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Abstract

Yang-Mills theories based on the symplectic groups – denoted by Sp(2N) – are inter-
esting for both theoretical and phenomenological reasons. Sp(2N) theories with two
fundamental Dirac fermions give rise to pseudo-Nambu-Goldstone bosons which can be
interpreted as a composite Higgs particle. This framework can describe the existing
Higgs boson without the need for unnatural fine-tuning. This justifies a programme
of wider investigations of Sp(2N) gauge theories aimed at understanding their general
behaviour. In this work, we study the glueball mass spectrum for Sp(2N) Yang-Mills
theories using the variational method applied to Monte-Carlo generated gauge config-
urations. This is carried out both for finite N and in the limit N → ∞. The results
are compared to existing results for SU(N) Yang-Mills theories, again, for finite- and
large-N . Our glueball analysis is then used to investigate some conjectures related to
the behaviour of the spectrum in Yang-Mills theories based on a generic non-Abelian
gauge group G. We also find numerical evidence that Sp(2N) groups confine both
for finite and large N . As well as studying the glueball spectrum, we examine the
quenched-meson spectrum for fermions in the fundamental, antisymmetric and sym-
metric representations for N = 2 and N = 3. This study enables us to provide a first
account of how the related observables vary with N . The investigations presented in
this work contribute to our understanding of the non-perturbative dynamics of Sp(2N)
gauge theories in connection with Higgs compositeness and, more in general, with fun-
damental open problems in non-Abelian gauge theories such as confinement and global
symmetry breaking.
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Notations and Conventions

Throughout this thesis we use Natural Units:

h̄ = c = 1, (0.0.1)

where the above quantities are – from left to right – the reduced Planck constant and

the speed of light. All dimensionful quantities can be measured in units of mass to

some power.

The Kronecker-Delta symbol is defined as

δij =

1 i = j

0 otherwise

. (0.0.2)

The notations for quantities and operations on the hypercubic lattice are shown

in table 1.

The plaquette is defined in terms of four lattice links:

Uµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x). (0.0.3)

The quantity µ̂ is the unit vector in the direction of µ. This shape is demonstrated in
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Quantity/Operation Symbol

Lattice spacing a
Lattice width L

Number of sites in each spatial direction Ns

Number of sites in temporal direction Nt

Number of charges/colours Nc

String tension σ
Coupling strength g
Inverse coupling β = 2Nc/g

2

Unit vector in µ direction (µ=1, 2, 3, 4) µ̂
Lattice link from site x in direction µ Uµ(x)

Plaquette at site x in (µ, ν) plane Uµν(x)
Real part <

Trace tr
Dimension dim

Sum of staples Σ

Table 1: Lattice Definitions.

fig. 2.1.

A lattice link, Uµ(x), has six associated staples. Their sum is given by

Σ(Uµ(x)) =
∑
ν 6=µ

(Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x) +U †ν(x+ µ̂− ν̂)U †µ(x− ν̂)Uν(x− µ̂)) (0.0.4)

where the sum over ν goes from 1 to 4 excluding the value of µ. A diagram of the

staples in given in fig. 2.2.

The notation for unit vectors follows the convention that Greek letters run from

1 to 4 (e.g. µ̂), whereas Roman letters run from 1 to 3 (e.g. î). This distinction is

important for the description of the blocking and smearing algorithms in section 3.3.

The symplectic groups are commonly denoted by Sp(2N) in order to emphasise

that the corresponding matrices must be of even dimension. In some cases, such as

xiii



Casimir scaling in section 3.7, it is convenient to denote the group by the number of

charges associated with it: Sp(Nc). This means that both Sp(Nc) and, say, SU(Nc)

have Nc charges rather than the former having 2N and the latter having N .

The notations defined in this section are used throughout this thesis to avoid

repetition. Quantities will be identified but they will not be defined unless the notation

in context conflicts with the notation in this section.
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Introduction

The Standard Model (SM) of particle physics is our current understanding of Nature at

the subatomic scale. It is a Quantum Field Theory (QFT) with tremendous predictive

power, but one that still leaves some open problems. The SM cannot be a complete

description of Nature for several reasons: it does not explain the gravitational force,

several of its couplings are not UV safe and it does not contain a dark matter candidate.

As such, we must treat the SM as an Effective Field Theory (EFT) valid up to some

energy scale ΛSM; above this energy scale, new physics must emerge. It is natural to

estimate quantum corrections to observables using ΛSM as a regulator. If this is the

case, the Higgs potential receives a quadratically divergent renormalisation. Strong

cancellations between calculable and non-calculable terms are required to make the

Electroweak (EW) scale far less than the SM cutoff. This introduces a new problem

known as the hierarchy problem. One instance of cancellations concerns the mass of the

Higgs boson. For the SM to produce the observed Higgs mass of 125 GeV requires an

extreme level of fine-tuning. Loop corrections to the Higgs mass shown in fig. 1.1 diverge

and, thus, require counter-terms to keep the mass finite. This is a common feature of

QFTs but in order to produce the observed mass of the Higgs boson, the counter-terms

must cancel the divergences to an implausibly high precision. This is known as the

naturalness problem; such a phenomenal coincidence of two unrelated numbers seems
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highly unlikely. The motivation for the studying of the symplectic groups – denoted

by Sp(2N) – is that these models have the potential to describe the Higgs boson as a

composite particle which would reduce the need for fine-tuning [1–4] and we use the

lattice to investigate them. A model that can give rise to a composite Higgs is based

on the SU(4) → Sp(4) global symmetry breaking [1]. The motivation largely stems

from Occam’s razor. This symmetry breaking pattern is a simple mechanism that

satisfies the necessary requirement of being compatible with phenomenology [5]. One

of the main activities in lattice implementations of physics beyond the SM is to test

the viability of this mechanism.

In order to gain a better understanding of the Sp(2N) groups we study them in

their own right as pure gauge models, without introducing dynamical fermions. We do

not know a priori which value of N is best suited for a composite Higgs model so we

study several values of N as well as the behaviour as N →∞. Studies of these models

are ongoing [5–15]. This allows us to get an idea of how Sp(2N) gauge theories change

with N as well as to highlight any features that are common to all values of N . We

study the glueball mass spectrum for finite N , and extrapolate to the large-N limit.

We also study the quenched meson spectrum for finite N . The exploration of these

theories is the topic of this thesis.

Solving a strongly coupled Yang-Mills theory is an old and formidable challenge

for particle physicists. The advent of Lattice Field Theory (LFT) in 1974 by Ken Wilson

[16] made previously intractable calculations amenable to supercomputers. This has

allowed us to gain tremendous insight into theories that would otherwise be beyond our

reach. In this thesis we use the techniques of LFT to explore the behaviour of Yang-

Mills theories based on the symplectic groups. Lattice studies of candidate composite

Higgs Models (CHM) have been carried out before with SU(2) [17–23], SU(4) [24–28]

and Sp(4) symmetries [5, 13,29].

2



In Chapter 1, we give a more detailed summary of the motivation for the Sp(2N)

gauge theories. Firstly, we describe the Higgs sector of the SM as well as the origin of

the naturalness problem. Composite Higgs models are discussed as a possible resolution

to the naturalness problem; in particular, we discuss chiral symmetry breaking and the

Higgs as a pseudo-Nambu-Goldstone boson (PNGB) which has been discussed before

[30,31]. We then describe the EFT of Sp(4) with 2 fermion flavours in the fundamental

representation and demonstrate that symmetry breaking patterns can give rise to a

more natural explanation for the low mass of the Higgs.

We then demonstrate how to implement Yang-Mills and, specifically, symplectic

groups on the lattice, which is a robust first-principle approach to understand the non-

perturbative behaviour of such theories. After exposing the general principles of the

lattice formulation of gauge theories, we describe the method of generating random

elements of Sp(2N) by the generation of its SU(2) subgroups.

Chapter 3 describes the methodology of computing glueball masses and string

tensions on the lattice. These are key probes of the dynamics of a Yang-Mills theory. As

well as this, we demonstrate how the discrete results are extrapolated to the continuum,

how finite volume is extrapolated to the thermodynamic limit as well as how finite N is

extrapolated to large N . Finally, it contains the results from lattice calculations of the

glueball mass spectrum as well as string tension in pure Sp(2N) Yang-Mills. Results

are displayed for N = 1, 2, 3 and 4 as well as the extrapolation to N →∞.

Chapter 4 describes the addition of quenched fermions to the lattice and the

method of the computation of meson masses. The quenched calculations provide an

initial limit towards which we can evaluate dynamical calculations which are compu-

tationally more expensive. Although our model requires two flavours of fermion in the

fundamental representation, the quenched calculations apply to a generic number of

flavours. As a first step towards a large-N extrapolation, results are stated for N = 2

3



and 3 each in the fundamental, symmetric and antisymmetric representations.

We summarise our findings in Chapter 5 as well as discussing future avenues of

research. In addition, we discuss motives for studying symplectic Yang-Mills besides

composite Higgs models.

The appendices discuss more technical details related to the calculations reported

in this work. Appendix A explicitly states a set of generators of the group SU(4), a

subset of which is the generators of Sp(4). These generators are stated in order to

describe in better detail the global symmetry breaking SU(4)→ Sp(4). The generators

of SU(4) are also stated in the form of generalised Gell-Mann matrices. Appendix B

derives the block structure of all Sp(2N) matrices. The computation of meson masses

requires finding a plateau in a plot of effective masses. Appendix C describes an algo-

rithm that seeks the optimum fit-range for the computation of the meson masses, which

was used in this thesis.
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Chapter 1

Sp(2N) Gauge Theories as a

Framework for Higgs

Compositeness

Higgs compositeness is a viable mechanism that is, in principle, a way to soften the

hierarchy problem of the SM (i.e. why the Higgs boson does not have a mass at the

Planck scale) and the little hierarchy problem (i.e. why we do not see particles other

than the Higgs at the EW scale). However, only a first-principle non-perturbative study

of concrete realisations of these ideas can ultimately enable us to assess their robustness.

Chiral symmetry breaking (as demonstrated in section 1.2.1) is responsible for

the parametrically small masses of the pions in QCD. Composite Higgs models are

based on the same mechanism thus providing an elegant symmetry argument for the

observed low mass of the Higgs boson.

There are several patterns of chiral symmetry breaking (χSB). See, for example,

[2, 32]. Here, we focus on SU(4) → Sp(4), which has not been studied in much detail
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on the lattice until recently, in relation to Higgs compositeness. This pattern, which

arises when the gauge group is Sp(2N) and the theory has two fundamental flavours of

Dirac fermions, motivates the study of Sp(2N) EFT and chiral symmetry breaking in

such models [32].

In addition, it is not known quantitatively how the physics of Sp(2N) depends on

N . For this reason we study several values of finite N as well as the limit of N →∞ in

order to understand this behaviour. In this chapter we describe the need for the Higgs

mechanism and the origin of the naturalness problem. We go on to describe composite

Higgs models and how the method of χSB can be used to generate parametrically small

masses. This method is then applied to Sp(4) EFT. Finally, we describe the behaviour

and motive of Yang-Mills theories in the limit of an infinite number of charges (“large-

N”).

1.1 The Standard Model and its Limitations

The SM describes the three non-gravitational forces (Weak, Strong and Electromag-

netic) in the language of QFT. One of the greatest achievements of the SM is its

prediction of the anomalous magnetic moment of the electron. This is the deviation of

the magnetic moment of the electron from its value as computed with classical physics

and has been computed perturbatively [33] as well as numerically. The numerical [34]

and experimental [35] values are, respectively,

ae(num) = 1159652182.032(13)(12)(720)× 10−12, (1.1.1)

ae(exp) = 1159652180.91(26)× 10−12. (1.1.2)
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The SM requires a mass-giving field (for reasons explained in section 1.1.1) which, itself,

predicts the existence of the Higgs boson. The existence of this particle was confirmed

by the ATLAS [36] and CMS [37] collaborations in 2012.

Despite this unparalleled success, there remain some issues with the SM one of

which is the mass of the Higgs boson. Below, we describe the Higgs field and why the

fine-tuning issue arises.

1.1.1 The Need for the Higgs Mechanism

The SM possesses an SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge symmetry corresponding to

colour, weak-isospin and hypercharge, respectively. The fact that the gauge bosons

for the weak force (W± and Z) possess mass poses a problem for the aforementioned

symmetry. An explicit mass term added to the SM Lagrangian would destroy the gauge

invariance.

A mechanism proposed by Peter Higgs [38, 39] as well as (and independently)

Brout, Englert [40], Anderson [41] and many others demonstrates that a scalar field

inducing spontaneous symmetry breaking (SSB) can endow gauge-bosons with mass

without sacrificing gauge invariance. Since the early 1960s it had been understood that

when a scalar field undergoes SSB there exists one massless scalar particle for every

symmetry generator lost in the process. This is known as Goldstone’s theorem [42,43]

and the massless particles are known as Nambu-Goldstone bosons (NGB). Since no

massless scalar particles had been observed in the Electroweak sector of the SM this

was thought to preclude the possibility of SSB within the Standard Model itself.

The Higgs mechanism (as it has become known) manages to circumvent this

issue by showing that the NGBs are “eaten” by the gauge fields causing the gauge

bosons to acquire mass. The massless scalars become the longitudinal components
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of the (otherwise massless) gauge boson polarisations. In addition to explaining the

masses of the Weak bosons, the theory predicts the existence of a new scalar particle:

the now famous Higgs boson.

Before SSB, the Standard Model contains the three weak-isospin fields, Wµ with

coupling gW , and the hypercharge field, Bµ with coupling g′. Wµ and Bµ correspond

to SU(2)L and U(1)Y, respectively. The Higgs sector of the SM has the Lagrangian

density1

LHiggs = (Dµφ)†(Dµφ)− µ2(φ†φ)− λ(φ†φ)2 (1.1.3)

with µ2 < 0 and λ > 0. Let us explain eq. (1.1.3).

• The complex, two-component Higgs doublet φ =

 φ+

φ0

 = 1√
2

 φ1 + iφ2

φ3 + iφ4


where the four {φi} fields are real

• The covariant derivative Dµ = ∂µ + igWτ ·Wµ + ig′ Y
2
Bµ. The {τ i} terms are

the three Pauli matrices each multiplied by a factor of 1/2; they are normalised

to tr(τ iτ j) = 1
2
δij. The Y term is given by Y = 2(Q − I3) with Q being electric

charge and I3 being the third component of isospin. In full

Dµ =
1

2

 2∂µ + igWW
(3)
µ + ig′Y Bµ igW

(
W

(1)
µ − iW (2)

µ

)
igW

(
W

(1)
µ + iW

(2)
µ

)
2∂µ − igWW (3)

µ + ig′Y Bµ

 (1.1.4)

• λ is the Higgs self-coupling

• µ is related to the Higgs mass, mH , via m2
H = −2µ2.

1Hereafter, all Lagrangian densities are referred to as Lagrangians for brevity
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If we define the vacuum expectation value (VEV) of the Higgs doublet as

〈0|φ|0〉 =
1√
2

 0

v

 (1.1.5)

we can rewrite the Higgs doublet in the unitary gauge as [44]

φ =
1√
2

 0

v + h(x)

 . (1.1.6)

The new scalar, h(x), is the Higgs field.

1.1.2 The Little Hierarchy Problem

The mass of the Higgs boson poses a new problem. The SM is valid up to some

cutoff, ΛSM, and the loop corrections to the Higgs mass, mH , are dependent upon

this quantity. These loop-corrections to mH (denoted by δmH) give rise to quadratic

divergences which necessitate quadratic counter terms to reproduce the measured mass.

The one-loop diagrams are shown in fig. 1.1.

Figure 1.1: One-loop corrections to the mass of the Higgs boson.
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The one-loop correction to the Higgs boson mass (squared) is given by [8]

δm2
H =

3Λ2
SM

8π2

[
y2
t − g2

W

(
1

4
+

1

8 cos2 θW

)
− λ
]

(1.1.7)

where

• ΛSM is the SM cutoff (i.e. the energy level up to which the Standard Model EFT

is valid);

• yt is the Higgs coupling to the top-quark (which is far greater than the Higgs

coupling to each of the other fundamental fermions);

• θW is the Weinberg angle or weak-mixing angle;

• λ is the Higgs self-coupling as in eq. (1.1.3).

The absence of new physics at the tera electron-volt (TeV) scale pushes the

quantity ΛSM ever higher relative to the symmetry breaking scale. Consequently, the

term required to cancel the divergence also increases in magnitude. If the correction to

the squared mass of the Higgs within the SM is denoted by δSMm
2
H and the fine-tuning

scale, ∆, is defined as ∆ ≡ δSMm
2
H

m2
H

as in [8] then

∆ ≈ 3y2
tΛ

2
SM

8π2m2
H

≈
(

ΛSM

450GeV

)2

, (1.1.8)

where the contribution from the top quark dominates due to its large Yukawa coupling

and colour multiplicity. If the SM is valid up to the scale of Grand Unification (ΛSM ∼
1015 GeV), then ∆ ∼ 1024 [8]. Therefore, in order to reproduce the measured mass of 125

GeV, we need two terms to cancel out correctly to one part in 1024 since the quantity

ΛSM is many orders of magnitude larger than the Higgs mass. Such extreme fine-
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tuning seems highly unlikely to occur. We must either accept that such a phenomenal

coincidence has occurred in Nature or seek an alternative model. Such a new model

must eliminate the need for fine-tuning while also producing the current theory of the

EW sector (for which there is a great deal of experimental evidence).

1.2 Composite Higgs Models

As reported earlier, Goldstone’s theorem states that an exact symmetry undergoing

spontaneous breaking gives rise to massless scalar particles known as Nambu-Goldstone

bosons. A corollary is that when the spontaneously broken symmetry is approximate (as

opposed to exact), the would-be Goldstone bosons are no longer massless but, instead,

have a parametrically small mass controlled by the coupling of the symmetry breaking

term. These are known as pseudo-Nambu-Goldstone bosons. This is a more natural

explanation for the low mass of a particle compared to extreme fine-tuning.

1.2.1 Chiral Symmetry Breaking

Having described the little hierarchy problems in the SM, we discuss composite Higgs

models and, in particular, chiral symmetry breaking as a fundamental mechanism for

Electroweak symmetry breaking (EWSB) through a novel interaction. A concrete exam-

ple of PNGBs, which we will review to set the scene for strongly interacting extensions

of the Standard Model, is given by the pions of QCD. At very low energies, the up and

down quarks are the only ones light enough to be produced. We first demonstrate the

existence of chiral symmetry for strictly massless quarks. Even in this case, χSB occurs

causing the quarks to acquire mass.

We then include an explicit mass term and demonstrate that the NGBs acquire
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a small mass which we interpret as the pions of QCD. (This approximate flavour sym-

metry can be supplemented with the strange quark as in the Eightfold Way [45] giving

rise to the K±, K0, K̄0 and η mesons.)

1.2.2 Massless, Low-Energy QCD

For massless quarks, the Lagrangian is

L = iq̄ /Dq − 1

4
F a
µνF

aµν , q =

 u

d

 (1.2.1)

where u and d, respectively, are the spinors for up and down quarks; F a
µν is the gluon

field strength tensor; and Dµ is the covariant derivative of QCD.

We can separate the spinors into left- and right-handed components using the

corresponding operators:

PLψ = 1
2
(1− γ5)ψ = ψL, (1.2.2)

PRψ = 1
2
(1+ γ5)ψ = ψR. (1.2.3)

The matrix γ5 is given in terms of the other four Dirac matrices:

γ5 = iγ0γ1γ2γ3. (1.2.4)

Decomposing q into its left- and right-handed components gives us

L = iq̄L /DqL + iq̄R /DqR −
1

4
F a
µνF

aµν . (1.2.5)

There is no mixing of the left- and right-handed components. This means that the
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Symmetry Noether current

U(1)L jµL = q̄Lγ
µqL

U(1)R jµR = q̄Rγ
µqR

SU(2)L jµaL = q̄Lγ
µτaqL

SU(2)R jµaR = q̄Rγ
µτaqR

Table 1.1: Left- and right-handed Noether currents of low-energy QCD.

Symmetry Noether current

U(1)V jµ = q̄γµq
U(1)A jµ5 = q̄γµγ5q
SU(2)V jµa = q̄γµτaq
SU(2)A jµ5a = q̄γµγ5τaq

Table 1.2: Vector and axial-vector Noether currents of low-energy QCD.

Lagrangian possesses a U(2)L ⊗ U(2)R symmetry:

qL −→ ULqL (1.2.6)

qR −→ URqR, (1.2.7)

where UL and UR are independent elements of the U(2) group. This symmetry can be

decomposed into:

SU(2)L ⊗ SU(2)R ⊗ U(1)L ⊗ U(1)R. (1.2.8)

By Noether’s theorem, there is a conserved current associated with each continu-

ous symmetry, and these are shown in table 1.1. The left- and right-handed components

of the conserved currents can be combined to make vector (right plus left) and axial-

vector (right minus left) currents and these are shown in table 1.2. In both cases,

the {τa} are the three Pauli matrices each divided by two. The {τa} matrices are

normalised such that tr(τaτ b) = 1
2
δab.
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Figure 1.2: A quark antiquark pair produced from the vacuum whose linear- and
angular-momentum are equal and opposite. This results in a net increase in chiral
charge. The image has been taken from [46].

Since the quarks are massless in this example, they can be produced from the

vacuum in quark-antiquark pairs at little energy cost. In order to conserve linear- and

angular-momentum, they must be moving in opposite directions and have opposite

spins. Consequently, the produced quarks must both have their spin and linear mo-

mentum either aligned or anti-aligned. This results in the two quarks either being both

right-handed or both left-handed causing an increase in magnitude of chiral charge.

The symmetry that preserves chiral charge has, thus, been broken by the vacuum. This

condensate of quark-antiquark pairs is quantified as [46]

〈0|q̄q|0〉 = 〈0|q̄LqR + q̄RqL|0〉 6= 0. (1.2.9)

Because the left- and right-handed terms mix, the full U(2) ⊗ U(2) symmetry

no longer holds and the quarks acquire an effective mass as they move through the

condensate of quark-antiquark pairs. SU(2)A symmetry is spontaneously broken giving

rise to 3 NGBs as per Goldstone’s theorem:

SU(2)A ⊗ SU(2)V ⊗ U(1)V −→ SU(2)V ⊗ U(1)V . (1.2.10)
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The U(1)A current is broken by the chiral anomaly [47–49] so it is not included in

eq. (1.2.10). This is the reason the η′ meson has a relatively large mass compared to

the other light mesons of the Eightfold Way.

We refer to the three Goldstone bosons in this case as pions, but with the

reminder that the real pions of QCD are not massless. Inserting the jµ5a current

between the vacuum and a pion state gives [50]:

〈
0
∣∣jµ5a(x)

∣∣πb(p)〉 = ipµfπδ
abe−ip·x. (1.2.11)

Given the conservation of the axial-isospin current, we find:

〈
0
∣∣∂µjµ5a(x)

∣∣πb(p)〉 = p2fπδ
abe−ip·x (1.2.12)

=⇒ 0 = p2fπδ
abe−ip·x, (1.2.13)

which, as expected, only holds if p2 = 0 ⇐⇒ mπ = 0.

Using the methods of the σ model first described in [51] and following the method

of [50] we can describe the dynamics of the spontaneously broken field. We introduce

a new set of scalar fields Σij(x) that transform as

Σ′ = gLΣg†R , Σ†′ = gRΣ†g†L . (1.2.14)

Expanding Σ around the VEV, we can write the full fields in terms of a modular

field, σ, and angular fields, {πa}, in a similar fashion to eq. (1.1.6):

Σ =
v + σ(x)√

2
exp

(
2i

fπ
πaτa

)
, 〈Σ〉 =

v√
2
. (1.2.15)
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Decoupling σ from the πa fields and defining

U(x) = exp

(
2i

fπ
πaτa

)
(1.2.16)

we then write the most general Lagrangian in terms of U(x). The fact that U †U =

1 means that the only relevant terms are those that contain derivatives. In order

to maintain the gauge invariance, we must use covariant derivatives of QCD, Dµ, as

opposed to ordinary derivatives, ∂µ.

A term containing a single derivative would be of the form

tr
[
UDµU

†] , (1.2.17)

but this evaluates to 0 due to the trace term and the presence of a single generator

matrix brought down by the derivative. The terms containing two derivatives are

tr
[
(UDµU

†)2
]
, tr

[
(DµU)(DµU †)

]
(1.2.18)

but the cyclic property of the trace operator as well as the fact that U∂µU
† = −(∂µU)U †

means that they are, in fact, equivalent. Thus the simplest non-trivial term is [50,52]

(1.2.19)L =
f 2
π

4
tr[(DµU)(DµU †)].

where, for reasons that will become clear, the coefficient has been included. Expanding

out this term yields

f 2
π

4
tr[(DµU)(DµU †)] = tr{(∂µπ)(∂µπ)}+

1

3f 2
π

tr{[∂µπ, π] [∂µπ, π]}+O(π6), (1.2.20)

which shows that we can create a theory of interacting pions.
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1.2.3 Chiral Symmetry Breaking with low-mass quarks

In reality, the quarks of QCD each possess a small mass. The Lagrangian in this case

takes the form:

L = iq̄ /Dq − q̄Mq − 1

4
F a
µνF

aµν (1.2.21)

where M is the mass matrix:

M =

 mu 0

0 md

 . (1.2.22)

We can treat the constant matrix, M , as a field in its own right; this is known

as a spurion field. We know that the chiral symmetry is spontaneously broken and we

quantify this via

〈0|q̄q|0〉 = v3, (1.2.23)

where v has mass-dimension 1. The simplest Lagrangian term for the masses is

Lmass =
v3

2
tr(MU +M †U †) (1.2.24)

where the coefficient is inserted to reproduce the VEV of eq. (1.2.23). Expanding out

this term gives us

Lmass = v3(mu +md)−
v3

2f 2
π

(mu +md)π
aπa +O(π3). (1.2.25)

Combining the above with eq. (1.2.20) gives us

Lχ =
1

2
(∂µπ

a)(∂µπa) + v3(mu +md)−
v3

2f 2
π

(mu +md)π
aπa︸ ︷︷ ︸

1
2
m2
ππ

aπa

+O(π3). (1.2.26)
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Comparing this with the standard Klein-Gordon Lagrangian for scalar fields {φa} each

with mass m:

LKG =
1

2
(∂µφ

a)(∂µφa)− 1

2
m2φaφa + (interaction terms), (1.2.27)

we see that the pions each have a mass, mπ, such that

m2
π = (mu +md)

v3

f 2
π

. (1.2.28)

Equation (1.2.28) is known as the Gell-Mann–Oakes–Renner (GMOR) relation.

We see that the NGBs have acquired a small mass due to the M term which

explicitly breaks chiral symmetry. This is the motivation for constructing the Higgs

boson as a composite Goldstone particle of a spontaneously broken approximate global

symmetry of a novel strong interaction. The mass of the Higgs would be low by con-

struction rather than due to the presence of extreme fine-tuning.

1.3 SU(4)/Sp(4) Symmetry Breaking

In this section, we describe the EFT of Sp(4) as well as supplying the precise definition

of the generic group Sp(2N). There are certain constraints that all CHMs must obey

and these are laid out in this section. We demonstrate that the same mechanism of

chiral symmetry breaking that occurs for QCD (shown in section 1.2.3) also occurs in

the symmetry breaking pattern SU(4) → Sp(4) with two flavours of Dirac fermion in

the fundamental representation.
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1.3.1 Constraints on Composite Higgs Models

The SM makes very accurate predictions in the Electroweak sector and these should

not be upset by any additions we make by way of a composite Higgs. We follow much

of the motivation contained in [5, 53, 54] for a simple model of a composite Higgs: the

breaking of SU(4)/Sp(4) symmetry as well as showing that the methods of χSB in

section 1.2.1 can be used in this context.

