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Abstract

In this article, we study 2D stochastic Burgers equations driven by linear multiplicative noise, and
with non-periodic boundary conditions. We first apply Galerkin approximation method to show the
local existence and uniqueness of strong solutions, we then establish the global well-posedness for strong
solutions by utilizing the maximum principle.
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1 Introduction

This article is concerned with 2D Stochastic Burgers equations (SBEs) prescribed on a smooth, bounded,
open domain D ⊂ R2. For arbitrarily fixed T > 0, let (Ω,F , {Ft}t∈[0,T ],P) be a given stochastic basis. Set
W :=

∑∞
k=1 σkBk(t), for t ∈ [0, T ], σk ∈ R with

∑∞
k=1 σ

2
k < ∞, where {Bk(t)}t∈[0,T ], k ∈ N is a sequence

of independent, one-dimensional {Ft}t∈[0,T ]-Wiener processes. On the other, let us denote ∆ := ∂2
x1

+ ∂2
x2

the Laplace operator, and ∇ := (∂x1
, ∂x2

) the gradient operator. We consider the Cauchy problem for the
following 2D SBE driven by linear multiplicative noise, and subject to the Dirichlet boundary condition

du(t) = ν∆udt− (u · ∇)udt+ u(t) ◦ dW (t), (1.1)

u(t, x) = 0, t > 0, x = (x1, x2) ∈ ∂D, (BC)

u(0, x) = u0(x), x = (x1, x2) ∈ D, (IC)

for the unknowns 2D vector-valued random fields u(t, x) = (u1(t, x), u2(t, x)) ∈ R2 for (t, x) ∈ [0, T ] × D,
where the parameter ν > 0 stands for the viscosity and ◦ denotes the Stratonovich integral. The mathematical
study of the Burgers equation was originated in a series of articles (chronologically) by Forsyth [12], Beteman
[3], and Burgers [8]. The case of scalar SBEs (i.e., R-valued random fields u) has been pretty well studied by
Bertini, Cancrini and Jona-Lasinio in [4] and Da Prato, Debussche and Temam in [9], just mention a few.

Towards the case of higher dimensional inviscid SBEs, stationary solutions and stationary distributions
were constructed by Iturriaga and Khanin in [15]. Based on the stochastic version of Lax formula, Gomes,
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Iturriaga, Khanin and Padilla in [13] proved the convergence of stationary distributions for the randomly
forced multi-dimensional Burgers equations when viscosity tends to zero. Utilizing some inventive techniques,
Brzezniak, Goldys and Neklyudov [5] established the global well-posedness of multidimensional Burgers
equations with additive noise effecting only on one coordinate. Furthermore, the asymptotic behavior of
solutions is studied when the viscosity tends to zero. For the potential case, one can see [7, 16, 11] and other
references therein.

In the present work, we consider the global well-posedness of 2D SBEs with Dirichlet boundary conditions
driven by linear multiplicative noise. Here, we should point out that the absence of the incompressible
property and high nonlinearity of 2D SBEs bring difficulties to establish a priori estimates even in L2 space.
To overcome the difficulties, we heavily rely on the random version of maximum principle (Lemma 4.1) and
an argument of compactness and regularity of the solutions to 2D SBEs (see the proof of Theorem 4.1). In
the forthcoming work by the same authors, the global well-posedness of 2D SBEs with periodic boundary
conditions is established without the help of Poincaré’s inequality, hence requires more delicate techniques.

In a recent paper [19], Zhang, Zhou, Guo and Wu studied 3D stochastic Burgers equations with the noise
perturbing only one coordinate, with the initial data lying in L∞(D). The present article aims to extend
the noise to all the coordinates and drops the assumption that the initial data should lie in L∞(D). Due to
the dimension is 2 and the noise is multiplicative, instead of utilizing the contraction principle argument, we
first do a martingale type transform, then adopt the techniques from partial differential equations (PDEs),
that is, we first derive energy estimates in a more regular spaces, then establish the local existence of the
solutions by applying comparison principle. Also, since the noise perturbs all coordinates, we need to adopt
a new version of maximum principle (see Lemma 4.1), and derive a priori estimates to help us obtain the
global well-posedness.

