Type † Hyperparameter Values (AM) PSO Initial 

Bounds (SM) ‡ 

LR Regularisation C {Ridge, Lasso} [0.50, 2.49] 

 Solver C {SVM, Least Squares} [0.50, 2.49] 

 Lambda R 10-12 … 1012 [-12, 12] 

SVM Kernel C {Gaussian, Linear, Polynomial} ª [0.50, 3.49] 

 Box Constraint R 10-6 … 108 [-6, 8] 

 Kernel Scale R 10-6 … 108 [-6, 8] 

 Epsilon R 10-4 … 103 [-4, 3] 

 Standardisation § C {No, Yes}  [0.50, 2.49] 

GPR Basis C {None, Constant, Linear, Pure Quadratic} [0.50, 4.49] 

 Kernel C {Squared Exponential, Exponential, 

Matérn 3/2, Matérn 5/2, Rational Quadratic} 

[0.50, 5.49] 

 Sigma  R 10-4 … 102 [-4, 2] 

 Standardisation § C {No, Yes} [0.50, 2.49] 

† Parameter type: C = Categorical (nominal variable); R = Real (continuous).  

‡ Categorical parameters are indexed; real parameters are log-transformed. See text. 

§ Standardise the predictors and outcome variables as Z scores during fitting. 

ª  Polynomial kernel was second order 

 

 

Figure 5-4. Data flow diagram illustrating how the objective function is intermediate between 

PSO and the SM, rounding the categorical and integer parameters 

 

5.2.9 Random search 

The SM was retrained every 20 iterations of the random search, producing a series of 

models, 
( )

SMm

k
, where {1 }m M  (Figure 5-5). In this chapter, M = 25. The majority 

of observations (95%) came from the random search, but every 20th observation was 

positioned at the 1SMm−  global optimum, located by PSO on the preceding iteration. In this 
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way, the SM learned the accuracy of its global minimum estimate, which improved the 

optimisation efficiency. 

 

Figure 5-5. Random search process flow. See text for definitions. 

 



Section 5.2.9 

Page 124 

The random search was constrained to progressively concentrate observations in promising 

regions as follows. Each generated random point, 
( )

i

k
 , was within the range specified in 

Table 5-3, following the conventional random search algorithm. However, this point was 

only accepted according to the probability function:  

 

( )

( )

max

2

max

max2

,

( )

1,

exp ,
2

m

m

m

i

i

i

i

m k

k
p



= 



  − −
  
 
 

   

(5.7) 

which depended on the SM loss prediction at that point, ( )1

( )
SMi m i

k
−=  . maxm

 is the 

maximum loss, defined below (Equation (5.10)), and ,m k  is the standard deviation in the 

re-scaled normal distribution, represented by the exponent function above (Figure 5-6). 

Hence, if the prediction, i , was less than the maximum loss, maxm
, 

( )
i

k
  was always 

accepted. If not, the chances of 
( )

i

k
  being accepted diminished the higher ˆ

i  was above

maxm
. The probability function, ( )( )

i

k
p  , could be evaluated quickly because it depended 

on -1SMm  rather than AM, allowing potentially large numbers of points to rejected before 

one was accepted. The accepted point was then used to generate a new AM loss observation.  

 

 

Figure 5-6. The function defining the probability of a randomly generated point being accepted 

based on the estimated loss at that position. The progressive reduction in the maximum loss is 

illustrated by the transition from the light blue line to the dark blue line (
1 2max max
→ ), with a 

narrowing in the standard deviation (
1 2
 → ). 
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The advantage of a stochastic upper limit was that it allowed observations outside of the 

concentrated regions to be included occasionally in case the true SM minimum happened 

to lie elsewhere. This stochastic upper limit had the same purpose as the exploration 

function in Bayesian optimisation that ensures the optimiser does not overexploit a region. 

The drop off in probability was governed by, ,m k  which was defined as half the standard 

deviation in AM observations up to that point:  

 
( )

20( 1) 2
( )( )

1

1
,

1

2 20( 1)

m
kk

mi

i
m k

m


−

−

=

−

=
−


  (5.8) 

where the mean AM loss was given by 

 ( )
20

( ) ( ) ( )

1

1
AM ; , 

20

m
k k k

m i

im =

=  X    (5.9) 

The factor of ½ was introduced for convenience to more tightly constrain the stochastic 

region. The number of observations was 20( 1)m−  rather than 20m to reflect the fact that 

,m k  must be determined from the previous 1m −  iterations. This definition yielded a 

standard deviation that was well-suited to its purpose as it gradually decreased as the search 

progressed, sharpening the observation cut-off as maxm
 approached the SM minimum 

(Figure 5-6). The SD had a typical range of 0.3 to 0.8 W·kg-1.  

The maximum loss was defined as a function of the m-th iteration: 

 
 

0

max

max

PSO 1

, 1

2 arg min SM ( ) , 1

m

m i

m

m
m

M
−

= 
=


 

 −  
 



 

(5.10) 

where m M  is the proportion of the search completed so far. Except for the first iteration, 

maxm
 started at nearly twice the first SM global minimum, determined by PSO, and 

dropped in steps until it reached one on the final iteration. In the first iteration, when there 

is no trained SM, the maximum loss was set to a user-defined large number, defined in this 

study as 10 W·kg-1, which was intended to encompass almost all observations. A limit was 

imposed to avoid instability should the AM produce a large loss (e.g. very occasionally for 
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SVM 3AM( ) 10i   W·kg-1), which distorted the SM landscape and led to erratic 

predictions. 

5.2.10 Bagging 

An optimisation yielded a series of optimal parameter values, ( )ˆ k

m ,  accompanied by 

estimates of the inner and outer AM loss, the latter defined as ( )k

m  (Figure 5-7A). There 

were k separate model series from which a single aggregate model was desired, which by 

definition would be representative of a broader set of data. However, a given model series, 

( )ˆ k

m , did not converge to a stable vector, as might be expected. Hence, there was no single 

final optimal model. Therefore, it was appropriate for the model aggregation to encompass 

a range of models 
( )

SMm

k
 from a given series (varying m), as well as models across series 

(varying k), that is, within and between outer folds (Figure 5-7A).  

 

 

Figure 5-7. Data structure for bagging. (A) Nested cross validation yields a set of optimal models 

represented by a k × m matrix Ẑ , where each element includes the parameter vector ̂  and the 

outer AM loss ˆ . Each matrix column represents a series of models of length m, and each row is 

a cross-section of the models across the k outer folds. (B) Ẑ  is reshaped to a single column of MK 

rows, which is indexed by C. Non-clustered bagging aggregates models from repeating fixed 

blocks defined by 
0

m m  for all k. Clustered bagging aggregates models with similar ̂ , which 

results in multiple index sets,   
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The aggregation method adopted was bagging (Breiman, 1996), where selected models 

were given equal weighting. For the bagged model, the aggregate values, BAG̂ , for the 

numeric parameters and losses were defined as the means of those quantities over the 

chosen model subset. The bagged categorical parameters were those with the highest 

frequency. The SM’s predictions were initially poor and needed to improve before those 

models could be included. The criterion was for the mean absolute error in the SM’s 

prediction of the AM inner loss  

 
( ) ( ) ( )MAE SM AMk k k

m m m= −   (5.11) 

to have stabilised to a comparatively low level, which was determined subjectively by 

inspection. The bagged model was not particularly sensitive to this choice, as results from 

other reasonably chosen start points made clear. The start point, 0m , defined the lower 

bound of the model series, such that 
0m m  for all k, a model subset referred to as NCA 

(non-clustered, all models). On the assumption that the parameters later in the series would 

be closer to the true optimum values, by virtue of the 
( )SM k

m  being trained on a larger data 

set, a second non-clustered model subset was defined as 5m M − , called NC5, so that 

only the final five models in each series were included.  

It was apparent that certain distinct values were favoured for each component of ( )ˆ k

m  rather 

than those elements having a continuous distribution. This outcome pointed towards an 

alternative strategy of defining the model subset based on a cluster analysis undertaken in 

SAS 3.8, where 0m m . The clusters were obtained using SAS PROC CLUSTER, a 

hierarchical clustering procedure where the centroid method was chosen. The proximity 

between the models was calculated using PROC DISTANCE, based on the Gower distance 

that is suitable for positions defined by both nominal (categorical) and ratio (numerical) 

variables (Gower & Legendre, 1986). Before calculating the Gower distance, the 

categorical variables were transformed into their mid-rank score, which took account of 

their frequency, before all variables were standardised to [0, 1] based on their range. Peak 

values in the pseudo t2-statistic determined the number of clusters. When there was more 

than one prominent peak, the preference was for fewer, larger clusters across the outer folds. 

The five largest clusters were retained for analysis, designated by CLn.  
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5.2.11 Model Evaluation 

The final models from nested cross validation were retrained on 0  using their optimal 

parameters, BAG̂  (Varma & Simon, 2006), to determine their predictive accuracy with 

larger data sets than were used in the optimisation (Figure 5-8). In the first instance, the 

models were evaluated using a ten-fold design for a low bias predictive error (Y. Zhang & 

Yang, 2015) in which the training sets were 90% of 0 . The evaluation was based on 1000 

repetitions of MCCV to minimise data subsampling variation (Xu et al., 2004; Xu & Liang, 

2001). The estimate was equivalent to the average reported error from 1000 researchers 

independently gathering and processing the data with identical procedures. Secondly, the 

models were trained on the entire 0  and then tested on the holdout test data set, 
H

. Since 

the holdout data set was kept entirely separate from the model selection procedures, it was 

a truly independent test (Kohavi, 1995; Vabalas et al., 2019, 2020). 

 

 

 
Figure 5-8. Process flow for model evaluation showing three different ways of doing so once the 

optimal accelerometer models (AMs) have been identified. MCCV = Monte Carlo Cross 

Validation. 
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5.3 Results 

5.3.1 Initial Model Selection 

The GLM, which compared 4,000 accelerometer model evaluations across all grid searches 

(2 jump types × 4 sensors × 10 algorithms × 50 iterations), had a total explained variance, 

ω 2 = 0.98 and RMSE = 0.21 W·kg-1. More than half the variance in AM predictive error 

was explained by the sensor (55.6%), followed by the jump type (36.7%) and the algorithm 

(6.9%) with the remaining explained proportion (7.7%) explained by interaction effects 

(Table 5-4).  

 

Table 5-4. Overall explained variance of jump type, sensor attachment site and algorithm on the 

accelerometer models’ accuracy.  

Effect DF † F-Statistic ‡ 
Explained variance 

§ 

Sensor 3 38,074 0.533 

Jump Type 1 72,545 0.338 

Algorithm 9 1,237 0.052 

Sensor × Jump Type 3 2,923 0.041 

Sensor × Algorithm 27 86 0.011 

Jump Type × Algorithm 9 37 0.002 

Sensor × Jump Type × Algorithm 27 40 0.005 

† Degrees of Freedom: Model Total = 79, Error = 3920, Corrected Total = 3999 

‡ p < 0.0001 in all cases. Overall model F-statistic = 2,663, p < 0.0001. 

§ Semi-partial ω 2 

 

The LB-sensor models had a smaller RMSE than the UB-sensor models, on average across 

jump types and all algorithms, 5.20 W·kg-1 versus 6.12 W·kg-1 (Table 5-5). The difference 

between LS and RS models, where the sensors were placed at the same position on each 

leg, was 0.33 W·kg-1 on average. Errors for the CMJNA were lower than for the CMJA, 

5.83 W·kg-1 versus 7.60 W·kg-1, when averaged across all sensors and algorithms. The 

combination of LB sensor and CMJNA achieved the lowest predictive error of all, where 

RMSE = 3.97 W·kg-1, averaged across all algorithms. 
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Table 5-5. Accelerometer model predictive error for different jump types and sensors, based on a 

grid search using the hyperparameter values set by the Matlab HPO. Least mean squares 

estimates shown, averaged across all algorithms. All units W·kg-1. 

Sensor CMJNA CMJA  Overall † 

LB 3.97 6.43 5.20 

UB 4.96 7.27 6.12 

LS 7.36 8.50 7.93 

RS 7.01 8.19 7.60 

Overall ‡ 

 

5.83 

(13.0%) 

7.60 

(14.8%) 

6.71 

(13.9%) 

† Overall effect, averaged across jump type, according to the GLM. 

‡ Overall effect, averaged across all sensors, according to the GLM. Percentage error calculated by dividing the 

error by the mean peak power across the training/validation data set for the jump type. This calculation was 

post-hoc as the alternative of dividing individual peak power predictions by the criterion value would have 

altered the loss function, requiring a separate cross-validation. 

 

Grouping the models by algorithm type for CMJNA, the SVM models were the best for the 

LB, LS and RS sensors, followed by LR, GPR, NN and TR, in descending order (Table 

5-6). For the UB sensor, LR achieved the lowest error, followed by SVM, but otherwise, it 

followed the same ranking order. At the level of the individual algorithm, the SVM-L model 

reported the lowest error for each sensor, and for the LB sensor, it achieved the lowest error 

of all with an RMSE = 3.40 W·kg-1. Generally speaking, the SVM and LR models were 

consistently ranked among the best with little difference between them, whilst in a clear 

third place were the GPR models. The pattern of results for individual models was similar 

across the sensors, as illustrated in Figure 5-9 for LB and UB sensors for CMJNA. This 

consistency reflected the top-level analysis from Table 5-4, which showed that algorithm 

was a relatively small factor compared to sensor and jump types. It follows then that the 

results from the LB+CMJNA data set will generally be representative of those from other 

combinations of sensor and jump type. Therefore, the LB sensor data set for the CMJNA 

was selected for further analysis as it had the lowest error. Similarly, the SVM, LR and 

GPR models were shortlisted as their errors were the lowest. 
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Table 5-6. Accelerometer model predictive error for different algorithms for CMJNA, grouped by 

algorithm type, for different sensors. 

Type Algorithm LB UB LS RS All Sensors 

LR LR 3.69 4.60 7.45 6.97 5.68 

 LR-RDG 3.65 4.60 7.36 6.93 5.64 

 LR-LSS 3.49 4.50 7.29 6.96 5.56 

 Mean 3.61 4.57 7.37 6.96 5.63 

SVM SVM-L 3.40 4.45 6.84 6.62 5.33 

 SVM-G 3.51 4.96 7.24 6.91 5.65 

 Mean 3.46 4.70 7.04 6.76 5.49 

GPR GPR-SE 4.01 5.26 7.18 6.84 5.82 

 GPR-M52 3.97 5.04 7.08 6.78 5.72 

 Mean 3.99 5.15 7.13 6.81 5.77 

NN NN-5 4.35 5.16 7.45 7.23 6.05 

 NN-10 4.94 5.73 8.17 7.94 6.70 

 Mean 4.64 5.45 7.81 7.59 6.37 

TREE TR-ENS 4.71 5.33 7.57 6.95 6.14 

All Algorithms 3.97 4.96 7.36 7.01 5.83 

Least mean squares estimates shown (W·kg-1).  

Emboldened figures are mean values for the algorithm type or for all algorithms at the bottom of the table. 

 

 
 

Figure 5-9. Predictive error for the top two accelerometer model algorithms for CMJNA: Lower 

Back, LB (red) and Upper Back, UB (blue). Note the similar pattern of UB and LB results, rising 

and falling together. 
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5.3.2 Optimisation of shortlisted models 

The progression of the optimisation procedures, 1...m M= , for the LR, SVM and GPR 

models are presented in Figure 5-10, which aggregates the quantities of interest over the 

ten outer folds. The mean absolute error (MAE) in the SM predictions of the inner AM 

validation loss stabilised at a lower value more quickly for the LR models than for the SVM 

and GPR models, as indicated by the lightly shaded regions (Figure 5-10A–C). Toward the 

end of the optimisation, MAE was 0.07 W·kg-1, 0.37 W·kg-1 and 0.09 W·kg-1, respectively, 

for the three model types, when averaged over the final five models (m ≥ 20), equivalent to 

the final 100 iterations. The five-model moving correlation ( 2r ) between the inner and outer 

AM validation losses followed a downward trend for all models to a minimum of 0.07–

0.16 W·kg-1, indicating the inner and outer losses effectively ceased to have any relation 

with one another. However, the trend appeared to reverse in the final 100 iterations or so, 

notably for the GPR model.  

Reflecting the accuracy in the SM’s MAE, the fitted noise level and the confidence interval 

was lowest for the LR model, followed by the GPR and then the SVM models (Figure 

5-10D–F). The SM confidence level at the global optimum converged towards the noise 

level, reflecting the concentration of observations in that region. As the optimisation 

progressed, noise became the dominant factor over model uncertainty. MAE was higher for 

the SVM because of the higher level of uncertainty that arose from the greater noise level. 

In contrast, the SM could predict the LR AM losses with a higher level of accuracy because 

the SM’s confidence level almost merged with the low noise. 

The SM prediction errors were averaged out in the aggregated losses, which stabilised to 

broadly constant values for SM and the inner and outer AMs (Figure 5-10G–I). The SM 

loss prediction had a small variance (0.10–0.13 W·kg-1 for the three model types averaged 

over the final five models), and the inner AM loss had more variance (0.13–0.14 W·kg-1). 

The largest variance of all was seen in the outer AM loss (0.66–0.79 W·kg-1), which 

represented the independent test of the model. Notably, in all three models, the aggregate 

outer AM loss was lower than the aggregate inner AM loss, reflecting the bigger data set 

used to train the outer model compared to the inner set. 
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Figure 5-10. Optimisations for LR, SVM and GPR models, averaged over ten outer folds: means 

(solid lines), SDs (dashed lines). (A, B, C) Absolute error in SM prediction of AM inner loss (red 

line); 5-point moving correlation (r2) of AM inner and outer losses (red dots). (D, E, F) SM 

confidence interval (orange), expressed as SD, converges to noise level (yellow). (G, H, I) SM loss 

prediction (red), actual AM inner loss (blue) and independent AM outer loss (light blue). (J, K, 

L) SM parameter variances (numeric form) based on 5-point moving SD, standardised to 

parameter range. BC = Box Constraint, KS = Kernel Scale, Std = Standardisation. Lightly 

shaded area indicates the range used for cluster analysis.  
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The five-point moving average of parameter variance in aggregate was relatively low for 

some parameters (e.g. ε for SVM and σ GPR), indicating that those parameters had 

stabilised to more or less constant values (Figure 5-10J–L). In the case of the LR solver, the 

parameter values continued to drop throughout. However, the variance for other parameters 

remained moderate or high (e.g. standardisation and kernel for SVM, basis and kernel for 

GPR). There were others for which variance dropped but then rose (regularisation for LR 

and standardisation for GPR). The reversal of the trend towards rising parameter variance 

indicated a growing sensitivity of the SM to more AM observations, which meant the global 

optimum was jumping between different but similarly valued minima in the parameter 

space.  

The clustering procedure was run on the parameters from the subset of SMm  series starting 

from 100 iterations for LR (m ≥ 5), 240 iterations for SVM (m ≥ 12) and 220 iterations for 

GPR (m ≥ 11), when MAE stabilised, as indicated by the lightly shaded regions in Figure 

5-10. Based on the cluster selection procedure (Section 5.2.10), 28, 17 and 30 clusters were 

chosen respectively for the LR, SVM and GPR models. Details on the five largest clusters 

for each model are shown in Figure 5-11. The largest cluster for LR (CL3) with 72 models 

stood out from others, whilst the SVM and GPR clusters were of a similar size, the largest 

being CL1 for SVM and CL2 for GPR, both comprising 26 models each (Figure 5-11A–

C). The spread of the top-five clusters across the outer folds was irregular such that some 

clusters could dominate some folds while being almost absent in others. Such an uneven 

spread suggested subsampling variation could substantially alter the optimal model (Figure 

5-11D–F). The biggest clusters were therefore the ones that were the least sensitive to 

variations in the data distribution. The clusters’ appearance in the SMm  series generally 

reflected the prescribed m ranges above, indicating that similar models could recur many 

times as more observations were added (Figure 5-11G–I). Hence, there was no obvious 

point at which the optimisation should stop based on the SMm  series.  
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Figure 5-11. Clusters (five largest) obtained from SM optimisation series, identified and colour-

coded at the top per model type. (A, B, C) Prevalence with which the clusters appeared in the 

outer folds; other smaller clusters in grey. (D, E, F) Cluster sizes – number of models summed 

across outer folds. (G, H, I) Preponderance of times when the clusters were observed in the SM 

optimisation series. (J, K, L) Spread of AM loss per cluster for the inner validation set. (M, N, O) 

AM loss spread per cluster for the outer validation set. Box plots: diamond = mean; line = 

median; box = IQR; whiskers = 95% CI; circles = outliers. 
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The most important statistic from the optimisation was the AM outer loss as it was the 

independent test of the optimised model (Figure 5-11M–O). As previously noted in the 

aggregate plots above (Figure 5-10G–I), the outer loss was lower and with a much larger 

variance than for the AM inner loss (Figure 5-10J–L). However, the outer loss interquartile 

range differed considerably between clusters, indicating that their performance on 

independent test data (outer validation set) could be quite inconsistent in some cases. The 

LR clustered models’ performance was the least reliable, exhibiting some of the largest and 

smallest variations (Figure 5-10G). The SVM clustered models had the smallest 

interquartile range, but they also registered the most outliers with several at very high 

losses, -1ˆ  4.8 W·kgm   (Figure 5-10M). The GPR clustered models had moderate 

interquartile ranges with only one outlier (Figure 5-10O). 

The bagged parameters are shown in Table 5-7, Table 5-8 and Table 5-9 for the clustered 

and non-clustered model subsets. For the LR model, ridge regularisation and the SVM 

solver were most frequently chosen (NCA), which also defined the largest cluster (CL3) 

(Table 5-7). The regularisation parameter, λ, could vary over many orders of magnitude, 

but it remained less than unity. Whilst the non-clustered subsets had similar λ in the mid-

range, by definition, clustering produced values at specific points in the range. For SVM 

models, the linear kernel was by far the most common, but the polynomial kernel defined 

the largest cluster (Table 5-8). The polynomial kernel required a box constraint and kernel 

scale of a different order of magnitude compared to the linear kernels. The value of ϵ was 

consistent across the clusters, while the choice of whether or not to standardise the 

predictors varied. The non-clustered approach for the SVM model yielded the lower outer 

loss estimate (3.18 W·kg-1). GPR models having no basis function were the most prevalent, 

and those with a rational quadratic kernel belonged to the largest cluster (Table 5-9). 

Standardisation of the predictors was by far the most frequent choice, while the value for σ 

was similar between clusters. The mean outer loss was lower for the clustered models 

suggesting that taking a subset of the models for aggregation was beneficial. For LR and 

GPR, three clusters achieved lower predictive errors (CL1, CL3, and CL7 for LR; CL1–3 

for GPR), while there was one cluster for SVM (CL11). 
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Table 5-7. Clustered and non-clustered LR models.  

Cluster Size Regularisation † Solver † 𝛌LR ‡ 
AM Outer Loss 

(W·kg-1) * 

CL1 11 Lasso SVM -11.92 2.84 

CL3 72 Ridge SVM -1.32 2.94 

CL4 27 Ridge Least Squares -0.60 3.26 

CL7 9 Lasso SVM -8.31 3.17 

CL8 12 Lasso SVM -10.00 3.47 

NC5  50 Ridge SVM -5.49 3.23 

NCA 210 Ridge SVM -4.63 3.24 

† Each cluster had a single categorical value. ‡ Mean log10 values shown. * Mean validation RMSE shown. 

NC5 = Comprising the last 5 models from each outer fold. NCA = Comprising all models from starting point. 

 

Table 5-8. Clustered and non-clustered SVM models. 

Cluster Size Kernel † 
Box 

Constraint ‡ 

Kernel  

Scale ‡ 
𝛜 ‡ 

Standard-

isation † 

AM Outer Loss 

(W·kg-1) * 

CL1 27 Polynomial 6.59 3.52 -1.63 N 3.25 

CL6 17 Linear -1.72 -1.13 -1.60 N 3.33 

CL11 13 Linear 0.85 -0.49 -1.30 Y 3.02 

CL7 13 Linear 2.61 1.19 -1.90 N 3.43 

CL8 16 Linear 3.79 1.32 -2.67 Y 3.20 

NC5 50 Linear 3.47 1.59 -1.96 N 3.18 

NCA 150 Linear 3.86 1.72 -1.96 N 3.18 

† Each cluster had a single categorical value. ‡ Mean log10 values shown. * Mean validation RMSE shown. 

 

Table 5-9. Clustered and non-clustered GPR models. 

Cluster Size Basis Kernel † 𝛔 ‡ 
Standard-

isation † 

AM Outer Loss  

(W·kg-1) * 

CL1 12 None SqExp 0.64 Y 2.92 

CL2 26 None RQ 0.56 Y 2.94 

CL3 21 None M32 0.57 Y 3.00 

CL5 7 Linear M32/M52 0.57 Y 3.64 

CL6 8 Linear M52/RQ 0.63 N 3.25 

NC5 50 None RQ -0.14 Y 3.17 

NCA 140 None RQ -0.01 Y 3.17 

† Some clusters were split between two kernels: CL5 (3 × M32, 4 × M52); CL6 (5 × M52, 3 × RQ) 

‡ Mean log10 values shown. * Mean validation RMSE shown. 

SqExp = Squared Exponential; RQ = Rational Quadratic; M32 = Matérn 3/2; M52 = Matérn 5/2 
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Partial plots for each model revealed the performance characteristics of the models, 

according to the SM (Figure 5-12), where one parameter was allowed to vary while the 

others were held constant at their optimal values. The largest cluster for each model type 

was chosen to illustrate the model behaviour. From the regulation parameter plot (Figure 

5-12C),   had to have a small value, otherwise the error was large. This high level matched 

the peak power SD of 7.3 W·kg-1 from Chapter 3. With heavy regularisation, the model had 

become a naïve ‘constant’ model that always predicts the mean peak power whatever the 

input. The plot also reveals a small dip around 
10

log 1.3 = −  where the optimum is located 

which explains why the NC models’ underperformed because they overlooked this modest 

minimum by simply averaging λ across all models. The same observation can be made for 

the GPR where the σ plot has a similar shape but with a more pronounced dip before the 

sharp rise (Figure 5-12K). As with LR, by naively averaging, the NC model missed the 

minimum. 

The SVM parameter landscape, on the other hand, does not have the nuances of the other 

two models as the box constraint and kernel scale loss functions are convex, while ϵ  

increases monotonically (Figure 5-12E–G). This behaviour would explain why the NC 

models perform equally well, if not better than the clustered models, because the parameters 

were more precisely defined by virtue of the average being taken over a larger number of 

models. The noise level was a major factor making it difficult for a human observer or an 

optimiser to discriminate between different parameters’ values. The predictions for 

different categories were quite similar, especially for those of the SVM model (Figure 

5-12B, D, H, I, J and L). It also implied that certain parameters had a weak effect on model 

behaviour (e.g. LR solver, GPR standardisation and the GPR kernels except for the 

exponential kernel). The similar loss predictions confirmed that the models were nearly 

equivalent for certain parameters, irrespective of the values chosen. Finally, it should also 

be borne in mind that the plots may look different to some extent when a different optimum 

is chosen. The patterns shown here reflect a localised region of the parameter space.  
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Figure 5-12. Bagged optimal SM loss prediction for the LR (CL3), SVM (CL1) and GPR (CL2) models. For each parameter, the SM prediction assumes the 

other parameters are held constant at their optimal values. The SM-fitted noise level is constant for each model. The SM confidence interval is the SD in the 

GP distribution, which tends to be large for high loss and small closer to the minima where observations were concentrated. The located optimum is based 

on the bagged parameter estimate, which may not necessarily be at the bagged SM prediction minimum. 
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The bagged parameters were then applied to models evaluated on the whole data set 

using 1000 × 10 MCCV for comparison with the nested figures above. The models 

were also trained on the full data set and then tested on the holdout data set. These 

three ways of estimating the generalised predictive error are presented in Table 5-10, 

Table 5-11 and Table 5-12. The results show that for LR, SVM and GPR models, 

except for a few exceptions, the NCV predictive error was lower than those of MCCV, 

which in turn was lower than the holdout error. The MCCV estimates, however, in 

most cases were within the NCV standard errors range, which was narrower for the 

larger clusters and the non-clustered models, as expected for a bigger sample. It was 

also notable that the NCV estimates varied much more between clustered models than 

the MCCV or holdout estimates which were relatively consistent. Finally, the residuals 

plots confirmed no systematic bias or heteroscedasticity was present, based on the 

MCCV predictions (Figure 5-13). 

  



Section 5.3.2 

Page 141 

Table 5-10. Generalised predictive error for LR models.  

Cluster 
NCV Error 

(W·kg-1) † 

MCCV Error 

(W·kg-1) 

Holdout Error 

(W·kg-1) 

CL1 2.84 [2.71, 2.97]  3.27 3.54 

CL3 2.94 [2.86, 3.02]  3.24 3.56 

CL4 3.26 [3.14, 3.38]  3.31 3.49 

CL7 3.17 [2.87, 3.47]  3.25 3.55 

CL8 3.47 [3.35, 3.59]  3.34 3.55 

NC5 3.23 [3.14, 3.31]  3.25 3.60 

NCA 3.24 [3.20, 3.28]  3.32 3.61 

† Standard error range in brackets. 

NCV = Nested Cross Validation; MCCV = Monte Carlo Cross Validation. 

 

Table 5-11. Generalised predictive error for SVM models.  

Cluster 
NCV Error 

(W·kg-1) † 

MCCV Error 

(W·kg-1) 

Holdout Error 

(W·kg-1) 

CL1 3.25 [3.14, 3.36] 3.24 3.46 

CL6 3.33 [3.13, 3.53] 3.29 3.44 

CL11 3.02 [2.87, 3.17] 3.27 3.45 

CL7 3.43 [3.18, 3.68] 3.27 3.44 

CL8 3.20 [3.03, 3.37] 3.25 3.47 

NC5 3.18 [3.08, 3.28] 3.27 3.43 

NCA 3.18 [3.13, 3.23] 3.29 3.44 

† Standard error range in brackets. 

 

Table 5-12. Generalised predictive error for GPR models. 

Cluster 
NCV Error 

(W·kg-1) † 

MCCV Error 

(W·kg-1) 

Holdout Error 

(W·kg-1) 

CL1 2.92 [2.70, 3.14] 3.27 3.36 

CL2 2.94 [2.83, 3.05] 3.24 3.32 

CL3 3.00 [2.87, 3.13] 3.25 3.30 

CL5 3.64 [3.51, 3.77] 3.38 3.48 

CL6 3.25 [2.91, 3.59] 3.33 3.48 

NC5 3.17 [3.06, 3.28] 3.66 2.87 

NCA 3.17 [3.11, 3.23] 3.62 2.87 

† Standard error range in brackets. 

  



Section 5.3.2 

Page 142 

(A) (B) 

  

(C) (D) 

  

(E) (F) 

  

  

Figure 5-13. Model predictions for individual jumps for LR (CL3 model) (top row), SVM 

(CL1 model) (middle row) and GPR (CL2 model) (bottom row). Predictions according to 

the AM taken from 1000 × 10 MCCV, where for clarity 1000 random sampled points are 

shown from the 27552 generated. The apparent stratification where dots appear in series 

arises from the subsampling variation in the training set, subtly altering its prediction over 

multiple iterations for the same validation point. 



Section 5.4.1 

Page 143 

5.4 Discussion 

This chapter took the first step in developing an accelerometer model for predicting 

peak power in vertical jumping, building on the techniques developed and evaluated 

on gold-standard VGRF data in Chapter 4. The aim was to identify which of the data 

sets (sensor and jump type) were best suited for predicting peak power, to select 

suitable models (i.e. an algorithm with tuned hyperparameters), and to evaluate the 

models to test their predictive accuracy on unseen data. It involved developing a novel 

optimisation procedure within the framework of nested cross validation to 

comprehensively investigate the models in question. This was the first test of an 

FPCA-based accelerometer model to see how well it would perform with limited 

tuning before further refinements are made in the next two chapters. 

5.4.1 Sensor attachment sites 

It was established with multiple grid searches that models based on the LB sensor data 

consistently outperformed the equivalent models from other sensors. Indeed, the 

choice of attachment site accounted for more than half of the variance in model 

accuracy (53.3%). Many studies have used sensors attached to the lower back (e.g. 

Lesinski et al., 2016; Picerno, Camomilla, et al., 2011; Requena et al., 2012), although 

there is no consistency as the preferred location will depend on the application. It was 

supposed that attaching a sensor to the lower back would have the advantage of 

recording inertial accelerations closer to the body’s CM. However, the CM does not 

have a fixed anatomical position but moves in space, and at various times may be 

outside the body. The action of the arms, when employed, will cause the CM to follow 

a more divergent path from a fixed anatomical location. The LB sensor’s inertial 

accelerations will have reflected the flexion and extension at the ankle, knee and hip.  

The models based on UB-sensor data were the second most accurate. This anatomical 

position is used by sensor systems favoured by many professional sports teams where 

players often wear an inertial sensor, which may also include GPS tracking. Located 

further from the fulcrum of the hip, the UB sensor would have experienced greater 

anteroposterior accelerations than the LB sensor in response to the trunk’s changing 

inclination. The trunk initially tilts forward in the countermovement and then comes 
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upright rapidly during the propulsion phase. The UB sensor’s inertial accelerations 

will have reflected not only the actions of multiple joints in the lower extremity, as 

with the LB sensor but also the actions of the erector spinae and other postural muscles. 

All these factors may have contributed to a more complicated acceleration pattern, 

which may explain why UB-sensor models were less accurate. The LB and UB models 

may have been more accurate than the models based on shank accelerations because 

the trunk makes the largest segmental contribution to the work done (Pandy et al., 

1990). Luhtanen & Komi (1978) estimated that the trunk contributed 44% to the take-

off velocity, while Miller & East (1976) concluded that the trunk contributed most of 

the total impulse. Hence, the inertial accelerations detected by the LB and UB sensors 

would be more correlated with the whole body’s inertial movements.  

In contrast, the shank-attached sensors were near the start of the kinetic chain, with 

only the ankle joint controlling anteroposterior as well as vertical accelerations. The 

joints of the foot would have played a minor role, with the further restriction of the 

training shoes inhibiting their actions. Hence, the shank acceleration patterns were 

simplified as there was no compound effect from the kinetic chain. The sensors would 

have experienced little soft-tissue movement underneath their position on the tibial 

aspect, unlike the LB and UB sensors that will have experienced considerably more 

extraneous movement. Attaching the sensors to the tibia allowed tape to be wrapped 

around the leg, exerting a strong compressive force to the sensor to minimise 

oscillatory movement. Wrapping tape around the waist for the LB sensor could not 

produce the same compressive force, such that some oscillation was possible in line 

with the spine. However, for the UB sensor located at C7, wrapping tape around the 

chest and shoulders was considered impractical. Consequently, the UB sensor will 

have experienced more extraneous movements.  

In summary, each anatomical position had its advantages and disadvantages, but from 

the results, it seems clear that proximity to the body’s CM was the critical factor. So 

whilst it might have been convenient to use the same UB-sensors worn routinely by 

professional rugby and football players, for example, the peak power estimates would 

be less accurate than those from LB sensors. Therefore, the following chapters will 

focus on the LB-sensor models to streamline the investigation. It is possible that the 
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subsequent developments may narrow the gap between the UB and LB models. 

However, the evidence from this chapter strongly points toward LB-sensor models 

retaining their advantage over their UB counterparts.  

5.4.2 Jump type 

The grid search also revealed that peak power in equivalent models for CMJA was 

harder to predict accurately than in the CMJNA, as expected. Arm swing influences the 

net forces acting on the body’s CM, altering the CM’s path throughout the jump. 

Mandic et al. (2015) showed that arm swing increases countermovement depth, which 

was also the case in the current study, as a further analysis confirmed using a mixed, 

random intercept model (0.023 m, t = 12.7, p < 0.0001). Moreover, Mandic et al. 

(2015) also demonstrated that peak power, unlike jump height, was sensitive to 

variations in countermovement depth. Samozino et al. (2008) improved the peak 

power prediction equation by introducing the squat depth as a third predictor (Section 

2.3.2). This additional layer of complexity may explain why the CMJNA models were 

more accurate than those for the CMJA. That said, there were no great disparities 

between the algorithms in how their performance compared between jump types. 

These findings suggest that using FPCA to define the features can be effective when 

identifying characteristics related to the performance outcome in different jump types.  

The grid search GLM established that jump type and sensor attachment site together 

explained the vast majority of the variance in model accuracy (87.1%), indicating 

modelling itself is less important than the practical considerations of the training 

environment and the needs of the sport. If the data set fails to capture the movement’s 

essential characteristics, then there is little that model selection and hyperparameter 

tuning can achieve. That does not mean that expectations of further improvements 

should be tempered. Once the sensor and jump-type variation is removed, as later 

chapters will work with a single data set (LB-CMJNA), there will be considerably more 

apparent variation when manipulating other parameters. The larger point is that the 

fundamentals of data collection remain important, irrespective of the qualities of 

machine learning models. Care should be taken in choosing the sensor’s anatomical 
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location, identifying it accurately on the body and attaching the sensor firmly and 

securely. 

The analysis also showed that the choice of algorithm can be made independently of 

the jump type or the sensor attachment site, as the interactions of those two factors 

with the algorithm explained only 1.7% of the loss variance. Each condition had the 

same top three algorithms (SVM, LR and GPR) with similar relative differences 

between them. The algorithms may work in different ways, but they may be relying 

on similar features within the model, although perhaps with different emphasis. 

Therefore, it was concluded that model development should proceed by focussing on 

one data set (LB sensor data from the CMJNA). This will reduce the number of factors 

to consider, and hence the number of predictors in the model, with the strong likelihood 

that the conclusions drawn in the course of the investigation will apply to the other 

data sets, albeit with higher errors.  