In order to define the symplectic groups, we first define the special unitary groups

denoted by SU(N). If SL(N,C) is the group of N ×N complex-valued, matrices with

determinant 1 (the special linear group) then the group SU(N) is defined as

SU(N) = {U ∈ SL(N,C) : U †U = 1N}, (1.3.1)

where 1N is the N ×N identity matrix and U † ≡ U∗T denotes the hermitean conjugate

of U . The group SU(N) has dimension N2 − 1 and rank N − 1.

The symplectic group, Sp(2N), is defined in terms of the special unitary group

of odd rank, SU(2N), as

Sp(2N) = {M ∈ SU(2N) : M∗ = Ω†MΩ} (1.3.2)

where

Ω =

 0 1N

−1N 0

 . (1.3.3)

The group Sp(2N) has dimension N(2N + 1) and rank N .

The notation “2N” emphasises the fact that the matrices in the Sp(2N) group

must be of even dimension, but it should be noted that the number of charges of the

corresponding Yang-Mills theory (often termed “colours”) is given by Nc = 2N . Since
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Ω† = Ω−1, we see from the definition that the group, Sp(2N), is pseudo-real; i.e. each

representation is equivalent to its complex conjugate but cannot be expressed as a

real matrix. (A necessary condition for pseudo-reality is that the matrices are of even

dimension [55].) This has consequences for the computation of the glueball spectrum

of Sp(2N) gauge theories discussed in section 3.1.

If we write a general element of Sp(2N) as consisting of four N × N block

matrices, we find

U =

 A B

−B∗ A∗

 (1.3.4)

such that AA† + BB† = 1N and ABT = BAT [56]. A derivation of this structure is

given in Appendix B.

The skeleton for the composite Higgs is an approximate symmetry, G, undergoing

SSB to the group H [5, 9, 13]. The coset space G/H is spanned by the PNGBs by

analogy with the pions of chiral symmetry breaking (see section 1.2.1). There are

several constraints that must be placed on the new model. The first of those is that

the EW symmetry group SU(2)L⊗U(1)Y must be contained in the symmetry group of

the new gauge sector, H. This will later undergo the Standard Model EWSB endowing

the W and Z bosons with mass.

The new gauge sector must also satisfy the SU(2)c custodial symmetry of the

SM. The masses of the two weak bosons, W and Z, are related by the Weinberg angle,

θW :

MW = MZ cos θW . (1.3.5)

If the weak-isospin (SU(2)L) and weak-hypercharge (U(1)Y ) couplings are gW and g′,

respectively, then

cos θW =
gW√

g2
W + g′2

. (1.3.6)
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Equation (1.3.5) can be written as in [57]:

ρ ≡ M2
W

M2
Z cos2 θW

= 1. (1.3.7)

A custodial symmetry is an approximate global symmetry that protects eq. (1.3.7) from

higher order corrections [1] and stems from the SU(2) symmetry that remains after the

chiral symmetry breaking laid out in eq. (1.2.10) [57]. No deviation from eq. (1.3.7) has

been observed and, as such, our new composite Higgs model must respect it.

One motivation for studying symplectic groups arises from their relevance for

the PNGB mechanism of electroweak symmetry breaking. In this context, an EFT

approach provides a valuable insight. We describe the coset SU(4)/Sp(4) in the same

fashion as [5, 13,53,54] which uses similar methods to χSB described in section 1.2.1.

1.3.2 Sp(4) Effective Field Theory

Since Sp(4) ⊂ SU(4), we can embed the generators of Sp(4) into those of SU(4). The

fifteen generators of SU(4) satisfy the two conditions

T a = (T a)†, tr(T a) = 0 a = 1, 2, . . . , 15. (1.3.8)

Eq. (1.3.8) is derived by writing a general element of SU(N) in the form eiα
aTa

and treating the α terms as infinitesimal. Applying the same method to Sp(2N), we

find

e−iα
ATA∗ = Ω†eiα

BTBΩ

=⇒ 1− iαATA∗ = Ω†(1+ iαBTB)Ω
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=⇒ 1− iαATA∗ = Ω†Ω + iΩ†αBTBΩ

=⇒ 1− iαATA∗ = 1+ iΩ†αBTBΩ

=⇒ αATA∗ = −Ω†αATAΩ

=⇒ (TA∗)† = −Ω†TAΩ

=⇒ Ω(TA)T = −TAΩ

=⇒ TAΩ + Ω(TA)T = 0. (1.3.9)

The ten generators of Sp(4) — as well as obeying eq. (1.3.8) — must also satisfy eq.

(1.3.9). All fifteen generators are normalised such that tr(T aT b) = 1
2
δab. An explicit

embedding of these generators is stated in Appendix A. Using the notation provided in

that appendix,

SU(4) = {eiαaTa : a = 1, . . . , 15}, (1.3.10)

Sp(4) = {eiαaTa : a = 6, . . . , 15}. (1.3.11)

The broken generators describe the coset as

SU(4)/Sp(4) = {eiαaTa : a = 1, . . . , 5}, (1.3.12)

and these are used to parameterise the pions of the Sp(4) group.

The full Lagrangian for Sp(4) Yang-Mills theory with Nf fermions in the funda-

mental representation is

L = −1

2
trVµνV

µν +

Nf∑
f=1

ψ
c

f (i /D −mf )ψfc (1.3.13)
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with summation over charge indices (c = 1, . . . , 4). The field strength tensor is Vµν ≡
∂µVν − ∂νVµ + ig[Vµ, Vν ], the covariant derivative is Dµψc = ∂µψc + igVµψc and g is the

coupling constant.

We write the four-component spinors ψfc in terms of two-component Weyl

spinors qfc as in [5, 13,54]. We can construct the antisymmetric combination

Σnm
0 =

4∑
a,b=1

Ωabq
naT C̃qmb (1.3.14)

where Ω is the 4× 4 symplectic matrix (the matrix of eq. (1.3.3) with N = 2). In this

context, the mass matrix can be conveniently written in the form M = mΩ.

In the same fashion as [5,54], we examine the EFT by introducing the new field

Σ as in eq. (1.2.14) but in the form

Σ = e2iπ(x)/fΩ. (1.3.15)

The field Σ transforms as

Σ −→ UΣUT (1.3.16)

and the lowest order term in the Chiral Lagrangian is

L0 =
f 2

4
tr{(∂µΣ)(∂µΣ)†} (1.3.17)

=⇒ L0 = tr{(∂µπ)(∂µπ)}+
1

3f 2
tr{[∂µπ, π] [∂µπ, π]}+O(π6) (1.3.18)

=⇒ L0 = tr{(∂µπ)(∂µπ)}

+
2

3f 2
tr{π(∂µπ)π(∂µπ)− π2(∂µπ)(∂µπ)}+O(π6). (1.3.19)

It is clear from the above that the decay constant for the new pions (i.e. the composite
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Higgs) is f in the above parameterisation.

Treating the mass as a spurion field, M , transforming as

M −→ U∗MU †, (1.3.20)

the Lagrangian term is

Lmass = −v
3

2
tr{MΣ +M †Σ†} (1.3.21)

=⇒ Lmass = 2mv3 − mv3

f 2
tr{π2}+

mv3

3f 4
tr{π4}+O(π6), (1.3.22)

from which we see that the GMOR relation holds in this case:

m2
π = m

v3

f 2
. (1.3.23)

The EFT treatment shown above demonstrates that the methods of χSB and

the generation of small masses emerges from an SU(4) symmetry spontaneously broken

to Sp(4). Four of the five PNGBs are interpreted as the familiar Higgs doublet.

The method of χSB captures the low energy behaviour as shown for our Sp(4)

model as well as QCD. The methods of lattice field theory will allow us to understand

the non-perturbative behaviour of Sp(2N) Yang-Mills theories generally. In addition,

lattice calculations enable us to match the parameters of the fundamental theory to the

EFT. In the following chapter, we will provide an overview of the lattice methods that

have been used in this dissertation.
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1.4 Yang-Mills in the Large-N Limit

The large-N limit framework enables us to understand how central observables of the

theory depend on N without having to compute them explicitly at all values of N .

The idea of studying Yang-Mills with an infinite number of charges was proposed

by ’t Hooft in 1973 [58] (coincidentally, the same year as Wilson’s paper on LFT [16]

was published). QCD is a Yang-Mills theory with gauge group SU(3) and, hence,

has three charges (known as colours). ’t Hooft showed that Yang-Mills theories with

N charges possess an expansion in powers of O(1/N). The first order corrections for

special unitary groups are, in fact, O(1/N2). Studying QCD in this limit is not to make

the claim that 3 is close to infinity but to say that 1/9 is close to zero and we can obtain

results that will be correct to within approximately 10%. A nice exercise involving a

large-N limit, given by David Tong in his lecture notes [59], solves the hydrogen atom

with SO(∞) rotational symmetry as opposed to the true SO(3) rotational symmetry.

The ground state energy in the large-N limit is approximated as

Eground =
mα2

N2

(
2 +O

(
1

N

))
. (1.4.1)

It is understood that the symplectic, orthogonal and unitary groups all coincide

in the limit N →∞ [14,60,61]. This not only offers a comparison of our numerical data

with those already in the literature but allows us to examine the large-N behaviour of

all groups by studying just one of them.

In addition, we want to study the behaviour of Sp(2N) gauge theories for dif-

ferent finite values of N . When we have data for three or more values of N , we can

extrapolate our observables to large-N by plotting the behaviour as a function of 1/N

in the case of symplectic groups on the assumption that the first order corrections are
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sufficient to extrapolate to N → ∞. As explained in the Introduction, the quenched

results provide an initial limit towards which we can evaluate dynamical simulations.

In addition, fermions in the fundamental representation have their loops suppressed

relative to gauge loops in the large-N limit. Therefore, we expect that dynamical- and

quenched-calculations for fundamental fermions will coincide as N →∞.

26



Chapter 2

Sp(2N) Gauge Theories on the

Lattice

Lattice field theory, in combination with Monte-Carlo calculations, enables us to provide

robust results for strongly interacting systems, for which, in contrast with the case of

weakly interacting ones, a general framework for analytic calculations is not known.

The theory of Quantum Electrodynamics (QED) is an example of a theory that cannot

be solved exactly but whose solutions can be approximated via perturbation theory

thanks to the fact that the coupling is small. In fact, its coupling constant, αe, gives a

“measurement” as to how insoluble the theory is. It is defined as

αe =
e2

4π
, (2.0.1)

where e is the unit of fundamental electric charge. αe is a dimensionless parameter

whose numerical value is

αe ≈
1

137
� 1. (2.0.2)
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The smallness of this quantity allows us to treat the theory perturbatively with the

familiar expansion in Feynman diagrams. Observables, such as scattering cross-sections

and decay widths, can be approximated in this fashion to a high degree of accuracy.

By virtue of asymptotic freedom, QCD is weakly-coupled at short-distances and

high-energies. This allows us to recycle most of the perturbative methods used in the

case of QED in this limit. Although QCD is more complex than QED, due to the

self-interactions of the gauge bosons, the same process can be carried out in principle.

However, at low energies and large distances, the strong coupling constant is

αs = O(1) (2.0.3)

and perturbation theory is no longer applicable. In this regime, Feynman diagrams

have very little currency and we require a fully non-perturbative treatment to deter-

mine the qualitative and quantitative behaviour. This is the raison d’être of Lattice

Field Theory. It is the best method we currently have to explore the non-perturbative

regime. This chapter provides an introduction to LFT tailored to our investigations of

Sp(2N). In section 2.1 we describe pure Yang-Mills theory in the continuum then shift

to the Euclidean spacetime lattice in section 2.2. The methodology of extracting ob-

servable quantities from the lattice is explained in section 2.3. The Kennedy-Pendleton

algorithm for generating random elements of the SU(2) group is described in section 2.4

and the supplementary method of overrelaxation is contained in section 2.5. The gen-

eralisation of the Kennedy-Pendleton algorithm to an Sp(2N) matrix is explained in

section 2.6. Finally, the method of resymplectisation is described in section 2.7. We re-

mark that this chapter focusses only on simulation methods. Details of the computation

of observables will be provided contextually with the numerical results.

Lattice calculations for this thesis have been carried out using the HiRep code.
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This is a collaborative work headed by Claudio Pica that has been supplemented with

code that incorporates symplectic Yang-Mills.

2.1 Pure Yang-Mills Theory in the continuum

We define a pure Yang-Mills theory with gauge group G, coupling strength g and Nc

charges. (In the case of QCD, Nc = 3, the three colour charges.) The group is generated

by the matrices {ta : a = 1, 2, . . . , dim(G)}:

exp(iαa(x)ta) ∈ G, (2.1.1)

with summation over the repeated index a and each ta is a Nc ×Nc matrix.

The commutator of two generators gives rise to the structure constants fabc via

[ta, tb] ≡ tatb − tbta = ifabctc, (2.1.2)

where fabc is real and totally antisymmetric. Also, the generators are normalised such

that

tr(tatb) =
1

2
δab, (2.1.3)

where δab is the Kronecker-Delta.

Fermion fields are denoted by

Ψ(x) =


ψ1(x)

ψ2(x)
...

ψNc(x)

 (2.1.4)
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where each ψi(x) is a four-component Dirac spinor. Assuming the fermions are in the

fundamental representation of the gauge group (as is the case for quarks), the fermions

transform under the gauge group as

Ψ′(x) = V (x)Ψ(x) (2.1.5)

where V (x) is an arbitrary element of G. The gauge fields are denoted by

Aµ(x) = Aaµ(x)ta (2.1.6)

and their corresponding transformation under the gauge group is

A′µ(x) = V (x)Aµ(x)V †(x)− i(∂µV (x))V †(x). (2.1.7)

which is the transformation in the adjoint representation.

The fact that the gauge invariance is local (i.e. different at every spacetime

coordinate) means that the ordinary derivative, ∂µ, is not a gauge invariant operator.

Since the fields transform differently at all points in spacetime, the ordinary derivative

cannot determine if the fields are changing because of the gauge transformation or

because of a genuine gradient. The ordinary derivative determines the net change from

these two contributions. For this reason we construct a covariant derivative, Dµ, that

removes the effects of the gauge transformation and is, thus, a gauge invariant quantity

Dµ = ∂µ − iAµ. (2.1.8)
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Under a gauge transformation

D′µ = V (x)DµV
†(x) (2.1.9)

and, hence,

D′µΨ′(x) = V (x)DµΨ(x). (2.1.10)

From the covariant derivative, we can construct a field-strength tensor for pure

Yang-Mills theory by computing its commutator,

Fµν = [Dµ, Dν ] = ∂µAν − ∂νAµ − i[Aµ, Aν ]. (2.1.11)

(In the abelian case, the commutator of the gauge fields vanishes and we are left with

the Faraday tensor of QED.) The non-abelian field strength tensor, Fµν(x), transforms

the same way as the covariant derivative:

F ′µν(x) = V (x)Fµν(x)V †(x). (2.1.12)

The action for the theory is a functional of the gauge fields, S[A], and must be

a gauge-invariant quantity, as per Noether’s theorem. A natural candidate for S is

S[A] = − 1

2g2

∫
d4x tr(FµνF

µν) (2.1.13)

by analogy with that of QED. The trace term guarantees that the Lagrangian is gauge

invariant. Yang-Mills theory, described by eq. (2.1.13), is a non-Abelian generalisation

of QED.
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We can write Fµν in a similar form to that of eq. (2.1.6).

Fµν = ∂µA
a
νt
a − ∂νAaµta − i[ta, tb]AaµAbν (2.1.14)

=⇒ F a
µνt

a = ∂µA
a
νt
a − ∂νAaµta + fabctcAaµA

b
ν (2.1.15)

=⇒ F a
µνt

a = (∂µA
a
ν − ∂νAaµ + fabcAbµA

c
ν)t

a (2.1.16)

=⇒ F a
µν = ∂µA

a
ν − ∂νAaµ + fabcAbµA

c
ν . (2.1.17)

Using eq. (2.1.3), the action becomes

S = − 1

4g2

∫
d4xF a

µνF
aµν . (2.1.18)

In order to measure observable quantities, we construct the path integral:

Z ≡
∫
DAeiS[A], (2.1.19)

from which we can compute the expectation value of an observable, Ô, through

〈Ô〉 =
1

Z

∫
DAÔeiS[A]. (2.1.20)

The functional integral is formally defined as

DA =
∏
x

∏
µ,a

dAaµ(x) . (2.1.21)

2.2 Pure Yang-Mills on the Lattice

The calculation of eq. (2.1.20) is analytically intractable, except in a few special cases,

due to the infinite number of integrals. To make the computation of eq. (2.1.20)
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amenable to numerical evaluation, we first perform a Wick rotation to Euclidean space:

x0 −→ −ix4, (2.2.1)

∂0 −→ i∂4. (2.2.2)

Under such a transformation, the Minkowski spacetime metric becomes the 4×4 identity

matrix:

ηµν −→ δµν = 14 (2.2.3)

and there is no longer any distinction between upper- and lower-Lorentz indices. In

addition, the action becomes

SE[A] =
1

4g2

∫
d4xE F

a
EµνF

a
Eµν , (2.2.4)

where the subscript E denotes a quantity in Euclidean spacetime, and the partition

function, eq. (2.1.19), becomes

ZE =

∫
DAe−SE [A]. (2.2.5)

The partition function is now exponentially suppressed at large actions allowing for

rapid convergence in its computation.

At this point, we shift to a four-dimensional, discrete spacetime lattice denoted

by Λ4. The lattice quantities are defined in table 1. Hereafter, all quantities are

measured in Euclidean spacetime unless stated otherwise. (We drop the subscript E.)

A two-dimensional slice of a Euclidean lattice is shown in fig. 2.1. Each lattice link,
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Figure 2.1: A two-dimensional slice of a four-dimensional Euclidean lattice. The blue-
dotted lines in the top-right form a plaquette; the red-arrowed line is a lattice link; the
hollow circle in the bottom-right is a lattice site. The double-edged green arrows are
the lattice spacing denoted by a.
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Uµ(x), is an element of the gauge group, G:

Uµ(x) = exp(iagAµ(x)) (2.2.6)

where a is the lattice spacing. Due to the finite volume of the lattice and the discreteness

of spacetime, the infinite dimensional integral in eq. (2.1.21) becomes

DU =
∏
x∈Λ4

4∏
µ=1

dUµ(x) (2.2.7)

whose dimension is finite, though it may be very large.

The simplest discretised version of eq. (2.2.4) is the Wilson Action

SW [U ] = β
∑
x∈Λ4

∑
µ<ν

(
1− 1

Nc

< trUµν(x)

)
. (2.2.8)

The variables β and Uµν(x) are the inverse coupling and plaquette, respectively, and

are defined in table 1. Expanding eq. (2.2.8) to leading order in a and taking the limit

a→ 0 reproduces the continuum action in Euclidean space: eq. (2.2.4).

Thus, we have recast the computation of the partition function as

Z =

∫ ∏
x∈Λ4

4∏
µ=1

dUµ(x) e−SW [U ]. (2.2.9)

Such a computation can be carried out with Monte-Carlo methods. We can generate a

lattice configuration {Uµ(x) : x ∈ Λ4, µ = 1, 2, 3, 4} with probability e−SW [U ]. If we con-

struct Ncfg configurations, computing the observable O from each, we can approximate
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〈O〉 via

〈O〉 =
1

Ncfg

Ncfg∑
i=1

Oi +O
(

1√
Ncfg

)
(2.2.10)

where Oi is the measurement of O from the ith configuration. The corrections to the

true average are of the order 1/
√
Ncfg due to the central limit theorem. We have, thus,

reduced the measurement of observable quantities in Yang-Mills theory to a Monte-

Carlo calculation.

The generation of configurations according to a probability distribution is known

as “Importance Sampling”. We could, in principle, generate lattice configurations en-

tirely uniformly and then weight the measurement of each observable according to the

total action of the lattice. This would be highly inefficient due to the enormous number

of lattice configurations available to us and the minute contribution to 〈O〉 that most of

them make. A better plan is to generate the configurations with a built-in probability

and then average our measurements with equal weight since we have already accounted

for the factor e−SW [U ].

2.3 Monte-Carlo Methods for Lattice Yang-Mills

The partition function in eq. (2.2.5) shows that the configurations with the smallest

action, S[U ], are the most probable as we would anticipate from the principle of least

action. A new lattice configuration is generated by updating each individual link on

the lattice; this is defined as a lattice “sweep”.

When we update a link, which we denote by U , we consider its “staples”. These

are the six combinations of three links that can combine with the original link to make

a plaquette; four of these are shown visually in fig. 2.2. Because the action is local,

when updating a single link, we need only consider the staples of the link as opposed

36



Figure 2.2: A diagram showing a link and four of its six staples. The link is shown bold
and and the (three-link) staples are shown as thin lines with a single staple highlighted
in red. Since the lattice is four-dimensional, there are two more staples lying in the
fourth dimension.

to the whole lattice.

The method for updating a single lattice link depends on the gauge group, G, but

this can generally be achieved by updating individual SU(2) subgroups. The algorithm

devised by Kennedy and Pendleton is an efficient method for the update of a single

SU(2) matrix and is described in section 2.4. In order to update the link fully, we must

determine how the SU(2) subgroups are embedded in the group G.

The Cabbibo-Marinari method for updating SU(N) matrices works by updating

SU(2) subgroups [62]. By the definition in eq. (1.3.2), we see that Sp(2N) is a subgroup

of SU(2N) and we can use the same approach for updating symplectic matrices.

The Kennedy-Pendleton algorithm belongs to a class that can go from any con-

figuration to any other configuration in a finite number of steps. This is known as “er-

godicity”. Although this means that the entirety of configuration space is available to

our simulation, it may be the case that the system evolves through configuration-space

very slowly and we must apply a great many update steps to obtain a representative

sample and, thus, acquire reliable measurements. If we move through configuration
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space too slowly, our lattice configurations will become more and more correlated (each

one has a strong dependence on its predecessors in the Markov chain) and we cannot

treat consecutive configurations as being independent. We need a way to make our

algorithm more efficient and explore configuration-space more quickly.

One way to improve our heat bath algorithm is to supplement it with non-

ergodic update steps known as “overrelaxations”. By construction, these do not change

the action of the lattice and are, thus, always accepted as update steps. They exploit

symmetry properties of the action to move the lattice rapidly through configuration

space.

The results obtained herein define an update as one heatbath (HB) and four

overrelaxation (OR) steps on each link.

2.4 Heatbath algorithm for SU(2) matrices

In this section we describe the heatbath algorithm used to update a single SU(2)

matrix [63] which we then generalise to an Sp(2N) matrix. The crucial feature for

the heatbath algorithm is that the sum of any two SU(2) matrices is equal to a scalar

multiple of another SU(2) matrix; the constant of proportionality is the square root of

the determinant.

An SU(2) matrix can be written as a linear combination of the three Pauli

matrices and the 2× 2 identity matrix:

U = a01+ ia · σ (2.4.1)

where the four a variables are real and obey a2
0 + a2

1 + a2
2 + a2

3 = 1.1 This is equivalent

1This also demonstrates that SU(2) is topologically equivalent to the three-sphere.
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to imposing det(U) = 1. The Pauli matrices are

σ1 =

 0 1

1 0

 , σ2 =

 0 −i
i 0

 , σ3 =

 1 0

0 −1

 . (2.4.2)

Therefore

U =

 a0 + ia3 a2 + ia1

−a2 + ia1 a0 − ia3

 . (2.4.3)

The hermitean conjugate of U can be easily computed as

U † = a01− ia · σ. (2.4.4)

The three matrices iσk for k = 1, 2 and 3 satisfy the definition of quaternions. Note

that, in this representation, tr(U) = 2a0. The probability distribution used to update

a generalised SU(N) matrix U is given by

dP (U) = dU exp

(
β

N
< tr[U Σ]

)
(2.4.5)

where Σ is the sum of the link staples, defined in eq. (0.0.4), and dU is the Haar

measure of the group. The sum of all staples, Σ, is proportional to an SU(2) matrix,

V :

Σ = sV (2.4.6)

s =
√

det(Σ). (2.4.7)

Hence,

dP (U) = dU exp

(
1

2
sβ< tr[U V ]

)
. (2.4.8)

There is the possibility that Σ is, in fact, the zero-matrix. If this is the case, the updated
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link is constructed by choosing four random numbers {ri : i = 1, ..., 4}, normalised such

that
∑4

i=1 r
2
i = 1. From this, the new matrix is constructed via

U = r01+ ir · σ. (2.4.9)

If Σ 6= 0, we proceed as below.

Define the matrix X = UV . The Haar measure is unchanged by the multiplica-

tion of a group element, so

dP (X) = dX exp

(
1

2
sβ< tr[X]

)
. (2.4.10)

Thus, the candidate link

U ′ = XV † =
1

s
XΣ† (2.4.11)

and

X = x01+ ix · σ. (2.4.12)

The Haar measure is

dX =
1

π2
d4xδ(x2

0 + |x|2−1) (2.4.13)

=⇒ dX =
1

π2
d4x

θ(1− x2
0)

2
√

1− x2
0

×
(
δ

(
|x|+

√
1− x2

0

)
+ δ

(
|x|−

√
1− x2

0

))
(2.4.14)

=⇒ dX =
1

π2
d4x

θ(1− x2
0)

2
√

1− x2
0

δ

(
|x|−

√
1− x2

0

)
(2.4.15)

=⇒ dX =
1

π2
|x|2 θ(1− x

2
0)

2
√

1− x2
0

δ

(
|x|−

√
1− x2

0

)
dx0 d|x| dφ dcosϑ (2.4.16)
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=⇒ dX =
1

2π2
(1− x2

0)
θ(1− x2

0)√
1− x2

0

dx0 d|x| dφ dcosϑ (2.4.17)

=⇒ dX =
1

2π2
dx0 dφ dcosϑ

√
1− x2

0 θ(1− x2
0). (2.4.18)

Thus

dP (X) =
1

2π2
dx0 dφ dcosϑ

√
1− x2

0 θ(1− x2
0)esβx0 (2.4.19)

with x0 ∈ [−1, 1], cosϑ ∈ [−1, 1] and φ ∈ [0, 2π).

The computation of x0 must follow the distribution

√
1− x2

0e
sβx0 . (2.4.20)

At this point, we introduce the method of Kennedy and Pendleton [63] (first described

in [64]) by introducing a new variable λ:

x0 = 1− 2λ2 (2.4.21)

=⇒ dx0

√
1− x2

0e
sβx0 = −4λ dλ

√
4λ2 − 4λ4esβ(1−2λ2) (2.4.22)

=⇒ dx0

√
1− x2

0e
sβx0 ∝ λ2

√
1− λ2e−2sβλ2 dλ . (2.4.23)

In addition, the interval x0 ∈ [−1, 1] is equivalent to λ ∈ [0, 1]. Therefore, we have to

generate λ according to the modified Gaussian

λ2
√

1− λ2e−2sβλ2 . (2.4.24)

The method of [63] is to generate three random numbers (r1, r2 and r3) each uniformly
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distributed in the interval (0, 1] then obtain λ via

λ2 = − 1

2sβ
(ln(r1) + cos2(2πr2) ln(r3)). (2.4.25)

The factor of
√

1− λ2 is accounted for by generating a new random number, r, uni-

formly distributed in the same interval (0, 1] and accepting the value in eq. (2.4.25) if

and only if

r2 6 1− λ2. (2.4.26)

In computing a value for λ2 we can compute x0 using eq. (2.4.21).