The maximum principle stated in Lemma 4.1 is the key tool to establish the global existence of the
strong solution to (1.1) with (BC)-(IC). It is well known that the maximum principle should be applied
to the classical solutions to differential equations. However, for stochastic partial differential equations and
stochastic ordinary differential equations, there is no classical solution. Therefore, we can not consider the
global well-posedness for 2D SBEs with nonlinear multiplicative noise. The novelty of the present paper is
that we apply the maximum principle to the random Galerkin approximations. Then, utilizing the classic
compactness arguments shown in Lemma 2.1 and Lemma 2.2, we obtain a subsequence of the solutions
converging almost everywhere with respect to time to the solutions to (1.1) with (BC)-(IC). To refine the
almost everywhere result, we make use of the continuity of the local solutions with respect to time, and
achieve the result that a prior estimates hold for any time.

Finally, we would like to point out the differences between [5] and the present work. Firstly, the boundary
conditions in [5] are periodic, while in our present article the boundary conditions are Dirichlet. Secondly,
the noise considered in [5] is additive and the noise exists only in one coordinate, while, in our article we
deal with (linear) multiplicative noise which perturbs on all the coordinates. Finally, in [5], the proof of
local existence of solutions relies on the semigroup method, while here we use the Galerkin approximation
approach.

The rest of this article is organized as follows. Some preliminaries are presented in Section 2, local well-
poseness result of the stochastic system is stated and proved in Section 3. In Section 4, we establish the
global well-posedness of the 2D stochastic Burgers equation.

2 Preliminaries

We first introduce the notations that will be used throughout this article. For p ∈ N+, let Lp(D;R2) be the
vector-valued Lp-space in which the norm is denoted by | · |p. When p = 2, denote by H := L2(D;R2) and its
associated norm and inner product are | · |2 and 〈·, ·〉, respectively. Moreover, when p =∞, L∞(D;R2) stands
for the collection of vector-valued functions which are essentially bounded on D and the corresponding norm
is denoted by | · |∞.

For m ∈ N+, (Wm,p(D), ‖·‖m,p) is the classical Sobolev space. When p = 2, denote by Hm(D) =
Wm,2(D), and

‖u‖2m =
∑

0≤|δ|≤m

∫
D

|Dδu|2dx,
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where δ := (δ1, δ2) is a multi-index with nonnegative integers δ1, δ2, and |δ| = δ1 + δ2. It is well known that
(Hm(D), ‖·‖m) is a Hilbert space. Let C∞c (D) be the space of all infinitely differentiable functions on D
with compact support. Let W 1,p

0 be the closure of C∞c (D) in W 1,p(D). Set H1
0 = W 1,2

0 and let H−1 be the
dual space of H1

0.
In this article, we simply deal with the case that the viscosity ν = 1. In fact, ν can be any strictly

positive real. Denote by A := −∆, then A : H1
0 → H−1 and D(A) = [H2 ∩H1

0]2, A is a positive self-adjoint
operator with discrete spectrum in H, that is, there exists an orthonormal basis {ek}k∈N in H and a sequence
of increasing real values {λk}k∈N such that Aek = λkek.

For any u ∈ L2(D), denote by uk = 〈u, ek〉. Given s ∈ R, the fractional power (As, D(As)) of the operator
(A,D(A)) is defined by

Asu =

∞∑
n=1

λsnunen, where u =

∞∑
n=1

unen; D(As) = {u =

∞∑
n=1

unen
∣∣ ∞∑
n=1

λ2s
n |un|2 <∞}.

We then set Hs := D(As/2) and denote by ‖·‖s the seminorm |As/2 · |2.
Next, let us introduce strong solutions to (1.1) with (BC)-(IC).

Definition 2.1 (Local strong solutions). Let the stochastic basis (Ω,F , {Ft}t≥0,P,W ) be given as before.
Suppose u0 is a H1-valued, F0-measurable random variable.