5.4.3 Model appraisal and comparison 

Independent tests of the model’s predictive ability came from the holdout estimate, a 

one-off test, and the more comprehensive NCV estimate. Summarised over all LR, 

SVM and GPR models, the NCV estimates of the validation RMSE were 2.84–

3.64 W·kg-1 for all bagged models and 2.94–3.35 W·kg-1 for the largest clusters. When 

the models were retrained on the whole data set using the biggest clusters, the holdout 

validation error range was 3.32–3.56 W·kg-1. The non-nested MCCV estimate was the 

same for all three models at 3.24 W·kg-1. These results were based on an unbiased 

procedure, making comparisons with other studies less straightforward because they 

used non-nested cross validation or simply a holdout test. Given such considerations, 

the errors reported in this chapter still compare favourably to those for the peak power 

prediction equations (4.2 ± 2.1 W·kg-1, Figure 5-14, Section 2.3.2). As discussed in 

Chapter 2, this summary statistic was heavily influenced by one small investigation 

with only 20 participants, which reported a low error of 1.8 W·kg-1 (Canavan & 

Vescovi, 2004). It was therefore appropriate to devise a benchmark that took into 

account sample size (Section 2.3.2). That benchmark error of 4.6 W·kg-1 is somewhat 

larger than the generalised predictive errors reported in this chapter, ranging from 
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2.8 W·kg-1 to 3.6 W·kg-1. Moreover, those estimates were obtained with NCV, which 

yields an unbiased estimate of how the models could be expected to perform when 

applied to new data sets drawn from the same distribution. The holdout errors bore this 

out, ranging from 2.9 W·kg-1 to 3.6 W·kg-1. The NCV estimates were averages of 

multiple independent tests of the model, while the holdout estimate was from a single 

independent test. In contrast, when the peak power prediction equations were tested 

independently on different populations, the errors could be either very large or very 

small (Section 2.3.2): the Canavan-Vescovi equation was reported to produce errors 

of 27.6% (Lara et al., 2006), 25.3% (Amonette et al., 2012), or 2.0% (Lara-Sánchez et 

al., 2011); Harman’s equation was reported to have errors of 18.5% (Lara et al., 2006), 

20.9% (Amonette et al., 2012) or 3.8% (Quagliarella et al., 2010). The current study, 

on the other hand, produced more reliable error estimates with errors of 6.5%–7.2%. 

The NCV confidence intervals suggest that were independent researchers to follow the 

same procedures, there is a small chance one might obtain an RMSE of ~2 W·kg-1, 

while another one might find the error is  ~4 W·kg-1. Even with this pessimistic 

forecast, the RMSE peak power is 9% which still compares favourably with many of 

the studies cited above. 

It should be noted that the holdout tests were not fully independent in the sense that a 

different investigator did not gather the test data, and nor were the participants who 

were assigned to the holdout test set drawn from a separate group. Nevertheless, the 

approach combining nested cross validation with a holdout test was designed to 

evaluate the models rigorously and independently so far as such limitations allow. In 

fact, the participants who were assigned to the holdout set were chosen scrupulously 

at random using code run independently by another researcher. Therefore, these results 

and those in later chapters obtained with the same methods can be regarded with 

confidence. They provide the best possible estimate of how the models would perform 

on new data drawn from similar populations. 
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Figure 5-14. GPR models’ peak power prediction errors in comparison with previous 

studies and the VGRF model from Chapter 4. The previous studies were (Ache-Dias et al., 

2016; Amonette et al., 2012; Canavan & Vescovi, 2004; Lara et al., 2006; Quagliarella et al., 

2010; Tessier et al., 2013). The intra-day variance is averaged from four reliability studies 

(Cormack, Newton, McGuigan, et al., 2008; Hori et al., 2007; McLellan et al., 2011; Taylor 

et al., 2012) 

 

5.4.4 Review of the models 

The parametric LR models assume a proportional, additive relationship between the 

predictors (FPC scores), among other strict assumptions. It is reasonable to suppose 

that the acceleration curve’s amplitude may be proportional to peak power. A more 

rapid acceleration requires a greater force. When occurring late in the jump action, it 

would produce a higher instantaneous mechanical power. However, the implicit 

assumption is that the sensor’s measurement of inertial acceleration is proportional to 

that of the body’s CM, which is unlikely to be the case (Section 5.1). Nevertheless, the 

good performance of the LR model suggests that there must be some degree of 

correspondence. Thus, the additive nature of LR model would seem a reasonable 

choice for predicting peak power production from a biomechanical perspective. 

Regularisation would minimise the contribution of minor FPCs, as in the case of ridge 

regression or eliminate such FPCs in the case of the lasso method.  

Taking the resultant, ( )ta , simplified the model, but in doing so, the model was 

unable to distinguish between different orthogonal directions. Although information 
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was lost, it may have been beneficial as the number of predictors were kept low (i.e. 

15 FPCs rather than three times more). Nonetheless, taking account of the different 

orthogonal accelerations may help to improve predictions, even if there is no 

correction for the sensor changing orientation. The forces generated in the dynamic 

movement will not all be directed vertically, but will act to control and stabilise the 

body segments, particularly the trunk, which typically amounts to around half of the 

total body mass (Feltner et al., 2004; Nagano et al., 2007; van Soest et al., 1994; van 

Soest & Bobbert, 1993). Chapter 7 will introduce models based on the triaxial 

accelerometer data.  

The preference for predictor standardisation to Z-scores in the SVM and GPR models 

indicated that the higher-order FPCs related in some useful way to the peak power 

output. However, those predictors only explained a comparatively small proportion of 

the acceleration curve variance. Still, the advantage of standardisation was relatively 

modest, as the parameter space plots revealed (Figure 5-12H, L), where the noise level 

from sub-sampling variation tended to have a greater effect, as represented by the 

surrogate model. This should not be surprising as the magnitudes of the FPCs diminish 

rapidly for higher orders. However, it should be remembered from Chapter 4 that 

VGRF FPC3 explained 72.9% of the variance in peak power despite it only accounting 

for 8.6% of the curve variance. Hence, it may be supposed that in respect of the 

accelerometer data, standardisation may help to bring to prominence higher order 

FPCs for the SVM and GPR models, which are heavily influenced by relative predictor 

magnitudes. The relative importance of the FPCs will be examined in Chapter 7, which 

considers feature selection. 

The LR, SVM, and GPR models had predictive errors that were remarkably similar to 

one another, despite each model’s internal workings being quite different. This finding 

suggests that the models identified similar information. Such similarity suggests that 

the models may be approaching the irreducible error, which depends on the data but 

not the algorithm (Rodríguez et al., 2010, 2013). This notion of an irreducible error, 

also known as the true error, suggests that the data preprocessing may not be optimal, 

placing a lower limit on the models’ error. This being so, it follows that further 

improvements in accuracy may come from changes in data preprocessing. There will 
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be an upper limit to how much relevant information is available in the accelerometer 

signal, which, as noted above, depends on the anatomical attachment site and 

adherence to strict protocols.  

5.4.5 Model cost, reliability and complexity 

The computational cost of running the LR and GPR models were similar such that an 

optimisation involving 500 observations could take around half an hour, and with 

nesting, the full run could be expected to take 5–6 hours (iMac 2017, MacOS 10.14.6, 

3 GHz Intel Core i5; Matlab R2020a ODE benchmark: 0.4620 s). However, for SVM, 

the fitting procedure could be lengthy, depending on the box constraint and kernel 

scale that could extend the localised region to include a large number of points for 

density estimation. It was not uncommon for a single m-th iteration (20 observations) 

to take around half an hour, and a single optimisation could run for half a day. The full 

run of 10 optimisations could take around five days. Such lengthy processing times 

are a serious drawback to using SVM, which did not yield any more accurate results 

than the other models. A nested cross validation that takes such a long time greatly 

impedes the research process as timescales are extended to weeks rather than days to 

learn if an approach has worked or not.  

The SVM models occasionally produced an inordinately high loss that could have 

skewed the SM, destabilising the optimisation, were it not for a check to exclude such 

observations. This behaviour is arguably a severe limitation of the SVM model, given 

that more computational resources could be provided in principle to speed up the 

procedure. SVM was also a complex model as it depended on five hyperparameters, 

three of which had a strong effect on the loss (BC, KS and ϵ) (Figure 5-12). When the 

predictive accuracy of a complex model is similar to that of simpler models, it can be 

discarded in an appeal to Occam’s razor and on the basis of the scientific method 

(Madigan & Raftery, 1994). The complexity argument is of practical concern because 

the number of parameters increases the dimensionality of the search space. Therefore, 

based on its unreliability, high cost and complexity, SVM models will be excluded 

from the subsequent investigations in this thesis. 
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5.4.6 Optimisation procedure 

The novel optimisation procedure was introduced to overcome the difficulties of 

dealing with the variance in loss estimates from random subsampling variation (Hall 

& Robinson, 2009). It incorporated best practice techniques, including nested cross 

validation, random search, particle swarm optimisation and bagging. The optimisation 

procedure did not eliminate uncertainty, but it did provide a means by which equivalent 

models with similar predictive errors could be analysed and understood. In contrast, 

the Bayesian optimisation procedure could yield different optimal parameter values 

for the same data set (Appendix E.4). The Bayesian optimiser’s parsimonious 

approach, which is a considerable advantage for expensive objective functions, can 

nonetheless result in a partial view of the parameter space. The new procedure was 

more successful because more observations from the random search helped smooth 

out the noise, reducing sensitivity to the peculiarities in the data (Rodríguez et al., 

2010). It also gathered those observations without the overhead of an acquisition 

function that made the Bayesian optimiser prohibitively expensive (Appendix E.5). It 

retained the benefits of a Bayesian GP model while allowing a more comprehensive 

survey to be carried out. Since the SM optimum was the ‘feasible minimum’ rather 

than the lowest value observed, it provided an alternative to Tibshirani’s standard error 

correction method (R. J. Tibshirani & Tibshirani, 2009).  

The procedure was computationally intensive, but it is argued that having a survey of 

the parameter space helps investigators to understand the model rather than having to 

treat it is as a black box. An optimisation on its own may say a certain value is optimal, 

but it says nothing about whether other values may achieve similar levels of accuracy. 

That is why plots and surveys of the parameter space can be valuable as they can reveal 

sensitivity to certain parameters (Bischl et al., 2012; Cawley & Talbot, 2010). The 

benefits of a parameter space survey were limited in this chapter as it concerned 

abstract hyperparameters. However, this will become a powerful tool in the following 

chapters when optimising data preprocessing parameters that are more tangible. 
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5.4.7 Directed random search 

The random search was made more efficient by directing observations towards regions 

of interest with lower loss estimates, a novel adaptation of the standard procedure. The 

approach proved highly effective as it brought down the number of observations 

required. Rather than the 5,000–10,000 observations needed using the standard 

algorithm only 500 were needed with the new method to obtain an optimal model. The 

improvement stemmed from the progressive reduction of the upper limit, maxm
. This 

technique effectively directed the search, supplanting the role of the acquisition 

function from Bayesian optimisation. Blurring the upper limit allowed for the 

possibility of SM predictions being somewhat inaccurate, especially early on in the 

search, bearing in mind the SM was only updated every 20 observations. This 

flexibility allowed the search to effectively break out from the current region of 

interest, should the global minimum actually be located elsewhere. It effectively 

mimicked the ability of the Bayesian optimiser to avoid over-exploiting a region. 

Specifying the number of observations required in advance set the schedule for the 

reduction in maxm
. Too few observations would make the maxm

 reduction too rapid, 

potentially directing the search to the wrong regions of the parameter space. For this 

chapter, 500 observations were found to be sufficient after some experimentation. In 

the next chapter, however, the number of parameters will be expanded. Additional 

observations may be required to be confident of finding the true optimum. Retaining 

weak parameters could also run the risk of overfitting the SM to nuances in AM 

performance (D. Baumann & Baumann, 2014), although bagging will help to mitigate 

this (Hall & Robinson, 2009). Therefore, in the next chapter, it would be sensible to 

exclude weak parameters from the optimisation. 

5.4.8 Bagging 

Bagging aggregated the multiple models produced in a given optimisation. 

Aggregating the model parameters and losses within and between outer folds yielded 

a more generalisable model. Fitting the SM’s underlying GP was effectively another 

form of aggregation based on Bayesian principles. Choosing a subset of models to 

perform the aggregation was necessary at one level because the initial SM optima were 
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wayward and could not reasonably be considered for inclusion until the SM MAE 

dropped to a low stable value. It was then a question of whether to include all the 

models from that point onwards (NCA) to minimise standard errors or take the final 

five models of each series (NC5) on the assumption that the SM would have the highest 

fidelity with the AM in the final stages. A third possibility was to identify clusters of 

models (CLn) based on the evidence that certain distinct parameters values appeared 

to be favoured rather than there being a continuous distribution. The clustered models 

were better able to reflect nuance in the parameter landscape, where it existed (λ for 

LR, σ for GPR), and place the optima at the observable minimum in the SM plots 

(Figure 5-12C & K). 

The clusters were defined solely on common parameters values without reference to 

the loss figures. Selecting a preferred clustered model should not be based on how well 

they perform in the outer fold for that would violate the principle of independence. 

Instead, the preferred cluster should be the largest one because that set of parameters 

was the one that the optimisation returned to the most, making the cluster model more 

robust to subsampling variations and hence more generalisable. It should be noted that 

the NC models did not go too far wrong, choosing a different value for the parameters 

that was still a reasonably good choice from the plots. λ is the best example where the 

loss was close to its lowest value over a wide range (Figure 5-12C).  

5.4.9 Summary 

The data set obtained from the LB sensor for the CMJNA gave rise to the most accurate 

models of peak power in vertical jumping compared to other combinations of 

anatomical location and jump type. This data set will be used in the following chapters 

as the accelerometer models are developed further. It was notable that the same 

algorithms performed well across data sets, providing reassurance that there should be 

no loss of generality by focusing on the LB-CMJNA data set alone. Hence, the findings 

of subsequent investigations should be applicable to the other data sets, including those 

from the UB sensor that is popular in professional and elite sport.  

The optimisation procedure showed that the LR, SVM and GPR models produce peak 

power estimates with very similar levels of accuracy. Based on nested cross validation, 
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the predictive errors of 2.8–3.6 W·kg-1 were equivalent to 6.2-8.0% based on the mean 

peak power. Independent tests based on the holdout data set reported slightly higher 

errors of 3.3–3.6 W·kg-1. These FPCA-based accelerometer models were more 

accurate than most but not all of the previously published peak power prediction 

equations (4.3 ± 1.8 W·kg-1). Only the LR and GPR models will be taken forward to 

the next chapter. SVM was less reliable, more complex and computationally 

expensive, which could not be justified given its results were no better than the other 

two. 

The novel optimisation procedure introduced in this chapter was thorough and 

comprehensive, bringing together several well-established procedures. The surrogate 

model had the same design as Matlab’s Bayesian optimiser. It was more robust and 

reliable because it was trained on many more observations. Crucially, the same random 

search that gathered the points to map the parameter space was used for the 

optimisation, bringing consistency to the results. It will serve as the foundational 

method for the research in the rest of this thesis. The full benefits of this approach will 

become more apparent in the next chapter, where the optimisation procedure will be 

applied to the parameters governing data preprocessing. 
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CHAPTER 6. DATA PREPROCESSING 

6.1 Introduction 

The development of an accelerometer model began in the previous chapter by 

identifying the jump type, sensor attachment site and algorithms that were most 

conducive to making accurate peak power predictions. The shortlisted models had a 

similar predictive error suggesting that they may have been limited by the information 

available. This chapter investigates how further information can be extracted from the 

accelerometer data to reduce the predictive errors. Specifically, it addresses the third 

research question, how should the accelerometer data be preprocessed to minimise the 

model’s predictive error? 

The accelerometer data was truncated at take-off in the previous chapter, reflecting the 

calculations of jump height and peak power, but there is no reason why that period 

should apply to the accelerometer data if extending it provides more relevant 

information. Studies into sports-related applications of wearable sensors have often 

chosen time windows that extend either side of the event of interest, typically 

employing time windows of ±1 s, ±2 s or sometimes up to ±5 s (Blank et al., 2015; 

Groh et al., 2017, 2016, 2016; Kautz et al., 2017; McGrath et al., 2019; Rawashdeh et 

al., 2015). In vertical jumping, take-off would usually be thought of as the event of 

interest, but extending the time window raises the possibility of realigning the curves 

at some other point. The jump landing may be a suitable alternative or the timing of 

the acceleration impact spike, which may be identified more easily. Algorithms to 

locate such events should be based on the accelerometer signal alone so the system 

envisaged for jump testing can be self-reliant. In this way, it can be low-cost and 

suitable for field testing. 

Smoothing the accelerometer signals can remove or retain information depending on 

the roughness penalty employed (Levitin et al., 2007; Ramsay & Silverman, 2005). 

Adjusting the roughness penalty is a form of regularisation, controlling the degrees of 

freedom inherent in the time series. It is analogous to low-pass signal filtering that is 

often applied in biomechanics research, including machine learning applications (e.g. 
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Blank et al., 2015; Groh et al., 2017; McGrath et al., 2019; Mlakar and Luštrek, 2017; 

Zago et al., 2019). Regularisation applied to the data implicitly controls the degree of 

complexity in the subsequent model once the features have been extracted. Hence, it 

applies to all model types, although each algorithm has some form of regularisation 

built-in (λ for LR, ε for SVM and σ for GPR). The number of FPCs is another factor 

in controlling model complexity that will be addressed in the next chapter. The main 

consideration for the investigation below is optimising the parameters governing the 

time window and the level of smoothing.  

The final preprocessing step before running FPCA is curve registration. If suitable 

landmarks can be identified, the acceleration curves can be more closely aligned, 

allowing FPCA to extract more meaningful information. When registration was 

evaluated on the VGRF data, the landmarks identifying the zero power and peak power 

were the most successful (Table 4-2). However, registration was only beneficial when 

the curves were out of alignment to begin with, as was the case with time 

normalisation. Although the accelerometer data is padded, it is more variable than the 

VGRF data such that further steps to alignment the signals’ peaks and troughs may be 

necessary, and hence beneficial to the model. Therefore, curve registration should be 

investigated to determine it enhances the peak power models based on accelerometer 

data.  

In summary, this chapter aims to: 

• Determine the optimal settings for preprocessing the accelerometer data in 

terms of the time window, the level of smoothing, the appropriate alignment 

point, and whether and how to perform curve registration. 

In so doing, it will be necessary to develop algorithms for identifying the jump take-

off, landing and impact points in the accelerometer signals to permit self-sufficiency 

for an accelerometer-based system. In light of the results produced, algorithm selection 

can be revisited. 
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6.2 Methods 

The AM function incorporated all data preprocessing operations so the optimiser could 

specify changes, as required, to the time window, the alignment point and the level of 

smoothing. Fulfilling the aims of this chapter was therefore a matter of defining the 

new data preprocessing parameters and setting up the optimisations appropriately. The 

methods described in Chapter 5 were followed, with the only new developments being 

algorithms to identify take-off, landing and impact for signal alignment and a further 

procedure to locate the landmarks for curve registration. An initial optimisation 

identified non-significant parameters that were removed in a second optimisation. The 

following sub-sections describe these elements in more detail. 

6.2.1 Event-detection algorithms 

The event-detection algorithms were based on the raw accelerometer signals. The 

criterion times for take-off and landing were when the VGRF first fell below 10 N and 

then when it first rose above this threshold. The impact point had no criterion value as 

such because it was obtained directly from the accelerometer data.  

The landing-detection algorithm was executed first because the impact acceleration 

spike was easily identifiable using the resultant signal. With reference to Figure 6-1, 

the algorithm: 

1. Smoothed the raw data using a centred, 11-point moving average; 

2. Identified candidates for the peak associated with the landing impact from all 

maxima above 1 g (‘Freefall Threshold’); 

3. Excluded peaks not preceded by a quiescent period where the signal fell 

below 1 g in 120 ms, indicative of freefall (points 1B and 1C); 

4. Recorded the point immediately before each of the shortlisted candidate 

peak(s) where the signal rose above 1 g (‘Impact Threshold’) (point 1A) 

5. Calculated the mean acceleration over 210 ms before each of these points, 

called the ‘Freefall Mean’ (see the shared region);  
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6. Selected the peak with the highest ratio of peak value to Freefall Mean, 

designated as the Impact Point (which turned out to be 1A); 

7. Placed the Landing Point 40 ms before the Impact Threshold (point 2). A 

fixed offset from the Freefall Threshold proved to be more accurate than the 

last minimum in the freefall region. 

These steps were devised from an inspection of the curves. The numbers quoted above 

were determined using the Matlab Bayesian optimiser, which minimised the RMSE 

between the estimated landing time and the criterion landing time. The optimiser’s 

objective function returned the mean error of ten bootstrapped iterations of the 

algorithm in order to obtain a more generalisable algorithm, not one simply optimised 

for this particular dataset.  

 

 

Figure 6-1. Landing algorithm illustrated with an example of the resultant acceleration 

signal from the LB sensor. Time is measured from the true take-off in milliseconds. The 

candidate maxima for the impact peak are indicated by 1A, 1B and 1C. The Freefall Mean 

is the mean acceleration over a shaded region. The best candidate (1A) is preceded by a low 

acceleration, from which the landing estimate is made (2). 
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The take-off detection algorithm relied on the X and Z axes of the orthogonal 

acceleration signals. The signals were terminated at the previously determined landing 

point to avoid false detections in the landing part of the signal. With reference to Figure 

6-2, the algorithm: 

1. Rotated the signal so that the inertial acceleration was approximately vertical 

at the start (-1 g, 0, 0) when the participant was quietly standing still;  

2. Smoothed the X and Z acceleration time series with a central, 21-point 

moving average; 

3. Differentiated the smoothed signals using a 2-point central difference formula 

to produce the jerk time series, called DX and DZ, respectively; 

4. Found the first X maximum after the first X minimum (‘XPeak’) (points 1 

and 2);  

5. Located the nearest DX and DZ peaks before XPeak (‘DXPeak’ and 

‘DZPeak’, respectively – (points 3 and 4) 

6. Select DZPeak as the take-off point if DZPeak and XPeak were separated by 

less than 340 ms; otherwise, it chose DXPeak after adding a 4 ms offset. 

As with the landing-detection algorithm, the steps were devised from inspection, but 

the figures quoted above were determined using the Bayesopt optimiser. The signal 

rotation (16.4 ± 7.8°, mean ± SD) improved the algorithm’s accuracy, which relied on 

the X and Z accelerations at take-off being aligned to the vertical and posterior 

direction, respectively. XPeak could not be identified consistently without the data 

truncated at landing. Take-off was more likely to coincide with the peak jerk in the 

posterior (DZ) rather than the vertical direction (DX).  
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Figure 6-2. Take-off algorithm illustrated with an example of the X and Z acceleration time 

series, including the differentiated DX and DZ curves. The algorithm progresses in 

sequence identifying the X minimum (point 1), X maximum (point 2), and the DX and DZ 

maxima (points 3 and 4). DZ is selected as the reference point for take-off. The timescale 

terminates at landing, determined by the Landing algorithm. 

 

The error from using the take-off detection algorithm instead of the criterion VGRF 

times was assessed using the Chapter 5 models (CL3 cluster model for LR and CL2 

for GPR). First, a simple comparison was made between the two methods using 

1000 × 2 MCCV to determine the change in the validation error. Second, the models’ 

sensitivity to signal misalignment was determined to discover the benefit that might 

be gained with a better event-detection algorithm. Gaussian noise was introduced, 

centred on the VGRF-determined take-off points (Section 3.2.5). The standard 

deviation was increased from 0 ms to 100 ms in steps of 4 ms, the smallest increment 

possible with a 250 Hz sampling frequency. Random noise was re-generated 100 times 

for each step. The LR and GPR models’ validation errors were averaged over 100 × 2 

MCCV, making 10,000 observations in total for each model. 
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6.2.2 Model parameters 

The AM function was extended to include parameters specifying the alignment event, 

the time window and the functional smoothing (Table 6-1). As in Chapter 5, the 

resultant accelerometer signal was used with 15 FPCs retained. The time window was 

defined by pret , the period before the alignment event, and postt , the corresponding 

period after it. Together these parameters, in conjunction with the alignment event, 

defined the start and end of the time series. Since the time was discretised, pret  and 

postt  were treated as integers in the optimisation so that each increment represented 

4 ms. For example, in Chapter 5, pre 500t =  intervals (2000 ms) and post 0t = , where 

the alignment event was take-off. In Table 6-1, the lower bounds of pret  and postt  are 

negative to prevent boundary effects from the SM’s Gaussian Process (arising from 

the assumption of a constant basis function) influencing the optimisation. 

 

Table 6-1. Optimisation parameters for LR and GPR, including the new parameters 

introduced in Chapter 6. 

Model Parameter Type † Hyperparameter Values  PSO Bounds ‡ 

LR Regularisation  C {Ridge, Lasso} [0.50, 2.49] 

 Solver C {SVM, Least Squares} [0.50, 2.49] 

 Regulariser, λ R 10-12 … 1012 [-12, 12] 

GPR Basis C {None, Constant, Linear, Pure Quadratic} [0.50, 4.49] 

 Kernel C {Squared Exponential, Exponential, 

Matérn 3/2, Matérn 5/2, Rational Quadratic} 

[0.50, 5.49] 

 Noise, σ R 10-4 … 102 [-4, 2] 

 Standardisation § C {No, Yes} [0.50, 2.49] 

Both Alignment C {Takeoff, Landing, Impact} [0.50, 3.49] 

pret  * I {-50, …, 750} [1, 801] 

 postt  * I {-50, …, 750} [1, 801] 

 No. Basis Functions I {15, …, 200} [15, 200] 

 Roughness penalty,
FS

  R 10-12 … 1012 [-12, 12] 

† Parameter type: C = Categorical (nominal variable); R = Real (continuous), I = Integer (discrete).  

‡ Categorical parameters are indexed; real parameters are log-transformed.  

§ Standardise the predictors and outcome variables as Z scores during fitting. 

* Time intervals were in 4 ms units giving a range -200 ms to 3000 ms. 
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The smoothing parameters specified the number of b-spline basis functions and the 

roughness penalty, 
FS . In the last chapter, 100 basis functions were used with 

2

FS 10 = . 
FS  was allowed to vary over 25 orders of magnitude to cover a wide range 

of possible levels of smoothing. The number of basis functions ranged from a 

minimum of 15 basis functions (determined by the number of FPCs retained in FPCA) 

to an upper limit of 200 that capped the computational costs. This cap could be raised 

in the second optimisation if the results justified it.  

6.2.3 Statistical analysis and optimisation 

It was noted in Section 5.4.7 that some parameters could substantially affect the 

predictive error (e.g. λ in LR) whilst others may only have a weak effect (e.g. 

regularisation method in LR). Including weak parameters in an optimisation would run 

the risk of overfitting if those variables were largely uncorrelated with the model’s 

predictive error (D. Baumann & Baumann, 2014). Overfitting was also a stronger 

possibility in this chapter because the optimisation involved more parameters (Cawley 

& Talbot, 2010). Hence, it was essential to contain the complexity as far as possible 

by eliminating weak parameters from the optimisation (Figure 6-3). 
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Figure 6-3. Overview of the two-stage process followed in this chapter to simplify the 

models. At both stages, a statistical analysis is performed to assess each parameter's effect 

on the models’ predictive error. 

 

A separate random search was conducted for each analysis to gather 100 observations 

on the AM loss for each of the 10 outer folds (1000 in total), drawn from the parameter 

ranges specified in Table 6-1. The AM loss was estimated using the same inner cross 

validation design, as before: 20 × 2 MCCV. The points were chosen purely at random 

to make them independent, unlike in an optimisation where they would be 

concentrated progressively. A statistical analysis was performed using a GLM with the 

AM parameters as the predictor variables and the AM inner loss as the outcome 

variable. The inner loss was preferable to the outer loss because it had a direct 

relationship with the parameters. The coefficients of the linear GLM indicated the 

overall effect of each parameter, which for categorical parameters was broken down 

by level. The total variation in the AM loss explained by each parameter was estimated 

using the semi-partial 2
 .  
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The first-round GLM analysis was conducted with all parameters to quantify their 

effects. Then an optimisation was carried with all parameters following the nested 

cross validation methods described in Sections 5.2.5–5.2.10. The number of random 

search observations, 
( )k

Z , was doubled to I = 1000 for each outer fold to 

accommodate the higher number of dimensions of the parameter space. Accordingly, 

each 
( )

SMm

k
 series comprised M = 50 models. 

A second-round GLM analysis was then performed using the same stepwise selection 

method to select the VGRF FPCs (Section 4.2.5). The random search, which provided 

the data set for the GLM, was re-run with all parameters except alignment because 

take-off was the overwhelming choice from the first optimisation (Figure 6-5). The 

GLM-selected parameters were then put into a second-round optimisation with the 

same setup as the first. 

6.2.4 Curve registration 

Once the optimal parameter values were known, the final stage was to introduce curve 

registration to determine whether it could improve the models’ accuracy. It was 

computationally prohibitive to perform curve registration within the optimisation 

because the operation itself was very intensive, requiring approximately five minutes 

of processing time for every AM function evaluation. Curve registrations were 

therefore computed in advance based on a grid of predetermined functional smoothing 

parameter values. Since the number of basis functions proved to be a weak parameter, 

it was held constant at 100 basis functions, and only the roughness penalty was 

discretised with intervals of 10 FSlog 0.2 =  over the range 10 FSlog {0, ..., 10} = . 

Since the landmarks were the cross-sectional means, one registration could be used 

across all data subsamples. 

There were no suitable landmarks in the acceleration curves themselves, but the 

derived pseudo power curves did have prominent peaks around take-off and landing, 

which were located as follows. The resultant acceleration signal was converted into a 

smooth function comprising 50 fourth-order, b-spline basis functions with a roughness 

penalty of 
4

FS 10 = . The smoothing parameters were fixed and independent of the 

corresponding parameters set during the optimisation. The algorithm then converted 
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the functional curves back into a discrete set of points, sampled at 1000 Hz. It then 

integrated the curve using the cumulative trapezoidal rule to obtain the velocity, 

assuming a zero initial velocity since the participant stood still before jumping. It then 

multiplied the corresponding points of the (smoothed) acceleration and velocity time 

series to produce the power time series, where the acceleration serves as a proxy for 

force. The inverse proportionality with body mass was ignored as the correct scale was 

irrelevant when finding peaks. The two peak power landmarks (L1 and L2) were on 

either side of the landing timing point found earlier (Section 6.2.1). L1 was not always 

the peak immediately before the landing, so it was defined as the peak with the highest 

ratio of prominence to proximity, based on Matlab’s findpeaks function. L2 was 

simply the first maximum after landing. 

The landmark set parameter was introduced to the optimisation specifying the 

landmarks to use, if any: {None, L1, L2, L1 & L2}. The best performing model from 

the second round optimisation was chosen to evaluate registration. pret  and postt  were 

held constant at the times determined in the second optimisation. 
FS  was treated as a 

discrete parameter rather than a continuous one with the range and interval spacing 

that matched registration preprocessing. The other remaining parameters were allowed 

to vary as before. 

6.2.5 Flight time 

The influence of flight time on the models was investigated once the optimisation was 

complete, given that flight time had been a predictor in the peak power prediction 

equations (Section 2.3.2). If the optimal time window encompassed take-off and 

landing, an analysis would be needed to determine whether the models relied on the 

flight time or the landing acceleration patterns. It was based on comparing how the 

model performed with flight time allowed to vary freely (no intervention) with an 

artificial situation in which flight time was held constant by padding out the flight 

phase. The fixed flight time was set at 1000 ms to ensure flight times from all jumps 

were extended.  

The acceleration time series were padded with the resultant signal’s minimum value 

after take-off starting at the point where it was achieved. Thus, the curve’s lowest point 
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was extended by the required number of points, making the minimum appear as a flat 

section of the curve. In choosing the lowest point, the intervention had the smallest 

possible influence on the acceleration curves. The minimum was located using an 11-

point moving average to ensure the algorithm reliably identified the point when the 

body was closest to being in freefall, according to the accelerometer.  

The effect on the LR and GPR models’ predictive error in both cases (actual and fixed 

flight times) was investigated by using a grid search to increment postt  in units of 4 ms 

from zero up to 2000 ms while pret  was held constant at  2000 ms. If the validation 

error dropped when the time window encompassed landing in both cases, then the 

models would be using the landing acceleration patterns. If the error only dropped in 

the non-intervention case (actual landing times), then the model was reliant on the 

flight time.  
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6.3 Results 

6.3.1 Performance of jump detection algorithms 

The algorithms to detect jump take-off and landing had RMSEs of 11.9 ms and 

11.7 ms (~ 3 time intervals each), respectively, compared to the criterion timing of 

those events based on the VGRF data (Section 3.2.5). These errors amounted to a 

degree of misalignment between the accelerometer signals, which increased the 

Chapter 5 models’ validation errors by a 0.09 W·kg-1 and 0.15 W·kg-1, respectively 

for LR and GPR (Table 6-2). There was no error as such for the acceleration impact 

spike because it was obtained directly from the signal. 

 

Table 6-2. Impact of switching to identifying take-off based on the accelerometer data 

rather than having to rely on the criterion VGRF data. All figures in W·kg-1. 

Model 

VGRF-based 

Alignment 

Accelerometer-based 

Alignment Difference 

LR 3.48 3.57 +0.09 

GPR 3.49 3.64 +0.15 

† Chapter 5 models (largest cluster) – LR: CL3; GPR: CL2. 

 

The models’ sensitivity to temporal misalignment based on Gaussian noise only 

became apparent when the SD ≥ 12 ms (Figure 6-4). The LR model proved to be more 

sensitive than GPR to larger misalignment errors. The simulated misalignment under-

estimated the actual error of both models (disparities of 0.04 W·kg-1 and 0.10 W·kg-1), 

but those estimates were within the SD range in Figure 6-4. The consequent effect on 

model predictive error was considered minor (0.3%) in the context of the broader 

results presented in this thesis. It was concluded that the take-off detection algorithm 

could be accepted and incorporated as a permanent feature of the AM function. The 

landing and impact-detection algorithms were expected to have a similar influence on 

model predictive error since their misalignment errors were almost identical, an 

assumption that was tested in the subsequent optimisations. 
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Figure 6-4. Impact on validation loss of temporal misalignment of the accelerometer signal 

with the true take-off time determined from the VGRF data. The misalignment was 

simulated by Gaussian noise, defined by its SD. Inset: narrow-range scale showing the 

algorithm’s actual misalignment error indicated by the vertical dotted line at 12 ms. 

 

6.3.2 GLM statistical analysis 

The GLM based on all LR model parameters explained 61.2% of the variance in AM 

loss. In comparison, the second GLM based on only the selected parameters (omitting 

alignment) explained 63.3% of the variance (Table 6-3). The LR regularisation 

parameter, λ, accounted for almost all of this variance in both cases (55.9% and 61.7%, 

respectively). The three other selected parameters were the time window parameters, 

pret  and postt , and the roughness penalty, FS . In the first optimisation, pret  appeared 

to be the more influential time parameter, but the second GLM showed that postt  was, 

in fact, more important when the potential confounding effects of weak parameters 

were eliminated. FS  was significant, but the number of basis functions had almost no 

effect. With signal alignment at take-off, the LR model estimates were 0.26 W·kg-1 

lower than if alignment had been at the landing or impact points. The ridge 

regularisation remained the preferred method, as in Chapter 5, but least squares was 

now the better solver.  
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Table 6-3. GLM analysis of LR model for the first and second optimisations, where the latter includes only selected parameters. The effect on the AM 

validation loss is shown, together with the F-statistic (ratio of explained to unexplained variance) and the proportion of total variance explained. 

GLM Model 1st Optimisation 2nd Optimisation 

LR Parameter Levels Effect (W·kg-1) † F 


 ‡ Effect (W·kg-1) † F 


 † 

Intercept  6.256   6.234   

Regularisation Lasso +0.152 1.1 0.0%    

 Ridge .      

Solver SVM . 4.5 0.1%    

 Least Squares -0.123      

10log    +0.185 1440 *** 55.9% +0.195 1700 *** 61.7% 

Alignment Take-off . 9.8 *** 0.7%    

 Landing +0.266      

 Impact +0.265      

pre
t  (s-1)  -0.349 97.6 *** 3.8% -0.100 8.9 * 0.3% 

post
t  (s-1)  -0.052 3.1 0.1% -0.200 32.2 *** 1.1% 

No. Basis Functions  0.000 0.4 0.0%    

FS10log    +0.019 16.8 *** 0.6% +0.019 15.1 ** 0.5% 

TOTAL    61.2%   63.3% 

GLM RMSE = 1.03 W·kg-1 (1st optimisation); 1.05 W·kg-1 (2nd optimisation).  

† GLM coefficient. Intercept is the overall mean loss. Coefficients make adjustments per unit value: e.g. for logarithmic parameters, per unit change in the exponent, for time parameters, 

per second. For categorical parameters, relative adjustment shown for different levels. Reference point for these adjustments (‘.’ gaps) is the Chapter 5 model.  

‡ Semi-partial 
2
, the proportion of the total variance explained. 

* p < 0.01; ** p < 0.001; *** p < 0.0001. No asterisk indicates non-significant: p > 0.01. 

Type-I estimates quoted. F statistic relates to semi-partial 
2

 . 
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The GLM for the GPR model explained a much smaller proportion of the AM loss 

variance, 25.4% with all parameters included and 21.3% based on the selected 

parameters (Table 6-4). The selected parameters, those with a strong influence on 

model prediction, were the basis function, σ, pret , postt  and 
FS . In the second GLM, 

postt  explained the highest proportion of the variance (7.4%), but this was modest 

compared to the dominant role played by λ in the LR model. The basis function was 

the second most important parameter, where the linear function now appeared to be 

most advantageous, compared to no basis function in Chapter 5. The GLM coefficients 

were larger for the time window parameters than the corresponding coefficients for the 

LR model, suggesting that the GPR model was more sensitive to the chosen 

demarcation points.  

 



 

 Table 6-4. GLM analysis of GPR model for the first and second optimisations, where the latter includes only selected parameters. The effect on the AM 

validation loss is shown, together with the F-statistic (ratio of explained to unexplained variance) and the proportion of total variance explained. 

GLM Model 1st Optimisation 2nd Optimisation 

LR Parameter Levels Effect (W·kg-1) † F 


 ‡ Effect (W·kg-1) † F 


 † 

Intercept  5.938   5.644   

Basis Function None . 25.0 *** 5.4% . 31.3 *** 6.3% 

 Constant -0.243   +0.236   

 Linear -0.997   -0.571   

 Pure Quadratic -0.273   +0.455   

Kernel Function Squared Exp. +0.488 6.2 *** 1.5%    

 Exponential +0.129      

 Matérn 3/2 -0.005      

 Matérn 5/2 +0.256      

 Rational Quadratic .      

10log    +0.152 48.0 *** 3.5% +0.166 45.9 *** 3.5% 

Standardisation No +0.054 0.5 0.0%    

 Yes .      

Alignment Take-off . 11.3 *** 1.5%    

 Landing +0.436      

 Impact +0.461      

pre
t  (s-1)  -0.525 150 ** 11.1% -0.175 13.1 ** 1.0% 

post
t  (s-1)  -0.145 11.7 0.8% -0.450 95.4 *** 7.4% 

No. Basis Functions  0.000 0.0 -0.1%    

FS10log    +0.027 22.6 *** 1.6% +0.037 40.9 *** 3.1% 

TOTAL    25.4%   21.3% 

GLM RMSE = 1.24 W·kg-1 (1st optimisation); 1.27 W·kg-1 (2nd optimisation) 

† GLM coefficient. Intercept is the overall mean loss. Coefficients make adjustments per unit value: e.g. for logarithmic parameters, per unit change in the exponent, for time parameters, 

per second. For categorical parameters, relative adjustment shown for different levels. Reference point for these adjustments (‘.’ gaps) is the Chapter 5 model.  