The Dirac delta in eq. (2.4.13) means that once we have x0 we get |x|=
√

1− x2
0

for free. The remaining variables are φ and cosϑ; these can be made by generating a

new triplet of random numbers t1, t2 and t3 each uniformly distributed in the interval

[−1, 1). If these satisfy t21 + t22 + t23 6 1, the three numbers are accepted and normalised

to the length of |x|:

xi =
ti
√

1− x2
0√

t21 + t22 + t23
(2.4.27)

These give us the four numbers (x0, x) from which we can construct the SU(2) matrix,

X. The new link in place of U is U ′ = XV †. There is no need to carry out an acceptance

test for the new link.

To summarise the process for constructing an SU(2) matrix from an initial link

U and distributed according to eq. (2.4.5):

1. Compute Σ, the sum of the surrounding staples of U .

2. Compute s =
√

det(Σ). If s = 0, generate four random numbers uniformly

distributed in the interval [−1, 1), normalise to 1 and this is the updated matrix.
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If s 6= 0, then compute the SU(2) matrix V = 1
s
Σ.

3. Generate three random numbers r1, r2 and r3 each uniformly distributed in the

interval (0, 1] and compute the variable λ2 = − 1
2sβ

(ln(r1) + cos2(2πr2) ln(r3)).

4. Generate a new random number r in the uniform interval [0, 1).

5. Accept the above value for λ2 if and only if r2 6 1 − λ2. If this condition is not

met, repeat items 3 to 5 until it is.

6. Compute the variables x0 = 1− 2λ2 and |x|=
√

1− x2
0.

7. Generate three random numbers t1, t2 and t3 distributed in the uniform interval

[−1, 1). Accept them when they satisfy t21 + t22 + t23 6 1.

8. When the three t-variables have been generated, normalise each of them as follows:

xi =
ti
√

1− x2
0√

t21 + t22 + t23
for i = 1, 2, 3. (2.4.28)

9. The variables above give the matrix X

X =

 x0 + ix3 x2 + ix1

−x2 + ix1 x0 − ix3

 (2.4.29)

and the updated link is U ′ = XV †.

The above procedure can be generalised to construct a matrix in the Sp(2N)

group.
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2.5 Overrelaxation

Section 2.4 describes the heatbath step for SU(2) matrices. As stated earlier, these can

be supplemented with one or more overrelaxation steps. As in [64], define the SU(2)

matrix V as in eqs. (2.4.6) and (2.4.7). The matrix U after an overrelaxation step is

given by

U ′ = V †U †V †. (2.5.1)

Examining the exponent of eq. (2.4.8), we see that the overrelaxation update does not

change the action [64]:

< tr[U ′V ] = < tr[V †U †V †V ] (2.5.2)

=⇒ < tr[U ′V ] = < tr[V †U †] (2.5.3)

=⇒ < tr[U ′V ] = < tr[(UV )†] (2.5.4)

=⇒ < tr[U ′V ] = < tr[UV ]. (2.5.5)

So the overrelaxation step changes the lattice link, U , without changing the action, S,

allowing for more rapid movement through phase-space.

2.6 Generating Sp(2N) matrices

If the group Sp(2N) is generated by the matrices

{TA : A = 1, 2, ..., N(2N + 1)} (2.6.1)
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then an arbitrary element of M of Sp(2N) can be written in the form

M = eiα
ATA . (2.6.2)

where the {αA} are real constants. Since Sp(2N) is a subgroup of SU(2N), the former

generators must be hermitean and traceless:

(TA)† = TA (2.6.3)

tr(TA) = 0. (2.6.4)

In order to be an element of Sp(2N), the matrix M must also satisfy the condition in

section 1.3.2. The method described below is the one used in [5, 13,14].

The method of updating SU(N) matrices starts with the Cartan subalgebra: the

subset of SU(N) generators that are mutually commuting. The Cartan generators are

denoted by (i, j) which is the matrix with 1 on the ith diagonal, −1 on the jth diagonal

and 0’s everywhere else. The indices i and j are in the range 1 6 i < j 6 N , hence

there are 1
2
N(N − 1) such matrices. An example for SU(2) is familiar as the algebra of

spin-1
2
. The only Cartan generator is

(1, 2) =

 1 0

0 −1

 = σ3 (2.6.5)

with the corresponding raising and lowering operators

σ± = σ1 ± iσ2 : (2.6.6)
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σ+ =

 0 1

0 0

 , σ− =

 0 0

1 0

 . (2.6.7)

For SU(3), the Cartan generators are

(1, 2) =


1 0 0

0 −1 0

0 0 0

 , (2, 3) =


0 0 0

0 1 0

0 0 −1

 and (1, 3) =


1 0 0

0 0 0

0 0 −1

 .
(2.6.8)

Each matrix in 2.6.8 is the Pauli matrix σ3 embedded in a 3 × 3 matrix and the

corresponding raising and lowering operators are σ± embedded in the same section of

the 3× 3 matrix.

For SU(N) in general, we can write the fundamental representation, [N ]SU , as

a direct sum

[N ]SU = {2} ⊕ 1N−2 (2.6.9)

where {2} is the fundamental representation of SU(2). When considering Sp(2N), we

restrict our attention to such embeddings that obey the block structure in eq. (1.3.4).

We use N2 such subgroups; this redundancy is used to decrease correlation between

successive updates. There are three unitarily distinct classes of SU(2) embeddings for

general Sp(2N) (i.e. embeddings that are not related by a unitary transformation) and

we give concrete examples for Sp(6).

The embedding (1, 2) is unitarily equivalent to all those for which (i < N ,
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j < N):



1 0 0 0 0 0

0 a b 0 0 0

0 −b∗ a∗ 0 0 0

0 0 0 1 0 0

0 0 0 0 a∗ b∗

0 0 0 0 −b a


,



a 0 b 0 0 0

0 1 0 0 0 0

−b∗ 0 a∗ 0 0 0

0 0 0 a∗ 0 b∗

0 0 0 0 1 0

0 0 0 −b 0 a


and



a b 0 0 0 0

−b∗ a∗ 0 0 0 0

0 0 1 0 0 0

0 0 0 a∗ b∗ 0

0 0 0 −b a 0

0 0 0 0 0 1


(2.6.10)

where a and b are complex numbers such that |a|2+|b|2= 1 and a∗b = b∗a. There are

N(N − 1)/2 such embeddings for Sp(2N) all of which are listed in (2.6.10) for Sp(6).

The second class of embeddings is similar to those above except that one of the

SU(2) blocks is embedded in the other:



1 0 0 0 0 0

0 a 0 0 0 b

0 0 −a∗ 0 −b∗ 0

0 0 0 1 0 0

0 0 −b∗ 0 a∗ 0

0 b 0 0 0 −a


,



a 0 0 0 0 b

0 1 0 0 0 0

0 0 −a∗ −b∗ 0 0

0 0 −b∗ a∗ 0 0

0 0 0 0 1 0

b 0 0 0 0 −a


and



a 0 0 0 b 0

0 −a∗ 0 −b∗ 0 0

0 0 1 0 0 0

0 −b∗ 0 a∗ 0 0

b 0 0 0 −a 0

0 0 0 0 0 1


(2.6.11)

where a and b are complex numbers such that |a|2+|b|2= 1 and a∗b = b∗a. There are

N(N − 1)/2 such embeddings for Sp(2N) all of which are listed in (2.6.11) for Sp(6).
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The embedding (1, 1 +N) is unitarily equivalent to the embeddings (i, i+N):



a 0 0 b 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−b∗ 0 0 a∗ 0 0

0 0 0 0 1 0

0 0 0 0 0 1


,



1 0 0 0 0 0

0 a 0 0 b 0

0 0 1 0 0 0

0 0 0 1 0 0

0 −b∗ 0 0 a∗ 0

0 0 0 0 0 1


and



1 0 0 0 0 0

0 1 0 0 0 0

0 0 a 0 0 b

0 0 0 1 0 0

0 0 0 0 1 0

0 0 −b∗ 0 0 a∗


(2.6.12)

where a and b are complex numbers such that |a|2+|b|2= 1 and a∗b = b∗a. There are N

such embeddings for Sp(2N) all of which are listed in (2.6.12) for Sp(6). The number

of generators, as stated before, is N(N −1)/2 +N(N −1)/2 +N = N2. Note that each

matrix in eqs. (2.6.10) to (2.6.12) satisfies the block structure of eq. (1.3.4).

The total number of SU(2) generators is bigger than the dimension of the group.

As a consequence, the group can be covered in a non-unique way by the product of

matrices belonging to the SU(2) subgroups identified above. (This redundancy can

serve to decrease the correlation between successive elements in our Markov chain of

pure gauge configurations.) We can thus apply the Heatbath algorithm for SU(2)

matrices to each of the aforementioned subgroups along with four overrelaxation steps

to construct a Markov chain of lattice configurations.

2.7 Resymplectisation

After each update step, floating point errors will accumulate and result in a deviation

of each updated matrix from the group manifold. After each lattice sweep, we project

each lattice link back onto the group manifold using a resymplectisation algorithm (the
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equivalent for SU(N) simulations being reunitarisation algorithms).

Once again, the block structure can be used to project each matrix back to the

group manifold:

U =

 A B

−B∗ A∗

 . (2.7.1)

Note that  B

A∗

 = −

 0 1N

−1N 0

 A

−B∗

∗ (2.7.2)

 B

A∗

 = −Ω

 A

−B∗

∗ . (2.7.3)

Hence, from each of the N columns on the left of the updated matrix U , we can

determine each of the N columns on the right.

Ui,j+N = −
2N∑
k=1

ΩikU
∗
kj for 1 6 i 6 2N and 1 6 j 6 N . (2.7.4)

As well as the above, the matrix, U , must satisfy unitarity which corresponds to each

of its columns (and rows) being mutually orthonormal. This process can be carried out

using the modified Gram-Schmidt process. The full process for resymplectisation is:

• Normalise column 1 to unit length.

• Compute column (1 +N) using eq. (2.7.4).

• Compute column 2 by orthonormalising with respect to columns 1 and 1 +N .

• Compute column (2 +N) using eq. (2.7.4).
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• Repeat the above until all columns have been determined.
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Chapter 3

Glueballs and Strings

A main motivation for the work carried out in this thesis was the exploration of Sp(2N)

gauge theories in the limit of large-N . More precisely, if the theory has coupling strength

g, we examine the behaviour as N →∞ with the quantity λ ≡ 2Ng2 held fixed. This

is known as the ’t Hooft-limit or planar-limit. Yang-Mills theories based on orthogonal,

symplectic or unitary groups possess an expansion in powers of 1/N and the Feyn-

man diagrams can be ordered according to their topology with the planar diagrams

dominating in the large-N limit [58].

In this chapter, our main focus will be the determination of glueball masses

in Sp(2N) gauge theories and their extrapolation to N → ∞. Glueballs are massive

particles composed solely of gauge bosons. Their existence is a consequence of con-

finement and self-interaction of gauge bosons in non-Abelian gauge theories. Glueball

masses can be computed in lattice simulations, and their determination provides a

non-perturbative characterisation of gauge field dynamics. Besides glueballs, another

signature of confinement is the existence of gluon flux tubes whose dynamics are de-

scribed by an effective string theory. The main parameter of the effective dynamics,
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the string tension σ, can be extracted from the interaction potential between a static

quark and its antiquark, which can be parameterised as:

V (r) = −α
r

+ σr + C, (3.0.1)

where α, and C are two constants the discussion of which is beyond our scope. The

term σ can be measured in lattice simulations.

This chapter provides a description of the methods used in our calculations to

extract glueball masses and the string tension at fixed N and to extrapolate them

to N → ∞, together with our numerical results and a discussion of what we have

learned from this investigation. In section 3.1 we briefly describe the implementation

of Sp(2N) Yang-Mills on the lattice. A reminder of notation as well as the action

governing the dynamics is given. In section 3.2 the variational method used to compute

glueball masses is outlined. Section 3.3 describes blocking and improved smearing

techniques used to improve the signal of the glueball and, thus, obtain more accurate

measurements. The construction of glueball operators is outlined in section 3.4 and

the computation of the string tension in section 3.5. The method of extrapolation

to continuum, thermodynamic and large-N limits is described in section 3.6. The

hypothesis of Casimir Scaling is described in section 3.7. The results and final discussion

are in sections 3.8 and 3.9, respectively.

3.1 Our Lattice Model

In the continuum, glueballs are labelled in the form JPC where J is its (integer) spin,

P is its parity (+ or −) and C is its charge conjugation (again, + or −). Due to the

pseudo-reality of the symplectic groups (demonstrated explicitly in eq. (1.3.2)), charge
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conjugation is always positive and this quantum number is left implicit hereafter. In

addition, we label the n-th excited state of a particular channel by the addition of n

asterisks (*) after the parity sign. For example, the ground state of the spin-0 glueball

with positive parity would be denoted by 0+ and 0+∗∗ denotes the corresponding second

excited state.

When we shift from continuous Minkowski spacetime to discrete Euclidean space-

time, the continuous SO(3) symmetry of the former is broken to the discrete Oh sym-

metry of the cube. For this reason, we label the lattice glueballs differently from the

continuum ones. The five irreducible representations of the cubic group are denoted

conventionally by A1, A2, E, T1 and T2. We label the lattice glueballs in the form RP

where R is the representation of Oh. In other words, we replace the spin value, J , with

the representation label, R; the notations for parity and excitations are unchanged.

In addition to the glueball spectrum, we can also determine the string tension,

σ. If two static, infinitely-massive fermions carrying opposite charges of the theory –

e.g. a quark-antiquark pair in the case of QCD – are separated by a distance r, then

the potential between the two is given by eq. (3.0.1). At large distances, the linear term

dominates and the two quarks require infinite energy to be separated from each other.

The motivation for measuring σ is that it allows a test of confinement as well as setting

the scale for the glueball spectrum mentioned above. Dimensional analysis shows that

σ has mass dimension 2 allowing
√
σ to be interpreted as a mass scale.

The mass spectrum of the glueballs is determined by the variational method

described in sections 3.2 to 3.4, inclusive. The string tension is determined in a similar

way in section 3.5. Throughout the aforementioned sections, we describe a Yang-Mills

theory with gauge group Sp(2N) on a four-dimensional, hypercubic lattice with periodic

boundary conditions in all directions. For concreteness, we also refer to fermions as

“quarks” and gauge bosons as “gluons” to allow an analogy with QCD.
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Throughout these calculations, we use the standard Wilson Action:

S = β
∑
x∈Λ4

∑
µ<ν

(
1− 1

Nc

< trUµν(x)

)
(3.1.1)

where

β =
2Nc

g2
(3.1.2)

and g is the bare coupling. Nc is the number of charges of the theory (Nc = 2N for

Sp(2N)), <(x) denotes the real part of quantity x, tr is the trace operator and Uµν(x)

is the plaquette in the µν-plane originating at lattice site x:

Uµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν(x). (3.1.3)

3.2 Determining the Glueball Spectrum

In the continuum, we would extract the glueball masses by finding the location of

the singular points in the propagator. On the lattice we adopt a different approach

called the variational method. The variational method for determining the glueball

spectrum involves fitting an exponential decay to a correlation function of creation

and annihilation operators in coordinate space. The operators are path-ordered, gauge

invariant products of link variables that transform in the relevant representation of the

cubic group.

The paths comprising the operators must be closed in order to ensure gauge

invariance. A single link transforms under the gauge group as

Uµ(x) −→ V (x)Uµ(x)V (x+ µ̂)† (3.2.1)
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where the V ’s are elements of G. Denoting the unit vector in the direction of the ith axis

as µ̂i and the lattice link in the same direction originating at coordinate x as Uµi(x),

then the trace of a product of n link variables around a closed path is

C = tr [Uµ1(x)Uµ2(x+ µ̂1) . . . Uµn(x− µ̂n)] . (3.2.2)

The path C transforms under the gauge group as

(3.2.3)

C → tr[V (x)Uµ1(x)V (x+ µ̂1)†V (x+ µ̂1)Uµ2(x+ µ̂1)V (x+ µ̂1 + µ̂2) . . .

× V (x− µ̂n)Uµn(x− µ̂n)V (x)†]

= tr
[
V (x)Uµ1(x)Uµ2(x+ µ̂1) . . . Uµn(x− µ̂n)V (x)†

]
= tr

[
Uµ1(x)Uµ2(x+ µ̂1) . . . Uµn(x− µ̂n)V (x)†V (x)

]
= tr [Uµ1(x)Uµ2(x+ µ̂1) . . . Uµn(x− µ̂n)]

where we have used the cyclic property of the trace in the penultimate line. Thus, the

trace of a path-ordered product of link variables around a closed loop is gauge invariant.

If we define a path C that transforms in a given representation of the cubic group

at a fixed time slice t and spatial location x, then the operator, O(x, t), is given by

O(x, t) = tr

(
P̂
∏
C

Ul

)
(3.2.4)

where P̂ denotes the path ordering operator. This allows us to define the spatially

averaged operator, Φ(t), as

Φ(t) =
1

N3
s

∑
x

O(x, t) (3.2.5)

where Ns is the number of lattice sites in each direction on the (hypercubic) lattice.
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Define the correlation function CT (t) as follows [64]:

CT (t) ≡ 1

ZT
tr
[
Φ†(t)Φ(0)

]
T

=
1

ZT

∑
m

〈m|e−(T−t)HΦ†(0)e−tHΦ(0)|m〉 (3.2.6)

where ZT is the normalisation factor:

ZT = tr
[
e−TH

]
(3.2.7)

and we are using the eigenstates of the Hamiltonian, H, as a complete set of orthonormal

eigenstates. The operator Φ(0) creates, from the vacuum, a new state at time t = 0

and Φ†(t) annihilates the state at time t.

In addition, we are interested in measuring energies relative to the vacuum. In

the case of the scalar glueball, the operator does not have a vanishing VEV so we simply

redefine the operator creating such a state as

Φ(t) = Φ(t)− 〈Φ(t)〉. (3.2.8)

Such operations are called vacuum-subtracted. Continuing from eq. (3.2.6), we in-

sert a complete set of (orthonormal) glueball eigenstates into the correlation function.

Without loss of generality, we may label the energies such that

E0 6 E1 6 E2 . . . (3.2.9)

This gives

CT (t) =
1

ZT

∑
m,n

〈m|e−(T−t)HΦ†(0)e−tH |n〉 〈n|Φ(0)|m〉
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=⇒ CT (t) =
1

ZT

∑
m,n

〈m|e−(T−t)EmΦ†(0)e−tEn |n〉 〈n|Φ(0)|m〉

=⇒ CT (t) =
1

ZT

∑
m,n

|〈n|Φ(0) |m〉 |2e−(T−t)Eme−tEn . (3.2.10)

We apply a similar process to the normalisation factor, ZT :

ZT =
∑
n

〈n|e−TH |n〉

=⇒ ZT =
∑
n

〈n|n〉 e−TEn

=⇒ ZT =
∑
n

e−TEn . (3.2.11)

Now define

∆En ≡ En − E0 (3.2.12)

(i.e. the difference between energy level n and the energy of the vacuum):

CT (t) =

∑
m,n|〈n|Φ(0) |m〉 |2e−(T−t)Eme−tEn

e−TE0 + e−TE1 + e−TE2 + . . .

=⇒ CT (t) =

∑
m,n|〈n|Φ(0) |m〉 |2e−(T−t)∆Eme−t∆En

1 + e−T∆E1 + e−T∆E2 + . . .
(3.2.13)

We now determine

C(t) ≡ lim
T→∞

CT (t). (3.2.14)

Note that ∆E0 = 0 by virtue of the operators being vacuum-subtracted; therefore, of

the m terms, only m = 0 persists in this limit:

C(t) =
∑
n

|〈n|Φ(0) |0〉 |2e−t∆En . (3.2.15)
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For brevity, define cn ≡ 〈n|Φ(0)|0〉 and redefine ∆En → En. This shows that

the correlation function is a sum of decaying exponentials:

C(t) =
∞∑
n=1

|cn|2e−tEn . (3.2.16)

(The sum begins at n = 1 since c0 is the VEV of the operator and all operators are

vacuum-subtracted.) We also normalise the coefficients such that

∞∑
n=1

|cn|2= 1. (3.2.17)

As t becomes very large, the higher energies are suppressed ever more strongly

and the correlator behaves like a single exponential:

C(t) = |c1|2e−E1t + |c2|2e−E2t + |c3|2e−E3t + . . . (3.2.18)

=⇒ C(t) = |c1|2e−E1t

(
1 +
|c2|2
|c1|2

e−(E2−E1)t +
|c3|2
|c1|2

e−(E3−E1)t + . . .

)
(3.2.19)

=⇒ C(t) ≈ |c1|2e−E1t for (E2 − E1)t� 1, (3.2.20)

assuming that c1 6= 0. The inequality (E2 − E1)t � 1 implies that (En − E1)t � 1

for all n > 2 since we have labelled the energies in order of non-decreasing magnitude

as per eq. (3.2.9). Since we do not know the value of c1, we take the ratio of C(t) at

different times to give

e−E1t

e−E1(t−t0)
≈ C(t)

C(t− t0)

=⇒ e−E1t0 ≈ C(t)

C(t− t0)

=⇒ E1 ≈ − 1

t0
ln

(
C(t)

C(t− t0)

)
.

58



By virtue of C(t) comprising zero-momentum operators, E1 = m1 hence

m1 ≈ −
1

t0
ln

(
C(t)

C(t− t0)

)
. (3.2.21)

Since we can only approximate the ground state mass, we instead describe our

measurement in eq. (3.2.21) as an effective mass (meff). That is a mass whose measure-

ment picks up contributions from heavier states that have not been suppressed enough

to be ignored. Since even the heaviest glueballs propagate across the earliest time slices,

the effective mass of the glueball is always larger than its true mass. If we detect a

plateau in the measurement of the effective mass, we make the assumption that this

plateau extends to t→∞. At this point, we take the plateau to be the effective mass

of the glueball.

3.3 Improved Operators for the Glueball Spectrum

Section 3.2 is rather idealised. We know that we can reduce the effects of contamination

from more massive states by taking measurements at larger time values. However, while

the lightest state will decay the most slowly, it will eventually become drowned out by

statistical noise which is constant in time (i.e. the signal-to-noise ratio will decrease

exponentially). Thus, determining the mass too early means that our value will have

been affected by the more massive states, while determining the mass too late means

that our measurement will not be able to rise above background fluctuations. (This

demonstrates the counter-intuitive point that the more massive a glueball, the more

difficult it is to determine its mass.)

Our solution to this conflict is to reduce the effects of more massive states at

early times. In eq. (3.2.16), we required that the coefficient c1 was non-zero. We now
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focus our attention on making this coefficient larger in magnitude. Equation (3.2.17)

will force the magnitude of the other coefficients to decrease. The advantage of doing

this is that the effects of higher energy states will be diminished at early times due to

their smaller coefficients and, conversely, the presence of the lightest glueball state will

become more pronounced.

Going back to eq. (3.2.3) we see that c1 = 〈1|Φ(0)|0〉. Since Φ(0) |0〉 creates a

state from the vacuum (at time t = 0), c1 is the inner product of this state and the

state |1〉 (the ground state of the glueball). Thus, increasing the magnitude of c1 is

equivalent to making Φ(0) |0〉 have a larger overlap with the glueball ground state.

Two tried and tested methods to increase the overlap of the two states are known

as “blocking” and “smearing” (see, for example, [65,66], respectively). One of the issues

when we take the continuum limit is that, as the lattice spacing goes to zero, our glueball

operators become ever smaller in terms of physical size. Since glueballs themselves have

a physical size that is independent of the lattice spacing, as the lattice becomes finer

our operators have a decreasing resemblance to what it is we are studying; the blocking

method increases the physical size of the operators. Again, as we take progressively

finer lattice spacings, our operators will become dominated by ultraviolet (i.e. short-

distance) fluctuations. This will cause our operators to become sensitive to the physics

occurring at the ultraviolet-cutoff; in general, the glueball state will not be sensitive to

such scales. The smearing and blocking methods average links with their neighbours

in order to iron out these ultraviolet fluctuations and reduce the dependence on the

ultraviolet-cutoff.

• Blocking: The Blocking Algorithm increases the physical volume of the operators

by an iterative procedure. At each step, the lattice link is doubled in length

(forming a “super-link”) and the corresponding “super-staples” are added to the
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mix, the latter being weighted by some factor pb. This process is depicted in

fig. 3.1. A single lattice link after b blocking iterations is denoted by Ũ b
µ(x) with

U b=0
µ (x) = Uµ(x), the original lattice link (recall that Roman letters run from 1

to 3, inclusive). The tilde symbol is a reminder that, in general, a blocked link

will not be a member of the gauge group. After each iteration, we must project

the blocked link back to the gauge group: Ĝ{Ũ b
i (x)} = U b

i (x) ∈ Sp(2N). The

resymplectisation algorithms for this are described in section 2.7.

Figure 3.1: Left to right: a blocked link, a super-link and its super-staples. The
Cartesian basis serves as a reminder that only the spatial links are used in the blocking
procedure; the links themselves can lie in any of the three spatial planes.

One can define the initial state U0
i (x) = Ui(x) and iterate according to:

Ũ b+1
i (x) = U b

i (x)U b
i (x+ 2bĵ)

+ pb
∑
j 6=i

U b
j (x)U b

i (x+ 2bĵ)U b
i (x+ 2bĵ + 2bî)U b

j (x+ 2b+1î)†

+ pb
∑
j 6=i

U b
j (x− 2bĵ)†U b

i (x− 2bĵ)U b
i (x− 2bĵ + 2bî)U b

j (x− 2bĵ + 2b+1î).

(3.3.1)

On a hypercubic lattice with Ns sites in each dimension, the number of blocking
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iterations is the greatest integer, n, such that 2n−1 6 Ns.

• Smearing: The Smearing algorithm is another iterative procedure this time de-

signed to average out ultraviolet fluctuations. In this case we add to the original

link its spatial staples weighted by a factor pa (not the same factor as used in the

blocking algorithm). This method was improved in [67] by adding the “diagonal-

staples” of the corresponding link weighted by a different factor again, pd. The di-

agonal staples are the paths with length of 5a that do not lie in a two-dimensional

plane. These are demonstrated visually in fig. 3.2. If we include just the planar

staples (the bold-blue one in fig. 3.2, this is known as APE smearing. We refer to

the inclusion of the diagonal staples as “improved smearing”.

Figure 3.2: Left to right: a smeared link, the original link, the staples of the original
link and the diagonal staples of the original link. In the second diagram from the right,
a single staple is bold and highlighted in blue; on the far-right diagram, two different
diagonal-staples are dotted and highlighted in red. The two super-staples that are
highlighted demonstrate the possible shapes that they can take.