(i) A pair (u, τ) is a local strong pathwise solution to (1.1) with (BC)-(IC) if τ is a strictly positive
stopping time and u(· ∧ τ) is an Ft-adapted process in H1 so that

u(· ∧ τ) ∈ L2
(
Ω;C([0,∞);H1)

)
, u1t≤τ ∈ L2

(
Ω;L2

loc([0,∞);H2)
)

; (2.1)

and for any t ≥ 0, the following identity holds in H,

u(t ∧ τ)−
∫ t∧τ

0

∆u(s)ds+

∫ t∧τ

0

(u · ∇u)(s)ds = u0 +

∞∑
k=1

∫ t∧τ

0

σku(s) ◦ dBk(s).

(ii) Strong pathwise solutions of (1.1) are said to be unique up to a random positive time τ > 0 if given
any pair of solutions (u1, τ), (u2, τ), which coincide at t = 0 on the event Ω̃ = {u1(0) = u2(0)} ⊂ Ω,
then

P(1Ω̃

(
u1(t ∧ τ)− u2(t ∧ τ)

)
= 0;∀t ≥ 0) = 1.

Definition 2.2 (Maximal and global strong solutions).

(i) Let ξ be a positive random variable. We say that (u, ξ) is a maximal pathwise strong solution if
(u, τ) is a local strong pathwise solution for each τ < ξ and sup

t∈[0,ξ)

‖u‖1 = ∞ almost surely on the set

{ξ <∞}.

(ii) If (u, ξ) is a maximal pathwise strong solution and ξ =∞ a.s., then we we say the solution is global.

Let α : [0,∞]× Ω→ R be the solution to the following Stratonovich stochastic differential equation:

dα(t) =

∞∑
k=1

σkα(t) ◦ dBk(t), for t ≥ 0, and α(0) = 1. (2.2)

Applying Itô’s formula, we have for any t ≥ 0, α(t) = exp {
∑∞
k=1 σkBk(t)} . By Novikov’s condition and

Doob’s maximal inequality, we know that for any T > 0,

E

[
sup
t∈[0,T ]

|α(t)|

]
<∞.

We now make change of variables by v(t) = α(t)u(t), then v(t) satisfies the following equation:

dv(t) = ∆v(t)dt+ α(t)−1(v(t) · ∇)v(t)dt, (2.3a)
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v(t, x) = 0, (t, x) ∈ [0, T ]× ∂D; (2.3b)

v(0, x) = u0(x), x = (x1, x2) ∈ D. (2.3c)

We first consider the Galerkin approximation of (2.3). For n ∈ N, let Pn be the projection from H onto the
subspace expanded by {e1, e2, . . . , en}, that is, for u ∈ H,

Pn(u) = Pn

( ∞∑
k=1

〈u, ek〉ek

)
=

n∑
k=1

〈u, ek〉ek.

Then we obtain the Galerkin approximation of (2.3) as follows:

dvn(t, x) = ∆vn(t, x)dt− α(t)−1Pn[(vn · ∇)vn(t, x)]dt, (t, x) ∈ [0, T ]×D, (2.4a)

vn(t, x) = 0, (t, x) ∈ [0, T ]× ∂D; (2.4b)

vn(0, x) = un(0, x), x = (x1, x2) ∈ D. (2.4c)

Since (2.4) is a locally Lipschitz system of stochastic ODEs, there exists the unique local solution vn to (2.4)
with τn,ω as the maximal existence time of vn. Obviously, vn ∈ C([0, τn,ω] × D). To end this section, we
present Aubin-Lions lemma and Lions-Magenes lemma as follows. One can refer to [18] for proof details.

Lemma 2.1 (Aubin-Lions, [1]). Let B0, B,B1 be Banach spaces such that B0, B1 are reflexive and B0

c
⊂

B ⊂ B1. Define for 0 < T <∞,

X :=
{
h
∣∣∣h ∈ L2([0, T ];B0),

dh

dt
∈ L2([0, T ];B1)

}
.

Then X is a Banach space equipped with the norm |h|L2([0,T ];B0)+|h′|L2([0,T ];B1). Moreover, X
c
⊂ L2([0, T ];B).