‡ Semi-partial 
2
, the proportion of the total variance explained.  

* p < 0.01; ** p < 0.001; *** p < 0.0001. No asterisk indicates non-significant: p > 0.01. Type-I estimates quoted. F statistic relates to semi-partial 
2

 . 
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6.3.3 Optimisation performance 

The second round of optimisations using the selected parameters identified above 

produced optimal models that were generally more accurate than in the first round 

(Table 6-5). The GPR models at both stages outperformed the LR models in all metrics 

presented below. It was also evident that the best clustered models outperformed the 

more general bagged (non-clustered) models. The similarity between NCV and MCCV 

estimates provided support for the novel optimisation method. Signal alignment at 

take-off was the overwhelming choice for both models (Figure 6-5).  

 

Table 6-5. Summary results of the first and second round optimisations for LR and GPR 

models, showing representative loss estimates by different metrics. 

 LR Optimisation GPR Optimisation 

Loss Estimate (W·kg-1) 1st Round 2nd Round 1st Round 2nd Round 

NCV (Bagged) 3.31 3.20 3.08 2.75 

NCV (Best Cluster) 2.81 2.97 2.69 2.47 

MCCV (Bagged) 3.36 2.97 2.82 2.77 

MCCV (Best Cluster) 2.97 2.96 2.74 2.64 

NCV = Nested Cross Validation; MCCV = Monte Carlo Cross Validation. 

 

 

(A) 

 

(B) 

 
    

Figure 6-5. First round optimisation selection of accelerometer signal alignment for LR (A) 

and GPR (B) models. Colours indicate clusters. 
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The second round optimisations converged in fewer iterations than the first owing to 

the search space having fewer dimensions. The surrogate models had a higher fidelity 

with the AM, as indicated by a lower MAE (0.14 W·kg-1for LR and 0.13 W·kg-1 for 

GPR), a smaller confidence interval (0.34 W·kg-1 and 0.32 W·kg-1, respectively) and 

a narrower gap to the noise level (0.03 W·kg-1 in both cases). The surrogate model 

MAE had stabilised after 420 and 480 search observations, respectively, setting the 

start point for cluster analysis and bagging. 

The spread of AM loss estimates for individual clusters is presented in Figure 6-6. The 

inner loss had a small variance compared to the outer loss for both LR and GPR 

models, indicating that the model’s performance can be much more variable when 

subject to an independent test. The outer loss variance was slightly narrower for the 

second optimisation, particularly for the GPR model. The outer AM distributions were 

skewed in some cases with the mean indicator and the median line drawn some way 

from the middle of the box. The GPR models, CL3 and CL4, stand out for their narrow 

spreads but suffer from several outliers (Figure 6-6H).  
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Figure 6-6. AM Loss estimates for the LR and GPR models after the first and second optimisations – five largest clusters. Wide variations in loss for outer 

validation (bottom row) compared to inner validation (top row). The second optimisation tended to reduce loss variation, and in some cases, the loss 

estimates were lower, notably for the GPR models. Diamond = Mean; Horizontal Line = Median. Skew indicated by median not being at mid-point. 
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6.3.4 Optimal models’ summary 

A breakdown of the optimal LR and GPR models is presented overleaf covering their 

parameter values and an evaluation of their predictive errors by NCV, MCCV and 

holdout methods from the second optimisation (Table 6-6 and Table 6-7). Three 

clustered models are shown in comparison with the non-clustered bagged model 

averaging the SM series. A new model definition is introduced based on the modal 

value of the numeric parameters. The modal-defined model outperformed the bagged 

and clustered models for LR in terms of the MCCV and holdout losses (2.89 W·kg-1 

and 1.81 W·kg-1, respectively). It equalled the best MCCV performance for a GPR 

cluster model (2.64 W·kg-1) but did not match the best GPR holdout performance 

(2.37 W·kg-1). In reviewing the losses, it is clear that in this second optimisation, there 

were only small differences in performance by the different optimal model definitions 

used. The greatest disparities can be seen in the holdout losses (1.81–2.07 W·kg-1 for 

LR and 2.13–2.50 W·kg-1 for GPR), which is expected because it is a single data set, 

whereas the other estimates were based on multiple subsamples. In this respect, better 

holdout performance should be treated with caution.  
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Table 6-6. LR Models for the second optimisation by grouped observations. The 

parameters were determined by either the modal peak, averaging (bagging) or clustering 

(selected clusters shown). Other parameters determined in the first optimisation.  

 Modal Bagged CL1 CL2 CL3 

Group Size 300 300 82 36 23 

10
log   -6.48 -7.20 -9.65 -1.44 -10.58 

pre
t (ms) 1720 1888 2332 1684 1552 

post
t (ms) 1016 1532 960 1360 1164 

10 FS
log   7.44 7.36 7.55 6.43 7.48 

NCV Loss † 

(W·kg-1) 
n/a 3.20 3.03 2.97 2.97 

MCCV Loss ‡ 

(W·kg-1) 
2.89 2.97 2.96 3.03 3.05 

Holdout Loss 

(W·kg-1) 
1.81 2.07 1.83 1.85 1.98 

† AM Outer Loss. (Mean) ‡ AM Loss. (Aggregate) 

NCV = Nested Cross Validation: 10 × 2; MCCV = Monte Carlo Cross Validation: 1000 × 10 

Regularisation Method = Ridge; Solver = Least Squares; Alignment = Take-off; No. Basis Functions = 94. 

 

Table 6-7. GPR Models for the second optimisation by grouped observations. The 

parameters were determined by either the modal peak, averaging (bagging) or clustering 

(selected clusters shown). Other parameters determined in the first optimisation. 

 Modal Bagged CL1 CL3 CL4 

Group Size 280 280 44 45 26 

Basis Function None None None None None 


10

log  -2.20 -1.93 -1.64 -2.32 -1.65 

pre
t (ms) 1432 1904 1284 1468 2632 

post
t (ms) 1208 1732 1212 2440 1336 

10 FS
log   4.80 2.98 4.57 4.58 4.34 

NCV Loss † 

(W·kg-1) 
n/a 2.75 2.65 2.47 2.47 

MCCV Loss ‡ 

(W·kg-1) 
2.64 2.77 2.64 2.66 2.65 

Holdout Loss 

(W·kg-1) 
2.43 2.13 2.44 2.50 2.37 

† AM Outer Loss. ‡ AM Loss.  

NCV = Nested Cross Validation: 10 × 2 

MCCV = Monte Carlo Cross Validation: 1000 × 10 

Kernel Function = Exponential; Standardisation = No; Alignment = Take-off; No. Basis Functions = 102. 
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6.3.5 Parameter distributions 

The numeric parameter distributions show the spread of optimal values across the

( )SM k

m  series (Figure 6-7). The clustered models’ distributions are also shown within 

the overall distribution to provide more insight into which aspects of the distribution 

they represent. The pret  distributions are broad, indicating no strong preference for the 

time window’s start, although for LR, the range is narrower (Figure 6-7A & B). The 

CL1 model (red), which favours a long time window (2332 ms average, Table 6-6), is 

the model with the smallest variance in AM outer loss. Of the two clustered models 

that performed well, CL2 (yellow) is centred on a shorter window (1468 ms) while 

CL3 (green) covers the longer window (2632 ms, Table 6-7). The distributions for postt  

indicated a preference for a time window at the narrower end of the range (Figure 6-7C 

& D) with a close agreement between the two models: 1016 ms for LR (Table 6-6) and 

1208 ms for GPR (Table 6-7). In summary, the LR-CL1 model had a time window 

with a longer period before take-off but a shorter period afterwards. The high-

performing GPR models, CL2 and CL3, represented alternate approaches of ‘short-

long’ and ‘long-short’ time windows, respectively, for the periods before and after 

take-off.  

The roughness penalty, FS , for both models had a tall, narrow, bell-shaped 

distribution indicating that the optimal values were restricted to a short range, centred 

around 107.44 and 104.80, respectively, for each model (Figure 6-7E & F). Hence, the 

LR model appears to benefit from a heavier level of smoothing compared to GPR. 

Both needed a higher degree of smoothing for optimal performance than GCV had 

determined (102). 
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 LR Models  GPR Models 

    

(A) 

 

(B) 

 
(C) 

 

(D) 

 
(E) 

 

(F) 

 
    

Figure 6-7. Distribution of the data preprocessing parameters for LR and GPR models 

from the second optimisation: time window, 
pre

t and 
post

t , and roughness penalty, 
FS

 . The 

clusters, identified above by colour, can be seen within the overall distributions. The grey 

areas are the remaining unclustered models. 

 

6.3.6 Bagged Model Plots 

Based on the surrogate models bagged across outer folds, the partial plots of the 

parameter landscape reflect the generalised model’s behaviour (Figure 6-8). The plots 

show a broad range for the time window where the generalised model would be 
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expected to perform equally well (Figure 6-8A–D). These ranges broadly reflect the 

distribution ranges of pret  and post .t  The roughness penalty plot for LR has a noticeable 

dip that reflects the bell-shaped distribution above (Figure 6-8E). However, for GPR, 

the minimum is shallow, well within the level of noise (Figure 6-8F).  

 

 LR Models  GPR Models 

(A) 

 

(B) 

 
(C) 

 

(D) 

 
(E) 

 

(F) 

 
Figure 6-8. Bagged surrogate model plots for LR and GPR models from the second 

optimisation covering the key data preprocessing parameters defining the time window, 

pre
t and 

post
t , and the roughness penalty, 

FS
 , determining the level of smoothness. The 

lightly shaded area underneath the curves indicates the range where equivalent predictive 

errors are expected due to the inherent level of noise.  
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6.3.7 Curve registration 

Registration was applied to the GPR model alone since it had outperformed LR by a 

clear margin (2.75 W·kg-1 vs. 3.20  W·kg-1 for the bagged model; Table 6-7). The 

optimised models’ accuracy based on registered curves was poorer than the non-

registered models reported above, achieving at best a predictive error of 2.72 W·kg-1 

(Table 6-8). There was a strong preference (80%) for using the L1 landmark on its own 

(peak power around take-off). There was a change in the preferred basis function to 

linear and a switch for most models to the Matérn 3/2 kernel. The roughness penalty 

is also noticeably lower than before with smoothing close to the level needed for a 

best-fit. The other parameter distributions were otherwise quite similar to those in 

Figure 6-7. It was not worth pursuing a holdout test because the NCV and MCCV loss 

estimates fell short of those reported above. 

 

Table 6-8. GPR models optimisation with curve registration during preprocessing that 

included three different landmark sets and a non-registration set. Only the L1 landmark 

was chosen (peak power around take-off).  

 Modal Bagged CL4 CL6 

Group Size 280 280 52 25 

Basis Fn Linear Linear Linear Linear 

Kernel Fn Matérn 3/2 Matérn 3/2 Matérn 3/2 Squared Exp. 


10

log  0.29 -1.19 -2.81 -0.27 

10 FS
log   3.08 2.89 3.04 3.24 

Landmark Set L1 L1 L1 L1 

NCV Loss † n/a 3.07 2.72 2.80 

MCCV Loss ‡ 3.00 3.05 3.02 3.07 

† AM Outer Loss. ‡ AM Loss.  

NCV = Nested Cross Validation: 10 × 2 

MCCV = Monte Carlo Cross Validation: 1000 × 10 

Standardisation = No; Alignment = Take-off; No. Basis Functions = 100. 
pre

t  = 2000 ms; 
post

t  = 2000 ms. 
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6.3.8 Flight times 

Based on the modal-defined optimal models (without registration), the validation error 

dropped sharply for LR and GPR when the time window was extended to include 

landing as well as take-off (Figure 6-9). The drop was coincident with the actual mean 

flight time, beginning and ending with the spread of flight times across jumps. The 

GPR model was more dependent than LR on the acceleration curves, including the 

landing, as the drop was greater. When the flight time was artificially held constant at 

1000 ms, the landing had no discernible effect on the LR model’s error, but it increased 

the error for the GPR model.  

 

 
Figure 6-9. Validation loss for increasing 

post
t (

pre
t = 2000 ms) for LR and GPR models 

(solid lines) compared to artificial fixed flight time. Model error (solid lines) drops 

substantially when the time window extends to include the landing for both LR and GPR. 

With a fixed flight time (dotted lines), LR is unaffected, but GPR error worsens.  
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6.4 Discussion 

The aim of this chapter was to determine the optimal preprocessing parameters for the 

accelerometer signal. As a result, the GPR models’ accuracy improved substantially, 

with the error falling to the range of 2.5–2.8 W·kg-1 from 2.9–3.6 W·kg-1 in the 

previous chapter. In contrast, the LR model benefitted only to a marginal extent, if at 

all, yielding an error in the range of 2.9–3.2 W·kg-1 from 2.8–3.3 W·kg-1 in Chapter 5. 

A full range of comparisons is shown in Table 6-9 based on the different cross 

validation methods, which reveals large reductions in both models’ holdout errors. 

These improvements were achieved despite switching to using the accelerometer 

signal to determine take-off, which added a small error of 0.15 W·kg-1.  

 

Table 6-9. Comparison of the LR and GPR models between chapters 5 and 6, showing the 

improvement or otherwise with the inclusion in the optimisation of the data preprocessing 

parameters.  

Model 

Definition 

Model 

Evaluation 

LR Models GPR Models 

Ch. 5 Ch. 6 Ch. 5 Ch. 6 

Bagging 
NCV 

MCCV 

3.24 

3.25 

3.20 

2.97 

3.17 

3.62 

2.75 

2.77 

Best Cluster 
NCV 

MCCV 

2.84 

3.24 

2.97 

2.93 

2.92 

3.24 

2.47 

2.65 

Modal MCCV n/a 2.89 n/a 2.64 

Holdout Test 3.61 2.07 2.87 2.17 

NCV = Nested Cross Validation. MCCV = Monte Carlo Cross Validation. All figures in W·kg-1. 

 

This is the first time in this thesis that there has been a clear difference between 

algorithms following optimisation. Originally, the GPR models were ranked third, 

behind and LR and SVM, following the initial grid search in Section 5.3.1. However, 

by extending the optimisation to include the factors governing preprocessing, not just 

the hyperparameters from the last chapter, the GPR models now stand out from the 

other algorithms. The success of GPR suggests the Bayesian approach in conjunction 

with the flexibility of a non-parametric method is advantageous when applied to 
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FPCA-type models based on acceleration data. GPR is rarely used in the biomechanics 

literature, if at all, but these results suggest that such models are worthy of further 

consideration. In light of these results, it is clear that the GPR model alone should be 

carried forward to the next chapter, along with the data preprocessing method 

discussed below. Having a single model for further development will help to 

streamline the investigation further and allow the focus to be fully on the methods in 

question.  

6.4.1 Updated comparison with other studies 

The best clustered GPR model (CL4) achieved a validation error of 2.47 W·kg-1, 

according to NCV, and 2.65 W·kg-1 for MCCV (Table 6-9). In percentage terms, this 

is an RMSE of 5.5–5.9%, which is an improvement on the 6.5–7.2% reported in 

Chapter 5 (Figure 6-10). The GPR model error compares favourably with the 

benchmark error of 4.6 W·kg-1 for the peak power prediction studies (Section 2.3.2). 

An alternative way to compare model performance is the explained variance, 2r , 

which is independent of the units involved and does not require domain expertise. The 

GPR model in this chapter explained 87.4% of the variance in peak power, which is 

still a long way short of the 98.3% achieved for explaining peak power variance in the 

VGRF model. However, the refinements introduced in this chapter have brought it 

closer to the 92.0% obtained for the VGRF jump height model (Table 4-3). 
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Figure 6-10. GPR models’ peak power prediction errors from Chapters 5 and 6 in 

comparison with previous studies (Ache-Dias et al., 2016; Amonette et al., 2012; Canavan & 

Vescovi, 2004; Lara et al., 2006; Quagliarella et al., 2010; Tessier et al., 2013). MCCV 

estimate shown for GPR with error bars based on the SD in validation error between folds. 

The intra-day variance is averaged from four reliability studies (Cormack, Newton, 

McGuigan, et al., 2008; Hori et al., 2007; McLellan et al., 2011; Taylor et al., 2012). 

 

6.4.2 Take-off and landing algorithms 

The models developed in this chapter depended on a novel algorithm for finding the 

point of take-off in the accelerometer signal without reference to another data source. 

The RMSE of 11.9 ms, equivalent to three time intervals, was sufficiently small to 

limit the rise in the models’ predictive error to 0.15 W·kg-1. The landing detection 

algorithm had a similar error. Combining both algorithms, the RMSE in the flight time 

was 16.4 ms with respect to the VGRF criterion. This flight time error compares 

favourably to previous studies using an accelerometer to predict jump height or peak 

power. Not all such studies report the flight time error directly, but Castagna et al. 

(2013), Monnet et al. (2014) and Picerno et al. (2011) present errors of 21 ms, 22 ms 

and 37 ms, respectively. For other studies, the flight time error, ft , can be inferred 

from the jump height estimates by re-arranging the Newtonian formula for jump 

height, 
21

8
h gt= , and taking differences using the quoted random error, h , and the 

mean jump height, h , to obtain: 

 
2

ft h h h h
g
  = +  − −
 

  (6.1) 
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Based on this formula, the inferred flight time errors from other studies were 21 ms 

(Casartelli et al., 2010), 25 ms (Choukou et al., 2014) and 26 ms (Mauch et al., 2014) 

and 15 ms (Lesinski et al., 2016). It is clear that the take-off detection algorithm 

developed in this chapter was more accurate than in previous studies, with one 

exception, which had a directly comparable error. The two studies with the sensors 

worn on the lower back had the best and the worst accuracy (Lesinski et al., 2016; 

Picerno, Camomilla, et al., 2011). All the other studies used the Myotest sensor worn 

on the hip. For the present study, the algorithm and the additional taping employed to 

hold the sensor firmly in place may have helped. In practice, this is harder to 

accomplish with tape for the UB-attached sensor. Undergarments specifically 

designed to house GPS-tracking sensors may not hold the unit firmly enough for an 

inertial sensor. 

Algorithms have been developed to detect footstrike and push-off in walking and 

running using wearable sensors, which is similar to jump landing and take-off. Their 

purpose in most studies was to classify gait phases rather than determine the timing of 

gait events. In the latter case, the algorithms developed to determine gait-event timing 

have focussed almost entirely on footstrike, which is akin to jump landing (Maiwald 

et al., 2015; Mercer et al., 2003; Sabatini et al., 2005; Sinclair et al., 2013). The sensors 

were attached either on the shank or the heel, placing them close to the impact.  

The footstrike-detection algorithms in the literature were more straightforward than 

those in the present study. The tibial-based algorithms found the minimum or the zero 

point before the longitudinal acceleration peak (Mercer et al., 2003; Sinclair et al., 

2013), not unlike the landing-detection algorithm (Section 6.2.1). The heel-based 

algorithm used the impact acceleration spike (Maiwald et al., 2015) or the minimum 

angular acceleration from a gyroscope (Sabatini et al., 2005). No study reporting toe-

off timing accuracy could be found. The Myotest algorithm, according to Casartelli et 

al. (2010), found the time difference between the peaks in its estimate of vertical 

velocity, which is simpler than the multi-step take-off and landing detections 

algorithms used in the current study (Section 6.2.1). These new algorithms were 

refined using the Bayesian optimiser to find the best settings to minimise error, 

demonstrating how Bayesian optimisation can improve biomechanical algorithms. It 
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is an expert-led approach, refined with optimisation techniques, that achieved high 

levels of accuracy compared to equivalent jump-based algorithms. 

Alternatively, an ML model might have been able to pinpoint take-off or landing 

accurately. However, an FPCA-based model would require prior curve alignment, 

which is the purpose of the algorithm in the first place. This problem may be solved 

using the impact acceleration spike as the alignment point, but with variations in flight 

time, the curves associated with take-off would be poorly aligned. Failing that, an 

LSTM neural network could be trained on the accelerometer signals to predict the 

chosen alignment point. However, so far as this application is concerned, little more 

can be gained because the impact on model error was only marginal (Figure 6-4). 

Errors of 8 ms or less would have no discernible effect on the model. However, for 

applications where flight time needs to be determined, the take-off and landing 

detections algorithms may be helpful. 

6.4.3 Curve alignments 

Aligning the curves at take-off was more conducive to predicting peak power, even 

though the take-off and landing detection algorithms had similar errors. In general, 

FPCA-type models are more accurate when the curves are aligned because the FPCs 

captured the curves’ amplitude variances more efficiently with fewer components 

(Kneip & Ramsay, 2008). Increases of 0.09 W·kg-1 and 0.15 W·kg-1 in the LR and 

GPR model’s predictive error for a small misalignment error at take-off of 12 ms 

shows how sensitive an FPCA-based model is to curve alignment. In Chapter 4, the 

padded VGRF curves were more closely aligned near take-off than the time-

normalised ones, which needed registration to improve alignment. In the present 

investigation, the curves could be aligned at either take-off or landing (landing itself, 

VGRF > 10 N, or the impact peak). If the curves were aligned at take-off, the FPCs 

were more attuned to amplitude variance around this point, including when peak power 

is achieved. At the same time, the FPCs would be less sensitive to amplitude variance 

around landing as the curves will be phase-shifted due to differences in flight time. 

Such phase shifts will diminish cross-sectional amplitude variance (Chau et al., 2005). 

Conversely, when the curves are aligned at landing (landing itself or impact 
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acceleration peak), the situation will be reversed. Hence, the optimisation revealed a 

clear preference for aligning the curves at take-off rather than landing (Figure 6-5). 

The inertial accelerations of the jumping movement were more valuable to the model 

than the accelerations upon landing. However, according to the GLM analysis, the 

difference in model error between the two situations was minor compared to other 

factors (+0.27 W·kg-1 for LR in Table 6-3; +0.46 W·kg-1 for GPR in Table 6-4). 

Hence, the inertial accelerations on landing still have relevance to predicting peak 

power, but not to the same extent as they do around take-off. The relative benefits were 

weighted more strongly in the GPR model. The GPR model was also less sensitive to 

large misalignments at take-off, as the Gaussian noise curve revealed (Figure 6-4).  

6.4.4 Curve registration 

Curve registration was investigated to determine whether it could improve the GPR 

model’s accuracy through better curve alignment. It held out the possibility of warping 

the time domain to align the curves at both take-off and landing. In theory, time domain 

warping could nullify the phase-shifting from different flight times. Registration had 

limited benefits to the VGRF models, correcting for misalignments arising from time-

normalisation, more so for jump height than peak power models (Table 4-1). This 

chapter aimed to determine whether it was an effective technique when applied to 

accelerometer data.  

The results showed that registration did not improve the GPR model’s accuracy. The 

best error was 2.72 W·kg-1, which was worse than the 2.47 W·kg-1 achieved earlier 

without registration. In practice, registration was hindered by the considerable 

variability between the acceleration curves. The only common landmarks that could 

be identified were based on the pseudo power curves. That was not necessarily an issue 

because the VGRF models benefited from the zero and peak power landmarks (Table 

4-2). In theory, the two peak power landmarks could help to control for variations in 

flight time as the temporal components described the phase shift. However, the 

optimisation consistently favoured the first peak power landmark, L1, alone, rather 

than combining it with L2 for reasons discussed below (Section 6.4.5). The 
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optimisation did not select L2 on its own because it left curves phase-shifted around 

take-off, the period which was more relevant to the models. 

The problem with the accelerometer data was that L1 could occur before or after take-

off. These large temporal variations effectively prevented take-off and peak power 

from becoming joint landmarks because landmarks must appear in a consistent order. 

In comparison, the single peak power landmark in the VGRF curves had combined 

well with the implicit take-off landmark, ensuring close alignment over a relatively 

short period when power development reached its peak (Section 4.4.2). The variance 

in L1 timing may be attributed to differences in the pseudo power generated during hip 

and back extension, which may continue after take-off, depending on the hip joints’ 

range of motion and the need to control segmental rotations in flight.  

Another factor was the need to apply standardisation to the component scores. The 

models were much less accurate without it because the temporal FPC scores were up 

to three orders of magnitude larger than the amplitude FPC scores. However, as seen 

in the previous chapter, standardisation tends to increase predictive errors (Section 

5.4.4). Although registration helped improve accuracy to a limited extent, it could not 

overcome the handicap of standardisation. Furthermore, registration itself was a heavy 

computational burden requiring processing in advance of the optimisation over several 

hours. Consequently, the optimisation had to exclude pret  and postt  because the time 

window had to be fixed to prepare the registered curves. In conclusion, registration 

was not an effective technique with accelerometer data because the signals were too 

variable to allow useful landmarks to be identified.  

6.4.5 Flight time 

The influence flight time had on the models was investigated further by comparing 

their predictive errors in two conditions: (1) when the flight time was allowed to vary 

freely (no intervention); and (2) an artificial situation in which the flight time was 

fixed. The results revealed that the model error only dropped substantially when the 

flight times were allowed to vary freely (Figure 6-9). These findings demonstrate that 

the models depend primarily on the flight time rather than the accelerations patterns of 

landing. It follows that there is no advantage in aligning the curves at both take-off and 
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landing because the information about the flight time is lost. Registration had 

attempted to do this when landmarks L1 and L2 were jointly specified. It had the 

advantage of the temporal FPCs retaining information related to the flight time, but 

the variable positioning of L1 undermined the flight time correlation. A similar 

situation would arise with dynamic time warping (Sakoe & Chiba, 1978), which 

achieves the same outcome as curve registration in a non-functional context and has 

been used extensively in many applications, including gait analysis (Boulgouris et al., 

2004; Helwig et al., 2011; Senin, 2008). It would lead to the same result as it would 

effectively remove flight time information from the data.  

6.4.6 Optimal time window 

Determining the optimal time window was one of the aims of this chapter. pret  and 

postt  were measured from the best alignment point, which turned out to be take-off, as 

discussed above. The optimal values for pret  and postt  can be put in context by reference 

to the resultant acceleration signal, as shown below in Figure 6-11. The acceleration 

curves have a close correspondence with the more familiar VGRF curve. All the pret  

times for GPR (modal, bagged and cluster models, Table 6-7) would be sufficient to 

encompass the acceleration variance ( pret  ≥ 1284 ms). In fact, the pret  distribution 

(Figure 6-7B) shows that the time window extended well beyond the point that would 

appear sufficient to cover the jumping movement. The spread of jump execution times 

(up to take-off; Figure 6-12) explains why the optimisation resulted in longer time 

windows (modal time of 1732 ms with a tail extending to 3000 ms). In broad terms, 

the pret  distribution is shifted to the right of the execution time distribution, so the time 

window encloses all the inertial accelerations. Therefore, it would be appropriate to 

set pret = 1500 ms, which is similar to the modal value (1432 ms). It marks the point 

where the upper tail of distribution substantively comes to an end (Figure 6-12).  
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Figure 6-11. Comparison of VGRF and resultant acceleration (LB sensor) for the CMJNA 

based on smoothed data. Percentiles are shown to represent spread rather than mean and 

SD because the distribution at a given time was not normal.  

 

The peaks in the postt  distributions (1208 ms for GPR, Table 6-7) correspond to the 

region where the mean inertial acceleration has begun to stabilise, although some 

residual variance remains between individual curves (Figure 6-11). Nonetheless, 

1208 ms was sufficient for the time window to enclose almost all of the acceleration 

variance after take-off. This period extends far beyond the landing, with a median of 

486 ms and a range extending from 312 ms to 636 ms (Figure 6-13). In conclusion, it 

would be reasonable for postt = 1200 ms (rounding the modal value), which includes 

600–900 ms after the impact of landing when the participant would be regaining their 

standing posture.  
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Figure 6-12. Distribution of jump execution times based on VGRF data for the CMJNA in 

the training/validation data set. 

 

 

 
Figure 6-13. Distribution of flight times based on VGRF data for the CMJNA in the 

training/validation data set. 

 

6.4.7 Accelerometer signal smoothing  

The optimised models preferred a bigger roughness penalty than that determined by 

GCV so that the curves were smoothed more heavily (104.8 for GPR vs. 102.0). 

Smoothing was more severe for the LR (107.4) despite the linear model seeking to limit 

complexity itself with regularisation. This preference for heavy smoothing is in line 

with several activity-recognition studies that have used low-pass filters with low cut-

off frequencies, ≤ 3 Hz (Kautz et al., 2017; McGrath et al., 2019; Mlakar & Luštrek, 

2017; Zago et al., 2019). Heavier smoothing brought with it a larger fitting error, which 
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translated into smaller scores for the lower-order FPCs, lessening their relative weight 

(Figure 6-14A). The scores for the higher-order FPCs, representing minor features, 

became relatively more important compared to the low-order components representing 

prominent features (Figure 6-14B). In effect, smoothing re-weights the FPC scores in 

a similar way to standardisation, which converts the FPCs to Z-scores. However, 

unlike standardisation, the re-weighting can be regulated by adjusting the roughness 

penalty accordingly. This re-weighting may more than make up for any additional 

overfitting from the highest-order FPCs gaining more influence.  

 

(A) (B) 

  

Figure 6-14. Impact of varying the roughness penalty, 
FS

 , on (A) the fitting error with the 

raw accelerometer data; the degree of freedom (maximum of 100, the number of basis 

functions); and (B) the mean absolute FPC scores (absolute magnitude is required because 

FPC scores are centred around zero, by definition). 

 

6.4.8 Modal and clustered models 

The clustered method continued to outperform the bagging approach because it 

focused on a more tightly defined set of models. The traditional bagging approach took 

an average of the parameter values across the whole SM series, where outliers can 

have a disproportionate effect. The mean is favoured in the literature because it tends 

to provide a more conservative estimate, avoiding overly optimistic errors (Cawley & 

Talbot, 2010; Hall & Robinson, 2009; Varoquaux et al., 2017). However, the 

distribution peak can be advantageous when determining the optimal parameter values 

(Cawley & Talbot, 2010; Krstajic et al., 2014). In those studies, the distributions 
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formed classical bell-shaped curves because only one parameter was under 

investigation. However, the current study has used real-world data where multiple 

factors led to irregular parameter distributions. Clustering was an attempt to 

compartmentalise the distributions to make interpretation easier. The case of postt  

illustrates this point where the average is much higher than the modal values (1732 ms 

vs. 1208 ms in the case of GPR, Table 6-7) due to the rise in probability towards the 

upper limit (Figure 6-7). Cluster analysis dealt with the situation more effectively by 

assigning one cluster to ‘represent’ the high postt  models, while the others covered the 

more common lower range. As the results show, the modal value can be equally 

effective for GPR and slightly better for LR when considering the MCCV results. The 

modal value may be considered the most representative as it is drawn from the largest 

collection of models. 

6.4.9 Summary 

The models were made self-reliant in this chapter by introducing a take-off detection 

algorithm, so they no longer relied on VGRF data. This is a vital step in developing a 

wearable sensor system for predicting peak power in jumping. The accelerometer 

models were made more accurate by extending the time window on either side of take-

off to include landing. Smoothing the data more heavily also reduced predictive errors. 

The GPR model benefitted much more from these refinements, achieving a predictive 

error at best of 2.5 W·kg-1 (5.5%) compared to only 2.9  W·kg-1 for LR. This marked 

a substantial improvement over the models produced in Chapter 5, where the 

optimisation focused on the hyperparameters alone. However, the GPR model’s 

accuracy still falls short of the target of 1.75 W·kg-1, the intra-day variance. 

Further investigations established that the models depended more on the flight time 

and the inertial accelerations recorded around take-off. Curve registration could not be 

applied effectively to the accelerometer signals because they were too variable. There 

may have been misalignments, but no unambiguous landmarks could be found in the 

acceleration curves. Only landmarks in the pseudo peak power curves could be 

identified. However, their relative timing with respect to take-off was inconsistent, 

undermining any benefit that might have arisen from registration.  
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With a clear differential between the algorithms now, only the GPR model will be 

carried forward to the next chapter. The optimal settings covering the time window, 

pret = 1500 ms and postt = 1200 ms, and the roughness penalty, 4.8

FS 10 = , will be used 

in subsequent investigations. The next chapter will examine what additional 

information can be extracted from the accelerometer signals to reduce the GPR 

model’s error further. This approach will entail generating many more predictors so 

that feature selection will become a new consideration. 
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CHAPTER 7. FEATURE SELECTION 

7.1 Introduction 

The next step in the development of the accelerometer model considers feature 

selection methods. It answers the fifth research question, what characteristics of the 

accelerometer signal are more important to the model in predicting peak power? In 

the two previous chapters, the models were based on the resultant accelerometer signal 

as it provided one time series for each jump. This representation simplified the model, 

but directional information was lost. Instead, the models could be based on the original 

triaxial data recording the simultaneous inertial accelerations along the sensor’s 

orthogonal axes. Using such three-dimensional data, the models could distinguish 

between longitudinal and anteroposterior accelerations in the sensor’s local reference 

frame. Although the body’s CM moves primarily in the vertical direction (in the global 

reference frame), the inertial accelerations recorded by the sensor will shift between 

the X- and Z-axes in response to the trunk’s changing inclination in the sagittal plane. 

Hence, the orthogonal inertial accelerations will capture more information that may be 

valuable to the model. 

Other potential data representations include curves obtained by differentiating or 

integrating the acceleration curve. Such curves may yield characteristics related to 

either the rates of change or other accumulation effects, which are not directly 

represented by the FPCs of the acceleration curve alone. For instance, the pseudo 

power curves produced landmarks for the curve registration in the last chapter when 

other representations produced no unambiguous landmarks. The characteristics of the 

time derivative curves may have relevance to the peak power model given that the 

Rate of Force Development (RFD) has been associated with jump height (r = 0.68–

0.86) (De Ruiter et al., 2006; Marcora & Miller, 2000; McLellan et al., 2011). 

Furthermore, training intended to improve peak power also yields increases in RFD 

(Cormie et al., 2011). This approach has similarities to the convolutions performed by 

deep neural networks, which reshape and transform the input data into a form more 

closely related to the outcome variable (Hastie et al., 2009; Ordóñez & Roggen, 2016). 
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The above representations can generate many more FPCs for the model than in the 

previous chapter. For instance, running FPCA on three orthogonal signals (‘3D 

signals’) would produce three times as many FPC scores. Alternatively, the FPC scores 

obtained from various derivative and integrated curves could be concatenated to form 

a long list of predictors for the model. Putting all those components into the model 

directly without prior selection may lead to overfitting due to redundancy or too much 

complexity. The most straightforward approach would be to vary the number of 

retained FPCs. In previous chapters, the number of retained FPCs was held constant 

while the effects of various model parameters were investigated. Furthermore, the 

selected components for the VGRF model did not form a contiguous block (Figure 

4-4A). Moreover, some FPCs had a strong association with peak power unrelated to 

the proportion of the curve variance they explained (FPC3: 50.7% vs. 8.6%). 

Therefore, it would be appropriate to use a selection method in this chapter. 

Under the NCV framework, the outer validation loss could guide model selection as 

the SBC statistic did for the VGRF models (Sections 4.2.5 & 4.2.7). Binary parameters 

could be defined, specifying predictor selection. However, the multi-dimensional 

search space would be vast, many times larger than in previous optimisations in this 

thesis. Furthermore, the last chapter’s two-stage optimisation demonstrated that the 

number of parameters in the optimisation should be minimised. This reflects findings 

elsewhere that Bayesian methods are not well-suited to large multi-dimensional 

problems (Eggensperger et al., 2013; Li et al., 2017; Z. Wang et al., 2013). Instead, it 

would be more efficient to adopt a Monte Carlo approach by generating models with 

a random selection of predictors (Chen et al., 2018; Draminski et al., 2008). This 

approach is similar to one taken with the VGRF models, where key components were 

identified based on their selection frequency (Sections 4.2.7 & 4.3.4). It also reflects 

the GLM analyses in the previous chapter, which identified key factors influencing the 

models (Sections 6.2.3 & 6.3.2). 

An alternative approach would be to use a thresholding technique, like the one used in 

Supervised Principal Component Analysis (SPCA) (Bair et al., 2006; Hastie et al., 

2009). The SPCA method selects components based on whether their absolute 

univariate coefficient exceeds a given threshold. A similar threshold-based selection 
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could be implemented using the optimisation procedure to determine the optimal 

threshold and other associated parameters.  

Therefore, the objectives of this chapter are to: 

• Identify the key FPCs responsible for explaining the peak power variance to 

understand what information is provided to the model; 

• Improve the accuracy of the GPR model, where possible, by introducing 

feature selection for models based on the various data representations above; 

• Evaluate the efficacy of the two proposed selection methods based on a 

comparison of the predictive errors. 

7.2 Methods 

The feature selection methods implemented were the Monte Carlo and thresholding 

techniques. The Monte Carlo approach did not involve optimisation but required a 

statistical model to analyse the model loss. The thresholding technique was subject to 

optimisation to determine appropriate parameter settings, including the number of 

FPCs to retain. These selection methods were applied to models based on data in the 

form of resultant accelerometer signals (‘1D models’), the original triaxial 

accelerations (‘3D models’) and a set of curves derived from the resultant acceleration 

based on time derivatives and integration (‘multi-1D models’). The modal-defined 

GPR model from Chapter 6 was used without further optimisation of its parameters. 

7.2.1 3D signal preparation 

The introduction of a three-dimensional time series did not require any modifications 

to functional smoothing or FPCA, which processed the data as a vector, ( )n ta . The 

output from FPCA comprised a set of FPCs for each dimension, tripling the number 

of predictors available for the model. This trivariate FPCA is similar to bivariate FPCA 

that has been used elsewhere to investigate rowing technique, among other 

applications where there is an interaction between variables (Warmenhoven et al., 

2017a). However, performing FPCA simultaneously on the three orthogonal functions 

introduced a correlation between the FPC scores across dimensions. Such correlations 
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are expected since the orthogonal curves are interrelated: a change in the inertial 

acceleration vector’s direction will bring changes in two or three dimensions.  

7.2.2 Generating multi-1D curves 

Five new curves were obtained from the resultant acceleration curves (‘ACC’) using 

differentiation or integration. These operations were only applied to the resultant 

curves to limit the number of curves to five rather than 15 in order to keep the data sets 

manageable. The AM function generated the new curves with each iteration of the 

random search, incorporating them into the optimisation procedure. The overhead of 

regenerating the curves was relatively light compared to the computational cost of 

FPCA and model fitting. The AM function obtained the first- and second-time 

derivatives (‘AD1’ and ‘AD2’, respectively) using functional differential operators 

(Ramsay & Silverman, 2005). There are no such operators for integration, so a similar 

procedure was required to the one used to produce the registered power curves (Section 

6.2.4). 