As with blocking, we define the initial state U0
i (x) = Ui(x) and must project

the smeared link back to the gauge group after each iteration. The summation

variables are positive in each term in eq. (3.3.2). The equation for an improved-
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smeared link is given by [67]:

Ũ s+1
i (x) = U s

i (x) + pa
∑
j 6=i

U s
j (x)U s

i (x+ ĵ)U s
j (x+ î)†

+ pa
∑
j 6=i

U s
j (x− ĵ)†U s

i (x− ĵ)U s
j (x− ĵ + î)

+ pd
∑
j 6=i

∑
k 6=i,j

U s
j (x)U s

k(x+ ĵ)U s
i (x+ ĵ + k̂)

∑
j′ 6=i

∑
k′ 6=i,j′

U s
j′(x+ î+ k̂′)U s

k′(x+ î)†

+ pd{rotations}.
(3.3.2)

In eq. (3.3.2), the term whose coefficient is pd is a single diagonal staple. The

pd{rotations} term consists of the diagonal-staples obtained by rotating the explicit one

through an angle of π/2 about the original link (in this case, the î-axis). The smearing

algorithm now consists of four planar-staples and sixteen nonplanar-staples.

The two aforementioned algorithms can be combined as demonstrated in [67].

We denote a smearing operation generalised to apply to blocked links as S, by which we

mean that the staples defined in eq. (3.3.2) are replaced with the superstaples described

in eq. (3.3.1). From this, we define a link that has been blocked b times and smeared s

times by

U b=1
i (x) = U s

i (x)U s
i (x+ î), (3.3.3)

U b=1,s
i (x) = Ss{U b=1

i (x)}, (3.3.4)

U b+1
i (x) = U b,s

i (x)U b,s
i (x+ 2bî). (3.3.5)

where Ss denotes the application of S a total of s times.

The combination of improved-smearing and blocking allows the benefits of op-
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erators with a physical size as well as a finer resolution. The parameters pa, pb and pd

can be tuned in order to maximise the coefficient |c1|2.

In eq. (3.3.1), we see that the length of the blocked staple doubles with every

blocking iteration. The parameter pb determines the rate at which the blocked link

increases in width. In order to keep these two rates of growth approximately the same,

the blocking parameter pb is chosen to be O(1). Extensive testing in [67] demonstrated

that reasonable choices are (pa, pd) = (0.30, 0.12) and (pa, pd) = (0.40, 0.16) the latter

of which is used in our glueball results.

In addition to blocking and smearing, we can improve the overlap with the glue-

ball ground state by using multiple operators that transform in the same representation

of the cubic group. The construction of such operators is described in section 3.4. Say

we have a set of No operators each in the relevant representation of the cubic group:

{φi : i = 1, . . . , No}1. We can construct an No×No correlation matrix in a similar way

to eq. (3.2.6):

Cij(t) = 〈φ†i (t)φj(0)〉. (3.3.6)

As explained in section 3.2, our best estimate for the glueball mass is our lowest

measurement of the effective mass. Thus, we seek a linear combination of operators

Φ(t) =
No∑
i=1

viφi(t). (3.3.7)

that minimises such a measurement. We can treat {vi} as the components of an No–

dimensional vector.

This means that our original definitions of the correlation function and effective

1Once again the operators creating scalar states are vacuum subtracted as in eq. (3.2.8)
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mass in eqs. (3.2.6) and (3.2.21), respectively, can be recast as

C(t) =
No∑
i=1

No∑
j=1

vivjCij(t) (3.3.8)

and

meff = −1

t
ln

(∑
ij vivjCij(t)∑
ij vivjCij(0)

)
. (3.3.9)

From this, we deduce the generalised eigenvalue problem:

No∑
i=1

No∑
j=1

vivjCij(t) = e−mefft

No∑
i=1

No∑
j=1

vivjCij(0)

=⇒
No∑
j=1

vjCij(t) = e−mefft

No∑
j=1

vjCij(0). (3.3.10)

Denote the correlator in matrix form as C(t), the coefficients {vi} as a vector v and

λ(t) = e−mefft. We can rewrite the above as

C(t)v = λ(t)C(0)v

=⇒ C−1(0)C(t)v = λ(t)v (3.3.11)

So we have reduced the determination of the glueball masses to the determination

of the eigenvalues of an No × No matrix C−1(0)C(t). The largest of these eigenvalues

corresponds to the lowest glueball mass. One method of determining eigenvalues is by

diagonalising the corresponding matrix. Denote the (diagonal) components of same by

Dii(t) with no sum on the repeated index i.

The periodicity of the lattice allows for the propagation of glueballs backwards
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in time. We can take these into account by converting the exponential decay into a

hyperbolic-cosine function giving:

Dii(t) ∝ e−mit + e−mi(L−t) (no sum on i)

=⇒ Dii(t) ∝ e−ami t̄ + e−ami(Nt−t̄)

=⇒ Dii(t) ∝ e−ami(t̄−Nt/2) + eami(t̄−Nt/2)

=⇒ Dii(t̄) = A cosh

(
ami

(
t̄− Nt

2

))
. (3.3.12)

In the second line, we have changed the variable from t to the dimensionless (integer)

quantity t̄ which is the time-slice on the lattice as opposed to the value of Euclidean

time (t = at̄) and A is a constant. Making use of the identity

coshx+ cosh y = 2 cosh

(
x+ y

2

)
cosh

(
x− y

2

)
(3.3.13)

gives us the effective mass in lattice units

ami(t̄) = arcosh

(
Dii(t̄+ 1) +Dii(t̄− 1)

2Dii(t̄)

)
(no sum on i). (3.3.14)

Once this quantity reaches a plateau, we can say with confidence that the ground state

is the dominant contribution to the sum of decaying exponentials. The effective masses

are fitted to the curve in the t-interval in which ami(t̄) exhibits a plateau.

After fitting the glueball data to the curve, the covariance matrix corresponding

to the fit parameters is determined. The diagonal components each correspond to the

squared uncertainty in the fit parameter and, hence, the square-roots of these quantities

are treated as the errors in the measurements.

In some cases, systematic errors in the mass plateaux are larger than its sta-
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tistical errors. As explained in [14], this means that we cannot define a value of the

reduced chi-squared and the corresponding entry in our table of results in section 3.8

is left blank.

To summarise the process for determining the glueball mass in a given represen-

tation of Oh with a given parity P :

1. We construct a set of glueball operators {φi} (described in section 3.4) each of

which transforms in the relevant representation of the cubic group as well as

having the relevant parity and charge conjugation.

2. We work to maximise the glueball signal by the methods of blocking and improved-

smearing.

3. We construct a correlation matrix Cij(t) = 〈φ†i (t)φj(0)〉.

4. We diagonalise Cij(t) to give Dii(t) in order to determine the eigenvalues of the

former.

5. We determine the corresponding mass (in lattice units) according to eq. (3.3.14)

and look for the values of t for which the effective masses exhibit a plateau.

6. Finally, the function (3.3.14) is fitted to the effective mass measurements in the

plateau interval with the errors being determined by the diagonal elements of the

corresponding covariance matrix.

We anticipate that not all the computed eigenvalues will give reliable measure-

ments for the corresponding glueball mass. The blocking and smearing processes serve

to improve the signal of the ground state but, in practice, does not help for the signals

of more massive (excited) states. We must either content ourselves with not computing

the higher masses or find another way to improve the signals of the excited states.
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3.4 Glueball Operators

The operators used to probe the glueball spectrum are gauge invariant products of link

variables that transform under irreducible representations of Oh. They are constructed

by taking the trace of a path-ordered product of lattice links (each of which is a separate

element of Sp(2N)) forming a particular shape that transforms in a given representation

of the octahedral group.

Let us allow for an example by going back to continuous spacetime. A continuum

glueball with spin-s will have 2s + 1 possible spin states (−s,−s + 1, . . . , s − 1, s).

Hence, the glueball will live in a (2s + 1)-dimensional representation of the rotation

group SO(3). It follows naturally from this that a glueball on the lattice will live in

an irreducible representation of the group Oh. There exist five such representations

denoted by A1, A2, E , T1 and T2; these have dimensions 1, 1, 2, 3 and 3, respectively.

This is the same notation as in [14].

In order to determine which states are produced in the continuum limit, we

examine the behaviour of an SO(3) representation restricted to the discrete ones of

the octahedral group. These are known as subduced representations. An irreducible

representation of SO(3) (denoted by J) restricted to Oh, is denoted by J ↓ O. These are

shown in table 3.1 up to and including a continuum state of spin-6. This decomposition

is used to identify continuous spin in lattice results. For example, if we wish to determine

the mass of a continuum glueball of spin 2, we seek a mass that is degenerate in the

representations E and T2. Such degeneracies are observed in section 3.8.

We collate the work contained in [68–71] to show how operators that create

glueball states are constructed. We know that operators are composed of closed loops
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J Octahedral decomposition
0 A1

1 T1

2 E ⊕ T2

3 A2 ⊕ T1 ⊕ T2

4 A1 ⊕ E ⊕ T1 ⊕ T2

5 E ⊕ T1 ⊕ T1 ⊕ T2

6 A1 ⊕ A2 ⊕ E ⊕ T1 ⊕ T2 ⊕ T2

Table 3.1: Continuum glueball states of spin J and their corresponding decomposition
in irreducible representations of the octahedral group [68] for integer spins 0 to 6,
inclusive.

of lattice links. A single loop, C, can be written as

C = [f1, f2, ..., fL] (3.4.1)

where L is the length of the loop (i.e. the number of lattice links comprising the loop).

We have, in essence, condensed the notation of eq. (3.2.2). Each fi is one of the basis

vectors {~ei} that span the three spatial dimensions. The restriction to a fixed time-slice

creates operators with zero momentum. The fact that the loop is closed implies

L∑
i=1

fi = 0. (3.4.2)

Similarly, the fact we take the trace of the product of link variables means that cyclic

permutations of {fi} all correspond to the same contour just as the trace operator is

invariant under cyclic permutations of the matrices within it.

Under the action of a group element, r, the loop transforms as

rC = [rf1, rf2, ..., rfL]. (3.4.3)
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A basis for the irreducible representations of Oh can be constructed from any closed

loop. A single closed loop is transformed under the action of the group, Oh, and linear

combinations of these transformations are combined so as to construct each of the five

irreducible representations [72].

If we have a closed loop P , and wish to construct a basis for the representation

R, we use the 24 × 24 matrix contained in Table 1 of [71] to obtain the correct linear

combination. In general, the more operators, the better the glueball signal but this will

be subject to diminishing returns as computation time increases.

3.5 String Tension

The string tension can be determined in a similar way to the mass of the glueballs.

To do this, we must understand the mechanism behind confinement. If two colour

charges are separated by a very large distance, r, they have an interaction potential

that is approximately linear in r with the string tension, σ, being the constant of

proportionality. At large distances, the confining potential of eq. (3.0.1) is dominated

by the linear term. The latter is due to the formation of thin flux tubes between the

sources. These flux tubes have an effective dynamics described by string theory. The

two charges form the ends of a single open string for which the string tension is the

energy per unit length. Note that this is a function of temperature.

The system exhibits a phase transition between the confined and deconfined

phases. At this stage, we need only concern ourselves with the order parameter for

confinement known as the Polyakov loop (also called the Wilson line). On the lattice,
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the Polyakov loop at spatial coordinate x is given by

P (x) = tr

[
Nt−1∏
t=0

U4(x, t)

]
(3.5.1)

with the average Polyakov loop equal to

〈P 〉 =
1

N3
s

∑
spatial coords.

P (x). (3.5.2)

U4(x, t) is the lattice link at spacetime coordinate (x, t) in the temporal direction. The

length of the loop is equal to aNt.

We can define a correlation function of Polyakov loops to probe the structure of

two static quarks carrying opposite charges. If a quark and antiquark are positioned at

0 and x, respectively, the VEV of two Polyakov loops is related to the free energy of a

single quark, F , via [73]

〈P 〉 ∼ e−F/T , (3.5.3)

where T is the temperature. If this VEV evaluates to zero, the free energy of a single

quark diverges and we require infinite energy to create a free quark; this is symbolic of

confinement. When the correlator is positive, the system deconfines and a free quark

has finite energy.

In order to determine the string tension, σ, we can evaluate the torelon mass.

A torelon is a flux tube that wraps around the lattice and whose mass is related to

the total energy of the whole string and, hence, the string tension. The flux tube can

wrap around in the temporal or any of the three spatial directions. This gives us four

measurements in total for the torelon mass which, on an isotropic lattice, we expect

to be statistically compatible. Torelon masses can be determined from correlators of
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Polyakov loops.

We use the same description of torelons and flux tubes as in [14]. The torelon is

described as a one-dimensional object. Classically, the string tension, σ, is defined as

its energy, mT , per unit length, L:

σ =
m

L
(classically). (3.5.4)

In practice, the finite length of the string introduces corrections to the torelon

mass and we expand in inverse powers of σL:

mT = σL

(
1 +

∞∑
k=1

dk
(σL2)k

)
. (3.5.5)

This is in agreement with the classical equation, (3.5.4), as L → ∞. Symmetries and

universality allow us to determine some of these coefficients explicitly. Expanding the

above to second order returns

mT = σL

(
1 +

d1

σL2
+

d2

(σL2)2

)
(3.5.6)

mT = σL+
d1

L
+

d2

σL3
. (3.5.7)

The first order expansion was also performed in [74] where the term d1 was shown to

be −π/3 in 4 dimensions. The second term can also be evaluated as d2 = −π2/18.

The next-to-leading order formula can also be produced by the Nambu-Goto

formula for the mass of a torelon:

mT = σL

√
1− 2π

3σL2
(3.5.8)
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Expanding to O(1/σL3), returns

mT = σL− π

3L
− π2

18σL3
. (3.5.9)

These are elements of effective string-theory that we do not discuss further here,

as they go beyond the scope of the calculation.

In each equation relating the torelon mass to string tension, the torelon itself

can be associated with either the temporal or spatial direction. This gives us two

measurements for the string tension: σs (which, itself, is the average of the three spatial

directions) and σt, respectively. Following standard procedures, the two results can be

combined to give a weighted average for the error (∆
√
σ) and a weighted average for

the string tension (
√
σ) as in [5]:

(
1

∆
√
σ

)2

=

(
1

∆
√
σs

)2

+

(
1

∆
√
σt

)2

, (3.5.10)

√
σ

(∆
√
σ)2

=

√
σs

(∆
√
σs)2

+

√
σt

(∆
√
σt)2

. (3.5.11)

As well as providing a test for confinement, the measurement of
√
σ also sets the

scale of masses. As in the case of glueball masses, the torelon masses are initially

computed in units of inverse lattice spacing (am is a dimensionless quantity). The

corresponding dimensionless quantity we obtain for string tension is in units of inverse-

squared lattice spacing (a2σ is a dimensionless quantity). Therefore, the ratio m/
√
σ

is also dimensionless.
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3.6 Thermodynamic, Continuum and Large-N Lim-

its

The lattice is a discretisation of spacetime that has been used to make the computa-

tion of observables amenable to super-computers. The original motive, however, is to

measure the observables in our continuum universe and these have to be determined by

extrapolating our discrete results to the continuum limit. In addition, the finite extent

of the lattice will affect our results. We account for these by extrapolating to the infinite

volume or “thermodynamic” limit. As well as this, we wish to compute our results in

the limit of Nc → ∞. Unlike the thermodynamic- and continuum-extrapolations, this

is not simply to wash out lattice artefacts from our calculation. The aim is to explore

the physics that emerges in this limit as explained at the beginning of this chapter.

3.6.1 Thermodynamic limit

The finite extent of the lattice has an effect on our measurement of observables. Al-

though boundary effects are mitigated by making the lattice toroidal in all directions

to maintain (discrete) translational symmetry, the finite extent of the lattice still leaves

its mark. The finite size effects are quantified by [74]:

m(L) = m∞

1 +
b exp

(
−
√

3
2
m∞L

)
m∞L

 . (3.6.1)

In the above, m(L) is the glueball mass at finite volume V = L3, m∞ is the same mass

in the thermodynamic limit and b is a constant that should only depend on the glueball

state RP . We can either compute the mass in infinite volume for a given finite volume

using eq. (3.6.1) or we can work such that the finite size effects can be ignored. If we
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take L to be sufficiently large, the corrections due to the finite volume will be smaller

than the statistical errors from the Monte-Carlo evaluation of the masses themselves.

We find that this occurs at the point where L
√
σ & 3 [5]. Finer lattices correspond

to larger values of inverse-coupling so lattice volumes must increase with β in order to

maintain the absence of finite size effects.

3.6.2 Continuum limit

The masses we compute for glueballs from section 3.3 are in lattice units:

am→ amc

h̄
(reinserting the factors of h̄ and c). (3.6.2)

These are the units that come directly out of the computation but are of little use in

computing the masses in the continuum limit. We need to remove the factor of a from

our measurements of m otherwise we will obtain zero when sending a → 0. The most

direct way to carry out the extrapolation is to express the masses in units of the square

root of the string tension,
√
σ, which can be interpreted as a mass scale as stated in

section 3.5. In addition, the string tension can be computed in much the same way as

the glueball masses and the torelons typically have a low mass allowing for a simple

determination of the string tension. The corrections to the continuum action are of the

order a2:

Scontinuum = SWilson +O(a2). (3.6.3)

One can show that the corrections to the continuum masses are of the same order.

Hence, we extrapolate the glueball masses to the continuum limit with the ansatz

m(0)√
σ

=
m(a)√
σ

+ k1a
2σ (3.6.4)
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where k1 is a constant that depends on the glueball state RP to be determined numer-

ically. The factor of σ is necessary to match the dimensions of the two sides of the

equation.

The expression in eq. (3.6.4) assumes that terms of order a4 are negligible com-

pared to those of order a2. The lattice action can be improved by adding terms that

cancel the O(a2) ones resulting in the corrections being O(a4) or higher. This effects

a faster convergence to the continuum limit but throughout this thesis, we content

ourselves with the Wilson action stated in eq. (3.1.1).

3.6.3 Large-N limit

Large-N extrapolations have been carried out for SU(N) theories in, for example,

[75–77]. The extrapolation of N → ∞, however, is slightly different for Sp(2N) than

it is for SU(N). The three groups SU(N), SO(N) and Sp(2N) were all examined by

Lovelace in [60] and the extrapolation to large-N for Sp(2N) was found to be O(1/N)

rather than O(1/N2) as it is for SU(N).

Thus, the corrections to the glueball masses for finite N are given by

m(∞)√
σ

=
m(N)√

σ
+

k2

N2
for SU(N), (3.6.5)

m(∞)√
σ

=
m(2N)√

σ
+

k′2
2N

for Sp(2N). (3.6.6)

where k2 and k′2 are constants that depend on the glueball state RP (and the gauge

group) to be determined numerically just as k1 in eq. (3.6.4).
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3.7 Casimir Scaling

The hypothesis of Casimir scaling is tested in this thesis. Introduced in [61], we can

define the ratio η as

η(0++) ≡ m2
0++

σ

C2(F )

C2(A)
. (3.7.1)

In the above, m0++ is the mass of the scalar glueball with positive parity and positive

charge-conjugation; σ is the string tension; C2(F ) and C2(A) are the quadratic Casimirs

in the fundamental and adjoint representations of the gauge group, respectively. The

conjecture is that the constant η depends solely on the number of spacetime dimensions.

Since Casimir scaling applies to any gauge group, we have reintroduced the label for

charge conjugation since such states will exist in gauge theories other than Sp(2N).

The ratios of the Casimir operators are

C2(F )

C2(A)
=


N2
c−1

2N2
c

for SU(Nc)

Nc−1
2Nc−4

for SO(Nc)

Nc+1
2Nc+4

for Sp(Nc).

(3.7.2)

While we have typically written the symplectic groups in the form Sp(2N), we have

written it here in terms of the explicit number of charges, Nc, for the sake of consistency

with the other two groups. Note that, in all cases,

C2(F )

C2(A)
→ 1

2
as Nc →∞. (3.7.3)

This corroborates our understanding that the three aforementioned groups all produce

the same physics in the large-Nc limit.
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Sp(2)
L/a β a

√
σ

10 2.2986 0.3583(73)
12 2.3726 0.2713(57)
16 2.4265 0.2379(21)
20 2.5115 0.1765(18)
24 2.6 0.13096(99)
26 2.62 0.1260(22)
32 2.7 0.09685(93)

Table 3.2: Square-root of string ten-
sion in units of inverse lattice spac-
ing (a

√
σ) for Sp(2) [14]. The string

tension is computed using the spa-
tial torelon mass and the Nambu-
Goto formula for the string tension in
eq. (3.5.8).

Sp(4)
L/a β a

√
σ

16 7.62 0.2478(44)
16 7.7 0.2273(26)
18 7.85 0.1878(14)
20 8.0 0.1577(21)
26 8.2 0.1295(10)
32 8.3 0.1124(28)

Table 3.3: Square-root of string ten-
sion in units of inverse lattice spac-
ing (a

√
σ) for Sp(4) [14]. The string

tension is computed using the spa-
tial torelon mass and the Nambu-
Goto formula for the string tension in
eq. (3.5.8).

3.8 Results

Here we collate the glueball results for Sp(2N) gauge theories. We include the glue-

ball masses at different values of lattice spacing as well as the extrapolations to the

continuum limit. We include the aforementioned for finite N as well as the large-N ex-

trapolations of the continuum results. In addition, we compare our results for Sp(2N)

to existing results in SU(N) where possible. Finally, we examine the hypothesis of

Casimir Scaling.

As discussed earlier, the observable
√
σ will be used to set the scale for all values

of the lattice spacing, thus providing one way to compare the lattice spacing at different

beta values. These results are contained in tables 3.2 to 3.5.

We collate all the lattice glueball masses of Sp(2N) for N = 1, 2, 3 and 4 in

tables 3.6 to 3.17. Interspersed within the tables of data, we plot the lattice results along

with their continuum extrapolations for each channel as computed by eq. (3.6.4). The
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Sp(6)
L/a β a

√
σ

12 15.6 0.2542(16)
12 15.65 0.2565(21)
12 15.7 0.2433(15)
14 15.85 0.2209(14)
16 16.1 0.1871(16)
20 16.3 0.1681(29)
20 16.5 0.1518(11)
28 16.7 0.1351(11)
24 16.8 0.1267(13)
28 17.1 0.1088(24)

Table 3.4: Square-root of string ten-
sion in units of inverse lattice spac-
ing (a

√
σ) for Sp(6) [14]. The string

tension is computed using the spa-
tial torelon mass and the Nambu-
Goto formula for the string tension in
eq. (3.5.8). (The values of a

√
σ for

β = 16.7 and β = 16.8 were stated the
wrong way round in [14] and are cor-
rected in this table.)

Sp(8)
L/a β a

√
σ

14 26.5 0.2527(17)
14 26.7 0.2343(32)
14 26.8 0.2224(16)
16 27.0 0.2089(15)
16 27.2 0.1909(15)
16 27.3 0.1840(15)
18 27.6 0.1652(15)
20 27.9 0.1518(18)
22 28.3 0.1367(18)

Table 3.5: Square-root of string ten-
sion in units of inverse lattice spac-
ing (a

√
σ) for Sp(8) [14]. The string

tension is computed using the spa-
tial torelon mass and the Nambu-
Goto formula for the string tension in
eq. (3.5.8).
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RP

(L/a, β) (10, 2.2986) (12, 2.3726) (16, 2.4265)
am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f.

A+
1 1.150(70) – 0.995(19) 0.77 0.883(32) 2.1

A+∗
1 1.99(13) 0.41 1.52(12) – 0.700(80) –
A−1 2.11(23) 1.02 1.53(30) – 1.430(80) –
A−∗1 2.33(20) – 2.45(45) – 1.83(24) –
A+

2 2.05(60) – 2.25(17) 1.82 1.82(17) –
A−2 – – – – 1.99(20) –
E+ 2.00(50) – 1.24(25) – 1.229(98) 1.99
E− 2.10(40) – 2.07(14) 0.64 1.59(14) –
T+

1 – – 1.80(30) – 1.70(30) –
T−1 – – 2.00(20) – 1.50(15) –
T+

2 2.00(30) – 1.50(20) – 1.32(12) 1.42
T−2 2.30(30) – 2.14(15) 0.28 1.670(60) –

String Tension
a2σs χ2/d.o.f. a2σs χ2/d.o.f. a2σs χ2/d.o.f.

0.1284(52) – 0.0736(31) – 0.0566(10) –

Table 3.6: Sp(2) glueball masses and string tensions. The measurements are expressed
in the form “m(δm)” where m is the measured mass of the glueball in units of inverse
lattice-spacing and δm is the statistical error in the measurement.

values of a2σ for β = 16.7 and β = 16.8 in Sp(6) were tabulated the wrong way round

in [14]. They appear in the correct order in these tables. In some instances the reduced

chi-squared value is not reported. This is because the corresponding measurement could

be extracted only from a small number of data points (two or three) and the number of

data points is insufficient to associate this quantity with a useful measure of goodness

of fit. The errors are computed by the method outlined at the end of section 3.3.

We also collate the data for Casimir scaling. As mentioned in section 3.7, there

exists the hypothesis that the quantity

η(0++) ≡ m2
0++

σ

C2(F )

C2(A)
(3.8.1)
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RP

(L/a, β) (20, 2.5115) (24, 2.6)
am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f.

A+
1 0.683(14) 3.36 0.467(24) 2.16

A+∗
1 0.500(40) – 0.97(11) –
A−1 1.030(60) – 0.810(22) 2.74
A−∗1 1.30(20) – 0.96(10) –
A+

2 1.370(90) – 0.900(90) –
A−2 1.50(20) – 1.21(12) –
E+ 0.950(60) – 0.702(33) 2.58
E− 1.220(60) – 0.890(60) –
T+

1 1.37(20) – 1.050(80) –
T−1 1.50(15) – 1.180(80) –
T+

2 0.980(13) 2.78 0.690(50) –
T−2 1.170(80) – 0.900(50) –

String Tension
a2σs χ2/d.o.f. a2σs χ2/d.o.f.

0.03116(63) – 0.01715(26) –

Table 3.7: Sp(2) glueball masses and string tensions. The measurements are expressed
in the form “m(δm)” where m is the measured mass of the glueball in units of inverse
lattice-spacing and δm is the statistical error in the measurement.
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RP

(L/a, β) (26, 2.62) (32, 2.7)
am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f.

A+
1 0.487(32) 2.82 0.356(10) 0.71

A+∗
1 0.680(50) – 1.390(90) –
A−1 0.750(50) – 0.600(14) 3.25
A−∗1 0.940(90) – 0.750(30) –
A+

2 0.896(28) 2.81 0.680(50) –
A−2 1.080(90) – 0.980(40) –
E+ 0.667(13) 2.71 0.507(28) 2.91
E− 0.780(90) – 0.680(50) –
T+

1 1.000(70) – 0.820(40) –
T−1 1.140(40) – 0.900(50) –
T+

2 0.660(40) – 0.490(30) –
T−2 0.830(50) – 0.687(65) –

String Tension
a2σs χ2/d.o.f. a2σs χ2/d.o.f.

0.01587(56) – 0.00938(18) –

Table 3.8: Sp(2) glueball masses and string tensions. The measurements are expressed
in the form “m(δm)” where m is the measured mass of the glueball in units of inverse
lattice-spacing and δm is the statistical error in the measurement.
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Figure 3.3: Lattice glueball masses and their continuum limit extrapolations for the
gauge group Sp(2N) at N = 1. The values plotted at a2σ=0 are the continuum limits.
Note the emergence of degeneracies between the T2 and E states of matching parity.
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RP

(L/a, β) (16, 7.62) (16, 7.7) (18, 7.85)
am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f.