Lemma 2.2 (Lions-Magenes, [17]). Let V,H, V ′ be three Hilbert spaces such that V ⊂ H = H ′ ⊂ V ′ , where
H ′ and V ′ are the dual spaces of H and V respectively. Suppose u ∈ L2(0, T ;V ) and u′ ∈ L2(0, T ;V ′). Then
u is almost everywhere equal to a function continuous from [0, T ] into H.

3 Local well-posedness of stochastic Burgers equations

In this section, we use the Galerkin approximation method to show the local existence of the soltuions to
(2.3).

Proposition 3.1. Assume that the initial data u0 ∈ H1 is F0-measurable, there exists a random variable
τ > 0 such that the unique strong solution v to the equation (2.3) on the interval [0, τ ] satisfies

sup
t∈[0,τ ]

‖v(t)‖21 +

∫ τ

0

‖v(t)‖22dt <∞, P-a.s. ω ∈ Ω. (3.1)

Moreover, v is Lipschitz continuous with respect to the initial data in H1.

Proof. For any t ∈ (0, τn,ω), taking inner product of (2.4) with −∆vn in L2([0, t] ×D), then by Hölder’s
inequality, Young’s inequality, interpolation inequality and Sobolev imbedding theorem,

‖vn(t)‖21 + 2

∫ t

0

‖vn(s)‖22ds ≤‖u0‖21 +

∫ t

0

α−1(s)

∫
D

|(vn · ∇)vn(s, x)||∆vn(s, x)|dxds

≤‖u0‖21 + ε

∫ t

0

‖vn(s)‖22ds+ Cε

∫ t

0

α−2(s)|∇vn(s)|23|vn(s)|26ds

≤‖u0‖21 + ε

∫ t

0

‖vn(s)‖22ds+ C

∫ t

0

α−4(s)|‖vn(s)‖21|vn(s)|46ds

≤‖u0‖21 + ε

∫ t

0

‖vn(s)‖22ds+ C

∫ t

0

α−4(s)|‖vn(s)‖61ds.
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For t ∈ [0, 1], we have

‖vn(t)‖21 +

∫ t

0

‖vn(s)‖22ds ≤‖u0‖21 + C

∫ t

0

[
sup
t∈[0,1]

α−4/3(s)‖vn(s)‖21

]3

ds

=:‖u0‖21 +

∫ t

0

[
K‖vn(s)‖21

]3
ds. (3.2)

Applying comparison theorem (see Theorem III-5-1 in [14]), with t∗ := 1
2K3‖u0‖41

, one can get

‖vn(t)‖21 ≤
‖u0‖21

[1− 2tK3‖u0‖41]1/2
=

‖u0‖21
[1− tt−1

∗ ]1/2
. (3.3)

Hence, for any n, the estimate in (3.3) rules out the blowup of vn in H1 before the time t∗. We can choose

τ(ω) := t∗(ω)
2 > 0 such that τ(ω) does not depend on n ∈ N. It follows from (3.2) and (3.3) that vn are

uniformly bounded is L∞([0, τ ];H1) ∩ L2([0, τ ];H2). Now back to (2.4), by Hölder inequality and Sobolev
imbedding theorem,

|∂svn|2 ≤ α−1|vn · ∇vn|2 + |∆vn|2 ≤ α−1|vn|∞|∇vn|2 + ‖vn‖2 ≤ cα−1‖vn‖3/21 ‖vn‖
1/2
2 + ‖vn‖2, (3.4)

where c is a constant that is independent of n, s. Thus, ∂svn is uniformly bounded in L2([0, τ ];H). By
Lemma 2.1 and Lemma 2.2, there exists a subsequence of vn, which, for convenience, is still denoted by vn,
such that vn converges to v in L2([0, τ ];H1) and v ∈ C([0, τ ];H1). Following a standard argument, it can be
verified that v is the local strong solution to (2.3) and the estimate (3.1) follows analogously from (3.2) and
(3.3).
It remains to show the uniqueness. Let v1, v2 be two strong solutions to (2.3) with v1(0) = v2(0) = u0, and
let v̄ = v1 − v2, then we have

1

2
∂s‖v̄‖21 + ‖v̄‖22 ≤α−1〈v̄ · ∇v1,∆v̄〉+ α−1〈v2 · ∇v̄,∆v̄〉

≤α−1‖v̄‖2‖v̄‖1/21 ‖v̄‖
1/2
2 ‖v1‖1 + α−1‖v2‖1‖v̄‖1‖v̄‖2

≤ε‖v̄‖22 + cα−4‖v̄‖21‖v1‖41 + cα−2‖v2‖21‖v̄‖21.