The AM function converted the acceleration function into a series of points, ten times 

the number of original basis functions, given that integration amplifies even small 

errors. It then integrated the time series using the cumulative trapezoidal rule, once to 

produce the pseudo-velocity curves (‘VEL’) and a second time to obtain the pseudo-

displacement curves (‘DIS’). These terms are used advisedly as those curves cannot 

represent the actual velocity or displacement because the resultant curves ignore the 

direction of the vectors involved. The pseudo-power time series (‘PWR’) was then 

obtained by taking the dot product of acceleration and velocity series. The algorithm 

then transformed the pseudo velocity, displacement and power time series back into 

continuous functions so FPCA could process these curves. It then applied FPCA in 

turn to each of the new curves and then combined the sets of FPCs scores to produce 

a long predictor vector for each jump.  

7.2.3 Monte Carlo selection 

The first feature selection method was based on a Monte Carlo approach. A set of 

Boolean parameters was defined, one for each component, specifying whether to 



Section 7.2.4 

Page 199 

include the associated FPC in the model. This approach required considerably more 

parameters than seen previously: for the 1D model, there were 30 parameters (30 

FPCs); for the 3D model, 45 parameters (3 × 15 FPCs); and for the multi-1D model, 

90 parameters (6 × 15 FPCs). The latter two forms reverted to 15 FPCs per curve to 

avoid a very large search space of up to 270 parameters. Such a high-dimensional 

parameter space was too extensive for the optimisation procedure (Section 7.1). 

Instead, it was more efficient to fit a GLM to the loss using the parameters as 

categorical predictors. It was a different type of surrogate model from the GP model 

used previously (Section 5.2.8) and did not require optimisation. The differences in 

least-squares means could identify the predictors playing a significant role. The model 

was fitted using the GLMSELECT procedure in SAS with stepwise selection, as in 

previous chapters (Sections 4.2.5 & 6.2.3). The observations were collected using a 

random search without convergence in which the FPC selection parameters defined 

the search space. For the 1D and 3D models, 1000 observations were sufficient 

(10 × 100), while 2000 were needed for the larger multi-1D model (10 × 200). Once 

identified, the FPC selection parameters were specified in the Matlab script. The 

models were then evaluated using the same MCCV design as above and separately for 

the holdout test. No nested evaluation could be produced for this method. 

7.2.4 Correlation threshold selection 

For the threshold-based approach to feature selection, the AM function selected FPCs 

whose absolute pairwise correlation with peak power exceeded a specified threshold. 

Correlation was preferred as the metric because it would allow direct comparisons with 

the FPC’s explained curve variance. It produced the same FPC rank order as the 

absolute t-statistic employed by the SPCA code library (R. Tibshirani, 2020). It has a 

high degree of similarity with the standardised univariate coefficient used in SPCA 

(Figure 7-1), but the SPCA approach requires an additional linear model (Bair et al., 

2006).  
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Figure 7-1. FPC score correlation with peak power compared to the standardised 

univariate coefficient. The absolute value for both statistics is shown. The figures are based 

on the full training/validation data set. 

 

The correlation threshold was one of four parameters governing feature selection that 

were subject to optimisation. The other three included the number of retained FPCs 

from FPCA and two logical conditions determining whether to perform varimax 

rotation and a signal orientation correction suitable for 3D signals (Table 7-1). The 

number of retained FPCs was a factor since it defined the pool of components from 

which to select. The models until this point had used unrotated FPCs, but with the 

focus on the features themselves, it was appropriate to consider varimax rotation. A 

logarithmic scale was used for the correlation threshold to allow for more nuanced 

variations at the lower end of the range where minor differences could have a 

considerable effect. 
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Table 7-1. Optimisation parameters for feature selection. 

Parameter Type † Parameter Values  PSO Bounds ‡ 

No. retained FPCs I {1, …, 30} [0.50, 30.49] 

Varimax C {No, Yes} [0.50, 2.49] 

Correlation threshold, r  R 10-4 … 10-0.5 [-4.0, 0.5] 

Orientation correction C {No, Yes} [0.50, 2.49] 

† Parameter type: C = Categorical (nominal variable); R = Real (continuous), I = Integer (discrete).  

‡ Categorical parameters are indexed; real parameters are log-transformed.  

Basis Function = None; Kernel Function = Exponential; 10log  = -2.20; Standardisation = No. 

Alignment = Take-off; 
pre

t = 2000 ms; 
post

t = 1200 ms; FS10log  = 4.80; No. Basis Functions = 100. 

 

 

An orientation correction was introduced to address the differences in the sensor’s 

orientation between individuals due to postural differences (e.g. lumbar curvature), 

soft tissue differences (e.g. the hollow around the spine in the lumbar region), or minor 

placement errors. Variations in the sensor’s orientation could be detected and 

measured during the brief period of quiet standing before the jump when gravity was 

the only measured inertial acceleration. The acceleration vector was averaged over the 

first ten samples (40 ms) when the participant stood still, before they heard the 

instruction to jump. The recording was started before the command was given (Section 

3.2.2). The whole time series was then rotated using standard matrix methods to align 

the initial acceleration vector with the vertical (-1, 0, 0). This direction was chosen to 

minimise the rotational angle as the sensor was attached to the body with the X-axis 

pointing upward. The Y-axis represented the mediolateral, and the Z-axis pointed in 

roughly the anterior direction. The mean rotation angle was 16.4° (6.4°–31.4°, 90% 

CI). 

The optimisation used the same nested 10 × 2 design, as in previous chapters, with 

each observation evaluated using 20 × 2 MCCV. There were fewer observations and 

models than before (I = 200, M = 10), as there were only four parameters, two of which 

were binary. The optimised models were then evaluated with 1000 × 10 MCCV and 

then with the holdout test set. 
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7.3 Results 

7.3.1 Monte Carlo selection 

The GPR model based on the resultant (1D) acceleration curves achieved the lowest 

prediction errors compared to the other larger models (MCCV and holdout loss; Table 

7-2). The Monte Carlo method selected a model with 12 out of the 30 components 

available. According to the corresponding GLM, selecting these components could 

account for 94% of the variance in the GPR model’s predictive error. This proportion 

was much higher than the 3D and Multi-1D models (68% and 65%, respectively), but 

GLM’s prediction of the GPR model’s error was comparable (0.24–0.28 W·kg-1).  

 

Table 7-2. GPR models’ predictive error based on Monte Carlo feature selection.  

 1D 3D * Multi-1D 

GLM Total Partial 
2

  94% 68% 65% 

GLM RMSE (W·kg-1) 0.28 0.24 0.28 

No. Selected FPCs § 12 / 30 17 / 45 17 / 90 

MCCV Loss ‡ 

(W·kg-1) 
2.73 2.98 2.93 

Holdout Loss 

(W·kg-1) 
2.58 2.36 2.58 

† AM Outer Loss. ‡ AM Loss. § FPC selected if its correlation with peak power exceeds this threshold. 

MCCV = Monte Carlo Cross Validation: 1000 × 10. No NCV estimate can be made using this approach. 

1D = Resultant Acceleration Signal; 3D = Orthogonal Acceleration Signal; 

Multi-1D = Combined set of 6 Resultant Curves: ACC, AD1, AD2, VEL, DIS, PWR. 

Basis Function = None; Kernel Function = Exponential; 10log  = -2.20; Standardisation = No. 

Alignment = Take-off; 
pre

t = 2000 ms; 
post

t = 1200 ms; FS10log  = 4.80; No. Basis Functions = 100. 

Varimax = No. * Orientation Correction = Yes. 

 

The FPCs selected for the resultant signal included ACC1–ACC11 and ACC13. The 

first two components explained the overwhelming proportion of the variance in peak 

power. ACC1 accounted for almost two-thirds (66.1%), ACC2 contributed 19.4%, 

while the remaining components explained ≤ 3.4% each. With each successive 

component, the model explained variance monotonically decreased along with the 

curve explained variance. No FPC stood apart from that trend. It was evident that much 

of the curve variance for the higher-order FPCs was of little or no value to the peak 

power model.  
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Figure 7-2. 1D components explaining the variance in the GPR model’s prediction of peak 

power (Model Variance) compared to the variance explained in the acceleration (ACC) 

curve (Curve Variance). The variances relate to the unrotated FPCs.  

 

For the 3D signal, all the X-axis components were included (ACC1X–ACC15X) and 

the first two FPCs for the Z-axis (ACC1Z and ACC2X). The X-axis pointed in 

approximately the vertical direction, while the Z-axis was directed in generally the 

anteroposterior direction. No FPCs were chosen for the Y-axis, which lay on roughly 

the mediolateral axis. The first components in the X and Z axes, ACC1X and ACC1Z, 

made the two largest contributions (44.8% and 5.1%, respectively). The other 

components’ contributions were relatively small: 15 out of the 17 FPCs explained 

≤ 2.2% of the loss variance. In contrast to the 1D model, the explained variance of the 

X-axis components did not decline so quickly, showing that the contributions from 3D 

FPCs were not so narrowly spread.  
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Figure 7-3. 3D components explaining the variance in the GPR model’s prediction of peak 

power (Model Variance) compared to the variance explained in the acceleration (ACC) 

curve (Curve Variance). All X components were selected, but only two Z components. 

Curve explained variance is the same across dimensions. The variances relate to the 

unrotated FPCs.  

 

The features selected for the multi-1D model included only those from the 

acceleration, pseudo-velocity and pseudo-power curves (Figure 7-4). ACC1, ACC2 

and PWR1 explained 21.6%, 25.3% and 5.1% of the AM loss variance, respectively, 

accounting for 51.9% altogether. The pseudo-curve components, VEL2 and PWR2 

were also prominent, explaining 2.7% and 2.1%, respectively. ACC3 split them in the 

ranking order, contributing 2.2%. The other components accounted for the remaining 

6.0%, where each contributed ≤ 1.6%. Notably, ACC1 and ACC2 accounted for a 

smaller proportion of the variance than the 1D model with only the acceleration curves. 
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Figure 7-4. Multi-1D components explaining the variance in the GPR model’s prediction of 

peak power (Model Variance) compared to the variance explained for the acceleration 

curve (ACC), pseudo-velocity curve (VEL) and the pseudo-power curve (PWR) – (Curve 

Variance). The explained variance relates to the curve in question. The variances relate to 

the unrotated FPCs.  

 

7.3.2 Functional Principal Components 

The first four FPCs for the resultant accelerometer signal are shown in Figure 7-5. The 

first component, ACC1, represents the temporal variance in the curve predominantly, 

describing both the variation in the braking and propulsion phases and the variation in 

flight times (Figure 7-5A). ACC2 primarily represents the variance in the landing 

impact peak (Figure 7-5B). ACC3 focuses on the variation during the braking phase 

when the body slows its downward countermovement (Figure 7-5C). ACC4 mainly 

describes variation in a characteristic peak after take-off, which is more prominent in 

jumps producing more peak power (Figure 7-5D).  
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(A) (B) 

  

(C) (D) 

  

  

Figure 7-5. Prominent resultant acceleration FPCs (unrotated) correlated with peak power: 

cross-sectional mean curve (black line); variation correlated with higher peak power (red); 

variation correlated with lower peak power (blue); vertical dotted lines indicate the mean 

start of the propulsion phase (-305 ms), take-off (0 ms) where the signals are aligned, and 

mean landing time (+484 ms). The variances represent one standard deviation. (A) ACC1 

indicates temporal variance – jump execution time and flight time; (B) ACC2 indicates 

variance in impact acceleration; (C) ACC3 indicates variance in the braking and 

propulsion phases; (D) ACC4 indicates variance in the second spike after take-off. 

 

Selected FPCs from the Multi-1D curves are shown in Figure 7-6. The pseudo-velocity 

plots show higher velocities for jumps producing greater peak power (Figure 7-6A) 

and a delayed but faster rise in velocity in the first half of the propulsion phase (Figure 

7-6B). PWR1 describes the variation in prominent peak immediately following take-

off (Figure 7-6C). The curve’s characteristic shape and modality can change depending 

on the FPC score.  
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(A) (B) 
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Figure 7-6. Resultant FPCs (unrotated) for pseudo velocity and power that are strongly 

correlated with peak power: mean curve (black line); variation correlated with higher peak 

power (red); variation associated with lower peak power (blue); vertical dotted lines 

indicate the mean start of the propulsion phase, take-off and landing. The variances 

represent one standard deviation. Vertical axes have been re-scaled for clarity – units are 

arbitrary. (A) VEL2 indicates variance in velocity throughout; (B) VEL4 indicates 

amplitude variance (lowest to highest); (C) PWR1 indicates variance peak pseudo power 

immediate after take-off and on landing; (D) PWR2 indicates variance in landing. 

 

7.3.3 Correlation threshold selection 

The GPR model based on the resultant (1D) representation also achieved the lowest 

predictive errors using the threshold-based selection, using either modal or bagged 

definitions (Table 7-3). The modal-defined selection included many more components 

than the bagged selection, achieving lower MCCV and holdout losses (2.62 W·kg-1 

and 2.14 W·kg-1, respectively). These figures were slightly lower than the 
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corresponding errors using the Monte Carlo selection. The clustered models had 

predictive errors that were generally slightly higher than those reported here. 

 

Table 7-3. Comparison of GPR model loss (Chapter 6 modal-defined model) for three 

representations of the accelerometer signal using optimised, correlation-based FPC 

selection. 

 Modal Bagged 

 1D 3D Multi-1D 1D 3D Multi-1D 

Retained FPCs ª 29/30 13/15 14/15 13/30 12/15 13/15 

Varimax Y N Y Y N Y 

10 Tlog r  § -3.98 -4.00 -3.98 -2.77 -3.83 -3.28 

Re-Orientation * n/a Y n/a n/a Y n/a 

NCV Loss † 

(W·kg-1) 
n/a n/a n/a 2.62 3.05 2.81 

MCCV Loss ‡ 

(W·kg-1) 
2.62 3.16 2.79 2.69 3.12 2.82 

Holdout Loss 

(W·kg-1) 
2.14 2.72 2.37 2.55 2.71 2.40 

† AM Outer Loss. ‡ AM Loss. § FPC selected if its correlation with peak power exceeds this threshold. 

* Re-orientation correction to vertical for 3D signal. ª Retained FPCs shown out of total available. 

NCV = Nested Cross Validation: 10 × 2. MCCV = Monte Carlo Cross Validation: 1000 × 10. 

1D = Resultant Acceleration Signal (up to 30 FPCs); 3D = Orthogonal Acceleration Signal (up to 15 FPCs); 

Multi-1D = Combined set of 6 Resultant Curves (each up to 15 FPCs): ACC, AD1, AD2, VEL, DIS, PWR. 

Basis Function = None; Kernel Function = Exponential; 10log  = -2.20; Standardisation = No. 

Alignment = Take-off; 
pre

t = 2000 ms; 
post

t = 1200 ms; FS10log  = 4.80; No. Basis Functions = 100. 

 

 

There was an advantage in performing varimax rotation of the FPCs for the 1D models, 

but not for the 3D model. The correction for sensor orientation for the 3D model was 

preferred. The optimisation produced models with close to the maximum number of 

FPCs permitted (29/30 FPCs for 1D; 13/15 for 3D; and 14/15 for multi-1D under the 

modal definition). Very few FPCs were excluded based on the correlation threshold, 

whose optimal level was set to close to the lower search bound of 10-4. Across all 

models, between 65% and 85% of FPCs were chosen every time in 1000 iterations of 

MCCV. The lowest probability of an FPC being selected in any one model ranged 

from 0.987 to 0.997. Hence, the number of retained FPCs dictated the selected features, 

since almost all components from that list were chosen. 
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For the resultant acceleration model, the loss drops initially as the number of retained 

FPCs increases, and then crucially, it flattens out with no subsequent rise (Figure 

7-7A). There was a range of values (≥ 11 FPCs) where the loss was essentially the 

same, given the noise level. A slight depression leads to the strongest preference for 

29 FPCs, but there are other peaks at 11 and 22 retained FPCs, reflecting slight 

variations between individual SM plots that are averaged out in the bagged SM plots 

(Figure 7-7C). There was a marginal advantage in using varimax, but the average gain 

(-0.09 W·kg-1) was less than the noise level (Figure 7-7B). The aggregate correlation 

threshold plot is almost flat, suggesting no particular advantage in how selective the 

model should be based on the FPC score’s correlation with peak power (Figure 7-7C). 

However, the threshold parameter distribution reveals peaks at low or high thresholds 

(Figure 7-7F). 

 

 

(A) (B) (C) 

   

(C) (E) (F) 

   
   

Figure 7-7. Feature selection parameters for a resultant acceleration signal based on a 

correlation threshold with peak power. SM plots (top row) and parameter distributions 

(bottom row) with the cluster distributions identified by colour. CLn identifies the cluster. 
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The corresponding plots for the 3D models have similarities with the resultant model 

for the number of retained FPCs (Figure 7-8A & E) and the correlation threshold 

(Figure 7-8C). The preference was for a low threshold, meaning that all FPCs were 

included in the model (Figure 7-8D). There was a strong preference for no varimax 

rotation, which yielded a gain of 0.19 W·kg-1 (Figure 7-8B). The choice for the signal 

orientation correction was unanimous, which offered an average reduction in error of 

0.13 W·kg-1 (Figure 7-8D & H). 

The equivalent plots for the multi-1D models show that the loss for increasing the 

number of retained FPCs does not flatten out in the same way but continues to drop, 

culminating in a strong preference in the parameter distribution for 13 FPCs (Figure 

7-9A & D). Varimax made virtually no difference overall to the loss such that the 

proportional split is close to even (Figure 7-9B & E).  

 

(A) (B) (C) (D) 

    

(E) (F) (G) (H) 

    
    

Figure 7-8. Feature selection parameters for orthogonal acceleration signals based on a 

correlation threshold with peak power. SM plots (top row) and parameter distributions 

(bottom row) with the cluster distributions identified by colour. 
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(A) (B) (C) 

   

(D) (E) (F) 

   
   

Figure 7-9. Feature selection parameters for a set of derived resultant curves based on a 

correlation threshold with peak power. SM plots (top row) and parameter distributions 

(bottom row) with the cluster distributions identified by colour. 

 

7.4 Discussion 

This chapter aimed to investigate whether further improvements in the GPR model’s 

accuracy could be achieved by selecting FPCs from a broader list of characteristic 

features. Feature selection achieved only a fractional reduction in the predictive errors 

reported in the previous chapter and only when using the resultant acceleration (Table 

7-4). Using FPCs obtained from the derived curves also yielded slightly less accurate 

models. Developing models on the three triaxial accelerations produced the largest 

errors of all the feature representations considered in this chapter. The reduction in the 

validation RMSE of 0.02–0.13 W·kg-1 for the 1D signal representation (depending on 

the estimator used) was much less than the noise level (0.38 W·kg-1). Hence, there was 

no meaningful improvement in the GPR model. Nevertheless, the investigation 

revealed the features in the accelerometer signal that were important to the model. 
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Table 7-4. Comparison of the best GPR models from chapters 5, 6 and 7. 

Model  

Definition 

Model  

Evaluation 

GPR Models 

Ch. 5 Ch. 6 Ch.7 † 

Bagging 
NCV 

MCCV 

3.17 

3.62 

2.75 

2.77 

2.62 

2.69 

Modal MCCV n/a 2.64 2.62 

Holdout Test 2.87 2.17 2.14 

NCV = Nested Cross Validation. MCCV = Monte Carlo Cross Validation. All figures in W·kg-1. 

† Resultant Acceleration signal representation using the correlation threshold method (Table 7-3). 

 

The selection procedure based on the correlation threshold was more effective than the 

Monte Carlo method, but its optimal correlation threshold was so low (10-4.00–10-2.77) 

that almost all components were selected with each subsample (probability 0.987–

0.997). The Monte Carlo approach was more parsimonious, and perhaps for that 

reason, the models were slightly less accurate. It appeared that the GPR model could 

accommodate large numbers of predictors even though many explained only a small 

fraction of the peak power variance. Adding more FPCs did not see a rise in the 

predictive error. Hence, feature selection with FPCA was only a minor consideration 

in this study. 

7.4.1 Key features of the acceleration curves 

The resultant accelerometer signal, chosen initially to simplify the analysis (Chapters 

5 & 6), turned out to be the best representation of the data. None of the other 

representations, either in three dimensions or as transformed curves, could provide 

more useful information to the model. The resultant-based models had only a marginal 

advantage, but they were simpler and therefore more valuable. The plots of the 

resultant ACC components (Figure 7-5) also offered the best insight into what patterns 

of inertial acceleration explained variance in peak power. In this respect, the more 

discriminating Monte Carlo selection method was helpful. 

The ACC1 component represented the temporal variance, including the variation in 

flight time, the importance of which was first identified in the previous chapter. It 



Section 7.4.1 

Page 213 

accounted for two thirds of the peak power variance, making it the dominant factor. 

Similarly, flight time was the metric that underpinned the simpler peak power 

predictive equations (Section 2.3.2). What the FPCA-based approach was able to do, 

however, was to add other characteristics that helped to refine the model’s predictions. 

As a result, predictions based on the FPCA-models were more accurate. 

The second component, ACC2, represented variations before take-off. This region of 

the acceleration curve resembled the VGRF curve closely, indicating that the broadly 

speaking, the sensor was following a similar trajectory to the body’s CM. The 

acceleration curve had a peak before take-off, which appears to reflect the VGRF’s 

FPC3 that was crucial in peak power production (Figure 7-5B, c.f. Figures 4-3C and 

4-4A). The acceleration curve also had a characteristic third peak after take-off, which 

ACC4 mainly describes (Figure 7-5D). This post take-off peak tended to be more 

prominent in jumps producing more peak power. It was mainly due to a sharp rise in 

the Z-axis acceleration (approximately the posterior direction), reflecting hip and or 

lower back extension that appears to have continued after take-off.  

ACC2 also showed that more powerful jumpers experience a higher inertial 

acceleration on landing, a situation that resembles the absorption phase of a drop jump. 

Bobbert et al. (1987a) showed that the peak negative power absorbing the impact rose 

proportionately with drop height. The authors reported that the absorption phase 

duration did not change in response to higher impact velocities. Hence, the kinetic 

energy was absorbed at a faster rate, requiring more negative power (Bobbert et al., 

1987b). In the current study, the impact deceleration was not necessarily related to the 

flight time because ACC2 was independent of ACC1. This observation suggests that 

the landing can be ‘soft’ (a slower deceleration) or ‘hard’ irrespective of the impact 

velocity.  

The ACC plots revealed other similarities with the VGRF curve, demonstrating the 

value of using the LB attachment site. Although the sensor may not have moved in 

train with the body’s CM, its movement served as a useful proxy. The plots also 

highlighted valuable insights into the biomechanics of the CMJNA, demonstrating the 

value of using FPCA as the feature extraction method. FPCA captured crucial aspects 

of the movement that were relevant to the performance outcome, as it has done in many 
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other applications (Section 2.5.2). However, the information present in the 

accelerometer signal may not be sufficient to predict peak power with sufficient 

accuracy (Section 9.4.3). More generally, however, this investigation demonstrates 

that machine learning models can identify patterns in the data that a researcher may 

not at first consider. ACC1 and ACC2, the two most important features, both related 

to events occurring after take-off, a finding that was not anticipated at the outset of this 

research.  

7.4.2 Differentiation and integration curves 

Obtaining curves derived from the resultant acceleration was intended to discover 

latent patterns in the data that could potentially be useful. This approach had helped to 

identify landmarks for registration in the power curves in previous chapters (Sections 

4.4.2 & 6.4.4). The derivative curves highlighted rates of change, which were thought 

to be relevant to peak power given that previous studies have shown that RFD is 

correlated with jump height (De Ruiter et al., 2006; Marcora & Miller, 2000; McLellan 

et al., 2011). The rate of change in this context was derived from the inertial 

accelerations at an anatomical location close to the body’s CM (LB sensor). On the 

other hand, studies above often refer to RFD obtained in separate isometric or 

concentric tests using purpose-built apparatus (De Ruiter et al., 2006; Marcora & 

Miller, 2000; McErlain-Naylor et al., 2014; McLellan et al., 2011). When discrete 

variables related to RFD were computed directly from the CMJ VGRF curves, the 

correlations ranged from 0.138 for the peak RFD to 0.027 for the average RFD 

(Dowling & Vamos, 1993). Hence, there may be no close correspondence between 

RFD in those circumstances and the rates of change in inertial acceleration recorded 

in the current investigation. 

Further research indicated that the VGRF’s maximum was a more relevant factor than 

its rate of increase (Tillin et al., 2013). This helps to explain why the ACC components 

were preferred over rate-of-change (derivative) FPCs. The derivative curve FPCs will 

have described minor variations in the inertial accelerations that were effectively 

magnified by taking the derivative. Many studies have shown that RFD has a low 

jump-to-jump reliability (Cormack, Newton, McGuigan, et al., 2008; McLellan et al., 
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2011; Taylor et al., 2010). As a result, including derivative FPCs in the model would 

have led to overfitting and a higher cross-validated error.  

In contrast, the integration curves diminished the effects of these minor variations, and 

hence such curves contained less information as a whole compared to the original 

acceleration curves. A few of the FPCs representing cumulative effects proved to be 

valuable to the model, notably PWR1, VEL2 and PWR2, in that order (Figure 7-9). 

The pseudo-power components had an intuitive appeal because they attempted to 

replicate the VGRF-based power curve, as was apparent in the plots (Figure 7-6C & 

D). However, whilst there was a resemblance, there was not a direct correspondence 

that correlated highly with the criterion peak power. The limitation of integration-

dependent curves is the inherent problem of drift, which cannot be fully addressed by 

orientation-correction algorithms (Section 2.3.5). In this instance, it was compounded 

by using the resultant signal, which removed directional information. The FPC plots 

of pseudo-velocity illustrated this well as the mean velocity continued to increase 

rather than return to zero (Figure 7-6A & B). However, one of the benefits of FPCA is 

its ability to extract common characteristics such as drift. VEL1 represented variations 

in the degree of drift, explaining 75.2% of the curve variance but only 0.2% of the 

model variance (Figure 7-9). Therefore, VEL2 and VEL4 were independent of drift, 

making them more valuable to the model. The pseudo-power curves were much less 

affected by drift as they were products of the acceleration curve as well as the pseudo-

velocity. This is evident in the similar levels of explained curve variance for ACC1 

and PWR1 (41.2% vs. 45.1%).  

The importance of these VEL and PWR components was confirmed by Monte Carlo 

selection, which relied on GLMSELECT’s competitive selection procedure. The 

procedure weighed up the contributions made by each component to the cross-

validated AM loss. In this way, strong predictors were chosen over weaker ones. 

Hence, the ACC components that were in the majority tended to make a larger 

reduction to the AM loss than the other components. It does not mean that those 

components had no relevance, only that they had less relevance to peak power in 

comparison. Therefore, the multi-curve approach had its merits, but overall such 

models could not outperform models based on the original acceleration components.  
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7.4.3 Three-dimensional representations 

The inertial accelerations were predominantly in the XZ-plane of the sensor, the 

sagittal plane in the global reference frame. The accelerations in the X and Z axes were 

at least an order of magnitude higher than in the Y-axis (mediolateral direction), which 

were approximately < 0.1 W·kg-1. Hence, this would explain why none of the Y-axis 

FPCs were selected. The relevant characteristic features were almost all in 

approximately the vertical direction (Figure 7-3). In the sensor’s local reference frame, 

all the X-axis FPCs were chosen along with only two Z-axis components. This reflects 

the fact that peak power was calculated using only the vertical component of the GRF 

and strongly indicates that the sensor’s changing orientation in the sagittal plane is a 

minor consideration. Hence, the directionless resultant signal can effectively represent 

the key characteristics. Moreover, it follows that the 3D signal does not contain much 

additional information for the model given that the triaxial FPC are correlated between 

dimensions. 

The problem with using the 3D signal was that changes in the sensor’s orientation 

could potentially introduce bias in the inertial accelerations measured along each axis. 

For instance, a proportion of the acceleration that would otherwise have appeared in 

the X-axis would appear in the Z-axis, and this proportion would vary throughout the 

jump. If   is the deviation angle with respect to some reference vector, such as the 

initial orientation, then the bias would be proportional to sin  . Although initially 

small, it would increase rapidly with a rate of change proportional to cos  . There is 

no way to correct for this using a sensor with only an accelerometer onboard because 

its orientation can only be determined when stationary. On the other hand, IMUs with 

accelerometers, gyroscopes and (optionally) magnetometers can determine sensor 

orientation with the aid of a fusion algorithm (Luinge & Veltink, 2005; Mazzà et al., 

2012; Roetenberg et al., 2007). However, as noted in Chapter 2, such orientation 

estimates typically involve errors amounting to several degrees on average. The 

Kalman filters are slow to respond to a change of direction, as occurs in the 

countermovement jump because they attempt to predict orientation in advance (Figure 

2-1). The error may be largest during the propulsion phase when the algorithm 

responds to the change of direction. These limitations partly motivated this research 
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into using patterns to estimate peak power rather than trying to obtain accurate 

measurements directly from body-worn IMU data (Section 2.3.5). Since the jumping 

movement is strictly controlled (Aragón, 2000; Hatze, 1998; G. Markovic et al., 2004), 

changes of inclination will modify the inertial accelerations in a consistent fashion. 

Although the FPCs would describe different shapes as a result, the scores would be 

essentially the same. Hence, changes of orientation would not be a concern. 

The difficulty may lie in the differences in movement strategies between individuals 

that arise from variations in technique, skill and strength levels. Morphology would 

also play a role (mass distribution and body segmental lengths), as would fatigue. 

These factors may be expected to influence sensor orientation as a function of time in 

response to changes of trunk inclination. Trunk inclination in the sagittal plane is not 

simply a matter of the hip flexion or extension but also depends on the compound 

effect through the kinetic chain of knee flexion/extension and ankle 

dorsi/plantarflexion (Bobbert & van Ingen Schenau, 1988; Feltner et al., 2004; 

Luhtanen & Komi, 1978). Small changes in lumbar curvature may also have a lesser 

part to play through the action of the lower back extensors. Finally, the kinematics of 

how these factors play out for a given individual will vary from one jump to the next.  

The models based on the 3D signals were more sensitive to these factors, which may 

account for the larger errors observed compared to the resultant model. But the 

difference in predictive error was not large, implying that these factors were not wholly 

detrimental. The 3D model accounted for the interplay between accelerations in the X- 

and Z-axes, although the X-axis accelerations were the predominant factor. The 3D 

model did place emphasis on two Z-axis features, which accounted primarily for the 

trunk’s tilt forwards and then backwards during the countermovement. In conclusion, 

the inertial accelerations in the X- and Z-axes interacted in a sufficiently consistent 

way across participants and individual jumps that any such deviations had only a minor 

effect on the results. 

7.4.4 Varimax 

The varimax rotation of the FPCs offered the final way to improve the accuracy of the 

model. It made a marginal improvement in the models based on resultant curves 
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(0.09 W·kg-1), but there was no benefit for the model based on orthogonal curves. 

Varimax is typically used to aid the interpretation of the FPCs by distributing the curve 

variance to narrower regions. The question for this investigation was whether, by 

reshaping the FPCs in this way, some components would describe characteristics that 

better reflected the peak power output. On the face of it, the correlations for all but one 

of the 15 varimax-rotated ACC components were higher compared to the 

corresponding unrotated FPCs. However, the varimax FPCs’ correlations partly 

overlapped, providing no additional information. Hence, the slight improvement 

observed was well within the noise level, and so varimax was not helpful to the model.  

7.4.5 Absence of overfitting 

It was notable that as unrotated FPCs were added to the model, the predictive error did 

not subsequently rise once it had dropped to the lowest value, as would normally be 

expected. Generally, a model with too many predictors would become attuned to 

spurious minor variations that, in general, have no relationship with the outcome 

variable. The GPR model’s unexpected behaviour in this respect arose partly because 

the FPC score magnitudes drop asymptotically towards zero along with the proportion 

of explained variance. Hence, progressively adding higher-order FPCs would have less 

and less influence on the model. This situation arose because, in Chapter 5, it had been 

established that standardisation was not optimal. It can now be understood as a 

consequence of the FPCs correlation with peak power dropping monotonically (Figure 

7-2). Hence, the FPC scores’ diminishing size is a factor in the GPR model’s apparent 

lack of overfitting. 

The other part of the explanation may lie with the nature of the GPR model itself. The 

GPR model is based on the Bayesian viewpoint that differs from the conventional, 

frequentist view, underpinning the LR model. In the Bayesian approach, the 

parameters are expressed as a distribution of possible values rather than being fixed. 

The GPR models are fitted based on a range of possible parameter values rather than 

a range of data sets (Bishop, 2006). Each new observation provides an update to the 

prior distribution. Bayesian models can accommodate many more parameters or 

predictors by automatically adapting the effective number of predictors (Bishop, 
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2006). The SM shows a minimum number of FPCs is required (12), and beyond that, 

the model can accommodate additional components without increasing the loss 

(Figure 7-7A). The original assumption in Chapter 5 of 15 FPCs turned out to be close 

to the optimal number, and so feature selection has had minimal impact on the model’s 

predictive error.  

7.4.6 Summary 

No further meaningful improvement in the accuracy of the GPR model could be 

achieved with feature selection. The FPCA-based model benefited little from feature 

selection because the curve variance explained by the unrotated FPCs dropped off in 

line with their relative influence on the model. There was no instance of one FPC 

standing out from that trend, as was the case with the VGRF models. The best GPR 

model achieved a predictive error of ~2.6 W·kg-1, equivalent to 5.8%. This error is 

larger than the typical intra-day variability of 1.75 W·kg-1, the nominal target for the 

accelerometer model development (Figure 6-10). However, the investigation yielded 

important insights into the nature of FPCA-based models when applied to 

accelerometer data, thereby advancing the overall aims of the thesis. This chapter also 

afforded the opportunity to inspect the nature of the FPCs to understand what 

characteristic patterns of inertial acceleration were related to peak power output. This 

is one of the benefits of FPCA as it allows an intuitive understanding of what each 

component represents. It revealed that the model went beyond a measure of flight time 

by refining its predictions with many other components. The next chapter will consider 

the influence of sample size on the model and whether data augmentation techniques 

may bring about a final improvement in accuracy. 
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Figure 7-10. GPR models’ peak power prediction errors from chapters 5, 6 and 7 in 

comparison with previous studies (Ache-Dias et al., 2016; Amonette et al., 2012; Canavan & 

Vescovi, 2004; Lara et al., 2006; Quagliarella et al., 2010; Tessier et al., 2013). MCCV 

estimate shown for GPR with error bars based on the SD in validation error between folds. 

The intra-day variance is averaged from four reliability studies (Cormack, Newton, 

McGuigan, et al., 2008; Hori et al., 2007; McLellan et al., 2011; Taylor et al., 2012).  
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CHAPTER 8. SAMPLE SIZE AND DATA 

AUGMENTATION 

8.1 Introduction 

Over the last three chapters, various aspects of the accelerometer model have been 

investigated, including algorithm selection, data preprocessing and feature selection. 

Despite optimisation, the models’ predictive error could not be reduced to the same 

level as the intra-day variability. The models were based on the data set for the CMJNA, 

recorded by the LB-attached sensor, which yielded consistently lower error estimates 

than other sensor/jump-type combinations. Therefore, the final stage of this thesis is 

to investigate how the model responds to variations in sample size. Hence, this chapter 

will address the final research question, how does sample size and composition affect 

the model’s predictive error, and can data augmentation bring worthwhile 

improvements in accuracy? 

In biomechanics, as in many disciplines, it can be challenging to recruit participants in 

sufficient numbers. Data collection can be time consuming and resource intensive, 

running over many weeks or months. Therefore, obtaining estimates for the model 

error as a function of sample size would help determine whether extending the present 

study’s data collection could be justified. Increasing sample size can also be achieved 

by the participants each performing more trials. A few biomechanics papers address 

the number of trials per participant, but those studies were concerned with group 

comparisons rather than regression models’ predictive error (Bates et al., 1992; Dufek 

et al., 1995; Forrester, 2015). 

The alternative course of action would be to use data augmentation techniques to 

increase the data set’s size artificially. As discussed in Chapter 2, augmentation 

methods were first developed for classification problems to re-balance data sets. 

(Japkowicz, 2000; Kubat & Matwin, 1997). The SMOTE algorithm (Synthetic 

Minority Oversampling TEchnique) is a well-known method that generates new data 

by interpolation, which has been extended to regression models related to ecology and 

the automotive industry (Chawla et al., 2002; Torgo et al., 2013). The SMOTER 
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method (with ‘R’ appended to indicate regression) works in feature space, so in the 

current study it would generate synthetic FPCs scores that define new acceleration 

curves. It also requires an estimate of the associated peak power for each synthetic 

curve.  

Augmentation can also be based on the original data with a suitable transformation. 

For instance, the image recognition field uses rotation and reflection to generate new 

training images (Shorten & Khoshgoftaar, 2019). Similarly, rotating the accelerometer 

signal would be akin to reorientating the sensor as if it had been attached to the body 

at a slightly different angle (Section 7.4.2). Actual misalignments of this kind would 

not matter if the resultant signal were used, but it may offer a way to take advantage 

of the triaxial data. This technique has not been applied to triaxial sensor data before, 

but it has the advantage of not requiring peak power estimates for each synthetic point. 

This approach would be similar to a recent biomechanics study that generated synthetic 

accelerometer signals from motion capture data (Mundt et al., 2020). Rotating the 

signal has the advantage of representing what could happen in practice, giving it an 

intuitive appeal. 

Data augmentation should be directed to regions of the outcome variable’s distribution 

where accuracy needs improvement, in accordance with utility-based regression 

(Torgo et al., 2015; Torgo & Ribeiro, 2007). Hence, the aim should be to reduce errors 

in the peak power range where the model is less accurate and more relevant to the end 

application. In this case, it will be more valuable to focus on the upper range of the 

peak power distribution as practitioners in elite and professional sport are more likely 

to be interested in this system.  

The aims of this chapter are therefore to: 

• Determine how the model’s predictive error responds to changes in sample 

size based on subsampling the existing data set; 

• Assess the effect of participants performing multiple trials in order to inform 

future data collections; and 

• Evaluate two data augmentation methods above to determine whether such 

methods can be a viable alternative to more extensive data collections. 
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8.2 Methods 

The first aim was addressed by using resampling techniques to determine how well the 

model would have performed over a range of sample sizes. Estimates can be made of 

how the model performs for larger samples by extrapolating the observed trend. The 

second aim was tackled in a similar way by selecting at random only a certain number 

of jumps from each participant. The signal rotation (SR) and SMOTER methods 

depended on the same oversampling and under-sampling strategies in which jumps 

(referred to as cases) were identified for either augmentation or removal. Each 

synthetic data point was generated according to parameters particular to each method, 

the details of which are described below. Both methods were assessed initially with 

exploratory runs of the model to understand the effect of the key parameters before 

running an optimisation to determine the best settings. Evaluation depended on 

statistical measures and inspection of the error distributions. All resampling and 

augmentation methods were carried out by the AM function. 