A+
1 0.680(80) – 0.729(32) 1.62 0.634(22) 0.56

A+∗
1 – – 1.15(16) – 0.94(17) –
A−1 1.21(20) – 1.190(50) – 0.980(60) –
A−∗1 1.57(32) – 1.64(26) – 1.39(12) –
A+

2 1.80(31) – 1.36(30) – 1.500(50) –
A−2 – – 1.85(30) – 1.40(30) –
E+ 0.96(24) – 1.160(28) 1.86 0.910(50) –
E− 1.30(35) – 1.24(20) 1.58 1.16(13) –
T+

1 – – 1.30(30) – 1.22(30) –
T−1 1.60(40) – 2.07(17) 0.56 1.58(17) –
T+

2 – – 1.170(50) – 1.014(49) 1.87
T−2 – – 1.00(25) – 1.22(14) –

String Tension
a2σs χ2/d.o.f. a2σs χ2/d.o.f. a2σs χ2/d.o.f.

0.0614(22) – 0.0517(12) – 0.03526(51) –

Table 3.9: Sp(4) glueball masses and string tensions. The measurements are expressed
in the form “m(δm)” where m is the measured mass of the glueball in units of inverse
lattice-spacing and δm is the statistical error in the measurement.
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RP

(L/a, β) (20, 8.0) (26, 8.2) (32, 8.3)
am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f.

A+
1 0.587(37) 1.42 0.445(21) 2.31 0.402(12) 1.57

A+∗
1 0.86(12) – 0.710(80) – – –
A−1 0.880(40) – 0.700(40) – 0.600(40) –
A−∗1 1.230(80) – 0.970(90) – 0.860(30) –
A+

2 1.03(20) – 1.000(50) – 0.880(70) –
A−2 1.38(20) – 1.02(14) – 0.85(20) –
E+ 0.810(50) – 0.607(68) 2.31 0.590(20) –
E− 1.060(60) – 0.820(30) – 0.770(30) –
T+

1 1.05(20) – 1.000(50) – 0.790(30) –
T−1 1.10(20) – 1.160(70) – 0.82(12) –
T+

2 0.760(40) – 0.610(50) – 0.570(50) –
T−2 1.070(30) – 0.820(60) – 0.740(60) –

String Tension
a2σs χ2/d.o.f. a2σs χ2/d.o.f. a2σs χ2/d.o.f.

0.02487(66) – 0.01676(26) – 0.01263(62) –

Table 3.10: Sp(4) glueball masses and string tensions. The measurements are ex-
pressed in the form “m(δm)” where m is the measured mass of the glueball in units of
inverse lattice-spacing and δm is the statistical error in the measurement.
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Figure 3.4: Lattice glueball masses and their continuum limit extrapolations for the
gauge group Sp(2N) at N = 2. The values plotted at a2σ=0 are the continuum limits.
Note the emergence of degeneracies between the T2 and E states of matching parity.
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RP

(L/a, β) (12, 15.6) (12, 15.65) (12, 15.7)
am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f.

A+
1 0.765(27) 0.18 0.777(26) 0.007 0.750(24) 0.56

A+∗
1 1.43(16) 0.99 1.29(12) – 1.167(96) 1.28
A−1 1.29(13) 0.79 1.29(17) 1.92 1.27(17) –
A−∗1 1.93(28) – 1.76(21) – 1.667(80) 0.68
A+

2 1.80(15) – 1.92(11) 0.51 1.64(54) 1.94
A−2 1.80(30) – 2.08(20) – 2.00(30) –
E+ 1.202(83) 2.37 1.257(31) 1.65 1.203(82) 1.38
E− 1.46(15) – 1.41(30) – 1.33(18) –
T+

1 1.70(30) – 2.00(18) – 1.07(40) –
T−1 1.37(35) – 1.90(40) – 2.25(35) –
T+

2 1.06(15) – 1.23(12) 2.05 1.213(87) 2.94
T−2 1.50(13) – 1.70(14) – 1.40(20) –

String Tension
a2σs χ2/d.o.f. a2σs χ2/d.o.f. a2σs χ2/d.o.f.

0.06464(79) – 0.0663(11) – 0.05918(72) –

Table 3.11: Sp(6) glueball masses and string tensions. The measurements are ex-
pressed in the form “m(δm)” where m is the measured mass of the glueball in units of
inverse lattice-spacing and δm is the statistical error in the measurement.
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RP

(L/a, β) (14, 15.85) (16, 16.1) (20, 16.3)
am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f.

A+
1 0.720(20) – 0.581(28) 0.25 0.536(20) 2.09

A+∗
1 1.17(12) – 0.95(12) – 0.910(80) –
A−1 1.07(12) – 0.971(41) 0.49 0.846(36) 0.33
A−∗1 1.24(15) – 1.16(17) – 1.031(53) 1.78
A+

2 1.54(20) – 1.488(38) 3.97 1.23(14) –
A−2 1.60(30) – 1.48(25) – 1.50(12) –
E+ 1.141(71) 3.88 0.954(35) 0.98 0.830(50) –
E− 1.26(12) – 1.247(24) 1.94 1.090(70) –
T+

1 1.52(16) – 1.50(10) – 1.380(90) –
T−1 1.70(40) – 1.59(10) – 1.20(16) –
T+

2 1.075(55) 0.49 0.854(85) 1.14 0.780(60) –
T−2 1.37(14) – 1.200(50) – 1.080(81) –

String Tension
a2σs χ2/d.o.f. a2σs χ2/d.o.f. a2σs χ2/d.o.f.

0.04879(60) – 0.03501(59) – 0.02825(99) –

Table 3.12: Sp(6) glueball masses and string tensions. The measurements are ex-
pressed in the form “m(δm)” where m is the measured mass of the glueball in units of
inverse lattice-spacing and δm is the statistical error in the measurement.
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RP

(L/a, β) (20, 16.5) (28, 16.7)
am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f.

A+
1 0.499(15) 0.11 0.432(10) –

A+∗
1 0.810(60) – 0.690(90) –
A−1 0.808(21) 2.62 0.610(50) –
A−∗1 0.82(17) – 0.72(16) –
A+

2 1.050(50) – 0.92(12) –
A−2 1.28(10) – 1.12(10) –
E+ 0.710(30) – 0.650(30) –
E− 0.974(37) 0.33 0.830(50) –
T+

1 1.12(12) – 0.920(80) –
T−1 1.10(20) – 1.21(10) –
T+

2 0.700(40) – 0.636(20) 2.92
T−2 0.950(60) – 0.772(60) –

String Tension
a2σs χ2/d.o.f. a2σs χ2/d.o.f.

0.02303(33) – 0.01824(30) –

Table 3.13: Sp(6) glueball masses and string tensions. The measurements are ex-
pressed in the form “m(δm)” where m is the measured mass of the glueball in units of
inverse lattice-spacing and δm is the statistical error in the measurement.
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RP

(L/a, β) (24, 16.8) (28, 17.1)
am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f.

A+
1 0.441(15) – 0.360(14) 1.02

A+∗
1 0.730(70) – 0.610(40) –
A−1 0.66(12) – 0.550(30) –
A−∗1 1.49(10) – 0.970(90) –
A+

2 0.76(28) – 0.764(77) 2.14
A−2 0.90(17) – 0.99(13) –
E+ 0.663(2) 1.93 0.560(18) 1.17
E− 0.787(79) 3.98 0.690(50) –
T+

1 0.80(30) – 0.73(14) –
T−1 1.16(10) – 0.85(15) –
T+

2 0.680(30) – 0.558(19) 2.01
T−2 0.840(70) – 0.730(40) –

String Tension
a2σs χ2/d.o.f. a2σs χ2/d.o.f.

0.01606(33) – 0.01183(52) –

Table 3.14: Sp(6) glueball masses and string tensions. The measurements are ex-
pressed in the form “m(δm)” where m is the measured mass of the glueball in units of
inverse lattice-spacing and δm is the statistical error in the measurement.
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Figure 3.5: Lattice glueball masses and their continuum limit extrapolations for the
gauge group Sp(2N) at N = 3. The values plotted at a2σ=0 are the continuum limits.
Note the emergence of degeneracies between the T2 and E states of matching parity.
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RP

(L/a, β) (14, 26.5) (14, 26.7) (14, 26.8)
am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f.

A+
1 0.705(33) 2.88 0.734(12) 0.60 0.705(22) 0.26

A+∗
1 1.22(12) – 1.262(88) 1.08 1.104(66) 2.13
A−1 1.230(80) – 1.198(28) 1.06 1.140(60) –
A−∗1 1.73(26) – 1.66(15) – 1.564(48) 1.51
A+

2 1.890(50) – 1.21(25) 1.97 1.720(60) –
A−2 2.03(12) 2.56 1.99(30) – 2.06(15) 3.09
E+ 1.15(14) – 1.156(69) 1.3 1.210(59) 12.53
E− 1.620(40) – 1.40(10) – 1.26(13) 1.07
T+

1 1.40(30) – 1.50(15) – 1.690(70) –
T−1 1.50(30) – 1.95(15) – 1.94(10) –
T+

2 1.15(15) – 1.081(67) 0.23 1.048(53) 1.38
T−2 1.60(10) – 1.46(15) – 1.370(40) –

String Tension
a2σs χ2/d.o.f. a2σs χ2/d.o.f. a2σs χ2/d.o.f.

0.06386(85) – 0.0549(15) – 0.04947(72) –

Table 3.15: Sp(8) glueball masses and string tensions. The measurements are ex-
pressed in the form “m(δm)” where m is the measured mass of the glueball in units of
inverse lattice-spacing and δm is the statistical error in the measurement.
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RP

(L/a, β) (16, 27.0) (16, 27.2) (16, 27.3)
am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f.

A+
1 0.615(30) 0.008 0.610(20) – 0.565(20) 1.96

A+∗
1 0.94(11) – 0.91(10) – 0.860(60) –
A−1 1.055(59) 0.53 1.025(51) 2.16 0.890(90) –
A−∗1 0.900(90) – 1.32(17) – 1.32(16) –
A+

2 1.500(50) – 1.480(70) – 1.410(80) –
A−2 1.980(90) – 1.67(15) – 1.690(70) –
E+ 1.010(40) – 0.957(77) 1.94 0.870(50) –
E− 1.310(60) – 1.220(50) – 1.168(36) 2.59
T+

1 1.590(90) – 1.41(16) 1.36 1.480(90) –
T−1 1.750(80) – 1.60(10) – 1.45(15) –
T+

2 1.028(15) 2.08 0.946(41) 0.98 0.863(49) 0.67
T−2 1.310(40) – 1.200(60) – 1.160(60) –

String Tension
a2σs χ2/d.o.f. a2σs χ2/d.o.f. a2σs χ2/d.o.f.

0.04362(61) – 0.03644(56) – 0.03384(56) –

Table 3.16: Sp(8) glueball masses and string tensions. The measurements are ex-
pressed in the form “m(δm)” where m is the measured mass of the glueball in units of
inverse lattice-spacing and δm is the statistical error in the measurement.
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RP

(L/a, β) (18, 27.6) (20, 27.9) (22, 28.3)
am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f. am(RP ) χ2/d.o.f.

A+
1 0.530(20) – 0.486(18) – 0.440(10) –

A+∗
1 0.760(50) – 1.27(15) – 0.910(50) –
A−1 0.890(30) – 0.769(33) 1.79 0.680(70) –
A−∗1 1.30(12) – 1.11(14) – 1.050(90) –
A+

2 1.230(90) – 1.164(84) 1.3 0.940(80) –
A−2 1.45(10) – 1.23(12) – 1.14(11) –
E+ 0.839(27) 0.41 0.690(60) – 0.634(35) 1.78
E− 1.030(60) – 0.983(57) 0.94 0.850(60) –
T+

1 1.290(90) – 1.230(50) – 1.020(80) –
T−1 1.48(15) – 1.33(10) – 1.220(90) –
T+

2 0.815(26) 1.84 0.700(50) – 0.641(22) 0.64
T−2 1.100(90) – 0.972(63) 1.97 0.849(38) 2.91

String Tension
a2σs χ2/d.o.f. a2σs χ2/d.o.f. a2σs χ2/d.o.f.

0.02728(48) – 0.02303(54) – 0.01869(50) –

Table 3.17: Sp(8) glueball masses and string tensions. The measurements are ex-
pressed in the form “m(δm)” where m is the measured mass of the glueball in units of
inverse lattice-spacing and δm is the statistical error in the measurement.
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Figure 3.6: Lattice glueball masses and their continuum limit extrapolations for the
gauge group Sp(2N) at N = 4. The values plotted at a2σ=0 are the continuum limits.
Note the emergence of degeneracies between the T2 and E states of matching parity.
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m(RP )/
√
σ

RP

Group
Sp(2) Sp(4) Sp(6) Sp(8) Sp(∞) SU(∞)

A+
1 3.841(84) 3.577(49) 3.430(75) 3.308(98) 3.241(88) 3.307(53)

A+∗
1 5.22(33) 6.049(40) 5.63(32) 5.58(44) 6.29(33) 6.07(17)
A−1 6.20(14) 5.69(16) 5.22(23) 5.36(26) 5.00(22) –
A−∗1 7.37(72) 7.809(79) 6.59(49) 7.76(85) 7.31(45) –
A+

2 6.81(31) 7.91(16) 7.36(39) 6.5(1.0) 8.22(46) –
A−2 8.99(86) 9.30(38) 8.60(67) 7.2(1.4) 8.69(83) –
E+ 5.33(18) 5.05(13) 5.03(13) 4.62(29) 4.79(19) 4.80(14)
E− 6.61(37) 6.65(12) 6.34(40) 6.29(29) 6.44(33) –
T+

1 8.58(41) 8.67(28) 7.77(59) 8.45(52) 8.33(51) –
T−1 9.63(77) 9.24(33) 9.15(69) 8.90(75) 8.76(72) –
T+

2 5.29(20) 5.050(88) 5.09(16) 4.73(23) 4.80(20) –
T−2 6.55(34) 6.879(88) 6.47(43) 6.36(35) 6.71(35) –

Table 3.18: Continuum Sp(2N) glueball masses in units of the square root of string
tension and their large-N extrapolations. The SU(∞) results are obtained from [67].
Measurements are expressed in the form “m(δm)” where m is the glueball mass in
units of the square-root of the string tension and δm is the statistical error in the
measurement.
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Figure 3.7: Glueball masses in the large-N limit expressed in units of
√
σ. Dots

denote SU(N) masses in the large-N limit from [67] and squares denote SU(N) masses
in the same limit from [78]. The vertical lines correspond to the statistical error of
the measurement. The cyan dots and magenta squares denote ground states; green
dots and yellow squares denote first excitations. Boxes denote Sp(2N) masses in the
large-N limit with their vertical thickness corresponding to the statistical error in the
measurement. The black boxes denote ground states and the red boxes denote first
excitations. A discussion of these results is contained in section 3.9.
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Figure 3.8: Continuum glueball masses in units of
√
σ for Sp(2N) at N = 1, 2, 3, 4

and∞ as shown in [14]. The SU(∞) data is taken from [67]. The bottom x-axis states
the representation of the octahedral group and the top x-axis is the corresponding spin
and parity in the continuum.
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Nc
SU(Nc) Sp(Nc)

m2
0++

σ
C2(F )
C2(A)

η(0++)
m2

0++

σ
C2(F )
C2(A)

η(0++)

2 14.3(5) 3/8 5.36(20) 14.75(65) 3/8 5.53(24)
3 12.6(5) 4/9 5.60(22) – – –
4 11.3(4) 15/32 5.29(19) 12.79(35) 5/12 5.33(15)
6 10.56(7) 35/72 5.135(35) 11.76(51) 7/16 5.15(22)
8 12.6(6) 63/128 6.20(31) 10.94(65) 9/20 4.92(29)
∞ 10.94(35) 1/2 5.47(18) 10.50(57) 1/2 5.25(29)

Table 3.19: Ratio of the squared mass of the scalar glueball and string tension for
SU(Nc); the ratio of the quadratic Casimir operators and the corresponding value of
their product, denoted by η(0++) as in eq. (3.7.1). The SU(Nc) masses are computed
from the values of Table 14 in [67] and the Sp(Nc) masses from table 3.18. The ratio
of the fundamental- and adjoint-Casimirs are computed from eq. (3.7.2).

is constant for a given number of spacetime dimensions. In table 3.19 the data for

SU(Nc) and Sp(Nc) are displayed.

3.9 Discussion

One of the first tests of the results in this chapter is comparing the data for Sp(2)

carried out in this thesis with results already in the literature for SU(2). Since the

two groups are the same, the numerical results should be compatible. It was to allow

for comparison that we used the same values for β and L for the group Sp(2) as were

used in [67]. New results for the SU(N) glueball spectrum both for finite N and for

N →∞ were published in [78] after the computations were completed for the spectrum

in Sp(2N) and we tabulate these new results in this section. The results for large N

have been added to fig. 3.7 which was originally presented before the publication of [78].

When compared with Sp(2N) results, SU(N) glueball masses quoted in this section
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Figure 3.9: Top panel: The values of η plotted for both SU(Nc) and Sp(Nc) as
defined in eq. (3.7.1). The fitted values of η from each set of data as well as the two in
combination are stated in the plot.
Bottom panel: The quantity m2

0++/σ divided by the conjectured universality constant
η. The curves plotted are the quadratic Casimir in the adjoint representation divided
by the quadratic Casimir in the fundamental representation for SU(Nc) and Sp(Nc).
If the hypothesis of Casimir scaling is correct, we expect the data to fit the curve as,
indeed, it does.
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have positive charge conjugation since the negative states do not exist in the Sp(2N)

theories.

We first compare the results for the string tensions in each group. Our results

for Sp(2) are less precise than those for SU(2) in [67] despite the latter being computed

more than 15 years ago. Our results are, however, sufficiently precise for the purposes

of our calculations.

L/a β
a
√
σ

Sp(2) SU(2)

10 2.2986 0.3583(73) 0.3667(18)
12 2.3726 0.2713(57) 0.2879(10)
16 2.4265 0.2379(21) 0.2388(9)
20 2.5115 0.1765(18) 0.1768(8)

Table 3.20: Square-root of string tension in units of inverse lattice spacing (a
√
σ) for

Sp(2) [14] compared with string tensions measured for SU(2) in [67].

We also compare the glueball masses between the two groups. The results for

the A+
1 and E+ glueball masses in the continuum limit are compatible but there is a

a difference of more than one standard-deviation for the state A+∗
1 . We ascribe this

discrepancy to statistical fluctuations.

RP

Group
SU(2) Sp(2)

A+
1 3.78(7) 3.841(84)

A+∗
1 6.46(14) 5.22(33)
E+ 5.45(11) 5.33(18)

Table 3.21: SU(2) and Sp(2) glueball masses in the continuum limit. The SU(2)
results are taken from [67] and the Sp(2) results are given in full in table 3.18. All
SU(2) measurements have positive charge conjugation.

When computing the glueball spectrum at specific β and N values, the glueball

masses for the E and T2 channels of matching parity should be degenerate for reasons
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explained in section 3.4. As we see in fig. 3.8, a mass degeneracy does indeed emerge

within the pairs (E+, T+
2 ) and (E−, T−2 ) for finite N as well as in the large-N limit.

There is one more feature of the results that can be examined. In [79], the

hypothesis that the following ratio holds for all Yang-Mills theories in 3+1 dimensions:

R ≡ m(E+)

m(A+
1 )

=
√

2. (3.9.1)

This is explored in detail in [80]. The veracity of this claim would point to some form

of universality within Yang-Mills theories. The relevant results are shown in table 3.22.

Group
m(A++

1 )√
σ

m(E++)√
σ

R R2

Sp(2) 3.841(84) 5.31(13) 1.383(46) 1.91(13)
Sp(4) 3.729(89) 5.09(12) 1.366(45) 1.87(12)
Sp(6) 3.430(75) 5.05(10) 1.473(43) 2.17(13)
Sp(8) 3.308(98) 4.69(18) 1.417(69) 2.01(20)
Sp(∞) 3.241(88) 4.80(14) 1.480(58) 2.19(17)

SU(∞)[67] 3.307(53) 4.80(14) 1.451(48) 2.11(14)
SU(∞)[78] 3.072(14) 4.582(14) 1.492(08) 2.225(24)

Table 3.22: Continuum glueball masses for the A++
1 and E++ channels. Also included

is the ratio R as defined in eq. (3.9.1). Results are given for Sp(2N) for N = 1, 2, 3, 4
and ∞. Also included is the same ratio for SU(∞) cited from [67] and from [78].

We see from table 3.22 that the values for R are in good agreement with the value
√

2. As well as the ratio R, the results are consistent with Casimir scaling described in

section 3.7 (also examined in [80]).

The general agreement between Sp(Nc) and SU(Nc) groups for Nc = 2 and

Nc =∞ gives us confidence that our results are valid and also provides more numerical

evidence for large-N universality. We compare our results for Sp(Nc) with results for

SU(Nc) for Nc = 2 in table 3.23 and Nc = ∞ in table 3.24. Only the A+∗
1 , A+

2 and

T−2 channels differ by more than one sigma but, again, we would anticipate statistical

102



fluctuations of this type to arise.

RP

Group
Sp(2) SU(2)[67] SU(2)[78]

A+
1 3.841(84) 3.78(7) 3.781(23)

A+∗
1 5.22(33) 6.46(14) 6.126(38)
A−1 6.20(14) – 6.017(61)
A−∗1 7.37(72) – 8.00(15)
A+

2 6.81(31) – 7.77(18)
A−2 8.99(86) – 9.50(18)
E+ 5.33(18) 5.45(11) 5.343(30)
E− 6.61(37) – 7.037(67)
T+

1 8.58(41) – 8.14(10)
T−1 9.63(77) – 9.06(13)
T+

2 5.29(20) – 5.353(23)
T−2 6.55(34) – 6.997(65)

Table 3.23: Comparison of our continuum glueball masses for Sp(2) with SU(2) results
both from [67] and [78] where results are available.

One obvious but important remark is that the work carried out in this chapter

on string tension confirms that Sp(2N) Yang-Mills theories confine. The same results

were published in [14] and were the first instance of the phenomenon being confirmed

for the symplectic groups, generally.

The additional evidence for the hypothesis of Casimir scaling as well as the

consistency of the ratio R in eq. (3.9.1) seems to point towards some form of universality

within Yang-Mills theories in a given number of dimensions. Since such theories cannot

yet be solved analytically, a universal value or feature will be a useful landmark for

their study.
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RP

Group
Sp(∞) SU(∞)[67] SU(∞)[78]

A+
1 3.241(88) 3.307(58) 3.072(14)

A+∗
1 6.29(33) 6.07(17) 5.805(31)
A−1 5.00(22) – 4.711(25)
A−∗1 7.31(45) – 7.050(68)
A+

2 8.22(46) – 7.40(12)
A−2 8.69(83) – 9.73(12)
E+ 4.79(19) 4.80(14) 4.582(14)
E− 6.44(33) – 6.108(44)
T+

1 8.33(51) – 7.250(47)
T−1 8.76(72) – 8.412(76)
T+

2 4.80(20) – 4.578(11)
T−2 6.71(35) – 5.965(28)

Table 3.24: Comparison of our continuum glueball masses for Sp(∞) with SU(∞)
results both from [67] and [78].
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Chapter 4

Quenched Mesons

We demonstrated in Chapter 3 that pure Sp(2N) Yang-Mills can yield a rich spectrum

of particles. Using Sp(2N) to explain Higgs compositeness requires the addition of

fermions. In Minkowski spacetime, the dynamics of fermions are governed by the Dirac

equation. When we shift to Euclidean time on the lattice, the Dirac matrices change

with it. The Clifford algebra obeyed by the Dirac matrices is

{γµM , γνM} = 2ηµν14 in Minkowski spacetime, (4.0.1)

where ηµν is the Minkowski metric and {A,B} = AB + BA is the anticommutator of

A and B. In Euclidean spacetime, the metric is simply the 4× 4 identity matrix.

{γµE, γνE} = 2δµν14 in Euclidean spacetime. (4.0.2)
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A simple way to make the Dirac matrices obey this new relationship is to make the

transformations

γkE = iγkM for k = 1, 2, 3 (4.0.3)

γ4
E = γ0

M (4.0.4)

The Dirac matrices in Euclidean spacetime are, therefore,

γ1
E =


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 γ2
E =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0



γ3
E =


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 γ4
E =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 .
(4.0.5)

The fifth gamma matrix, in Minkowski spacetime, is defined as

γ5
M = iγ0

Mγ
1
Mγ

2
Mγ

3
M . (4.0.6)

When we shift to Euclidean spacetime

γ5
E = γ1

Eγ
2
Eγ

3
Eγ

4
E (4.0.7)
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γ5
E =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 . (4.0.8)

Hereafter, all Dirac matrices are in Euclidean spacetime and the subscript E will be left

implicit.

The Dirac equation must be modified for its implementation on the lattice. The

Euclidean-Dirac action for fermions in the continuum takes the form

Scont

[
ψ, ψ,A

]
=

∫
d4xψ(x)(γµ(∂µ + iAµ) +m)ψ(x) (4.0.9)

and its discrete equivalent is [64]

S
[
ψ, ψ, U

]
= a4

∑
x∈Λ4

ψ(x)

(
4∑

µ=1

γµ
Uµ(x)ψ(x+ µ̂)− U †µ(x− µ̂)ψ(x− µ̂)

2a
+mψ(x)

)
,

(4.0.10)

where ψ(x) ≡ ψ†(x)γ4 having shifted to Euclidean space.

The implementation of fermions on the lattice is not straight forward. If we take

the näıve discretisation of the Dirac equation, we confront the problem of “fermion dou-

bling”: for each fermion in the continuum, there exist 2d fermions on the lattice where

d is the number of spacetime dimensions. The additional 2d− 1 fermions are known as

“doublers”. In addition, the Nielsen-Ninomiya Theorem (NNT) (first described in [81])

states that the following four conditions cannot be simultaneously fulfilled:

1. The lattice action is local;

2. The lattice action produces the correct classical continuum limit;
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3. The lattice contains no doublers;

4. The lattice action obeys chiral symmetry.

Different methods exist for placing fermions on the lattice each of which sacrifices

one or more of the conditions contained in the NNT. The method we use in this thesis

is that of Wilson fermions which break chiral symmetry. The term in eq. (4.0.11) is

added to the fermion part of the action which gives mass to the doublers; this extra

mass diverges in the continuum limit causing the spurious fermions to decouple from

the dynamics of the theory.

Sdoublers = −a
3

2

∑
x∈Λ4

4∑
µ=1

(
ψ(x)Uµ(x)ψ(x+ µ̂)− 2ψ(x)ψ(x) + ψ(x)U †µ(x− µ̂)ψ(x− µ̂)

)
(4.0.11)

As stated at the beginning of Chapter 1, the models for composite Higgs require

two fundamental flavours of fermions. The results for the meson spectrum in this chap-

ter are carried out in the quenched approximation which apply to a generic number of

flavours. This provides a first necessary step towards the study of the phenomenologi-

cally interesting model.

In section 4.1 we describe the computation of meson correlators and how to

extract observable quantities from them. Such observables are meson masses and their

decay constants. The methodology involves finding a plateau in the effective mass and

fitting a curve to the data points in this region. This is very similar to the extraction of

glueball masses detailed in section 3.2. In section 4.2, we describe the renormalisation

of decay constants from lattice data as well as the elimination of tadpole diagrams.