By Gronwall’s inequality, with v̄(0) = 0, ‖v̄(s)‖1 = 0 for s ∈ [0, τ ]. The Lipschitz continuity of the local
strong solution with respect to the initial data in H1 also follows from the above estimate. �

4 Global well-posedness of stochastic Burgers equations

To establish the global well-posedness, we utilize the maximal principle stated as follows:

Lemma 4.1. If vn is a solution to (2.4) on the time interval [0, t], then sup
s∈[0,t]

|vn(s)|∞ ≤ |vn(0)|∞.

Proof. For any β > 0, set f(s, x) := e−βsvn(s, x) for any s ∈ [0, t] and x ∈ D. Taking inner product of
(2.4) with vn on both sides gives that

∂s|vn(s)|2 + 2α(s)−1vn(s) · ∇|vn(s)|2 − 2(∆vn · vn)(s) = 0.

With |vn(s)|2 = |f(s)|2e2βs and 2∆f(s) · f(s) = ∆|f(s)|2 − 2|∇f |2, we get that

∂s|f(s)|2 + 2β|f(s)|2 + 2eβsα(s)−1f(s) · ∇|f(s)|2 −∆|f(s)|2 + 2|∇f(s)|2 = 0. (4.1)

Note that if |f(s, x)| achieves the local maximum for (s, x) ∈ (0, t] × D, then the left-hand side of (4.1) is
strictly positive unless |f(t, x)| ≡ 0. Therefore, |f(s)|∞ ≤ |f(0)|∞, and this yields that

|vn(s)|∞ ≤ eβs|vn(0)|∞, for any s ∈ (0, t].

The result follows by letting β go to 0. �
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Theorem 4.1. For any F0-adapted initial data u0 ∈ H1 and any T > 0, there exists a unique global strong
solution v to (2.3) in the sense of Definition 2.2. Furthermore, v ∈ C([0, T ];H1) ∩ L2([0, T ];H2) and v is
Lipschitz continuous with respect to initial data in H1.

Proof. Taking inner product of (2.4) with −∆vn in H and applying Young’s inequality gives that

∂t‖vn‖21 ≤ 2α(t)−1

∫
D

(vn · ∇)vn∆vndx− 2‖vn‖2H2 ≤ cα−2(t)|vn|2∞‖vn‖21 − ‖vn‖22. (4.2)

By Gronwall’s inequality and Lemma 4.1, we have

‖vn(t)‖1 +

∫ t

0

‖vn(s)‖22ds ≤ ‖u0‖21 exp

{
c‖u0‖21

∫ t

0

α(s)−2ds

}
. (4.3)

Now let τ be the maximum existence time of the local strong solution v to (2.3). Hence, for any τ̂ < τ , {vn}
is uniformly bounded in L2([0, τ̂ ];H2), by Lemma 2.1 and Lemma 2.2, there exists a subsequence of {vn},
still denoted by {vn}, converging to v in L2([0, τ̂ ];H1). Hence, using a bootstrapping argument, vn(t)→ v(t)
in H1 almost every t ∈ [0, τ). Furthermore, with (4.3), we obtain that for almost every t ∈ [0, τ),

‖v(t)‖21 ≤ ‖u0‖21 exp

{
c‖u0‖21

∫ t

0

α(s)−2ds

}
. (4.4)

Note that v(t) is continuous with respect to time t in H1. Hence, (4.4) holds for any t ∈ [0, τ). If τ < ∞,
then lim sup

t→τ−
‖v‖1 = +∞, which is contradicting with (4.4). Therefore, τ =∞,P-a.s.. Hence, we obtain the

global existence for the strong solution v of (2.3). The uniqueness result is proved in Proposition 3.1. �
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