8.2.1 Varying sample size 

A new step was added to the AM function to subsample the training/validation set 

before all other processing. The data set was truncated by participant rather than by 

trial in the same manner as in the partitioning procedure. A grid search was performed 

varying the sample size parameter from 1 to 60, the actual number of participants 

contributing to the training/validation set. The procedure was repeated 100 times with 

a varying subset of participants to obtain a generalised distribution for each participant 

total. One hundred iterations were deemed sufficient for each increment in participant 

number (rather than 1000 iterations in previous chapters) because the standard error is 

diminished when there is a trend of 60 points. The optimal GPR Chapter 6 model was 

evaluated using 10 × 10 MCCV for each iteration. A 10-fold design was chosen for 

the current analysis because the focus was on predictive accuracy rather than model 

selection. Three different functions (linear, cubic polynomial and exponential) were 

fitted to the log-transformed data points to find which gave the best fit. The predictive 

errors were extrapolated to larger samples using these functions to gauge how the 

model would perform if the sample size were increased above 60. Predictions based 
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on the surrogate model were not suitable because, beyond the recorded observations, 

the basis function heavily influenced the Gaussian Process’s behaviour.  

8.2.2 Varying jumps per participant 

The above procedure was then repeated with the additional step of choosing only a 

random subset of the jumps performed by each participant. The grid search varied the 

trial-per-participant parameter between 1 and 4. Retaining four jumps per trial was not 

the same as the original data set because it removed (at random) trials from the 9 

participants who had performed eight jumps.  

8.2.3 Error distribution fitting method  

The next stage of the investigation focused on data augmentation using the full 

training/validation data set as the starting point – the holdout data set was not included 

in the calculations. In its current form, the model was more accurate for jumps towards 

the middle of the peak power distribution where there were more trials (Figure 8-1). 

The plot shows the absolute error as a percentage to avoid a misleading bias for 

increasing peak power. The best fit was based on a Gaussian Process rather than a 

parametric function because a GP has the necessary flexibility and provides a 

confidence interval (SD). A standard deviation could not be computed with a 

parametric function at each point because the points were not spaced uniformly along 

the peak power axis at discrete points. The GP was defined using a pure quadratic basis 

function and a rational quadratic kernel, which were best suited to the parabolic 

distribution. The noise level was fitted to data, but this could produce a jagged curve 

if σ was small. Therefore, the predictive curves were smoothed using a moving average 

with a Gaussian window of 4 W·kg-1. This same fitting method was applied to the 

augmentation results. 
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Figure 8-1. Baseline validation error distribution as a function of peak power with no data 

augmentation for the optimal Chapter 6 GPR model. The solid black line in the central 

prediction of the Gaussian Process fitted to the data. The shaded area is the GP’s 

confidence interval (SD). Only a quarter of all points are shown (sampled at random) to 

preserve clarity. Percentage errors shown to remove positive bias for increasing peak 

power. 

 

8.2.4 Selecting trials for over- and under-sampling 

The augmentation strategy was broken down into two parts: oversampling to generate 

synthetic data and under-sampling to remove some cases from the original set. 

Research has shown that under-sampling can be more effective than oversampling 

when predicting values towards the tails of the distribution (Japkowicz, 2000; 

Kotsiantis et al., 2006; Kubat & Matwin, 1997). Both techniques were performed on 

the training data alone so that the validation data comprised only real-world data. The 

following procedures were repeated for each data split of the cross-validation process. 

The aim was to use a weighted distribution to identify cases for augmentation in an 

approach similar to ADASYN (Haibo He et al., 2008). 

The AM function computed weightings proportional to the outcome variable’s 

inverted probability density function, which was fitted with a kernel method based on 

a normal distribution. Thus, jumps in the sparse regions of the peak power distribution 

were more heavily weighted than elsewhere. The function shortlisted a specified 

number of jumps for oversampling using random sampling with replacement. Jumps 
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were selected at random with the cumulative weighting distribution, so more heavily 

weighted jumps were more likely to be chosen (Figure 8-2). The oversampling ratio 

dictated the number of augmented cases (a multiple of the training set size, [0…5]). 

The shortlisted jumps could contain duplicates, but this was not a concern because the 

stochastic procedures used to generate the augmented cases would yield varied results 

(Sections 8.2.5 & 8.2.6). Probability-based sampling was preferred to a threshold 

approach (Chawla et al., 2002; Torgo et al., 2015) because it ensured the same number 

of cases were identified for each CV data split.  

 

 

Figure 8-2. Weighted jump selection based on each jump’s cumulative weightings across 

the training/validation set – read across and down. Points are chosen on the vertical axis 

(dotted line) with a uniform distribution between 0 and the upper limit (dashed line). The 

case selected (index 167 in this example) is the next point above the dotted line (circled red). 

Parts of the curve with larger step-ups are more likely to be chosen than smaller 

increments, as shown with the horizontal band. Consequently, the uniform random 

selection takes on the cumulative weightings distribution.  

 

A similar approach was taken for selecting jumps for under-sampling. The AM 

function inverted the weightings and generated a new cumulative distribution. Thus, 

jumps that previously were associated with large step-ups in the cumulative weightings 

now made small increments, and vice versa. The algorithm selected cases without 

replacement so that the specified proportion, given by the under-sampling ratio 
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[0.0…0.9], were removed. The higher the ratio, the bigger the reduction, and like its 

oversampling counterpart, zero implied no change.  

8.2.5 Augmentation – Signal Rotations 

The first augmentation technique involved performing random signal rotations (SR) 

on the raw acceleration data, which formed 3D, time-dependent vectors, ( )n ta . For 

each jump shortlisted for oversampling, a random angle was generated from a zero-

centred Gaussian distribution with a standard deviation specified by a model parameter 

[0…30°]. A broad range was specified in case the optimal deviation was much larger 

than expected, although 30° was considered a practical limit. Another parameter 

defined the rotation axis, and hence the appropriate rotation matrix, R, was computed. 

Each jump’s time series was rotated, which involved matrix multiplications, ( )n tRa  

for all t. The rotations were performed in either the sensor’s local reference frame or 

the global reference frame. If the latter, an initial time series rotation was performed 

to reorientate ( 0)n t =a  with the vertical axis vector, (-1, 0, 0), using a global rotation 

matrix, G, as described previously (Section 7.2.4). The random rotation was then 

carried out, followed by the inverse global rotation, reversing the initial change of 

angle: 1 ( )n t−G RGa . The rotations about the axes in the global reference frame 

removed the possibility of individual variations in lumbar curvature affecting the 

optimisation. 

8.2.6 Augmentation – SMOTER 

The SMOTER algorithm worked with each shortlisted point in feature space, referred 

to here as the vector, u. First, the algorithm identified the K nearest neighbours to u 

across the whole training set, based on the Euclidean distance. The KD Tree method 

(Friedman et al., 1977) was preferred as it was more efficient on average than an 

exhaustive search when the number of dimensions (FPCs) was ≤ 8. Above this, the 

higher cost was not excessive. The algorithm calculated distances based on a truncated 

number of dimensions (i.e., a set number of FPCs). If distances were measured in 

dimensions more correlated with the outcome, then the nearest neighbours would be 

more likely to have a similar peak power to u. From the previous chapter, the FPC 
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correlations with peak power dropped in sequential order (Figure 7–5). The similarity 

mattered because if the points were close together in terms of outcome, not just in 

feature space, then linear interpolation was expected to provide a better approximation.  

The algorithm randomly chose one of the nearest neighbours, designated as v. It 

defined the augmented data point as,  + ( - )q=*
u u v u , as a random distance in 

between u and v, specified by [0...1]q . It obtained the estimated outcome for *
u  by 

including the outcome value in u and v as an extra dimension. This approach was more 

straightforward giving the same result rather than the formula used by Torgo et al. 

(2013), who used distance calculations unnecessarily rather than linear algebra. Thus, 

the augmented data point was defined by linear interpolation between two 

neighbouring points in feature space, with an estimated outcome determined in the 

same manner.  

Selecting cases based on the outcome distribution would not necessarily correspond to 

sparse regions of the feature space. Jumps with a high peak power output were less 

common, but that did not mean the FPC scores necessarily took on extreme values. 

FPC1 had the strongest correlation with peak power 
2(r  = 0.66), making this more 

likely to be the case, but in many instances, it would not. It was even less likely for 

other FPCs, which had much weaker correlations with peak power. Since the objective 

was to populate sparse regions of feature space, it was essential to identify points in 

those areas by updating the weightings calculation to account for the FPC score 

distributions. Therefore, the overall weighting was computed based on the product of 

all weightings: 

 
0

ˆ
i

i=

=w w  (8.1) 

where iw  is the weighting for the i-th FPC,  is the number of weightings and 0w  

is the weighting based on outcome. The weightings for the FPC scores were computed 

using the same method as for the outcome variable (Section 8.2.4).  
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8.2.7 Evaluation methods 

The parameters required to specify these two data augmentation strategies are 

summarised in Table 8-1. The augmentation methods were evaluated using 100 × 10 

MCCV for a given set of parameters for initial exploratory investigations. Previous 

chapters had used 1000 iterations, but in this case the number of iterations had to be 

limited due to the considerable cost in generating the augmented data and fitting the 

models. The results had a slightly higher variance between runs (± 0.03 W·kg-1 vs. 

± 0.01W·kg-1), but this disparity was deemed minor compared to the scale of the 

reduction needed (~ 0.8 W·kg-1) to achieve a model error equivalent to the intra-day 

variability.  

 

Table 8-1. Summary of optimisation parameters for data augmentation. 

Type Parameter Type † Parameter 

Values (AM) 

PSO Initial 

Bounds (SM) 

Sampling ‡ Over-sampling Ratio R 0…5 [0, 5] 

 Under-sampling Ratio R 0…0.9 [0, 0.9] 

SR Random Rotation Angle SD R 0…30° [0, 30] 

 Rotation Axis C {X, Y, Z} [0.50, 3.49] 

 Reference Frame C {Local, Global} [0.50, 2.49] 

SMOTER Number of Weightings I {0…15} [-0.49, 15.49] 

 Number of Nearest Neighbours I {1…10} [0.50, 10.49] 

 Number of FPCs for Distance Calculation I {1…15} [0.50, 15.49] 

† Parameter type: C = Categorical (nominal variable); I = Integer; R = Real (continuous).  

‡ Optimisation was performed with the Sampling parameters and either SR or SMOTER parameters. 

 

8.2.8 Optimisation 

The optimisation procedure was used to determine the optimal values for each 

parameter in Table 8-1. As it incorporated a random search, it was more efficient than 

varying one parameter at a time (whilst holding the others constant). Separate 

optimisations were run for the signal rotations and SMOTER strategies that included 

the sampling parameters that were common to both. Since the parameters made no 

changes to the model itself, a nested cross validation design was unnecessary. Instead, 
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a 1000 × 10 MCCV design was employed in which the SM model was re-trained every 

20 iterations, generating 50 models in total. The AM function was modified to return 

the fourth quartile loss to direct the optimisation to improve predictions for jumps in 

this top performance bracket using the sampling and augmentation parameters at its 

disposal.  

8.3 Results 

8.3.1 Sample Size 

The validation loss dropped as the number of participants included was increased, but 

the rate of decrease slowed (Figure 8-3A). Extrapolating up to 100 participants based 

on the linear log-transformed fit suggested that even with this larger number of 

athletes, the model would still fall well short of the target of 1.75 W·kg-1 (intra-day 

variability). A polynomial fit of the log-transformed values achieved the best fit 

(Figure 8-3B), but the equation suggested approximately 15000 participants would be 

required (Table 8-2). The exponent function had a similar fit but indicated 740 

participants would be needed, a much smaller number. These estimates are uncertain 

because even a 1% variation in the equation’s coefficients could alter the forecast 

substantially: 650–820 participants for the exponential fit and 9500–25000 participants 

for the polynomial fit. The fitted equations were more sensitive to the model’s 

predictive errors for a few participants where the points on the graph were more 

separated.  

The predictive errors were lower on average (using the best fit), with each additional 

jump included per person (Figure 8-4). The largest gain came with the progression 

from one to two jumps with diminishing returns with each additional jump. The four 

jumps per participant data set excluded those jumps from some individuals who 

provided data from eight trials. When those extra jumps were included (equivalent to 

the data points in Figure 8-3A), there was a further error reduction. With 60 

participants, increasing the number of jumps performed from one to four reduced the 

predictive error by 0.25 W·kg-1 (Table 8-3). In comparison, for a fixed sample size of 

60 jumps, shifting the balance towards more participants and fewer jumps performed 
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by each reduced the error by 0.70 W·kg-1 (Table 8-4). For example, a more accurate 

model could be obtained by 60 individuals performing one jump rather than 30 

individuals performing two (3.01 W·kg-1 vs. 3.26 W·kg-1).  

(A) 

 

(B) 

 

Figure 8-3. Model learning curves: validation loss as a function of sample size with 

reference to the intra-day variability (1.75 W·kg-1). Data points are mean losses across 100 

subsamples, and error bars are their standard deviation. (A) Linear log-transformed fit. (B) 
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Revised fits of the log-transformed data based on a cubic polynomial, an exponential fit and 

the original fit from (A). Loss evaluated based on a 10-fold MCCV. 

 

Table 8-2. Best fits for validation loss as a function of the number of participants with 

forward projections. 

 
Linear  

Fit † 

Cubic Polynomial  

Fit † 

Natural Exponent  

Fit † 

Fit RMSE (W·kg-1) 0.242 0.114 0.143 

Fit 
2

r  95.5% 98.8% 98.5% 

Projected Loss for 

100 Participants (W·kg-1) 
2.19 2.47 2.38 

Projected Loss for 

200 Participants (W·kg-1) 
1.79 2.28 2.11 

Estimated Participants 

required to meet Target ‡ § 

215 

[205–225] 

15000 

[9500–25000] 

740 

[650–820] 

† Type of fit applies to the log-log transformed points shown in Figure 8-3B. 

‡ Inter-day variability reported as 1.75 W·kg-1.  

§ Top row is the central estimate; bottom row in brackets is the range of estimates from varying the fitted 

equation’s coefficients by ± 1%. 
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Figure 8-4. Validation loss for a given number of jumps per participant, subsampled at 

random, as a function of the number of participants, also randomly subsampled. Data 

points are losses averaged over 100 iterations. Loss evaluated based on 10-fold MCCV. The 

best fit lines were based on polynomial fit in each case. 

 

Table 8-3. Examples of the estimated validation loss when constrained to 60 participants. 

Increasing the jumps per participants increases the total sample size. 

Constraint 
1 Jump / 

Participant 

2 Jumps / 

Participant 

3 Jumps / 

Participant 

4 Jumps / 

Participant 

60 Participants 3.01 2.88 2.81 2.76 

Validation loss shown (W·kg-1) taken from the best fit of the points shown in Figure 8-4, which were generated 

by 100 × 10 × 10 MCCV. 

 

Table 8-4. Examples of the estimated validation loss when constrained to 60 jumps, a 

constant sample size. The balance shifts between participants and jumps. 

Constraint 
15 Participants / 

4 Jumps Each 

20 Participants / 

3 Jumps Each 

30 Participants / 

2 Jumps Each 

60 Participants / 

1 Jump Each 

60 Jumps 3.71 3.50 3.26 3.01 

Validation loss shown (W·kg-1) taken from the best fit of the points shown in Figure 8-4, which were generated 

by 100 × 10 × 10 MCCV. 
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8.3.2 Sampling Techniques 

The effects of resampling on the training set’s peak power distribution are shown in 

Figure 8-5, along with the corresponding distribution of validation error. The baseline 

peak power distribution had two peaks (Figure 8-5A, red line). When the oversampling 

ratio was introduced, those peaks were diminished as the sampling ratio was increased. 

The curve with an oversampling ratio of 5 had a flatter distribution from the 10th to the 

90th percentile, approximately 36–54 W·kg-1 (Figure 8-5A, purple line). The validation 

error distribution had a shape characteristic of the normal distribution when absolute 

values are taken (Figure 8-5B). Its peak shifted from 1.4 W·kg-1 to 0.8 W·kg-1 with 

oversampling.  
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(A) (B) 

  

(C) (D) 

  

(E) (F) 

  

  

Figure 8-5. Training data distribution following resampling (left-hand column) and the 

corresponding validation error distribution (right-hand column). Top row: variations in the 

oversampling when the under-sampling ratio = 0. Middle row: variations in under-

sampling when the oversampling ratio = 5. Bottom row: variations in the number of 

weightings applied when the oversampling ratio = 2 and the under-sampling ratio = 0. 

Number of weightings = 0 for the top and middle rows. Results shown when running 

SMOTER augmentation, but similar distributions arise for SR augmentation. Note: small 

disparities in the distributions may arise when re-running the augmentation procedure due 

to its stochastic nature. 
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In the second row of Figure 8-5, the baseline distribution was the over-sampled curve 

(ratio = 5) from a separate run of the augmentation procedure. It differs slightly from 

the equivalent distribution in the top row due to the stochastic nature of oversampling. 

Introducing under-sampling induced the probability density to fall in the middle of the 

range as the under-sampling ratio was increased, leading to peaks either side around 

38 W·kg-1 and 52 W·kg-1 (Figure 8-5C). The validation error’s distribution rose a 

small amount at the peak but was accompanied by slight reductions elsewhere (Figure 

8-5D).  

On Figure 8-5’s third row, from an additional run, the baseline distribution was the 

same as above with an over-sampling ratio of 5, but with no under-sampling. When 

weightings were introduced to factor in the FPC scores, the distribution’s second peak 

tended to become more prominent in the 50–60 W·kg-1 range (Figure 8-5E). However, 

increasing  did not always lead to a higher second peak. Including FPC1, FPC3 and 

FPC4 in the weighting produced rises, but taking account of FPC2 and FPC5 led to 

reductions. There were no discernible changes to the validation error distribution when 

applying differing numbers of weightings (Figure 8-5F). 

8.3.3 Validation error vs. peak power 

A side-by-side comparison of the two augmentation methods for different resampling 

strategies is shown in Figure 8-6. Overlaid within each plot is the outline of the 

baseline case without augmentation, which differs slightly between the 3D signal for 

SR and the resultant signal for SMOTER. Oversampling reduced errors at the 

peripheries for both methods (Figure 8-6A–B). Introducing undersampling brought a 

marked improvement for SMOTER and to a lesser extent for SR (Figure 8-6C–D). 

Increasing the random rotation angle’s SD from 10° to 20° was detrimental to SR 

(Figure 8-6E). Increasing the number of weightings from 0 to 1 was beneficial for 

SMOTER (Figure 8-6F). These exemplar plots demonstrate how changes to certain 

parameters influence the error distribution but finding the best values for all six 

parameters required optimisation. 
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(A) (B) 

  
Oversampling Ratio = 2.0; Undersampling Ratio = 0.0; 

Rotation Angle SD = 10°. Rotation Axis = X (Local) 
Oversampling Ratio = 2.0; Undersampling Ratio = 0.0; 

Weightings = 0; NN = 5; FPCs for NN Distance = 15. 

(C) (D) 

  
Oversampling Ratio = 2.0; Undersampling Ratio = 0.4; 

Rotation Angle SD = 10°. Rotation Axis = X (Local) 
Oversampling Ratio = 2.0; Undersampling Ratio = 0.4; 

Weightings = 0; NN = 5; FPCs for NN Distance = 15. 

(E) (F) 

  

Oversampling Ratio = 2.0; Undersampling Ratio = 0.4; 

Rotation Angle SD = 20°. Rotation Axis = X (Local) 
Oversampling Ratio = 2.0; Undersampling Ratio = 0.4; 

Weightings = 1; NN = 5; FPCs for NN Distance = 15. 

  

Figure 8-6. Examples of over- and under-sampling on the distribution of absolute validation 

errors across the performance range based on SR using 3D signals (left-hand column) and 

SMOTER using resultant signals (right-hand column). Black lines show the baseline case 

without augmentation. The shaded area is SD. Top row: oversampling alone. Middle row: 

oversampling with under-sampling introduced. Bottom row: Over and under-sampling 

with either wider rotations or more weightings. Percentage errors shown to remove positive 

bias for increasing peak power. Only a quarter of all points are shown (sampled at random) 

to preserve clarity. The baseline fits differ between the SMOTER and SR plots mainly due 

to differences between the resultant and 3D models. 
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8.3.4 Augmentation optimisation 

The SM predicted loss and its associated confidence interval converged after 200 out 

of 1000 iterations for SR and 360/1000 for SMOTER. However, there was a 

considerable level of noise (0.65 W·kg-1 and 0.50 W·kg-1 for SR and SMOTER, 

respectively), which was much higher than in previous optimisations (0.2–0.4 W·kg-1). 

The parameters for both methods did not show signs of stabilisation as the optimisation 

progressed. Nevertheless, the optimal parameter settings could be determined using 

the modal definition (Table 8-5). Both methods performed best with a high level of 

oversampling, 4.65–4.70 times the original sample, such that only around 17% of the 

training data was from the data collection. The SR method preferred removing about 

two-thirds of this data, whilst SMOTER kept almost all the original data. The optimal 

standard deviation for the random signal rotations was around 12°, which were best 

performed about the X-axis in the sensor's reference frame. The optimal SMOTER 

configuration selected a point from the eight nearest neighbours and based their 

distances on six dimensions (FPCs). It preferred to base the weightings on the FPC1 

and FPC2 scores as well as peak power.  

 

Table 8-5. Optimal, modal-defined parameters for both augmentation strategies based on 

the Chapter 6 GPR model. 

Parameters / Loss SR SMOTER 

Over-sampling Ratio 4.70 4.65 

Under-sampling Ratio 0.68 0.05 

Rotation Angle SD (°) 11.8 n/a 

Rotation Axis X n/a 

Reference Frame Local n/a 

Number of Weightings n/a 2 

Nearest Neighbours n/a 8 

Number of FPCs n/a 6 

Basis Function = None; Kernel Function = Exponential; 10log  = -2.20; Standardisation = No. 

Alignment = Take-off; 
pre

t = 2000 ms; 
post

t = 1200 ms; FS10log  = 4.80; No. Basis Functions = 100; 

Varimax = No. 
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Using the parameter values above, SMOTER made a more substantial change to the 

error distribution than the SR (Figure 8-7). It yielded a notable reduction in curvature, 

which was more beneficial towards the upper range of jump performance.  

 

(A) 

 

(B) 

 
 

Figure 8-7. Predictive error distribution as a function of peak power for the optimised 

augmentation methods: (A) SR; (B) SMOTER. Black lines show the baseline case without 

augmentation. The confidence interval (shaded area) is SD. Percentage errors shown to 

remove positive bias for increasing peak power. Only a quarter of all points are shown 

(sampled at random) to preserve clarity. See Table 8-5 for parameter values. 
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The MCCV loss estimates summarise the changes in the respective error distributions 

(Table 8-6). Neither method improved the GPR model's overall accuracy, but they did 

reduce the predictive error for the 4th quartile, as directed in the optimisation. The 

improvement, however, was only moderate, from 4.28 W·kg-1 to 4.00 W·kg-1 for SR 

and from 3.71 W·kg-1 to 3.41W·kg-1 for SMOTER. A comparison between both 

methods was possible since SMOTER could be applied to the 3D signal as well, 

although it had not been optimised for this input. The comparison revealed that 

SMOTER was more effective at reducing the 4th quartile loss than SR (3.21 W·kg-1 vs. 

4.00 W·kg-1). However, both methods achieved a similar result overall. 

 

Table 8-6. Optimised model performance for both augmentation strategies showing the 

breakdown of validation by peak power quartile. Comparisons are made with the baseline 

without augmentation. The SMOTER results are split into those based on the resultant 

signal (1D) and the 3D signal to allow a like-for-like comparison with SR. Optimisation was 

based on the Q4 loss. 

MCCV Loss (W·kg-1) † Q1 Q2 Q3 Q4 Overall 

SR      

Baseline (3D) 2.72 2.84 2.66 4.28 3.20 

Augmentation (3D) 2.62 2.46 3.20 4.00 3.16 

SMOTER      

Baseline (1D) 2.14 2.20 2.60 3.71 2.63 

SMOTER (1D) 2.44 2.66 2.69 3.41 2.92 

SMOTER (3D) 2.76 2.62 2.63 3.21 3.21 

† Cross validation design: 100 x 10 MCCV.  

With 100 iterations, results can vary between runs by ~ ± 0.03. 1000 iterations would be expected to reduce 

this variability to ~ ± 0.01 with sufficient computational resources available.  

See model and augmentation specification in Table 8-5. 

 

The strength of these optimal values can be gauged by inspecting the parameter 

distributions and the SM plots, bearing in mind the concerns reported above with the 

optimisation. For SR, an oversampling ratio around 2 was an alternative with a smaller 

angular spread when the Y-axis was chosen (Figure 8-8F, H & I, noting the cluster 

distributions). The SM plot for the random rotation SD exhibits a corresponding 

minimum along with the undersampling ratio (Figure 8-8B & C). 
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(A) (B) (C) (D) (E) 

     

(F) (G) (H) (I) (J) 

     

     

Figure 8-8. Surrogate model plots (top row) and the corresponding parameter distributions 

(bottom row) for the SR augmentation method. Two clusters (CL1 & CL3) are highlighted. 

 

For SMOTER, the SM was flat around the optimum except for the under-sampling 

ratio, which showed a drop close to zero on the horizontal axis (Figure 8-9A–E). The 

corresponding parameter distributions revealed more structure (Figure 8-9F–J), but no 

clusters could be identified as the parameter values were spread out with no discernible 

groupings. Only under-sampling showed an unambiguous peak. The oversampling 

ratio had four peaks with a tendency towards a higher ratio (Figure 8-9F). There were 

wide spreads in the numbers of nearest neighbours and how many FPCs to use when 

calculating the distances between them (Figure 8-9I–J). A similar outcome is apparent 

for the number of weightings, but notably, zero and one were never chosen (Figure 

8-9H). 0= indicates weightings based solely on peak power.  

  



Section 8.4.1 

Page 242 

(A) (B) (C) (D) (E) 

     

(F) (G) (H) (I) (J) 

     

     

Figure 8-9. Surrogate model plots (top row) and the corresponding parameter distributions 

(bottom row) for the SMOTER augmentation strategy. The distributions are all grey 

because no clusters were found. NN = Nearest Neighbour.  

 

8.4 Discussion 

This chapter considered the effect on the model’s accuracy by varying the data set’s 

size or altering its distribution. The aims were to determine how the predictive error 

responds to changes in sample size, assess the effect of participants performing 

multiple jumps, and evaluate whether data augmentation methods can be a viable 

alternative to larger data collections.  

8.4.1 Sample size 

The first part of the analysis investigated whether increasing the sample size would 

reduce the error to the level of intra-day variability (1.75 W·kg-1), and if so, how many 

participants would be required. It was evident that predictive error had a logarithmic 

relationship with sample size, rather than being inversely proportional to N , as was 

presumed when computing the benchmark error for the peak predictive equations 

(Section 2.3.2). Had those studies’ errors been weighted by the log N  instead, the 

benchmark would have been little different (4.4 W·kg-1 vs. 4.6 W·kg-1).  
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Three projections were made based on different functions fitted to the log-transformed 

data. By inspection, it was clear that the linear function, which gave the most optimistic 

projections, was not well fitted to the data. The closest fit was made by the cubic 

polynomial, which indicated that further error reductions would be quite limited. It 

projected an error of 2.47 W·kg-1 for 100 participants and 2.28 W·kg-1 for 200, 

assuming that the same trend over the first 60 participants continues. Since the 

polynomial fit had the slowest convergence of the three equations, it produced a very 

large estimate for the number of participants required to reach the 1.75 W·kg-1 target 

(~15000). The estimate was quite uncertain because of its sensitivity to the equations’ 

coefficients, which were more strongly influenced by the model’s predictive errors for 

small samples (Figure 8-3). Therefore, the exponential function was fitted instead as 

it had a faster convergence rate. Its fit was almost as good as for the polynomial 

(r2 = 98.5% vs. 98.8%), estimating around 740 participants would be required to meet 

the target. The exponential fit was considered a reasonable compromise between the 

apparently optimistic and pessimistic estimates from the other two equations.  

These projections are inherently uncertain because the extrapolation range is 

considerable, going far beyond the actual observations of up to 60 participants. 

Furthermore, in practice additional participants may not fit into the current distribution 

assumed in the projections. Hence, there is considerable uncertainty over the exact 

numbers required. However, what is clear is that it would be a very large number of 

participants. Typically, the largest biomechanics studies rarely approach 100 

participants, let alone several hundred or several thousand. Moreover, recruiting large 

numbers of moderate to high performers is more challenging because, by definition, 

there are fewer available in the specific populations of interest. When the target sample 

size is large, a compromise is often unavoidable as it will be more practical to recruit 

participants with average ability to make up the numbers. As a result, the distribution 

will shift away from the proficient jumpers, pushing the target participant number even 

higher. Dedicating time and effort to undertaking such a large data collection would 

often be hard to justify, given the demands of high-performance environments or on 

laboratory resources for other priorities. Therefore, whilst modest improvements can 

be expected from recruiting more participants, on a par with the gains seen in previous 
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chapters, reducing the model’s predictive error to the target of 1.75 W·kg-1 is 

practically out of reach. 

However, in one other respect, the analysis served to show that the actual number of 

participants recruited was large enough to obtain a reasonable estimate of the model’s 

true capability. The lowest error of 2.5 W·kg-1 from previous chapters was not much 

higher than what the projections indicated was ultimately possible with these FPCA 

models, based on accelerometer data. The rate of improvement had already slowed 

substantially, limiting what further could be achieved. Hence, the analysis confirmed 

the data collection was sufficient to fulfil the aims of this thesis. 

8.4.2 Trials per athlete 

The second aim was to determine the benefit of having participants perform multiple 

jumps. The results showed that the model’s predictive error decreased with every 

additional jump performed. The biggest gain came from having two trials rather than 

one, with a law of diminishing returns thereafter. The vast majority of participants 

performed four jumps of the same type, which helped improve model estimates from 

3.01 W·kg-1 to 2.75 W·kg-1 for the full training/validation data set. The error was 

lowered to 2.67 W·kg-1 by inviting back some participants who had taken part in the 

first round of data collection, demonstrating that it is worthwhile getting the maximum 

number of jumps, even if they come from the same individuals. However, given a 

choice between more participants or more trials, the results showed for the same 

sample size, the model was more accurate when the balance shifted towards more 

participants (Table 8-4). Moreover, the error reduction was greater when increasing 

the number of participants than increasing the number of jumps per participant 

(0.70 W·kg-1 vs. 0.25 W·kg-1 from Table 8-3). Hence, the model appeared to learn 

more from each trial when performed by another individual rather than by the same 

person. Therefore, every effort should be made to recruit as many participants as 

possible, but getting the existing recruits to perform extra trials will also yield modest 

benefits.  

Other investigators have established that recruiting more participants increases the 

power of t-tests compared to increasing the number of trials (Bates et al., 1992; 
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Forrester, 2015). They reported that the required statistical power could be achieved 

by varying the balance between participants and trials, e.g. a statistical power of 0.80 

can be obtained with 15 participants and 19 trials, or 20+ participants and three trials 

(Forrester, 2015). Those investigations focused on hypothesis testing with 

straightforward statistical measures (SEM – Standard Error of the Mean), in which 

analytic expressions can be derived. However, the present study’s approach resembles 

the random sampling method used by Dufek et al. (1995), who simulated different 

numbers of participants and trials from their running VGRF data in a comparative 

study. The resampling method is free of assumptions about the model or the data 

distribution (Davison & Hinkley, 1997) unlike conventional methods, which make 

several assumptions including linearity, homoscedasticity, error independence and 

error normality (Atkinson & Nevill, 1998).  

Resampling ensured that the jumps performed by any one participant were assigned 

either to training or validation, but not both. The partitioning of data by participants 

was implemented in code rather than Matlab’s Regression Learner app. If the data 

were not partitioned in this way, the model would have had a substantial advantage, 

resulting in over-optimistic lower predictive errors. If a model trained in that way were 

applied to unseen data, it would perform poorly (Appendix E.2). Hence, this example 

demonstrates the similarity in characteristics (FPCs) between jumps performed by the 

same individual. Conversely, it also shows how much more different those 

characteristics are between participants. Thus, the model benefits more from additional 

participants rather than additional trials.  

These findings suggest that the model benefits from a more heterogenous training data 

set. However, the error distribution across the peak power range showed that errors 

were lower when there were more jumps at the same performance level. Therefore, 

ideally more participants should be recruited in the performance range of interest in 

the target population, reflecting the specificity principle. This could be taken to mean 

that participants should come from the same sport as well, but there may be more 

variability in movement strategies between individuals than across sports. Techniques 

will vary between individuals reflecting differing proficiency levels, strength and 

coordination, and anthropometric differences, including the distribution of mass, 
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segmental lengths, and so on. The sport’s demands will have a bearing on some of 

these factors, or some of these factors may influence the participant’s choice of sport. 

The sport-specific training may lead to similar movement strategies within a given 

sport, but as jumping is a fundamental skill, there may be some overlap across sports. 

Hence, there may be advantages to recruiting participants from several related sports 

as a means to increase the sample size. 

8.4.3 Augmentation strategies 

The final part of the investigation evaluated two augmentation techniques as an 

alternative approach to recruiting more participants or increasing the number of jumps 

performed by each person. In line with utility-based regression and ADASYN, the 

augmentation was targeted towards the peak power distribution tails where errors were 

higher. Specifically, the upper end of the performance range was targeted, given the 

potential application to professional and elite sport. High performers are fewer in 

number in a population of active sportspeople, by definition, such that it would be 

challenging to recruit them in sufficient numbers. Based on the evidence from other 

domains (Section 2.6.4), it was proposed that augmentation may alleviate that problem 

with synthetic data.  

The results showed that the SMOTER and SR methods had the desired effect, reducing 

the predictive errors in this region. SMOTER achieved a more marked reduction in 

error towards the distribution tails, which could be seen most clearly in the altered 

error distributions (Figure 8-7) than in the breakdown of the losses by quartile (Table 

8-6). SMOTER also started from a lower baseline as it worked with the resultant 

signal, which yielded more accurate models, as the previous chapter showed. Although 

the improvement was not significant, this investigation showed for the first time that, 

in principle, data augmentation could be applied to accelerometer signals for a modest 

reduction in error. Nevertheless, augmentation could not fully compensate for the lack 

of data in the performance range of interest. A model trained on data predominantly 

from those with moderate jumping abilities, boosted with augmentation at the high end 

of performance, still produced larger errors when applied to high performers. These 

high performers may well exhibit somewhat different movement patterns, quantified 
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by the FPC scores, as a result of superior jumping skill, greater strength or other 

possible factors. Although heterogeneity is valuable, the model is not necessarily able 

to take the learned relationships and apply them to a wider grouping. In conclusion, it 

seems clear that there is no getting around the fact that if high accuracy is needed for 

a particular cohort, then models must be trained on participants with those abilities. 

8.4.4 Manipulating the peak power distribution 

This is the first time these augmentation methods have been applied to accelerometer 

data. Although they did not make a significant difference, the techniques may have 

applicability elsewhere in biomechanics. It is therefore worth reviewing the two 

methods in more detail. The purpose of resampling was to shift the model’s focus away 

from frequently occurring observations towards regions of performance that were rare 

but of more relevance to the end application (Haibo He et al., 2008; Torgo et al., 2013). 

The over- and under-sampling methods employed were common to both SR and 

SMOTER as they determined which cases were shortlisted for augmentation or 

removal. With the correct sampling ratios, the peak power distribution was 

transformed as desired into an approximately uniform distribution over 90% of its 

range. (The kernel-based distribution fit was more sensitive to the data than the original 

histogram, Figure 3-3A). The probability-based selection criterion was more effective 

at achieving this than the threshold-based approach developed originally for SMOTE 

(Chawla et al., 2002). 

The outcome distribution on its own could determine where augmentation should be 

directed in the peak power range. However, it was not a good proxy for the predictor 

distributions, as most FPCs were not well correlated. Moreover, proximity in feature 

space did not necessarily reflect close similarity between acceleration curves because 

the first FPC was the biggest factor with subsequent components in descending order 

of importance. Adjusting the weightings to account for FPC distributions was intended 

to mitigate this distortion and ensure that the synthetic data populated sparse space 

regions of feature space. It had a clear impact on the resulting peak power distribution, 

more so than altering the resampling ratios. The more variables included, the narrower 

the probability distribution function became, effectively reducing the pool of available 
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jumps for augmentation. Notably, the probability density rose toward the upper end of 

the distribution without the algorithm specifically targeting this region (Figure 8-5E). 

It did so because there were more FPC1 outliers at the top rather than the bottom end 

of the scale. The exceptional jumpers differentiated themselves more from the other 

participants than the poor performers did at the other end of the scale. That situation 

arose by chance in the present study, but it could be enforced by zeroing the weightings 

below the median if need be. It is believed to be the first time that predictor 

distributions have been factored into resampling procedures. 

8.4.5 Estimating synthetic outcome values 

Estimating a value for the outcome variable for a new synthetic point is a fundamental 

problem for data augmentation in regression models (Torgo et al., 2015) The problem 

exists for classification models too, but not nearly to the same extent because outcomes 

are restricted to two or a handful of possibilities. The SMOTER algorithm used 

interpolation to estimate the outcome variable from the corresponding values from two 

real data points. However, making a prediction based on two data points is prone to 

error. One possibility is to increase the number of points on which the estimate is made 

and use cubic interpolation or other similar techniques. Ultimately, a predictive model 

of some kind would be required – linear interpolation was the simplest possible model. 

Such a model trained on a handful of nearest neighbours would not be any more 

accurate than the full model trained on all the points. However, the purpose of 

augmentation was not to pre-empt the full model but to shift the model’s emphasis 

towards the outcome range that was more relevant to the practitioner (Torgo et al., 

2013). In that sense, the accuracy of synthetic data’s outcome variable was of 

secondary importance. The error distribution change demonstrated augmentation had 

fulfilled its purpose to the extent that errors rose slightly in the mid-range but fell 

towards the peripheries (Figure 8-6). Yet, without accurate outcome estimation, the 

improvements it can bring in the region interest will always be limited. 

The problem does not arise for SR, however, because the outcome is assumed to be 

the same. Its rationale is that different accelerometer signals would have been 

produced for the same jump had the sensor been orientated slightly differently, a 
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situation that would inevitably occur in practice. By analogy with image recognition 

systems, an image is the same at whichever orientation it is viewed (Shorten & 

Khoshgoftaar, 2019). Alternatively, the augmented data can be derived from another 

data source, such as using motion capture data (Mundt et al., 2020). Despite its 

apparent advantages, SR did not perform as well as SMOTER, judged by the degree 

of change in the error distribution. It also started from a higher baseline error because 

it must work with 3D signals. SR did not reduce the 4th quartile loss as much as 

SMOTER, but it did achieve a slight reduction in the 1st quartile loss, something that 

SMOTER failed to do. SR did not benefit from adjusting the weightings, so it worked 

at both ends of the peak power distribution.  