The extrapolation of lattice data to the continuum- and chiral-limits is described in

section 4.3 as well as the method of scale setting via the gradient flow method. The
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Label Interpolating Operator OS JP QCD meson

PS ψiγ5ψj 0− π

S ψiψj = ψi1ψj 0+ a0

V ψiγµψj 1− ρ

AV ψiγ5γµψj 1+ a1

T ψiγ0γµψj 1− ρ

AT ψiγ5γ0γµψj 1+ b1

Table 4.1: The operators used to construct meson states. A fermion of flavour i is
described by the Dirac spinor ψi and its corresponding adjoint spinor is ψi ≡ ψi†γ4. The
meson produced by the corresponding operator in QCD is included for concreteness.

handling of statistical errors in the lattice data is outlined in section 4.4. Our lattice

results are plotted and tabulated in section 4.5 with concluding remarks in section 4.6.

4.1 Meson Masses and Decay-Constants

The method of measuring the mass spectrum of mesons is similar, operationally, to

measuring the glueball mass spectrum described in Chapter 3. The difference is that

the operators involve combinations of fermion spinors and Dirac gamma matrices as

opposed to path-ordered products of link variables. As with glueballs, the operators

create a meson with specific spin (J) and parity (P ). If ψi is a Dirac spinor of flavour

i and ψi ≡ ψi†γ4 is the corresponding adjoint spinor (in Euclidean spacetime) then the

interpolating operators OS can be constructed as in table 4.1.

The fermion calculations in this thesis are carried out in the quenched approxima-

tion. The spin-statistics theorem tells us that the wave function for identical fermions

is antisymmetric under the exchange of two fermions. This is reflected in the path-

integral formulation of QFT by treating the fermion fields as Grassmann (anticommut-

ing) numbers. These manifest themselves in the path-integral as a matrix determinant
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via a generalisation of the Matthews-Salam formula:

∫ N∏
i=1

dηi dηi exp

(
N∑

j,k=1

ηjMjkηk

)
= det(M), (4.1.1)

where {ηi} are Grassmann numbers.

Following the method of [64], the (Euclidean) path integral to be evaluated on

the lattice is

Z =

∫
DU e−SG[U ]DψDψ e−SF [ψ,ψ,U ] (4.1.2)

where SG is the pure gauge part of the action and SF is the fermionic part of the action

as well as the interactions between the fermions and the gauge field.

The fermionic part of the action – eq. (4.0.10) – can be written in terms of a

Dirac operator, D:

SF [ψ, ψ, U ] = a4

Nf∑
f=1

∑
x,y∈Λ

ψf (x)D(x− y)ψf (y) (4.1.3)

and, hence, the fermionic section of the partition function is reduced to the computation

of the matrix determinant det(D)Nf where Nf is the number of fermion flavours. The

summation over all flavours occurs within the exponent of e−S and thus raises the

determinant to the power Nf .

In a gauge theory with Nc charges, |Λ| lattice sites and fermions each with 2s+1

possible spin states, the matrix whose determinant is to be computed has 2Nc(2s+1)|Λ|
rows and columns where the additional factor of two comes from the antiparticle of

the fermion. To say that the problem has been “reduced” to the computation of a

matrix determinant is to gloss over one of the greatest difficulties in lattice theory.

Although the computation of a determinant is easy to understand, the tremendous

110



size of the matrix makes it a very expensive task computationally. In the quenched

approximation, this very large matrix has its determinant set equal to 1. Physically,

this amounts to neglecting fermion loops and having hadrons composed solely of valence

quarks as opposed to valence and sea quarks. In the early days of lattice theory,

the quenched approximation was more or less a necessity but increased computational

power has allowed us to carry out such computations with dynamical fermions. In

this thesis, however, we restrict our attention to quenched fermions since they are less

computationally expensive and are sufficient for an initial exploration of the meson

spectrum.

The general form for the computation of the meson correlators is

〈O(x)O(y)〉 =
1

Z

∫
DU e−SG[U ]DψDψ e−SF [ψ,ψ,U ]O(x)O(y) (4.1.4)

where Z is the partition function in eq. (4.1.2) and O is the relevant operator from

table 4.1. Both Z and the explicit integral in eq. (4.1.4) can have their respective

fermionic parts rewritten as functions of the operator D(x− y) in eq. (4.1.3):

Z =

∫
DU e−SG[U ] det(D)Nf (4.1.5)

〈O(x)O(y)〉 =
1

Z

∫
DU e−SG[U ]F (D), (4.1.6)

where F (D) is a function of the Dirac operator D. In the quenched approximation, the

determinant det(D) is set to 1 and the correlator reduces to

〈O(x)O(y)〉 =

∫
DU e−SG[U ]F (D)∫
DU e−SG[U ]

. (4.1.7)

Thus, calculations in the quenched approximation are carried out over pure gauge
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configurations and the number of flavours, Nf , is irrelevant.

The computation of eq. (4.1.7) on the lattice amounts to taking a trace of the

product of the inverse of the Dirac operator, D, and the matrices of the relevant channel.

We write a generic operator as O(x) = ψi(x)Γψj(x) where i and j are flavour indices

and Γ is a combination of the identity and gamma matrices that creates a meson with

the relevant quantum numbers. Following the method of [64], the complex conjugate is

O(x) =
(
ψi(x)Γψj(x)

)†
=⇒ O(x) =

(
ψi†(x)γ4Γψj(x)

)†
=⇒ O(x) = −ψj†(x)Γ†γ4ψ

i(x) (since the ψ terms anticommute)

=⇒ O(x) = −ψj(x)γ4Γ†γ4ψ
i(x) (since γ2

4 = 1). (4.1.8)

Because the Γ term in eq. (4.1.8) is comprised of some combination of the five gamma

matrices, all of which mutually anticommute and are hermitean, the hermitean conju-

gate of Γ will be equal to ±Γ. The γ4 matrices on either side of can be passed through

the components of Γ which, again, cannot do more than change the sign since every

component of Γ will either commute or anticommute with γ4:

γ4Γ†γ4 = ±Γ. (4.1.9)

So the operator O(x) can be written as

O(x) = ±ψj(x)Γψi(x). (4.1.10)

Because we take ratios of the correlators to determine the effective mass of the meson

as in eq. (4.1.22), the overall sign is irrelevant and we may drop it.
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We can now write the full correlation function for an isotriplet meson (for which

i 6= j) as

〈O(x)O(y)〉 = 〈ψj(x)Γψi(x)ψi(y)Γψj(y)〉

=⇒ 〈O(x)O(y)〉 = 〈ψjα(x)Γαβψ
i
β(x)ψiγ(y)Γγδψ

j
δ(y)〉

=⇒ 〈O(x)O(y)〉 = ΓαβΓγδ〈ψjα(x)ψiβ(x)ψiγ(y)ψjδ(y)〉

=⇒ 〈O(x)O(y)〉 = −ΓαβΓγδ〈ψiβ(x)ψiγ(y)ψjδ(y)ψjα(x)〉. (4.1.11)

Conservation of fermion flavour means that we can factorise the two flavours in eq.

(4.1.11):

〈O(x)O(y)〉 = −ΓαβΓγδ〈ψiβ(x)ψiγ(y)〉〈ψjδ(y)ψjα(x)〉

=⇒ 〈O(x)O(y)〉 = −ΓαβΓγδD
−1
i, βγ(x− y)D−1

j, δα(y − x)

=⇒ 〈O(x)O(y)〉 = −ΓαβD
−1
i, βγ(x− y)ΓγδD

−1
j, δα(y − x)

=⇒ 〈O(x)O(y)〉 = − tr
[
ΓD−1

i (x− y)ΓD−1
j (y − x)

]
, (4.1.12)

where D−1
i is the inverse of the Dirac operator for flavour i. Equation (4.1.12) shows

how the isotriplet correlator is computed from lattice configurations. Note that the

formula only contains Dirac operators between two distinct spacetime coordinates (x

and y). The isosinglet term (i = j) contains Dirac operators that start and end at

the same coordinate. Such terms are computationally very expensive and we defer its

examination to later studies.

We now explain how observables are computed from the correlator. The corre-
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lator of two interpolating operators, OM and OM ′ , at a given time t is defined as

CMM ′(t) =
∑
x

〈0|OM(x, t)O†M ′(0, 0)|0〉 . (4.1.13)

As t→∞, the decay of the correlator with M = M ′ is governed by

CM(t)→ | 〈0|OM |M〉 |
2

mML3

[
e−mM t + e−mM (T−t)] as t→∞ (4.1.14)

where |M〉 is the meson state, mM is the meson mass and L = aNs is the physical

extent of the lattice. We follow the same conventions as in [5,13] to compute the meson

masses and, where appropriate, the decay-constants, fM .

The matrix elements are parameterised in a similar way as in the pion current

in section 1.2.2:

〈0|ψiγ5γµψj|PS〉 = fPSp
µ, (4.1.15)

〈0|ψiγµψj|V 〉 = fVmV ε
µ, (4.1.16)

〈0|ψiγ5γµψj|AV 〉 = fAVmAV ε
µ. (4.1.17)

The flavour indices, i and j, correspond to the fermion flavours comprising the meson.

The term εµ is the polarisation vector which obeys εµpµ = 0 and εµεµ = 1. Substituting

the second and third of the above equations into eq. (4.1.14) gives us, respectively,

CV (t)→ f 2
VmV

L3

[
e−mV t + e−mV (T−t)] , (4.1.18)

CAV (t)→ f 2
AVmAV

L3

[
e−mAV t + e−mAV (T−t)] . (4.1.19)
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In order to compute fPS, we have to consider one additional correlation function:

CAV,PS(t) =
∑
x

〈0|
(
ψiγ5γµψj(x, t)

)(
ψiγ5ψj(0, 0)

)
|0〉 , (4.1.20)

CAV,PS(t)→ fPS 〈0|OPS|PS〉∗
L3

[
e−mPSt − e−mPS(T−t)] . (4.1.21)

The mass and decay-constant of the pseudoscalar meson can be determined by

simultaneous curve-fitting to eqs. (4.1.14) and (4.1.21) with M = PS. The masses and

decay-constants for both the vector and axial-vector mesons are computed by fitting the

correlator to eqs. (4.1.18) and (4.1.19), respectively. The masses of each of the remaining

three channels (scalar, tensor and axial-tensor) are computed from eq. (4.1.14) with OM
substituted from table 4.1. The curve-fitting is not carried out for all available times,

t, since eqs. (4.1.14) and (4.1.18) to (4.1.20) only hold at large Euclidean times. The

effective mass as a function of Euclidean time from the relevant correlator C(t) is

ameff(t) = arccosh

[
C(t− 1) + C(t+ 1)

2C(t)

]
. (4.1.22)

The qualitative approach is to look for the t-interval, [t1, t2], for which ameff(t) exhibits a

plateau. At this stage, we can say with confidence that the correlator closely resembles

its large-time formula. Nonetheless, simply looking for a plateau by eye is prone to

errors and cannot be reliably reproduced by third parties. In Appendix C we describe

an algorithm for the determination of the time interval [t1, t2]. The method allows for

a great deal of the work to be done automatically and in a reproducible manner, as

well as being a rich topic for a student of machine learning. Some of the curve-fitting

intervals (particularly for the heavy states such as the axial-vector and axial-tensor) do

have to be selected manually.
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Figure 4.1: An example of a meson mass plateau. The effective mass of the meson is
plotted against Euclidean time. The state is the vector meson comprised of fermions
in the fundamental representation of Sp(4) at β = 7.62. The mass fit range is the
horizontal length of the blue and orange lines with the vertical width corresponding to
the statistical error in the measurement. The reduced chi-squared and bare mass are
stated in the plot header.

An example of an effective mass plateau is shown in fig. 4.1. Such a plot was

examined for each bare mass in each channel at each beta value in tables 4.5 to 4.16.

4.2 Renormalising Meson Observables

As mentioned earlier, throughout the meson calculations, we have used the quenched

approximation. This is generally adopted to speed up numerical calculations by avoid-

ing the computation of a large-matrix determinant. It has the effect of ignoring loops

generated by virtual fermion-antifermion pairs. In spite of this, the observables will

still acquire corrections due to gluon loops and will, thus, still require renormalisation.
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R C2(R)

Fundamental (Nc + 1)/4
Antisymmetric Nc/2

Adjoint Nc/2 + 1
Symmetric Nc/2 + 1

Table 4.2: The quadratic Casimir operators, C2(R), for different representations, R,
of Sp(Nc).

∆Σ1 ∆γµ ∆γ5γµ

-12.82 -7.75 -3.0

Table 4.3: The ∆ terms used in the renormalisation factors [82].

As demonstrated in [82], the renormalised decay-constants, f ren
M , are related to their

corresponding bare quantities, fbare
M , by a multiplicative factor.

f ren
PS = ZAf

bare
PS , (4.2.1)

f ren
V = ZV f

bare
V , (4.2.2)

f ren
AV = ZAf

bare
AV . (4.2.3)

The quantities ZA and ZV are given by [82]

ZV = 1 + C2(R)
(
∆Σ1 + ∆γµ

) Nc

8π2β〈P 〉 , (4.2.4)

ZA = 1 + C2(R)
(
∆Σ1 + ∆γ5γµ

) Nc

8π2β〈P 〉 . (4.2.5)

The three ∆ terms are pure numbers shown in table 4.3. The term Nc is that of Sp(Nc);

C2(R) is the quadratic Casimir operator for the representation R of Sp(Nc) as stated

in table 4.2; β is the inverse coupling and 〈P 〉 is the average value of the plaquette

operator as defined in table 1.
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Figure 4.2: Tadpole diagrams in continuum Yang-Mills theory. Left to right: gluon-
tadpole, fermion-tadpole, ghost-tadpole. The fermion diagram is not present in the
quenched approximation but is included for completeness. The ghost diagram is not
included in the lattice theory since there is no need for gauge fixing.

The purpose of the average plaquette value is to remove the effects of tadpole

diagrams which vanish in the continuum. Tadpole diagrams (shown in fig. 4.2) have

an effect on lattice calculations and these can be compensated for by the inclusion of

the average plaquette. A näıve expansion parameter for the lattice is g, the coupling

constant; however, as demonstrated in [83], we can compensate for the tadpole diagrams

by replacing

g̃2 =
g2

〈P 〉 (4.2.6)

which is equivalent to

β̃ = β〈P 〉. (4.2.7)

4.3 Chiral limit

Lattice computations of fermions often use unphysically large quark masses. The reason

for this is that fermion observables become progressively more expensive to compute

as the bare mass decreases. This has become known as the “Berlin Wall” after its

formal discussion at the 2001 Lattice Conference in the same city. We can, however,

extrapolate observable quantities to the chiral limit just as we extrapolated to the

continuum limit in the computation of the glueball spectrum in section 3.6.2. The

118



method used in this thesis is chiral perturbation theory (χPT) for Wilson fermions,

the same as in [13, 29]. By definition, the pseudoscalar meson is massless in the chiral

limit in the same way that the pions of QCD become massless in the limit where chiral

symmetry is not explicitly broken in the QCD Lagrangian as shown in section 1.2.

The next-to-leading order (NLO) expansions for masses and decay-constants in

a given channel, M, in the chiral limit are given by

m̂2,NLO
M = m̂2,χ

M (1 + L0
m,Mm̂

2
PS) +W 0

m,Mâ (4.3.1)

f̂ 2,NLO
M = f̂ 2,χ

M (1 + L0
f,Mm̂

2
PS) +W 0

f,Mâ. (4.3.2)

The term m̂2
PS is the squared mass of the pseudoscalar. The two formulae have the

same form for both masses and decay-constants. All quantities are measured in units of

gradient-flow as denoted by the caret (ˆ) symbol. The L and W terms are parameters

to be determined by curve-fitting. The â term is the inverse of the gradient-flow scale:

â = a/wo.

The gradient flow scale, w0, is used for comparing the scale of lattices at different

values of β. It was introduced in [84] and is an improvement on the Wilson flow

techniques originally proposed by Martin Lüscher in [85]. The method was applied to

these same calculations in [13].

We introduce a new variable, t, known as flow-time and a new field Bµ(t, x).

Bµ(t, x) is defined in terms of the differential equation:

dBµ(t, x)

dt
= DνFµν(t, x), Bµ(t = 0, x) = Aµ(x). (4.3.3)

The term Aµ(x) is the continuum gauge field and the covariant derivative, Dµ, is defined

as Dµφ = ∂µφ+ [Bµ, φ] with Fµν = [Dµ, Dν ].
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Shifting to the lattice, the gradient flow definitions in eq. (4.3.3) become

dVµ(t, x)

dt
= −g2

o

(
∂x,µS

flow[Vµ]
)
V (t, x) (4.3.4)

with Vµ(t = 0, x) = Uµ(x) and Sflow[Vµ] is the Wilson action.

We define the average value of the continuum action density as a function of t,

as

〈E(t)〉 =
1

4
F a
µν(t)F

a
µν(t) (4.3.5)

and the related quantity

W(t) = t
d

dt

(
t

2〈E(t)〉
)
. (4.3.6)

We choose a reference value W0 for all β’s in a given Sp(2N) group and define the

gradient flow scale w0 as

W(t = w2
0) =W0. (4.3.7)

In our calculations, we chooseW0 to be fixed at 0.35, the same as in [13]. The quantity

w0/a is dimensionless as are the quantities am. Therefore, a dimensionless measurement

that is independent of lattice spacing is w0m. Using units of gradient flow allows us to

compare measurements obtained at different lattice spacings (β values). This method

can also be used in the computation of the glueball spectrum. The values for w0 used

in our calculations are shown in table 4.4.

4.4 Handling of Statistical Errors

The correlators corresponding to a given meson state are computed for all lattice con-

figurations. Each lattice configuration yields a correlator, C(t) where t goes from 0

to Nt/2 since we take the average of C(t) and C(T − t) to account for propagation of
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W0(t = w2
0) = 0.35

Group β w0/a

Sp(4)[13]

7.62 1.448(3)
7.7 1.6070(19)
7.85 1.944(3)
8.0 2.3149(12)
8.2 2.8812(21)

Sp(6)

15.6 1.2360(21)
16.1 1.7012(30)
16.5 2.1505(30)
16.7 2.3566(44)
17.1 2.9025(43)

Table 4.4: Gradient flow scales used in the chiral extrapolations. The values of w0/a
for Sp(4) are those of table 2 in [13]. The values of w0/a for Sp(6) were computed
especially for this thesis.

states backwards in time. We then bootstrap the correlators. In this work, we take 200

bootstrap samples (with replacement) at each t value with the average and standard

deviation across the 200 samples being the value and error of C(t), respectively, at

that value of t. The correlator at time t for bootstrap sample S is denoted by C(t;S).

From these bootstrapped correlators and their corresponding errors, we can compute

the effective mass and its corresponding error at a given value of t.

The mass of the meson is computed by searching for a plateau in the plot of

effective mass against Euclidean time. The time interval where this occurs can in

many cases be reliably determined using the plateau seeking algorithm described in

Appendix C. Once a fit range [ti,tf ] has been selected, we compute the covariance

matrix, Covij, via

Covij = E
[
C(i;S)− C(i)

]
× E

[
C(j;S)− C(j)

]
(4.4.1)
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where E[x] denotes the quantity x averaged over all bootstrap samples. We need only

compute the components of the covariance matrix for ti 6 i, j 6 tf .

If f({an}, t) is the curve fitting function with parameters {an} at Euclidean time

t, its optimal parameters are determined by minimising the value of χ2:

χ2 =

t2∑
i=t1

t2∑
j=t1

(C(i)− f({an}, i))(Cov−1)ij(C(j)− f({an}, j)). (4.4.2)

This minimum value is the corresponding χ2 of the curve-fitting procedure. We boot-

strap the fit parameters by repeating the χ2 minimisation as in eq. (4.4.2) but with the

average correlator C(t) replaced with that of a single bootstrap sample C(t;S). We use

the same covariance matrix, the justification being that bootstrapping the bootstrap

samples recovers the same result after a large number of iterations.

Because we carried out 200 bootstrap iterations, we now have 200 measurements

for each of the parameters {an}. By the central limit theorem, these will follow a normal

distribution. We can, thus, fit a histogram of the 200 measurements of each parameter

to a normal distribution with the mean and width corresponding to the value and error,

respectively, in each parameter.

4.5 Results

In this section we collate the results for the Sp(4) and Sp(6) meson spectra both in the

quenched approximation. The results for Sp(4) in the fundamental and antisymmetric

representations use the same beta values and corresponding bare masses as [13] to allow

for comparison. All other results are original to this thesis. As stated in section 4.1,

we restrict our attention to isotriplet mesons (i.e. those whose total isospin is I = 1).

The investigation of the more computationally expensive isosinglet states (I = 0) is
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deferred to later studies. For each gauge group, the results are tabulated for fermions

in the fundamental, antisymmetric and symmetric/adjoint representations (recall that

the symmetric and adjoint representations are identical for Sp(2N) groups). If no

reliable signal was detected for a specific set of parameters, the entry in the table is

marked with a “–” symbol. Errors are computed by the method laid out in section 4.4.

Data for Sp(4) are contained in tables 4.5 and 4.6 for the fundamental represen-

tation; tables 4.7 and 4.8 for the antisymmetric representation; tables 4.9 and 4.10 for

the symmetric representation. The Sp(4) chiral extrapolations are shown in figs. 4.3

and 4.4 for decay constants and masses, respectively. Data for Sp(6) are contained in

tables 4.11 and 4.12 for the fundamental representation; tables 4.13 and 4.14 for the

antisymmetric representation; tables 4.15 and 4.16 for the symmetric representation.

The Sp(6) chiral extrapolations are shown in figs. 4.9 and 4.10 for decay constants and

masses, respectively. We compare our data for the chiral limit of Sp(4) in the funda-

mental and antisymmetric representations with those of [13] in figs. 4.15 and 4.16. In

some of the chiral extrapolations, no clear signal was detected as the pseudoscalar mass

approached zero and we cannot make a reliable extrapolation to the chiral limit. In

such cases, the data points are shown but the chiral extrapolation (otherwise shown

by a grey band) is omitted. This low signal-to-noise ratio is most common among the

heaviest meson states (axial-vector, scalar and axial-tensor).
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Sp(4) fundamental fermions

Volume β am0
Pseudoscalar Vector Axial-vector
Ifit χ2/d.o.f. Ifit χ2/d.o.f. Ifit χ2/d.o.f.

243 × 48 7.62 -0.7 [15, 22] 0.42 [18, 21] 0.12 [10, 13] 0.35
243 × 48 7.62 -0.73 [16, 23] 0.82 [18, 23] 0.17 [8, 13] 1.16
243 × 48 7.62 -0.75 [12, 23] 0.97 [17, 21] 0.23 [7, 13] 1.09
243 × 48 7.62 -0.77 [12, 22] 1.35 [12, 22] 1.49 [8, 11] 1.58
243 × 48 7.62 -0.78 [15, 21] 1.41 [11, 23] 0.84 – –
243 × 48 7.62 -0.79 [11, 23] 1.21 [12, 23] 0.89 [8, 10] 2.15

483 × 60 7.7 -0.73 [14, 29] 0.73 [18, 29] 0.48 [11, 14] 0.44
483 × 60 7.7 -0.75 [13, 28] 0.75 [16, 21] 0.79 [10, 15] 1.45
483 × 60 7.7 -0.76 [13, 29] 1.02 [17, 21] 0.85 [9, 12] 0.16

483 × 60 7.85 -0.6 [20, 28] 0.67 [20, 28] 1.57 [14, 25] 1.39
483 × 60 7.85 -0.65 [25, 28] 0.09 [18, 29] 0.54 [12, 15] 0.19
483 × 60 7.85 -0.68 [17, 27] 1.27 [18, 29] 0.77 [12, 17] 0.58
483 × 60 7.85 -0.7 [24, 29] 1.80 [25, 28] 0.49 [12, 16] 3.73
483 × 60 7.85 -0.71 [24, 28] 0.24 [17, 29] 0.83 [10, 14] 2.81
483 × 60 7.85 -0.72 [16, 25] 0.93 [14, 29] 1.48 [11, 13] 4.41
483 × 60 7.85 -0.73 [13, 28] 1.32 [15, 21] 1.13 [10, 13] 1.81

483 × 60 8.0 -0.6 [21, 29] 1.60 [24, 27] 0.18 [13, 26] 0.74
483 × 60 8.0 -0.625 [24, 29] 1.47 [25, 28] 0.06 [14, 17] 1.38
483 × 60 8.0 -0.64 [26, 29] 0.41 [26, 29] 0.86 [16, 20] 0.75
483 × 60 8.0 -0.65 [21, 28] 2.32 [17, 29] 1.13 – –
483 × 60 8.0 -0.66 [19, 29] 1.34 [19, 28] 1.63 [12, 17] 0.75
483 × 60 8.0 -0.67 [19, 29] 1.29 [19, 28] 1.52 [12, 16] 0.60
483 × 60 8.0 -0.68 [25, 29] 0.15 [24, 27] 0.05 – –
483 × 60 8.0 -0.69 [17, 29] 1.07 [15, 20] 0.55 [10, 12] 1.44

483 × 60 8.2 -0.62 [24, 27] 0.12 [22, 29] 0.75 [15, 19] 1.64
483 × 60 8.2 -0.64 [21, 29] 0.91 [21, 29] 0.79 [17, 20] 0.21
483 × 60 8.2 -0.646 [22, 27] 1.16 [22, 27] 0.12 [14, 17] 0.06

Table 4.5: Sp(4) meson fit ranges and reduced chi-squares in the fundamental repre-
sentation. The ‘–’ symbol denotes a case in which no reliable signal was detected.
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Sp(4) fundamental fermions

Volume β am0
Scalar Tensor Axial-tensor

Ifit χ2/d.o.f. Ifit χ2/d.o.f. Ifit χ2/d.o.f.
243 × 48 7.62 -0.7 [8, 15] 1.46 [16, 21] 1.17 [10, 13] 2.34
243 × 48 7.62 -0.73 [8, 11] 0.05 [15, 23] 0.31 [8, 13] 1.06
243 × 48 7.62 -0.75 [7, 12] 0.20 [16, 21] 0.12 [9, 12] 1.74
243 × 48 7.62 -0.77 [8, 11] 0.46 [12, 21] 0.90 [7, 10] 1.69
243 × 48 7.62 -0.78 [7, 11] 0.18 [13, 22] 0.99 – –
243 × 48 7.62 -0.79 [6, 8] 3.65 [9, 23] 1.34 [7, 10] 0.86

483 × 60 7.7 -0.73 [13, 16] 1.89 [17, 29] 1.55 [11, 14] 2.16
483 × 60 7.7 -0.75 [8, 14] 0.16 [13, 28] 0.59 [8, 11] 0.73
483 × 60 7.7 -0.76 [10, 14] 0.28 [13, 29] 1.09 [9, 13] 0.70

483 × 60 7.85 -0.6 [21, 25] 0.02 [17, 28] 1.23 [19, 25] 0.90
483 × 60 7.85 -0.65 [13, 24] 1.06 [23, 29] 0.11 [14, 17] 0.05
483 × 60 7.85 -0.68 [13, 18] 2.07 [16, 29] 1.32 [13, 17] 1.44
483 × 60 7.85 -0.7 [14, 18] 0.46 [19, 29] 1.11 [10, 17] 1.52
483 × 60 7.85 -0.71 [10, 13] 2.86 [23, 29] 1.05 [11, 16] 1.87
483 × 60 7.85 -0.72 [9, 13] 2.98 [17, 27] 1.61 [12, 15] 2.35
483 × 60 7.85 -0.73 – – [14, 23] 0.47 [10, 13] 0.14

483 × 60 8.0 -0.6 [13, 25] 0.74 [22, 29] 0.74 [19, 24] 0.41
483 × 60 8.0 -0.625 [14, 26] 1.35 [23, 27] 0.40 [20, 24] 1.01
483 × 60 8.0 -0.64 [19, 24] 0.12 [23, 27] 2.42 [17, 20] 0.23
483 × 60 8.0 -0.65 [14, 16] 2.90 [17, 29] 1.34 [18, 21] 0.16
483 × 60 8.0 -0.66 [12, 19] 2.53 [16, 29] 1.08 [12, 20] 1.27
483 × 60 8.0 -0.67 [15, 18] 0.05 [19, 29] 0.36 [15, 18] 0.80
483 × 60 8.0 -0.68 [12, 16] 1.92 [15, 29] 1.15 [11, 13] 2.33
483 × 60 8.0 -0.69 [8, 10] 1.72 [20, 29] 1.03 [10, 12] 5.12

483 × 60 8.2 -0.62 [15, 21] 1.87 [26, 29] 0.32 [16, 19] 1.81
483 × 60 8.2 -0.64 [17, 21] 0.20 [23, 27] 0.54 [19, 22] 0.09
483 × 60 8.2 -0.646 [10, 13] 2.13 [17, 27] 1.54 [12, 16] 0.16

Table 4.6: Sp(4) meson fit ranges and reduced chi-squares in the fundamental repre-
sentation. The ‘–’ symbol denotes a case in which no reliable signal was detected.
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Figure 4.3: Decay constants squared for PS, V and AV channels, comprised of fermions
in the fundamental representation of Sp(4). The reduced chi-squared value is printed
at the top of each plot. Data points in the pink shaded region are not included in
the curve-fitting procedure. The grey band represents the continuum and massless
extrapolation with the blue square being the observable in the chiral limit and the
vertical width corresponding to the statistical error. In instances where a reliable
extrapolation cannot be made, no grey band is shown. All quantities are expressed
in units of gradient flow scale, w0.
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Figure 4.4: Masses squared for V, T, AV, AT and S channels, comprised of fermions
in the fundamental representation of Sp(4). The reduced chi-squared value is printed
at the top of each plot. Data points in the pink shaded region are not included in
the curve-fitting procedure. The grey band represents the continuum and massless
extrapolation with the blue square being the observable in the chiral limit and the
vertical width corresponding to the statistical error. In instances where a reliable
extrapolation cannot be made, no grey band is shown. All quantities are expressed
in units of gradient flow scale, w0.
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Sp(4) antisymmetric fermions

Volume β am0
Pseudoscalar Vector Axial-vector
Ifit χ2/d.o.f. Ifit χ2/d.o.f. Ifit χ2/d.o.f.

243 × 48 7.62 -1.05 [11, 23] 0.93 [19, 22] 0.10 – –
243 × 48 7.62 -1.08 [18, 22] 1.61 [10, 23] 1.09 – –
243 × 48 7.62 -1.1 [18, 22] 1.00 [13, 18] 0.06 [6, 9] 3.65
243 × 48 7.62 -1.12 [11, 23] 0.89 [9, 22] 1.05 – –
243 × 48 7.62 -1.13 [18, 23] 2.14 [10, 15] 0.92 – –
243 × 48 7.62 -1.14 [18, 22] 1.93 [12, 15] 3.05 – –

483 × 60 7.7 -1.05 [19, 29] 0.70 [19, 29] 1.24 [8, 11] 0.99
483 × 60 7.7 -1.08 [26, 29] 1.83 [16, 27] 1.54 [8, 11] 0.67
483 × 60 7.7 -1.09 [16, 28] 1.34 [16, 27] 0.32 – –
483 × 60 7.7 -1.1 [14, 29] 1.22 [15, 29] 1.34 [7, 11] 1.63
483 × 60 7.7 -1.11 [11, 29] 1.04 [14, 23] 1.65 – –
483 × 60 7.7 -1.12 [11, 29] 1.13 [14, 22] 1.68 [7, 10] 0.38

483 × 60 7.85 -1.03 [13, 29] 1.04 [19, 29] 1.58 [9, 11] 4.79
483 × 60 7.85 -1.04 [15, 29] 1.28 [14, 29] 1.09 [9, 14] 0.91
483 × 60 7.85 -1.05 [17, 29] 1.26 [11, 29] 0.99 [9, 13] 1.71
483 × 60 7.85 -1.06 [12, 29] 1.29 [19, 23] 0.07 – –

483 × 60 8.0 -0.95 [22, 28] 1.42 [26, 29] 0.54 [10, 19] 0.63
483 × 60 8.0 -0.983 [19, 29] 1.26 [20, 29] 0.32 [11, 15] 0.70
483 × 60 8.0 -0.99 [16, 27] 1.33 [24, 27] 0.14 [10, 13] 1.20
483 × 60 8.0 -1.01 [22, 29] 1.36 [15, 28] 0.92 [10, 12] 0.96
483 × 60 8.0 -1.015 [20, 29] 0.74 [13, 24] 0.68 – –

483 × 60 8.2 -0.95 [19, 26] 1.36 [22, 27] 0.22 [12, 14] 1.32
483 × 60 8.2 -0.961 [16, 29] 1.05 [15, 27] 1.49 [11, 13] 2.46

Table 4.7: Sp(4) meson fit ranges and reduced chi-squares in the antisymmetric rep-
resentation. The ‘–’ symbol denotes a case in which no reliable signal was detected.
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Sp(4) antisymmetric fermions

Volume β am0
Scalar Tensor Axial-tensor

Ifit χ2/d.o.f. Ifit χ2/d.o.f. Ifit χ2/d.o.f.
243 × 48 7.62 -1.05 [7, 10] 1.66 [11, 23] 0.97 [6, 8] 2.10
243 × 48 7.62 -1.08 [7, 10] 0.56 [9, 23] 0.93 – –
243 × 48 7.62 -1.1 [8, 12] 2.91 [8, 22] 0.96 – –
243 × 48 7.62 -1.12 – – [15, 20] 1.28 – –
243 × 48 7.62 -1.13 – – [10, 20] 1.58 – –
243 × 48 7.62 -1.14 [7, 9] 4.63 [8, 13] 0.21 – –

483 × 60 7.7 -1.05 [12, 15] 0.18 [21, 29] 1.63 [8, 11] 1.73
483 × 60 7.7 -1.08 [8, 13] 1.11 [13, 29] 0.91 [8, 11] 1.07
483 × 60 7.7 -1.09 [9, 13] 1.39 [24, 27] 0.06 [8, 10] 0.19
483 × 60 7.7 -1.1 [8, 10] 2.76 [20, 23] 0.01 [7, 10] 1.91
483 × 60 7.7 -1.11 [6, 9] 1.97 [12, 19] 0.57 [7, 9] 0.63
483 × 60 7.7 -1.12 – – [11, 14] 0.04 [6, 8] 3.07

483 × 60 7.85 -1.03 [12, 15] 0.25 [11, 29] 1.24 – –
483 × 60 7.85 -1.04 [8, 12] 2.41 [25, 29] 0.65 [10, 12] 0.53
483 × 60 7.85 -1.05 [10, 13] 0.25 [13, 25] 0.87 [7, 10] 2.72
483 × 60 7.85 -1.06 [7, 9] 0.14 [12, 18] 0.21 – –

483 × 60 8.0 -0.95 [19, 22] 0.18 [17, 27] 1.37 [13, 16] 0.09
483 × 60 8.0 -0.983 [11, 18] 1.20 [21, 27] 0.78 [11, 14] 0.44
483 × 60 8.0 -0.99 [11, 17] 0.78 [14, 29] 1.45 [11, 14] 1.53
483 × 60 8.0 -1.01 [11, 14] 0.07 [16, 22] 0.07 [9, 12] 0.63
483 × 60 8.0 -1.015 [9, 13] 0.95 [16, 21] 0.22 [8, 10] 3.67

483 × 60 8.2 -0.95 [18, 21] 0.00 [25, 28] 0.05 [11, 15] 0.79
483 × 60 8.2 -0.961 [14, 20] 0.38 [16, 20] 0.29 [10, 13] 0.71

Table 4.8: Sp(4) meson fit ranges and reduced chi-squares in the antisymmetric rep-
resentation. The ‘–’ symbol denotes a case in which no reliable signal was detected.
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Figure 4.5: Decay constants squared for PS, V and AV channels, comprised of fermions
in the antisymmetric representation of Sp(4). The reduced chi-squared value is printed
at the top of each plot. Data points in the pink shaded region are not included in
the curve-fitting procedure. The grey band represents the continuum and massless
extrapolation with the blue square being the observable in the chiral limit and the
vertical width corresponding to the statistical error. In instances where a reliable
extrapolation cannot be made, no grey band is shown. All quantities are expressed
in units of gradient flow scale, w0.
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Figure 4.6: Masses squared for V, T, AV, AT and S channels, comprised of fermions
in the antisymmetric representation of Sp(4). The reduced chi-squared value is printed
at the top of each plot. Data points in the pink shaded region are not included in
the curve-fitting procedure. The grey band represents the continuum and massless
extrapolation with the blue square being the observable in the chiral limit and the
vertical width corresponding to the statistical error. In instances where a reliable
extrapolation cannot be made, no grey band is shown. All quantities are expressed
in units of gradient flow scale, w0.
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Sp(4) symmetric fermions

Volume β am0
Pseudoscalar Vector Axial-vector
Ifit χ2/d.o.f. Ifit χ2/d.o.f. Ifit χ2/d.o.f.

243 × 48 7.62 -1.47 [11, 23] 0.94 [11, 23] 0.39 – –
243 × 48 7.62 -1.48 [10, 21] 1.29 [17, 22] 0.34 – –
243 × 48 7.62 -1.485 [18, 23] 0.91 [13, 21] 0.47 – –
243 × 48 7.62 -1.49 [20, 23] 1.06 [17, 22] 0.03 – –
243 × 48 7.62 -1.505 [10, 23] 1.27 [11, 17] 1.78 – –
243 × 48 7.62 -1.51 [14, 23] 1.27 [9, 18] 0.66 – –

483 × 60 7.7 -1.43 [18, 29] 1.28 [11, 28] 1.43 – –
483 × 60 7.7 -1.44 [12, 28] 1.00 [25, 28] 0.39 – –
483 × 60 7.7 -1.45 [21, 29] 1.11 [11, 28] 1.29 – –
483 × 60 7.7 -1.46 [15, 29] 0.85 [15, 25] 0.22 – –
483 × 60 7.7 -1.47 [13, 29] 1.03 [17, 21] 0.00 – –

483 × 60 7.85 -1.36 [15, 29] 1.10 [14, 29] 0.87 [10, 13] 0.84
483 × 60 7.85 -1.37 [18, 29] 1.38 [15, 27] 1.52 [8, 11] 3.66
483 × 60 7.85 -1.38 [24, 28] 0.54 [18, 29] 1.27 [9, 12] 0.04
483 × 60 7.85 -1.39 [14, 29] 1.34 [16, 27] 0.82 [7, 9] 0.02
483 × 60 7.85 -1.4 [15, 28] 1.37 [16, 29] 0.57 [9, 11] 0.20
483 × 60 7.85 -1.41 [24, 28] 0.98 [25, 28] 0.00 [8, 11] 1.41
483 × 60 7.85 -1.42 [12, 27] 1.30 [12, 26] 0.74 – –

483 × 60 8.0 -1.31 [16, 29] 1.22 [25, 29] 0.49 [9, 15] 0.26
483 × 60 8.0 -1.32 [24, 27] 1.77 [14, 29] 1.43 [13, 16] 0.43
483 × 60 8.0 -1.33 [16, 29] 1.04 [20, 27] 0.12 [12, 17] 0.79
483 × 60 8.0 -1.34 [26, 29] 0.46 [18, 29] 1.32 [8, 14] 0.21
483 × 60 8.0 -1.35 [15, 25] 1.37 [24, 27] 0.00 [9, 13] 1.84
483 × 60 8.0 -1.36 [25, 29] 1.25 [17, 29] 1.53 [9, 12] 3.37
483 × 60 8.0 -1.37 [17, 29] 1.39 [21, 27] 1.09 [9, 13] 1.78

483 × 60 8.2 -1.26 [24, 27] 1.60 [20, 29] 1.12 [14, 17] 0.22
483 × 60 8.2 -1.27 [21, 29] 1.48 [18, 29] 0.85 [10, 18] 0.86
483 × 60 8.2 -1.28 [21, 28] 1.05 [16, 27] 0.91 [13, 17] 0.03
483 × 60 8.2 -1.29 [22, 27] 1.33 [26, 29] 2.84 [14, 17] 0.25
483 × 60 8.2 -1.30 [20, 29] 1.31 [18, 28] 1.62 [10, 13] 4.46
483 × 60 8.2 -1.31 [18, 29] 0.85 [26, 29] 1.02 [11, 14] 0.04
483 × 60 8.2 -1.32 [17, 29] 1.15 [15, 25] 0.46 [9, 14] 0.39

Table 4.9: Sp(4) meson fit ranges and reduced chi-squares in the symmetric represen-
tation. The ‘–’ symbol denotes a case in which no reliable signal was detected.
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Sp(4) symmetric fermions

Volume β am0
Scalar Tensor Axial-tensor

Ifit χ2/d.o.f. Ifit χ2/d.o.f. Ifit χ2/d.o.f.
243 × 48 7.62 -1.47 – – [9, 20] 1.74 – –
243 × 48 7.62 -1.48 – – [8, 19] 1.02 – –
243 × 48 7.62 -1.485 – – [12, 20] 0.49 – –
243 × 48 7.62 -1.49 [5, 7] 0.04 [14, 17] 0.03 – –
243 × 48 7.62 -1.505 – – [7, 14] 1.41 – –
243 × 48 7.62 -1.51 – – [9, 14] 1.01 – –

483 × 60 7.7 -1.43 – – [22, 25] 0.23 – –
483 × 60 7.7 -1.44 – – [14, 28] 1.45 – –
483 × 60 7.7 -1.45 – – [10, 25] 0.89 – –
483 × 60 7.7 -1.46 [6, 8] 0.04 [10, 22] 1.01 – –
483 × 60 7.7 -1.47 [6, 8] 1.98 [14, 18] 1.39 – –

483 × 60 7.85 -1.36 [10, 14] 1.41 [21, 27] 0.94 [7, 10] 2.06
483 × 60 7.85 -1.37 [11, 14] 1.11 [23, 29] 0.60 [7, 10] 0.50
483 × 60 7.85 -1.38 [8, 15] 0.23 [13, 27] 1.25 – –
483 × 60 7.85 -1.39 [8, 13] 1.33 [11, 27] 1.28 – –
483 × 60 7.85 -1.4 [8, 11] 0.58 [16, 26] 0.51 – –
483 × 60 7.85 -1.41 [9, 12] 1.96 [14, 19] 0.79 – –
483 × 60 7.85 -1.42 [7, 10] 0.28 [12, 22] 1.38 [7, 9] 1.82

483 × 60 8.0 -1.31 [17, 20] 0.44 [14, 29] 0.98 – –
483 × 60 8.0 -1.32 [11, 18] 0.59 [14, 28] 0.98 [11, 14] 0.65
483 × 60 8.0 -1.33 [12, 18] 1.60 [23, 28] 1.14 [10, 13] 0.15
483 × 60 8.0 -1.34 [14, 17] 0.13 [11, 29] 1.25 [8, 12] 2.93
483 × 60 8.0 -1.35 [15, 18] 0.20 [11, 28] 1.41 [7, 11] 0.14
483 × 60 8.0 -1.36 [9, 13] 0.20 [11, 28] 0.89 [7, 9] 0.30
483 × 60 8.0 -1.37 [9, 13] 3.36 [17, 20] 0.09 [7, 10] 0.31

483 × 60 8.2 -1.26 [13, 25] 1.38 [17, 29] 1.49 [10, 17] 1.66
483 × 60 8.2 -1.27 [12, 21] 1.25 [17, 29] 0.53 [10, 13] 1.04
483 × 60 8.2 -1.28 [17, 20] 0.04 [14, 28] 0.88 [11, 14] 0.07
483 × 60 8.2 -1.29 [11, 19] 1.65 [15, 29] 1.24 [10, 14] 2.35
483 × 60 8.2 -1.30 [11, 22] 1.01 [14, 28] 1.47 [10, 13] 0.94
483 × 60 8.2 -1.31 [14, 18] 0.49 [19, 22] 0.24 [9, 12] 2.71
483 × 60 8.2 -1.32 [8, 10] 1.23 [15, 18] 0.04 [7, 9] 0.07

Table 4.10: Sp(4) meson fit ranges and reduced chi-squares in the symmetric repre-
sentation. The ‘–’ symbol denotes a case in which no reliable signal was detected.
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Figure 4.7: Decay constants squared for PS, V and AV channels, comprised of fermions
in the symmetric representation of Sp(4). The reduced chi-squared value is printed at
the top of each plot. Data points in the pink shaded region are not included in the curve-
fitting procedure. The grey band represents the continuum and massless extrapolation
with the blue square being the observable in the chiral limit and the vertical width
corresponding to the statistical error. In instances where a reliable extrapolation cannot
be made, no grey band is shown. All quantities are expressed in units of gradient flow
scale, w0.
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Figure 4.8: Masses squared for V, T, AV, AT and S channels, comprised of fermions in
the symmetric representation of Sp(4). The reduced chi-squared value is printed at the
top of each plot. Data points in the pink shaded region are not included in the curve-
fitting procedure. The grey band represents the continuum and massless extrapolation
with the blue square being the observable in the chiral limit and the vertical width
corresponding to the statistical error. In instances where a reliable extrapolation cannot
be made, no grey band is shown. All quantities are expressed in units of gradient flow
scale, w0.
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Sp(6) fundamental fermions

Volume β am0
Pseudoscalar Vector Axial-vector
Ifit χ2/d.o.f. Ifit χ2/d.o.f. Ifit χ2/d.o.f.

123 × 24 15.6 -0.80 [9, 11] 1.20 [9, 11] 0.54 – –
123 × 24 15.6 -0.81 [8, 11] 0.85 [9, 11] 2.61 – –
123 × 24 15.6 -0.82 [9, 11] 0.65 [8, 10] 1.74 – –
123 × 24 15.6 -0.83 [9, 11] 1.58 [9, 11] 3.83 – –
123 × 24 15.6 -0.84 [8, 11] 0.10 – – – –

163 × 32 16.1 -0.72 [13, 15] 2.75 [12, 15] 4.95 [10, 14] 1.48
163 × 32 16.1 -0.73 [12, 15] 0.36 [11, 14] 2.68 – –
163 × 32 16.1 -0.74 [12, 15] 1.47 [12, 15] 1.17 – –
163 × 32 16.1 -0.75 [10, 14] 0.71 [10, 15] 0.45 – –
163 × 32 16.1 -0.76 [10, 15] 1.51 [12, 15] 0.09 [7, 10] 2.52

203 × 40 16.5 -0.67 [16, 19] 1.81 [15, 18] 0.48 [12, 16] 1.37
203 × 40 16.5 -0.68 [15, 17] 6.53 [15, 19] 2.30 [13, 16] 2.72
203 × 40 16.5 -0.69 [14, 16] 4.04 [16, 19] 1.83 [11, 14] 0.73
203 × 40 16.5 -0.70 [15, 18] 0.36 [14, 19] 0.77 [9, 12] 3.04
203 × 40 16.5 -0.71 [12, 19] 0.81 [14, 17] 1.93 – –

243 × 48 16.7 -0.65 [20, 23] 4.82 [19, 23] 2.32 [13, 20] 0.59
243 × 48 16.7 -0.66 [17, 23] 0.60 [18, 23] 0.50 [13, 18] 0.09
243 × 48 16.7 -0.67 [20, 23] 0.22 [18, 21] 0.05 [13, 16] 0.37
243 × 48 16.7 -0.68 [17, 23] 1.53 [18, 21] 0.24 [13, 16] 1.75
243 × 48 16.7 -0.69 [13, 23] 0.98 [15, 18] 2.70 [9, 11] 2.86

303 × 60 17.1 -0.63 [23, 29] 0.99 [22, 27] 0.14 [14, 23] 0.74
303 × 60 17.1 -0.64 [20, 29] 1.09 [25, 29] 1.29 [14, 17] 3.34
303 × 60 17.1 -0.65 [20, 28] 0.70 [18, 27] 0.58 [12, 15] 0.23

Table 4.11: Sp(6) meson fit ranges and reduced chi-squares in the fundamental rep-
resentation. The ‘–’ symbol denotes a case in which no reliable signal was detected.
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Sp(6) fundamental fermions

Volume β am0
Scalar Tensor Axial-tensor

Ifit χ2/d.o.f. Ifit χ2/d.o.f. Ifit χ2/d.o.f.
123 × 24 15.6 -0.80 – – [8, 11] 2.05 [6, 8] 0.25
123 × 24 15.6 -0.81 – – [7, 10] 2.63 – –
123 × 24 15.6 -0.82 – – [7, 9] 2.86 – –
123 × 24 15.6 -0.83 – – [8, 11] 0.46 – –
123 × 24 15.6 -0.84 – – [7, 10] 0.67 – –

163 × 32 16.1 -0.72 [9, 12] 1.46 [11, 14] 1.66 [9, 12] 1.00
163 × 32 16.1 -0.73 [7, 9] 3.57 [10, 15] 0.70 [9, 12] 0.53
163 × 32 16.1 -0.74 – – [11, 15] 1.21 [8, 10] 0.65
163 × 32 16.1 -0.75 – – [10, 15] 0.24 [8, 10] 6.11
163 × 32 16.1 -0.76 – – – – – –

203 × 40 16.5 -0.67 [13, 16] 0.27 [14, 19] 0.16 [11, 15] 0.81
203 × 40 16.5 -0.68 [10, 12] 7.44 [14, 19] 1.30 – –
203 × 40 16.5 -0.69 [11, 13] 0.51 [13, 17] 0.36 [11, 14] 0.06
203 × 40 16.5 -0.70 [8, 11] 4.92 [15, 18] 1.50 [9, 12] 2.25
203 × 40 16.5 -0.71 – – [12, 15] 0.05 [9, 11] 0.67

243 × 48 16.7 -0.65 [12, 16] 1.60 [16, 23] 1.75 [13, 19] 1.44
243 × 48 16.7 -0.66 [14, 17] 1.35 [13, 23] 0.62 [13, 16] 5.20
243 × 48 16.7 -0.67 [9, 12] 4.45 [20, 23] 0.06 [11, 16] 0.67
243 × 48 16.7 -0.68 – – [20, 23] 0.03 [11, 13] 2.64
243 × 48 16.7 -0.69 – – [12, 14] 1.06 [9, 12] 5.03

303 × 60 17.1 -0.63 [13, 19] 2.82 [21, 27] 0.60 [14, 21] 1.57
303 × 60 17.1 -0.64 [12, 16] 2.59 [26, 29] 0.23 [13, 20] 1.26
303 × 60 17.1 -0.65 [10, 13] 5.02 [20, 23] 1.47 [10, 14] 3.04

Table 4.12: Sp(6) meson fit ranges and reduced chi-squares in the fundamental rep-
resentation. The ‘–’ symbol denotes a case in which no reliable signal was detected.
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Figure 4.9: Decay constants squared for PS, V and AV channels, comprised of fermions
in the fundamental representation of Sp(6). The reduced chi-squared value is printed
at the top of each plot. Data points in the pink shaded region are not included in
the curve-fitting procedure. The grey band represents the continuum and massless
extrapolation with the blue square being the observable in the chiral limit and the
vertical width corresponding to the statistical error. In instances where a reliable
extrapolation cannot be made, no grey band is shown. All quantities are expressed
in units of gradient flow scale, w0.
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Figure 4.10: Masses squared for V, T, AV, AT and S channels, comprised of fermions
in the fundamental representation of Sp(6). The reduced chi-squared value is printed
at the top of each plot. Data points in the pink shaded region are not included in
the curve-fitting procedure. The grey band represents the continuum and massless
extrapolation with the blue square being the observable in the chiral limit and the
vertical width corresponding to the statistical error. In instances where a reliable
extrapolation cannot be made, no grey band is shown. All quantities are expressed
in units of gradient flow scale, w0.
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Sp(6) antisymmetric fermions

Volume β am0
Pseudoscalar Vector Axial-vector
Ifit χ2/d.o.f. Ifit χ2/d.o.f. Ifit χ2/d.o.f.