The SR method’s poor performance can be attributed to the profound effect the 

rotations have on the acceleration curves. Variances in one dimension are transferred 

into another, substantially changing the curves’ shapes. Rotations about the X-axis 

were favoured because transfers between the Y- and Z-axes were comparatively minor. 

The random signal orientations only appeared to worsen the accuracy rather than 

providing the model with a richer set of training examples. In image recognition, 

rotations typically only yield a marginal improvement in accuracy by a few percentage 

points (Shorten & Khoshgoftaar, 2019). Crucially, though, the DNNs set about finding 

patterns in the images in an entirely different way to FPCA, which is limited by the 

need for close curve alignment.  

8.4.6 Summary 

The resampling analysis established that a larger data collection could improve the 

model’s accuracy, but only to a limited extent. Only with considerable resources and 

a large pool of willing participants, possibly exceeding a thousand, might it be possible 

to lower the current model’s predictive error below the target of 1.75 W·kg-1, the intra-

day variance (Figure 8-10). There is no guarantee that this would be achieved as the 

projection was from a comparatively small base. The analysis also confirmed that the 

training/validation data set used in this thesis was large enough to allow the models to 

perform close to their full potential.  
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Increasing the number of jumps per participant yielded a marginal improvement, but 

what mattered more was the total number of athletes. The results showed that the 

model learned more from each additional individual than they did from each additional 

trial by the same person. Data augmentation could only offer a slight improvement in 

the model’s accuracy at the top end of jump performance, where it can be hard to 

recruit many such athletes. However, a modest reduction in error in this peak power 

range is far from certain as the errors remained large. 

 

 

Figure 8-10. Progression in the GPR model’s prediction errors through this thesis 

compared to previous studies (Ache-Dias et al., 2016; Amonette et al., 2012; Canavan & 

Vescovi, 2004; Lara et al., 2006; Quagliarella et al., 2010; Tessier et al., 2013). MCCV 

estimate shown for GPR with error bars based on the SD in validation error between folds. 

The intra-day variance is averaged from four reliability studies (Cormack, Newton, 

McGuigan, et al., 2008; Hori et al., 2007; McLellan et al., 2011; Taylor et al., 2012). 
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CHAPTER 9. GENERAL DISCUSSION 

9.1 Introduction 

The aim of this thesis was to develop a machine learning approach for predicting peak 

power in the countermovement jump based on accelerometer signals from a single 

body-worn sensor. It was the first biomechanical application of an FPCA-based model 

using body-worn accelerometer data. It was hoped that this machine learning approach 

might provide a low-cost, convenient alternative to the force platform gold standard. 

Overall, the accelerometer model achieved a predictive error of 2.5 W·kg-1, 

significantly improving upon previous methods for predicting peak power in vertical 

jumping. This final chapter provides formal answers to the individual research 

questions posed in Chapter 1. It takes a critical look at the methods employed, 

highlighting the value of this thesis, and reflects on the difficulties of using body-worn 

sensors to estimate performance metrics. Areas for further research are proposed. 

9.2 Addressing the research questions 

The research questions from Chapter 1 are answered in turn below, beginning with the 

two questions concerning accuracy before turning to the questions relating to various 

aspects of the model function that influenced its predictive error. 

9.2.1 Model accuracy 

I. How well does an FPCA-type model perform when predicting peak power 

and jump height in the CMJ, with and without arm swing, based on gold-

standard VGRF data? 

The models based on VGRF functional components performed well, explaining 98.3% 

of the variance in peak power and 92.0% of the jump height variance. The latter model 

was based on the work-done definition of jump height, but when the flight-time 

definition was used, the explained variance rose to 98.9%. In a further test of the FPCA 

technique, a logistic model correctly classified 88.8% of the jumps into those with and 
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without arm swing. This classification accuracy compared favourably with other 

activity recognition studies (Cust et al., 2019). In the case of jump height, 2r  was 

higher than previously reported in an FPCA study (79%), which was based on the 

flight-time definition (Richter et al., 2014b). The results showed that it was possible to 

achieve high 2r  without having to use ACP. Until this point, previous research had 

suggested only ACP models were capable of explaining a similarly high proportion of 

the jump height (Moudy et al., 2018; Richter et al., 2014a, 2014b). In conclusion, these 

results based on VGRF data indicated that FPCA would be a suitable feature extraction 

method for an accelerometer model predicting peak power. The merits of FPCA-type 

models and their errors will be discussed further in Section 9.3.2. 

II. How well does an FPCA-type model perform when predicting peak power in 

the CMJ, with and without arm swing, based on accelerometer data from 

sensors at different anatomical positions?  

The accelerometer model was developed in stages over Chapters 5–7 to ultimately 

yield a predictive error of 2.5 W·kg-1, equivalent to 5.8% at the mean of 45.0 W·kg-1. 

This was the error in peak power in the CMJ without arm swing (CMJNA), based on 

accelerometer data from the lower back (LB) sensor. It was larger than the 1.75 W·kg-1 

a priori target based on the intra-day variance averaged from several studies 

(Cormack, Newton, McGuigan, et al., 2008; Hori et al., 2007; McLellan et al., 2011; 

Taylor et al., 2012). Although the model fell short of the accuracy needed for its 

intended application, it outperformed previous sensor-based methods for predicting 

peak power in vertical jumping. Those errors were two to eight times larger 

(RMSE = 4.9–21.6 W·kg-1; Table 2-2). The model compares favourably with the peak 

power prediction equations, based on body mass and jump height. The errors from 

those equations could differ considerably with different cohorts (2.0–27.6%; Section 

2.3.2). The model’s error was much smaller than the representative benchmark error 

from those studies, weighted by sample size, of 4.6 W·kg-1. 

Chapter 5 showed that across a range of different algorithms, the errors for the CMJ 

with arm swing (CMJA) were consistently higher than their corresponding models for 

the CMJNA. The choice of jump type and sensor attachment position explained 92.3% 
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of the variance in the models’ RMSE when averaged across the algorithms under 

investigation. This finding demonstrated the importance of data collection procedures 

and the choice of the sensor attachment site. The same analysis revealed that the errors 

were consistently larger for models based on the upper back and shank-attached 

sensors compared to the LB-sensor model. The decision was then made to focus the 

investigation on the LB-CMJNA data set given the consistent differential between the 

jump type and sensor-specific models. The differential between the LB- and UB-

sensor models was not particularly large (1.0 W·kg-1), but it diminished the potential 

of re-purposing the UB sensors that are commonplace in professional sports teams. 

There would be obvious advantages of using the sensors the athletes already wear, as 

it would make field-based testing immediately convenient, as no setup would be 

needed. If the models could be made more accurate through future research, this small 

differential could be overcome. If so, it would considerably strengthen the case for a 

sensor-based system for predicting peak power in professional sport. 

Taking a broader view, the final FPCA-based model holds up well to other models 

predicting various VGRF-related metrics. For comparison, the final model’s 

predictions had a correlation of r = 0.94 with the true peak power values. From the 

literature (Table 2-4), studies reported correlations in jumping (r = 0.73–0.94, for peak 

VGRF and jump height) and in walking and running (r = 0.50–0.86, for peak VGRF 

and peak loading rate). This comparison excludes correlations of quantities averaged 

over multiple instances and subject-specific models. In terms of RMSE, only one 

model had lower percentage errors than the 5.8% error achieved in this thesis 

(RMSE = 3.8–5.0% for the peak VGRF in walking; Guo et al., 2017). However, 

caution should be exercised when making these comparisons as some outcome 

variables will be harder to predict than others, given the experimental conditions. With 

those caveats noted, it is still reasonable to conclude that the models developed in this 

thesis had an accuracy comparable to some of the best models and neural networks 

developed to predict VGRF-related measures, even with the strict unbiased cross 

validation procedures applied. 
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9.2.2 Model function specification 

The model function encapsulated the full modelling procedure, including data 

augmentation, data preprocessing, feature extraction (FPCA), feature selection, model 

fitting and the inner cross validation loop. Its performance, through the optimisation 

procedure, provided the answers to the following research questions.  

III. Which machine learning algorithms are well-suited to FPCA-based 

accelerometer data in regression models? 

There were three models shortlisted in Chapter 5: regularised linear regression (LR), 

support vector machines (SVM) and Gaussian process regression (GPR). When data 

preprocessing was considered in Chapter 6, the SVM models were ruled out because 

they were unreliable, sometimes producing extremely large errors, while also being 

the most computationally intensive. Finally, the LR models were also ruled out as they 

did not benefit from feature extraction as much as the GPR models did (Chapter 7). 

Gaussian process regression was therefore the algorithm best suited to a model based 

on FPCA-type features when applied to the accelerometer data. This was also the first 

time a GPR model with its Bayesian approach was considered for a biomechanical 

application. Its success in this context should encourage other researchers to include it 

as a candidate model in their research. 

IV. How should the accelerometer data be preprocessed to minimise the model’s 

predictive error? 

Preprocessing, as defined in this thesis, encompassed extracting the raw data from the 

appropriate time window, smoothing it with functional methods and warping the time 

domain with curve registration. These operations modified the accelerometer data 

without changing its form. The optimal time window included the jump, flight and 

landing, which marked a departure from the convention of jump VGRF models that 

takes data from jump initiation to take-off. The models made more accurate predictions 

due to the information available about the landing, mainly concerning its timing rather 

than the pattern of inertial accelerations following impact (Section 6.3.8). The optimal 

time window was not well-defined from the parameter distributions that emerged from 
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the optimisation procedure. Still, a reasonable inference was pret  = 2000 ms and 

postt  = 1200 ms, with respect to take-off. The point of take-off (and landing) was 

identified using the accelerometer signal alone so the system could be self-sufficient, 

an essential requirement. It was accomplished to a higher degree of accuracy (± 12 ms) 

than in previous studies (Section 6.4.2). The hybrid approach combined the expertise 

in devising the algorithm with machine-led optimisation to tune its associated 

parameters (Section 6.2.1). It may serve as an exemplar for hybrid approaches in the 

future (Section 9.5). 

The second preprocessing step was functional smoothing that took the place of 

conventional signal filtering techniques. It was optimal to smooth the acceleration data 

more heavily 4.8( 10 ) =  than indicated by the standard fitting procedure based on 

generalised cross validation 2.0( 10 ) = . As a regularisation parameter, the roughness 

penalty reduced the complexity of the acceleration curves, moderating the influence 

of higher-order FPCs (Section 6.4.7). Other studies have assumed a heavy degree of 

smoothing, implemented through signal filters with low cut-off frequencies, ≤ 3 Hz 

(Kautz et al., 2017; McGrath et al., 2019; Mlakar & Luštrek, 2017; Zago et al., 2019), 

but this is the first time functional smoothing has been used in this way. 

Curve registration was an optional third preprocessing step that followed functional 

smoothing with the purpose of improving the curves’ alignment. Registration had 

brought modest improvements to the VGRF model, but it could not do so for the 

accelerometer model. The VGRF model in Chapter 4 showed that it was essential to 

decompose the variance into amplitude and temporal components identified in the 

registration procedure. Having information about the time domain made the models 

more accurate, as was shown previously in a similar way with comparable ACP scores 

(Richter et al., 2014a, 2014b). Registration had not been similarly successful with the 

accelerometer models because the signals were so variable, making it difficult to 

identify a suitable set of landmarks that were unambiguous and present in all curves. 

Only the peaks in the pseudo power curves met this requirement, but the first peak 

could occur on either side of take-off, undermining the whole procedure.  
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V. What characteristics of the accelerometer signal are more important to the 

model in predicting peak power? 

Taking the accelerometer signal in its resultant form yielded models with the lowest 

predictive errors. The resultant acceleration lacked directional information, but it was 

not confounded by sensor orientation changes, which in the CMJ were relatively minor 

for a lower-back mounted sensor. The resultant had a small advantage over the three-

dimensional representation, which yielded models with a slightly higher error level 

(2.7 W·kg-1 vs. 3.0 W·kg-1; Table 7-3). The models based on the time-derivative and 

integrated curves achieved a similar predictive error (2.9 W·kg-1; Table 7-3). These 

results showed that the original acceleration was preferable to other data 

representations. The same conclusion was drawn concerning the varimax-rotated 

FPCs, which offered no advantage to the model but introduced unwanted 

multicollinearity. 

Plotting the FPCs provided valuable insight into the nature of the component features. 

FPC3 exemplified this from the VGRF model (Figure 4-3C) that revealed the 

importance of a final surge in force production. It provided good experimental 

evidence supporting the principle of late force production, first proposed by Hochmuth 

and Marhold in 1977. The VGRF model also revealed how a combination of FPCs 

could produce unimodal and bimodal curves, providing a new perspective on the 

debate over the possible factors behind VGRF curve modality (Cockcroft et al., 2019; 

R. Kennedy & Drake, 2018; Lake & McMahon, 2018). This recent research is a return 

to the idea of the VGRF curve being a diagnostic tool (Luhtanen & Komi, 1978; Miller 

& East, 1976; Oddsson, 1987). 

The accelerometer FPC1, which accounted for the largest proportion of the resultant 

curve variance, had the highest correlation with peak power. It described the temporal 

variance, reflecting variations in flight time, which was one of the two predictors in 

the peak power prediction equations. The FPCA-type models had achieved higher 

levels of accuracy than those equations by relying on additional components. FPC2, 

which had the second highest correlation with peak power, mainly described the 

variance in the impact acceleration spike’s magnitude. Other FPCs were harder to 
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interpret from inspection as they became increasingly nuanced, even when revised 

with varimax rotations. However, the models utilised many components to make the 

most accurate predictions (12–29 FPCs).  

VI. How does sample size and composition affect the model’s predictive error, 

and can data augmentation bring worthwhile improvements in accuracy? 

The model’s predictive error declined with increasing sample size in an approximately 

logarithmic fashion with a slowing rate of improvement. At its full size, the 

training/validation data set with 275 jumps from 60 participants was not sufficient to 

achieve the target error of 1.75 W·kg-1, as discussed above. Therefore, it was necessary 

to estimate the likely sample size required based on an extrapolation of the model’s 

learning curve (Figure 8-3). The best estimates suggested around 740 participants 

might be required, although the figure could exceed 1000 (Table 8-2). Nevertheless, it 

is clear that in practical terms, the final model developed in this thesis would not be 

capable of meeting the minimum level of accuracy. However, the analysis did show 

that the models had performed close to their full potential, giving reassurance that the 

investigation as a whole had sufficient data to draw valid conclusions.  

The analysis also had broader implications for machine learning, as the resampling 

method revealed several facets of the model. The model learned more from different 

individuals than it did from additional trials from the same person, beneficial though 

they were (Figure 8-4). This evidence suggested the model benefitted from 

heterogeneity (a greater mix of participants), but the specificity principle still applied 

in the sense that errors were lower when there were more observations in a certain 

peak power range. In other words, the participants for training and validation should 

ideally have similar athletic abilities to those in the target population. If such 

volunteers are not available in sufficient numbers, data augmentation cannot fully 

compensate as the improvements in accuracy are relatively modest. 
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9.3 Methodological considerations 

It is worth reviewing the methods employed, considering their strengths and 

limitations, and reflecting on their appropriateness to the research undertaken. This 

section will address the choice of sensor, FPCA for feature extraction, the novel 

optimisation procedure and the framework of nested cross validation, including the 

importance of the model function structure. 

9.3.1 Sensor 

In this thesis, the aim was to capture the characteristic patterns of movement from 

body-worn sensors in a new approach to estimating peak power output in vertical 

jumping. By identifying patterns instead of computing kinetic variables, the problems 

associated with the Newtonian methods could be avoided. In that sense, the orientation 

of a sensor was less of a concern, and so using a more sophisticated IMU coupled with 

an appropriate fusion algorithm was not required. 

Accelerometers have been used more extensively than gyroscopes for activity 

recognition and predicting VGRF-related measures (Ancillao et al., 2018; Cust et al., 

2019). Considering the nature of the CMJ, an in-place, explosive movement upward, 

it appeared that inertial accelerations would be the key factor in power production. 

Angular velocity would play a minor role, perhaps only in the rotation of the trunk in 

the sagittal plane through the propulsion phase. At the same time, the Delsys Trigno 

sensors offered the advantages of automatic and ongoing synchronisation of all sensors 

with the force platforms, solving a key technical challenge. As the subsequent analysis 

showed, the sensor’s changing orientation was only a minor concern. The resultant 

signal yielded more accurate models than those based on the triaxial data, but only 

marginally so. When the FPCs based on the triaxial signal were used, the analysis 

showed that ten components related to approximately the vertical direction (X-axis) 

while two concerned the (approximate) anterior direction (Z-axis). Hence, the relevant 

patterns of inertial acceleration were predominantly along one axis, making the 

resultant a reasonable choice. This finding may not apply to other activities because 

the countermovement jump without arm swing is a well-controlled movement with 

limited degrees of freedom. The participants moved mainly with the same pattern, 
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greatly reducing the confounding effects of the sensor’s changing orientation because 

all signals were affected in a similar way. This analysis was based on the LB-sensor 

data, but the Z-axis accelerations recorded by the UB sensor may play a greater role in 

an equivalent model. The UB sensor would experience greater tangential accelerations 

from the trunk’s changing inclination during the jump, assuming the trunk behaves 

broadly as a rigid segment with the fulcrum at the hip joint. The UB-resultant 

acceleration may not be such a good representation of the movement as it was for the 

LB sensor, which may explain why UB-attached sensors were less accurate.  

9.3.2 FPCA for feature extraction 

FPCA was chosen as the feature extraction method because it had proven itself capable 

of identifying the characteristic features of time series data in many biomechanical 

applications (Section 2.5.2). The relevant literature also included studies specifically 

on the CMJ in which regression models had achieved high levels of accuracy in 

predicting jump height (Moudy et al., 2018; Richter et al., 2014a). As a data reduction 

technique, it could characterise a VGRF or acceleration curve with a small number of 

components. It made interpretation more intuitive, helping to reveal how the model 

worked rather than treating it as a black box. Various machine learning models could 

be trialled with moderate demands for data compared to neural networks. It was also 

computationally tractable to run a more extensive optimisation procedure with full 

nested cross validation. In short, FPCA had a significant bearing on the choice of 

subsequent methods. 

FPCA depended on the curves having a high degree of alignment in the time domain. 

Aligning the curves at take-off was the most effective way of achieving this. This 

approach was particularly well-suited to the CMJ as the propulsion phase’s timing is 

generally consistent. This approach may work well with other jumps and other 

explosive movements due to feed-forward neuromuscular control, reducing variability 

(Bobbert & van Ingen Schenau, 1988; van Soest et al., 1994). However, more 

generally, the versatility of FPCA is limited by its need for curve alignment, or in other 

words, its time invariance. Curve registration can partially realign curves based on 

common landmarks, as it did for the VGRF curves, but there was no satisfactory 
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solution for the acceleration curves. Registration was also computationally intensive, 

limiting its practical use even if suitable landmarks can be identified.  

FPCA, and more generally PCA, is limited by being a linear decomposition. The 

projection onto a lower-dimensional subspace is defined by orthogonal hyperplanes, 

which further assumes the component scores have a Gaussian distribution (Bishop, 

2006). These properties of PCA make it easy to fit and analyse the data, offering 

insights into the internal workings of the model, as was demonstrated in Chapters 6 

and 7. But the principal components are unsophisticated features, lacking depth, and 

as such, they may not relate as well to the true characteristics of the data. Hence, the 

very low correlations with peak power output for all but the first two or three 

components (Figures 7–2, 7–3, 7–4). It also follows that the available features 

necessarily limit the complexity of ML models. Therefore, further improvements in 

model accuracy may come from nonlinear representations (Section 9.6). 

9.3.3 Novel optimisation procedure 

It was essential to find optimal values for the model function’s parameters as its 

predictive performance was strongly dependent on them. The optimisation procedure 

incorporated three best-practice elements. It identified new observations with a 

random search, a more efficient technique for a multidimensional space than a grid 

search. From observations, the procedure constructed a Gaussian process model to 

represent the behaviour of the objective function (model function) using the same 

specification as that used by Matlab’s Bayesian optimiser. The surrogate model’s 

optimum was identified using the Particle Swarm algorithm, an efficient global 

optimiser. 

It had become necessary to devise this approach because the Bayesian optimiser’s 

results were not consistent when repeated with the same data set. The principal reason 

was that the objective function was noisy due to the sampling variance from the model 

function’s MCCV procedure. It is a known issue with Bayesian optimisers, which was 

addressed here by conducting more extensive searches. Such an approach was only 

made possible by freeing the optimisation from the overhead of having to evaluate the 

computationally demanding acquisition function, whose cost grew exponentially with 
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each observation (Appendix E.5). The novel optimisation procedure instead relied on 

a random search that was progressively constrained to promising regions of the 

parameter space, guided by interim surrogate model predictions. As a result, the 

optimisation procedure could perform many times more iterations to pinpoint the 

global minimum more consistently with relatively moderate cost. One of its key 

benefits was the parameter distribution plots whose peak value identified the apparent 

optimal value (Cawley & Talbot, 2010; Krstajic et al., 2014; Varma & Simon, 2006), 

which was preferable to the bagged value when evaluated using the 1000-iteration 

MCCV procedure. In conclusion, the novel optimisation procedure produced more 

consistent outcomes at a moderate additional cost. It also revealed a greater insight 

into the model itself. 

9.3.4 Nested cross validation 

In this thesis, it was considered essential to develop a rigorous framework for selecting 

and appraising the models so the results would be representative of the model’s 

performance on unseen data. The previous peak power prediction equations had not 

met this standard, even though some form of cross validation had been employed. 

Consequently, their reported errors were negatively biased (over optimistic), which 

only became apparent when those equations were tested independently on other 

groups. Nested cross validation was adopted for this investigation because it produces 

unbiased error estimates by separating model selection entirely from model appraisal 

(Section 2.6.2). It provided the structure that allowed repeated independent validations 

of the model with different subsamples of the data. Moreover, NCV appraised the 

whole modelling process and not just the model itself. 

This thesis turned those ideas into a practical approach that was more extensive than 

in previous research. As defined in Chapter 1, the model function included all aspects 

of the modelling procedure, from data preprocessing and augmentation to feature 

extraction and selection, finally running the model itself in an inner cross validation 

loop. Whilst it is entirely possible and even likely that many others have created similar 

NCV implementations, NCV is relatively scarce in the literature despite its long 

understood advantages (Stone, 1974). The studies that have used it typically only 
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wished to demonstrate its capabilities with one or two parameters (e.g. Cawley & 

Talbot, 2010; Krstajic et al., 2014; Varma & Simon, 2006). In contrast, the model 

function in this thesis was driven by around 40 parameters in total, although only a 

few were manipulated at any one time. The model function was designed and 

implemented in Matlab to be driven by a global optimiser, such as the Matlab Bayesian 

optimiser, or by the novel optimisation procedure. It provides a framework for other 

researchers wishing to implement NCV. 

Inevitably, the costs of running the model function were higher than the model itself 

due to the need to repeat the same preprocessing procedures that might otherwise have 

been carried out only once upfront. Nevertheless, the increase in computational cost 

was typically two to three times if augmentation is included. The higher cost became 

apparent when the model function was called thousands of times. Nevertheless, it is 

argued that these costs were justified in order to maintain the hermetic separation 

between model selection and appraisal so that the results had integrity. In this way, an 

effort was made to avoid making (unwittingly) over-optimistic claims of the 

accelerometer models’ capabilities.  

These results were supported by the holdout test that traditionally has been seen as the 

true independent test but is seldom undertaken in biomechanics research. 

Notwithstanding the merits of NCV, the holdout test perhaps still maintains its status 

because it so clearly and unambiguously is independent. It does not depend on trust 

that NCV is correctly implemented without inadvertently sharing data in some way. In 

this thesis, the holdout errors were quite similar to the NCV ones, indicating no such 

programming error. However, the holdout errors were less reliable because the test 

data set was small. It was clearly an independent test, but not necessarily a 

representative one. That is why the nested cross validation results should be preferable. 

Without the influence of selection bias, the errors may have been misleadingly smaller. 
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9.4 Challenge of sensor-based prediction 

Aside from modelling considerations, it is worth reflecting on the challenges inherent 

in replacing a gold standard method with a less accurate alternative, especially one 

based on wearable sensors. 

9.4.1 Errors in practice 

In an athlete-testing regime, there will be a natural variation in test performances. The 

measurement error introduces another layer of variability on top, adding to the total 

measurement error, called the typical error in statistics (W. G. Hopkins, 2000). The 

implication of using an alternative method to the gold standard is that the typical error 

would be larger, reducing the test’s sensitivity. In vertical jump testing, using a sensor-

based method may be more convenient, but it would be harder to detect real changes 

in an athlete’s peak power output, such as in response to a training programme or due 

to fatigue. What this means in practice can be understood by working through an 

example. 

From Chapter 3, the within-subject variation for the CMJNA after taking account of 

known quantified factors was estimated at 4.0% ( TrueCV ), based on the VGRF data. 

The variation arising from measurement error was 5.8% for the accelerometer model 

( ModelRMSE ), so the observed coefficient of variation is: 

 2 2 2 2 1

Obs True ModelCV = CV +RMSE 4.0 5.8 7.0% 3.2 W kg−= + =    (9.1) 

Table 9-1 presents a series of examples of an apparent improvement in CMJNA peak 

power for an athlete based on two jumps, one before and one after a supposed training 

programme intended to increase power. In the pre-intervention test, their peak power 

is estimated at 45 W·kg-1 (also the mean value from the data collection). For the post-

intervention jump, several hypothetical scenarios are considered where the estimated 

peak power ranges from 46 W·kg-1 to 53 W·kg-1. The significance of a change is 

whether it exceeds the smallest worthwhile change (SWC) that was estimated at 

1.1 W·kg-1 (Chapter 3). Hopkins (2004) provided the formulae for calculating the 

probability of there being a substantial change (> SWC) and the rules-based inference. 
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Table 9-1. Illustration of the statistical inference that may be made on the measured change 

in peak power output between two CMJ tests based on either the best GPR accelerometer 

model or a force platform.  

Peak Power Sensor-based Model Force Platform 

Change 

(W·kg-1) 

Likelihood of 

Substantial 

Increase † 

Inference ‡ 

Likelihood of 

Substantial 

Increase † 

Inference ‡ 

45 → 46 49% ? 48% ? 

45 → 47 58% ? 64% ? 

45 → 48 66% ? 77% ↑↔ 

45 → 49 74% ? 87% ↑↔ 

45 → 50 80% ↑↔ 94% ↑↑ 

45 → 51 86% ↑↔ 97% ↑↑ 

45 → 52 90% ↑↑ 99% ↑↑ 

45 → 53 94% ↑↑ 100% ↑↑ 

† A substantial increase is defined as a greater than a 90% chance that the true change in peak 

power exceeded the SWC (Hopkins, 2004). 

‡ Inference of a real change: ? Unclear; ↑↔ Possible increase; ↑↑ Very likely increase. 

SWC = 1.5 W·kg-1; Typical Error = 3.3 W·kg-1 (Sensor-based Model); 2.1 W·kg-1 (Force Platform) 

Typical error includes not just measurement error but many sources of performance variability. 

Any increase in peak power recorded by the force platform may naively be taken at 

face value since it is the gold standard. Yet, in reality, the apparent improvement may 

be an illusion due to natural variations in performance from jump to jump. The analysis 

shows that no worthwhile change is discernible when using the accelerometer model 

until it exceeds 4.7 W·kg-1, but with a force platform, the difference may be larger than 

the SWC when the true increase rises above 2.2 W·kg-1. In contrast, a practitioner 

cannot be sure of the change (90% probability) until the true differences exceed 

7.0 W·kg-1 and 4.4 W·kg-1, respectively. Thus, the sensor-based system is much less 

sensitive than the force platform to the actual changes, based on a one-off comparison. 

However, regular tests would be conducted in practice, which could mitigate their lack 

of sensitivity to some extent. These examples demonstrate how difficult it would be 

for a practitioner to have confidence in the sensor-based estimates of peak power based 

on a model with this level of accuracy. As Equation (9.1) indicates, reducing the 

model’s error brings nearer the possibility of using sensor-based methods. However, 

there are two fundamental problems with sensor-based measurement that may limit 

further reductions in error that should be considered: the complications of movement 

variability and whether the sensor data contains the necessary information. 
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9.4.2 Movement variability 

The degrees of freedom in the jumping movement allows many different ways to 

produce the same peak power output. Movement variability in jumping has been 

observed in terms of variation in the sequencing and timing of joint reversals in the 

shoulder, hips, knees and ankles (J. Jensen et al., 1989). Participants unconsciously 

prefer to employ a sub-optimal countermovement depth to retain flexibility in the 

system to respond to changing internal and external conditions  (Bobbert et al., 2008). 

When recovering from heavy fatigue, athletes could return to nominal peak power 

levels by altering their movement patterns despite other measures indicating fatigue 

was still present (Gathercole et al., 2015).  

Movement variability poses a problem for a sensor-based approach to testing because 

the sensor experiences greater variance in its movements than is present in the 

performance outcome. The locomotor system exploits the degrees of freedom 

available to achieve the high degree of control necessary for when it generates 

maximum force in the propulsion phase (Latash, 2012; van Soest et al., 1994). 

Consequently, for a sensor attached to a body part, variability may be even greater if 

the local dynamic behaviour is geared towards controlling the movement to fulfil a 

targeted objective (Bartlett et al., 2007; Davids et al., 2003; van Emmerik et al., 2016). 

Hence, sensor-based methods may be more susceptible to movement variability than 

force platforms depending on the anatomical location and its role in motor control. 

This point goes beyond traditional concerns of skin-movement artefacts in the data 

where the sensor moves relative to the skeleton underneath due to soft tissue 

movement and resonant oscillations, as discussed previously (Section 5.4.6). 

Movement variability was enough to discourage researchers in the past from using the 

VGRF profile as a diagnostic tool in jumping (Dowling & Vamos, 1993). 

This situation still arose in a simplified jumping movement constrained by the 

participants placing their hands on their hips, despite jumping with arms being a 

natural choice. Efforts were made to counter these difficulties by identifying the best 

anatomical location for sensor attachment and the best jump type. Predictions of peak 

power were more accurate in the CMJNA than in CMJA, as expected. It was notable 

that heavily smoothing the accelerometer signal was advantageous as it may have 



Section 9.4.3 

Page 266 

removed extraneous movements related to movement control rather than those directly 

related to the performance outcome. The model also relied on characteristics 

describing the flight time and landing, which are not connected to the variations in 

how peak power was achieved. However, the dynamics of landing would have 

incorporated variability, perhaps more so than in jumping. Despite such 

considerations, movement variability compounds the difficulty of translating those 

inertial accelerations into whole-body performance metrics. Further research is needed 

to investigate this issue further, as greater understanding may help inform machine 

learning methods in biomechanics. 

9.4.3 Information in the signal 

There is a more fundamental question as to whether the sensor data contains the 

information needed to determine the performance outcome. If it does, it would be 

theoretically possible to achieve the precision needed for predicting performance 

metrics, provided the technical means can be found. But if not, even the perfect model 

with its ideal feature extraction algorithm may not be able to achieve the precision 

required when determining peak external power or other such performance measures. 

This thesis and other studies (Table 2-4) have demonstrated with the models that there 

are complex relationships between inertial accelerations and various discrete VGRF 

measures. However, it is far from clear whether it will be possible to achieve the 

desired accuracy level for performance metrics in jumping or other activities based on 

body-worn sensor data.  

It was noted from the outset that a sensor attached to a body segment could not follow 

the same trajectory as the whole body’s CM. Thus, peak power estimates obtained 

with Newtonian methods could not be the same as the whole body’s peak power output 

acting through the centre of mass, notwithstanding concerns over changing orientation 

and movement artefacts. The pattern-based approach in this thesis was more successful 

because characteristics in the recorded inertial acceleration bore relationships to peak 

power in various forms, which the GPR model combined appropriately. It picked out 

the indicators of higher-powered jumping, the most prominent of which were 

approximations of flight time and impact peak acceleration, as well as many others 
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that were harder for a human investigator to discern. Such characteristics appear to 

work well for classification problems as they act like signatures, distinguishing one 

class of activity from another. However, in the case of regression, the problem is 

significantly harder because it is not enough that those characteristics are present; they 

must also provide some indication of scale so that the model can compute the 

magnitude of the performance. FPCA worked well in this respect because its FPC 

scores provided a scale for the feature, translating to the inertial acceleration’s 

magnitude. In summary, performance prediction from sensor data is a demanding 

problem, but ultimately accurate prediction may not be possible if the information is 

not present.  

9.5 Practical applications of the research 

Several key findings can be drawn from this thesis that may be of benefit to sports 

scientists and data scientists. For the purpose of athlete monitoring, there may be merit 

in classifying the accelerometer model’s predictions into different bands rather than 

using the imprecise peak power values. This approach could be based on similar 

principles used above in Table 9-1 to classify the jump test result into no change, a 

significant increase or a significant decrease. It would be less sensitive than the force 

platform, but it would give the coach the information they would need with the desired 

convenience. It would still be a regression model, not a classification model because 

the performance classes would be individual-specific. All that would be required 

would be to add some logic to classify the regression model’s estimate and present it 

to the user. 

The results point to using the lower back as the preferred sensor attachment location 

rather than the upper back due to its proximity to the body’s CM. This is an argument 

against taking advantage of the standard housing on the upper back commonly used 

for GPS tracking sensors. Caution should be exercised when working with measures 

obtained from IMUs housed in this way on the upper back. Although this finding is 

based on peak power output in the vertical jump, it may well have wider applicability 

because power generation itself is integral to explosive sporting movements. When 
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such considerations are made, it should be noted that data collection procedures, well 

designed and executed, have a much greater bearing on the model’s output. Machine 

learning models depend on the sensor data containing the relevant information.  

The resultant accelerometer signal can capture the movement’s essential 

characteristics, despite the data not having directional information. Such information 

may contain spurious artefacts, so their absence helps to simplify the model to prevent 

overfitting. This recommendation is based on a controlled jumping movement with 

limited degrees of freedom in which individuals follow similar, regularised patterns of 

movement. In fact, many sporting movements could be described in this way where 

there is a commonly agreed template for the execution of the skill. This description 

could apply to running, kicking, throwing, rowing, cycling, swimming, and various 

types of jumps in volleyball and track and field (e.g. high jump, long jump, hurdling, 

etc.). In other situations where the movement is more irregular, IMUs may be more 

suitable to provide angular velocities or directional information (if fusion algorithms 

are sufficiently responsive). 

FPCA can be a useful feature extraction method in situations that naturally place the 

time-series curves in close alignment with one another. Curve registration is quite 

limited in its effectiveness, especially with highly variable sensor data. Instead, 

aligning the curves at take-off in the vertical jump ensured close alignment in the 

period of interest when power output reached its peak. This approach would apply to 

other explosive movements where feedforward, self-organising mechanisms closely 

control the movement (Beek et al., 1995; Kelso, 1995; van Ingen Schenau, 1989; van 

Soest et al., 1994). It may also apply to cyclical movements, depending on their 

regularity. 

It is recommended that the model function design framework should be adopted for 

model selection and optimisation as part of the nested cross validation framework. In 

this thesis, the AM function incorporated all aspects of data preparation, partitioning, 

modelling and (inner) cross validation. The whole modelling procedure should be 

assessed and optimised, not just the model itself. The novel optimisation procedure 

provided the means for doing so, achieving more consistent outcomes than the 

Bayesian optimiser. However, the parameters for optimisation should be limited to 
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prevent the search space from becoming too extensive. The parameters can be 

identified using a GLM from an initial survey. The GPR model, with its Bayesian 

approach, is also worth considering a candidate model, as it outperformed LR and 

SVM models in this study, two popular algorithms.  

9.6 Future directions 

FPCA-type models may be applied to other activities such as walking or running, 

having proved their worth with the CMJ, which served as an exemplar movement. 

There is considerable interest in peak forces and loading rates in human locomotion, 

such as in running, where the literature has focused on performance-related 

characteristics or indicators of injury risk (e.g. Cavanagh, 1987; Ferber, 2006; Nilsson 

& Thorstensson, 1989; van der Worp et al., 2016). The CMJ is a well-controlled 

movement with limited degrees of freedom, but other dynamic movements may be 

much more challenging. In situations where curve alignment cannot be so easily 

achieved, acceleration time series could be represented as a linear combination of 

wavelets. Wavelet scattering is a time-invariant method that can adapt to features 

positioned at different points on the curve (Andén & Mallat, 2014; Mallat, 2012). Its 

flexibility may be more suitable for highly variable accelerometer signals.  

This thesis has thoroughly investigated FPCA as a feature extraction method, but 

future research may need to turn to other methods to achieve higher levels of accuracy. 

Popular as it is in biomechanics and effective as it has been shown to be for machine 

learning, FPCA lacks the sophistication of state-of-the-art techniques. PCA methods 

project data onto fixed linear manifolds (hyperplanes), but real data often reflect the 

influence of low-dimensional nonlinear manifolds (Bishop, 2006). Without such 

flexibility, the encoded features may not fully reflect the latent characteristics of the 

system. Independent Component Analysis (ICA) provides a step-up in sophistication, 

allowing components to be blended together without the requirement for orthogonality 

or a Gaussian distribution, but ICA has been superseded by autoencoders thanks to 

significant advances in recent years (Creswell et al., 2018; Goodfellow et al., 2016).  
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Autoencoders (AE) are feedforward neural networks that perform a nonlinear 

dimensional reduction by passing data through a bottleneck in the (undercomplete) 

network topology (Hinton, 1990). The decoder following the bottleneck reconstructs 

the data from the encoded features. The encoded representation has been shown to 

yield a smaller reconstruction error than PCA when using the same number of 

dimensions (Hinton et al., 2006). Moreover, by channelling data through a bottleneck, 

the network has to learn a lower-dimensional encoding that captures the essential 

characteristics of the data. Thus, AEs could be a powerful alternative method for 

feature extraction for the sensor data. Research should determine the best encoder 

design for data in this context, considering the depth of the network and various 

techniques to guard against overfitting, such as denoising, regularisation and the use 

of sparsely activated nodes (Goodfellow et al., 2016).  

Autoencoders may be considered a form of unsupervised learning, as with PCA, in the 

sense that the encoding is made irrespective of the outcome variable. As a result, the 

encoded features may not be an ideal representation for the problem in question. 