123 × 24 15.6 -1.2 [8, 11] 2.83 [9, 11] 1.07 – –
123 × 24 15.6 -1.21 [9, 11] 1.73 [8, 11] 4.95 – –
123 × 24 15.6 -1.22 [9, 11] 0.31 [8, 11] 0.43 [5, 8] 2.72
123 × 24 15.6 -1.23 [9, 11] 4.54 [8, 11] 2.35 – –
123 × 24 15.6 -1.24 [8, 11] 6.39 [8, 10] 3.66 – –

163 × 32 16.1 -1.12 [13, 15] 0.56 [10, 13] 0.56 – –
163 × 32 16.1 -1.13 [12, 15] 1.06 [10, 13] 0.45 [7, 10] 0.68
163 × 32 16.1 -1.14 [12, 15] 1.47 [10, 13] 0.04 [7, 10] 0.81
163 × 32 16.1 -1.15 [10, 15] 1.81 [10, 13] 2.98 – –
163 × 32 16.1 -1.16 [10, 15] 1.28 [9, 15] 1.37 – –

203 × 40 16.5 -1.07 [14, 19] 0.67 [14, 18] 0.32 [10, 15] 1.55
203 × 40 16.5 -1.08 [16, 19] 0.69 [13, 16] 1.72 [9, 11] 4.21
203 × 40 16.5 -1.09 [15, 19] 3.96 [12, 18] 0.75 – –
203 × 40 16.5 -1.10 [16, 19] 0.60 [12, 15] 0.30 [7, 11] 0.67

243 × 48 16.7 -1.04 [16, 23] 1.50 [20, 23] 0.24 [12, 18] 1.66
243 × 48 16.7 -1.05 [18, 23] 1.30 [16, 23] 0.51 [10, 16] 0.10
243 × 48 16.7 -1.055 [17, 23] 0.83 [16, 23] 0.09 [10, 13] 0.81
243 × 48 16.7 -1.06 [15, 23] 1.28 [17, 23] 1.22 [11, 14] 0.04
243 × 48 16.7 -1.065 [20, 23] 1.81 [20, 23] 0.18 [10, 13] 0.38
243 × 48 16.7 -1.07 [20, 23] 1.44 [12, 14] 3.06 [8, 10] 0.05

303 × 60 17.1 -1.005 [26, 29] 1.09 [18, 28] 1.01 [14, 17] 0.72
303 × 60 17.1 -1.01 [19, 29] 1.42 [16, 23] 0.72 [12, 15] 2.01
303 × 60 17.1 -1.015 [17, 29] 1.34 [20, 28] 0.73 [11, 14] 7.65
303 × 60 17.1 -1.02 [23, 29] 0.80 [16, 21] 2.84 [10, 13] 0.94

Table 4.13: Sp(6) meson fit ranges and reduced chi-squares in the antisymmetric
representation. The ‘–’ symbol denotes a case in which no reliable signal was detected.
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Sp(6) antisymmetric fermions

Volume β am0
Scalar Tensor Axial-tensor

Ifit χ2/d.o.f. Ifit χ2/d.o.f. Ifit χ2/d.o.f.
123 × 24 15.6 -1.2 [6, 9] 1.89 [8, 11] 1.14 – –
123 × 24 15.6 -1.21 [6, 9] 1.83 [7, 11] 0.82 – –
123 × 24 15.6 -1.22 [6, 9] 2.14 [8, 11] 0.53 – –
123 × 24 15.6 -1.23 – – [8, 11] 0.55 – –
123 × 24 15.6 -1.24 [9, 11] 3.40 [7, 10] 1.31 – –

163 × 32 16.1 -1.12 [8, 11] 1.44 [11, 14] 0.08 [6, 9] 0.36
163 × 32 16.1 -1.13 [7, 11] 1.24 [12, 15] 0.15 [7, 9] 0.81
163 × 32 16.1 -1.14 [7, 10] 1.04 [11, 14] 0.20 [6, 9] 1.71
163 × 32 16.1 -1.15 – – [8, 15] 1.24 – –
163 × 32 16.1 -1.16 – – [7, 10] 0.59 – –

203 × 40 16.5 -1.07 [9, 16] 0.35 [11, 19] 0.25 [9, 12] 1.00
203 × 40 16.5 -1.08 [10, 14] 2.57 [12, 19] 0.86 [9, 12] 0.73
203 × 40 16.5 -1.09 – – [13, 18] 0.35 [9, 11] 0.02
203 × 40 16.5 -1.10 – – [8, 11] 1.31 – –

243 × 48 16.7 -1.04 [12, 17] 0.78 [12, 22] 1.09 [9, 11] 0.24
243 × 48 16.7 -1.05 [9, 12] 1.72 [14, 23] 0.36 [9, 12] 1.06
243 × 48 16.7 -1.055 [11, 15] 1.62 [11, 16] 0.98 [9, 12] 0.33
243 × 48 16.7 -1.06 [9, 13] 2.09 [16, 23] 0.19 [9, 12] 2.18
243 × 48 16.7 -1.065 [8, 11] 4.11 [12, 18] 1.37 [8, 10] 1.15
243 × 48 16.7 -1.07 – – [10, 14] 1.61 – –

303 × 60 17.1 -1.005 [14, 20] 0.79 [16, 29] 0.82 [11, 14] 0.13
303 × 60 17.1 -1.01 [14, 18] 0.47 [15, 27] 1.35 [11, 14] 0.29
303 × 60 17.1 -1.015 – – [13, 24] 0.80 [9, 11] 3.30
303 × 60 17.1 -1.02 – – [11, 16] 1.07 – –

Table 4.14: Sp(6) meson fit ranges and reduced chi-squares in the antisymmetric
representation. The ‘–’ symbol denotes a case in which no reliable signal was detected.
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Figure 4.11: Decay constants squared for PS, V and AV channels, comprised of
fermions in the antisymmetric representation of Sp(6). The reduced chi-squared value
is printed at the top of each plot. Data points in the pink shaded region are not
included in the curve-fitting procedure. The grey band represents the continuum and
massless extrapolation with the blue square being the observable in the chiral limit and
the vertical width corresponding to the statistical error. In instances where a reliable
extrapolation cannot be made, no grey band is shown. All quantities are expressed in
units of gradient flow scale, w0.
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Figure 4.12: Masses squared for V, T, AV, AT and S channels, comprised of fermions
in the antisymmetric representation of Sp(6). The reduced chi-squared value is printed
at the top of each plot. Data points in the pink shaded region are not included in
the curve-fitting procedure. The grey band represents the continuum and massless
extrapolation with the blue square being the observable in the chiral limit and the
vertical width corresponding to the statistical error. In instances where a reliable
extrapolation cannot be made, no grey band is shown. All quantities are expressed
in units of gradient flow scale, w0.
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Sp(6) symmetric fermions

Volume β am0
Pseudoscalar Vector Axial-vector
Ifit χ2/d.o.f. Ifit χ2/d.o.f. Ifit χ2/d.o.f.

123 × 24 15.6 -1.51 [8, 11] 2.03 [8, 11] 0.76 – –
123 × 24 15.6 -1.52 [8, 11] 0.54 [7, 10] 1.22 – –
123 × 24 15.6 -1.53 [8, 11] 1.55 [7, 11] 0.98 – –

163 × 32 16.1 -1.36 [11, 15] 4.73 [11, 14] 7.09 [7, 10] 0.08
163 × 32 16.1 -1.37 [12, 15] 1.29 [12, 15] 0.68 [7, 10] 1.59
163 × 32 16.1 -1.38 [11, 15] 1.12 [12, 15] 1.25 – –
163 × 32 16.1 -1.39 [12, 15] 1.69 [10, 14] 0.13 [7, 10] 0.11
163 × 32 16.1 -1.40 [11, 14] 0.47 [12, 15] 0.54 – –
163 × 32 16.1 -1.41 [12, 15] 0.82 [11, 14] 0.74 – –
163 × 32 16.1 -1.42 [11, 15] 0.95 [10, 15] 0.43 [7, 9] 0.19
163 × 32 16.1 -1.43 [11, 15] 1.67 [9, 13] 0.19 – –

203 × 40 16.5 -1.30 [14, 19] 1.32 [16, 19] 1.61 [11, 14] 0.74
203 × 40 16.5 -1.32 [15, 19] 1.63 [15, 18] 0.75 [9, 11] 0.04
203 × 40 16.5 -1.33 [14, 19] 1.47 [14, 17] 0.67 [8, 11] 1.50
203 × 40 16.5 -1.34 [14, 19] 1.57 [14, 19] 1.48 [7, 9] 4.13
203 × 40 16.5 -1.35 [14, 19] 0.61 [14, 17] 0.03 [8, 11] 1.94

243 × 48 16.7 -1.31 [17, 22] 1.34 [14, 23] 1.57 [8, 13] 0.48
243 × 48 16.7 -1.315 [16, 23] 1.23 [13, 22] 0.45 [9, 12] 1.81
243 × 48 16.7 -1.32 [15, 23] 0.93 [14, 23] 0.25 [10, 12] 0.21
243 × 48 16.7 -1.325 [16, 23] 1.23 [15, 23] 0.39 [8, 11] 1.58

303 × 60 17.1 -1.24 [19, 29] 1.35 [21, 28] 1.72 [11, 14] 0.86
303 × 60 17.1 -1.245 [20, 29] 1.02 [16, 29] 1.03 [11, 17] 0.42
303 × 60 17.1 -1.25 [18, 27] 1.11 [26, 29] 0.11 [12, 16] 0.55
303 × 60 17.1 -1.255 [22, 29] 1.40 [17, 29] 1.26 [12, 18] 0.15
303 × 60 17.1 -1.26 [20, 29] 1.13 [22, 29] 1.68 [10, 17] 0.87

Table 4.15: Sp(6) meson fit ranges and reduced chi-squares in the symmetric repre-
sentation. The ‘–’ symbol denotes a case in which no reliable signal was detected.
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Sp(6) symmetric fermions

Volume β am0
Scalar Tensor Axial-tensor

Ifit χ2/d.o.f. Ifit χ2/d.o.f. Ifit χ2/d.o.f.
123 × 24 15.6 -1.51 – – [7, 10] 0.11 – –
123 × 24 15.6 -1.52 – – [8, 11] 1.17 – –
123 × 24 15.6 -1.53 – – [5, 7] 0.83 – –

163 × 32 16.1 -1.36 [8, 11] 0.41 [10, 14] 0.48 [6, 9] 0.45
163 × 32 16.1 -1.37 [8, 11] 0.05 [9, 14] 0.66 – –
163 × 32 16.1 -1.38 [7, 10] 0.50 [11, 15] 0.79 [7, 9] 0.05
163 × 32 16.1 -1.39 [7, 12] 0.97 [10, 15] 1.49 [5, 8] 1.61
163 × 32 16.1 -1.40 [7, 12] 1.44 [12, 15] 0.27 [5, 7] 1.42
163 × 32 16.1 -1.41 [6, 9] 0.05 [12, 15] 0.04 – –
163 × 32 16.1 -1.42 [11, 15] 1.73 [8, 13] 0.97 – –
163 × 32 16.1 -1.43 [11, 15] 0.97 [8, 11] 0.73 – –

203 × 40 16.5 -1.30 [12, 15] 0.19 [12, 19] 0.82 [9, 12] 0.02
203 × 40 16.5 -1.32 [9, 14] 1.60 [11, 17] 0.81 [8, 11] 0.75
203 × 40 16.5 -1.33 [9, 13] 0.15 [12, 17] 0.27 – –
203 × 40 16.5 -1.34 [10, 14] 0.96 [12, 17] 0.15 – –
203 × 40 16.5 -1.35 [8, 11] 0.88 [11, 19] 0.70 – –

243 × 48 16.7 -1.31 [10, 14] 1.03 [16, 23] 0.69 – –
243 × 48 16.7 -1.315 [12, 14] 0.16 [15, 23] 1.69 [7, 10] 1.23
243 × 48 16.7 -1.32 [8, 12] 2.00 [16, 20] 0.04 – –
243 × 48 16.7 -1.325 [9, 14] 0.37 [11, 18] 1.69 [7, 9] 0.26

303 × 60 17.1 -1.24 – – [19, 27] 0.49 [10, 13] 0.69
303 × 60 17.1 -1.245 [11, 16] 0.41 [14, 28] 1.02 [9, 14] 0.86
303 × 60 17.1 -1.25 [11, 15] 0.38 [18, 29] 1.46 [9, 13] 0.20
303 × 60 17.1 -1.255 [14, 18] 0.14 [25, 28] 0.31 [11, 14] 0.15
303 × 60 17.1 -1.26 [10, 14] 2.75 [15, 29] 1.14 [9, 13] 0.56

Table 4.16: Sp(6) meson fit ranges and reduced chi-squares in the symmetric repre-
sentation. The ‘–’ symbol denotes a case in which no reliable signal was detected.
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Figure 4.13: Decay constants squared for PS, V and AV channels, comprised of
fermions in the symmetric representation of Sp(6). The reduced chi-squared value
is printed at the top of each plot. Data points in the pink shaded region are not
included in the curve-fitting procedure. The grey band represents the continuum and
massless extrapolation with the blue square being the observable in the chiral limit and
the vertical width corresponding to the statistical error. In instances where a reliable
extrapolation cannot be made, no grey band is shown. All quantities are expressed in
units of gradient flow scale, w0.
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Figure 4.14: Masses squared for V, T, AV, AT and S channels, comprised of fermions
in the symmetric representation of Sp(6). The reduced chi-squared value is printed at
the top of each plot. Data points in the pink shaded region are not included in the curve-
fitting procedure. The grey band represents the continuum and massless extrapolation
with the blue square being the observable in the chiral limit and the vertical width
corresponding to the statistical error. In instances where a reliable extrapolation cannot
be made, no grey band is shown. All quantities are expressed in units of gradient flow
scale, w0.
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4.6 Discussion

In this chapter, we have provided a first determination of how the quenched meson

spectrum of Sp(2N) Yang-Mills varies with N and with the representation. It will also

serve as a benchmark for model building and for future calculations with dynamical

fermions.

The calculations for the quenched meson spectrum for Sp(4) in the fundamental

and antisymmetric representations show agreement with same in [13]. Our extrapo-

lations generally show a good value of reduced chi-squared when such extrapolations

could reliably be done. These comparisons are plotted in figs. 4.15 and 4.16 for funda-

mental and antisymmetric fermions, respectively. We also compare our chiral results

for Sp(4) and Sp(6) for fixed representations in figs. 4.21 to 4.26. For the Sp(4) data

we observe that each chiral observable increases as we go from the fundamental to the

antisymmetric to the symmetric representation.

The results could be improved by the addition of more statistics. Taking the

same measurements from more configurations will supply a more accurate estimate

of the mean and the error of each lattice result. As well as more configurations, we

could supplement our results with measurements from larger β values in order to obtain

more accurate results in our continuum extrapolations. In addition, computations at

lighter masses should supply a more accurate extrapolation to the chiral limit; however,

the closer we are to the chiral limit, the more expensive the computations become.

Therefore, this calculation, as well as other computationally intensive studies is deferred

to future investigations.
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Figure 4.15: Masses and decay constants squared for mesons comprised of fermions in
the fundamental representation of Sp(4). The black boxes denote results computed for
this thesis. Blue dots are the corresponding results from [13]. For both sets of data, the
vertical width corresponds to the statistical error in the measurement. All quantities
are expressed in units of gradient flow scale, w0.
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Figure 4.16: Masses and decay constants squared for mesons comprised of fermions in
the antisymmetric representation of Sp(4). The black boxes denote results computed
for this thesis. Blue dots are the corresponding results from [13]. For both sets of
data, the vertical width corresponds to the statistical error in the measurement. All
quantities are expressed in units of gradient flow scale, w0.
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Figure 4.17: Sp(4) chiral decay constants squared for fundamental, symmetric and
antisymmetric fermions expressed in units of gradient flow.
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Figure 4.18: Sp(4) chiral masses squared for fundamental, symmetric and antisym-
metric fermions expressed in units of gradient flow.
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Figure 4.19: Sp(6) chiral decay constants squared for fundamental, symmetric and
antisymmetric fermions expressed in units of gradient flow.
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Figure 4.20: Sp(6) chiral masses squared for fundamental, symmetric and antisym-
metric fermions expressed in units of gradient flow.
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Figure 4.21: Chiral decay constants squared for fundamental fermions expressed in
units of gradient flow for Sp(4) and Sp(6).
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Figure 4.22: Chiral masses squared for fundamental fermions expressed in units of
gradient flow for Sp(4) and Sp(6).
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Figure 4.23: Chiral decay constants squared for antisymmetric fermions expressed in
units of gradient flow for Sp(4) and Sp(6).
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Figure 4.24: Chiral masses squared for antisymmetric fermions expressed in units of
gradient flow for Sp(4) and Sp(6).
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Figure 4.25: Chiral decay constants squared for fundamental fermions expressed in
units of gradient flow for Sp(4) and Sp(6).
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Figure 4.26: Chiral masses squared for fundamental fermions expressed in units of
gradient flow for Sp(4) and Sp(6).
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Chapter 5

Conclusion

Throughout this thesis we have focussed on the non-perturbative physics of Sp(2N)

Yang-Mills theories. In Chapter 3, we studied the glueball spectrum of Sp(2N) Yang-

Mills theories both for finite N and in the limit N →∞. In Chapter 4, we studied the

quenched meson spectrum for N = 2 and N = 3 as a stepping-stone to a large-N ex-

trapolation for the same observables. Both these values of N were examined separately

for fermions in the fundamental, symmetric and antisymmetric representations (with

the adjoint representation of Sp(2N) being identical to the corresponding symmetric

representation).

By the existence of torelon states found in our glueball calculations, we demon-

strated that Sp(4), Sp(6) and Sp(8) gauge theories confine. This both confirms and

extends the work done in [56]. Confirming confinement is of great significance since

there is no known way to prove this analytically. We also found good agreement be-

tween our data for the glueball spectrum of Sp(2) and results in the literature for SU(2).

The same can be said of our Sp(∞) data compared to existing data for SU(∞).

We also examine our glueball results in the context of large-N universality.
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Specifically, Casimir scaling and the mass ratio of the two states 2++ and 0++; these are

the continuum states of E++ and A++
1 , respectively. Some of the behaviour of Sp(2N)

and SU(N) Yang-Mills as N varies is captured by fig. 3.9. Additionally, we find numer-

ical evidence for the ratio in eq. (3.9.1) being common to all Sp(2N) groups. We also

find good agreement between our Sp(4) results in the fundamental and antisymmetric

representations and those contained in [13].

Our studies of the quenched meson spectrum for Sp(4) and Sp(6) are a work

in progress for the quenched meson spectrum as N → ∞. The sets of results for the

two groups that we do have are a qualitatively similar behaviour of the spectrum for

all representations in both cases which may hint towards a mild dependence on N . If

confirmed by unquenched studies, this observation can have relevant implications for

the question concerning the influence of N on the dynamics of Sp(2N).

This work can also be considered a first step towards a first-principle computation

of the Higgs mass in the new interaction, which was our original motive for studying

Sp(2N) groups. The mass of the pseudoscalar as computed in Chapter 4 is a composite

state in which the SU(2) ⊗ U(1) symmetry is global and exact. In the SM, this same

symmetry (the electroweak symmetry) is spontaneously broken to a U(1) subgroup and

the Higgs boson is a scalar fluctuation about this non-trivial vacuum. To compute the

Higgs mass in the new interaction would require, in addition to unquenching, gauging

a subgroup of the unbroken residual global symmetry corresponding to the SM.

The motives for studying Sp(2N) gauge groups are not limited to composite

Higgs models. In fact, it has been suggested that Sp(2N) glueballs could play a role

in dark matter scenarios [86]. In addition, the pseudo-reality of the gauge group allows

us to study the finite density without having to confront the sign-problem. (For an

overview of the sign-problem, see, e.g., [87].) Contrasting and comparing the behaviour

of Sp(2N) and of SU(N) at finite density can therefore provide useful insights to
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understand this regime in QCD. Combined with the universality of the large-N limit,

we can determine the behaviour as a function of the chemical potential of SU(N) and

SO(N) groups in the same limit.
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Appendix A

SU(4) and Sp(4) generators

The following matrices are generators of Sp(4) [54]:

T 6 = 1
2
√

2


0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0

 , T 7 = 1
2
√

2


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 , T 8 = 1
2
√

2


0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0

 ,

T 9 = 1
2
√

2


0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0

 , T 10 = 1
2


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , T 11 = 1
2
√

2


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 ,

T 12 = 1
2


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 , T 13 = 1
2
√

2


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 , T 14 = 1
2
√

2


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 ,
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T 15 =
1

2
√

2


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 .

The fifteen generators of SU(4) are the ten matrices stated above in combination

with the following five [54]:

T 1 = 1
2
√

2


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 , T 2 = 1
2
√

2


0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0

 , T 3 = 1
2
√

2


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

 ,

T 4 = 1
2
√

2


0 0 0 −i
0 0 i 0

0 −i 0 0

i 0 0 0

 , T 5 = 1
2
√

2


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 .

The two groups are

SU(4) = {eiαaTa : a = 1, . . . , 15} (A.0.1)

Sp(4) = {eiαaTa : a = 6, . . . , 15}. (A.0.2)

All matrices are normalised such that trT aT b = 1
2
δab.

The SU(4) generators written as generalised Gell-Mann matrices are stated be-
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low but are less useful for our study of symmetry breaking to Sp(4).

λ1 =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , λ2 =


0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0

 , λ3 =


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 ,

λ4 =


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , λ5 =


0 0 −i 0

0 0 0 0

i 0 0 0

0 0 0 0

 , λ6 =


0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

 ,

λ7 =


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 , λ8 = 1√
3


1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0

 , λ9 =


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 ,

λ10 =


0 0 0 −i
0 0 0 0

0 0 0 0

i 0 0 0

 , λ11 =


0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

 , λ12 =


0 0 0 0

0 0 0 −i
0 0 0 0

0 i 0 0

 ,

λ13 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

 , λ14 =


0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

 , λ15 = 1√
6


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3

 .
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Appendix B

Block Structure of Sp(2N)

Write a generalised 2N × 2N matrix in the block form

U =

 A B

C D

 (B.0.1)

where each of A, B, C and D is an N×N matrix. In order to be an element of Sp(2N),

U must satisfy the constraints

U †U = 12N (B.0.2)

U∗ = Ω†UΩ. (B.0.3)

The definition in eq. (1.3.2) can be manipulated into the equivalent form

U∗ = Ω†UΩ

=⇒ UT = Ω†U †Ω

=⇒ ΩUT = U †Ω
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=⇒ UΩUT = Ω (from the unitarity of U). (B.0.4)

Unitarity gives the conditions:

A†A+ C†C = 1N (B.0.5)

B†B +D†D = 1N (B.0.6)

A†B + C†D = 0, (B.0.7)

and the symplectic condition in eq. (B.0.4) gives

ABT = BAT (B.0.8)

CDT = DCT (B.0.9)

ADT −BCT = 1N . (B.0.10)

The last of the symplectic conditions combined with the other constraints gives

ADT −BCT = 1N

=⇒ A∗D† −B∗C† = 1N

=⇒ A∗D†D −B∗C†D = D

=⇒ A∗(1N −B†B)−B∗(−A†B) = D

=⇒ A∗ − A∗B†B +B∗A†B = D

=⇒ A∗ − (A∗B† −B∗A†)B = D

=⇒ A∗ −
���

���
��:= 0

(ABT −BAT ) ∗B = D

=⇒ A∗ = D. (B.0.11)
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In addition,

A†A+ C†C = 1N

=⇒ A†ABT + C†CBT = BT

=⇒ A†ABT + C†(BCT )T = BT

=⇒ A†ABT + C†(ADT − 1N)T = BT

=⇒ A†ABT + C†DAT − C† = BT

=⇒ A†BAT + C†DAT − C† = BT

=⇒
���

���
��:= 0

(A†B + C†D)AT − C† = BT

=⇒ −C† = BT

=⇒ C = −B∗ (B.0.12)

These give the final block structure:

U =

 A B

−B∗ A∗

 (B.0.13)

with the simplified constraints:

AA† +BB† = 1N (B.0.14)

ABT = BAT (B.0.15)
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Appendix C

Plateau Seeking Algorithm

The computation of both the meson spectrum and the glueball spectrum requires the

determination of a time interval [t1, t2] in which the effective mass as a function of time,

ameff(t), exhibits a plateau. At first sight, this would seem to be quite a subjective

process but we can attempt to automate it and, thus, make it less prone to human-error.

We anticipate that certain circumstances may require the fit to be done manually but

the implementation of the algorithm for the work carried out in this thesis resulted in

a great many of the results being determined without the need for human intervention.

(In general, the algorithm only failed at small lattice volumes or in channels with

large masses compared to the pseudoscalar – typically the axial-vector and axial-tensor

states.) It also computed the results in a more reproducible manner as well as making

the large number of correlators that had to be analysed a less daunting task. Though

the algorithm was only used for the meson spectrum in this work, it is applicable to

the computation of the glueball spectrum or, indeed, any computation that involves the

determination of a fit range. (Though we use this algorithm to detect plateaux, it could

be applied to any problem that involves finding an optimum range across which to fit
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data to a curve.) Below, we denote the fit range from initial time ti to final time tf by

[ti, tf ] and the chi-squared (not the reduced chi-squared) value in the same interval by

χ2(ti, tf ).

1. In order for effective masses to qualify for a plateau, they must, first of all, be

both real and positive. If this is not the case, the measurements will not make

physical sense. As shown in fig. C.1, there may not be a valid signal across a

large portion of the lattice and the measurement must be discarded. However, we

should be careful not to exclude results such as those in fig. C.2 in which there is

a valid mass signal which, nonetheless, does not persist across the whole temporal

width of the lattice. An objective way to determine this is to seek the longest

list of consecutive t-values for which ameff(t) is both real and positive. If this

list contains fewer than, say, 40% of the values of ameff fit the above criteria, the

results must be done manually.

2. Once we have a list of consecutive values of ameff each of which is both real

and positive, the largest t value is used as the provisional value for tf and the

smallest as the provisional value for ti. We denote these values by ttmp
f and ttmp

i ,

respectively.

3. With our provisional values ttmp
i and ttmp

f , we hold the latter fixed and increase

ttmp
i by one lattice width until at least one of the following conditions is met:

(a) χ2(ttmp
i + 1, ttmp

f ) > χ2(ttmp
i , ttmp

f );

(b) χ2(ttmp
i , ttmp

f ) falls below the value required for a 10% confidence-of-fit level.

This value will depend on the number of degrees of freedom corresponding

to the fit range;
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(c) The number of t-values is at a prescribed minimum. For example, we may

wish the plateau length to consist of no fewer than three t-values. Alter-

natively, we may demand that the number of degrees of freedom be no less

than 1 or some other specified minimum.

Condition 3a corresponds to the effective mass beginning to fluctuate around the

corresponding ground-state energy. In some pathological cases, this may occur

at very early times, but such fit ranges will have very large χ2 values and will be

superseded in the subsequent steps of this algorithm or, perhaps, the measurement

will be discarded entirely. Condition 3b corresponds to our ability to say with a

given confidence level that the curve fits the data. This 10% value is not inviolable

but is simply used as a starting point. The final of the three conditions, 3c, simply

puts a safety net in the algorithm to prevent us fitting too few data points to our

model. We may wish to discard results for which only condition 3c is satisfied but

the results in this thesis for which this was the case were examined, nonetheless.

4. With our latest values of ttmp
i and ttmp

f , we now examine the fit at neighbouring

values of ttmp
i and ttmp

f . For a given value of n, we determine the χ2(ttmp
i , ttmp

f )

value for starting values ttmp
i ± 1, ttmp

i ± 2, . . . , ttmp
i ± n and finishing values

ttmp
f − 1, . . . , ttmp

f − n. The value of n depends on the width of the lattice but

is usually between 2 and 4. In each case we accept the fit range as a candidate

if χ2(ttmp
i , ttmp

f ) falls below the threshold required for 10% confidence-of-fit. If

no such fit range exists for any interval, we repeat the above but seeking only

a 5% confidence-of-fit. If there are still no valid fit ranges, the interval must be

determined manually (or the result may have to be discarded altogether). Of the
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candidate fit ranges, we select the one for which

χ2(ttmp
i , ttmp

f )

(d.o.f.)(tf − ti + 1)2
(C.0.1)

is minimised. The term, d.o.f. refers to the number of degrees of freedom in the

fit. The motive for dividing by (tf − ti+1)2 is to determine the minimum value of

the reduced chi-squared while maximising the length of the plateau. The length

of the plateau is squared for empirical reasons. When we divided by (tf − ti + 1),

longer plateaux with acceptable chi-squared values were rejected but in the case

of dividing by (tf − ti + 1)3, long fit ranges with unacceptably large chi-squared

values were used. The exponent of 2 is, again, not final and may be subject to

revision.

5. Once we have a fit range [ttmp
i , ttmp

f ], we carry out a “robustness-check” to make

sure that the end points of the fit range do not influence the value of the fitted

mass too significantly. For our fit range [ttmp
i , ttmp

f ] with effective mass m1 and

error δ(m1), we compute the effective mass m2 in the range [ttmp
i + 1, ttmp

f ] with

corresponding error δ(m2). If the inequality |m1 − m2|< δ(m1) holds then the

effective mass in the original range is not influenced too severely by its endpoints;

the measurement changes within the margin of error. If this is not the case, we

reduce the fit range to [ttmp
i + 1, ttmp

f ] and repeat the above step until, either, we

reach our prescribed minimum plateau length or until the change in effective mass

is within the margin of error. This fit-range is our final answer.

There are a few ad-hoc parameters in the foregoing algorithm: the value of 40%

in step 1, the requirement of 10% confidence of fit in condition 3b and the value of 2

in the exponent of (tf − ti + 1) in eq. (C.0.1). A more detailed examination of this

168



0 5 10 15 20
0.0

0.5

1.0

1.5

t

am
ef
f

S

. Sp(6), 243⨯48, β=16.7, amo=-0.69

Figure C.1: An example of a mass signal that takes non-real values in the middle of
the lattice. This plot has been included here for the sake of example but was not used
in the final results.

algorithm, say, in the context of machine learning will almost certainly improve upon

these values and even the algorithm as a whole. Such a study, however, is beyond the

scope of this thesis.
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Figure C.2: An example of a valid mass signal that does not persist for the entire
temporal width of the lattice. The temporal width of the lattice is 48 but the signal
disappears for t > 14.
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