Alternatively, DNNs are supervised as they are trained to minimise the outcome 

prediction error, and so the network learns to encode features tailored to the specific 

problem. A recurrent network design such as an LSTM would appear to be a sensible 

choice for a time series input. LSTMs have been applied before to inertial sensors for 

activity recognition where they outperformed non-recurrent DNNs (Ordóñez & 

Roggen, 2016). No prior feature extraction method would be required since the 

network would perform its own feature encoding internally. However, early 

investigations with LSTMs for this thesis did not yield promising results with raw or 

smoothed accelerometer data as inputs. A better architecture design is required that 

will need to be determined by a suitable optimisation procedure such as Bayesian 

optimisation or genetic algorithms, which has been employed successfully for DNNs 

(Bouktif et al., 2018; Domhan et al., 2015; Olson et al., 2016). Although LSTMs may 

be a reasonable first choice, non-recurrent networks such as convolutional networks 

(CNNs) are still worth considering. The time-dependence element may be less 

important once the signals have been aligned in wearable sensor applications, as was 
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the case in this thesis. Other studies for activity recognition applied CNNs to a fixed 

time window of accelerometer data (Kautz et al., 2017).  

Although AEs and DNNs have greater sophistication, they typically have many 

hundreds or thousands of hyperparameters that require tuning, pushing up the demand 

for higher data volumes. Nevertheless, more advanced data augmentation methods 

have emerged based on generative models that can produce realistic synthetic data 

(Creswell et al., 2018). Variational Autoencoders (VAEs) draw from the encoded 

features’ distribution to construct new data (Kingma & Welling, 2014). In principle, 

these methods should work well because proximity in latent space corresponds to 

similarity in the data space, unlike with FPC space due to the descending importance 

of each dimension (component). Thus, research should investigate how much more 

effectively augmented sensor data can be produced using VAEs. Essentially, it would 

mean replacing one feature representation for a more sophisticated one but applying 

the same principles described in Chapter 8. 

Synthetic data can also be produced using Generative Adversarial Networks (GANs) 

(Goodfellow et al., 2014), which can produce remarkably realistic data. GAN research 

initially focused on image processing and natural language processing, but recurrent 

GANs for time series data have now been developed (Wen et al., 2021; Yoon et al., 

2019). Conditional GANs (CGANs) can produce synthetic data for a given class, 

which is suitable for classification problems (e.g. Smith & Smith, 2020), but 

generating data associated with a continuous variable has been a more fundamental 

problem. However, new research has proposed regression CGANs, the most promising 

technique being feature contrasting (Aggarwal et al., 2020; Olmschenk et al., 2019; 

Rezagholiradeh & Haidar, 2018). Thus, it is now possible to produce synthetic data 

for a desired value of the continuous outcome variable. With few applications thus far, 

there is a considerable opportunity to develop this technique for inertial sensor data. 

Hence, it should be possible with further research to produce accelerometer signals for 

a given peak power value. These synthetic data should be of a much higher quality 

than was possible in Chapter 8 and thereby help improve the model’s predictive 

accuracy. However, a note of caution is needed as training GANs can be problematic 

due to instability and non-convergence. Nevertheless, a consensus is emerging on the 
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best approaches, with many examples of how researchers have stabilised their GANs 

(Wiatrak et al., 2020).  

Future research could investigate using AEs to predict the VGRF profile rather than 

discrete performance measures as the shape and magnitude of the force-time curve is 

as important as the precise value at any one point. There has been considerable work 

in this area, but the problem is not yet solved (Section 2.4.22.4.2). Autoencoders may 

offer a more elegant solution by transforming accelerometer data to VGRF data. 

Typically, AEs are trained with a loss function measuring the dissimilarity between 

input and output, where the latent feature encoding is of interest. However, if the loss 

function were redefined as the RMSE with the true VGRF, or some other suitable 

measure of dissimilarity, the AE would learn a suitable transformation function. 

Hence, using the acceleration curve as input, the AE could produce the corresponding 

VGRF curve output. The same principles underpin transformation functions in image 

processing (e.g. colourisation) (e.g. Isola et al., 2018) and neural language translation 

(e.g. Cheng, 2019). An exploratory investigation before writing this thesis 

demonstrated that a feedforward network could transform accelerometer FPCs scores 

into VGRF FPC scores. Despite being based on a simple linear encoding, the 

reconstructed VGRF curves had a high degree of fidelity (r = 0.96; mean 

RMSE = 0.05 BW). Future research could take a more sophisticated approach by 

developing AEs to perform this task. This idea could be taken further by using 

conditional AEs that factor in additional inputs such as the relevant participant 

characteristics – for example, body mass or limb lengths may be relevant factors. This 

transform could also be reversed so that an AE could use VGRF data to generate 

synthetic accelerometer data. Once the transform is learned, the AE could be used for 

data augmentation by exploiting the extensive archive of VGRF data accumulated 

from previous research. 

In summary, there are several promising areas for further research to investigate how 

state-of-the-art techniques can be applied to inertial sensor data in biomechanics 

applications. FPCA worked well for the CMJ, a well-controlled movement with 

limited degrees of freedom, but as a linear decomposition, it had its limitations. More 

complex movements are likely to require more sophisticated latent representations if 



Section 9.4.3 

Page 273 

their associated performance measures can be determined with a sufficient level of 

accuracy. Hence, there is a considerable opportunity for biomechanical applications of 

machine learning. Although research has been dedicated mainly to classification 

problems, the field is still relatively immature compared to other disciplines such as 

image processing and natural language processing that were first to embrace these new 

techniques. Regression models are now rising to prominence in these fields, with 

enormous potential for applied biomechanics practice. There are new challenges in 

learning how best to harness these techniques to biomechanical problems, not least in 

developing optimal network architecture designs. For instance, GANs can suffer from 

instability and fail to learn. Their first use could be in generating highly realistic 

synthetic data to augment datasets and help improve model accuracy. But in a fast-

moving field, there may be many more innovative applications. 

9.7 Conclusion 

This thesis investigated a new method of predicting peak power in the CMJ using 

body-worn accelerometer data as a low-cost, field-based alternative to the force 

platform gold standard. Feature extraction was based on FPCA, a technique that has 

had notable success in a diverse range of biomechanical applications but hitherto has 

not been employed with machine learning models other than in simple linear 

regression. The models were more accurate than previously published methods based 

on equations using body mass and jump height, and Newtonian methods applied to 

sensor data. The final model also compared favourably to other biomechanical 

applications predicting VGRF-related discrete measures. Ultimately, the model could 

not achieve the accuracy required to make them a practical proposition for athlete 

testing. Nonetheless, this thesis has developed new approaches to optimisation and 

developed a more comprehensive framework for nested cross validation, the first to do 

so in biomechanics. With new nonlinear encoding techniques, there is a considerable 

opportunity to advance biomechanics practice further based on the similar approaches. 

The many techniques advanced in this thesis can be taken up by other researchers in 

their quest to develop sensor-based models for performance-measure prediction. It is 
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hoped this work will help the field continue to progress towards more accurate sensor-

based solutions.
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APPENDIX A. DATA COLLECTION METHODS 

This appendix presents further details on the data collection. 

A.1 Participants 
 

Table A-1. Participants assigned to the training/validation data set. 

ID § Sex 
Age 

(yrs) 

Height 

(m) 

Body Mass 

(kg) 

Primary Sport 

(Secondary)  

Primary 

Sport Level  

Protocol 

† 

No. 

Jumps ‡ 

1 M 24 1.75 62.4 Running Club A 8 

2 M 21 1.75 75.9 Rugby (Cycling) Club A 8 

4 M 22 1.84 76.5 Surfing Recreational A 8 

5 M 20 1.80 90.9 Rugby Club A 8 

6 M 20 1.80 59.8 Running Recreational A 8 

8 M 22 1.91 87.8 Football (Basketball) Club A 8 

9 M 27 1.85 99.5 Basketball Club A 8 

10 M 20 1.79 83.1 Football Club A 8 

12 M 21 1.82 84.4 Rowing National A 8 

13 M 21 1.87 66.6 Tennis Club A 8 

14 M 19 1.98 98.8 Volleyball Club B 16 

15 F 28 1.66 64.3 Running Recreational A 8 

16 M 35 1.88 94.8 Ice Hockey Club A 8 

19 M 24 1.77 72.4 Football Recreational A 8 

20 F 23 1.69 62.9 Swimming Club A 8 

21 M 27 1.76 98.6 Gymnastics (Rugby) National A+B* 16 

26 M 18 1.89 79.8 Football Club A 8 

27 M 19 1.81 71.7 Football Club A 8 

29 M 23 1.59 66.4 Kickboxing Club A 8 

30 F 33 1.77 69.9 Netball Club A 8 

31 M 18 1.81 66.1 Sailing National A 8 

32 M 19 1.88 94.4 Badminton Club A 8 

34 M 19 1.75 68.7 American Football Club A 8 

35 M 22 1.76 90.1 Triathlon National A 8 

37 F 22 1.67 55.2 Gym Recreational A 8 

38 F 19 1.62 49.3 Running Club A 8 

39 M 21 1.83 74.6 Rock Climbing Recreational B 16 

44 M 19 1.77 63.8 Football Recreational A 8 

47 F 20 1.65 61.9 Kickboxing National A 8 

49 M 19 1.80 93.2 Rugby (Taekwondo) Club A 8 

50 F 18 1.40 51.4 Tennis Club A 8 

53 F 19 1.57 52.0 Gym Recreational A 8 

56 M 19 1.81 66.9 Cricket (Running) Club A+B* 16 

57 F 20 1.74 58.1 Netball (Running) Club A 8 

58 F 20 1.67 68.4 Volleyball Club A 8 

60 F 25 1.75 68.9 Weightlifting Club A 8 

61 F 21 1.65 63.2 Gymnastics (Sprinting) National A 8 

63 M 20 1.72 62.4 Tennis (Long/Triple Jump) Recreational A+B* 16 

64 F 20 1.57 54.6 Kickboxing National A 8 

66 M 19 1.94 72.0 Football Club A 8 

68 F 23 1.77 100.0 Rowing Club B 16 

69 M 19 1.68 73.0 Gym Recreational A 8 

72 M 20 1.90 91.1 Rowing Club A 8 

73 F 25 1.65 70.8 Netball Club A 8 

74 M 21 1.65 73.5 Rowing Recreational A 8 
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ID § Sex 
Age 

(yrs) 

Height 

(m) 

Body Mass 

(kg) 

Primary Sport 

(Secondary)  

Primary 

Sport Level  

Protocol 

† 

No. 

Jumps ‡ 

75 M 23 1.66 56.2 Swimming Club A 8 

76 M 21 1.85 97.1 Rowing Club A 8 

77 F 23 1.68 66.6 Hockey Recreational A 8 

79 M 28 1.70 56.6 Volleyball National A 8 

80 M 19 1.73 81.6 Cricket (Jiu-Jitsu) Club A 8 

83 M 18 1.79 69.0 Hockey Club A 8 

84 M 22 1.78 77.2 Rugby Club A 8 

86 M 20 1.84 89.4 Football (Swimming) Club B 16 

87 F 21 1.62 60.1 Netball Club B 16 

90 F 18 1.61 74.6 Volleyball Club A 8 

91 F 21 1.65 69.8 Volleyball Club A 8 

94 F 26 1.58 62.4 Gymnastics Recreational A 8 

96 M 21 1.75 68.0 Volleyball Club A+B* 16 

† Protocol A = 8 CMJ (4-4 split with/without arms) + 8 broad jumps; Protocol B = 16 CMJ (8-8 split) ; Protocol A+B* 
(for returning participants) where B* = 8 CMJ (4-4 split). ‡ vertical jumps (CMJNA+CMJA). § Participants were assigned a 

random ID between 1 and 99, which accounts for gaps in the sequence. 

 

Table A-2. Participants assigned to the holdout testing data set. 

ID § Sex 
Age 

(yrs) 

Height 

(m) 

Body 

Mass (kg) 

Primary Sport 

(Secondary)  

Primary 

Sport Level  

Protocol 

† 

No. 

Jumps ‡ 

11 F 23 1.68 68.0 Netball (Cross Fit) Club B 16 

22 F 26 1.68 66.1 Hockey National B 16 

28 M 25 1.74 85.3 Rugby Club B 16 

40 M 19 1.67 68.5 Judo (Swimming) National B 16 

43 M 18 1.87 77.4 Swimming National B 16 

82 M 23 1.73 76.4 American Football Club B 16 

88 M 18 1.74 68.5 Football Club B 16 

95 F 25 1.69 87.6 Football Recreational B 16 

97 M 20 1.75 75.2 Basketball Recreational B 16 

† Protocol A = 8 CMJ (4-4 split with/without arms) + 8 broad jumps; Protocol B = 16 CMJ (8-8 split) ; Protocol A+B* 

(for returning participants) where B* = 8 CMJ (4-4 split). ‡ vertical jumps (CMJNA+CMJA). § Participants were assigned a 

random ID between 1 and 99, which accounts for gaps in the sequence. 

 

A.2 Force platforms’ calibration 

Two portable force platforms were calibrated using certified weights to produce 

criterion VGRFs of 0 N, 100 N, 200 N and 300 N. The VGRF measurements were 

averaged over a suitable steady-state period of 1–3 s. With both force platforms 

combined, the calibration measurements extended up to 600 N. A calibration equation 

for each platform on each day was formulated using a linear best fit based on the set 

of four criterion and practical VGRF measurements. The correlation coefficients were 

near perfect: r = 1.0000, to four decimal places in every case. The random errors for 

each force platform were 0.28 ± 0.32 N and 0.32 ± 0.32 N, respectively, when 

averaged across all days of testing. 
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A.3 Jump detection algorithm 

The following algorithm identifies the jump initiation point in the VGRF time series. 

It is adapted from the method developed by Owen et al. (2014) to handle the variety 

of VGRF patterns seen in 500+ jumps. Owen et al. (2014) defined the initial detection 

of movement as the first point where the magnitude of the net VGRF exceeded: 

Net ( )F t  > 5 × SD. The SD was taken over the first 1 s of measurement. However, the 

movement would have begun slightly earlier than the detection point, so Owen et al. 

(2014) assumed it was 30 ms earlier. Instead of making an assumption, an algorithm 

was devised for this thesis to find a more appropriate point using the VGRF curve. 

The algorithm worked backwards from the initial detection point to find the first point 

when Net ( )F t  < 0.5 × SD (Figure A-1A). (By working backwards, the inequality is 

reversed.) This smaller threshold was possible because movement had already been 

detected. A false detection would be when Net ( )F t  passes through zero, as illustrated 

in Figure A-1B, defined by Net ( )F t  > 4 × SD over the preceding 100 ms. If it did, the 

algorithm repeated the same procedure from the new earlier point; if not, the point was 

accepted. The algorithm produced backwards time offsets from the initial detection 

point of 70 ± 53 ms across all jumps, indicating this more adaptable approach was 

appropriate. 
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(A) 

 
(B) 

 
Figure A-1. Jump Initiation Algorithm – an example. Note the granular scale on the y-axes. 

(A) The initial detection of movement is made when the VGRF deviates from the estimated 

BW by > 5 SD. The BW is the mean VGRF over the first second. The SD is the standard 

deviation of VGRF over this period. The first detection of movement is not the best estimate 

for the timing of jump initiation. The algorithm works backwards to find where the VGRF 

has deviated by less than 0.5 SD. (B) This candidate for jump initiation at t = 2953 ms must 

be verified by working backwards further from this point to determine whether the VGRF 

remains within a 4 SD threshold for a minimum of 100 ms. In this example, it does not and 

passes below the 0.5 SD threshold another time (t = 2899 ms) before a valid jump initiation 

point is accepted at t = 2811 ms. 



Appendix B.1 

Page 279 

APPENDIX B. SENSOR SELECTION 

This appendix describes the selection of a suitable make and model of the sensor from 

the laboratory’s inventory. This involved considering the requirements for such a 

sensor followed by an investigation into their validity and reliability. For the purposes 

of comparison, a simple scoring system was devised to rank the sensors based on how 

well they matched up with the requirements.  

B.1 Requirements 

The following technical and functional requirements were considered in view of the 

intended application to detect vertical jumping movements. It was envisaged that the 

sensors would be attached directly to the skin of the participant at anatomical locations 

commonly used for wearable sensors in sport: the upper and lower back and the lower 

leg (Section 3.2.4). The following requirements were drawn from the literature, as well 

as from the manufacturers’ documentation.  

• Onboard sensors – triaxial accelerometers were required that measure linear 

acceleration accurately along orthogonal axes. Some sensors may also include 

gyroscopes, magnetometers which come under the more general category of 

inertial measurement units, but those capabilities were outside scope.  

• Mass – the sensors should be as light as possible, preferably much less than 

20 g, so they can be attached to the skin or clothing without adding an 

appreciable mass to the body or interfering with movement. A light sensor 

also has a higher resonant frequency, especially when compression is applied 

using strapping or bandages (Saha & Lakes, 1977). 

• Sensitivity Range – the accelerometers should have a linear response across 

the range of accelerations experienced during the movements under 

investigation. Preliminary investigations with the countermovement jumps, 

with and without arm swing, suggests that ±10g would be sufficient if the 

sensors are not attached to the wrists. 
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• Sampling Frequency – a high sampling frequency was required to record the 

jumping movement in sufficient detail. Based on conventional approaches for 

time normalisation, the sample should contain 100 points as a minimum, 

although more is desirable. Since countermovement jumps typically require 

~1 s from the first movement to take-off (Robertson & Fleming, 1987), 

100 Hz may be considered the lowest acceptable sampling frequency. 

• Calibration – all acceleration measurements must be calibrated since 

accelerometers produce an output voltage proportional to the inertial 

acceleration. The sensor control software may offer automated calibration as 

a feature, but otherwise, manual procedures will be required. 

• Acceleration validity – the measurement of acceleration at each time interval 

should be accurate, as expressed by the validity correlation. The validity 

correlation should exceed 0.995, which is classed as “excellent” (W. G. 

Hopkins, 2015). The random error should be less than the smallest 

meaningful difference. 

• Temporal validity – the accuracy of the times logged should be very high to 

ensure that measurements remain synchronised with other sensors. It is 

conventional in time measurement to state accuracy in terms of the accrued 

error (“drift”) as the variance in clock cycles every million clock cycles, 

expressing the error as parts per million (PPM) (Lombardi, 2008). For 

instance, a clock that drifts one second every month has an error of 0.4 PPM. 

Over the data collection session (< 1 hour), the drift should be less than the 

smallest meaningful time difference. The time resolution from the sampling 

frequency also imposes a lower limit on this meaningful difference. With a 

sampling frequency of 100 Hz, the time resolution would be 10 ms. Hence, 

for the drift to be less than 10 ms over one hour, the systematic error should 

be less than 2.8 PPM. 

• Temporal reliability – if the sensors’ measurement of time drifted from the 

actual time at a uniform rate (which may be specific to each sensor), then the 

drift could be corrected systematically. The piezoelectric crystal, which 

regulates the internal clock, oscillates with a resonant frequency that can vary 

to a small extent due to imperfections, temperature changes, mechanical 
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stresses and the electrical circuit design (Vig, 2000). These variances should 

amount to no more than 10 ms or no more than one time interval.  

• Synchronised data logging – the study requires multiple sensors to record 

accelerations concurrently, remaining synchronised with minimal time drift 

for the data collection session. Sensors that individually record data internally 

depend on their internal clocks’ accuracy to remain in sync with one another. 

Other sensor types transmit their data to a central data logging station ensure 

their data remains synchronised. 

• Simultaneous initiation – the sensors start logging data at the same time as 

each other. Some systems allow the user to configure and start multiple 

sensors at the same time.  

• Operating range – for sensors that transmit data to a central data-logging 

unit, the operating range becomes an important practical consideration. Jump 

testing takes place within the confines of the laboratory, where an operating 

range of 10 m is sufficient. 

• Data series partitioning – the start time and end times from each trial should 

be identifiable in the acceleration-time series, clearly and unambiguously, to 

facilitate the analysis. This requirement is met by default by systems that 

support individual recordings for each trial. For those that do not, a bespoke 

method would be required to identify each jump. Hence, data recorded in 

separate trials would have significant practical advantages.  

• Systems integration – sensor data will need to be cross-referenced with data 

from force platforms, requiring some level of integration between the 

systems. Integration may also facilitate synchronisation.  

• Data access – when dealing with accelerometers, occasionally, data turns out 

to have issues associated with it. If this only becomes apparent afterwards 

when the data is uploaded, the trial data may have to be discarded. However, 

for sensors that transmit their data continuously, issues may become apparent 

immediately so they can be resolved there and then during the data collection. 
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B.2 Sensor types 

The selection process considered three MEMS-type sensors (Micro-Electronic 

Mechanical Systems), representative of the range of types of sensors available.  

• Actigraph GT9X Link monitors (Actigraph Corp., Pensacola, FL, USA) 

were developed primarily for activity tracking and clinical and movement 

skills assessments. They include an accelerometer, gyroscope and 

magnetometer with a maximum sampling frequency of 100 Hz. The vendor’s 

ActiLife software configures and starts the sensors simultaneously while they 

are connected to the computer. The sensors calibrate themselves 

automatically and log data independently of each other. Hence, they depend 

on their internal clocks to stay in sync with one another. The sensors must be 

reconnected to the computer to upload their data once data collection is 

complete.  

• Wildbyte activity sensors (Wildbyte Technologies Ltd., Swansea, UK) were 

developed for tracking animal behaviour and migratory patterns. They 

include an accelerometer and magnetometer as well as GPS, temperature and 

pressure sensors. The accelerometer’s sampling frequency can be set up to 

800 Hz with other options at 160 Hz, 80 Hz and 40 Hz. As with Actigraph, 

the sensors record their measurements internally and can only be uploaded 

later, one sensor at a time. The operator must start each sensor separately 

using a microswitch. There is no automated calibration feature. 

• Delsys Trigno sensors (Delsys Inc., Natick, MA, USA) were developed 

primarily to measure the electrical activity of skeletal muscle 

(electromyography or EMG), but they also include triaxial accelerometers. 

The sensors transmit their readings to a Delsys base station continuously, 

which collates the data, ensuring it is synchronised. The vendor’s 

EMGWorks software can process the digital signals, but other systems can 

access analogue systems, allowing accelerometer data to be combined and 

synchronised with other data sources. Each trial can be recorded separately 

by starting and stopping data capture.  
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B.3 Assessment 

A points-based system was used to assess the three sensor types above. A priority 

(high, medium, and low) was assigned to each requirement. Points were assigned 

based on how well each sensor type met the requirement: 3 points for high compliance, 

2 points for medium and 1 point for low.  

B.3.1 Preliminary Assessment 

A preliminary assessment was made without considering temporal validity, temporal 

reliability and acceleration validity (Table B-1). The Delsys sensors meet the majority 

of the requirements and achieve the highest score. They offer practical advantages over 

the other two types in terms of bespoke sampling frequencies, data synchronisation 

and integration, real-time data presentation, and the partitioning of data collections 

into separate trials. However, they also have some limitations. With a range of ± 9g, 

the accelerometer is unlikely to be able to track rapid movements when the 

accelerometers are placed distally on the limbs where linear acceleration would be 

highest. Their operating range is limited to 20 m from the portable base station, which 

would impose restrictions on how and where the sensors can be used. For this selection 

exercise, the cost was not considered a factor because all three sensor types were part 

of the laboratory’s inventory. 

 



 

Table B-1. Preliminary assessment of the three sensor types. The importance of each requirement is indicated by its assigned priority. If the sensor type 

meets the requirement, indicated by an underline, the score for that requirement is added to the sensor type’s total. The requirements for temporal validity, 

temporal reliability and acceleration validity were not included. 

 Requirement Priority (Score) Delsys Actigraph Wildbyte 

Onboard Sensors Accelerometer High (3) 
Accelerometer 

EMG 

Accelerometer 

Gyroscope 

Magnetometer 

Accelerometer 

Magnetometer 

Mass < 20 g Medium (2) 13.2 g 16.1 g 6.5 g 

Sensitivity Range ≥ ± 10g0 
b High (3) ± 9g0 ± 8g0, ± 16g0

 c ± 16g0 

Sampling Frequency ≥ 100 Hz High (3) 250 Hz,(user-defined) a 30-100 Hz 5-800 Hz 

Calibration Automatic Low (1) Manual Automatic d Manual 

Synchronised Data Logging Synchronised High (3) Synchronised Independent Independent 

Simultaneous Initiation Synchronised Medium (2) Synchronised Synchronised e Independent 

Data File Partitioning Individual Trials Medium (2) Individual Trials All Trials f All Trials f 

Operating Range 10 m Low (1) 20 m Unlimited Unlimited 

Systems Integration Integrated Medium (2) Integrated g None None 

Data Access Real-time Low (1) Continuously Upload Upload 

 PRELIMINARY SCORE 19 15 12 

(a) For analogue signals– digital signals are fixed at 148.15 Hz; (b) Depends on context and anatomical location; (c) Secondary accelerometer; (d) Single value calibration: Z = 1g0, 

X = 0, Y = 0; (e) Up to 6 sensors at one time; (f) Individual trials must be identified and extracted; (g) With Vicon Nexus 2.5 
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B.3.2 Assessment of Temporal Validity and Reliability 

The sensors’ temporal validity and reliability were assessed in an investigation that 

compared the timing accuracies of vibrations generated by forceful impacts. The 

sensors detected the vibrations, as did a force platform which served as the criterion 

method (Appendix C). The findings were as follows: 

• The systematic timing errors (drift) were 1.2 PPM for Delsys (3.1 s per 

month), 1.5 PPM for Actigraph (3.9 s per month) and 11406 PPM (8.2 hours 

per month) for Wildbyte sensors. When corrected for drift, the random errors 

were 25 ms for Delsys, 21 ms for Actigraph and 124 ms for Wildbyte.  

• The Delsys and Actigraph sensors had high reliability equivalent to a 

variance of less than one time interval every 10 seconds. In terms of absolute 

time, the Delsys sensors had a smaller variance of 2.5 ms compared to 3.2 ms 

for Actigraph. The Wildbyte sensors were much less reliable, with timing 

variances equivalent to 7 time intervals over 10 seconds, or 28.4 ms in 

absolute time. 

• The Delsys sensors could run for over an hour, while the Actigraph sensors 

could run for around 50 minutes before temporal drift exceeded the tolerance 

level of 10 ms. The Wildbyte sensors’ unreliability was such that they could 

only be run for a little over 5 minutes before the timing variance became too 

great. 

The Wildbyte sensors fell far short of the requirements and were excluded from the 

second part of the investigation.  

B.3.3 Assessment of Acceleration Validity 

The acceleration validity investigation involved attaching the sensors to a spinning 

wheel that produced accelerations that could be measured accurately with a motion 

capture system (Appendix D). It established that the Delsys and Actigraph sensors both 

achieved excellent validity overall (r = 0.998). Nonlinearities were low for both sensor 

types, although the Actigraph errors were slightly larger at higher magnitudes. The 
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random errors of the Delsys sensors were lower than those for the Actigraph sensors 

(0.061g vs. 0.100g). The Delsys sensor had marginally the better validity, but either 

sensor type could be used for the study.  

B.3.4 Conclusions 

This selection exercise aimed to determine which of the three available sensor types 

would be best suited for recording participant movements in vertical jumps. The 

preliminary assessment above indicated that the Delsys sensors offered the best overall 

fit based on their technical specifications and functional capabilities. The Wildbyte 

sensors could not meet the temporal requirements. The investigation into acceleration 

validity found no clear difference between the Delsys and Actigraph sensors. In the 

final assessment (Table B-2), Delsys and Actigraph meet most of the requirements, 

but the Delsys sensors come out ahead overall. The stand out advantages of the Delsys 

sensors was the automatic synchronisation of accelerometer signals from all sensors 

and the ability to also synchronise them with the VGRF data from force platforms. 

Synchronisation also made it possible to capture separate recordings of accelerometer 

and VGRF data obviating the need to extract the jump measurements from long sensor 

recordings. The Delsys sensors were therefore chosen for the jumps study in this thesis. 

 



 

Table B-2 Final assessment of the three sensor types that include temporal validity and reliability, and acceleration validity. The mean of the main result is 

quoted for each category along with the score in brackets. Scoring: 3 = meets or exceeds the requirement; 2 = close to the requirement; 1 = falls short of the 

requirement; 0 = clearly fails to meet the requirement. 

  Requirement  Delsys Actigraph Wildbyte 

 PRELIMINARY SCORE 19 15 12 

Temporal Validity  Systematic Error ≤ 2.8 PPM 1.2 (3) 1.5 (3) 11406 (0) 

 Random Error ≤ 10 ms 2.1 (3) 2.5 (3) 12.4 (2) 

 Max Running Time ≥ 1 hour 1 hr 3 min (3) 50 min (2) 5 min (1) 

Temporal Reliability Inter-sensor Variance ≤ 1 time interval 0.8 (3) 1.3 (2) 7.1 (1) 

Acceleration Validity Validity Correlation ≥ 0.995 0.998 (3) 0.998 (3) n/a (0) 

 Dynamic Random Error ≤ 0.01g 0.061g (3) 0.100g (2) n/a (0) 

 FINAL SCORE 37 30 16 
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APPENDIX C. SENSOR TEMPORAL VALIDITY AND 

RELIABILITY 

This appendix describes the investigation into the temporal validity and reliability of 

three types of sensors as part of the sensor selection exercise. Appendix B sets out the 

requirements and describes the three sensor types under investigation: Delsys, 

Actigraph and Wildbyte. 

C.1 Methods 

The approach taken was to compare the timings of impact vibrations that would be 

detectable by the sensors and force platforms almost simultaneously. Six sensors of 

each type, 18 in all, were placed on an MDF wooden board (340 mm × 270 mm 

× 17 mm, 0.98 kg) on top of a Kistler force platform embedded into the floor (model 

9281EA, 600mm × 400 mm; Kistler Instruments UK Ltd., Hook, UK) – Figure C-1. 

The force platform (1000 Hz) was connected via a Kistler control unit (model 5233A) 

and an analogue-to-digital converter.  

 

 

Figure C-1. The sensor layout on a wooden board, which was placed on top of the force 

platform. Top row: Actigraph sensors; middle row: Delsys sensors; bottom row: Wildbyte 

sensors. 
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Timing signals were generated by striking the board with one end of a steel bolt (mass 

157 g). The vibration from the impact would be detected almost instantaneously by 

the sensors and the force platform underneath (<0.025 ms based on the speed of sound 

through hard wood). The vibration signals in the VGRF were the criterion measure of 

time, which was assumed to have a temporal error of 1 PPM, the typical standard for 

computer-grade piezoelectric crystals (Marouani & Dagenais, 2008). Timing signals 

were produced approximately every 10 seconds over 15 minutes, making 90 signals in 

all. The impacts were evident in the acceleration and force traces as sudden sharp 

spikes. The time of each impact was when the force/acceleration rose above the noise 

level. The timing resolution was therefore governed by the sampling frequency (i.e. 

force platform = 1000 Hz, Delsys = 250 Hz, Actigraph = 100 Hz, Wildbyte = 160 Hz).  

C.1.1 Temporal validity 

Linear regression models were developed for each sensor to predict the criterion time 

(from the force platform) based on the sensor’s timing. Each model was based on a set 

of 97 criterion and sensor times. The systematic error, equivalent to the timing drift, 

was defined as the slope minus one, expressed as a percentage. With perfect agreement 

– no drift – the slope of the best fit straight line would be one. The random error was 

defined as the standard error in the estimate (SEE). The random error’s confidence 

interval was based on a chi-squared distribution as the lower bound is zero. The 

intercept gave the predicted time when the sensor’s time was zero. The intercept was 

the signal processing delay for the Delsys sensors, which had started simultaneously 

with the force platform. All confidence limits were set at 90%. 

Using the above linear models to predict the correct time may not eliminate the timing 

drift entirely because there is uncertainty in the systematic error’s precise value. If the 

systematic error estimate differs from the actual drift, there would be a growing 

divergence between the corrected time and the criterion time. When the cumulative 

drift exceeds the smallest meaningful time difference (10 ms), the sensor would need 

re-synchronisation. This point is effectively the maximum running time (MRT). It was 

estimated for each sensor by dividing the smallest meaningful difference by half the 

confidence interval of its systematic error. The representative MRT for the sensor type 
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was defined as the lower confidence limit (i.e., the shorter time) of the mean MRTs of 

all six sensors. The mean MRT’s confidence limits were based on a chi-squared 

distribution since the MRT is bounded at zero, i.e. it must be positive.  

The models’ residuals, the differences between predicted times and the actual times, 

increase over time. This cumulative error inflates the random error, but it is not an 

artefact of the sensors or the experimental method. A second linear regression was 

performed to remove each sensor’s cumulative error by using the time gaps between 

successive timing signals. Thus, all times were around the 10-second mark, the typical 

timing gap between strikes of the steel bolt, which more closely reflects the anticipated 

times required to record the movements under investigation. 

C.1.2 Temporal reliability 

The inter-sensor reliability was determined using the sensors’ measurements of the 

timing gaps above. It was equivalent to a test-retest reliability analysis to find the intra-

class correlation ICC(3,1), based on the 15 possible combinations of sensor pair 

comparisons for each timing gap. The random errors were halved because they 

included the uncertainty from two timing points, not one (W. G. Hopkins, 2000). The 

thresholds for ICC were set at: 0.20 low, 0.50 moderate, 0,75 high, 0.90 very high and 

0.99 extremely high (W. G. Hopkins, 2015). It was not possible to test the reliability 

of individual sensors because the exact timing gaps between each strike with the steel 

bolt were not consistent. 
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C.2 Results 

The temporal validity correlation was the highest for the Delsys sensors, followed by 

the Actigraph sensors and Wildbyte sensors (Table C-1). The systematic and random 

errors of the Delsys and Actigraph sensors were both low, whereas those of the 

Wildbyte sensors were five orders of magnitude higher. When the random error 

calculation was based on time gaps, which eliminates the inflation in random error, the 

random error was lower, substantially so for Wildbyte. Based on the uncertainty in the 

systematic error value, the elapsed time required for the timing drift to exceed the 

chosen tolerance of 10 ms was around one hour for Delsys, 50 minutes for Actigraph, 

but just over 5 minutes for Wildbyte. The Delsys signal processing delay was 102 ms, 

with a 90% confidence interval of ±1 ms. 

 

Table C-1. Timing accuracy by sensor type showing the mean with a 90% confidence level. 

 Delsys Actigraph Wildbyte 

Validity Correlation 0.999999999947 0.999999999917 0.999999988639 

Systematic Error (%) a 0.00012 ± 0.00017 0.00015 ± 0.00022 -1.14064 ± 0.00241 

Systematic Error (PPM) 1.2 1.5 11406 

Random Error (ms) b 2.9 ± 0.4 3.6 ± 0.4 40.4 ± 4.9 

Random Error (ms) c 2.1 ± 0.3 2.5 ± 0.3 12.4 ± 1.5 

Max Running Time d  1 hr 3 min 50 min 8 sec 5 min 35 sec 

a. Systematic error represents the rate of drift over time 

b. Random error based on absolute times.  

c. Random error based on the gaps between timing signals. 

d. Maximum running time is the expected time it would take for drift to exceed the smallest meaningful 

difference (2 ms). The lower confidence limit is quoted. 

The results highlighted in bold are the best for that quantity. 

 

The Delsys sensors had the highest inter-sensor reliability, followed by Actigraph and 

then Wildbyte (Table C-2). The timing variance between sensors of the same type can 

be expressed in seconds and time intervals, which considers the sampling frequency 

and better reflects its practical importance. Using the Delsys timing variance as the 

baseline, the ‘true error’ for Actigraph and Wildbyte showed the effect of individual 

sensor timing differences alone without variance arising from the method. 
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Table C-2. Timing reliability between sensors of the same type showing the mean with a 

90% confidence interval. More decimal places than usual are quoted to differentiate 

between each sensor type. 

 Delsys Actigraph Wildbyte 

ICC (inter-sensor)    

(based on time) 0.99999 ± 0.00001 0.99997 ± 0.00001 0.99902 ± 0.00039 

(based on time intervals) 0.997 ± 0.001 0.992 ± 0.003 0.764 ± 0.079 

Error between sensors    

(time in ms) 3.2 ± 0.4 5.2 ± 0.6 28.4 ± 3.5 

(time intervals) 0.8 ± 0.1 1.3 ± 0.2 7.1 ± 0.9 

True error †    

(time in ms) - 1.9 ± 0.6 25.1 ± 3.5 

(time intervals) - 0.5 ± 0.1 6.3 ± 0.8 

† With Delsys as the baseline, thereby eliminating the error in identifying the times of the vibration signals. 

The figures highlighted in bold were the best in each row. 

 

C.3 Discussion 

The aim of this investigation was to determine the temporal validity and reliability of 

the Delsys, Actigraph and Wildbyte sensors as part of the sensor selection exercise 

described in Appendix B. The results show that the Delsys and Actigraph sensors 

achieved high levels of accuracy and inter-sensor reliability. In contrast, the Wildbyte 

sensors failed to meet any of the requirements, specifically: a systematic error 

≤ 2.8 PPM, a random error ≤ 10 ms, and an effective maximum running time 

exceeding one hour. 

The Delsys and Actigraph sensors achieved a very low systematic error in time 

measurement equivalent to a drift of approximately one second per week. This error 

compares relatively well with a typical wristwatch that may typically lose one second 

per month (Lombardi, 2008). In contrast, the Wildbyte sensors had a systematic error 

that was five orders of magnitude larger. The considerable uncertainty in the precise 

value of Wildbyte sensors’ systematic error resulted in a short running time of around 

5 minutes before re-synchronisation would be required. Such short running times 

would make experiments with Wildbyte sensors impractical as data collections would 
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have to be frequently interrupted to re-synchronise the sensors. The Wildbyte sensors’ 

substantial random errors contributed to their lower temporal validity. 

The inter-sensor reliability test had a similar outcome with the Delsys and Actigraph 

sensors, achieving consistency, while the Wildbyte sensors showed much greater 

disparities. The Wildbyte sensors could differ from each other by as much as seven 

time intervals after only 10 seconds of running. A countermovement jump may be 

short (i.e. 1-2 s for the jump itself), but the sensor would have to be running since the 

start of the data collection, which could last 30 minutes or longer. The cumulative error 

by this point could be quite large (1,260 time intervals equivalent to over 7 s, based on 

the above drift). The uncertainty in the timing would make comparisons between 

accelerometers unreliable. The piezoelectric quartz crystals that govern the Wildbyte 

sensors’ internal clock may be of a lower quality. They have a rating of 20 PPM, 

according to their design engineer (personal communication). Furthermore, the 

Wildbyte sensors log data to mini SD cards, which as a type of flash memory is known 

to have slower, more variable write times.  

It may be thought that since the Delsys sensors are synchronised with each other, there 

should be no timing difference between them. The fact that a difference exists (up to 

10 ms) suggests a degree of unreliability in the synchronisation method. The method 

depends on detecting the first appearance of a signal amidst the variable noise. 

Accounting for this error by making Delsys the baseline, it becomes apparent that the 

Actigraph sensors demonstrate a high degree of consistency with each other despite 

their independent internal clocks. 

The intercept time from the linear regression for the Delsys sensors was equivalent to 

the delay resulting from the signal processing. The time of 102 ms is close to the Delsys 

base-station’s processing delay of 96 ms, as reported by the manufacturer. A further 

delay of 6 ms may occur during the analogue-to-digital conversion performed by the 

Vicon Giganet box. The overall delay of 102 ms is effectively fixed (with a random 

error of 1 ms or less), allowing it to be used as a fixed timing offset when using Delsys 

accelerometers with Vicon in future studies.  
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APPENDIX D. SENSOR ACCELERATION VALIDITY 

This appendix describes the investigation into the validity of the Delsys and Actigraph 

sensors’ measurement of inertial acceleration. Appendix B describes the sensor 

selection exercise, of which this is part. An earlier investigation into the sensors’ 

temporal validity and reliability found that the Wildbyte sensors could not meet the 

requirements, excluding them from this investigation into acceleration validity.  

D.1 Method 

D.1.1 Experimental Setup 

Six sensors of each type (Delsys and Actigraph, 12 in all) were attached to a bicycle 

wheel (700C) with the frame turned upside down and tilted away from the vertical. 

The tyre and inner tube were removed so the sensors could be attached directly to the 

metal rim that was made from an aluminium alloy (Figure D-1). The Delsys and 

Actigraph sensors were attached alternately to the rim with a regular 10° separation 

using white insulating tape. The triaxial accelerometers were aligned with the wheel’s 

radial, tangential and perpendicular axes. Three possible attachments were tried but 

only with the sensors laid flat across the rim could correct alignment be ensured. 

The wheel was stationary for a static measurement for calibration when the sensors 

only detected gravity. The wheel was then spun by hand and left to spin for 50 s so 

that the sensors experienced inertial accelerations on top of the gravitational 

acceleration. The radial acceleration was principally due to the centripetal force from 

the wheel’s rotation. Tangential accelerations were induced by attaching the sensors 

over a 120° arc to unbalance the wheel, causing it to slow down and speed up. A 

constant perpendicular acceleration was induced by tilting the wheel away from the 

vertical. 
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A

 

B 

 

  

Figure D-1. Acceleration validity experimental setup. (A) The inverted bicycle wheel with 

sensors attached with reflective markers on top. (B) Alternating sensor attachment with 

insulating tape with Actigraph sensors on either side of the central sensor. 

 

D.1.2 Motion capture 

The movements of the sensors were recorded using a motion capture system (T20S, 

Vicon Motion Systems Ltd., Oxford UK) based on reflective markers that were 

attached to the top of the sensors. Twelve T20S cameras tracked the sensors’ 

movements with a frame rate of 250 Hz, the same as the Delsys sensors. The marker 

trajectories were reconstructed using Vicon Nexus 2.5 software without using the 

automatic gap-filling functions available.  

The Actigraph sensors were synchronised with Vicon by striking the rim with a rigid, 

plastic ruler three times. The vibrations were transmitted around the rim and via the 

spokes, reaching the sensors < 0.32 ms after impacts, based on the speed of sound 

through aluminium. A reflective marker attached to the end of the ruler allowed the 

Vicon cameras to track the ruler’s movements. The average timing of the three impacts 

(measured by Vicon and by each of the sensors) were used to shift the time series into 

line with one another.  
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D.1.3 Criterion acceleration calculation 

The radial acceleration experienced by a sensor is the combination of the centripetal 

acceleration and the component of gravitational acceleration in that direction: 

 2

R Ra r g= +   (D-1) 

where ω is the wheel’s angular velocity and r is the radius of the arc followed by the 

accelerometer inside the sensor. Rg is the radial gravity component which is defined 

further below. The tangential acceleration combines the changes of angular velocity 

with the gravitational acceleration component: 

 T Ta r g= +  (D-2) 

where α is the wheel’s angular acceleration and 
Tg is the tangential gravity component. 

The sensor positions estimated by Vicon were converted from Cartesian to cylindrical 

polar coordinates (Figure D-2A). The x and z coordinates were swapped so that the 

angular coordinate θ represented the sensor’s angular position, with 0° being vertical 

(Figure D-2B). The origin was found using the theorem that the perpendicular 

bisectors of two chords intersect at the circle’s centre. The normal to the circle and 

hence the wheel’s orientation is the cross product of the chords. The origin and normal 

vectors’ calculations were based on three positions of the same sensor at different time 

intervals separated by approximately one third of a revolution and averaged over ten 

revolutions.  
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Figure D-2. Geometry of an inclined circle in 3D. (A) perpendicular bisectors of two chords 

meet at the centre, 𝒄. The centre is a linear combination of the chord vectors, 𝒗𝟏 and 𝒗𝟐. (B) 

the circle plane is rotated such that its normal vector, 𝒘, aligns with the x-axis. (C) the 

gravity vector has components radially and tangentially, where 𝜽 is the angular coordinate. 

(D) the gravity vector also has a perpendicular component. 

 

The calculations depended on accurately determining the axel’s position, the wheel’s 

orientation, the radii of the sensors’ circular paths and whether the sensors correctly 

lay on the wheel’s plane. Their associated measurement errors were estimated from 

data taken from 100 revolutions (Table D-1). The errors were smaller than the 

positional accuracy of the Vicon system itself. The tilt angle was estimated as 23.2°. 

The sensors’ circular path was calculated to have radii of 341.75 ± 0.65 mm for Delsys 

and 337.67 ± 0.75 mm for Actigraph.  

 

  



Appendix D.1 

Page 298 

Table D-1. Positional measurement errors represented by their standard deviations. The 

errors are less than the overall accuracy of the motion capture system, which is attributed 

to improving the accuracy of calculations based on circular geometry. 

Positional Measurement Standard Deviation 

System position accuracy † ± 0.88 mm 

Centre position variance ‡ ± 0.39 mm, ± 0.69 mm, ± 0.86 mm 

Sensor out-of-plane variance ± 0.61 mm 

Wheel inclination variance * ± 0.120° 

Radius variance ± 0.70mm (0.21%) 

† Based on a calibration using the Vicon wand that found the mean distance error between 

the wand’s 5 markers (10 marker-pair combinations). The wand was swept at random 

within the Vicon system’s capture volume during a 40-second sampling period. 

‡ Typical variance for a given sensor (the centre was calculated individually for each sensor) 

* With respect to the wheel’s normal axis, which is also equal to the variance with the 

vertical 

 

The gravity components radially, tangentially and perpendicular are defined as 

follows: 

 * *

2 3sin cosRg g g = +  (D-3) 

 * *

2 3cos sinTg g g = −  (D-4) 

 
*

1Pg g=   (D-5) 

where 
* * *

1 2 3( , , )g g g  is the gravity vector in the local coordinate system of the sensor 

(Figure D-2C & Figure D-2D). 

The criterion acceleration for each sensor was found using the above expressions and 

Equations (D-1) and (D-2), based on the marker positional data. All calculations were 

made using custom-written scripts in Matlab R2018a. The acceleration due to gravity 

was taken to be 9.812 ms-2 (latitude 51.6°, altitude 10 m) based on the International 

Gravity Formula (Moritz, 2000). 

The angular velocity and acceleration due to the rotation must be the same for all 

sensors at each instant in time due to the wheel’s circular geometry (excluding 

gravitational acceleration). Therefore, rather than calculate the angular velocity and 

acceleration independently for each sensor, accuracy was improved by basing the 

calculations on the time-varying mean angular position of all 12 sensors. The mean 
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angular position was differentiated using the central difference formula to find the 

angular velocity, which was differentiated a second time to find the mean angular 

acceleration. The angular velocity and angular acceleration were smoothed using a 

Gaussian-weighted moving average with a window of 20 time intervals. The 

gravitational acceleration vector was different for each sensor as it depended on the 

angular position. An individual sensor’s angular position was found relative to the 

collective mean angular position of all sensors by applying the individual sensor’s 

mean angular offset.  

The sensors’ accelerometers were calibrated with the wheel held in a series of 18 

stationary positions, each separated by approximately 20°. The accelerations recorded 

would be based on gravity alone. A calibration equation was determined using linear 

regression for each axis and each sensor. A further linear regression using data from 

the rotating wheel was used to determine the correlation between the calibrated 

acceleration measurements and the criterion accelerations. The validity correlation, 

which is the Pearson correlation, was evaluated based on the following scale: 0.70-

0.85 poor, 0.85-0.95 good, 0.95-0.995 very good, > 0.995 excellent (W. G. Hopkins, 

2015). The criterion acceleration was calculated at 250 Hz as it was based on marker 

positions, matching the sampling frequency of the Delsys sensors. Compared with the 

Actigraph sensors running at 100 Hz, the criterion acceleration was resampled at 100 

Hz using cubic spline interpolation. 

D.2 Results 

The Delsys and Actigraph sensors’ measurement of acceleration had an excellent level 

of validity (> 0.995) along the radial axis, but along the tangential axis, validity was 

lower (‘very good’) (Table D-2). The Actigraph sensors achieved the higher accuracy 

of the two in the tangential direction. The random error was consistently lower for the 

Delsys sensors in both axes compared to the Actigraph sensors. 
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Table D-2. Sensor validity from the dynamic trial. 

  Delsys Actigraph 

Validity a Radial 
0.9984  

[0.9983, 0.9986] 

0.9980  

[0.9977, 0.9983] 

 Tangential 
0.9754  

[0.9731, 0.9776] 

0.9806  

[0.9776, 0.9832] 

Random Error (g0) Radial 0.061 ± 0.002 0.100 ± 0.005 

 Tangential 0.014 ± 0.000 0.022 ± 0.001 

Figures highlighted in bold are the best for that quantity. 

 

The sensors were subject to a range of inertial acceleration over the 50 s of the dynamic 

trial, which saw the highest acceleration, as expected, along the radial axis, up to ~ 

9.7g (Table D-3). The tangential accelerations reversed direction as the unbalanced 

wheel’s angular velocity varied. The perpendicular acceleration was virtually constant, 

which is why no validity figures can be presented for it. 

 

Table D-3. Accelerations during the dynamic trial. Mean ± 90% CI shown, minima and 

maxima in square brackets. 

 Delsys Actigraph 

Tangential Acceleration (g0) 
-0.016 ± 0.536 

[-0.616, +0.523] 

-0.014 ± 0.537  

[-0.613, +0.541] 

Perpendicular Acceleration (g0) 
0.393 ± 0.000 

[-] 

0.393 ± 0.000  

[-] 

Radial Acceleration (g0) 
7.792 ± 1.059 

[5.845, 9.769] 

7.697 ± 1.050 

[5.765, 9.669] 

 

Both sensor types demonstrated a very low level of nonlinearity (< 1%) with 

increasing accelerations, based on a log-log transformation of the radial acceleration 

prior to the linear regression (Table D-4). This transformation allows the random error 

to be expressed as a percentage, which is lower for the Delsys sensors. 
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Table D-4. Linear regression based on a log-log transformation for the radial acceleration 

only. The mean errors with the 90% CI are expressed as percentages. 

 Delsys Actigraph 

Systematic Error 0.46 ± 0.13% 0.57 ± 0.33% 

Random Error 1.66 ± 0.06% 2.68 ± 0.14% 

Figures in bold are the best for that quantity. 

 

D.3 Discussion 

The aim of this investigation was to determine the acceleration validity of the Delsys 

and Actigraph sensors as part of the exercise to select the type of sensors to use for 

this thesis. The assessment of validity was considered in two ways: (1) the correlation 

between the measurements made by the sensors and the criterion acceleration based 

on the motion capture data – this is conventionally thought of as the primary measure 

of validity; and (2) the random error in those measurements defined as the standard 

error of the estimate from the linear best fit of the data. The Delsys and Actigraph 

sensors were rated excellent for their acceleration measurements along the radial axis, 

but along the tangential axis, Delsys was rated only as ‘very good’, while Actigraph 

maintained its excellent rating. The lower levels of validity in the tangential axis are 

likely to be due to misalignments about the radial axis, which will be discussed in more 

detail below. 

It was easier to differentiate between the sensors based on the random errors, for which 

the Delsys sensors had consistently lower errors than Actigraph. The Delsys sensors’ 

higher sampling rate may account for this based on simulations comparing best fits of 

time series sampled at different rates. The higher random errors in the accelerometers 

aligned with the radial axis are expected since those accelerations were much higher. 

Both types of sensor had very low nonlinearities (< 1%), indicating that their 

measurements of high and low accelerations would be equally valid. In this respect, 

Delsys was marginally better. 

In the experimental setup, the sensors lay flat across the wheel’s rim. It was evident 

that there was good alignment of the sensors’ Z-axis with the radial axis thanks to the 
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rim. However, confidence was lower in the alignment of the sensors’ X-axis with the 

tangential direction and of the Y-axis with the perpendicular. Although care was taken, 

a sensor could have turned away very slightly from pointing directly along the rim 

even though the insulting tape held them firmly in what should be the correct 

alignment. The sensors were re-attached flat to the rim after being turned 90° to swap 

the X and Y-axes around. The data from this arrangement was not reported for brevity, 

but the figures were similar and the conclusions the same. The X and Y axes were also 

tested when they were aligned with the wheel’s radial axis. Therefore, conclusions on 

the validity of the sensors’ acceleration measurements must be drawn from only the 

Z-axis being subject to high accelerations. It must be assumed that each onboard 

accelerometer has the same level of accuracy. The data from this and other trials do 

not provide evidence to the contrary. 

When the validity figures, the random errors and the nonlinearity levels are considered 

as a whole, the Delsys sensors come out marginally ahead. In practice, there is very 

little to tell between the Delsys and Actigraph sensors. Both sensor types meet the 

acceleration validity requirements for this thesis. The choice of which sensor to use 

must be based on other considerations discussed in Appendix B.  
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APPENDIX E. ACCELEROMETER MODEL 

This appendix presents the analyses supporting the methods developed in Chapter 5 

for the accelerometer model. It includes the results determining the number folds and 

iterations for the K-fold design for the grid searches and the MCCV design. It also 

reveals the bias introduced when the data is partitioned by trial rather than by 

participant. Finally, it provides evidence of the Bayesian optimiser’s inconsistency and 

its cost, which grows exponentially with the number of iterations. 

E.1 K-Fold Cross-Validation Design 

Cross-validation provides a representative estimate of the model’s accuracy across 

multiple sub-samples of the data. The k-fold design can be tailored either for model 

selection – discriminating between models based on their loss – or for model appraisal 

– determining the best estimate of the model’s predictive error. For model selection, it 

is advantageous to minimise the variance in the loss between folds to make it easier to 

discriminate between models. For model appraisal, the opposite is the case where the 

aim is to minimise bias. These two divergent aims reflect the bias-variance trade-off. 

The investigations in Chapters 5, 6, 7 and 8 first focused on model selection before 

switching to model appraisal to better estimate the selected model’s predictive error. 

Chapter 2 previously reviewed the literature for the recommended approaches to cross-

validation. This section now lays out the supporting evidence for the number of folds 

chosen and the number of iterations performed based on the data gathered for this 

thesis.  

The LB-CMJNA data set was used for this investigation, which evaluated the 11 models 

introduced in Section 5.2.3 (Table 5-1), providing a broad range of models for the 

assessment. The k-folds considered were {2, 5, 10, 60}, the latter being equivalent to 

the Leave-One-Out (LOO) cross-validation, all of which performed at the participant- 

rather than the trial-level. The cross validation design was based on the 20-iterations 

MCCV procedure with 2, 5, 10, 20, 50 and 100 folds.  
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The results showed that the validation loss (RMSE), averaged across all models, 

declined for more k-folds, a sign of reducing bias (Table E-1). At the same time, 

increasing the number of iterations led to an asymptotic approach to the true loss 

estimate for each k-fold design, the best approximations being the 100-iteration 

estimates. The same relationship was observed for all models (Table E-2), which is 

not universally the case (Burman, 1989; Kohavi, 1995; Luo, 2016; Y. Zhang & Yang, 

2015).  

 

Table E-1. Average validation loss, defined at the RMSE (W·kg-1), for different 

combination so k-folds and iterations, averaged across all 11 models. 

 Iterations 

K-Folds 2 5 10 20 50 100 

2 4.37 4.37 4.39 4.43 4.47 4.48 

5 4.50 4.49 4.48 4.46 4.41 4.36 

10 4.27 4.26 4.26 4.24 4.22 4.19 

60 4.12 4.11 4.10 4.09 4.05 4.00 

 

Table E-2. Validation loss, RMSE (W·kg-1), for different k-folds over 100 iterations for 

individual models. 

 Models (100 Iterations) 

K-Folds LR RDG LSS TREE BST 

SVM-

L 

SVM-

G 

GPR-

SE 

GPR-

M52 NN-5 NN-10 

2 3.51 3.43 3.43 6.31 4.94 5.52 5.57 3.89 3.90 4.16 4.88 

5 3.37 3.30 3.32 6.17 4.68 5.11 5.12 3.66 3.72 3.93 4.55 

10 3.29 3.27 3.21 6.01 4.55 4.88 4.94 3.51 3.65 3.74 4.30 

60 3.18 3.16 3.21 5.79 4.46 4.59 4.68 3.36 3.46 3.30 3.76 

LR = Linear Regression; RDG = Ridge regression; LSS = Lasso regression; TREE = Single tree; BST = Tree 

ensemble using the Boost method; SVM-L = Support Vector Machine with a Linear kernel; SVM-G = 

Support Vector Machine with a Gaussian kernel; GPR-SE = Gaussian Process Regression with a Squared 

Exponential kernel; GPR-M52 = Gaussian Process Regression with a Matérn 5/2 kernel; NN-5 = 

Feedforward Neural Network with 5 hidden nodes; NN-10 = Feedforward Neural Network with 10 hidden 

nodes. 
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The standard deviation in the validation loss was determined for each iteration count 

(N) using the formula: 100SE SDN N , where SD100 represented the 100-iteration 

case considered to be a good approximation of the true variance. The SE indicated the 

uncertainty in the estimate of the loss across all models. Averaged across all models, 

the SE was higher for more k-folds, a sign of increasing variance, whilst it declined 

for larger numbers of iterations due to the inverse relationship with N (Table E-3). The 

same relationship can be observed in all models (Table E-4). 

 

Table E-3. Standard error (W·kg-1) for different combinations of k-folds and iterations, 

averaged across all 11 models. 

 Iterations 

K-Folds 2 5 10 20 50 100 

2 0.37 0.23 0.16 0.12 0.07 0.05 

5 0.46 0.29 0.21 0.15 0.09 0.07 

10 0.55 0.35 0.25 0.17 0.11 0.08 

60 0.88 0.56 0.39 0.28 0.18 0.12 

 

Table E-4. Standard error (W·kg-1) for different k-folds over 100 iterations for individual 

models. 

 Models (100 Iterations) 

K-Folds LR RDG LSS TREE BST SVM-L SVM-G 

GPR-

SE 

GPR-

M52 NN-5 NN-10 

2 0.34 0.34 0.32 0.74 0.49 0.60 0.69 0.53 0.38 0.46 0.81 

5 0.46 0.45 0.45 0.76 0.61 0.86 0.91 0.63 0.52 0.63 0.92 

10 0.62 0.55 0.56 0.93 0.74 0.98 0.99 0.72 0.67 0.89 0.95 

60 1.03 1.06 1.07 1.40 1.27 1.54 1.56 1.06 1.06 1.28 1.41 

LR = Linear Regression; RDG = Ridge regression; LSS = Lasso regression; TREE = Single tree; BST = Tree 

ensemble using the Boost method; SVM-L = Support Vector Machine with a Linear kernel; SVM-G = 

Support Vector Machine with a Gaussian kernel; GPR-SE = Gaussian Process Regression with a Squared 

Exponential kernel; GPR-M52 = Gaussian Process Regression with a Matérn 5/2 kernel; NN-5 = 

Feedforward Neural Network with 5 hidden nodes; NN-10 = Feedforward Neural Network with 10 hidden 

nodes. 
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For model selection, the SE (variance) should be minimised while striking a balance 

with the computational costs of doing so. A two-fold design had a lower variance 

(Table E-1), as is generally expected to be the case (e.g. Zhang & Yang, 2015). There 

was a law of diminishing returns for increasing numbers of iterations. A doubling in 

the number of iterations reduced the SE by a factor of 1 2 0.707= . To progress from 

5 to 10 iterations yielded a reduction in SE of 0.07 W·kg-1, while an additional 

doubling in the number of iterations to 20 achieved a further decrease of 0.04 W·kg-1 

to 0.12 W·kg-1. This magnitude was considered to be too small to meaningfully 

discriminate between models. Fifty and 100 iterations would have imposed a 

considerable cost without a further meaningful improvement in accuracy.  

E.2 Partitioning Method for K-Fold 

The partitioning of the data for k-fold cross-validation was done by participant rather 

than by trial throughout this thesis. It ensured that jumps from the same individual 

were not assigned to both the training and validation sets or to training and holdout 

test sets. It required code development because Matlab does not offer this facility 

through its cvpartition function. Although participant-level partitioning is a well-

established procedure, it is rarely reported the benefit it brings in terms of the negative 

bias in the predictive error that would be avoided.  

Using the same data set above (Appendix E.1), the same models were evaluated with 

and without participant-level partitioning. The results show that the validation loss was 

lower on average (0.36–0.65 W·kg-1) than the baseline case of partitioning at the 

participant level (Table E-5). Hence, the models underestimated the true model error 

by a substantial amount without partitioning at the participant level. 
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Table E-5. Average Loss, RMSE (W·kg-1), with partitioning by trial rather than by 

participant, for different combination so k-folds and iterations across all 11 models. The 

difference with the baseline values is shown. 

 Iterations 

K-Folds 2 5 10 20 50 100 

2 4.01 3.91 3.90 3.88 3.86 3.85 

5 3.85 3.84 3.83 3.82 3.78 3.74 

10 3.66 3.66 3.66 3.66 3.64 3.61 

60 3.57 3.57 3.56 3.55 3.54 3.51 

Difference with Baseline: 

2 -0.36 -0.46 -0.49 -0.55 -0.61 -0.63 

5 -0.65 -0.65 -0.65 -0.64 -0.63 -0.62 

10 -0.61 -0.60 -0.60 -0.58 -0.58 -0.58 

60 -0.55 -0.54 -0.54 -0.54 -0.51 -0.49 

 

A related consideration was the partitioning of FPCA, where FPCs are defined strictly 

based on the training data without any influence from the validation data. The same 

models (Appendix E.1)were re-evaluated using the same method but without FPCA 

partitioning. Hence, the FPCs were defined using all the data (except for the holdout 

data). The baseline case was the original evaluation based on FPCA partitioning. 

The results show that the average loss was only slightly lower than the baseline case 

(Table E-6), where the differences were ≤ 0.10 W·kg-1. For the favoured arrangement 

of a two-fold design with 20 iterations, the difference was -0.04 W·kg-1. All these 

differences were much less than the standard error. These results show that the bias 

introduced by allowing the FPCs to be defined using the whole data set was negligible. 

It suggests the FPCs themselves are quite general, differing to only a modest degree 

between subsets of the data. 
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Table E-6. Average Loss, RMSE (W·kg-1), without partitioning FPCA, for different 

combination so k-folds and iterations, across all 11 models. The difference with the baseline 

values shown in Table E-1 is also shown. 

 Iterations 

K-Folds 2 5 10 20 50 100 

2 4.42 4.47 4.46 4.47 4.46 4.46 

5 4.45 4.45 4.44 4.42 4.37 4.32 

10 4.22 4.22 4.22 4.21 4.18 4.14 

60 4.08 4.08 4.07 4.06 4.01 3.95 

Difference with Baseline: 

2 0.05 0.10 0.07 0.04 -0.01 -0.02 

5 -0.05 -0.04 -0.04 -0.04 -0.04 -0.04 

10 -0.05 -0.06 -0.04 -0.03 -0.04 -0.05 

60 -0.04 -0.03 -0.03 -0.03 -0.04 -0.05 

 

Partitioning FPCA comes with a high cost because FPCA must be run for every 

iteration of the cross-validation loop. For 20 iterations of two-fold cross-validation, 

the model function’s average execution time was three times longer with FPCA 

partitioning than without (4143 ms vs1370 ms). Given there was no tangible benefit to 

FPCA partitioning for this analysis, it was removed from the accelerometer model 

function. 

E.3 Inner Loop Partitioning 

Monte Carlo cross-validation (MCCV) was a cornerstone of the methods used in this 

thesis. As noted in Section 5.2.4, it implied that each partition of the data was made 

independently of the others. Thus, for 20 iterations of cross-validation, 20 data splits 

were made. This approach will be called the Strict Monte Carlo strategy for the 

purposes of the investigation in this section. It will be compared with an alternative 

Monte Carlo method that can be implemented specifically with two-fold partitioning. 

This alternative approach involves swapping the training and validation sets for each 

data split to yield two evaluations and will be referred to as the Complementary 

strategy here.  
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For the Complementary strategy, the data set was split ten times, and within each 

iteration, two validations were performed. As such, it was a form of repeated k-fold 

cross validation. In the first step, one partition served as the training set, and the other 

served as the validation set; in the second step, the roles were reversed. In this way, 

10 × 2 = 20 iterations of cross-validation were performed. Every observation in the 

data set was used for training and validation with no exceptions. On the other hand, in 

the Strict strategy, the data set was split 20 times, with the partitions taking only one 

role, either training or validation. In this method, a given observation had a 50-50 

chance of being assigned to the training or validation sets. In the long run (infinite 

iterations), every observation would be assigned to each subset the same number of 

times, but with only 20 iterations, there would be unequal assignments due to chance 

(binomial distribution). Some observations may be used more often for training than 

for validation and vice versa. The Strict strategy was simpler to implement, and it could 

be applied universally to all k-fold designs, whereas the Complementary strategy was 

only applicable to the two-fold design. Therefore, the key question was whether the 

Complementary strategy was worth implementing for the two-fold design specifically, 

which played a critical role in model selection. The key metric was the validation 

RMSE variance, which needed to be minimised.  

The Strict strategy (20 data splits to generate 20 partitions of training and validation 

data) was compared with the Complementary strategy (10 data splits, swapping the 

partitions’ training and validation roles, making 20 iterations in all). All models were 

evaluated over 50 repetitions using the LB-CMJNA data set, following the basic data 

pre-processing procedure employed in Chapter 5. The means and coefficients of 

variation for validation RMSE were calculated over the 20 iterations and averaged 

across the 50 repetitions. 

The results show that the Strict strategy was marginally the better one with a lower 

coefficient of variance overall (Table E-7). The small differences between them were 

approaching the typical error and may vanish with further iterations. 
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Table E-7. Comparison of two Monte Carlo partitioning strategies for cross-validation 

showing the validation RMSE. The means and coefficient of variations (CV) were 

calculated over 20 iterations and then averaged over 50 repetitions. 

 Strict Strategy Complementary Strategy 

Algorithms Mean (W·kg-1) CV Mean (W·kg-1) CV 

LR 5.22 19.9% 5.22 19.8% 

LR-RDG 5.18 18.5% 5.20 19.0% 

LR-LSS 4.97 16.0% 4.98 16.0% 

SVM-L 4.63 12.4% 4.63 12.3% 

SVM-G 4.38 12.2% 4.36 12.3% 

GPR-SE 4.66 14.0% 4.73 14.3% 

GPR-M52 4.55 12.9% 4.57 12.7% 

NN-5 5.31 23.4% 5.30 22.9% 

NN-10 5.99 25.0% 6.08 27.9% 

TR 6.65 12.3% 6.79 12.3% 

TR-ENS 5.47 11.8% 5.47 11.4% 

Mean 5.18 16.2% 5.21 16.5% 

 

The Complementary strategy needed to outperform the Strict strategy, which was the 

simpler and universal one, to justify its inclusion as a necessary but separate approach. 

The results showed that it did not do so. Therefore, the Strict method was adopted for 

all MCCV procedures. 

 

E.4 Bayesian Optimiser 

Bayesian optimisation constructs a surrogate model based on a Gaussian process, 

describing the objective function’s variation across one or more parameters. The 

optimiser updates its prior belief about the SM objective function, with each new 

observation. The optimiser determines the next point to sample where it believes it has 

the highest probability of obtaining the biggest improvement in the objective function 

(maximum ‘expected improvement’ algorithm based on the acquisition function). In 
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this way, the optimiser proceeds towards what it believes to be the global optimum. It 

is highly efficient compared to other optimisers, sampling the objective function far 

fewer times (Bergstra & Bengio, 2012). It is therefore suited towards optimising 

computationally expensive objective functions, such as the AM in this thesis, which 

includes data pre-processing and the model fitting itself. It can also handle the AM’s 

stochastic behaviour that arises from the random sub-sampling of cross-validation. In 

summary, the Bayesian optimiser appeared to be the ideal candidate for the optimiser 

in this thesis. 

However, it became apparent in preliminary studies that the Bayesian optimiser did 

not provide consistent answers. This inconsistency can be illustrated using the GPR 

model from Chapter 5, which has three categorical hyperparameters, allowing optimal 

models to be conveniently grouped together. It also had one numerical 

hyperparameter, but that is irrelevant for this investigation. The Bayesian optimiser 

was run 50 times using the same data set, completing 50 iterations each time before 

reporting a final optimal model. The optimal model was based on the feasible 

minimum determined by the surrogate model rather than the observed minimum 

because the former was more representative of the model. 

The frequencies of the optimal models that were produced are shown in Figure E-1, 

which has grouped them by basis function, kernel function and the standardisation 

option. There would be one optimal model in theory, but the results show a wide range 

of apparently optimal models. The new optimisation procedure introduced in this 

thesis also produced more than one optimal model (Section 5.3.2), but the range of 

possible models generated by multiple runs of the Bayesian optimiser was much more 

extensive and correspondingly more difficult to resolve. One approach to resolve this 

was selecting the model that appeared most frequently (Matern 3/2 or 5/2 kernel, linear 

basis function with standardisation). However, further analysis involving more 

observations revealed that there were other models with a lower predictive error. With 

its efficient but parsimonious approach for selecting where to take the next 

observations, the Bayesian optimiser could only ever obtain a partial view of the 

parameter space. It determined where the most likely minimum lay based on the 

observations gathered up to that point based on maximum likelihood. That did not 
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mean that the true minimum did lie there, only that that location was the most likely. 

With further observations, the model could well have reached another conclusion. 

Indeed, the level of noise (variance in the CV estimates) confounded this situation 

further. 

 

 

 

Figure E-1. Different optimal models from the same data set for the Chapter 5 GPR model. 

Over 50 runs, the Bayesian optimiser produced a range of optimal models with different 

kernel functions, basis functions and standardisation options.  

 

The optimal models themselves proved to be at odds with the results from the surveys 

made of the parameter space, such as in Chapter 5. Most of the models included the 

standardisation option (Figure E-1, left half of the plot), but all the final optimal GPR 

models in Chapter 5 did not use standardisation (Figure 5-12L). Models based on a 

linear basis function with standardisation appeared more frequently, and among those, 

the Matern 3/2 and 5/2 kernels were the most common, just ahead of the squared 

exponential kernel (Figure E-1). This, too, contradicted the results from Chapter 5 

(Figure 5-12I), where models with a linear basis function tended to have a higher 

validation error than those with a constant basis function or no basis at all. 
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Furthermore, the Bayesian optimiser selected the exponential kernel on nine occasions 

(Figure E-1), but the survey from Chapter 5 revealed that models using that kernel 

were the least accurate (Figure 5-12J). It was therefore concluded that given these and 

many other contradictory results, the Bayesian optimiser should not be employed for 

the research in this thesis. 

The Bayesian optimiser had only a partial view of the parameter space, based on few 

AM observations, which were themselves noisy due to data sub-sampling variance. 

Without sufficient observations to average out such variance, the Bayesian optimiser 

could get a false impression of the true AM behaviour, which may account for the 

inconsistent results. More iterations of the optimiser did not improve the situation as 

instability in the optimal parameter values persisted. There was also evidence from the 

SM progression series that stabilised parameters could begin to vary erratically after 

200-300 iterations. The steep rise in the acquisition function overhead also made 

running the Bayesian optimiser beyond 500 iterations increasingly impractical, as the 

next section shows. 

E.5 Bayesian Optimiser Overhead 

The Bayesian optimiser relies on its acquisition function to determine the next point 

to sample in the search. According to the expected-improvement algorithm, the 

acquisition function itself must be maximised, which can be a computationally 

intensive task. As discussed in Chapter 5, various methods have been proposed to 

make the algorithm more efficient, including Monte Carlo integration (Wilson et al., 

2018) and batch processing (Snoek et al., 2012; Taddy et al., 2009), which is 

incorporated into the Matlab implementation. Maximising the acquisition function 

makes up a substantial proportion of the Bayesian overhead, the other being the fitting 

of the surrogate model. When running the Bayesian optimiser in Matlab, the rising 

cost of this overhead becomes noticeable quite early on (within 30 iterations). 

Attempts to improve the optimisation’s reliability initially centred on increasing the 

number of iterations, but the computational costs became prohibitive, as this section 

will illustrate. 
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The Bayesian optimiser was run on the GPR model from Chapter 5 for 1000 iterations, 

a more extensive search than might usually be performed. In comparison, the Matlab 

default is 30 iterations, which are usually sufficient for many functions. The optimiser 

logged the objective function’s (AM’s) execution and overall iteration times. The 

overhead at each step was defined as the overall iteration time minus the objective 

function execution time. The overhead ratio for each iteration was defined as the 

overhead time divided by the objective function execution time, averaged across all 

iterations (1.653 s).  

The results show that the accumulated time for overall optimiser execution rose 

exponentially (Figure E-2A). It required 7 mins 50 s to complete 100 iterations, 

20 mins 47 s for 200 iterations, 1 hr 40 mins for 500 iterations, almost 4 hours for 750 

iterations and a little over 9 hours for 1000 iterations. The processing was performed 

on an iMac 2017, MacOS 10.14.6, 3 GHz Intel Core i5 with a Matlab R2020a ODE 

benchmark of 0.4620 s). A good approximation for the accumulated time in the latter 

stages, T, based on the final 200 iterations, was given by 5 2.92~ 5 10T i− , where i 

represented the iteration count. Extrapolating to 2000 iterations using this formula, the 

Bayesian optimiser would require nearly five days of processing to achieve the same 

level of coverage in Chapter 5. In contrast, the new optimisation procedure required 

around 3 hours.  

The overhead ratio also rose exponentially but at a more consistent rate (Figure E-2B). 

Initially, the optimiser overhead was a factor of two, that is, requiring twice the 

processing cost of the accelerometer model. After 200 iterations, the overhead ratio 

was 5.5 times and around 430 iterations, it had past a factor 10. By 1000 iterations, the 

overhead ratio had exceeded 60. From these figures, it was clear that the optimiser 

overhead had become the overwhelming factor. 
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(A) 

 

  

(B) 

 

  

Figure E-2. Bayesian Optimisation for the Chapter 5 GPR model. (A) Accumulated time for 

the optimisation (1000 s ~ 16 mins; 10000 s ~ 2¾ hrs; 100000 s ~ 28 hrs); (B) Overhead ratio 

(optimiser overhead / objective function execution times) showing exponential growth with 

a best fit straight line. 

 

In the Matlab implementation, the batch processing technique (block coordinate 

descent, BCD) was activated after 300 iterations to make the process more efficient, 

which explained the slight flattening of the exponential growth rate (Figure E-2A). 

Even with this improved efficiency, it was concluded that given the approximately 

cubic geometric rise in processing time, it would not be practical to run the Bayesian 

optimiser for the number of iterations required to locate the optimum with consistency. 



Appendix E.6 

Page 316 

E.6 SM Noise related to MCCV Iterations 

The AM loss has stochastic behaviour as a result of the sub-sampling variance of the 

cross validation procedure (Section5.2.5). Hence, the AM appeared noisy to an 

optimiser which would be uncertain about the true value of the AM loss for a given set 

of parameter values. As a consequence, it is more difficult for the optimiser to locate 

the global minimum. This task can be made easier by increasing the number of MCCV 

iterations, which reduces the SE in the loss estimate and hence, the apparent noise. It 

follows that the SM noise will reflect the AM noise level (SE in the loss estimate) 

provided sufficient numbers of observations have been made. The SM noise level sets 

a lower limit for the confidence interval of the SM predictions (Figure 5-10, second 

row), and so it may be expected that reducing AM noise should lessen SM noise and 

therefore narrow the SM confidence interval. Thus, with less uncertainty, the SM 

becomes more accurate, more quickly, which should make the optimisation more 

efficient. However, increasing the number of MCCV iterations to achieve this comes 

at a higher cost for the AM, which would reduce the total number of observations that 

can be made for the same computational budget. It therefore needed to be established 

if increasing the number of MCCV iterations could make a worthwhile improvement 

in the accuracy of the SM model. 

The Chapter 6 GPR model was chosen for the investigation, which formed part of a 

line of research that looked into ways of improving the efficacy of the optimisation 

procedure. The performance of the optimisation procedure needed to be improved for 

models with numerical parameters in particular. The Chapter 6 model, with its four 

numerical parameters covering the time window and smoothing levels, was a suitable 

test case. The optimisation procedure was repeated for 2, 10, 20 and 100 MCCV 

iterations to determine whether increasing the number of iterations in the cross-

validation loop would reduce the SM noise level. A two-fold cross validation design 

was adopted, and the random search gathered 2000 observations with the SM updated 

every 50 iterations. No progressive restriction was imposed on the random search, the 

technique that was adopted in Chapters 6 onwards. Hence, as in Chapter 5, the 

observations were approximately evenly spread throughout the search space. This 

approach ensured the benefits of progressively focusing the search on a narrower area, 
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thereby increasing the density of observations, which did not influence the results. The 

SM fitted noise was averaged over the final 20 models out of the 100 recorded, the 

period where it had stabilised. 

The results show that the SM noise fell progressively with increasing numbers of 

MCCV iterations, as expected, but there was a law of diminishing returns (Table E-8). 

The noise reduction was substantial when moving from 2 to 10 iterations, and there 

was further improvement with 20 iterations (0.218 W·kg-1). However, going to 100 

iterations only brought a marginal improvement (0.029 W·kg-1) for a considerable 

additional cost. The conclusion was that increasing the number of MCCV iterations 

was not the best way of improving the efficacy of the optimisation procedure. The best 

that might be achieved, represented by the case of 100 iterations, did not deliver a 

material reduction in noise. The additional overhead was not considered to be worth 

it.  

 

Table E-8. Surrogate Model noise level for different numbers of cross-validation iterations 

when applied to the Chapter 6 model. 

MCCV Iterations SM Noise (W·kg-1) 

2 0.417 

10 0.243 

20 0.218 

100 0.189 
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